Science.gov

Sample records for lasers theoretical analysis

  1. A Theoretical Model Analysis of Absorption of a Three level Diode Pumped Alkali Laser

    DTIC Science & Technology

    2009-03-01

    A THEORETICAL MODEL ANALYSIS OF ABSORPTION OF A THREE LEVEL DIODE PUMPED ALKALI LASER ...States Government. AFIT/GAP/ENP/09-M07 A THEORETICAL MODEL ANALYSIS OF ABSORPTION OF A THREE LEVEL DIODE PUMPED ALKALI LASER THESIS...This paper models the absorption phenomena of light in a three level diode pumped alkali laser system. Specifically this model calculates for a user

  2. Theoretical analysis of spectrum flattening in fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Shi, Chen; Wang, Xiaolin; Zhou, Pu; Wang, Zefeng; Xu, Xiaojun; Lu, Qisheng

    2017-01-01

    The flatness of laser spectrum is important in many applications. In this manuscript, a method of acquiring flattened spectrum directly from a fiber oscillator by optimizing the reflective spectrum of Fiber Bragg Gratings (FBG) was demonstrated and optimized result at wavelength around 1064 nm and 1080 nm was presented. An optimization path to alter the reflectivity of FBGs using greedy algorithm was interpreted by analyzing the single-trip gain inside the resonant cavity. Our method has a guiding significance of controlling the output spectrum of laser oscillator using FBGs.

  3. Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2016-12-01

    Analysis of two new pump-couplings: semi-ring and trapezoid LD side-pumped configurations in alkali vapor lasers is reported, which mainly includes the numerical approaches for evaluation of the pump intensity and temperature distribution in the cell of these two configurations. Comparison between the simulated results of the semi-ring and trapezoid LD side-pumped Cs vapor lasers and the experimental results of the single-side pumped Cs vapor lasers with a cylindrical white diffuse reflector and a stable or unstable resonator is made. Dependencies of laser power on pump power and flowed velocity for semi-ring, trapezoid, single and double side-pumped configurations are calculated, demonstrating the advantages of the semi-ring and trapezoid LD side-pumped configurations. Thus the model is very helpful for designing high-power side-pumped alkali vapor lasers.

  4. Vibration measurements using continuous scanning laser Doppler vibrometry: theoretical velocity sensitivity analysis with applications

    NASA Astrophysics Data System (ADS)

    Halkon, B. J.; Rothberg, S. J.

    2003-03-01

    It is readily accepted that a laser vibrometer measures target velocity in the direction of the incident laser beam, but this measured velocity must be considered in terms of the various components of the target velocity. This paper begins with a review of the theoretical description of the velocity sensed by a single laser beam incident in an arbitrary direction on a rotating target undergoing arbitrary vibration. The measured velocity is presented as the sum of six terms, each the product of a combination of geometric parameters, relating to the laser beam orientation, and a combination of motion parameters - the 'vibration sets'. This totally general velocity sensitivity model can be applied to any measurement configuration on any target. The model is also sufficiently versatile to incorporate time-dependent beam orientation and this is described in this paper, with reference to continuous scanning laser Doppler vibrometry. For continuous scanning applications, the velocity sensitivity model is shown formulated in two useful ways. The first is in terms of the laser beam orientation angles, developing the original model to include time dependency in the angles, whilst the second is an entirely new development in which the model is written in terms of the mirror scan angles, since it is these which the operator would seek to control in practice. In the original derivation, the illuminated section of the rotating target was assumed to be of rigid cross section but, since continuous scanning measurements are employed on targets with flexible cross sections, such as beams, panels and thin or bladed discs, the theory is developed in this paper for the first time to include provision for such flexibility.

  5. Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation

    SciTech Connect

    Van-Hoang Le; Anh-Thu Le; Xie Ruihua; Lin, C. D.

    2007-07-15

    We report theoretical investigations of the tomographic procedure suggested by Itatani et al. [Nature (London) 432, 867 (2004)] for reconstructing highest occupied molecular orbitals (HOMOs) using high-order harmonic generation (HHG). Due to the limited range of harmonics from the plateau region, we found that even under the most favorable assumptions, it is still very difficult to obtain accurate HOMO wave functions using the tomographic procedure, but the symmetry of the HOMOs and the internuclear separation between the atoms can be accurately extracted, especially when lasers of longer wavelengths are used to generate the HHG. Since the tomographic procedure relies on approximating the continuum wave functions in the recombination process by plane waves, the method can no longer be applied upon the improvement of the theory. For future chemical imaging with lasers, we suggest that one may want to focus on how to extract the positions of atoms in molecules instead, by developing an iterative method such that the theoretically calculated macroscopic HHG spectra can best fit the experimental HHG data.

  6. Experimental and theoretical analysis of defocused CO2 laser microchanneling on PMMA for enhanced surface finish

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Subrata

    2017-02-01

    The poor surface finish of CO2 laser-micromachined microchannel walls is a major limitation of its utilization despite several key advantages, like low fabrication cost and low time consumption. Defocused CO2 laser beam machining is an effective solution for fabricating smooth microchannel walls on polymer and glass substrates. In this research work, the CO2 laser microchanneling process on PMMA has been analyzed at different beam defocus positions. Defocused processing has been investigated both theoretically and experimentally, and the depth of focus and beam diameter have been determined experimentally. The effect of beam defocusing on the microchannel width, depth, surface roughness, heat affected zone and microchannel profile were examined. A previously developed analytical model for microchannel depth prediction has been improved by incorporating the threshold energy density factor. A semi-analytical model for predicting the microchannel width at different defocus positions has been developed. A semi-empirical model has also been developed for predicting microchannel widths at different defocusing conditions for lower depth values. The developed models were compared and verified by performing actual experiments. Multi-objective optimization was performed to select the best optimum set of input parameters for achieving the desired surface roughness.

  7. Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser

    NASA Technical Reports Server (NTRS)

    Prasad, C. R.; Lee, H. S.; Glesne, T. R.; Monosmith, B.; Schwemmer, G. K.

    1991-01-01

    Injection seeding is a method for achieving linewidths of less than 500 MHz in the output of broadband, tunable, solid state lasers. Dye lasers, CW and pulsed diode lasers, and other solid state lasers have been used as injection seeders. By optimizing the fundamental laser parameters of pump energy, Q-switched pulse build-up time, injection seed power and mode matching, one can achieve significant improvements in the spectral purity of the Q-switched output. These parameters are incorporated into a simple model for analyzing spectral purity and pulse build-up processes in a Q-switched, injection-seeded laser. Experiments to optimize the relevant parameters of an alexandrite laser show good agreement.

  8. Electron kinetics dependence on gas pressure in laser-induced oxygen plasma experiment: Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Gamal, Yosr E. E.-D.; Abdellatif, Galila

    2017-08-01

    A study is performed to investigate the dependency of threshold intensity on gas pressure observed in the measurements of the breakdown of molecular oxygen that carried out by Phuoc (2000) [1]. In this experiment, the breakdown was induced by 532 nm laser radiation of pulse width 5.5 ns and spot size of 8.5 μm, in oxygen over a wide pressure range (190-3000 Torr). The analysis aimed to explore the electron kinetic reliance on gas pressure for the separate contribution of each of the gain and loss processes encountered in this study. The investigation is based on an electron cascade model applied previously in Gamal and Omar (2001) [2] and Gaabour et al. (2013) [3]. This model solves numerically a differential equation designates the time evolution of the electron energy distribution, and a set of rate equations that describe the change of excited states population. The numerical examination of the electron energy distribution function and its parameters revealed that photo-ionization of the excited molecules plays a significant role in enhancing the electron density growth rate over the whole tested gas pressure range. This process is off set by diffusion of electrons out of the focal volume in the low-pressure regime. At atmospheric pressure electron, collisional processes dominate and act mainly to populate the excited states. Hence photo-ionization becomes efficient and compete with the encountered loss processes (electron diffusion, vibrational excitation of the ground state molecules as well as two body attachments). At high pressures ( 3000 Torr) three body attachments are found to be the primary cause of losses which deplete the electron density and hence results in the slow decrease of the threshold intensity.

  9. Theoretical and experimental analysis of laser altimeters for barometric measurements over the ocean

    NASA Technical Reports Server (NTRS)

    Tsai, B. M.; Gardner, C. S.

    1984-01-01

    The statistical characteristics and the waveforms of ocean-reflected laser pulses are studied. The received signal is found to be corrupted by shot noise and time-resolved speckle. The statistics of time-resolved speckle and its effects on the timing accuracy of the receiver are studied in the general context of laser altimetry. For estimating the differential propagation time, various receiver timing algorithms are proposed and their performances evaluated. The results indicate that, with the parameters of a realistic altimeter, a pressure measurement accuracy of a few millibars is feasible. The data obtained from the first airborne two-color laser altimeter experiment are processed and analyzed. The results are used to verify the pressure measurement concept.

  10. Theoretical Analysis About Quantum Noise Squeezing of Optical Fields From an Intracavity Frequency-Doubled Laser

    NASA Technical Reports Server (NTRS)

    Zhang, Kuanshou; Xie, Changde; Peng, Kunchi

    1996-01-01

    The dependence of the quantum fluctuation of the output fundamental and second-harmonic waves upon cavity configuration has been numerically calculated for the intracavity frequency-doubled laser. The results might provide a direct reference for the design of squeezing system through the second-harmonic-generation.

  11. MALDI-MS analysis and theoretical evaluation of olanzapine as a UV laser desorption ionization (LDI) matrix.

    PubMed

    Musharraf, Syed Ghulam; Ameer, Mariam; Ali, Arslan

    2017-01-05

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) being soft ionization technique, has become a method of choice for high-throughput analysis of proteins and peptides. In this study, we have explored the potential of atypical anti-psychotic drug olanzapine (OLZ) as a matrix for MALDI-MS analysis of peptides aided with the theoretical studies. Seven small peptides were employed as target analytes to check performance of olanzapine and compared with conventional MALDI matrix α-cyano-4-hydroxycinnamic acid (HCCA). All peptides were successfully detected when olanzapine was used as a matrix. Moreover, peptides angiotensin Ι and angiotensin ΙΙ were detected with better S/N ratio and resolution with this method as compared to their analysis by HCCA. Computational studies were performed to determine the thermochemical properties of olanzapine in order to further evaluate its similarity to MALDI matrices which were found in good agreement with the data of existing MALDI matrices. Copyright © 2016. Published by Elsevier B.V.

  12. Theoretical analysis of the CO2 molecule decomposition and contaminants yield in transversely excited atmospheric CO2 laser discharge

    NASA Astrophysics Data System (ADS)

    Hokazono, Hirokazu; Fujimoto, Haruo

    1987-09-01

    A comprehensive theoretical model was developed for a laser discharge plasma of a conventional capacitor-discharge-type TEA CO2 laser and was applied to investigate the phenomena of the CO2 molecule decomposition and the contaminant yield in the discharge plasma. The results showed that fractional CO2 decomposition per discharge pulse (FD) was almost proportional to the deposited energy density, and that FD per unit deposited energy density was about 0.003 percent l/J. The value of the fractional contaminants-yield per discharge pulse (of CO, O2, O3, and N2O) was almost proportional to the deposited energy density; the yield ratio of NO2 to NO was found to rapidly increase with increase of the deposited energy density. The quantitative effects of the addition of CO, H2, and H2O to the laser gas mixture on the suppression of the CO2 decomposition were also investigated. H2O was found to be the most effective additive to enhance the reformation of CO2 both in the initial gas mixture and in the contaminated gas mixture.

  13. Theoretical studies of solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1982-01-01

    Solar-pumped lasers were investigated by comparing experimental results from pulse experiments with steady state calculations. The time varying behavior of an IBr laser is studied. The analysis is only approximate, but indicates that conditions occurring in a pulsed experiment are quite different from those at steady state. The possibility of steady-state lasing in an IBr laser is determined. The effects of high temperatures on the quenching and recombination rates are examined. Although uncertainties in the values of the rate coefficients make it difficult to draw firm conclusions, it seems steady state running may be possible at high temperatures.

  14. Theoretical studies of solar lasers and converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John

    1988-01-01

    The geometry and setup for the n-C3F7I iodine laser are illustrated. The mathematical modeling of this system is described. The chemical kinetics are summarized. A sensitivity analysis was performed on the parameters occurring in the differential equations describing the chemical kinetics.

  15. Theoretical studies of solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1983-01-01

    Possible types of lasers were surveyed for solar power conversion. The types considered were (1) liquid dye lasers, (2) vapor dye lasers, and (3) nondissociative molecular lasers. These are discussed.

  16. Theoretical and experimental analysis of tunable Sagnac high-birefringence loop filter for dual-wavelength laser application.

    PubMed

    Álvarez-Tamayo, R I; Durán-Sánchez, M; Pottiez, O; Kuzin, E A; Ibarra-Escamilla, B; Flores-Rosas, A

    2011-01-20

    We present detailed investigations of the spectral dependencies of the transmission of a fiber optical loop mirror (FOLM) consisting of a coupler with output ports spliced at arbitrary angles to a high-birefringence (Hi-Bi) fiber. The application for dual-wavelength lasers is discussed. For this aim, the spectral dependence of the reflection is tuned by the temperature of the Hi-Bi fiber that allows a fine adjustment of the cavity loss for generated wavelengths. The ratio between maximum and minimum reflection can be adjusted by the twist angle of the fiber at the splices, which also provides useful possibilities for the adjustment of cavity losses. We used the twist and temperature variation of the Hi-Bi fiber to change the operation from single wavelength to stable dual-wavelength generation with either equal or unequal powers of wavelengths.

  17. Theoretical studies of solar pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, Wynford L.

    1990-01-01

    One concept for collecting solar energy is to use large solar collectors and then use lasers as energy converters whose output beams act as transmission lines to deliver the energy to a destination. The efficiency of the process would be improved if the conversion could be done directly using solar pumped lasers, and the possibility of making such lasers is studied. There are many applications for such lasers, and these are examined. By including the applications first, the requirements for the lasers will be more evident. They are especially applicable to the Space program, and include cases where no other methods of delivering power seem possible. Using the lasers for conveying information and surveillance is also discussed. Many difficulties confront the designer of an efficient system for power conversion. These involve the nature of the solar spectrum, the method of absorbing the energy, the transfer of power into laser beams, and finally, the far field patterns of the beams. The requirements of the lasers are discussed. Specific laser configurations are discussed. The thrust is into gas laser systems, because for space applications, the laser could be large, and also the medium would be uniform and not subject to thermal stresses. Dye and solid lasers are treated briefly. For gas lasers, a chart of the various possibilities is shown, and the various families of gas lasers divided according to the mechanisms of absorbing solar radiation and of lasing. Several specific models are analyzed and evaluated. Overall conclusions for the program are summarized, and the performances of the lasers related to the requirements of various applications.

  18. Theoretical studies of solar lasers and converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.

    1990-01-01

    The research described consisted of developing and refining the continuous flow laser model program including the creation of a working model. The mathematical development of a two pass amplifier for an iodine laser is summarized. A computer program for the amplifier's simulation is included with output from the simulation model.

  19. Theoretical analysis of a method for extracting the phase of a phase-amplitude modulated signal generated by a direct-modulated optical injection-locked semiconductor laser

    NASA Astrophysics Data System (ADS)

    Lee, Hwan; Cho, Jun-Hyung; Sung, Hyuk-Kee

    2017-05-01

    The phase modulation (PM) and amplitude modulation (AM) of optical signals can be achieved using a direct-modulated (DM) optical injection-locked (OIL) semiconductor laser. We propose and theoretically analyze a simple method to extract the phase component of a PM signal produced by a DM-OIL semiconductor laser. The pure AM component of the combined PM-AM signal can be isolated by square-law detection in a photodetector and can then be used to compensate for the PM-AM signal based on an optical homodyne method. Using the AM compensation technique, we successfully developed a simple and cost-effective phase extraction method applicable to the PM-AM optical signal of a DM-OIL semiconductor laser.

  20. Direct laser patterning of self-assembled monolayer using elliptical laser beams: A theoretical parametric study

    NASA Astrophysics Data System (ADS)

    Zhang, Martin Y.; Shadnam, Mohammad Reza; Amirfazli, A.

    2011-11-01

    A theoretical quantitative analysis of processing parameters for application of an elliptical laser beam to achieve maximum patterning area is the focus of this study. Direct laser patterning (DLP) of self-assembled monolayers (SAM) is achieved by localized heating of the sample above the SAM desorption temperature. Through use of elliptical laser beams in the present work, three goals are achieved by analyzing the heat diffusion model and related thermo-kinetics model: (1) optimal working conditions (combination of laser power, scanning velocity and aspect ratio) for DLP to produce maximum feature size, or highest processing velocity at a given power; (2) identification of conditions that reduces the potential thermal damage to the substrate; (3) shedding light on issues related to uniformity or homogeneity of heating a substrate using an elliptical laser beam. A heat diffusion model is employed to provide the resulting surface temperature caused by elliptical laser beams, and the coupled thermo-kinetics model is used to determine the final SAM coverage generated by DLP. Parametric analysis revealed that 70-150 mW can be used to pattern feature sizes in the range of 2-10 times of equivalent circular beam size. It is also found that each elliptical laser beam has a unique optimal aspect ratio to result in the widest feature size for a given laser power and scanning velocity. The edge transition width increases with an increase of the aspect ratio. Keeping the aspect ratio of elliptical laser beam small (i.e. β<20), a sharp edge definition could be obtained; if an aspect ratio larger than 30 is used, a surface with gradual edge definition could be obtained.

  1. Theoretical studies of solar lasers and converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.

    1988-01-01

    A second computer program was developed for the simulation of an n - C3F7I iodine laser. The computer program is given in Appendix A and a typical output from the computer program is illustrated in Appendix B.

  2. Laser irradiated gas jet: A spectroscopic experimental and theoretical study

    SciTech Connect

    Lee, R.W.; Matthews, D.L.; Koppel, L.; Busch, G.E.; Charatis, G.; Dunning, M.J.; Mayer, F.J.

    1983-09-01

    We present x-ray spectroscopic measurements of the longitudinal electron density profile and the longitudinal and transverse electron temperature profiles for a laser irradiated gas jet. We attempt to verify our spectroscopic method by laser interferometry and by comparison of inferred quantities to those determined from laser plasma interaction simulations. Because temperature profiles were time dependent, we used a theoretical time dependent radiation transport code to analyze the data.

  3. Theoretical studies of solar lasers and converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.

    1988-01-01

    The previously constructed one dimensional model for the simulated operation of an iodine laser assumed that the perfluoroalkyl iodide gas n-C3F7I was incompressible. The present study removes this simplifying assumption and considers n-C3F7I as a compressible fluid.

  4. Theoretical Modeling of - and Infrared - High-Pressure Gas Lasers with Application to the Xenon Chloride Laser

    NASA Astrophysics Data System (ADS)

    Ishihara, Toshihiko

    Theoretical modeling of microwave- and infrared -pumped high-pressure gas lasers is presented. The theoretical model consists of the time-averaged Boltzmann equation to calculate the electron velocity distribution function under the influence of an alternating electric field, a set of first-order ordinary differential equations to calculate the temporal evolution of the laser plasma, the laser photon balance equation to calculate the instantaneous laser output power, and the time history of the strength of the pumping power. The first law of thermodynamics is employed to determine the root-mean-square strength of the electric field acting on the laser plasma tube by matching the input power and the absorbed power. The theoretical model assumes that the chemical species are homogeneously distributed in an excited plasma and that the laser photons are uniformly distributed inside an optical cavity. Any adverse effects of the plasma tube wall are ignored to simplify the analysis. The theoretical modeling is numerically applied to a microwave-pumped XeCl laser pumped by a 915 MHz microwave of 450 nsec pulse duration. The calculated laser pulse is in fair agreement with the experimentally observed laser pulse. The plasma tube wall is considered to have a significant effect on the performance of the laser when the surface to volume ratio of the plasma tube is large. A parametric study of the microwave-pumped He -base XeCl laser is numerically done using the theoretical model. Among all the calculations done, the gas mixture of He/Xe/HCI = 1000/10/1.3 gives the best performance at the total pressure of 3.5 atm. The result is in good agreement with experimental observation. The theoretical modeling is extended to the infrared -pumped high-pressure XeCl laser. The laser plasma can be heated to a higher electron number density by the infrared beam than by the microwave. This fact may help the production of the laser upper-state molecules which are formed via the electron

  5. Theoretical studies of solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1983-01-01

    Metallic vapor lasers of Na2 and Li2 are examined as solar energy converters. The absorbed photons cause transitions to vibrational-rotational levels in an upper electronic state. With broad band absorption the resultant levels can have quantum numbers considerably higher than the upper lasing level. The excited molecule then relaxes to the upper lasing level which is one of the lower vibrational levels in the upper electronic state. The relaxation occurs from collisions, provided the molecule is not quenched into the ground level electronic state. Lasing occurs with a transition to a vibrational level in the lower electronic state. Rough estimates of solar power efficiencies are 1 percent for Na2 and probably a similar figure for Li2. The nondissociative lasers from a family distinct from materials which dissociate to yield an excited atom.

  6. Theoretical analysis of transurethral laser-induced thermo-therapy for treatment of benign prostatic hyperplasia. Evaluation of a water-cooled applicator

    NASA Astrophysics Data System (ADS)

    Sturesson, C.; Andersson-Engels, S.

    1996-03-01

    A mathematical model for predicting the temperature rise in transurethral laser-induced thermo-therapy for benign prostatic hyperplasia was developed. In the model an optical line source emitting light from an Nd:YAG laser isotropically was placed in the urethra. Water cooling of the urethral epithelium was modelled using a two-tube system. The relationship between the difference in outlet and inlet water temperatures and the highest tissue temperature level reached was theoretically investigated. It was found that the water temperature difference was linearly dependent on the steady-state maximum tissue temperature. The theoretical calculations suggest that the water-cooled applicator can be used to measure the maximum tissue temperature. With temperature control, the prostatic tissue temperature can be prevented from exceeding the boiling point of water, excluding tissue carbonization. The model was also used to evaluate the influence of a number of different parameters on the damaged tissue volume. Increasing the urethral lumen radius by a factor of two by means of inserting different sized tubes was found to augment the tissue volume raised to therapeutic temperatures by up to 50%. The calculations showed that cooling of the urethral epithelium can result in an increase in the damaged volume by 80% as compared to not applying any cooling. The temperature of the cooling water was found to influence the tissue temperature only to a small extent.

  7. A theoretical study of a laser-irradiated capillary discharge

    SciTech Connect

    Petway, L. B.; Back, C. A.; Estabrook, K.; Lee, R. W.; Zigler, A.

    1989-08-15

    A theoretical study of a laser-irradiated capillary discharge is presented. The discharge produces a columnar flow of low-temperature plasma (1 eV) with a density of 10/sup 19/ atoms/cm/sup 3/. This ambient low-temperature plasma is then irradiated by a 1.06-/mu/m Nd glass laser with pulse lengths from 100 ps to 1 ns. The resultant plasma is studied, using hydrodynamic simulations coupled to a detailed kinetics model.

  8. Theoretical model simulating CO2 laser welding of tissues

    NASA Astrophysics Data System (ADS)

    Ravid, Avi; Katzir, Abraham

    1996-12-01

    3D finite difference computerized model was developed to simulate the thermal behavior of biological tissue irradiated with a CO2 laser beam. The model uses standard thermal processes and in addition takes into consideration water evaporation and the corresponding changes in the thermal properties of the tissue. The results contain a temperature and biological damage map of the irradiated tissue. Experimental results of test made on Lucite irradiated with CO2 laser fit very well the theoretical predictions. The model was then used for simulations of tissue welding and the results indicate that an improved method could be used for CO2 laser welding.

  9. Theoretical model for a background noise limited laser-excited optical filter for doubled Nd lasers

    NASA Astrophysics Data System (ADS)

    Shay, Thomas M.; Garcia, Daniel F.

    1990-06-01

    A simple theoretical model for the calculation of the dependence of filter quantum efficiency versus laser pump power in an atomic Rb vapor laser-excited optical filter is reported. Calculations for Rb filter transitions that can be used to detect the practical and important frequency-doubled Nd lasers are presented. The results of these calculations show the filter's quantum efficiency versus the laser pump power. The required laser pump powers required range from 2.4 to 60 mW/sq cm of filter aperture.

  10. Theoretical model for a background noise limited laser-excited optical filter for doubled Nd lasers

    NASA Technical Reports Server (NTRS)

    Shay, Thomas M.; Garcia, Daniel F.

    1990-01-01

    A simple theoretical model for the calculation of the dependence of filter quantum efficiency versus laser pump power in an atomic Rb vapor laser-excited optical filter is reported. Calculations for Rb filter transitions that can be used to detect the practical and important frequency-doubled Nd lasers are presented. The results of these calculations show the filter's quantum efficiency versus the laser pump power. The required laser pump powers required range from 2.4 to 60 mW/sq cm of filter aperture.

  11. Laser debonding of ceramic orthodontic brackets: a theoretical approach

    NASA Astrophysics Data System (ADS)

    Kearney, Kristine L.; Marangoni, Roy D.; Rickabaugh, Jeff L.

    1992-06-01

    Ceramic brackets are an esthetic substitute for conventional stainless steel brackets in orthodontic patients. However, ceramic brackets are more brittle and have higher bond strengths which can lead to bracket breakage and enamel damage during debonding. It has been demonstrated that various lasers can facilitate ceramic bracket removal. One mechanism with the laser is through the softening of the bracket adhesive. The high energy density from the laser on the bracket and adhesive can have a resultant deleterious thermal effect on the pulp of the tooth which may lead to pulpal death. A theoretical computer model of bracket, adhesive, enamel and dentin has been generated for predicting heat flow through this system. Heat fluxes at varying intensities and modes have been input into the program and the resultant temperatures at various points or nodes were determined. Further pursuit should lead to optimum parameters for laser debonding which would have minimal effects on the pulp.

  12. Laser hazard analysis for various candidate diode lasers associated with the high resolution pulsed scanner.

    SciTech Connect

    Augustoni, Arnold L.

    2004-10-01

    A laser hazard analysis and safety assessment was performed for each various laser diode candidates associated with the High Resolution Pulse Scanner based on the ANSI Standard Z136.1-2000, American National Standard for the Safe Use of Lasers. A theoretical laser hazard analysis model for this system was derived and an Excel{reg_sign} spreadsheet model was developed to answer the 'what if questions' associated with the various modes of operations for the various candidate diode lasers.

  13. Theoretical analysis of the energy-transfer process of a 2-kW XeCl laser with a spiker-sustainer circuit

    NASA Astrophysics Data System (ADS)

    Saitoh, Yoshio M.; Sato, Yukio; Fujikawa, Shuichi; Inoue, Mitsuo; Haruta, Kenyu

    1997-05-01

    We have analyzed the energy transfer process of a XeCl laser with a spiker-sustainer circuit using a zero-dimensional plasma model. The calculated relation between an electrical input energy and a laser output energy reveals approximately linear characteristics as an experimental result. Furthermore, main physical parameters determining a slope efficiency and threshold energy of these linear characteristics are clarified. These results show us practical solutions to realize 2-kW laser.

  14. Multicolor laser altimeter for barometric measurements over the ocean - Theoretical

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Tsai, B. M.; Im, K. E.

    1983-01-01

    It is noted that the optical path length from a satellite to the earth's surface strongly depends on the atmospheric pressure along the propagation path. The theoretical basis of a surface pressure measurement technique, which uses a two-color laser altimeter to observe the change with wavelength in the optical path length from a satellite to the ocean surface, is evaluated. The statistical characteristics of the ocean-reflected pulses and the expected measurement accuracy are analyzed in terms of the altitude parameters. The results show that it is feasible to obtain a pressure accuracy of a few millibars.

  15. Work Domain Analysis: Theoretical Concepts and Methodology

    DTIC Science & Technology

    2005-02-01

    method to elicit expert knowledge: A case study in the methodology of cognitive task analysis. Human Factors, 40, 254-276. Itoh, J., Sakuma, A...Work Domain Analysis: Theoretical Concepts and Methodology Neelam Naikar, Robyn Hopcroft, and Anna Moylan Air Operations...theoretical and methodological approach for work domain analysis (WDA), the first phase of cognitive work analysis. The report: (1) addresses a number of

  16. Theoretical studies on the mechanisms of laser rust removal

    NASA Astrophysics Data System (ADS)

    Wang, Yupei; Zhang, Zunyue; Liu, Guigeng; Song, Feng

    2016-05-01

    Our studies introduce the three-layer model of laser rust removal by rotational mirror scanner and develop dry laser cleaning model Firstly, theoretically simulate the temperature field of the rotational mirror scanner. Use the superposition model of the instantaneous thermal source point from a point to a line, from a line to an area, to simulate the temperature field distribution of rust and iron with thermal source on its surface and how it varies with time. And then take the temperature field distribution of rotational mirror scanner as the thermal load and use ANSYS to solve the thermal conductivity equations with complicated boundary conditions, and calculate the temperature field distribution it can be found that the temperature of the rust surface reaches the melting even the boiling point of the rust, so the rust can be removed by the ablation effect. From the thermal stress distribution of rust and iron in the depth orientation, the thermal stress existed in the rust and iron is large enough to remove the last rust layer in one time. So ablation layer, thermal stress removal layer and substrate consist of the three-layer model of laser rust removal by rotational mirror scanner.

  17. Dental Photothermal Radiometry: Theoretical Analysis.

    NASA Astrophysics Data System (ADS)

    Matvienko, Anna; Jeon, Raymond; Mandelis, Andreas; Abrams, Stephen

    2007-03-01

    Dental enamel demineralization in its early stages is very difficult to detect with conventional x-rays or visual examination. High-resolution techniques, such as scanning electron microscopy, usually require destruction of the tooth. Photothermal Radiomety (PTR) was recently applied as a safe, non-destructive, and highly sensitive tool for the detection of early dental demineralization, artificially created on the enamel surface. The experiments showed very high sensitivity of the measured signal to incipient changes in the surface structure, emphasizing the clinical capabilities of the method. In order to analyze the biothermophotonic phenomena in a tooth sample during the photothermal excitation, a theoretical model featuring coupled diffuse-photon-density-wave and thermal-wave fields was developed. Numerical simulations identified the effects on the PTR signal of changes in optical and thermal properties of enamel and dentin as a result of demineralization. The model predictions and experimental results will be compared and discussed.

  18. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering

    NASA Astrophysics Data System (ADS)

    He, Xiaoxian; Wang, Xiangru; Wu, Liang; Tan, Qinggui; Li, Man; Shang, Jiyang; Wu, Shuanghong; Huang, Ziqiang

    2017-01-01

    Non-mechanical laser beam steering has been reported previously in liquid crystal array devices. To be one of the most promising candidates to be practical non-mechanical laser deflector, its laser induced effect still has few theoretical model. In this paper, we propose a theoretical model to analyze this laser induced effect of LC-OPA to evaluate the deterioration on phased beam steering. The model has three parts: laser induced thermal distribution; temperature dependence of material parameters and beam steering deterioration. After these three steps, the far field of laser beam is obtained to demonstrate the steering performance with the respect to the incident laser beam power and beam waist.

  19. Theoretical analysis of ARC constriction

    SciTech Connect

    Stoenescu, M.L.; Brooks, A.W.; Smith, T.M.

    1980-12-01

    The physics of the thermionic converter is governed by strong electrode-plasma interactions (emissions surface scattering, charge exchange) and weak interactions (diffusion, radiation) at the maximum interelectrode plasma radius. The physical processes are thus mostly convective in thin sheaths in front of the electrodes and mostly diffusive and radiative in the plasma bulk. The physical boundaries are open boundaries to particle transfer (electrons emitted or absorbed by the electrodes, all particles diffusing through some maximum plasma radius) and to convective, conductive and radiative heat transfer. In a first approximation the thermionic converter may be described by a one-dimensional classical transport theory. The two-dimensional effects may be significant as a result of the sheath sensitivity to radial plasma variations and of the strong sheath-plasma coupling. The current-voltage characteristic of the converter is thus the result of an integrated current density over the collector area for which the boundary conditions at each r determine the regime (ignited/unignited) of the local current density. A current redistribution strongly weighted at small radii (arc constriction) limits the converter performance and opens questions on constriction reduction possibilities. The questions addressed are the followng: (1) what are the main contributors to the loss of current at high voltage in the thermionic converter; and (2) is arc constriction observable theoretically and what are the conditions of its occurrence. The resulting theoretical problem is formulated and results are given. The converter electrical current is estimated directly from the electron and ion particle fluxes based on the spatial distribution of the electron/ion density n, temperatures T/sub e/, T/sub i/, electrical voltage V and on the knowledge of the transport coefficients. (WHK)

  20. Experimental and theoretical investigation of the drilling of alumina ceramic using Nd:YAG pulsed laser

    NASA Astrophysics Data System (ADS)

    Hanon, M. M.; Akman, E.; Genc Oztoprak, B.; Gunes, M.; Taha, Z. A.; Hajim, K. I.; Kacar, E.; Gundogdu, O.; Demir, A.

    2012-06-01

    Alumina ceramics have found wide range of applications from semiconductors, communication technologies, medical devices, automotive to aerospace industries. Processing of alumina ceramics is rather difficult due to its high degree of brittleness, hardness, low thermal diffusivity and conductivity. Rapid improvements in laser technologies in recent years make the laser among the most convenient processing tools for difficult-to-machine materials such as hardened metals, ceramics and composites. This is particularly evident as lasers have become an inexpensive and controllable alternative to conventional hole drilling methods. This paper reports theoretical and experimental results of drilling the alumina ceramic with thicknesses of 5 mm and 10.5 mm using milisecond pulsed Nd:YAG laser. Effects of the laser peak power, pulse duration, repetition rate and focal plane position have been determined using optical and Scanning Electron Microscopy (SEM) images taken from cross-sections of the drilled alumina ceramic samples. In addition to dimensional analysis of the samples, microstructural investigations have also been examined. It has been observed that, the depth of the crater can be controlled as a function of the peak power and the pulse duration for a single laser pulse application without any defect. Crater depth can be increased by increasing the number of laser pulses with some defects. In addition to experimental work, conditions have been simulated using ANYS FLUENT package providing results, which are in good agreement with the experimental results.

  1. Self-mixing grating interferometer: theoretical analysis and experimental observations

    NASA Astrophysics Data System (ADS)

    Guo, Dongmei; Wang, Ming; Hao, Hui

    2016-08-01

    By combining self-mixing interferometer (SMI) and grating interferometer (GI), a self-mixing grating interferometer (SMGI) is proposed in this paper. Self-mixing interference occurs when light emitted from a laser diode is diffracted by the doublediffraction system and re-enters the laser active cavity, thus generating a modulation of both the amplitude and the frequency of the lasing field. Theoretical analysis and experimental observations show that the SMGI has the same phase sensitivity as that of the conventional GI and the direction of the phase movement can be obtained from inclination of the interference signal. Compared with the traditional SMI, the phase change of interference signal in SMGI is independent of laser wavelength, providing better immunity against environmental disturbances such as temperature, pressure, and humidity variation. Compared with the traditional GI, the SMGI provides a potential displacement sensor with directional discrimination and quite compact configuration.

  2. The Algorithm Theoretical Basis Document for the Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights

    NASA Technical Reports Server (NTRS)

    Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.; hide

    2012-01-01

    The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.

  3. Theoretical model and simulations for a cw exciplex pumped alkali laser.

    PubMed

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Lu, Xiaochuan

    2015-12-14

    The Exciplex Pumped Alkali Laser (XPAL) system, which is similar to DPAL (Diode Pumped Alkali vapor Laser), has been demonstrated in mixtures of Cs vapor, Ar, with and without ethane. Unlike DPAL, it uses the broadband absorption blue satellite of the alkali D2 line, created by naturally occuring collision pairs. For example, Cs-Ar collision pairs have an absorption width which is as wide as the one of commercial semiconductor diode lasers. A continuous wave XPAL four-level theoretical model is presented in this paper. More factors are considered, such as the spectral dependence of pumped laser absorption for broadband pumping and the longitudinal population variation. Some intra-cavity details, such as longitudinal distributions of pumped laser and alkali laser, can also be solved well. The predictions of optical-to-optical efficiency as a function of temperature and pumped laser intensity are presented. The model predicts that there is an optimum value of temperature or pumped laser intensity. The analysis of the influence of cell length on optical-to-optical efficiency shows that a better performance can be achieved when using longer cell. The prediction of influence of Ar concentration and reflectivity of output coupler shows that higher optical-to-optical efficiency could be achieved if lower reflectivity of output coupler and higher Ar concentration are used. The optical-to-optical efficiency as high as 84% achieved by optimizing configuration with the pumped intensity of 5 × 10⁷ W/cm² presented shows that broadband pumped four-level XPAL system has a potential of high optical-to-optical efficiency.

  4. Theoretical simulation of a 2 micron airborne solid state laser anemometer

    NASA Technical Reports Server (NTRS)

    Imbert, Beatrice; Cariou, Jean-Pierre

    1992-01-01

    In the near future, military aircraft will need to know precisely their true airspeed in order to optimize flight conditions. In comparison with classical anemometer probes, an airborne Doppler lidar allows measurement of the air velocity without influence from aircraft aerodynamic disturbance. While several demonstration systems of heterodyne detection using a CO2 laser have been reported, improvements in the technology of solid state lasers have recently opened up the possibility that these devices can be used as an alternative to CO2 laser systems. In particular, a diode pumped Tm:Ho:YAG laser allows a reliable compact airborne system with an eye safe wavelength (lambda = 2.09 microns) to be achieved. The theoretical study of performances of a coherent lidar using a solid state diode pumped Tm:Ho:YAG laser, caled SALSA, for measuring aircraft airspeed relative to atmospheric aerosols is described. A computer simulation was developed in order to modelize the Doppler anemometer in the function of atmospheric propagation and optical design. A clever analysis of the power budget on the detector area allows optical characteristic parameters of the system to be calculated, and then it can be used to predict performances of the Doppler system. Estimating signal to noise ratios (SNR) and heterodyne efficiency provides the available energy of speed measurement as well as a useful measurement of the alignment of the backscattered and reference fields on the detector.

  5. Theoretical simulation of a 2 micron airborne solid state laser anemometer

    NASA Technical Reports Server (NTRS)

    Imbert, Beatrice; Cariou, Jean-Pierre

    1992-01-01

    In the near future, military aircraft will need to know precisely their true airspeed in order to optimize flight conditions. In comparison with classical anemometer probes, an airborne Doppler lidar allows measurement of the air velocity without influence from aircraft aerodynamic disturbance. While several demonstration systems of heterodyne detection using a CO2 laser have been reported, improvements in the technology of solid state lasers have recently opened up the possibility that these devices can be used as an alternative to CO2 laser systems. In particular, a diode pumped Tm:Ho:YAG laser allows a reliable compact airborne system with an eye safe wavelength (lambda = 2.09 microns) to be achieved. The theoretical study of performances of a coherent lidar using a solid state diode pumped Tm:Ho:YAG laser, caled SALSA, for measuring aircraft airspeed relative to atmospheric aerosols is described. A computer simulation was developed in order to modelize the Doppler anemometer in the function of atmospheric propagation and optical design. A clever analysis of the power budget on the detector area allows optical characteristic parameters of the system to be calculated, and then it can be used to predict performances of the Doppler system. Estimating signal to noise ratios (SNR) and heterodyne efficiency provides the available energy of speed measurement as well as a useful measurement of the alignment of the backscattered and reference fields on the detector.

  6. Experimental and theoretical studies on keyhole dynamics in laser welding

    SciTech Connect

    Matsunawa, Akira; Katayama, Seiji; Kim, Jong-Do; Semak, V.V.

    1996-12-31

    The present paper describes the results of high speed photography, acoustic emission (AE) detection and plasma light emission (LE) measurement during CO{sub 2} laser welding of 304 stainless steel in different processing conditions. Video images with high spatial and temporal resolution allowed observation of the melt dynamics and keyhole evolution. The existence of a high speed melt flow which originated from the front part of weld pool and flowed along the sides wall of keyhole was confirmed by the slag motion on the weld pool. The characteristic frequencies of flow instability and keyhole fluctuations at different welding speed were measured and compared with the results of Fourier analyses of temporal AE and LE spectra. The experimental results were compared with the newly developed numerical model of keyhole dynamics. The model is based on the assumption that the propagation of front part of keyhole into material is due to the melt ejection driven by laser induced surface evaporation. The calculations predict that a high speed melt flow is induced at the front part of keyhole when the sample travel speed exceeds several 10 mm/s. The numerical analysis also shows the hump formation on the front keyhole wall surface. Experimentally observed melt behavior and transformation of the AE and LE spectra with variation of welding speed are qualitatively in good agreement with the model predictions.

  7. Theoretical Analysis of Canadian Lifelong Education Development

    ERIC Educational Resources Information Center

    Mukan, Natalia; Barabash, Olena; Busko, Maria

    2014-01-01

    In the article, the problem of Canadian lifelong education development has been studied. The main objectives of the article are defined as theoretical analysis of scientific and pedagogical literature which highlights different aspects of the research problem; periods of lifelong education development; and determination of lifelong learning role…

  8. Theoretical Analysis of Canadian Lifelong Education Development

    ERIC Educational Resources Information Center

    Mukan, Natalia; Barabash, Olena; Busko, Maria

    2014-01-01

    In the article, the problem of Canadian lifelong education development has been studied. The main objectives of the article are defined as theoretical analysis of scientific and pedagogical literature which highlights different aspects of the research problem; periods of lifelong education development; and determination of lifelong learning role…

  9. Theoretical and experimental study on passively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers.

    PubMed

    Ding, Shuanghong; Zhang, Wenhui; Wang, Shiwu; Wang, Xichang; Zhang, Jun; Wang, Meiqin

    2013-05-20

    Normalized space-dependent rate equations of passively Q-switched intracavity frequency-doubled Raman lasers are deduced for the first time. The normalized rate equations are solved numerically to investigate the influences of the normalized variables on the yellow laser performance. The LD end-pumped passively Q-switched Nd:YAG/SrWO(4)/KTP/Cr:YAG yellow Raman laser is realized, and the maximum yellow laser output power is 350 mW with the incident pump power of 5.9 W with Cr:YAG of 85% initial transmission. The theoretical analysis and optimization are taken out for the experiment, and the theoretical results are in accordance with the experimental ones.

  10. Experimental and theoretical study of local curing on thermosetting resins using a CO2 laser

    NASA Astrophysics Data System (ADS)

    Scarparo, Marco A. F.; Munhoz, Andre L. J.; Wagner, Paulo R. S.; Ieradi, Maria C. F.; Kiel, Alvin E.; Allen, Susan D.

    1998-04-01

    We present a theoretical and experimental study of thermosetting resins used in thermal stereolithography. In usual practice, stereolithography makes use of photosensitive resins where HeCd (0.352 micrometers ) laser ultraviolet laser initiates the curing process. In this work we study the process of local curing through the application of infrared radiation, which has proved to be useful in a new technique for the making of prototypes by means of selective heating with a CO2 laser (10.6 micrometers ). The sample consists of a thermosetting resins (epoxy) with the curing agent (diethylene triamine) and a filler (silica). The ideal composition of the thermosetting resins has proved to be 10 parts epoxy, 1.4 part diethylene triamine (the curing agent) and 0.7 part silica powder. A physical theoretical model is applied for control of the parameters which influence the confinement of the curing in the irradiated bulk. A mathematical model was developed through the solution of the time dependent heat conduction equation in cylindrical co-ordinates, which enables the determination fo the behavior of curing in terms of irradiation conditions. An experimental analysis has determined the temperature range at which the curing process starts and the optimum silica concentration for efficient curing.

  11. Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis.

    PubMed

    Turner, Daniel B; Howey, Dylan J; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2013-07-25

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities.

  12. Theoretical and Experimental Investigation of Coupled Ar-ion Lasers

    DTIC Science & Technology

    1989-10-01

    dissertation contents. A. Overview The United States Air Force is currently investigating the feasibility of using high-energy lasers as one component of the...proportionately scaling the size of the laser and the amount of gain medium, current technology restrictions put severe limitations on the size and power of...filtered P.,(6) 11F laser line was nearly equal to one indicating, that the transitions in each iaser were almost completely coherent. Currently . Cunningham

  13. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  14. Theoretical Studies of Laser-Induced Molecular Rate Processes: Topics in Line Broadening and Spectroscopy.

    DTIC Science & Technology

    1985-10-01

    GROUP SU. GRF. MOLECULAR RATE PROCESSES MOLECULAR DYNAMICS LASER-INDUCED LINE BROADENING THEORETICAL STUDIES SPECTROSCOPY 19. ABSI*ACT (Continue On...approaches half the band-gap energy. -q 14 This idea of using a laser to "charge" the surface region has fomed the basis of a semiclassical theory of charge

  15. Experimental and theoretical models for three-dimensional laser shaping

    NASA Astrophysics Data System (ADS)

    Satasook, Witawats

    This research demonstrates, for the first time, the application of a polygonal scanner to machine three-dimensional shapes of graphite, a model material, and an advanced structural ceramic, silicon nitride (Si3N 4). Laser machining strategies proposed by Copley, Bass, and Hsu have been investigated by systematic experiments and the validity and limitations of their approaches have been assessed. Machining parameters including the orientation of the incident laser beam relative to the surface, orientation of the linearly polarized laser beam's electric vector, incident power, laser scan speed, beam feed (f) to single groove width (a) ratio f/a, and focal plane position were investigated, and optimized parameters for high material removal rates and low surface roughnesses were identified. Perpendicular walls (oriented 90° with respect to the initial specimen surface), blind comers and quadrant hemispherical caps (complex three-dimensional shape) of graphite (Poco, graphite grade SK-6) and silicon nitride (Si 3N4 GS-44) were successfully machined.

  16. Theoretical calculation and experimental study of acousto-optically Q-switched CO2 laser.

    PubMed

    Xie, Jijang; Guo, Ruhai; Li, Dianjun; Zhang, Chuansheng; Yang, Guilong; Geng, Yumin

    2010-06-07

    Using resonator inserted with acousto-optically modulator, the experiments of the compacted CO(2) laser were performed with Q-switch. According to various factors that influenced the output of laser, the theoretical calculation of its main parameters was conducted by Q-switched pulsed laser rate equations. Based on the results, the technical route and approach were presented for optimization design of this laser. The measured peak power of this laser device was more than 4000W and pulsed width was 180ns which agreed well with the theoretical calculation. The range of repetition frequency could adjust from 1 Hz to 100 kHz. The theoretical analyzes and experimental results showed that the acoustic traveling time of ultrasonic field could not influence the pulse width of laser so that it did not require inserting optical lens in the cavity to reduce the diameter of beam. The acoustic traveling time only extended the establishingtime of laser pulse. The optimum working frequency of laser is about 1 kHz, which it matched with the radiation life time (1 ms) of CO(2) molecular upper energy level. When the frequency is above 1 kHz, the pulse width of laser increased with the frequency. The full band of wavelength tuning between 9.2 microm and 10.8 microm was obtained by grating selection one by one which the measured spectrum lines were over 30 in the condition of Q-switch.

  17. A theoretical analysis of the electrogastrogram (EGG).

    PubMed

    Calder, Stefan; Cheng, Leo K; Peng Du

    2014-01-01

    In this study, a boundary element model was developed to investigate the relationship between the gastric electrical activity, also known as slow waves, and the electrogastrogram (EGG). A dipole was calculated to represent the equivalent net activity of gastric slow waves. The dipole was then placed in an anatomically-realistic torso model to simulate EGG. The torso model was constructed from a laser-scanned geometry of an adult male torso phantom with 190 electrode sites equally distributed around the torso so that simulated EGG could be directly compared between the physical model and the mathematical model. The results were analyzed using the Fast Fourier Transforms (FFT), spatial distribution of EGG potential and a resultant EGG based on a 3-lead configuration. The FFT results showed both the dipole and EGG contained identical dominant frequency component of 3 cycles per minute (cpm), with this result matching known physiological phenomenon. The -3 dB point of the EGG was 110 mm from the region directly above the dipole source. Finally, the results indicated that electrode coupling could theoretically be used in a similar fashion to ECG coupling to gain greater understanding of how EGG correlate to gastric slow waves.

  18. Lunar motion analysis and laser data management

    NASA Technical Reports Server (NTRS)

    Mulholland, J. D.

    1976-01-01

    Work completed in lunar motion analysis and laser data management during the period July 1, 1971 - September 30, 1975 was reported. In this context, analysis refers to theoretical or numerical studies involving real or potential applications of such observations to improvement of the physical model, and data management refers to the process by which observed photon events are turned into observations and are made available to potential users. The data analysis work included: (1) bringing to operational status of computer programs for the numerical integration of the lunar orbit motion and for the application of lunar laser time delays for the improvement of the parameters of the physical model, (2) program improvement and program integrity, (3) three-dimensional ephemeris, and (4) miscellaneous independent studies. The data management work included: (1) data identification, (2) observatory interfaces, and (3) data distribution.

  19. Theoretical discussion on gain guided and index antiguided fiber laser by variational gain saturation factor

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xiong, C.; Luo, J.

    2011-03-01

    The variational gain saturation factor was suggested for the theoretical model of side pumping gain guided and index antiguided fiber laser, because of the invalid definition of constant saturation power owing to the large scale core area on the cross section. The variational gain saturation factor was defined by an integral formula and obtained by a numerical method. By this approach, the theoretical model of the side pump gain guided and index antiguided fiber laser was analyzed as regards the influence of output laser power by the index step and gain coefficient.

  20. An inverse free electron laser accelerator: Experiment and theoretical interpretation

    SciTech Connect

    Fang, Jyan-Min

    1997-01-01

    Experimental and numerical studies of the Inverse Free Electron Laser using a GW-level 10.6 μm CO2 laser have been carried out at Brookhaven`s Accelerator Test Facility. An energy gain of 2.5 % (ΔE/E) on a 40 MeV electron beam has been observed E which compares well with theory. The effects on IFEL acceleration with respect to the variation of the laser electric field, the input electron beam energy, and the wiggler magnetic field strength were studied, and show the importance of matching the resonance condition in the IFEL. The numerical simulations were performed under various conditions and the importance of the electron bunching in the IFEL is shown. The numerical interpretation of our IFEL experimental results was examined. Although good numerical agreement with the experimental results was obtained, there is a discrepancy between the level of the laser power measured in the experiment and used in the simulation, possibly due to the non-Gaussian profile of the input high power laser beam. The electron energy distribution was studied numerically and a smoothing of the energy spectrum by the space charge effect at the location of the spectrometer was found, compared with the spectrum at the exit of the wiggler. The electron bunching by the IFEL and the possibility of using the IFEL as an electron prebuncher for another laser-driven accelerator were studied numerically. We found that bunching of the electrons at 1 meter downstream from the wiggler can be achieved using the existing facility. The simulation shows that there is a fundamental difference between the operating conditions for using the IFEL as a high gradient accelerator, and as a prebuncher for another accelerator.

  1. Theoretical investigation on breaking plant cell wall by laser

    NASA Astrophysics Data System (ADS)

    Chen, Liang-cai; Wang, Jin-ji; Ma, Peng; Zuo, Du-luo; Wang, Xin-bing; Cheng, Zu-hai

    2011-11-01

    The experiment collected some spinach leaves which were irradiated by pulsed CO2 laser with energy 5.6J, 8.0J and 9.5J respectively. Each of them was soaked in three kinds of solvents (water, ethanol, the mixture of ethanol and petroleum ether) respectively. The experiment shows that the ethanol solution which contains the irradiated leaves turn dark green than the ethanol solution which contains the intact leaves and the color of solution with the leaves irradiated by CO2 laser with 9.5J changes the most significantly. Further, selective excitation on the molecular level of the cell wall were used to explain the phenomenon.

  2. Theoretical investigation on breaking plant cell wall by laser

    NASA Astrophysics Data System (ADS)

    Chen, Liang-cai; Wang, Jin-ji; Ma, Peng; Zuo, Du-luo; Wang, Xin-bing; Cheng, Zu-hai

    2012-03-01

    The experiment collected some spinach leaves which were irradiated by pulsed CO2 laser with energy 5.6J, 8.0J and 9.5J respectively. Each of them was soaked in three kinds of solvents (water, ethanol, the mixture of ethanol and petroleum ether) respectively. The experiment shows that the ethanol solution which contains the irradiated leaves turn dark green than the ethanol solution which contains the intact leaves and the color of solution with the leaves irradiated by CO2 laser with 9.5J changes the most significantly. Further, selective excitation on the molecular level of the cell wall were used to explain the phenomenon.

  3. Theoretical operational life study of the closed-cycle transversely excited atmospheric CO2 laser

    NASA Astrophysics Data System (ADS)

    Hokazono, Hirokazu; Obara, Minoru; Midorikawa, Katsumi; Tashiro, Hideo

    1991-05-01

    The operational characteristics of a high-power closed-cycle transversely excited atmospheric CO2 laser are investigated kinetically. The fractional CO2/N2, molecules decomposition, and concentration of minor impurities accumulated in the laser gas mixture are calculated theoretically as a function of shots and number of repetitive discharge pulses. It is shown that the laser output peak power decreases in proportion to the fractional CO2 decomposition, while nitrogen oxides are found to show little effect on the operational E/N. The theoretical model employed specifies that a trace of water vapor in the laser chamber suppresses the CO2 decomposition due to fact that CO2 reforming is enhanced by OH radicals. As far as ultraviolet preionization is concerned, its absorption depth of the laser gas mixture decreases as the CO2 decomposition increases.

  4. Theoretical Investigation of Laser-Radiation Effects on Satellite Solar Cells

    NASA Astrophysics Data System (ADS)

    Abdel-Hadi, Yasser; El-Hameed, Afaf; Hamdy, Ola

    This research concerns with the studying of laser-powered solar panels for space applications. A model describing the laser effects on satellite solar cell has been developed. These effects are studied theoretically in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. A comparison between some different common types of the solar cells used for these purpose is considered in this study. The obtained results are reported to optimize the use of laser-powered satellites.

  5. Laser Injection Into Ecris:. Theoretical Considerations and First Experimental Results

    NASA Astrophysics Data System (ADS)

    Shirkov, G.

    2004-10-01

    Some of experimental results of ion production using Al and Cd neutral flows of laser ablation plasma in the electron cyclotron resonance (ECR) ion source at RIKEN (Japan) and Frankfurt University are presented, analyzed and simulated. Computer codes based on balance equations for all ionic charge states and theory of electron and ion confinement in the open magnetic trap of ECR ion source was used for the numerical simulation of ion or neutral injection into the ECR plasma. The presented numerical simulation of pulsed neutral injection into the ECR source a good coincidence with experimental data. Different regimes on pulsed neutral injection into ECR source are studied and analyzed in a series of numerical simulations. The existed experiments and these simulations have shown some evident advantages of the combination of ECRIS and laser source: • there are only a few charge states at every moment of time and the CSD of extraction current is narrow; • pulsed loading of heavy elements gives a high current output of highly charged ions in comparison with CW mode loading; • extraction current of every charge state has a pulse structure with duration of few ms; • different charged states have different buildup times; • pulsed laser injection can be used for the CW mode of highly charged ion production if the repetition rate of laser pulses is high enough; The presented considerations and simulations of laser pulsed ion loading into a 18 GHz type ECR source have shown that an ion pulse of Au35+ about 0.5 mA and of 0.5 ms duration could be produced in the afterglow operation mode. Future ECR sources of next generation promise to enhance this output up to a few of mA.

  6. Analysis on the characteristics of pulsed laser proximity fuze's echo

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  7. An inverse free electron laser accelerator: Experiment and theoretical interpretation

    NASA Astrophysics Data System (ADS)

    Fang, Jyan-Min

    Experimental and numerical studies of the Inverse Free Electron Laser using a GW-level 10.6 /mu m CO2 laser have been carried out at Brookhaven's Accelerator Test Facility. An energy gain of 2.5% ([/Delta E/over E]) on a 40 MeV electron beam has been observed which compares well with theory. The effects on IFEL acceleration with respect to the variation of the laser electric field, the input electron beam energy, and the wiggler magnetic field strength were studied, and show the importance of matching the resonance condition in the IFEL. The numerical simulations were perforated under various conditions and the importance of the electron bunching in the IFEL is shown. The numerical interpretation of our IFEL experimental results was examined. Although good numerical agreement with the experimental results was obtained, there is a discrepancy between the level of the laser power measured in the experiment and used in the simulation, possibly due to the non-Gaussian profile of the input high power laser beam. The electron energy distribution was studied numerically and a smoothing of the energy spectrum by the space charge effect at the location of the spectrometer was found, compared with the spectrum at the exit of the wiggler. The electron bunching by the IFEL and the possibility of using the IFEL as an electron prebuncher for another laser-driven accelerator were studied numerically. We found that bunching of the electrons at 1 meter downstream from the wiggler can be achieved using the existing facility. The simulation shows that there is a fundamental difference between the operating conditions for using the IFEL as a high gradient accelerator, and as a prebuncher for another accelerator. For a high gradient accelerator, the IFEL requires the bunching of the electrons inside the wiggler for optimal energy gain, whereas using the IFEL as a prebuncher for another accelerator, a moderate energy gain may be sufficient for the best electron bunching results at a

  8. Laser ranging data analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Near real-time Lageos laser ranging data are analyzed in terms of range bias, time bias, and internal precision, and estimates for earth orientation parameters X(sub p), Y(sub p), and UT1 are obtained. The results of these analyses are reported in a variety of formats. Copies of monthly summaries from November, 1986 through November, 1987 are included.

  9. Theoretical analysis of intracortical microelectrode recordings

    NASA Astrophysics Data System (ADS)

    Lempka, Scott F.; Johnson, Matthew D.; Moffitt, Michael A.; Otto, Kevin J.; Kipke, Daryl R.; McIntyre, Cameron C.

    2011-08-01

    Advanced fabrication techniques have now made it possible to produce microelectrode arrays for recording the electrical activity of a large number of neurons in the intact brain for both clinical and basic science applications. However, the long-term recording performance desired for these applications is hindered by a number of factors that lead to device failure or a poor signal-to-noise ratio (SNR). The goal of this study was to identify factors that can affect recording quality using theoretical analysis of intracortical microelectrode recordings of single-unit activity. Extracellular microelectrode recordings were simulated with a detailed multi-compartment cable model of a pyramidal neuron coupled to a finite-element volume conductor head model containing an implanted recording microelectrode. Recording noise sources were also incorporated into the overall modeling infrastructure. The analyses of this study would be very difficult to perform experimentally; however, our model-based approach enabled a systematic investigation of the effects of a large number of variables on recording quality. Our results demonstrate that recording amplitude and noise are relatively independent of microelectrode size, but instead are primarily affected by the selected recording bandwidth, impedance of the electrode-tissue interface and the density and firing rates of neurons surrounding the recording electrode. This study provides the theoretical groundwork that allows for the design of the microelectrode and recording electronics such that the SNR is maximized. Such advances could help enable the long-term functionality required for chronic neural recording applications.

  10. Theoretical analysis of intracortical microelectrode recordings

    PubMed Central

    Lempka, Scott F; Johnson, Matthew D; Moffitt, Michael A; Otto, Kevin J; Kipke, Daryl R; McIntyre, Cameron C

    2011-01-01

    Advanced fabrication techniques have now made it possible to produce microelectrode arrays for recording the electrical activity of a large number of neurons in the intact brain for both clinical and basic science applications. However, the long-term recording performance desired for these applications is hindered by a number of factors that lead to device failure or a poor signal-to-noise ratio (SNR). The goal of this study was to identify factors that can affect recording quality using theoretical analysis of intracortical microelectrode recordings of single-unit activity. Extracellular microelectrode recordings were simulated with a detailed multi-compartment cable model of a pyramidal neuron coupled to a finite element volume conductor head model containing an implanted recording microelectrode. Recording noise sources were also incorporated into the overall modeling infrastructure. The analyses of this study would be very difficult to perform experimentally; however, our model-based approach enabled a systematic investigation of the effects of a large number of variables on recording quality. Our results demonstrate that recording amplitude and noise are relatively independent of microelectrode size, but instead are primarily affected by the selected recording bandwidth, impedance of the electrode-tissue interface, and the density and firing rates of neurons surrounding the recording electrode. This study provides the theoretical groundwork that allows for the design of the microelectrode and recording electronics such that the SNR is maximized. Such advances could help enable the long-term functionality required for chronic neural recording applications. PMID:21775783

  11. Second-Order Theoretical Analysis: A Method for Constructing Theoretical Explanation

    ERIC Educational Resources Information Center

    Shkedi, Asher

    2004-01-01

    In this paper a model is offered that allows for the construction of a theoretical explanation on the basis of data accumulated in the field for the purpose of constructing a meaningful description. In this endeavour a distinction is proposed between two methods of theoretical analysis: first-order analysis and second-order analysis. First-order…

  12. Experimental and Theoretical Studies of Laser Propulsion Phenomenology.

    DTIC Science & Technology

    1986-12-18

    addition of cesium , which thermally ionizes -,- above 3000K, would allow the formation of an LSC wave at temperatures below ". ," " 10,000K, and thus...1000- 2000s can be obtained with ionization (and cesium seeding). The high resolution absorption properties of most potential absorbers are not well...laser wavelengths. A summary of the parameter space of the measurements is provided in Table 1. 3.1 SFr SF6 is of particular interest because it is a

  13. Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization

    SciTech Connect

    Gelens, L.; Coomans, W.; Van der Sande, G.; Verschaffelt, G.; Mashal, L.; Beri, S.; Danckaert, J.

    2010-12-15

    We characterize the operation of semiconductor microring lasers in an excitable regime. Our experiments reveal a statistical distribution of the characteristics of noise-triggered optical pulses that is not observed in other excitable systems. In particular, an inverse correlation exists between the pulse amplitude and duration. Numerical simulations and an interpretation in an asymptotic phase space confirm and explain these experimentally observed pulse characteristics.

  14. A theoretical study on laser cooling of silicon monofluoride

    NASA Astrophysics Data System (ADS)

    Xia, Wensha; Fu, Mingkai; Ma, Haitao; Bian, Wensheng

    2017-03-01

    The feasibility of direct laser cooling of silicon monofluoride (SiF) is investigated and assessed using the internally contracted multireference configuration interaction method with the Davidson correction and entirely uncontracted aug-cc-pwCV5Z basis sets. As for the A2Σ+ (ν‧ = 0) →X2 Π transition, the computed radiative lifetime is 0.69 μs and the vibrational branching ratio Rν‧ν is highly diagonally distributed with the R00 being 0.994, which are desirable for rapid and efficient laser cooling. In addition, good agreement is achieved between our computed spectroscopic properties and the available experimental data for the X2 Π and A2Σ+ states of SiF. We propose a kind of laser cooling scheme, in which the wavelengths are located in the visible region. Both our calculated Doppler and recoil temperatures are of the order of μ K, and the calculated minimum distance necessary to bring the velocity of a SiF beam to that suitable for trapping is 13 cm, indicating that the SiF molecule can be cooled to the ultracold regime through the proposed scheme.

  15. Analysis of a theoretically optimized transonic airfoil

    NASA Technical Reports Server (NTRS)

    Lores, M. E.; Burdges, K. P.; Shrewsbury, G. D.

    1978-01-01

    Numerical optimization was used in conjunction with an inviscid, full potential equation, transonic flow analysis computer code to design an upper surface contour for a conventional airfoil to improve its supercritical performance. The modified airfoil was tested in a compressible flow wind tunnel. The modified airfoil's performance was evaluated by comparison with test data for the baseline airfoil and for an airfoil developed by optimization of leading edge of the baseline airfoil. While the leading edge modification performed as expected, the upper surface re-design did not produce all of the expected performance improvements. Theoretical solutions computed using a full potential, transonic airfoil code corrected for viscosity were compared to experimental data for the baseline airfoil and the upper surface modification. These correlations showed that the theory predicted the aerodynamics of the baseline airfoil fairly well, but failed to accurately compute drag characteristics for the upper surface modification.

  16. Theoretical and methodological approaches in discourse analysis.

    PubMed

    Stevenson, Chris

    2004-10-01

    Discourse analysis (DA) embodies two main approaches: Foucauldian DA and radical social constructionist DA. Both are underpinned by social constructionism to a lesser or greater extent. Social constructionism has contested areas in relation to power, embodiment, and materialism, although Foucauldian DA does focus on the issue of power. Embodiment and materialism may be especially relevant for researchers of nursing where the physical body is prominent. However, the contested nature of social constructionism allows a fusion of theoretical and methodological approaches tailored to a specific research interest. In this paper, Chris Stevenson suggests a frame- work for working out and declaring the DA approach to be taken in relation to a research area, as well as to aid anticipating methodological critique. Method, validity, reliability and scholarship are discussed from within a discourse analytic frame of reference.

  17. Theoretical and methodological approaches in discourse analysis.

    PubMed

    Stevenson, Chris

    2004-01-01

    Discourse analysis (DA) embodies two main approaches: Foucauldian DA and radical social constructionist DA. Both are underpinned by social constructionism to a lesser or greater extent. Social constructionism has contested areas in relation to power, embodiment, and materialism, although Foucauldian DA does focus on the issue of power Embodiment and materialism may be especially relevant for researchers of nursing where the physical body is prominent. However, the contested nature of social constructionism allows a fusion of theoretical and methodological approaches tailored to a specific research interest. In this paper, Chris Stevenson suggests a framework for working out and declaring the DA approach to be taken in relation to a research area, as well as to aid anticipating methodological critique. Method, validity, reliability and scholarship are discussed from within a discourse analytic frame of reference.

  18. Theoretical analysis of impact in composite plates

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1973-01-01

    The calculated stresses and displacements induced anisotropic plates by short duration impact forces are presented. The theoretical model attempts to model the response of fiber composite turbine fan blades to impact by foreign objects such as stones and hailstones. In this model the determination of the impact force uses the Hertz impact theory. The plate response treats the laminated blade as an equivalent anisotropic material using a form of Mindlin's theory for crystal plates. The analysis makes use of a computational tool called the fast Fourier transform. Results are presented in the form of stress contour plots in the plane of the plate for various times after impact. Examination of the maximum stresses due to impact versus ply layup angle reveals that the + or - 15 deg layup angle gives lower flexural stresses than 0 deg, + or - 30 deg and + or - 45 deg. cases.

  19. Courage and nursing practice: a theoretical analysis.

    PubMed

    Lindh, Inga-Britt; Barbosa da Silva, António; Berg, Agneta; Severinsson, Elisabeth

    2010-09-01

    This article aims to deepen the understanding of courage through a theoretical analysis of classical philosophers' work and a review of published and unpublished empirical research on courage in nursing. The authors sought answers to questions regarding how courage is understood from a philosophical viewpoint and how it is expressed in nursing actions. Four aspects were identified as relevant to a deeper understanding of courage in nursing practice: courage as an ontological concept, a moral virtue, a property of an ethical act, and a creative capacity. The literature review shed light on the complexity of the concept of courage and revealed some lack of clarity in its use. Consequently, if courage is to be used consciously to influence nurses' ethical actions it seems important to recognize its specific features. The results suggest it is imperative to foster courage among nurses and student nurses to prepare them for ethical, creative action and further the development of professional nursing practices.

  20. Laser Threat Analysis System (LTAS)

    NASA Astrophysics Data System (ADS)

    Pfaltz, John M.; Richardson, Christina E.; Ruiz, Abel; Barsalou, Norman; Thomas, Robert J.

    2002-11-01

    LTAS is a totally integrated modeling and simulation environment designed for the purpose of ascertaining the susceptibility of Air Force pilots and air crews to optical radiation threats. Using LTAS, mission planners can assess the operational impact of optically directed energy weapons and countermeasures. Through various scenarios, threat analysts are able to determine the capability of laser threats and their impact on operational missions including the air crew's ability to complete their mission effectively. Additionally, LTAS allows the risk of laser use on training ranges and the requirement for laser protection to be evaluated. LTAS gives mission planners and threat analysts complete control of the threat environment including threat parameter control and placement, terrain mapping (line-of-site), atmospheric conditions, and laser eye protection (LEP) selection. This report summarizes the design of the final version of LTAS, and the modeling methodologies implemented to accomplish analysis.

  1. Experimental and theoretical studies on laser photolysis kinetics of purple membrane

    NASA Astrophysics Data System (ADS)

    Yao, Baoli; Xu, Dalun; Hou, Xun

    1997-05-01

    Purple membrane suspension prepared from strain R1M1 of Halobacterium halobium is excited by a doubled frequency Q-switched Nd:YAG laser with 10 ns pulse duration and 10 Hz repetitive rate. A He-Ne laser and an Ar+ laser are respectively used as a probing beam. The sample's response signal is detected by an avalanche photodiode and measured by a 300 MHz digitizing oscilloscope. The laser photolysis kinetics of the purple membrane is theoretically analyzed and some important equations are derived. The experimental curves are fitted by the nonlinear least square method according to the theoretical model. The kinetic parameters of the purple membrane photocycle such as decay time constants, absorption cross sections are calculated out and discussed.

  2. A Theoretical Light Scattering Model of Nanoparticle Laser Tweezers

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    2003-01-01

    Accomplishments this reporting period include: 1. derived, programmed, checked, and tested the Mie light scattering theory formulas for the radiation trapping force for both the on-axis and off-axis geometry of the trapping beam plus trapped spherical particle; 2. verified that the computed radiation trapping force for a freely propagating focused Gaussian laser beam incident on a spherical particle agrees with previous published calculations; 3. compared the small particle size and large particle size limits of the Mie calculation with the results of Rayleigh scattering theory and ray scattering theory, respectively and verified that the comparison is correct for Rayleigh scattering theory but found that ray theory omits an important light scattering effect included in the Mie theory treatment; 4. generalized the calculation of the radiation trapping force on a spherical particle in the on-axis geometry from a freely propagating focused Gaussian laser beam to the realistic situation of a Gaussian beam truncated and focused by a high numerical aperture oil-immersion microscope objective lens and aberrated by the interface between the microscope cover slip and the liquid-filled sample volume; and 5. compared the calculated radiation trapping force for this geometry with the results of previously published experiments and found that the agreement is better than when using previously developed theories.

  3. A Theoretical Light Scattering Model of Nanoparticle Laser Tweezers

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    2003-01-01

    Accomplishments this reporting period include: 1. derived, programmed, checked, and tested the Mie light scattering theory formulas for the radiation trapping force for both the on-axis and off-axis geometry of the trapping beam plus trapped spherical particle; 2. verified that the computed radiation trapping force for a freely propagating focused Gaussian laser beam incident on a spherical particle agrees with previous published calculations; 3. compared the small particle size and large particle size limits of the Mie calculation with the results of Rayleigh scattering theory and ray scattering theory, respectively and verified that the comparison is correct for Rayleigh scattering theory but found that ray theory omits an important light scattering effect included in the Mie theory treatment; 4. generalized the calculation of the radiation trapping force on a spherical particle in the on-axis geometry from a freely propagating focused Gaussian laser beam to the realistic situation of a Gaussian beam truncated and focused by a high numerical aperture oil-immersion microscope objective lens and aberrated by the interface between the microscope cover slip and the liquid-filled sample volume; and 5. compared the calculated radiation trapping force for this geometry with the results of previously published experiments and found that the agreement is better than when using previously developed theories.

  4. Theoretical simulation of melt ejection during the laser drilling process on aluminum alloy by single pulsed laser

    NASA Astrophysics Data System (ADS)

    Li, Mingxin; Jin, Guangyong; Guo, Ming; Wang, Di; Gu, Xiuying

    2014-12-01

    In this paper, we establish a physical model to simulate the melt ejection induced by millisecond pulsed laser on aluminum alloy and use the finite element method to simulate the melting and vaporization process of aluminum alloy. Compared with the conventional model, this model explicitly adds the source terms of gas dynamics in the thermal-hydrodynamic equations, completes the trace of the gas-liquid interface and improves the traditional level-set method. All possible effects which can impact the dynamic behavior of the keyhole are taken into account in this two-dimensional model, containing gravity, recoil pressure of the metallic vapor, surface tension and Marangoni effect. This simulation is based on the same experiment condition where single pulsed laser with 3ms pulse width, 57J energy and 1mm spot radius is used. By comparing the theoretical simulation data and the actual test data, we discover that: the relative error between the theoretical values and the actual values is about 9.8%, the melt ejection model is well consistent with the actual experiment; from the theoretical model we can see the surrounding air of the aluminum alloy surface exist the metallic vapor; an increment of the interaction time between millisecond pulsed laser and aluminum alloy material, the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole depth is linearly increased with the increase of laser energy, respectively; the growth of the keyhole radius is in the trend to be gentle. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  5. Theoretical and experimental studies of ultra-short pulsed laser drilling of steel

    NASA Astrophysics Data System (ADS)

    Michalowski, Andreas; Qin, Yuan; Weber, Rudolf; Graf, Thomas

    2014-05-01

    Methods for the machining of metals based on the use of ultra-short pulsed laser radiation continue to gain importance in industrial production technology. Theoretical considerations and experimental studies on laser drilling of steel are discussed. The applicability of geometrical optics to calculate the absorbed energy distribution inside small blind holes is investigated theoretically. A model for melt transport during ultra-short pulsed drilling is proposed and verified experimentally. It confirms that helical drilling is advantageous for machining burr-free holes.

  6. Experimental and theoretical optimization of laser-produced x-ray spectra for vascular imaging

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Jiang, Zhiming; Ichalalene, Zahia; Kieffer, Jean-Claude; Chamberlain, Charles C.; Scalzetti, Ernest M.

    2000-04-01

    Experimental and theoretical studies of image quality using iodinated contrast agent and x-ray spectra generated by laser- based x-ray source were performed. A TableTop Terawatt (T3) laser (intensity: 1017 - 1019 W/cm-2, pulse duration: 150 fs or 450 fs, with or without controlled pre-pulse) was used to crate x-ray source. Infrared and/or green beams were utilized. Ba, La, Ce, Nd, and Gd laser targets were used. For each target, a number of suitable filters was utilized to produce optimized x-ray spectra for a specific imaging task. The MTF function due to the focal spot was obtained. A simple theoretical model of x-ray detector response was developed. An index of image quality (Detective Image Quality) as well as a figure of merit for dual energy imaging FOM(DESA) were defined and optimized via x-ray spectrum manipulation. The optimum, for a specific imaging task, technique parameters such as: target/filter combination, focal spot size, laser-light wavelength and surface power density, laser pulse duration, pre-pulse delay and contrast ratio, and hot electrons temperature were obtained experimentally and confirmed theoretically. We found that an optimized laser-based x-ray source can outperform conventional x-ray tube-based source in application to vascular imaging in terms of contrast resolution and spatial resolution.

  7. A Theoretical Analysis of Photon Drag Detectors,

    DTIC Science & Technology

    1983-03-01

    measurement of high power pulses from CO2 lasers is presented. Details of the model and the numerical methods employed are described and the results...transversely excited atmospheric pressure (TEA) CO2 and CO lasers . They have a very fast response time (𔃻 ns), and are linear up to powers close to their...by Rofin Ltd) carried out at NPL have shown their response to be dependent on the position of the laser beam in the device, and this can vary as much

  8. Electron energy modulation with laser light using a small gap circuit a theoretical consideration

    NASA Astrophysics Data System (ADS)

    Bae, Jongsuck; Okuyama, Sumio; Akizuki, Taiji; Mizuno, Koji

    1993-07-01

    A free electron laser (FEL) using a klystron type interaction circuit is investigated. A metal slit has been considered as the circuit. From theoretical considerations on electron transition rates in a metal film gap and a dielectric (SiO 2) film, it is found that in the metal slit a transition rate above 10 -3/s could be obtained for an incident laser power density of 10 6 W/cm 2. The optimum slit dimensions have been determined for a laser wavelength of 780 nm and an initial electron energy of 80 keV. A rough estimation implies that a laser power of 30 mW will produce a signal output of 20 000 electrons/s for an electron beam density of 1 mA/cm 2 at the laser wavelength of 780 nm.

  9. Theoretical model for the heat diffusion in an electrically calibrated laser power meter

    NASA Astrophysics Data System (ADS)

    Sporea, Dan G.; Miron, Nicolae; Dumitru, Gabriel; Timus, Bogdan

    1995-09-01

    The theoretical model for the heat diffusion in the case of a high power IR electrically calibrated laser powermeter, developed at the Institute for Atomic Physics in Bucharest, is presented. The IR laser beam falls onto a laser detector, a special design copper disc wafer which absorbs the laser beam, heats its center. A daisy-chain of thermocouple elements having one set of junctions thermally connected to the central region of the disc and the other ones to the disc's boundary is used to detect temperature rise induced by the exposure to the laser beam. For calibration, the copper disc is electrically heated and the electric power that produces the same temperature rise as one induced by an incident laser beam, should equal the laser beam power. The electric heater is designed to provide a uniform heating of the copper disc. The solution for heat diffusion equation was searched as a series of Bessel functions of zero order, the cold junction's temperature was imposed as boundary condition and the heat induced by the laser beam in the disc's center was regarded as input data. To find the correct solutions, there must be taken into account the designing elements of the copper disc: termic material's properties (caloric capacity, termic conductibility), laser detector's geometry, copper's density. The electric power for calibration was injected using a precision power injection circuit which allows a stability of the calibration power, better than 0.1%.

  10. Experimental and theoretical study on nonsequential double ionization of carbon disulfide in strong near-IR laser fields

    NASA Astrophysics Data System (ADS)

    Zuo, Wanlong; Ben, Shuai; Lv, Hang; Zhao, Lei; Guo, Jing; Liu, Xue-Shen; Xu, Haifeng; Jin, Mingxing; Ding, Dajun

    2016-05-01

    Nonsequential double ionization (NSDI) of carbon disulfide CS2 in strong 800-nm laser fields is studied experimentally and theoretically. A knee structure is observed in the intensity-dependent double ionization (DI) yield in linearly polarized laser fields, which exhibits a strong dependence on the laser ellipticity. The electron momentum distributions and energy trajectories after DI in both linearly and circularly polarized laser fields are investigated by employing the two-dimensional classical ensemble method. The results clearly show the evidence of NSDI in the strong-field DI of CS2 molecules. It is demonstrated that, similar to that of atoms, NSDI of CS2 molecules is produced via laser-driven electron recollision with the ion core and presents electron-electron correlations in the process. Analysis indicates that both mechanisms in atomic strong-field NSDI, i.e., recollision impact ionization and recollision excitation with subsequent ionization, may also be contributed to NSDI of CS2 in strong laser fields. Further studies are no doubt necessary for a full understanding of the underlying physical mechanism of molecular strong-field NSDI, due to the multicenter character of the molecular structure and the complex molecular excited states that could be involved in the ionization.

  11. Theoretical Analysis of Rain Attenuation Probability

    NASA Astrophysics Data System (ADS)

    Roy, Surendra Kr.; Jha, Santosh Kr.; Jha, Lallan

    2007-07-01

    Satellite communication technologies are now highly developed and high quality, distance-independent services have expanded over a very wide area. As for the system design of the Hokkaido integrated telecommunications(HIT) network, it must first overcome outages of satellite links due to rain attenuation in ka frequency bands. In this paper theoretical analysis of rain attenuation probability on a slant path has been made. The formula proposed is based Weibull distribution and incorporates recent ITU-R recommendations concerning the necessary rain rates and rain heights inputs. The error behaviour of the model was tested with the loading rain attenuation prediction model recommended by ITU-R for large number of experiments at different probability levels. The novel slant path rain attenuastion prediction model compared to the ITU-R one exhibits a similar behaviour at low time percentages and a better root-mean-square error performance for probability levels above 0.02%. The set of presented models exhibits the advantage of implementation with little complexity and is considered useful for educational and back of the envelope computations.

  12. Theoretical Understanding of Enhanced Proton Energies from Laser-Cone Interactions

    SciTech Connect

    Kluge, T.; Gaillard, S. A.; Bussmann, M.; Burris-Mog, T.; Kraft, S. D.; Metzkes, J.; Rassuchine, J.; Schramm, U.; Zeil, K.; Cowan, T. E.; Flippo, K. A.; Offermann, D. T.; Gall, B.; Geissel, M.; Schollmeier, M.; Lockard, T.; Sentoku, Y.

    2010-11-04

    For the past ten years, the highest proton energies accelerated with high-intensity lasers was 58 MeV, observed in 2000 at the LLNL NOVA Petawatt laser, using flat foil targets. Recently, 67.5 MeV protons were observed in experiments at the Los Alamos National Laboratory (LANL) Trident laser, using one-fifth of the PW laser pulse energy, incident into novel conical targets. We present a focused study of new theoretical understanding of this measured enhancement from collisional Particle-in-Cell simulations, which shows that the hot electron temperature, number and maximum energy, responsible for the Target Normal Sheath Acceleration (TNSA) at the cone-top, are significantly increased when the laser grazes the cone wall. This is mainly due to the extraction of electrons from the cone wall by the laser electric field, and their boost in the forward direction by the vxB term of the Lorentz force. This result is in contrast to previous predictions of optical collection and wall-guiding of electrons in angled cones. This new wall-grazing mechanism offers the prospect to linearly increase the hot electron temperature, and thereby the TNSA proton energy, by extending the length over which the laser interacts in a grazing fashion in suitably optimized targets. This may allow achieving much higher proton energies for interesting future applications, with smaller, lower energy laser systems that allow for a high repetition rate.

  13. Theoretical and experimental research on the ˜980-nm Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Yanshan; Ke, Weiwei; Ma, Yi; Sun, Yinhong; Feng, Yujun

    2016-07-01

    The output properties of the ˜980-nm Yb-doped fiber laser versus pump power and core-cladding ratio of gain fiber, also the amplified spontaneous emission (ASE) at different wavelengths of seed laser, are investigated theoretically. An all-fiber amplifier based on different wavelengths of seed laser at 974.4, 977, and 981.7 nm brings the studies on parasitic oscillation and ASE in the ˜980-nm Yb-doped fiber amplifier. Through the theoretical and experimental research, we found that the controlling of three-level ASE around ˜980-nm is pivotal for obtaining a high-power 980-nm Yb-doped fiber amplifier.

  14. Theoretical analysis of driven magnetic reconnection experiments

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri A.; Kulsrud, Russell M.; Yamada, Masaaki

    1996-04-01

    In this paper we present a theoretical framework for the Magnetic Reconnection Experiment (MRX) [M. Yamada et al., Bull. Am. Phys. Soc. 40, 1877 (1995)] in order to understand the basic physics of the experiment, including the effect of the external driving force, and the difference between co- and counterhelicity cases of the experiment. The problem is reduced to a one-dimensional (1-D) resistive magnetohydrodynamic (MHD) model. A special class of holonomic boundary conditions is defined, under which a unique sequence of global equilibria can be obtained, independent of the rate of reconnection. This enables one to break the whole problem into two parts: a global problem for the ideal region, and a local problem for the resistive reconnection layer. The calculations are then carried out and the global solution for the ideal region is obtained in one particular case of holonomic constraints, the so called ``constant force'' regime, for both the co- and counterhelicity cases. After the sequence of equilibria in the ideal region is found, the problem of the rate of reconnection in the resistive reconnection region is considered. This rate tells how fast the plasma proceeds through the sequence of global equilibria but does not affect the sequence itself. Based on a modified Sweet-Parker model for the reconnection layer, the reconnection rate is calculated, and the difference between the co- and counterhelicity cases, as well as the role of the external forces is demonstrated. The results from the present analysis are qualitatively consistent with the experimental data, predicting faster reconnection rate for the counterhelicity merging and yielding a positive correlation with external forcing.

  15. Experimental and Theoretical Studies of Laser - Argon Plasmas for Application to Laser-Supported Rocket Propulsion.

    NASA Astrophysics Data System (ADS)

    Glumb, Ronald J.

    Laser propulsion is a revolutionary new form of rocket propulsion in which a remote high-power laser is used to heat hydrogen propellant to extremely high temperatures. This approach has important advantages over existing propulsion systems, and is being explored for use in advanced orbital transfer vehicles. The key problem encountered is how to efficiently convert the laser energy into the thermal energy of the propellant. At this time, high-temperature laser-sustained plasmas appear to be the most efficient conversion mechanism. A comprehensive study of argon laser-sustained plasmas has been conducted using the University's 110 kW CO(,2) laser facility. It has been found that the plasmas are stable phenomena which will adjust to variations in laser power or flow velocity. Calorimetric studies have shown that the plasma can absorb up to 80 percent of the incident laser energy in extremely short distances. The dependence of absorption on power, pressure, flow rate, and beam optics has been examined. The fraction of the laser energy retained by the gas as thermal energy has also been measured under a range of flow and power conditions; efficiencies as high as 40 percent have been demonstrated. A laser-induced fluorescence diagnostic system using atomic seedants has been developed to obtain more acurate efficiency measurements. A two-dimensional numerical model of the plasma has also been developed, which includes real argon properties and accurate absorption and emission coefficients. Excellent agreement with the experimental results has been demonstrated, specifically with regard to plasma size, peak temperatures, absorption fractions, minimum maintenance powers, blowout velocities, and conversion efficiencies. The model also predicts that efficiencies as high as 75 percent should be achievable at high f numbers, a prediction now being tested experimentally.

  16. Theoretical analysis of sheet metal formability

    NASA Astrophysics Data System (ADS)

    Zhu, Xinhai

    Sheet metal forming processes are among the most important metal-working operations. These processes account for a sizable proportion of manufactured goods made in industrialized countries each year. Furthermore, to reduce the cost and increase the performance of manufactured products, in addition to the environmental concern, more and more light weight and high strength materials have been used as a substitute to the conventional steel. These materials usually have limited formability, thus, a thorough understanding of the deformation processes and the factors limiting the forming of sound parts is important, not only from a scientific or engineering viewpoint, but also from an economic point of view. An extensive review of previous studies pertaining to theoretical analyses of Forming Limit Diagrams (FLDs) is contained in Chapter I. A numerical model to analyze the neck evolution process is outlined in Chapter II. With the use of strain gradient theory, the effect of initial defect profile on the necking process is analyzed. In the third chapter, the method proposed by Storen and Rice is adopted to analyze the initiation of localized neck and predict the corresponding FLDs. In view of the fact that the width of the localized neck is narrow, the deformation inside the neck region is constrained by the material in the neighboring homogeneous region. The relative rotation effect may then be assumed to be small and is thus neglected. In Chapter IV, Hill's 1948 yield criterion and strain gradient theory are employed to obtain FLDs, for planar anisotropic sheet materials by using bifurcation analysis. The effects of the strain gradient coefficient c and the material anisotropic parameters R's on the orientation of the neck and FLDs are analyzed in a systematic manner and compared with experiments. In Chapter V, Hill's 79 non-quadratic yield criterion with a deformation theory of plasticity is used along with bifurcation analyses to derive a general analytical

  17. A theoretical model of the femtosecond laser ablation of semiconductors considering inverse bremsstrahlung absorption

    NASA Astrophysics Data System (ADS)

    Xiaohui, Lin; Chibin, Zhang; Weisong, Ren; Shuyun, Jiang; Quanhui, Ouyang

    2012-04-01

    The mechanism of the femtosecond laser ablation of semiconductors is investigated. The collision process of free electrons in a conduction band is depicted by the test particle method, and a theoretical model of nonequilibrium electron transport on the femtosecond timescale is proposed based on the Fokker—Planck equation. This model considers the impact of inverse bremsstrahlung on the laser absorption coefficient, and gives the expressions of electron drift and diffusion coefficients in the presence of screened Coulomb potential. Numerical simulations are conducted to obtain the nonequilibrium distribution function of the electrons. The femtosecond laser ablation thresholds are then calculated accordingly, and the results are in good agreement with the experimental results. This is followed by a discussion on the impact of laser parameters on the ablation of semiconductors.

  18. Experimental and theoretical study of the ND:YAG laser removal of beeswax on Galician granite at 355 nm

    NASA Astrophysics Data System (ADS)

    Pan, Aldara; Rebollar, Esther; Conde, J. Carlos; Lusquiños, Fernando; Chiussi, Stefano; Léon, Betty

    2010-04-01

    Beeswax coatings applied to seal off the granitic surfaces of many monuments have resulted in detrimental effects with time passing. Conservation procedures must be carried out in a selective way, removing the beeswax without any degradation of the stone. In this study we present an experimental analysis of the removal of beeswax using a Nd:YAG laser at a wavelength of 355 nm which is absorbed weakly by the beeswax. For this reason, an important percentage of the laser radiation reaches the granite substrate and the influence of the layer thickness must be studied. At each laser fluence, for single-pulse irradiation we find a maximum thickness for complete removal of the film. For thicker layers, the beeswax is not removed and additional effects such as color changes and thickness increase are observed. The experimental results suggest that a photomechanical mechanism is dominant and that granite absorption plays a fundamental role. Multiple-pulse irradiation is also performed to determine the optimal parameters for laser cleaning. Finally, infrared thermography measurements allow for the determination of the granite surface temperature after laser irradiation and theoretical calculations allow one to estimate the absorption behavior of granite at 355 and to explain the results obtained.

  19. Experimental and theoretical study of the Nd:YAG laser removal of beeswax on Galician granite at 355 nm

    NASA Astrophysics Data System (ADS)

    Pan, Aldara; Rebollar, Esther; Conde, J. Carlos; Lusquiños, Fernando; Chiussi, Stefano; León, Betty

    2010-09-01

    Beeswax coatings applied to seal off the granitic surfaces of many monuments have resulted in detrimental effects with time passing. Conservation procedures must be carried out in a selective way, removing the beeswax without any degradation of the stone. In this study we present an experimental analysis of the removal of beeswax using a Nd:YAG laser at a wavelength of 355 nm which is absorbed weakly by the beeswax. For this reason, an important percentage of the laser radiation reaches the granite substrate and the influence of the layer thickness must be studied. At each laser fluence, for single-pulse irradiation we find a maximum thickness for complete removal of the film. For thicker layers, the beeswax is not removed and additional effects such as color changes and thickness increase are observed. The experimental results suggest that a photomechanical mechanism is dominant and that granite absorption plays a fundamental role. Multiple-pulse irradiation is also performed to determine the optimal parameters for laser cleaning. Finally, infrared thermography measurements allow for the determination of the granite surface temperature after laser irradiation and theoretical calculations allow one to estimate the absorption behavior of granite at 355 and to explain the results obtained.

  20. Laser-Based Lighting: Experimental Analysis and Perspectives.

    PubMed

    Trivellin, Nicola; Yushchenko, Maksym; Buffolo, Matteo; De Santi, Carlo; Meneghini, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico

    2017-10-11

    This paper presents an extensive analysis of the operating principles, theoretical background, advantages and limitations of laser-based lighting systems. In the first part of the paper we discuss the main advantages and issues of laser-based lighting, and present a comparison with conventional LED-lighting technology. In the second part of the paper, we present original experimental data on the stability and reliability of phosphor layers for laser lighting, based on high light-intensity and high-temperature degradation tests. In the third part of the paper (for the first time) we present a detailed comparison between three different solutions for laser lighting, based on (i) transmissive phosphor layers; (ii) a reflective/angled phosphor layer; and (iii) a parabolic reflector, by discussing the advantages and drawbacks of each approach. The results presented within this paper can be used as a guideline for the development of advanced lighting systems based on laser diodes.

  1. Laser power conversion system analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam.

  2. Comparative shock wave analysis during corneal ablation with an excimer laser, picosecond laser, and femtosecond laser

    NASA Astrophysics Data System (ADS)

    Krueger, Ronald R.; Juhasz, Tibor

    1995-05-01

    With the event of topographic steep central islands following excimer laser surgery and the potential damage to the corneal endothelium, shock waves are playing an increasingly important role in laser refractive surgery. With this in mind, we performed a comparative shock wave analysis in corneal tissue using an excimer laser, picosecond laser, and femtosecond laser. We used a Lambda Physik excimer laser at 308 nm wavelength, a Nd:YLF picosecond laser at 1053 nm wavelength and a synchronously pumped linear cavity femtosecond laser at 630 nm wavelength. The pulse widths of the corresponding lasers were 8 ns, 18 ps, 150 fs, respectively. The energy density of irradiation was 2.5 to 8 times the threshold level being 2 J/cm2 (excimer laser), 86 J/cm2 (picosecond laser) and 10.3 J/cm2 (femtosecond laser). Shock wave dynamics were analyzed using time-resolved photography on a nanosecond time scale using the picosecond laser in corneal tissue, water and air. Shock wave dynamics using the femtosecond laser were studied in water only while the excimer laser induced shock wave during corneal ablation was studied in air only. We found the dynamics of shock waves to be similar in water and corneal tissue indicating that water is a good model to investigate shock wave effects in the cornea. The magnitude of the shock wave velocity and pressure decays over time to that of a sound wave. The distance over which it decays is 3 mm in air with the excimer laser and 600 - 700 micrometers in air with the picosecond laser. In water, the picosecond laser shock wave decays over a distance of 150 micrometers compared to the femtosecond laser shock wave which decays over a distance of 30 micrometers . Overall the excimer laser shock wave propagates 5 times further than that of the picosecond laser and the picosecond laser shock wave propagates 5 times further than that of the femtosecond laser. In this preliminary comparison, the time and distance for shock wave decay appears to be directly

  3. Theoretical analysis of planar pulse microwiggler

    SciTech Connect

    Qing-Xiang Liu |; Yong Xu

    1995-12-31

    The Magnetic field distributions of a planar pulse microwiggler are studied analytically and numerically. Exact solutions of two-dimensional magnetic fields are derived, which show that along the electron axis the fields have a variation close enough to a sine wave. We also investigate wiggler field errors due to machining tolerance and effects of the field errors on trajectories of electron with the help numerical simulations. The results are critical for successful operation of CAEP compact free-electron laser experiment under preparation.

  4. Advances in multiscale theoretical analysis and imaging aspects of turbulence

    NASA Astrophysics Data System (ADS)

    Shockro, Jennifer

    The work presented in this dissertation is focused on two aspects related to turbulent flow. The first of these is the one-dimensional theoretical analysis of the logarithmic spiral in terms of fractal dimension and spectrum. The second is on imaging methodologies and analysis of turbulent jet scalar interfaces in atmospheric conditions, with broad applicability to various studies where turbulence has a key role, such as urban contaminant dispersion or free space laser communications. The logarithmic spiral is of particular interest to studies of turbulence and natural phenomena as it appears frequently in nature with the "Golden Ratio" and is thought to play an important role in turbulent mixing. It is also an inherently anisotropic geometric structure and therefore provides information towards examining phenomena in which anisotropic properties might be expected to appear and is thought to be present as a structure within the fine scales of the turbulent hierarchy. In this work it is subjected to one-dimensional theoretical analysis, focusing on the development of a probability density function (pdf) for the spiral and the relation of the pdf to its fractal dimension. Results indicate that the logarithmic spiral does not have a constant fractal dimension and thus that it does not exhibit any form of self-similar statistical behavior, supporting previous theoretical suppositions about behavior at the fine scales within the turbulent hierarchy. A signal is developed from the pdf in order to evaluate its power spectrum. Results of this analysis provide information about the manner in which energy is carried at different scales of the spiral. To our knowledge, the logarithmic spiral in particular has not yet been examined in this fashion in literature. In order to further investigate this object, the multiscale minima meshless (M(3) ) method isextended and employed computationally to the two-dimensional logarithmic spiral as well as to experimental images of a

  5. Intense pulsed light and laser treatment of facial telangiectasias and dyspigmentation: some theoretical and practical comparisons.

    PubMed

    Ross, E Victor; Smirnov, Michael; Pankratov, Michael; Altshuler, Gregory

    2005-09-01

    A comparative overview is presented, both theoretical and clinical, for intense pulsed light (IPL) and laser treatment of facial telangiectasias and pigmented lesions. A narrative approach describes light penetration into the epidermis, dermis, dermal-epidermal junction, and facial ectasias. Based on mathematical models, we examine some temperature profiles for monochromatic and broadband light sources. Specifically, temperature elevations of representative vascular targets are discussed. Also, clinical scenarios are reviewed for both IPL and laser. Although multiple monochromatic devices are reviewed, only the 532 and 595 nm wavelengths are emphasized. In theory, an IPL can be filtered to simulate 532 and 595 nm laser light in the treatment of telangiectasias and dyschromias. In comparing our experiences with the different devices, all three (IPL, 532 nm laser, and 595 nm laser) are capable of achieving a reduction in ectasias and hyperpigmented macules. With an optimal set of parameters, IPLs and lasers are comparable in the treatment of vascular and pigmented lesions with respect to treatment efficiency and safety.

  6. Experimental and theoretical studies of the fabrication of nanoparticles using a high power pulsed laser

    NASA Astrophysics Data System (ADS)

    Lee, Jae Myoung

    2000-10-01

    In this work, the laser-induced breakdown mechanism that leads to nanoparticle formation was investigated with optical experiments and theoretical simulations. In the experiments, pulsed-laser radiations at 1.06 μm was used to ablate 20 μm glass microspheres at three different fluences, 3, 6, and 12 J/cm2. A frequency-doubled laser beam illuminated the generated shockwave profile in a Schlieren configuration with delay times up to 30 ns. Shockwave images verified that breakdown in a 20 μm glass microsphere was initiated near the back surface due to internal focusing of the laser. The breakdown became the source for shockwave formation. Over the range of delays studied, shockwave velocity was approximately constant. The measured shockwave velocities were proportional to applied laser fluence and the velocity of the forward shockwave was faster than that of the backward (toward the laser source) shockwave. For longer times and propagation distances, however, we would expect the shockwave velocity to decrease. Therefore, measurements at longer optical delay times are needed to develop a complete shockwave propagation model for laser ablation of a glass microspheres. A hydrodynamic numerical code was developed to further investigate the optical breakdown and shockwave initiation process. It included a two fluid model (electrons and ions) to account for energy exchange, energy radiation, and thermal conduction due to interactions between and among electrons and ions. A quotidian equation of state was implemented to overcome nonphysical data from the SESAME equation of data tables, especially in the low temperature and pressure region. Numerical simulations showed density, pressure, temperature, and velocity profiles. Simulation results with 20 μm glass microspheres confirmed the location of the initial breakdown and matched experimental shockwave velocities. Nanoparticle size controllability was examined for permalloy and silver by changing the laser fluence, gas

  7. Experimental and theoretical investigation of the effect of laser parameters on laser ablation and laser-induced plasma formation

    NASA Astrophysics Data System (ADS)

    Stancalie, Andrei; Ciobanu, Savu-Sorin; Sporea, Dan

    2016-04-01

    We report results from a wide range of laser operating conditions, typical for laser induced breakdown spectroscopy (LIBS) and laser ablation (LA) experiments on copper metallic target, which form the basis of further systematically investigation of the effect of laser irradiance, pulse duration and wavelength, on the target, plume and plasma behavior, during and after laser-solid interaction. In the LA experiment, the laser beam was focused through a 25 cm focal length convergent lens on a plane copper target in air, at atmospheric pressure. The target was rotated in order to have fresh areas under laser irradiance. In the LIBS experiment, the Applied Photonics LIBS-6 instrument allowed modifying the laser irradiance at the sample surface by changing the pulse energy or the laser focusing distance. For the duration of the laser pulse, the power density at the surface of the target material exceeds 109 W/cm2 using only a compact laser device and simple focusing lenses. The plasma parameters were experimentally estimated from spectroscopic data generated by the plasma itself, namely by the line intensities and their ratio which reflect the relative population of neutral or ionic excited species in the plasma. The fitting of the Saha-Boltzmann plot to a straight line provides an apparent ionization temperature, whose value depends on the lines used in the plots. For the typical conditions of LA and LIBS, the temperature can be so high that Cu+ ions are formed. The first-order ionization of Cu (i.e., the ratio of Cu+/Cu0 ) is calculated.

  8. Cryogenic Laser Calorimetry for Impurity Analysis

    NASA Technical Reports Server (NTRS)

    Swimm, R. T.

    1985-01-01

    The results of a one-year effort to determine the applicability of laser-calorimetric spectroscopy to the study of deep-level impurities in silicon are presented. Critical considerations for impurity analysis by laser-calorimetric spectroscopy are discussed, the design and performance of a cryogenic laser calorimeter is described, and measurements of background absorption in high-purity silicon are presented.

  9. Theoretical and experimental investigation of actively Q-switched Nd:YAG 946 nm laser with considering ETU effects

    NASA Astrophysics Data System (ADS)

    Yan, R.; Yu, X.; Li, X.; Chen, D.; Yu, J.

    2012-09-01

    A theoretical model on actively Q-switched Nd3+-doped quasi-three-level laser including the energy transfer upconversion and the ground state reabsorption is developed. The analytical expressions of the fractional thermal loading and the average output power are obtained, and the influence of ETU effects on laser performance for different repetition rate is analyzed. The average output power and the thermal focal length of the Q-switched 946 nm laser are acquired in experiment. The good agreement between the experimental data and theoretical results demonstrates the reliability of the theoretical model.

  10. Theoretical analysis of the EWEC report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This analytic investigation shows how the electromagnetic wave energy conversion (EWEC) device, as used for solar-to-electric power conversion, is significantly different from solar cells, with respect to principles of operation. An optimistic estimate of efficiency is about 80% for a full-wave rectifying configuration with solar radiation normally incident. This compares favorably with the theoretical maximum for a CdTe solar cell (23.5%), as well as with the efficiencies of more familiar cells: Si (19.5%), InP (21.5%), and GaAs (23%). Some key technological issues that must be resolved before the EWEC device can be realized are identified. Those issues include: the fabrication of a pn semi-conductor junction with no permittivity resonances in the optical band; and the efficient channeling of the power received by countless microscopic horn antennas through a relatively few number of wires.

  11. Laser cooling of MgCl and MgBr in theoretical approach

    SciTech Connect

    Wan, Mingjie; Shao, Juxiang; Huang, Duohui; Yang, Junsheng; Cao, Qilong; Jin, Chengguo; Wang, Fanhou; Gao, Yufeng

    2015-07-14

    Ab initio calculations for three low-lying electronic states (X{sup 2}Σ{sup +}, A{sup 2}Π, and 2{sup 2}Π) of MgCl and MgBr molecules, including spin-orbit coupling, are performed using multi-reference configuration interaction plus Davidson correction method. The calculations involve all-electronic basis sets and Douglas–Kroll scalar relativistic correction. Spectroscopic parameters well agree with available theoretical and experimental data. Highly diagonally distributed Franck-Condon factors f{sub 00} for A{sup 2}Π{sub 3/2,1/2} (υ′ = 0) → X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) are determined for both MgCl and MgBr molecules. Suitable radiative lifetimes τ of A{sup 2}Π{sub 3/2,1/2} (υ′ = 0) states for rapid laser cooling are also obtained. The proposed laser drives A{sup 2}Π{sub 3/2} (υ′ = 0) → X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) transition by using three wavelengths (main pump laser λ{sub 00}; two repumping lasers λ{sub 10} and λ{sub 21}). These results indicate the probability of laser cooling MgCl and MgBr molecules.

  12. Laser cooling of MgCl and MgBr in theoretical approach.

    PubMed

    Wan, Mingjie; Shao, Juxiang; Gao, Yufeng; Huang, Duohui; Yang, Junsheng; Cao, Qilong; Jin, Chengguo; Wang, Fanhou

    2015-07-14

    Ab initio calculations for three low-lying electronic states (X(2)Σ(+), A(2)Π, and 2(2)Π) of MgCl and MgBr molecules, including spin-orbit coupling, are performed using multi-reference configuration interaction plus Davidson correction method. The calculations involve all-electronic basis sets and Douglas-Kroll scalar relativistic correction. Spectroscopic parameters well agree with available theoretical and experimental data. Highly diagonally distributed Franck-Condon factors f00 for A(2)Π3/2,1/2 (υ' = 0) → X(2)Σ(+) 1/2 (υ″ = 0) are determined for both MgCl and MgBr molecules. Suitable radiative lifetimes τ of A(2)Π3/2,1/2 (υ' = 0) states for rapid laser cooling are also obtained. The proposed laser drives A(2)Π3/2 (υ' = 0) → X(2)Σ(+) 1/2 (υ″ = 0) transition by using three wavelengths (main pump laser λ00; two repumping lasers λ10 and λ21). These results indicate the probability of laser cooling MgCl and MgBr molecules.

  13. A theoretical analysis of vertical flow equilibrium

    SciTech Connect

    Yortsos, Y.C.

    1992-01-01

    The assumption of Vertical Flow Equilibrium (VFE) and of parallel flow conditions, in general, is often applied to the modeling of flow and displacement in natural porous media. However, the methodology for the development of the various models is rather intuitive, and no rigorous method is currently available. In this paper, we develop an asymptotic theory using as parameter the variable R{sub L} = (L/H){radical}(k{sub V})/(k{sub H}). It is rigorously shown that present models represent the leading order term of an asymptotic expansion with respect to 1/R{sub L}{sup 2}. Although this was numerically suspected, it is the first time that is is theoretically proved. Based on the general formulation, a series of models are subsequently obtained. In the absence of strong gravity effects, they generalize previous works by Zapata and Lake (1981), Yokoyama and Lake (1981) and Lake and Hirasaki (1981), on immiscible and miscible displacements. In the limit of gravity-segregated flow, we prove conditions for the fluids to be segregated and derive the Dupuit and Dietz (1953) approximations. Finally, we also discuss effects of capillarity and transverse dispersion.

  14. Catalytic efficiency of enzymes: a theoretical analysis.

    PubMed

    Hammes-Schiffer, Sharon

    2013-03-26

    This brief review analyzes the underlying physical principles of enzyme catalysis, with an emphasis on the role of equilibrium enzyme motions and conformational sampling. The concepts are developed in the context of three representative systems, namely, dihydrofolate reductase, ketosteroid isomerase, and soybean lipoxygenase. All of these reactions involve hydrogen transfer, but many of the concepts discussed are more generally applicable. The factors that are analyzed in this review include hydrogen tunneling, proton donor-acceptor motion, hydrogen bonding, pKa shifting, electrostatics, preorganization, reorganization, and conformational motions. The rate constant for the chemical step is determined primarily by the free energy barrier, which is related to the probability of sampling configurations conducive to the chemical reaction. According to this perspective, stochastic thermal motions lead to equilibrium conformational changes in the enzyme and ligands that result in configurations favorable for the breaking and forming of chemical bonds. For proton, hydride, and proton-coupled electron transfer reactions, typically the donor and acceptor become closer to facilitate the transfer. The impact of mutations on the catalytic rate constants can be explained in terms of the factors enumerated above. In particular, distal mutations can alter the conformational motions of the enzyme and therefore the probability of sampling configurations conducive to the chemical reaction. Methods such as vibrational Stark spectroscopy, in which environmentally sensitive probes are introduced site-specifically into the enzyme, provide further insight into these aspects of enzyme catalysis through a combination of experiments and theoretical calculations.

  15. A theoretical analysis of vertical flow equilibrium

    SciTech Connect

    Yortsos, Y.C.

    1992-01-01

    The assumption of Vertical Flow Equilibrium (VFE) and of parallel flow conditions, in general, is often applied to the modeling of flow and displacement in natural porous media. However, the methodology for the development of the various models is rather intuitive, and no rigorous method is currently available. In this paper, we develop an asymptotic theory using as parameter the variable R{sub L} = (L/H){radical}(k{sub V})/(k{sub H}). It is rigorously shown that present models represent the leading order term of an asymptotic expansion with respect to 1/R{sub L}{sup 2}. Although this was numerically suspected, it is the first time that is is theoretically proved. Based on the general formulation, a series of models are subsequently obtained. In the absence of strong gravity effects, they generalize previous works by Zapata and Lake (1981), Yokoyama and Lake (1981) and Lake and Hirasaki (1981), on immiscible and miscible displacements. In the limit of gravity-segregated flow, we prove conditions for the fluids to be segregated and derive the Dupuit and Dietz (1953) approximations. Finally, we also discuss effects of capillarity and transverse dispersion.

  16. Landscape analysis: Theoretical considerations and practical needs

    USGS Publications Warehouse

    Godfrey, A.E.; Cleaves, E.T.

    1991-01-01

    Numerous systems of land classification have been proposed. Most have led directly to or have been driven by an author's philosophy of earth-forming processes. However, the practical need of classifying land for planning and management purposes requires that a system lead to predictions of the results of management activities. We propose a landscape classification system composed of 11 units, from realm (a continental mass) to feature (a splash impression). The classification concerns physical aspects rather than economic or social factors; and aims to merge land inventory with dynamic processes. Landscape units are organized using a hierarchical system so that information may be assembled and communicated at different levels of scale and abstraction. Our classification uses a geomorphic systems approach that emphasizes the geologic-geomorphic attributes of the units. Realm, major division, province, and section are formulated by subdividing large units into smaller ones. For the larger units we have followed Fenneman's delineations, which are well established in the North American literature. Areas and districts are aggregated into regions and regions into sections. Units smaller than areas have, in practice, been subdivided into zones and smaller units if required. We developed the theoretical framework embodied in this classification from practical applications aimed at land use planning and land management in Maryland (eastern Piedmont Province near Baltimore) and Utah (eastern Uinta Mountains). ?? 1991 Springer-Verlag New York Inc.

  17. LHD Plasma Modeling and Theoretical Analysis

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kozo; Nakajima, Noriyoshi; Murakami, Sadayoshi; Yokoyama, Masayuki

    The transport/heating modeling and equilibrium/stability analysis have been carried out for LHD (Large Helical Device) plasmas. A new simulation code TOTAL (TOroidal Transport Analysis Linkage) is developed, which consists of the 3-dimensional equilibrium code VMEC including bootstrap current and 1-dimensional transport code HTRANS including helical-ripple transport determined as well as anomalous transport. This code clarified the favorable effect of bootstrap current on the neoclassical confinement in LHD. The 3-dimensional stability analysis using CAS3D code has been done and clarified the ballooning mode structure peculiar to the LHD high-beta plasmas. The 5-dimensional simulation code has been developed to analyze the NBI or ECH heating power depositions in LHD plasmas, and the particle orbit effects of high-energy particles are clarified. The plasma rotation analysis is also carried out related to the possibility of the electric-field transition and the plasma confinement improvement in LHD.

  18. Theoretical analysis of HVAC duct hanger systems

    NASA Technical Reports Server (NTRS)

    Miller, R. D.

    1987-01-01

    Several methods are presented which, together, may be used in the analysis of duct hanger systems over a wide range of frequencies. The finite element method (FEM) and component mode synthesis (CMS) method are used for low- to mid-frequency range computations and have been shown to yield reasonably close results. The statistical energy analysis (SEA) method yields predictions which agree with the CMS results for the 800 to 1000 Hz range provided that a sufficient number of modes participate. The CMS approach has been shown to yield valuable insight into the mid-frequency range of the analysis. It has been demonstrated that it is possible to conduct an analysis of a duct/hanger system in a cost-effective way for a wide frequency range, using several methods which overlap for several frequency bands.

  19. Experimental and theoretical evaluation of the laser-assisted machining of silicon nitride

    NASA Astrophysics Data System (ADS)

    Rozzi, Jay Christopher

    This study focused on the experimental and theoretical evaluation of the laser assisted machining (LAM) of silicon nitride ceramics. A laser assisted machining facility was constructed whose main components consist of a COsb2 laser and a CNC lathe. Surface temperature histories were first measured and compared to a transient, three-dimensional numerical simulation for a rotating silicon nitride workpiece heated by a translating laser for ranges of the workpiece rotational and laser-translation speeds, as well as the laser beam diameter and power. Excellent agreement was obtained between the experimental and predicted temperature histories. Laser assisted machining experiments on silicon nitride ceramic workpieces were completed for a wide range of operating conditions. Data for cutting forces and surface temperature histories illustrated that the lower bound for the avoidance of cutting tool and/or workpiece fracture for LAM is defined by the YSiAlON glass transition temperature (920-970sp°C). As temperatures near the cutting tool increase to values above the glass transition temperature range, the glassy phase softened, facilitating plastic deformation and, correspondingly, the production of semi-continuous or continuous chips. The silicon nitride machined workpiece surface roughness (Rsb{a}=0.39\\ mum) for LAM at the nominal operating condition was nearly equivalent to a value associated with the grinding of silicon nitride using a diamond wheel (Rsb{a}=0.2\\ mum). By examining the machined surfaces and chips, it was shown that LAM does not produce detectable sub-surface cracking or significant silicon nitride microstructure alteration, respectively. A transient, three-dimensional numerical heat transfer model of laser assisted machining was constructed, which includes a preheat phase and material removal, with the associated changes in the workplace geometry. Excellent agreement was obtained between the measured and predicted temperature histories. The strong

  20. Transient thermal analysis of semiconductor diode lasers under pulsed operation

    NASA Astrophysics Data System (ADS)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.

    2017-02-01

    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  1. New Experimental Approaches and Theoretical Modeling Methods for Laser Cooling Atoms and Molecules

    DTIC Science & Technology

    2006-07-27

    project involved continued development of theoretical models of diatomic molecular electronic level structure for application to the production of... dimers . For states near the dissociation limit, hyperfine structure dominates rotational structure, so this analysis is needed in order to characterize

  2. Experimental and theoretical study of the performance of optically pumped cesium vapor laser as a function of the pump-to-laser beam overlap

    NASA Astrophysics Data System (ADS)

    Barmashenko, Boris D.; Cohen, Tom; Lebiush, Eyal; Auslender, Ilya; Rosenwaks, Salman

    2016-10-01

    We report on the results of an experimental study of Ti:Sapphire pumped Cs laser and theoretical modeling of these results, where we focused on the influence of the pump-to-laser beam overlap, a crucial parameter for optimizing the output laser power. Non monotonic dependence of the laser power (optimized over the temperature) on the pump beam radius was observed with a maximum achieved at the ratio 0.7 between the pump and laser beam radii. The optimal temperature decreased with increasing pump beam radius. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency 55% was obtained. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the pump power at different pump beam radii and also of the laser power, threshold pump power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency but rather the pump and laser beam spatial shapes as input parameters. The present results combined with results of the application of the model to K DPAL and Ti:Sapphire pumped Cs laser, indicate that the model can describe the operation of different optically pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths.

  3. Gender and Physics: A Theoretical Analysis.

    ERIC Educational Resources Information Center

    Rolin, Kristina

    2001-01-01

    Argues that objections raised by Koertge, Gross and Levitt, and Weinberg against feminist scholarship are unwarranted. The concept of gender, as it has been developed in feminist theory, is key to understanding why the first objection is misguided. Social analysis of scientific knowledge is key to understanding why the second and third objections…

  4. Theoretical Analysis of a Model for a Field Displacement Isolator

    DTIC Science & Technology

    1976-06-01

    model for a field displacement isolator. Sharon, Ram Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/17975 Downloaded from...NPS Archive: Calhoun THEORETICAL ANALYSIS OF A MODEL FOR A FIELD DISPLACEMENT ISOLATOR Ram Sharon NAVAL POSTGRADUATE SCHOOL Monterey, California...THESIS Theoretical Analysis of a Model for a Field Displacement Isolator by Ram Sharon June 1976 Thesis Advisor: J. B. Knorr Approved for public release

  5. Active disturbance rejection control: methodology and theoretical analysis.

    PubMed

    Huang, Yi; Xue, Wenchao

    2014-07-01

    The methodology of ADRC and the progress of its theoretical analysis are reviewed in the paper. Several breakthroughs for control of nonlinear uncertain systems, made possible by ADRC, are discussed. The key in employing ADRC, which is to accurately determine the "total disturbance" that affects the output of the system, is illuminated. The latest results in theoretical analysis of the ADRC-based control systems are introduced.

  6. Theoretical and experimental study of stochastic effects on polarization rotation in a vectorial bistable laser

    SciTech Connect

    Singh, Kamal P.; Ropars, Guy; Brunel, Marc; Le Floch, Albert

    2006-03-15

    We investigate the two-dimensional optical rotor of a weakly modulated vectorial bistable laser submitted to a single or multiple stochastic perturbations. In the Langevin-type equation of the rotor the role of an even or odd input forcing function on the system dynamics is isolated. Through these two inputs of optical and magnetic natures we verify that the stochastic resonance exists only when the periodic modulation acts on the even parity optical input. When two mutually correlated noises are simultaneously submitted to the input functions of opposite parities, we find a critical regime of the noise interplay whereby one stable state becomes noise-free. In this case, the residence time of the light vector in the noise-free state diverges which leads to a collapse of the output signal-to-noise ratio. But, in this critical regime also obtained when one noise drives both the even and odd functions, if the system symmetry is broken through an independent lever control, we can recover the switching cycle due to a new response mechanism, namely, the dual stochastic response, with a specific output signal-to-noise ratio expression. Both the theoretical analysis and the experiment show that the signal-to-noise ratio now displays a robust behavior for a large range of the input noise amplitude, and a plateau with respect to the input signal amplitude. Furthermore, we isolate an original signature of this synchronization mechanism in the residence-time distribution leading to a broadband forcing frequency range. These noise interplay effects in a double well potential are of generic nature and could be found in other nonlinear systems.

  7. A theoretical investigation of human skin thermal response to near-infrared laser irradiation

    NASA Astrophysics Data System (ADS)

    Dai, Tianhong; Pikkula, Brian M.; Wang, Lihong V.; Anvari, Bahman

    2004-07-01

    Near-infrared wavelengths are absorbed less by epidermal melanin mainly located at the basal layer of epidermis (dermo-epidermal junction), and penetrate deeper into human skin dermis and blood than visible wavelengths. Therefore, laser irradiation using near-infrared wavelength may improve the therapeutic outcome of cutaneous hyper-vascular malformations in moderately to heavily pigmented skin patients and those with large-sized blood vessels or blood vessels extending deeply into the skin. A mathematical model composed of a Monte Carlo algorithm to estimate the distribution of absorbed light followed by numerical solution of a bio-heat diffusion equation was utilized to investigate the thermal response of human skin to near-infrared laser irradiation, and compared it with that to visible laser irradiation. Additionally, the effect of skin surface cooling on epidermal protection was theoretically investigated. Simulation results indicated that 940 nm wavelength is superior to 810 and 1064 nm in terms of the ratio of light absorption by targeted blood vessel to the absorption by the basal layer of epidermis, and is more efficient than 595 nm wavelength for the treatment of patients with large-sized blood vessels and moderately to heavily pigmented skin. Dermal blood content has a considerable effect on the laser-induced peak temperature at the basal layer of epidermis, while the effect of blood vessel size is minimum.

  8. Theoretical considerations on the optogalvanic detection of laser induced fluorescence in atmospheric pressure atomizers

    NASA Astrophysics Data System (ADS)

    Omenetto, N.; Smith, B. W.; Winefordner, J. D.

    1989-01-01

    Several theoretical considerations are given on the potential and practical capabilities of a detector of fluorescence radiation whose operating principle is based on a multi-step excitation-ionization scheme involving the fluorescence photons as the first excitation step. This detection technique, which was first proposed by MATVEEVet al. [ Zh. Anal Khim.34, 846 (1979)], combines two independent atomizers, one analytical cell for the excitation of the sample fluorescence and one cell, filled with pure analyte atomic vapor, acting as the ionization detector. One laser beam excites the analyte fluorescence in the analytical cell and one (or two) laser beams are used to ionize the excited atoms in the detector. Several different causes of signal and noise are evaluated, together with a discussion on possible analytical atom reservoirs (flames, furnaces) and laser sources which could be used with this approach. For properly devised conditions, i.e. optical saturation of the fluorescence and unity ionization efficiency, detection limits well below pg/ml in solution and well below femtograms as absolute amounts in furnaces can be predicted. However, scattering problems, which are absent in a conventional laser-enhanced ionization set-up, may be important in this approach.

  9. A simple theoretical model for erbium doped PCF ring lasers design

    NASA Astrophysics Data System (ADS)

    Sánchez-Martín, J. A.; Álvarez, J. M.; Rebolledo, M. A.; Andrés, M. V.; Vallés, J. A.; Martín, J. C.; Berdejo, V.; Díez, A.

    2011-09-01

    In this paper a simple theoretical model is presented where the energy conservation principle is used. The model is based on semi-analytical equations describing the behaviour of an erbium-doped photonic crystal fibre (PCF) inside a ring laser. These semi-analytical equations allow the characterisation of the erbium-doped PCF. Spectral absorption and emission coefficients can be determined through the measurement of the gain in the PCF as a function of pump power attenuation for several fibre lengths by means of a linear fitting. These coefficients are proportional to the erbium concentration and to the corresponding absorption or emission cross section. So if the concentration is known the erbium cross sections can be immediately determined. The model was successfully checked by means of two different home-made erbium doped PCFs. Once the fibres were characterised the values of the spectral absorption and emission coefficients were used to simulate the behaviour of a back propagating ring laser made of each fibre. Passive losses of the components in the cavity were previously calibrated. A good agreement was found between simulated and experimental values of efficiency, pump power threshold and output laser power for a wide set of experimental situations (several values of the input pump power, output coupling factor, laser wavelength and fibre length).

  10. A theoretical model for sampled grating DBR laser integrated with SOA and MZ modulator.

    PubMed

    Dong, Lei; Zhao, Shengzhi; Jiang, Shan; Liu, Shuihua

    2009-09-14

    A theoretical model is presented for simulating the sampled grating distributed Bragg reflector (SGDBR) laser integrated with semiconductor optical amplifier (SOA) and Mach-Zehnder (MZ) modulator. In this model, the active and passive sections are processed separately. The active region of laser and the SOA section are modeled by time domain traveling wave (TDTW) method. While the spectral properties of the SG and the MZ modulator are firstly calculated by Transfer-Matrix Method (TMM) and Beam Propagation Method (BPM), respectively, and then transformed into time domain using digital filter approach. Furthermore, the nonuniform carrier-dependence of gain and refractive index are also incorporated via Effective Bloch Equations (EBE). Compared with the full time-domain method, our model would be more flexible and efficient. The static and modulation performances of device are successfully simulated. This indicates that it can be a powerful platform for investigating the complex Photonic Integrated Circuits (PICs).

  11. Medial Cochlear Efferent Function: A Theoretical Analysis

    NASA Astrophysics Data System (ADS)

    Mountain, David C.

    2011-11-01

    Since the discovery of the cochlear efferent system, many hypotheses have been put forth for its function. These hypotheses for its function range from protecting the cochlea from over stimulation to improving the detection of sounds in noise. It is known that the medial efferent system innervates the outer hair cells and that stimulation of this system reduces basilar membrane and auditory nerve sensitivity which suggests that this system acts to decrease the gain of the cochlear amplifier. Here I present modeling results as well as analysis of published experimental data that suggest that the function of the medial efferent reflex is to decrease the cochlear amplifier gain by just the right amount so that the nonlinearity in the basilar membrane response lines up perfectly with the inner hair cell nonlinear transduction process to produce a hair cell receptor potential that is proportional to the logarithm of the sound pressure level.

  12. Applications analysis of high energy lasers

    NASA Technical Reports Server (NTRS)

    Arno, R. D.; Mackay, J. S.; Nishioka, K.

    1972-01-01

    An analysis and comparison of laser technology with competing technologies were made to determine possible laser applications. The analysis was undertaken as follows: (1) possible applications were listed and categorized; (2) required components were enumerated and the characteristics of these components were extrapolated; (3) complete system characteristics were calculated parametrically for selected applications using the postulated component characteristics; and (4) where possible and appropriate, comparisons were made with competing systems. It was found that any large scale replacement of existing systems and methods by lasers requires many technological advances in laser and associated systems. However, several applications appear feasible, such as low orbit drag make-up, orbit changing, communications, and illumination applications.

  13. Graph theoretical analysis of climate data

    NASA Astrophysics Data System (ADS)

    Zerenner, T.; Hense, A.

    2012-04-01

    Applying methods from graph and network theory to climatological data is a quite new approach and contains numerous difficulties. The atmosphere is a high dimensional and complex dynamical system which per se does not show a network-like structure. It does not consist of well-defined nodes and edges. Thus considering such a system as a network or graph inevitably involves radical simplifications and ambiguities. Nevertheless network analysis has provided useful results for different kinds of complex systems for example in biology or medical science (neural and gene interaction networks). The application of these methods on climate data provides interesting results as well. If the network construction is based on the correlation matrix of the underlying data, the resulting network structures show many well known patterns and characteristics of the atmospheric circulation (Tsonis et al. 2006, Donges et al. 2009). The interpretation of these network structures is yet questionable. Using Pearson Correlation for network construction does not allow to differ between direct and indirect dependencies. An edge does not necessarily represent a causal connection. An interpretation of these structures for instance concerning the stability of the climate system is therefore doubtful. Gene interaction networks for example are often constructed using partial correlations (Wu et al. 2003), which makes it possible to distinguish between direct and indirect dependencies. Although a high value of partial correlation does not guarantee causality it is a step in the direction of measuring causal dependencies. This approach is known as Gaussian Graphical Models, GGMs. For high dimensional datasets such as climate data partial correlations can be obtained by calculating the precision matrix, the inverse covariance matrix. Since the maximum likelihood estimates of covariance matrices of climate datasets are singular the precision matrices can only be estimated for example by using the

  14. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Field, Christopher T.; Sun, Xiaoli

    1996-01-01

    We report here the design and the performance measurements of the breadboard receiver of the Geoscience Laser Altimeter System (GLAS). The measured ranging accuracy was better than 2 cm and 10 cm for 5 ns and 30 ns wide received laser pulses under the expected received signal level, which agreed well with the theoretical analysis. The measured receiver sensitivity or the link margin was also consistent with the theory. The effects of the waveform digitizer sample rate and resolution were also measured.

  15. Unusual Inorganic Biradicals: A Theoretical Analysis

    SciTech Connect

    Miliordos, Evangelos; Ruedenberg, Klaus; Xantheas, Sotiris S.

    2013-05-27

    Triatomic ions in the series FX2+, where X = O, S, Se, Te and Po are the terminal atoms, exhibit unusually high biradical characters (0.76 < β < 0.92), as measured from the analysis of Multi-Reference Configuration Interaction (MRCI) wavefunctions. Candidates in this series have the largest biradical character among the homologous, 18 valence electron CX22-, NX2-, X3 and OX2 (X = O, S, Se, Te and Po) systems. In the same scale the biradical character of ozone (O3) is just 0.19, whereas that of trimethylenemethane [C(CH2)3] is 0.97 (β=1 for an "ideal" biradical). For the 24 electron XO2 series, consisting of molecules with two oxygen atoms and a moiety X that is isoelectronic to oxygen, i.e. X= CH2, NH, O, F+, the singlet (S) state is lower than the triplet (T) one and the S-T splitting as well the barrier between their "open" and "ring" configurations was found to depend linearly with the inverse of the biradical character.

  16. Gender and Physics: a Theoretical Analysis

    NASA Astrophysics Data System (ADS)

    Rolin, Kristina

    This article argues that the objections raised by Koertge (1998), Gross and Levitt (1994), and Weinberg (1996) against feminist scholarship on gender and physics are unwarranted. The objections are that feminist science studies perpetuate gender stereotypes, are irrelevant to the content of physics, or promote epistemic relativism. In the first part of this article I argue that the concept of gender, as it has been developed in feminist theory, is a key to understanding why the first objection is misguided. Instead of reinforcing gender stereotypes, feminist science studies scholars can formulate empirically testable hypotheses regarding local and contested beliefs about gender. In the second part of this article I argue that a social analysis of scientific knowledge is a key to understanding why the second and the third objections are misguided. The concept of gender is relevant for understanding the social practice of physics, and the social practice of physics can be of epistemic importance. Instead of advancing epistemic relativism, feminist science studies scholars can make important contributions to a subfield of philosophy called social epistemology.

  17. Time-dependent theoretical description of molecular autoionization produced by femtosecond xuv laser pulses

    SciTech Connect

    Sanz-Vicario, Jose Luis; Bachau, Henri; Martin, Fernando

    2006-03-15

    We present a nonperturbative time-dependent theoretical method to study H{sub 2} ionization with femtosecond laser pulses when the photon energy is large enough to populate the Q{sub 1} (25-28 eV) and Q{sub 2} (30-37 eV) doubly excited autoionizing states. We have investigated the role of these states in dissociative ionization of H{sub 2} and analyzed, in the time domain, the onset of the resonant peaks appearing in the proton kinetic energy distribution. Their dependence on photon frequency and pulse duration is also analyzed. The results are compared with available experimental data and with previous theoretical results obtained within a stationary perturbative approach. The method allows us as well to obtain dissociation yields corresponding to the decay of doubly excited states into two H atoms. The calculated H(n=2) yields are in good agreement with the experimental ones.

  18. Theoretical and experimental examination of pulsed 16. mu. m CO/sub 2/ transfer chemical lasers

    SciTech Connect

    Jaul, W.K.

    1981-01-01

    An experimental and theoretical investigation of hydrogen-halide CO/sub 2/ 16 ..mu..m laser systems was made. The experiments employed a pulsed hydrogen-halide chemical laser to optically pump a cell containing a mixture of HX, CO/sub 2/, and diluent. Similar experiments using deuterium instead of hydrogen were also performed. Initially a computer model was developed simulating laser oscillation in a DF/CO/sub 2/ and HBr/CO/sub 2/ device. The model used a rate equation approach to compute the time histories of the concentrations of both the lasing and non-lasing species. Rotational non-equilibrium of the rotational population could be the result of lasing or preferential pumping. Kinetic mechanisms important to 16 ..mu..m lasing were identified using the results of the computer simulation. Because of the potential for higher output powers and energies from HF lasers compared to HBr and HF pumped HF/CO/sub 2/ 16 ..mu..m laser would be desirable. To demonstrate the feasibility of such a device experiments were performed using an HF laser to optically pump an HF/CO/sub 2//He gas mixture. Due to HF polymerization at low temperatures it was necessary to maintain the gas mixture above 260/sup 0/K contrast to the HBr device of Osgood that could operate at 193/sup 0/K. No evidence of laser output from the HF/CO/sub 2/ device was ever observed. To attempt to explain these results the computer model was modified to simulate the chemical kinetics in an HF/C/sub 2/ gas mixture. The results of the computer calculations predicted very weak 9.4 ..mu..m lasing (approximately 2% of HBr output at 9.4 ..mu..m) and no 16 ..mu..m laser output. A combination of slower energy tranfer between HF and CO/sub 2/ compared to HBr and a vibrational self-deactivation rate two orders of magnitude greater for HF than for HBr appeared to be responsible for these results.

  19. Analysis of lattice spots dazzling to CCD irradiated by CW laser

    NASA Astrophysics Data System (ADS)

    Zhu, Rongzhen; Wang, Yanbin; Li, Hua; Ren, Guangsen; Hao, Yongwang

    2017-05-01

    The dazzling phenomena such as point saturation, line crosstalk present successively when laser irradiates on the CCD camera. We use CW laser at 532 nm and 1064 nm to irradiate the interline transfer area array CCD, CCD emerges lattice spots under the lens focusing. Based on geometrical optics, we use theoretical analysis and numerical simulation to study the mechanization of lattice spots. Laser jamming effects to the same CCD are different between 532 nm and 1064 nm. This is because the 532 nm laser diffracts with the chip, while 1064 nm laser interferences with its reflected light in the transmission process. Meanwhile, the mechanization of the ring surrounding the main spot is analyzed.

  20. [Theoretical analysis and experimental measurement for secondary electron yield of microchannel plate in extreme ultraviolet region].

    PubMed

    Li, Min; Ni, Qi-liang; Dong, Ning-ning; Chen, Bo

    2010-08-01

    Photon counting detectors based on microchannel plate have widespread applications in astronomy. The present paper deeply studies secondary electron of microchannel plate in extreme ultraviolet. A theoretical model describing extreme ultraviolet-excited secondary electron yield is presented, and the factor affecting on the secondary electron yields of both electrode and lead glass which consist of microchannel plate is analyzed according to theoretical formula derived from the model. The result shows that the higher secondary electron yield is obtained under appropriate condition that the thickness of material is more than 20 nm and the grazing incidence angle is larger than the critical angle. Except for several wavelengths, the secondary electron yields of both electrode and lead glass decrease along with the increase in the wavelength And also the quantum efficiency of microchannel plate is measured using quantum efficiency test set-up with laser-produced plasmas source as an extreme ultraviolet radiation source, and the result of experiment agrees with theoretical analysis.

  1. Analysis of Laser Breakdown Data

    NASA Astrophysics Data System (ADS)

    Becker, Roger

    2009-03-01

    Experiments on laser breakdown for ns pulses of 532 nm or 1064 nm light in water and dozens of simple hydrocarbon liquids are analyzed and compared to widely-used models and other laser breakdown experiments reported in the literature. Particular attention is given to the curve for the probability of breakdown as a function of the laser fluence at the beam focus. Criticism is made of the na"ive forms of both ``avalanche'' breakdown and multi-photon breakdown. It appears that the process is complex and is intimately tied to the chemical group of the material. Difficulties with developing an accurate model of laser breakdown in liquids are outlined.

  2. Error analysis for a laser differential confocal radius measurement system.

    PubMed

    Wang, Xu; Qiu, Lirong; Zhao, Weiqian; Xiao, Yang; Wang, Zhongyu

    2015-02-10

    In order to further improve the measurement accuracy of the laser differential confocal radius measurement system (DCRMS) developed previously, a DCRMS error compensation model is established for the error sources, including laser source offset, test sphere position adjustment offset, test sphere figure, and motion error, based on analyzing the influences of these errors on the measurement accuracy of radius of curvature. Theoretical analyses and experiments indicate that the expanded uncertainty of the DCRMS is reduced to U=0.13  μm+0.9  ppm·R (k=2) through the error compensation model. The error analysis and compensation model established in this study can provide the theoretical foundation for improving the measurement accuracy of the DCRMS.

  3. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    SciTech Connect

    Bakry, A.; Abdulrhmann, S.; Ahmed, M.

    2016-06-15

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  4. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  5. Laser Spectroscopic and Theoretical Studies of the Structures and Encapsulation Motifs of Functional Molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-02-01

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) "hosts" interacting with N2, acetylene, water, and ammonia "guest" molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes

  6. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    NASA Astrophysics Data System (ADS)

    Bakry, A.; Abdulrhmann, S.; Ahmed, M.

    2016-06-01

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  7. A theoretical and experimental study on the pulsed laser dressing of bronze-bonded diamond grinding wheels

    NASA Astrophysics Data System (ADS)

    Deng, H.; Chen, G. Y.; Zhou, C.; Zhou, X. C.; He, J.; Zhang, Y.

    2014-09-01

    A series of theoretical analyses and experimental investigations were performed to examine a pulsed fiber-laser tangential profiling and radial sharpening technique for bronze-bonded diamond grinding wheels. The mechanisms for the pulsed laser tangential profiling and radial sharpening of grinding wheels were theoretically analyzed, and the four key processing parameters that determine the quality, accuracy, and efficiency of pulsed laser dressing, namely, the laser power density, laser spot overlap ratio, laser scanning track line overlap ratio, and number of laser scanning cycles, were proposed. Further, by utilizing cylindrical bronze wheels (without diamond grains) and bronze-bonded diamond grinding wheels as the experimental subjects, the effects of these four processing parameters on the removal efficiency and the surface smoothness of the bond material after pulsed laser ablation, as well as the effects on the contour accuracy of the grinding wheels, the protrusion height of the diamond grains, the sharpness of the grain cutting edges, and the graphitization degree of the diamond grains after pulsed laser dressing, were explored. The optimal values of the four key processing parameters were identified.

  8. ORION Low Cost Laser Analysis

    NASA Technical Reports Server (NTRS)

    Phipps, Claude R.

    1996-01-01

    We show that laser-target interaction physics demands the shortest laser pulse of which hardware is capable (but not less than 100 ps) in the ORION ground-based laser concept. We compare two leading ways to achieve such pulses - SRS/SBS cascade compression and grating compression - with the standard MOPA approach, and conclude that the first of these is most robust. However, the state of the art in laser devices will require a year or two to implement these ideas. We present a pulse format and beam footprint protocol which will solve the conflict between relativistic lookahead and beam tilt and should permit all-laser active acquisition and tracking in ORION.

  9. Automated correlation dimension analysis of optically injected solid state lasers.

    PubMed

    Toomey, J P; Kane, D M; Valling, S; Lindberg, A M

    2009-04-27

    Nonlinear lasers are excellent systems from which to obtain high signal-to-noise experimental data of nonlinear dynamical variables to be used to develop and demonstrate robust nonlinear dynamics analysis techniques. Here we investigate the dynamical complexity of such a system: an optically injected Nd:YVO(4) solid state laser. We show that a map of the correlation dimension as a function of the injection strength and frequency detuning, extracted from the laser output power time-series data, is an excellent mirror of the dynamics map generated from a theoretical model of the system. An automated computational protocol has been designed and implemented to achieve this. The correlation dimension map is also contrasted with prior research that mapped the peak intensity of the output power as an experimentally accessible measurand reflecting the dynamical state of the system [Valling et al., Phys. Rev. A 72, 033810 (2005)].

  10. Laser-speckle angular-displacement sensor: theoretical and experimental study.

    PubMed

    Rose, B; Imam, H; Hanson, S G; Yura, H T; Hansen, R S

    1998-04-10

    A novel, to our knowledge, method for the measurement of angular displacement for arbitrarily shaped objects is presented in which the angular displacement is perpendicular to the optical axis. The method is based on Fourier-transforming the scattered field from a single laser beam that illuminates the target. The angular distribution of the light field at the target is linearly mapped on a linear image sensor placed in the Fourier plane. Measuring this displacement facilitates the determination of the angular displacement of the target. It is demonstrated both theoretically and experimentally that the angular-displacement sensor is insensitive to object shape and target distance if the linear image sensor is placed in the Fourier plane. A straightforward procedure for positioning the image sensor in the Fourier plane is presented. Any transverse or longitudinal movement of the target will give rise to partial speckle decorrelation, but it will not affect the angular measurement. Furthermore, any change in the illuminating wavelength will not affect the angular measurements. Theoretically and experimentally it is shown that the method has a resolution of 0.3 mdeg ( approximately 5 murad) for small angular displacements, and methods for further improvement in resolution is discussed. No special surface treatment is required for surfaces giving rise to fully developed speckle. The effect of partially developed speckle is considered both theoretically and experimentally.

  11. Analysis of the Laser Lightcraft Vehicle

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.

    1999-01-01

    Advanced propulsion research and technology concepts require launch and space flight technologies, which can drastically reduce mission costs. Laser propulsion is a concept in which energy of a thrust producing reaction mass is supplied via beamed energy from an off-board power source. A variety of laser beamed energy concepts were theoretically and experimentally investigated since the early 1970's. During the 1980's the Strategic Defense Initiative (SDIO) research lead to the invention of the Laser Lightcraft concept. Based upon the Laser Lightcraft concept, the propulsion research center, TD 40, within the Space Transportation Directorate of NASA MSFC has set out to develop technologies required for launching small payloads into Earth Orbit for a cost of $1.0M or $1000/lb to $100/lb. The near term objectives are to demonstrate technologies and capabilities essential for a future earth to orbit launch capability. Laser propulsion offers the advantages of both high thrust and good specific impulse, I(sp) in excess of 1000 s(exp -1). Other advantages are the simplicity and reliability of the engine because of few moving parts; simplistic propellant feed system, and low specific fuel consumption as a result of high specific impulse. Major limitations of this approach are the laser power available, absorption and distortion of the pulsed laser beam through the atmosphere, and coupling laser power into thrust throughout the flight envelope. This summer's effort focused on performance of the laser engine, which included 1) optical ray tracing and 2), a time dependent calculation of the optically induced blast wave.

  12. Laser Spectroscopic and Theoretical Studies of Encapsulation Complexes of Calix[4]arene

    SciTech Connect

    Kaneko, Shohei; Inokuchi, Yoshiya; Ebata, Takayuki; Apra, Edoardo; Xantheas, Sotiris S.

    2011-10-13

    The complexes between the host calix[4]arene (C4A) and various guest molecules such as NH3, N2, CH4, and C2H2 have been investigated via experimental and theoretical methods. The S1-S0 electronic spectra of these guest-host complexes are observed by mass-selected resonant two-photon ionization (R2PI) and laser induced fluorescence (LIF) spectroscopy. The infrared (IR) spectra of the complexes formed in molecular beams are obtained by IR-UV double resonance (IR-UV DR) and IR photodissociation (IRPD) spectroscopy. The supramolecular structures of the complexes are investigated by electronic structure methods (density functional and second order perturbation theory). The current results for the various molecular guests are put in perspective with the previously reported ones for the C4A-Rare Gas (Rg) (Phys. Chem. Chem. Phys. 2007, 126, 141101) and C4A-H2O complexes (J. Phys. Chem. A, 2010, 114, 2967). The electronic spectra of the complexes of C4A with N2, CH4 and C2H2 exhibit red-shifts of similar magnitudes with the ones observed for the C4A-Rg complexes, whereas the complexes of C4A with H2O and NH3 show much larger red-shifts. Most of the IR-UV DR spectra of the complexes, except for C4A-C2H2, show a broad hydrogen bonded OH stretching band with a peak at ~3160 cm-1. The analysis of the experimental results, in agreement with the ones resulted from the electronic structure calculations, suggest that C4A preferentially forms endo-complexes with all the guest species reported in this study. We discuss the similarities and differences of the structures, binding energies and the nature of the interaction between the C4A host and the various guest species. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy

  13. Analysis of phased-array diode lasers

    SciTech Connect

    Hardy, A.; Streifer, W.

    1985-07-01

    An improved, more accurate analysis of phased-array diode lasers is presented, which yields results that differ both qualitatively and quantitatively from those previously employed. A numerical example indicating decreased splitting in array mode gains is included.

  14. Optical pumping spectroscopy of Rb vapour with co-propagating laser beams: line identification by a simple theoretical model

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Rabasović, Mihailo D.; Jelenković, Branislav M.

    2010-07-01

    In this paper the saturation spectra of rubidium vapour at room temperature, obtained with overlapped co-propagating laser beams, were examined. Unlike the standard saturation spectroscopy, here the transmission of the pump laser beam was detected. The pump laser was locked to an atomic transition of the D2 line, while the probe laser frequency was scanned in a wide frequency range. The pump and probe beams had approximately the same intensities; thus the probe laser can saturate transitions and contribute to optical pumping. This, together with Doppler broadening, leads to rich pump transmission spectra, with many lines appearing due to the interaction of lasers with atoms in different velocity groups. The advantages of this method are well-resolved structures and appearance of spectral lines on a flat, Doppler-free background. Agreement between experimental and theoretical results shows the usefulness of this simple model, based on the rate equations, for identification of lines and determination of relative contribution to the observed line intensity from atoms with different velocities. Theoretical spectra are a useful tool for the calibration of experimental spectra obtained by a nonlinear dependence of the laser frequency on the voltage applied to the piezo used for the laser diode frequency scanning.

  15. Path Analysis Tests of Theoretical Models of Children's Memory Performance

    ERIC Educational Resources Information Center

    DeMarie, Darlene; Miller, Patricia H.; Ferron, John; Cunningham, Walter R.

    2004-01-01

    Path analysis was used to test theoretical models of relations among variables known to predict differences in children's memory--strategies, capacity, and metamemory. Children in kindergarten to fourth grade (chronological ages 5 to 11) performed different memory tasks. Several strategies (i.e., sorting, clustering, rehearsal, and self-testing)…

  16. Theoretical Notes on the Sociological Analysis of School Reform Networks

    ERIC Educational Resources Information Center

    Ladwig, James G.

    2014-01-01

    Nearly two decades ago, Ladwig outlined the theoretical and methodological implications of Bourdieu's concept of the social field for sociological analyses of educational policy and school reform. The current analysis extends this work to consider the sociological import of one of the most ubiquitous forms of educational reform found around…

  17. Theoretical Notes on the Sociological Analysis of School Reform Networks

    ERIC Educational Resources Information Center

    Ladwig, James G.

    2014-01-01

    Nearly two decades ago, Ladwig outlined the theoretical and methodological implications of Bourdieu's concept of the social field for sociological analyses of educational policy and school reform. The current analysis extends this work to consider the sociological import of one of the most ubiquitous forms of educational reform found around…

  18. Mode Deactivation Therapy (MDT) Family Therapy: A Theoretical Case Analysis

    ERIC Educational Resources Information Center

    Apsche, J. A.; Ward Bailey, S. R.

    2004-01-01

    This case study presents a theoretical analysis of implementing mode deactivation therapy (MDT) (Apsche & Ward Bailey, 2003) family therapy with a 13 year old Caucasian male. MDT is a form of cognitive behavioral therapy (CBT) that combines the balance of dialectical behavior therapy (DBT) (Linehan, 1993), the importance of perception from…

  19. Theoretical analysis for scaling law of thermal blooming based on optical phase deference

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie

    2016-10-01

    In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling

  20. Error analysis and correction for laser speckle photography

    SciTech Connect

    Song, Y.Z.; Kulenovic, R.; Groll, M.

    1995-12-31

    This paper deals with error analysis of experimental data of a laser speckle photography (LSP) application which measures a temperature field of natural convection around a heated cylindrical tube. A method for error corrections is proposed and presented in detail. Experimental and theoretical investigations have shown errors in the measurements are induced due to four causes. These error sources are discussed and suggestions to avoid the errors are given. Due to the error analysis and the introduced methods for their correction the temperature distribution, respectively the temperature gradient in a thermal boundary layer can be obtained more accurately.

  1. Theoretical Study of the Effect of Enamel Parameters on Laser-Induced Surface Acoustic Waves in Human Incisor

    NASA Astrophysics Data System (ADS)

    Yuan, Ling; Sun, Kaihua; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian

    2015-06-01

    The laser ultrasound technique has great potential for clinical diagnosis of teeth because of its many advantages. To study laser surface acoustic wave (LSAW) propagation in human teeth, two theoretical methods, the finite element method (FEM) and Laguerre polynomial extension method (LPEM), are presented. The full field temperature values and SAW displacements in an incisor can be obtained by the FEM. The SAW phase velocity in a healthy incisor and dental caries is obtained by the LPEM. The methods and results of this work can provide a theoretical basis for nondestructive evaluation of human teeth with LSAWs.

  2. Simulation based analysis of laser beam brazing

    NASA Astrophysics Data System (ADS)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  3. Active polarimeter optical system laser hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-07-01

    A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

  4. Game theoretic analysis of physical protection system design

    SciTech Connect

    Canion, B.; Schneider, E.; Bickel, E.; Hadlock, C.; Morton, D.

    2013-07-01

    The physical protection system (PPS) of a fictional small modular reactor (SMR) facility have been modeled as a platform for a game theoretic approach to security decision analysis. To demonstrate the game theoretic approach, a rational adversary with complete knowledge of the facility has been modeled attempting a sabotage attack. The adversary adjusts his decisions in response to investments made by the defender to enhance the security measures. This can lead to a conservative physical protection system design. Since defender upgrades were limited by a budget, cost benefit analysis may be conducted upon security upgrades. One approach to cost benefit analysis is the efficient frontier, which depicts the reduction in expected consequence per incremental increase in the security budget.

  5. Analysis of the Laser Propelled Lightcraft Vehicle

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas

    2000-01-01

    Advanced propulsion research and technology require launch and space flight technologies, which can drastically reduce mission costs. Laser propulsion is a concept in which energy of a thrust producing reaction mass is supplied via beamed energy from an off-board power source. A variety of laser/beamed energy concepts were theoretically and experimentally investigated since the early 1970's. During the 1980's the Strategic Defense Initiative (SDI) research lead to the invention of the Laser Lightcraft concept. Based upon the Laser Lightcraft concept, the U.S. Air Force and NASA have jointly set out to develop technologies required for launching small payloads into Low Earth Orbit (LEO) for a cost of $1.0M or $1000/lb to $ 100/lb. The near term objectives are to demonstrate technologies and capabilities essential for a future earth to orbit launch capability. Laser propulsion offers the advantages of both high thrust and good specific impulse, I(sub sp), in excess of 1000 s. Other advantages are the simplicity and reliability of the engine because of few moving parts, simpler propellant feed system, and high specific impulse. Major limitations of this approach are the laser power available, absorption and distortion of the pulsed laser beam through the atmosphere, and coupling laser power into thrust throughout the flight envelope, The objective of this paper is to assist efforts towards optimizing the performance of the laser engine. In order to accomplish this goal (1) defocusing of the primary optic was investigated using optical ray tracing and (2), time dependent calculations were conducted of the optically induced blast wave to predict pressure and temperature in the vicinity of the cowl. Defocusing of the primary parabolic reflector causes blurring and reduction in the intensity of the laser ignition site on the cowl. However, because of the caustic effect of ray-tracing optics the laser radiation still forms a well-defined ignition line on the cowl. The

  6. Dynamical evolution of the surface microrelief under multiple-pulse-laser irradiation: An analysis based on surface-scattered waves

    NASA Astrophysics Data System (ADS)

    Barborica, A.; Mihailescu, I. N.; Teodorescu, V. S.

    1994-03-01

    We introduce a theoretical analysis of the temporal and spatial evolution of the surface topography of solids following interference between incident and scattered pulsed laser beams. The essential role played by the nonlinear delayed feedback in the laser-radiation-surface system is considered. We show that it finally determines the surface topography evolution from pulse to pulse. In order to complete the analysis, numerical calculations have been conducted under the hypothesis of strong attenuation of laser radiation into the sample and of a limited heat diffusion during the action of a laser pulse. We predict an evolution from very simple to complex (chaotic) structures under multiple-pulse-laser irradiation of solid surfaces. This evolution is determined by some key irradiation parameters; initial surface microrelief, incident laser intensity, and the number of applied laser pulses. Experiments were performed in order to check the main predictions of the theoretical analysis. The system of transversal excited atmospheric pressure-CO2 laser radiation (λ=10.6 μm)-interacting with fused silica was chosen as appropriate for performing test experiments. Optical microscopy studies of laser-treated zones evidenced special modifications of the surface topography in good accordance with the conclusions following from the theoretical analysis. The theoretical analysis is also in good agreement with some available data from the literature, at the same time providing a coherent interpretation of previously unexplained behaviors.

  7. Laser power conversion system analysis, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.

  8. Theoretical modeling and experiments on a DBR waveguide laser fabricated by the femtosecond laser direct-write technique.

    PubMed

    Duan, Yuwen; McKay, Aaron; Jovanovic, Nemanja; Ams, Martin; Marshall, Graham D; Steel, M J; Withford, Michael J

    2013-07-29

    We present a model for a Yb-doped distributed Bragg reflector (DBR) waveguide laser fabricated in phosphate glass using the femtosecond laser direct-write technique. The model gives emphasis to transverse integrals to investigate the energy distribution in a homogenously doped glass, which is an important feature of femtosecond laser inscribed waveguide lasers (WGLs). The model was validated with experiments comparing a DBR WGL and a fiber laser, and then used to study the influence of distributed rare earth dopants on the performance of such lasers. Approximately 15% of the pump power was absorbed by the doped "cladding" in the femtosecond laser inscribed Yb doped WGL case with the length of 9.8 mm. Finally, we used the model to determine the parameters that optimize the laser output such as the waveguide length, output coupler reflectivity and refractive index contrast.

  9. Theoretical Analysis of Heuristic Search Methods for Online POMDPs.

    PubMed

    Ross, Stéphane; Pineau, Joelle; Chaib-Draa, Brahim

    2008-01-01

    Planning in partially observable environments remains a challenging problem, despite significant recent advances in offline approximation techniques. A few online methods have also been proposed recently, and proven to be remarkably scalable, but without the theoretical guarantees of their offline counterparts. Thus it seems natural to try to unify offline and online techniques, preserving the theoretical properties of the former, and exploiting the scalability of the latter. In this paper, we provide theoretical guarantees on an anytime algorithm for POMDPs which aims to reduce the error made by approximate offline value iteration algorithms through the use of an efficient online searching procedure. The algorithm uses search heuristics based on an error analysis of lookahead search, to guide the online search towards reachable beliefs with the most potential to reduce error. We provide a general theorem showing that these search heuristics are admissible, and lead to complete and ε-optimal algorithms. This is, to the best of our knowledge, the strongest theoretical result available for online POMDP solution methods. We also provide empirical evidence showing that our approach is also practical, and can find (provably) near-optimal solutions in reasonable time.

  10. Theoretical and experimental study of generation mechanisms for laser ultrasound in woven graphite/epoxy composites with translaminar stitching

    NASA Astrophysics Data System (ADS)

    Friedman, Adam Daniel

    The aerospace industry is beginning to use advanced composite materials for primary load bearing structures and their failure mechanisms must be better understood to predict their behavior in service. The Combined Loads Tests (COLTS) facility is being constructed at the NASA Langley Research Center to characterize these failure mechanisms. Laser based ultrasonic NDE can monitor the samples during dynamic loading without interfering with the structural tests. However, the constraints of implementing laser ultrasound in a structures laboratory reduces the efficiency of the technique. The system has to be ``eye-safe'' because many people will be present during the structural tests. Consequently, laser light has to be delivered through fiber optics and a significant amount of light is lost. Also, the nature of the composite materials makes laser ultrasonic inspection difficult. The composites of interest are formed from woven layers that are stitched through the laminate thickness and bound in a resin matrix. These materials attenuate ultrasound strongly and exhibit a high degree of scattering. Generation mechanisms in laser based ultrasound must be better understood to improve generation efficiency and consequently improve the signal-to-noise ratio. Although some experimental and theoretical studies have been conducted to characterize generation mechanisms, more extensive work is needed for composite materials. Specifically, we are concerned with generation mechanisms in thick, stitched composite structures. We describe a theoretical and experimental investigation of laser generated ultrasound in complex composite materials. We first develop a mathematical model describing the thermoelastic generation of ultrasound in a general anisotropic material. We then present a wide range of experimental data investigating the effects of laser and material parameters on the generated ultrasound. We specifically consider the relationship between laser pulse width, laser

  11. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, Bruce A.

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  12. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  13. Experimental and theoretical studies of dual energy subtraction angiography (DESA) performed using laser-based x-ray source

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Kieffer, Jean-Claude; Ichalalene, Zahia; Jiang, Zhiming; Chamberlain, Charles C.; Scalzetti, Ernest M.

    2001-11-01

    Two types of x-ray sources for dual energy subtraction angiography (DESA), laser-based and conventional, were investigated. A Tabletop Terawatt laser was used to create x-ray source with Ba, La, Nd, Gd, and Ce targets. A theoretical model of image quality was developed. A Figure of Merit, FOM equals SNR./(integral dose)1/2, was obtained. Images of an angiographic contrast detail phantom were obtained using laser-driven x-ray source in DESA regime and a standard angiography unit in DSA regime. The log-signals due to Iodine contrast agent in the images were measured and compared with the theoretical model predictions. The integral dose was estimated. We found that the La and Ba lines extracted by a monochromator are optimal for imaging Iodine contrast with laser-based DESA. In this case, SNR exhibits three- to five-fold improvement, as compared to SNR expected for a tube-based DESA system. Consequently, dose utilization, as defined by FOM, improves by factor of two to three, depending on patient thickness and scatter conditions. When only filters are used, SNR and FOM due to laser-based system are comparable to those due to tube-based DESA. In this case, preferable target/filter combination for the laser system is Ba/I and Ce/Nd for the low- and high-beam, respectively.

  14. Intraoral laser welding: ultrastructural and mechanical analysis to compare laboratory laser and dental laser.

    PubMed

    Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Rocca, Jean-Paul; Merigo, Elisabetta; Vescovi, Paolo; Meleti, Marco; Manfredi, Maddalena; Nammour, Samir

    2011-07-01

    The Nd:YAG laser has been used since 1970 in dental laboratories to weld metals on dental prostheses. Recently in several clinical cases, we have suggested that the Nd:YAG laser device commonly utilized in the dental office could be used to repair broken fixed, removable and orthodontic prostheses and to weld metals directly in the mouth. The aim of this work was to evaluate, using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and dynamic mechanical analysis (DMA), the quality of the weld and its mechanical strength, comparing a device normally used in dental laboratory and a device normally used in the dental office for oral surgery, the same as that described for intraoral welding. Metal plates of a Co-Cr-Mo dental alloy and steel orthodontic wires were subjected to four welding procedures: welding without filler metal using the laboratory laser, welding with filler metal using the laboratory laser, welding without filler metal using the office laser, and welding with filler metal using the office laser. The welded materials were then analysed by SEM, EDS and DMA. SEM analysis did not show significant differences between the samples although the plates welded using the office laser without filler metal showed a greater number of fissures than the other samples. EDS microanalysis of the welding zone showed a homogeneous composition of the metals. Mechanical tests showed similar elastic behaviours of the samples, with minimal differences between the samples welded with the two devices. No wire broke even under the maximum force applied by the analyser. This study seems to demonstrate that the welds produced using the office Nd:YAG laser device and the laboratory Nd:YAG laser device, as analysed by SEM, EDS and DMA, showed minimal and nonsignificant differences, although these findings need to be confirmed using a greater number of samples.

  15. Theoretical structure of adolescent alienation: a multigroup confirmatory factor analysis.

    PubMed

    Lacourse, Eric; Villeneuve, Martine; Claes, Michel

    2003-01-01

    This study examined the construct validity of adolescent alienation using second-order confirmatory factor analysis of the five dimensions conceptualized by Seeman (1959). Analysis was based on data from 275 high school students aged 14 to 18. The hypothesized multidimensionality of the construct was confirmed for both boys and girls using a second-order factor labeled alienation. Central dimensions of alienation as a latent construct were self-estrangement and powerlessness. Social isolation, meaninglessness, and especially normlessness were poorly explained by the second-order factor, suggesting that these dimensions entail enough specificity to be considered separately. A different theoretical model relating these dimensions is suggested and discussed.

  16. Intraocular lens power calculation after intrastromal femtosecond laser treatment for presbyopia: Theoretic approach.

    PubMed

    Rabsilber, Tanja M; Haigis, Wolfgang; Auffarth, Gerd U; Mannsfeld, Annett; Ehmer, Angela; Holzer, Mike P

    2011-03-01

    To evaluate the accuracy of intraocular lens (IOL) power calculation after an intrastromal femtosecond laser procedure to treat presbyopia using a theoretic approach. International Vision Correction Research Centre, Department of Ophthalmology, University of Heidelberg, Heidelberg, Germany. Nonrandomized clinical trial. Preoperatively and 12 months after intrastromal femtosecond laser treatment (IntraCor) of presbyopia, biometry was performed by partial coherence interferometry (PCI) (IOLMaster). The postoperative keratometry (K) values and IOL power calculation formulas (Holladay I, Haigis, SRK/T, Hoffer Q) were compared with results derived from the clinical history method, taking the manifest refraction change into account. The study enrolled 25 patients (median age 54 years). Three eyes were excluded for age-related lens changes. The median spherical equivalent change in the other 22 eyes was -0.38 diopter (D). The median difference in K values between the clinical history method and PCI was -0.21 D, resulting in a median IOL power difference between -0.23 D (SRK/T) and -0.29 D (Haigis) (range -1.58 to +1.00 D). The IOL power was underestimated in 59.1% of cases with the Hoffer Q and 63.6% of cases with the Holladay I, Haigis, and SRK/T. There was a difference of ±0.75 D in 72.7% of eyes using the Holladay I, Haigis, and Hoffer Q and in 86.4% of eyes using the SRK/T. Neither K values nor IOL power differences were statistically significant (P > .17). Intraocular lens power calculation using modern standard formulas incorporated in a PCI biometry device after intrastromal femtosecond presbyopia treatment was reliable, with minimum underestimation on average. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Python for information theoretic analysis of neural data.

    PubMed

    Ince, Robin A A; Petersen, Rasmus S; Swan, Daniel C; Panzeri, Stefano

    2009-01-01

    Information theory, the mathematical theory of communication in the presence of noise, is playing an increasingly important role in modern quantitative neuroscience. It makes it possible to treat neural systems as stochastic communication channels and gain valuable, quantitative insights into their sensory coding function. These techniques provide results on how neurons encode stimuli in a way which is independent of any specific assumptions on which part of the neuronal response is signal and which is noise, and they can be usefully applied even to highly non-linear systems where traditional techniques fail. In this article, we describe our work and experiences using Python for information theoretic analysis. We outline some of the algorithmic, statistical and numerical challenges in the computation of information theoretic quantities from neural data. In particular, we consider the problems arising from limited sampling bias and from calculation of maximum entropy distributions in the presence of constraints representing the effects of different orders of interaction in the system. We explain how and why using Python has allowed us to significantly improve the speed and domain of applicability of the information theoretic algorithms, allowing analysis of data sets characterized by larger numbers of variables. We also discuss how our use of Python is facilitating integration with collaborative databases and centralised computational resources.

  18. A Theoretical Analysis of Why Hybrid Ensembles Work

    PubMed Central

    2017-01-01

    Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles. PMID:28255296

  19. Information-Theoretical Complexity Analysis of Selected Elementary Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Molina-Espíritu, M.; Esquivel, R. O.; Dehesa, J. S.

    We investigate the complexity of selected elementary chemical reactions (namely, the hydrogenic-abstraction reaction and the identity SN2 exchange reaction) by means of the following single and composite information-theoretic measures: disequilibrium (D), exponential entropy(L), Fisher information (I), power entropy (J), I-D, D-L and I-J planes and Fisher-Shannon (FS) and Lopez-Mancini-Calbet (LMC) shape complexities. These quantities, which are functionals of the one-particle density, are computed in both position (r) and momentum (p) spaces. The analysis revealed that the chemically significant regions of these reactions can be identified through most of the single information-theoretic measures and the two-component planes, not only the ones which are commonly revealed by the energy, such as the reactant/product (R/P) and the transition state (TS), but also those that are not present in the energy profile such as the bond cleavage energy region (BCER), the bond breaking/forming regions (B-B/F) and the charge transfer process (CT). The analysis of the complexities shows that the energy profile of the abstraction reaction bears the same information-theoretical features of the LMC and FS measures, however for the identity SN2 exchange reaction does not hold a simple behavior with respect to the LMC and FS measures. Most of the chemical features of interest (BCER, B-B/F and CT) are only revealed when particular information-theoretic aspects of localizability (L or J), uniformity (D) and disorder (I) are considered.

  20. Information theoretic analysis of canny edge detection in visual communication

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  1. Theoretical and experimental analysis of modern zoom lens design

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang; Liu, Weilin

    2017-02-01

    The need for stability of aberration and correction of images for a zoom lens system should be considered during zooming process. Our work presents detailed theoretical and experimental analysis of multiple moving zoom optical systems. In our work we propose methods to determine the basic parameters of such optical system, the focal lengths of each element of the objective lens and their mutual axial separation. Introduce two different image stability equation and cam curve design method to calculate basic parameters. This type of optical system is widely spread in practice mainly in the field of photographic lenses and in surveying instruments (theodolites, leveling instruments, etc.). Furthermore, the detailed analysis of aberration properties of such optical systems is performed and methods for measuring the focal lengths of individual elements and their mutual distance without the need for disassembling the investigated optical system are presented. Finally according to theoretical and experimental analysis of zoom lens system, a zoom optical system with effective focal length 27-220mm has been design, the first element of such system is fixed, and the other groups can move during zoom process to get a continuity consecutiveness effective focal length (EFL). Using the powerful optimization capabilities of optical design software CODE V; we get the imaging quality analysis such as the modulation transfer function (MTF) etc.

  2. Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Shirakawa, A.; Ueda, K.-I.; Kaminskii, A. A.

    2007-11-01

    A theoretical model based on a quasi-four-level system is modified to investigate the effect of Yb concentration on performance of continuous-wave Yb:YAG microchip lasers by taking into account temperature-dependent thermal population distribution, temperature-dependent emission cross-section and concentration-dependent fluorescence lifetime, thermal loading, thermal conductivity, and thermal expansion coefficient. The local temperature rise in Yb:YAG crystal caused by the absorbed pump power plays an important role in the laser performance of Yb:YAG microchip lasers working at ambient temperature without actively cooling the sample. The output wavelengths dependent on output coupling, Yb concentration, and pump power level were analyzed quantitatively. The numerical simulation of Yb:YAG microchip lasers is in good agreement with experimental data. The optimized laser operation for Yb:YAG microchip lasers is proposed by varying the thickness and output coupling for different Yb concentrations. The effect of thermal lens, thermal deformation effect, and saturated inversion population distribution inside the Yb:YAG crystal on performance of heavy-doped Yb:YAG microchip lasers are also addressed.

  3. Experimental and theoretical study of the laser micro-machining of glass using high-repetition-rate ultrafast laser

    NASA Astrophysics Data System (ADS)

    Yashkir, Yuri; Liu, Qiang

    2006-04-01

    We present a systematic study of the ultrafast laser micro-machining of glass using a Ti:Spp laser with moderate pulse energy (<5 μJ) at a high repetition rate (50 kHz). Optimal conditions were identified for high resolution surface laser etching, and via drilling. Several practical applications were developed: glass templates for micro fluid diffraction devices, phase gratings for excimer laser projection techniques, micro fluid vertical channel-connectors, etc. It is demonstrated that the interaction of ultrafast laser pulses with glass combines several different processes (direct ablation, explosive material ejection, and thermal material modification). A dynamic numerical model was developed for this process. It was successfully used for modelling of laser micro-machining with arbitrary 3D translations of the target.

  4. Consistency analysis on laser signal in laser guided weapon simulation

    NASA Astrophysics Data System (ADS)

    Yin, Ruiguang; Zhang, Wenpan; Guo, Hao; Gan, Lin

    2015-10-01

    The hardware-in-the-loop simulation is widely used in laser semi-active guidance weapon experiments, the authenticity of the laser guidance signal is the key problem of reliability. In order to evaluate the consistency of the laser guidance signal, this paper analyzes the angle of sight, laser energy density, laser spot size, atmospheric back scattering, sun radiation and SNR by comparing the different working state between actual condition and hardware-in-the-loop simulation. Based on measured data, mathematical simulation and optical simulation result, laser guidance signal effects on laser seeker are determined. By using Monte Carlo method, the laser guided weapon trajectory and impact point distribution are obtained, the influence of the systematic error are analyzed. In conclusion it is pointed out that the difference between simulation system and actual system has little influence in normal guidance, has great effect on laser jamming. The research is helpful to design and evaluation of laser guided weapon simulation.

  5. Theoretical analysis of wave impact forces on platform deck structures

    SciTech Connect

    Kaplan, P.; Murray, J.J.; Yu, W.C.

    1995-12-31

    A description is given of the theoretical analysis procedures used to predict the wave impact forces acting on offshore platform deck structures in large incident waves. Both vertical and horizontal plane forces are considered, in terms of the different type elements that make up such structures and the type of hydrodynamic force mathematical models used to represent the basic forces. Effects of wave surface nonlinearity (including kinematics), deck material porosity, and velocity blockage and shielding are considered in the analysis, which also includes a physical explanation of various observed phenomena. Results of comparison and correlation with experimental model test data are presented, including description of procedures used in data analysis to eliminate extraneous dynamic effects that often contaminate such data. The influence of wave heading angle relative to different structural elements (and overall structures) is also described, including both analytical representations and physical interpretations.

  6. Theoretical Analysis of the F1-ATPase Experimental Data

    PubMed Central

    Perez-Carrasco, Ruben; Sancho, J.M.

    2010-01-01

    Abstract F1-ATPase is a rotatory molecular motor fueled by ATP nucleotides. Different loads can be attached to the motor axis to show that it rotates in main discrete steps of 120° with substeps of ∼80° and 40°. Experimental data show the dependence on the mean rotational velocity ω with respect to the external control parameters: the nucleotide concentration [ATP] and the friction of the load γL. In this work we present a theoretical analysis of the experimental data whose main results are: 1), A derivation of a simple analytical formula for ω([ATP], γL) that compares favorably with experiments; 2), The introduction of a two-state flashing ratchet model that exhibits experimental phenomenology of a greater specificity than has been, to our knowledge, previously available; 3), The derivation of an argument to obtain the values of the substep sizes; 4), An analysis of the energy constraints of the model; and 5), The theoretical analysis of the coupling ratio between the ATP consumed and the success of a forward step. We also discuss the compatibility of our approach with recent experimental observations. PMID:20513403

  7. Theoretical analysis of quantum ghost imaging through turbulence

    SciTech Connect

    Chan, Kam Wai Clifford; Simon, D. S.; Sergienko, A. V.; Hardy, Nicholas D.; Shapiro, Jeffrey H.; Dixon, P. Ben; Howland, Gregory A.; Howell, John C.; Eberly, Joseph H.; O'Sullivan, Malcolm N.; Rodenburg, Brandon; Boyd, Robert W.

    2011-10-15

    Atmospheric turbulence generally affects the resolution and visibility of an image in long-distance imaging. In a recent quantum ghost imaging experiment [P. B. Dixon et al., Phys. Rev. A 83, 051803 (2011)], it was found that the effect of the turbulence can nevertheless be mitigated under certain conditions. This paper gives a detailed theoretical analysis to the setup and results reported in the experiment. Entangled photons with a finite correlation area and a turbulence model beyond the phase screen approximation are considered.

  8. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow

    NASA Astrophysics Data System (ADS)

    Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang

    2017-07-01

    Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.

  9. Geometric analysis of satellite laser ranging data

    NASA Technical Reports Server (NTRS)

    Conklin, Brion; Bucey, Steven; Husson, Van S.; Decker, Winfield M.; Degnan, John J.

    1993-01-01

    The analysis of simultaneous laser data is investigated using the method of trilateration. Analysis of data from 1987 to 1992 is presented with selected baseline rates and station positions. The use of simultaneous Etalon data is simulated to demonstrate the additional global coverage these satellites provide. Trilateration has a great potential for regional deformation studies with monthly LAGEOS American solutions between 3-12 millimeters.

  10. Theoretical model for frequency locking a diode laser with a Faraday cell

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Shay, T. M.

    1992-01-01

    A new method was developed for frequency locking a diode lasers, called 'the Faraday anomalous dispersion optical transmitter (FADOT) laser locking', which is much simpler than other known locking schemes. The FADOT laser locking method uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. The FADOT method is vibration insensitive and exhibits minimal thermal expansion effects. The system has a frequency pull in the range of 443.2 GHz (9 A). The method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters.

  11. Theoretical analysis of dynamic processes for interacting molecular motors

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Kolomeisky, Anatoly B.; Mehrabiani, Kareem

    2015-02-01

    Biological transport is supported by the collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by carrying out an analysis of a new class of totally asymmetric exclusion processes, in which interactions are accounted for in a thermodynamically consistent fashion. This allows us to explicitly connect microscopic features of motor proteins with their collective dynamic properties. A theoretical analysis that combines various mean-field calculations and computer simulations suggests that the dynamic properties of molecular motors strongly depend on the interactions, and that the correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motor transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.

  12. Theoretical study of pre-formed hole geometries on femtosecond pulse energy distribution in laser drilling.

    PubMed

    Jiao, L S; Ng, E Y K; Zheng, H Y; Zhang, Y L

    2015-02-23

    Maxwell's wave equation was solved for fs laser drilling of silicon. The pre-formed hole wall's influence on the propagation behavior of subsequent laser pulses was investigated. The laser intensity at hole bottom shows distinct profile as compared with that at hole entrance. The multi-peaks and ring structure of the laser intensity were found at hole bottom. The position of maximum laser intensity (MLI) in relation to the wall taper angle was studied. It was found that the position of the MLI point would be closer to the hole entrance with increasing taper angle. This observation provides valuable information in predicting the position of plasma plume which is a key factor influencing laser drilling process. The elliptical entrance hole shape and zonal structure at the hole bottom reported in the literatures have been reasonably explained using the laser intensity distribution obtained in the present model.

  13. Theoretical and experimental (e ,2 e ) study of electron-impact ionization of laser-aligned Mg atoms

    NASA Astrophysics Data System (ADS)

    Amami, Sadek; Murray, Andrew; Stauffer, Al; Nixon, Kate; Armstrong, Gregory; Colgan, James; Madison, Don

    2014-12-01

    We have performed calculations of the fully differential cross sections for electron-impact ionization of magnesium atoms. Three theoretical approximations, the time-dependent close coupling, the three-body distorted wave, and the distorted wave Born approximation, are compared with experiment in this article. Results will be shown for ionization of the 3 s ground state of Mg for both asymmetric and symmetric coplanar geometries. Results will also be shown for ionization of the 3 p state which has been excited by a linearly polarized laser which produces a charge cloud aligned perpendicular to the laser beam direction and parallel to the linear polarization. Theoretical and experimental results will be compared for several different alignment angles, both in the scattering plane as well as in the plane perpendicular to the incident beam direction.

  14. Analysis of Stress Waves Generated in Water Using Ultrashort Laser Pulses

    SciTech Connect

    Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Komashko, A.M.; Reidt, S.; Eichler, J.; Da Silva, L.B.

    2000-04-25

    A Mach-Zehnder interferometer was used for analysis of pressure waves generated by ultrashort laser pulse ablation of water. It was found that the shock wave generated by plasma formation rapidly decays to an acoustic wave. Both experimental and theoretical studies demonstrated that the energy transfer to the mechanical shock was less than 1%.

  15. Laser safety and hazard analysis for the temperature stabilized BSLT ARES laser system.

    SciTech Connect

    Augustoni, Arnold L.

    2003-08-01

    A laser safety and hazard analysis was performed for the temperature stabilized Big Sky Laser Technology (BSLT) laser central to the ARES system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. As a result of temperature stabilization of the BSLT laser the operating parameters of the laser had changed requiring a hazard analysis based on the new operating conditions. The ARES laser system is a Van/Truck based mobile platform, which is used to perform laser interaction experiments and tests at various national test sites.

  16. Theoretical peak performance and optical constraints for the deflection of an S-type asteroid with a continuous wave laser

    NASA Astrophysics Data System (ADS)

    Thiry, Nicolas; Vasile, Massimiliano

    2017-03-01

    This paper presents a theoretical model to evaluate the thrust generated by a continuous wave (CW) laser, operating at moderate intensity (<100 GW/m2), ablating an S-type asteroid made of Forsterite. The key metric to assess the performance of the laser system is the thrust coupling coefficient which is given by the ratio between thrust and associated optical power. Three different models are developed in the paper: a one dimensional steady state model, a full 3D steady state model and a one dimensional model accounting for transient effects resulting from the tumbling motion of the asteroid. The results obtained with these models are used to derive key requirements and constraints on the laser system that allow approaching the ideal performance in a realistic case.

  17. Advanced Orion Optimized Laser System Analysis

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Contractor shall perform a complete analysis of the potential of the solid state laser in the very long pulse mode (100 ns pulse width, 10-30 hz rep-rate) and in the very short pulse mode (100 ps pulse width 10-30 hz rep rate) concentrating on the operation of the device in the 'hot-rod' mode, where no active cooling the laser operation is attempted. Contractor's calculations shall be made of the phase aberrations which develop during the repped-pulse train, and the results shall feed into the adaptive optics analyses. The contractor shall devise solutions to work around ORION track issues. A final report shall be furnished to the MSFC COTR including all calculations and analysis of estimates of bulk phase and intensity aberration distribution in the laser output beam as a function of time during the repped-pulse train for both wave forms (high-energy/long-pulse, as well as low-energy/short-pulse). Recommendations shall be made for mitigating the aberrations by laser re-design and/or changes in operating parameters of optical pump sources and/or designs.

  18. Theoretical estimation and experimental studies on gas dissociation in TEA CO2 laser for long term arc free operation

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Biswas, A. K.; Bhargav, Pankaj; Reghu, T.; Sahu, Shashikiran; Pakhare, J. S.; Bhagat, M. S.; Kukreja, L. M.

    2013-11-01

    Gas dissociation in a high energy, high repetition rate Transversely Excited Atmospheric (TEA) CO2 laser in both sealed-off and gas replenishment modes were studied for nitrogen lean gas mixture. A comprehensive theoretical model based on the Boltzmann transport equation and the discharge excitation circuit equations was adopted to calculate the amount of CO2 dissociated during a single discharge pulse. Theoretically it is shown that inclusion of superelastic collisions in the Boltzmann transport equation is necessary for precise estimation of dissociation per pulse, particularly at high discharge energy loadings and for nitrogen rich gas mixtures. Gas lifetime for repetitively pulsed operations was found experimentally by measuring the amount of CO formed when frequent arcing sets in under sealed off operation. Using this model, the optimum replenishment rate of CO2 either by gas purging and/or by catalytic regeneration needed for arc free long term operation of the laser was estimated. The measured saturation values of CO concentration in the laser chamber agreed well with the calculated values for various operating conditions. Arc free, long term repetitively pulsed operation of the laser was achieved in the gas replenishment mode with gas purging and/or catalytic regeneration.

  19. Inner strength--a theoretical analysis of salutogenic concepts.

    PubMed

    Lundman, Berit; Aléx, Lena; Jonsén, Elisabeth; Norberg, Astrid; Nygren, Björn; Santamäki Fischer, Regina; Strandberg, Gunilla

    2010-02-01

    Theoretical and empirical overlaps between the concepts of resilience, sense of coherence, hardiness, purpose in life, and self-transcendence have earlier been described as some kind of inner strength, but no studies have been found that focus on what attributes these concepts have in common. The objective of this study was to perform a theoretical analysis of the concepts of resilience, sense of coherence, hardiness, purpose in life, and self-transcendence, in order to identify their core dimensions in an attempt to get an overarching understanding of inner strength. PRINT METHOD: An analysis inspired by the procedure of meta-theory construction was performed. The main questions underlying the development of the concepts, the major paradigms and the most prominent assumptions, the critical attributes and the characteristics of the various concepts were identified. The analysis resulted in the identification of four core dimensions of inner strength and the understanding that inner strength relies on the interaction of these dimensions: connectedness, firmness, flexibility, and creativity. These dimensions were validated through comparison with the original descriptions of the concepts. An overarching understanding of inner strength is that it means both to stand steady, to be firm, with both feet on the ground and to be connected to; family, friends, society, nature and spiritual dimensions and to be able to transcend. Having inner strength is to be creative and stretchable, which is to believe in own possibilities to act and to make choices and influence life's trajectory in a perceived meaningful direction. Inner strength is to shoulder responsibility for oneself and others, to endure and deal with difficulties and adversities. This knowledge about inner strength will raise the awareness of the concept and, in turn, hopefully increase our potential to support people's inner strength. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Analysis of the theoretical bias in dark matter direct detection

    SciTech Connect

    Catena, Riccardo

    2014-09-01

    Fitting the model ''A'' to dark matter direct detection data, when the model that underlies the data is ''B'', introduces a theoretical bias in the fit. We perform a quantitative study of the theoretical bias in dark matter direct detection, with a focus on assumptions regarding the dark matter interactions, and velocity distribution. We address this problem within the effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. We analyze 24 benchmark points in the parameter space of the theory, using frequentist and Bayesian statistical methods. First, we simulate the data of future direct detection experiments assuming a momentum/velocity dependent dark matter-nucleon interaction, and an anisotropic dark matter velocity distribution. Then, we fit a constant scattering cross section, and an isotropic Maxwell-Boltzmann velocity distribution to the simulated data, thereby introducing a bias in the analysis. The best fit values of the dark matter particle mass differ from their benchmark values up to 2 standard deviations. The best fit values of the dark matter-nucleon coupling constant differ from their benchmark values up to several standard deviations. We conclude that common assumptions in dark matter direct detection are a source of potentially significant bias.

  1. Extracellular measurement of anisotropic bidomain myocardial conductivities. I. Theoretical analysis.

    PubMed

    Le Guyader, P; Trelles, F; Savard, P

    2001-10-01

    The passive electrical properties of cardiac tissue, such as the intracellular and interstitial conductivities along the longitudinal and transverse axes, have not been often measured because intracellular electrodes are usually needed for these measurements. In this paper, we present a theoretical analysis of two myocardial models developed to estimate these properties by analyzing potentials recorded with a pair of extracellular electrodes while injecting alternating current between another pair of electrodes. First, the cardiac tissue is represented by a standard bidomain model which includes a membrane capacitance; second, this model is modified by adding an intracellular capacitance representing the intercalated disks. Numerical solutions are computed with a fast Fourier transform algorithm without constraining the anisotropy ratios of the interstitial and intracellular domains. We systematically investigate the effects of changes in the bidomain parameters on the voltage-to-current ratio curves. We also demonstrate how the bidomain parameters can be theoretically estimated by fitting, with a modified Shor's r algorithm, the simulated potentials along the longitudinal and transverse axes for different frequencies between 10 and 10,000 Hz. An important finding is that the interelectrode distance must be similar to the myocardial space constant so as to obtain frequency dependent measurements.

  2. Theoretical analysis of hot electron dynamics in nanorods

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Agrawal, Govind P.

    2015-01-01

    Localised surface plasmons create a non-equilibrium high-energy electron gas in nanostructures that can be injected into other media in energy harvesting applications. Here, we derive the rate of this localised-surface-plasmon mediated generation of hot electrons in nanorods and the rate of injecting them into other media by considering quantum mechanical motion of the electron gas. Specifically, we use the single-electron wave function of a particle in a cylindrical potential well and the electric field enhancement factor of an elongated ellipsoid to derive the energy distribution of electrons after plasmon excitation. We compare the performance of nanorods with equivolume nanoparticles of other shapes such as nanospheres and nanopallets and report that nanorods exhibit significantly better performance over a broad spectrum. We present a comprehensive theoretical analysis of how different parameters contribute to efficiency of hot-electron harvesting in nanorods and reveal that increasing the aspect ratio can increase the hot-electron generation and injection, but the volume shows an inverse dependency when efficiency per unit volume is considered. Further, the electron thermalisation time shows much less influence on the injection rate. Our derivations and results provide the much needed theoretical insight for optimization of hot-electron harvesting process in highly adaptable metallic nanorods. PMID:26202823

  3. Theoretical distribution of range data obtained by laser radar and its applications

    NASA Astrophysics Data System (ADS)

    Haijiao, Jiang; Jiancheng, Lai; Wei, Yan; Chunyong, Wang; Zhenhua, Li

    2013-02-01

    This paper addresses the distribution of range data obtained by laser radar. An analytical solution of the range distribution was obtained for direct detection laser radar using constant threshold discriminator based on the time-of-flight principle. The analytical solution was verified by experiments and simulations. The results show that the derived analytical function can describe the probability density distribution of the range data obtained by laser radar with a constant threshold discriminator. The probability density distribution of the range data is proportional to the probability density function of the noise and to the slope of the rising edge of the laser echo pulse. The probability density distributions of the range data obtained by laser radar with different pulse shapes, amplitudes, widths and thresholds are also presented. These factors are important for improvements in the design of laser radar systems.

  4. Comparisons Between Experimental Transport Analysis and Theoretical Modeling on LHD

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kozo; LHD Group

    2000-10-01

    Helical plasma confinement system has a great advantage in producing steady-state high performance plasmas with built-in divertor. For the experimental analysis and predictive simulation of helical and tokamak plasmas, a simulation code TOTAL (TOroidal Transport Analysis Linkage) has been developed and is applied to the Large Helical Device (LHD, R=3.6 ~3.9m, B<3.0T ) experiments. In the LHD experiment, the global plasma confinement is ~1.5-2 times better than the well-known confinement scaling laws, and effective transport diffusivity is same order of magnitude of neoclassical ion transport with the assumption of Ti=Te. The radial electric field has been measured and roughly agrees with theoretical neoclassical values. The simple drift wave transport models are also compared with experimental values. The impurity dynamics are calculated using predictive part of the TOTAL code, and compared with the "breathing plasma" dynamics, and the role of high-Z impurity are clarified. For the analysis of high beta plasmas, local ballooning mode analysis will be added in this TOTAL code, and optimized configurations for the future MHR reactor will be searched.

  5. Analysis of thermal effects in a pulsed laser diode end pumped single-ended composite Tm:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Xinyu; Wu, Jing; Wu, Chunting; Sun, Hongtao; Yu, Yongji; Jin, Guangyong

    2015-04-01

    By studying the theory of heat conduction, we established the transient heat conduction equation for a pulsed laser diode (LD) end pumped thulium doped laser. Combined with the actual working environment of a pulsed LD end pumped single-ended composite Tm:YAG rod, the expressions of transient temperature distribution and the time-varying thermal focal length were obtained by the integral transform method and the method of separation of variables. Under 240 mJ pump energy and repetition rates of 80, 90, and 100 Hz, thermal effects in the pulsed LD end pumped single-ended composite Tm:YAG rod were simulated, and the thermal lens focal length of the single-ended composite Tm:YAG rod was measured in experiments. The theoretical analysis was verified by the comparison between the theoretical results and the experimental results.

  6. A theoretical analysis of vacuum arc thruster performance

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Sekerak, Mike; Ziemer, John K.; Schein, Jochen; Qi, Niansheng; Binder, Robert; Anders, Andre

    2001-01-01

    In vacuum arc discharges the current is conducted through vapor evaporated from the cathode surface. In these devices very dense, highly ionized plasmas can be created from any metallic or conducting solid used as the cathode. This paper describes theoretical models of performance for several thruster configurations which use vacuum arc plasma sources. This analysis suggests that thrusters using vacuum arc sources can be operated efficiently with a range of propellant options that gives great flexibility in specific impulse. In addition, the efficiency of plasma production in these devices appears to be largely independent of scale because the metal vapor is ionized within a few microns of the cathode electron emission sites, so this approach is well-suited for micropropulsion.

  7. Game-theoretic equilibrium analysis applications to deregulated electricity markets

    NASA Astrophysics Data System (ADS)

    Joung, Manho

    This dissertation examines game-theoretic equilibrium analysis applications to deregulated electricity markets. In particular, three specific applications are discussed: analyzing the competitive effects of ownership of financial transmission rights, developing a dynamic game model considering the ramp rate constraints of generators, and analyzing strategic behavior in electricity capacity markets. In the financial transmission right application, an investigation is made of how generators' ownership of financial transmission rights may influence the effects of the transmission lines on competition. In the second application, the ramp rate constraints of generators are explicitly modeled using a dynamic game framework, and the equilibrium is characterized as the Markov perfect equilibrium. Finally, the strategic behavior of market participants in electricity capacity markets is analyzed and it is shown that the market participants may exaggerate their available capacity in a Nash equilibrium. It is also shown that the more conservative the independent system operator's capacity procurement, the higher the risk of exaggerated capacity offers.

  8. Theoretical analysis of tsunami generation by pyroclastic flows

    USGS Publications Warehouse

    Watts, P.; Waythomas, C.F.

    2003-01-01

    Pyroclastic flows are a common product of explosive volcanism and have the potential to initiate tsunamis whenever thick, dense flows encounter bodies of water. We evaluate the process of tsunami generation by pyroclastic flow by decomposing the pyroclastic flow into two components, the dense underflow portion, which we term the pyroclastic debris flow, and the plume, which includes the surge and coignimbrite ash cloud parts of the flow. We consider five possible wave generation mechanisms. These mechanisms consist of steam explosion, pyroclastic debris flow, plume pressure, plume shear, and pressure impulse wave generation. Our theoretical analysis of tsunami generation by these mechanisms provides an estimate of tsunami features such as a characteristic wave amplitude and wavelength. We find that in most situations, tsunami generation is dominated by the pyroclastic debris flow component of a pyroclastic flow. This work presents information sufficient to construct tsunami sources for an arbitrary pyroclastic flow interacting with most bodies of water. Copyright 2003 by the American Geophysical Union.

  9. Theoretical Analysis of Dynamic Processes for Interacting Molecular Motors.

    PubMed

    Teimouri, Hamid; Kolomeisky, Anatoly B; Mehrabiani, Kareem

    2015-02-13

    Biological transport is supported by collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by analyzing a new class of totally asymmetric exclusion processes where interactions are accounted for in a thermodynamically consistent fashion. It allows us to connect explicitly microscopic features of motor proteins with their collective dynamic properties. Theoretical analysis that combines various mean-field calculations and computer simulations suggests that dynamic properties of molecular motors strongly depend on interactions, and correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motors transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.

  10. Deep and Structured Robust Information Theoretic Learning for Image Analysis.

    PubMed

    Deng, Yue; Bao, Feng; Deng, Xuesong; Wang, Ruiping; Kong, Youyong; Dai, Qionghai

    2016-07-07

    This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e. missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier that maximize the mutual information of data and their labels in the latent space. In this general paradigm, we respectively discuss three types of the RIT implementations with linear subspace embedding, deep transformation and structured sparse learning. In practice, the RIT and deep RIT are exploited to solve the image categorization task whose performances will be verified on various benchmark datasets. The structured sparse RIT is further applied to a medical image analysis task for brain MRI segmentation that allows group-level feature selections on the brain tissues.

  11. Theoretical analysis of sound transmission loss through graphene sheets

    SciTech Connect

    Natsuki, Toshiaki; Ni, Qing-Qing

    2014-11-17

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.

  12. How Do Pseudocapacitors Store Energy? Theoretical Analysis and Experimental Illustration.

    PubMed

    Costentin, Cyrille; Porter, Thomas R; Savéant, Jean-Michel

    2017-03-15

    Batteries and electrochemical double layer charging capacitors are two classical means of storing electrical energy. These two types of charge storage can be unambiguously distinguished from one another by the shape and scan-rate dependence of their cyclic voltammetric (CV) current-potential responses. The former shows peak-shaped current-potential responses, proportional to the scan rate v or to v(1/2), whereas the latter displays a quasi-rectangular response proportional to the scan rate. On the contrary, the notion of pseudocapacitance, popularized in the 1980s and 1990s for metal oxide systems, has been used to describe a charge storage process that is faradaic in nature yet displays capacitive CV signatures. It has been speculated that a quasi-rectangular CV response resembling that of a truly capacitive response arises from a series of faradaic redox couples with a distribution of potentials, yet this idea has never been justified theoretically. We address this problem by first showing theoretically that this distribution-of-potentials approach is closely equivalent to the more physically meaningful consideration of concentration-dependent activity coefficients resulting from interactions between reactants. The result of the ensuing analysis is that, in either case, the CV responses never yield a quasi-rectangular response ∝ ν, identical to that of double layer charging. Instead, broadened peak-shaped responses are obtained. It follows that whenever a quasi-rectangular CV response proportional to scan rate is observed, such reputed pseudocapacitive behaviors should in fact be ascribed to truly capacitive double layer charging. We compare these results qualitatively with pseudocapacitor reports taken from the literature, including the classic RuO2 and MnO2 examples, and we present a quantitative analysis with phosphate cobalt oxide films. Our conclusions do not invalidate the numerous experimental studies carried out under the pseudocapacitance banner but

  13. Infrared and theoretical calculations in 2-halocycloheptanones conformational analysis.

    PubMed

    Rozada, Thiago C; Gauze, Gisele F; Favaro, Denize C; Rittner, Roberto; Basso, Ernani A

    2012-08-01

    2-Halocycloheptanones (Halo=F, Cl, Br and I) were synthesized and their conformational analysis was performed through infrared spectroscopy data. The corresponding conformers geometries and energies were obtained by theoretical calculations at B3LYP/aug-cc-pVDZ level of theory in the isolated state and in solution. It was observed, by both approaches, that the conformational preferences were very sensitive to the solvent polarity, since its increase led to an increase in the population of the more polar conformer. An analysis of these conformational equilibria showed they suffer also the influence of stereoelectronic effects, like hyperconjugation and steric effects. These results were interpreted using natural bond orbital (NBO) analysis, which indicated that the electronic delocalization to the orbital π*(C=O) is directly involved in the stability increase of conformers I and II. The relative effect of the period of the halogen can also be noted, with changes in the conformational preferences and in the energies involved in the interactions of NBO.

  14. Polyatomic Candidates for Cooling of Molecules with Lasers from Simple Theoretical Concepts

    NASA Astrophysics Data System (ADS)

    Isaev, Timur A.; Berger, Robert

    2016-02-01

    A rational approach to identify polyatomic molecules that appear to be promising candidates for direct Doppler cooling with lasers is outlined. First-principles calculations for equilibrium structures and Franck-Condon factors of selected representatives with different point-group symmetries (including the chiral nonsymmetric C1) have been performed and a high potential for laser cooling of these molecules is indicated.

  15. Determination and controlling of grain structure of metals after laser incidence: Theoretical approach.

    PubMed

    Dezfoli, Amir Reza Ansari; Hwang, Weng-Sing; Huang, Wei-Chin; Tsai, Tsung-Wen

    2017-01-30

    There are serious questions about the grain structure of metals after laser melting and the ways that it can be controlled. In this regard, the current paper explains the grain structure of metals after laser melting using a new model based on combination of 3D finite element (FE) and cellular automaton (CA) models validated by experimental observation. Competitive grain growth, relation between heat flows and grain orientation and the effect of laser scanning speed on final micro structure are discussed with details. Grains structure after laser melting is founded to be columnar with a tilt angle toward the direction of the laser movement. Furthermore, this investigation shows that the grain orientation is a function of conduction heat flux at molten pool boundary. Moreover, using the secondary laser heat source (SLHS) as a new approach to control the grain structure during the laser melting is presented. The results proved that the grain structure can be controlled and improved significantly using SLHS. Using SLHS, the grain orientation and uniformity can be change easily. In fact, this method can help us to produce materials with different local mechanical properties during laser processing according to their application requirements.

  16. Determination and controlling of grain structure of metals after laser incidence: Theoretical approach

    NASA Astrophysics Data System (ADS)

    Dezfoli, Amir Reza Ansari; Hwang, Weng-Sing; Huang, Wei-Chin; Tsai, Tsung-Wen

    2017-01-01

    There are serious questions about the grain structure of metals after laser melting and the ways that it can be controlled. In this regard, the current paper explains the grain structure of metals after laser melting using a new model based on combination of 3D finite element (FE) and cellular automaton (CA) models validated by experimental observation. Competitive grain growth, relation between heat flows and grain orientation and the effect of laser scanning speed on final micro structure are discussed with details. Grains structure after laser melting is founded to be columnar with a tilt angle toward the direction of the laser movement. Furthermore, this investigation shows that the grain orientation is a function of conduction heat flux at molten pool boundary. Moreover, using the secondary laser heat source (SLHS) as a new approach to control the grain structure during the laser melting is presented. The results proved that the grain structure can be controlled and improved significantly using SLHS. Using SLHS, the grain orientation and uniformity can be change easily. In fact, this method can help us to produce materials with different local mechanical properties during laser processing according to their application requirements.

  17. Determination and controlling of grain structure of metals after laser incidence: Theoretical approach

    PubMed Central

    Dezfoli, Amir Reza Ansari; Hwang, Weng-Sing; Huang, Wei-Chin; Tsai, Tsung-Wen

    2017-01-01

    There are serious questions about the grain structure of metals after laser melting and the ways that it can be controlled. In this regard, the current paper explains the grain structure of metals after laser melting using a new model based on combination of 3D finite element (FE) and cellular automaton (CA) models validated by experimental observation. Competitive grain growth, relation between heat flows and grain orientation and the effect of laser scanning speed on final micro structure are discussed with details. Grains structure after laser melting is founded to be columnar with a tilt angle toward the direction of the laser movement. Furthermore, this investigation shows that the grain orientation is a function of conduction heat flux at molten pool boundary. Moreover, using the secondary laser heat source (SLHS) as a new approach to control the grain structure during the laser melting is presented. The results proved that the grain structure can be controlled and improved significantly using SLHS. Using SLHS, the grain orientation and uniformity can be change easily. In fact, this method can help us to produce materials with different local mechanical properties during laser processing according to their application requirements. PMID:28134347

  18. Polyatomic Candidates for Cooling of Molecules with Lasers from Simple Theoretical Concepts.

    PubMed

    Isaev, Timur A; Berger, Robert

    2016-02-12

    A rational approach to identify polyatomic molecules that appear to be promising candidates for direct Doppler cooling with lasers is outlined. First-principles calculations for equilibrium structures and Franck-Condon factors of selected representatives with different point-group symmetries (including the chiral nonsymmetric C1) have been performed and a high potential for laser cooling of these molecules is indicated.

  19. Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers.

    PubMed

    Koizumi, Hayato; Morikatsu, Shinichiro; Aida, Hiroki; Nozawa, Takahiro; Kakesu, Izumi; Uchida, Atsushi; Yoshimura, Kazuyuki; Muramatsu, Jun; Davis, Peter

    2013-07-29

    It has been proposed that a secure key distribution scheme using correlated random bit sequences can be implemented using common random-signal induced synchronization of semiconductor laser systems. In this scheme it is necessary to use laser systems consisting of multiple cascaded lasers to be secure against a powerful eavesdropper. In this paper, we report the results of an experimental study that demonstrate that the common random-signal induced synchronization is possible in cascaded semiconductor laser systems. We also show that the correlated random bit sequences generated in the synchronized cascaded laser systems can be used to create an information-theoretically secure key between two legitimate users.

  20. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    NASA Astrophysics Data System (ADS)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  1. Theoretical analysis of the state of balance in bipedal walking.

    PubMed

    Firmani, Flavio; Park, Edward J

    2013-04-01

    This paper presents a theoretical analysis based on classic mechanical principles of balance of forces in bipedal walking. Theories on the state of balance have been proposed in the area of humanoid robotics and although the laws of classical mechanics are equivalent to both humans and humanoid robots, the resulting motion obtained with these theories is unnatural when compared to normal human gait. Humanoid robots are commonly controlled using the zero moment point (ZMP) with the condition that the ZMP cannot exit the foot-support area. This condition is derived from a physical model in which the biped must always walk under dynamically balanced conditions, making the centre of pressure (CoP) and the ZMP always coincident. On the contrary, humans follow a different strategy characterized by a 'controlled fall' at the end of the swing phase. In this paper, we present a thorough theoretical analysis of the state of balance and show that the ZMP can exit the support area, and its location is representative of the imbalance state characterized by the separation between the ZMP and the CoP. Since humans exhibit this behavior, we also present proof-of-concept results of a single subject walking on an instrumented treadmill at different speeds (from slow 0.7 m/s to fast 2.0 m/s walking with increments of 0.1 m/s) with the motion recorded using an optical motion tracking system. In order to evaluate the experimental results of this model, the coefficient of determination (R2) is used to correlate the measured ground reaction forces and the resultant of inertial and gravitational forces (anteroposterior R² = 0.93, mediolateral R² = 0.89, and vertical R² = 0.86) indicating that there is a high correlation between the measurements. The results suggest that the subject exhibits a complete dynamically balanced gait during slow speeds while experiencing a controlled fall (end of swing phase) with faster speeds. This is quantified with the root-mean-square deviation (RMSD

  2. Theoretical Analysis of the Electron Spiral Toroid Concept

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Micheletti, David A.; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    This report describes the analysis of the Electron Spiral Toroid (EST) concept being promoted by Electron Power Systems Inc. (EPS). The EST is described as a toroidal plasma structure composed Of ion and electron shells. It is claimed that the EST requires little or no external confinement, despite the extraordinarily large energy densities resulting from the self-generating magnetic fields. The present analysis is based upon documentation made available by EPS, a previous description of the model by the Massachusetts Institute of Technology (MIT), and direct discussions with EPS and MIT. It is found that claims of absolute stability and large energy storage capacities of the EST concept have not been substantiated. Notably, it can be demonstrated that the ion fluid is fundamentally unstable. Although various scenarios for ion confinement were subsequently suggested by EPS and MIT, none were found to be plausible. Although the experimental data does not prove the existence of EST configurations, there is undeniable experimental evidence that some type of plasma structures whose characteristics remain to be determined are observed. However, more realistic theoretical models must first be developed to explain their existence and properties before applications of interest to NASA can he assessed and developed.

  3. Laser speckle analysis synchronised with cardiac cycle

    NASA Astrophysics Data System (ADS)

    Zakharov, Pavel; Scheffold, Frank; Weber, Bruno

    2015-07-01

    We present an improved Laser speckle imaging approach to investigate the cerebral blood flow response following function stimulation of a single vibrissa. By synchronising speckle analysis with the cardiac cycle we are able to obtain robust averaging of the correlation signals while at the same time removing the contributions due to the pulsation of blood flow and associated tissue adaptation. With our inter-pulse correlation analysis we can follow second-scale dynamics of the cortical vascular system in response to functional brain activation. We find evidence for two temporally separated processes in the blood flow pattern following stimulation we tentatively attribute to vasodilation and vasoconstriction phases, respectively.

  4. Analysis of influence factors on 2 μm Tm3+-doped fiber laser output characteristics

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Jin, Guang-yong; Wang, Ji

    2016-10-01

    The affecting factors of 2 μm Tm3+-doped fiber laser output characteristics were theoretical analyzed. On the basis of the energy level structure and optical absorption properties of Tm3+ ion, combining with the basic principle of Tm3+-doped fiber laser, and starting from the energy level structures and the cross relaxation processes of Tm3+ ion, the three pumping methods of Tm doped fiber laser (TDF) were analyzed and discussed. The influences of output characteristics by different influence factors were simulated. Based on optimization of the equations, for different fiber lengths, doping concentrations and pumping absorption coefficients and other influence factors, the laser output characteristics under different conditions were obtained and analyzed. Combination the simulation analysis, through the reasonable design and the selection of the optimum parameters of the laser system, the high laser output performance scan be achieved by improving the injection power and controlling of fiber coil diameter. The influences of different factors on the output characteristics were analyzed in the issue. The high laser output performances can be obtained and the laser loss was reduced by selecting the parameters of the laser system properly.

  5. Broadband laser ranging: signal analysis and interpretation

    NASA Astrophysics Data System (ADS)

    Kostinski, Natalie; Rhodes, Michelle A.; Catenacci, Jared; Howard, Marylesa; La Lone, Brandon M.; Younk, Patrick; Lodes, Adam; Bennett, Corey V.; Harding, Patrick J.

    2017-02-01

    Broadband laser ranging (BLR) is essentially a spectral interferometer used to infer distance to a moving target. The light source is a mode-locked fiber laser, and chromatic dispersion maps the spectral interference pattern into the time domain, yielding chirped beat signals at the detector. A BLR record is a sequence of these chirped signals, representing consecutive target positions. To infer distance to a target, each underlying pulse envelope must be consistently registered and subtracted despite environmentally-induced variability. Then, nonlinear transformation of the phase is applied to remove the chirp, an FFT is performed to determine the peak frequency of the de-chirped signal, and a calibration factor relating de-chirped frequency to distance results in target position. Here, these analysis steps are discussed in detail.

  6. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics

    PubMed Central

    Wang, Jinhui; Wang, Xindi; Xia, Mingrui; Liao, Xuhong; Evans, Alan; He, Yong

    2015-01-01

    Recent studies have suggested that the brain’s structural and functional networks (i.e., connectomics) can be constructed by various imaging technologies (e.g., EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph theory. Given the huge complexity of network construction, analysis and statistics, toolboxes incorporating these functions are largely lacking. Here, we developed the GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics. The GRETNA contains several key features as follows: (i) an open-source, Matlab-based, cross-platform (Windows and UNIX OS) package with a graphical user interface (GUI); (ii) allowing topological analyses of global and local network properties with parallel computing ability, independent of imaging modality and species; (iii) providing flexible manipulations in several key steps during network construction and analysis, which include network node definition, network connectivity processing, network type selection and choice of thresholding procedure; (iv) allowing statistical comparisons of global, nodal and connectional network metrics and assessments of relationship between these network metrics and clinical or behavioral variables of interest; and (v) including functionality in image preprocessing and network construction based on resting-state functional MRI (R-fMRI) data. After applying the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults, we demonstrated that human brain functional networks exhibit efficient small-world, assortative, hierarchical and modular organizations and possess highly connected hubs and that these findings are robust against different analytical strategies. With these efforts, we anticipate that GRETNA will accelerate imaging connectomics in an easy, quick and flexible manner. GRETNA is freely available on the NITRC website.1 PMID:26175682

  7. Theoretical Modeling of Intensity Noise in InGaN Semiconductor Lasers

    PubMed Central

    2014-01-01

    This paper introduces modeling and simulation of the noise properties of the blue-violet InGaN laser diodes. The noise is described in terms of the spectral properties of the relative intensity noise (RIN). We examine the validity of the present noise modeling by comparing the simulated results with the experimental measurements available in literature. We also compare the obtained noise results with those of AlGaAs lasers. Also, we examine the influence of gain suppression on the quantum RIN. In addition, we examine the changes in the RIN level when describing the gain suppression by the case of inhomogeneous spectral broadening. The results show that RIN of the InGaN laser is nearly 9 dB higher than that of the AlGaAs laser. PMID:25147848

  8. Theoretical modeling of intensity noise in InGaN semiconductor lasers.

    PubMed

    Ahmed, Moustafa

    2014-01-01

    This paper introduces modeling and simulation of the noise properties of the blue-violet InGaN laser diodes. The noise is described in terms of the spectral properties of the relative intensity noise (RIN). We examine the validity of the present noise modeling by comparing the simulated results with the experimental measurements available in literature. We also compare the obtained noise results with those of AlGaAs lasers. Also, we examine the influence of gain suppression on the quantum RIN. In addition, we examine the changes in the RIN level when describing the gain suppression by the case of inhomogeneous spectral broadening. The results show that RIN of the InGaN laser is nearly 9 dB higher than that of the AlGaAs laser.

  9. Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser.

    PubMed

    Yablon, Joshua; Zhou, Zifan; Zhou, Minchuan; Wang, Ye; Tseng, S; Shahriar, M S

    2016-11-28

    We have demonstrated experimentally a Diode-Pumped Alkali Laser (DPAL) with a Raman resonance induced dip in the center of the gain profile, in order to produce an anomalous dispersion, necessary for making the laser superluminal. Numerical calculations match closely with experimental results, and indicate that the laser is operating superluminally, with the group index far below unity (~0.00526) at the center of the dip. The estimated factor of enhancement in the sensitivity to cavity length perturbation is ~190, approximately equaling the inverse of the group index. This enhancement factor can be made much higher via optimal tuning of parameters. Such a laser has the potential to advance significantly the field of high-precision metrology, with applications such as vibrometry, accelerometry, and rotation sensing.

  10. Theoretical Studies of Scaling Double Clad Fiber Lasers to High Power

    DTIC Science & Technology

    2007-11-02

    oscillation in solid state masers ” // J. Appl. Physics, v. 35, p. 1377 (1964) 14. Yu. A. Anan’ev, B. M. Sedov, “Spectral and temporal characteristics of Ca F2...in conventional solid - state lasers give rise to a substantial nonuniformity of pump distribution over the cross-sectional area of the active element...that may be dissipated in a fiber laser 2. A decrease in quantum efficiency caused by the temperature deactivating of exited state 3. Distortion of

  11. A theoretical investigation of the laser damage threshold of metal multi-dielectric mirrors for high power ultrashort applications.

    PubMed

    Wang, Bin; Gallais, Laurent

    2013-06-17

    An approach for the theoretical evaluation of the damage threshold in optical interference coatings that combine metal and dielectric films is presented. The model that is used combines a matrix formalism to describe the film system with the two temperatures model that describes the energy transfer and the temperatures of electrons and lattice in a solid submitted to a laser irradiation at the femtosecond time scale. With this approach the thermal consequences due to the ultrafast absorption of the metal film can be evaluated in the multilayer stack for single or multiple pulses. Some applications are presented for the case of broadband mirrors for ultrashort pulses with low dispersion. Particularly we study the impact of the metal film (metal element, thickness) and the design on the Laser Induced Damage Threshold in the sub picosecond regime.

  12. Optimal design of an activated sludge plant: theoretical analysis

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Amin, M. S. A.; Hoinkis, J.

    2013-06-01

    The design procedure of an activated sludge plant consisting of an activated sludge reactor and settling tank has been theoretically analyzed assuming that (1) the Monod equation completely describes the growth kinetics of microorganisms causing the degradation of biodegradable pollutants and (2) the settling characteristics are fully described by a power law. For a given reactor height, the design parameter of the reactor (reactor volume) is reduced to the reactor area. Then the sum total area of the reactor and the settling tank is expressed as a function of activated sludge concentration X and the recycled ratio α. A procedure has been developed to calculate X opt, for which the total required area of the plant is minimum for given microbiological system and recycled ratio. Mathematical relations have been derived to calculate the α-range in which X opt meets the requirements of F/ M ratio. Results of the analysis have been illustrated for varying X and α. Mathematical formulae have been proposed to recalculate the recycled ratio in the events, when the influent parameters differ from those assumed in the design.

  13. The graph theoretical analysis of the SSVEP harmonic response networks.

    PubMed

    Zhang, Yangsong; Guo, Daqing; Cheng, Kaiwen; Yao, Dezhong; Xu, Peng

    2015-06-01

    Steady-state visually evoked potentials (SSVEP) have been widely used in the neural engineering and cognitive neuroscience researches. Previous studies have indicated that the SSVEP fundamental frequency responses are correlated with the topological properties of the functional networks entrained by the periodic stimuli. Given the different spatial and functional roles of the fundamental frequency and harmonic responses, in this study we further investigated the relation between the harmonic responses and the corresponding functional networks, using the graph theoretical analysis. We found that the second harmonic responses were positively correlated to the mean functional connectivity, clustering coefficient, and global and local efficiencies, while negatively correlated with the characteristic path lengths of the corresponding networks. In addition, similar pattern occurred with the lowest stimulus frequency (6.25 Hz) at the third harmonic responses. These findings demonstrate that more efficient brain networks are related to larger SSVEP responses. Furthermore, we showed that the main connection pattern of the SSVEP harmonic response networks originates from the interactions between the frontal and parietal-occipital regions. Overall, this study may bring new insights into the understanding of the brain mechanisms underlying SSVEP.

  14. A novel theoretical approach to the analysis of dendritic transients.

    PubMed Central

    Agmon-Snir, H

    1995-01-01

    A novel theoretical framework for analyzing dendritic transients is introduced. This approach, called the method of moments, is an extension of Rall's cable theory for dendrites. It provides analytic investigation of voltage attenuation, signal delay, and synchronization problems in passive dendritic trees. In this method, the various moments of a transient signal are used to characterize the properties of the transient. The strength of the signal is measured by the time integral of the signal, its characteristic time is determined by its centroid ("center of gravity"), and the width of the signal is determined by a measure similar to the standard deviation in probability theory. Using these signal properties, the method of moments provides theorems, expressions, and efficient algorithms for analyzing the voltage response in arbitrary passive trees. The method yields new insights into spatiotemporal integration, coincidence detection mechanisms, and the properties of local interactions between synaptic inputs in dendritic trees. The method can also be used for matching dendritic neuron models to experimental data and for the analysis of synaptic inputs recorded experimentally. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 10 PMID:8580308

  15. Theoretical and experimental analysis of the physics of water rockets

    NASA Astrophysics Data System (ADS)

    Barrio-Perotti, R.; Blanco-Marigorta, E.; Fernández-Francos, J.; Galdo-Vega, M.

    2010-09-01

    A simple rocket can be made using a plastic bottle filled with a volume of water and pressurized air. When opened, the air pressure pushes the water out of the bottle. This causes an increase in the bottle momentum so that it can be propelled to fairly long distances or heights. Water rockets are widely used as an educational activity, and several mathematical models have been proposed to investigate and predict their physics. However, the real equations that describe the physics of the rockets are so complicated that certain assumptions are usually made to obtain models that are easier to use. These models provide relatively good predictions but fail in describing the complex physics of the flow. This paper presents a detailed theoretical analysis of the physics of water rockets that concludes with the proposal of a physical model. The validity of the model is checked by a series of field tests. The tests showed maximum differences with predictions of about 6%. The proposed model is finally used to investigate the temporal evolution of some significant variables during the propulsion and flight of the rocket. The experience and procedure described in this paper can be proposed to graduate students and also at undergraduate level if certain simplifications are assumed in the general equations.

  16. GraTeLPy: graph-theoretic linear stability analysis

    PubMed Central

    2014-01-01

    Background A biochemical mechanism with mass action kinetics can be represented as a directed bipartite graph (bipartite digraph), and modeled by a system of differential equations. If the differential equations (DE) model can give rise to some instability such as multistability or Turing instability, then the bipartite digraph contains a structure referred to as a critical fragment. In some cases the existence of a critical fragment indicates that the DE model can display oscillations for some parameter values. We have implemented a graph-theoretic method that identifies the critical fragments of the bipartite digraph of a biochemical mechanism. Results GraTeLPy lists all critical fragments of the bipartite digraph of a given biochemical mechanism, thus enabling a preliminary analysis on the potential of a biochemical mechanism for some instability based on its topological structure. The correctness of the implementation is supported by multiple examples. The code is implemented in Python, relies on open software, and is available under the GNU General Public License. Conclusions GraTeLPy can be used by researchers to test large biochemical mechanisms with mass action kinetics for their capacity for multistability, oscillations and Turing instability. PMID:24572152

  17. Geophysical parameters from the analysis of laser ranging to Starlette

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.; Shum, C. K.; Tapley, B. D.

    1991-01-01

    The University of Texas Center for Space Research (UT/CSR) research efforts covering the time period from August 1, 1990 through January 31, 1991 have concentrated on the following areas: (1) Laser Data Processing (more than 15 years of Starlette data (1975-90) have been processed and cataloged); (2) Seasonal Variation of Zonal Tides (observed Starlette time series has been compared with meteorological data-derived time series); (3) Ocean Tide Solutions . (error analysis has been performed using Starlette and other tide solutions); and (4) Lunar Deceleration (formulation to compute theoretical lunar deceleration has been verified and applied to several tidal solutions). Concise descriptions of research achievement for each of the above areas are given. Copies of abstracts for some of the publications and conference presentations are included in the appendices.

  18. Coherent receiving efficiency in satellite-ground coherent laser communication system based on analysis of polarization

    NASA Astrophysics Data System (ADS)

    Hao, Shiqi; Zhang, Dai; Zhao, Qingsong; Wang, Lei; Zhao, Qi

    2017-06-01

    Aimed at analyzing the coherent receiving efficiency of a satellite-ground coherent laser communication system, polarization state of the received light is analyzed. We choose the circularly polarized, partially coherent laser as transmitted light source. The analysis process includes 3 parts. Firstly, an theoretical model to analyze received light's polarization state is constructed based on Gaussian-Schell model (GSM) and cross spectral density function matrix. Then, analytic formulas to calculate coherent receiving efficiency are derived in which both initial ellipticity modification and deflection angle between polarization axes of the received light and the intrinsic light are considered. At last, numerical simulations are operated based on our study. The research findings investigate variations of polarization state and obtain analytic formulas to calculate the coherent receiving efficiency. Our study has theoretical guiding significances in construction and optimization of satellite-ground coherent laser communication system.

  19. PDT driven by energy-converting materials: a theoretical analysis

    NASA Astrophysics Data System (ADS)

    Finlay, Jarod C.

    2009-02-01

    Materials have been developed which absorb radiation of one energy and emit light of another. We present a theoretical analysis of the use of these materials as light sources for photodynamic therapy (PDT). The advantage of this strategy is that radiation of higher particle energy (e.g. x ray or electron beam) or lower photon energy (e.g. infra-red) may have more favorable penetration in tissue or more readily available radiation sources than the radiation absorbed by the sensetizer. Our analysis is based on the transfer of energy from radiation fields to visible light. We analyze two scenarios: PDT pumped by (1) infrared light in a two-photon process and (2) ionizing radiation. In each case, we assume that the converting material and the sensitizer are matched sufficiently that the transfer of energy between them is essentially lossless. For the infinite and semiinfinite geometries typically used in PDT, we calculate the resulting photodynamic dose distribution, and compare it to the dose distribution expected for conventional PDT. We also calculate the dose of the incident beam (ionizing or infrared radiation) required to produce PDT-induced tumoricidal effects, and evaluate the expected toxicity in surrounding normal tissue. The toxicity is assumed to arise from thermal effects and acute ionizing radiation effects, for infrared and ionizing radiation, respectively. Our results predict that ionizing radiation will produce dose-limiting toxicity in most conventional geometries as a result of the high toxicity per unit energy of ionizing radiation. For infrared radiation, we predict that the toxicity can be moderated by proper choice of sensitizer and irradiation geometry and fractionation.

  20. Theoretical analysis of magnetic field interactions with aortic blood flow

    SciTech Connect

    Kinouchi, Y.; Yamaguchi, H.; Tenforde, T.S.

    1996-04-01

    The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

  1. Analysis of laser jamming to satellite-based detector

    NASA Astrophysics Data System (ADS)

    Wang, Si-wen; Guo, Li-hong; Guo, Ru-hai

    2009-07-01

    The reconnaissance satellite, communication satellite and navigation satellite used in the military applications have played more and more important role in the advanced technique wars and already become the significant support and aid system for military actions. With the development of all kinds of satellites, anti-satellite laser weapons emerge as the times require. The experiments and analyses of laser disturbing CCD (charge coupled detector) in near ground have been studied by many research groups, but their results are not suitable to the case that using laser disturbs the satellite-based detector. Because the distance between the satellite-based detector and the ground is very large, it is difficult to damage it directly. However the optical receive system of satellite detector has large optical gain, so laser disturbing satellite detector is possible. In order to determine its feasibility, the theoretical analyses and experimental study are carried out in the paper. Firstly, the influence factors of laser disturbing satellite detector are analyzed in detail, which including laser power density on the surface of the detector after long distance transmission, and laser power density threshold for disturbing etc. These factors are not only induced by the satellite orbit, but dependence on the following parameters: laser average power in the ground, laser beam quality, tracing and aiming precision and atmospheric transmission. A calculation model is developed by considering all factors which then the power density entering into the detector can be calculated. Secondly, the laser disturbing experiment is performed by using LD (laser diode) with the wavelength 808 nm disturbing CCD 5 kilometer away, which the disturbing threshold value is obtained as 3.55×10-4mW/cm2 that coincides with other researcher's results. Finally, using the theoretical model, the energy density of laser on the photosensitive surface of MSTI-3 satellite detector is estimated as about 100m

  2. A Boundedness Theoretical Analysis for GrADPDesign: A Case Study on Maze Navigation

    DTIC Science & Technology

    2015-08-17

    Analysis for GrADPDesign: A Case Study on Maze Navigation A new theoretical analysis towards the goal representation adaptive dynamic programming...ABSTRACT A Boundedness Theoretical Analysis for GrADPDesign: A Case Study on Maze Navigation Report Title A new theoretical analysis towards the goal...taken over a preset number (in this case study , we set as 10), we will randomly pick up a direction from the remaining choices as the final decision. We

  3. Laser cooling of the OH(-) molecular anion in a theoretical investigation.

    PubMed

    Wan, Ming-Jie; Huang, Duo-Hui; Yu, You; Zhang, Yun-Guang

    2017-10-03

    The schemes for laser cooling of the OH(-) anion are proposed using an ab initio method. Scalar relativistic corrections are considered using the Douglas-Kroll Hamilton. Spin-orbit coupling (SOC) effects are taken into account at the MRCI+Q level. SOC effects play important roles in the transition properties of the OH(-) anion. Transition strengths for the transition of the OH(-) anion cannot be ignored. Large vibrational branching ratios for the and transitions are determined. Short spontaneous radiative lifetimes for the a(3)Π1 and A(1)Π1 states are also predicted for rapid laser cooling. The vibrational branching loss ratio to the intervening states a(3)Π0 and a(3)Π1 for the transition is small enough to enable the building of a laser cooling project. The three required laser wavelengths for the and transitions are all in the visible region. The results imply the probability of laser cooling of the OH(-) anion via both a spin-forbidden transition and a three-electronic-level transition.

  4. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    SciTech Connect

    Michael, Stephan; Chow, Weng; Schneider, Hans

    2016-05-01

    In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.

  5. Structures and Encapsulation Motifs of Functional Molecules Probed by Laser Spectroscopic and Theoretical Methods

    PubMed Central

    Kusaka, Ryoji; Inokuchi, Yoshiya; Xantheas, Sotiris S.; Ebata, Takayuki

    2010-01-01

    We report laser spectroscopic and computational studies of host/guest hydration interactions between functional molecules (hosts) and water (guest) in supersonic jets. The examined hosts include dibenzo-18-crown-6-ether (DB18C6), benzo-18-crown-6-ether (B18C6) and calix[4]arene (C4A). The gaseous complexes between the functional molecular hosts and water are generated under jet-cooled conditions. Various laser spectroscopic methods are applied for these species: the electronic spectra are observed by laser-induced fluorescence (LIF), mass-selected resonance enhanced multiphoton ionization (REMPI) and ultraviolet-ultraviolet hole-burning (UV-UV HB) spectroscopy, whereas the vibrational spectra for each individual species are observed by infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. The obained results are analyzed by first principles electronic structure calculations. We discuss the conformations of the host molecules, the structures of the complexes, and key interactions forming the specific complexes. PMID:22319310

  6. Theoretical description of laser melt pool dynamics, Task order number B239634, Quarter 3 report

    SciTech Connect

    Dykhne, A.

    1995-05-10

    Melting of solid matter under laser radiation is realized in almost every process of laser technology. The present paper addresses melted material flows in cases when melt zones are shallow, i.e., the zone width is appreciably greater than or of the same order as its depth. Such conditions are usually realized when hardening, doping or perforating thin plates or when using none-deep penetration. Melted material flowing under conditions of deep penetration, drilling of deep openings and cutting depends on a number of additional factors (as compared to the shallow-pool case), namely, formation of a vapor and gas cavern in the sample and propagation of the laser beam through the cavern. These extra circumstances complicate hydrodynamic consideration of the liquid bath and will be addressed is the paper to follow.

  7. The GLAS Algorithm Theoretical Basis Document for Laser Footprint Location (Geolocation) and Surface Profiles

    NASA Technical Reports Server (NTRS)

    Shutz, Bob E.; Urban, Timothy J.

    2014-01-01

    This ATBD summarizes (and links with other ATBDs) the elements used to obtain the geolocated GLAS laser spot location, with respect to the Earth Center of Mass. Because of the approach used, the reference frame used to express the geolocation is linked to the reference frame used for POD and PAD, which are related to the ITRF. The geolocated spot coordinates (which includes the elevation or height, with respect to an adopted reference ellipsoid) is the inferred position of the laser spot, since the spot location is not directly measured. This document also summarizes the GLAS operation time periods.

  8. Theoretical research on damage mechanism of ultrafast laser ablation crystal silicon

    NASA Astrophysics Data System (ADS)

    Shao, Junfeng; Guo, Jin; Wang, Tingfeng

    2013-09-01

    High peak power picosecond laser ablation of silicon draws great attention in solar cell manufacture,laser optoelectric countermeasure applications, eta. This paper reports the damage process of ultrafast lasers interaction with silicon,which is based on Two-Temperature Model(TTM) and 1-on-1 damage threshold test method. Pulsed laser caused damage manifests in several ways, such as heat damage, mechanical effect and even eletrical effect. In this paper, a modified Two Temperature Model is applied in ultrashort laser interaction with silicon.The traditional Two-Temperature Model methods is proposed by Anismov in 1970s to calculate the interaction between ultrafast laser with metals, which is composed of free electrons and lattice. Beyond the carrier and lattice temperture model, an additional excited term and Auger recombination term of carriers is taken into account in this modified Two-Temperature Model model to reflect the characteristics in semicondutors. Under the same pulse-duration condition, the damage threshold is found to be 161 mJ/cm2 and a characteritic double-peak shape shows up. As the pulse energy density rises from 50mJ/cm2 to 161 mJ/cm2, the difference between carrier and lattice temperature steps down proportionally.Also,a detailed interaction process between photon-electron and electron-phonon is discussed. Electron and lattice temperature evolutes distinctly different, while the former is much higher than the latter until heat tranfer finished at 200 picoseconds. Two-peak feature of electron temperature is also identified. As the pulse duration increases from 20 picosecond to 60 picosecond, the he difference between carrier and lattice temperature steps down significantly. The calculated damage threshold does not change fundamentally, remaining approximately 0.16J/cm2. Also, the damage mechanism is found to be thermal heating with the pulse width between 20 and 60 picoseconds at threshold fluences which is identical to experiment test result

  9. Category Theoretic Analysis of Hierarchical Protein Materials and Social Networks

    PubMed Central

    Spivak, David I.; Giesa, Tristan; Wood, Elizabeth; Buehler, Markus J.

    2011-01-01

    Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a “concept web” or “semantic network” except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine. PMID:21931622

  10. A theoretical analysis of optimum consumer population and its control.

    PubMed

    Jiang, Z; Mao, Z; Wang, H

    1994-01-01

    Material production is related to population consumption in every society. Consumption also constantly transforms materials, energy, and information. In this sense, consumption provides both impetus for material production and a self-adapting mechanism for population development and control. Population structure variables affecting economic production can be divided according to non-adults, working-age work force and the elderly, social status, and urban-rural structure. The consumptive structures among people of different social status reflect different needs for social and economic development. The theoretical calculation of the consumer population in the national economy demonstrates that the national income in a certain year of a given national economy equals consumption fund plus accumulation fund where consumption fund includes social consumption fund and residential consumption fund. Social consumption fund is spent mostly on public utilities, administrative management, national defense, education, public health and urban construction, as well as on environment management and disaster relief. The residential consumption fund can be divided into basic expenditure such as clothing, food, shelter and transportation, and self-improvement expenditure such as recreation, education, and travel. As a result of economic development, not only the percentage of the expenditure on food will decrease and the percentage of the expenditure on clothing, shelter, transportation, and other daily necessities will increase, but expenses on recreation and education also will grow. Residential consumption is divided into subsistence consumption (Type I consumption) and self-improvement (recreation and education) consumption (Type II consumption) in order to determine consumer population and the degree of urbanization and its impact upon social and economic development. A moderate consumer population model of urban and rural areas was established by using the urban and rural

  11. A theoretical analysis of basin-scale groundwater temperature distribution

    NASA Astrophysics Data System (ADS)

    An, Ran; Jiang, Xiao-Wei; Wang, Jun-Zhi; Wan, Li; Wang, Xu-Sheng; Li, Hailong

    2015-03-01

    The theory of regional groundwater flow is critical for explaining heat transport by moving groundwater in basins. Domenico and Palciauskas's (1973) pioneering study on convective heat transport in a simple basin assumed that convection has a small influence on redistributing groundwater temperature. Moreover, there has been no research focused on the temperature distribution around stagnation zones among flow systems. In this paper, the temperature distribution in the simple basin is reexamined and that in a complex basin with nested flow systems is explored. In both basins, compared to the temperature distribution due to conduction, convection leads to a lower temperature in most parts of the basin except for a small part near the discharge area. There is a high-temperature anomaly around the basin-bottom stagnation point where two flow systems converge due to a low degree of convection and a long travel distance, but there is no anomaly around the basin-bottom stagnation point where two flow systems diverge. In the complex basin, there are also high-temperature anomalies around internal stagnation points. Temperature around internal stagnation points could be very high when they are close to the basin bottom, for example, due to the small permeability anisotropy ratio. The temperature distribution revealed in this study could be valuable when using heat as a tracer to identify the pattern of groundwater flow in large-scale basins. Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional groundwater flow. Geological Society of America Bulletin 84:3803-3814

  12. Optically biased laser gyro

    SciTech Connect

    Anderson, D.Z.; Chow, W.W.; Scully, M.O.; Sanders, V.E.

    1980-10-01

    We describe a four-mode ring laser that exhibits none of the mode-locking characteristics that plague laser gyros. This laser is characterized by a bias that changes sign with a change in the direction of rotation and prevents the counterpropagating modes from locking. A theoretical analysis explaining the experimental results is outlined.

  13. Theoretical Modeling of Damage Mechanisms for Ultrashort Laser Pulses in Ocular Media

    NASA Astrophysics Data System (ADS)

    Gerstman, Bernard

    2002-10-01

    The funding provided in this grant has allowed the development of a comprehensive computational model for predicting the effect that any laser pulse will have on any spherical absorbing particle. This model is based upon fundamental principles and therefore is capable of determining all thermomechanical responses (temperature rise, shock wave, explosive vaporization) and is applicable to a wide range of materials with unprecedented accuracy. This allows the assessment of potential damage to a variety of materials, such as biological tissue. The computational model is also applicable for investigating and predicting laser induced damage in synthetic polymers and optical and electronic communication materials. The research also furnishes a technique for determining thermomechanical properties of microparticles used in novel medical, biological and material science applications. In addition, we have seen evidence that the thermomechanical response in various materials to a laser pulse is not only non-linear, but chaotic. This implies that small changes in laser pulse characteristics such as duration or energy may lead to enormous changes in response that are extremely damaging to the material whether biological or synthetic. The detailed nature of the investigation and resulting model allowed for the discovery of this chaotic behavior, which had not been previously reported by any other investigators.

  14. Theoretical studies of solar lasers and converters. Progress report, January-July 1988

    SciTech Connect

    Heinbockel, J. H.

    1988-06-01

    The previously constructed one dimensional model for the simulated operation of an iodine laser assumed that the perfluoroalkyl iodide gas n-C3F7I was incompressible. The present study removes this simplifying assumption and considers n-C3F7I as a compressible fluid.

  15. Quantum-trajectory analysis for charge transfer in solid materials induced by strong laser fields

    NASA Astrophysics Data System (ADS)

    Jiang, Shicheng; Yu, Chao; Yuan, Guanglu; Wu, Tong; Wang, Ziwen; Lu, Ruifeng

    2017-07-01

    We investigate the dependence of charge transfer on the intensity of driving laser field when SiO2 crystal is irradiated by an 800 nm laser. It is surprising that the direction of charge transfer undergoes a sudden reversal when the driving laser intensity exceeds critical values with different carrier-envelope phases. By applying quantum-trajectory analysis, we find that the Bloch oscillation plays an important role in charge transfer in solids. Also, we study the interaction of a strong laser with gallium nitride (GaN), which is widely used in optoelectronics. A pump-probe scheme is applied to control the quantum trajectories of the electrons in the conduction band. The signal of charge transfer is controlled successfully by means of a theoretically proposed approach.

  16. Synthesis of designed materials by laser-based direct metal deposition technique: Experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Qi, Huan

    Direct metal deposition (DMD), a laser-cladding based solid freeform fabrication technique, is capable of depositing multiple materials at desired composition which makes this technique a flexible method to fabricate heterogeneous components or functionally-graded structures. The inherently rapid cooling rate associated with the laser cladding process enables extended solid solubility in nonequilibrium phases, offering the possibility of tailoring new materials with advanced properties. This technical advantage opens the area of synthesizing a new class of materials designed by topology optimization method which have performance-based material properties. For better understanding of the fundamental phenomena occurring in multi-material laser cladding with coaxial powder injection, a self-consistent 3-D transient model was developed. Physical phenomena including laser-powder interaction, heat transfer, melting, solidification, mass addition, liquid metal flow, and species transportation were modeled and solved with a controlled-volume finite difference method. Level-set method was used to track the evolution of liquid free surface. The distribution of species concentration in cladding layer was obtained using a nonequilibrium partition coefficient model. Simulation results were compared with experimental observations and found to be reasonably matched. Multi-phase material microstructures which have negative coefficients of thermal expansion were studied for their DMD manufacturability. The pixel-based topology-optimal designs are boundary-smoothed by Bezier functions to facilitate toolpath design. It is found that the inevitable diffusion interface between different material-phases degrades the negative thermal expansion property of the whole microstructure. A new design method is proposed for DMD manufacturing. Experimental approaches include identification of laser beam characteristics during different laser-powder-substrate interaction conditions, an

  17. Theoretical model for high-power diamond laser optics using high-velocity liquid-metal jet impingement cooling

    NASA Astrophysics Data System (ADS)

    Palmer, James R.

    1993-02-01

    In 1988 I presented a paper, `Fly's Eye Modular Optic,' in the Los Angeles Symposium that described an optic for high power laser systems that provided for a modular system of hexagonal components that were independently cooled using a high velocity jet pointed normal to the back surface of the optical faceplate. In this paper we look at the use of diamond optical materials in concert with high velocity jet impingement heat transfer of various liquid metal mediums. By using this combination of techniques and materials we can push the laser damage threshold of optical components to even higher levels of absorbed flux density. The thrust of this paper is to develop a theoretical model for use on optical elements subject to very high continuous flux density lasers and to evaluate the use of commercial diamond substrates with conventional optical thin films and conventional substrates with CVD diamond films. In order to assume the very high absorbed flux densities, it is necessary to have a heat transfer technique capable of maintaining the optical component at a stable temperature and below the damage threshold of the optical materials. For the more common materials, thermal shock and subsequent failure in bi-axial shear have proven to be one of the major constituents of the optical damage. In this paper we look at the thermal shock, vis-a-vis, the melting point of some of the materials.

  18. Classification analysis of CuBr laser parameters

    SciTech Connect

    Iliev, I P; Gocheva-Ilieva, S G; Sabotinov, N V

    2009-02-28

    A statistical classification analysis of parameters of a CuBr laser emitting at 510.6 and 578.2 nm is performed for the first time based on numerous experimental data. The ten basic parameters affecting the laser output power are investigated by using the multidimensional cluster analysis. Classification tables and dendrograms for these parameters are presented. The obtained results are consistent with our previous study of laser parameters based on the multidimensional factor and regression analysis and supplement it. Some experiment-planning tasks are solved. (lasers)

  19. Theoretical analysis and experimental verification on optical rotational Doppler effect.

    PubMed

    Zhou, Hailong; Fu, Dongzhi; Dong, Jianji; Zhang, Pei; Zhang, Xinliang

    2016-05-02

    We present a theoretical model to sufficiently investigate the optical rotational Doppler effect based on modal expansion method. We find that the frequency shift content is only determined by the surface of spinning object and the reduced Doppler shift is linear to the difference of mode index between input and output orbital angular momentum (OAM) light, and linear to the rotating speed of spinning object as well. An experiment is carried out to verify the theoretical model. We explicitly suggest that the spatial spiral phase distribution of spinning object determines the frequency content. The theoretical model makes us better understand the physical processes of rotational Doppler effect, and thus has many related application fields, such as detection of rotating bodies, imaging of surface and measurement of OAM light.

  20. Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy: Theoretical framework and experimental observation

    NASA Astrophysics Data System (ADS)

    Halse, Meghan E.; Procacci, Barbara; Henshaw, Sarah-Louise; Perutz, Robin N.; Duckett, Simon B.

    2017-05-01

    We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H2) into a metal dihydride complex and then follows the time-evolution of the p-H2-derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H2-derived protons form part of an AX, AXY, AXYZ or AA‧XX‧ spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H2-derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H2-derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1H and 31P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H2-derived spin order over micro-to-millisecond timescales.

  1. Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy: Theoretical framework and experimental observation.

    PubMed

    Halse, Meghan E; Procacci, Barbara; Henshaw, Sarah-Louise; Perutz, Robin N; Duckett, Simon B

    2017-05-01

    We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H2) into a metal dihydride complex and then follows the time-evolution of the p-H2-derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H2-derived protons form part of an AX, AXY, AXYZ or AA'XX' spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H2-derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H2-derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised (1)H and (31)P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H2-derived spin order over micro-to-millisecond timescales. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Optical diagnosis and theoretical simulation of laser induced lead plasma spectrum

    SciTech Connect

    Hong Bofu; Chuan Songchen; Bao Yuanman; Xiao Song; Dong Liu

    2012-01-15

    Plasmas generated during incipient laser ablation of lead in air were studied using emission spectroscopy and fast photography by an intensified charge coupled device (ICCD) camera. An improved plasma emission model was introduced, invoking one-dimensional radiative transfer, to describe the observed emission spectra, while taking into account Gaussian intensity distribution of the laser used to form plasma. The effects of different parameters to the fitting results are discussed. The plasma temperature got by Saha-Boltzmann plot method and the electron number density got by line broadening method were compared with the fitting results. We also found that the distribution of plasma temperature is more uniform than that of the electron number density in the radial direction.

  3. Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited).

    PubMed

    Sujecki, S; Oladeji, A; Phillips, A; Seddon, A B; Benson, T M; Sakr, H; Tang, Z; Barney, E; Furniss, D; Sójka, Ł; Bereś-Pawlik, E; Scholle, K; Lamrini, S; Furberg, P

    We study the mechanism of the population inversion in mid-infrared fibre lasers based on a chalcogenide glass host doped with active lanthanide ions. Three lanthanide dopant ions are considered: terbium, dysprosium and praseodymium. We predict the relevant trivalent ion level populations and gain. The simulation parameters were obtained by fabricating and optically characterising a series of trivalent ion doped chalcogenide glass samples. We also provide simple analytical expressions that aid the design of the cascade lasing process.

  4. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    DOE PAGES

    Michael, Stephan; Chow, Weng; Schneider, Hans

    2016-05-01

    In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less

  5. Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes.

    PubMed

    Zhang, Wei; Wang, You; Cai, He; Xue, Liangping; Han, Juhong; Wang, Hongyuan; Liao, Zhiye

    2014-07-01

    The diode-pumped alkali laser (DPAL) is a new type of laser source which has been widely studied in the recent years. The temperature distribution of a sealed vapor cell, which is the crucial component in a DPAL system, produces an important effect on the output performance of a DPAL. In this paper, the strict solution of the heat conduction equation for a cesium vapor cell is obtained by using a finite difference procedure. The temperature distribution of a dummy open cell is first analyzed, and then the temperature distributions of two independent windows, regarded as the boundary conditions of solving a sealed cell, are evaluated in detail. By combining the results of the two steps together, we finally acquire the temperature distribution of a real sealed cesium vapor cell. The results reveal that the temperature gradients on both radial and longitudinal directions change with the pump power, cell radius, and absorption coefficient when the sealed cesium vapor cell is heated or pumped with the laser diodes. The conclusions are helpful for accurately evaluating the output characteristics of a DPAL.

  6. Diode Lasers and Practical Trace Analysis.

    ERIC Educational Resources Information Center

    Imasaka, Totaro; Nobuhiko, Ishibashi

    1990-01-01

    Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)

  7. Diode Lasers and Practical Trace Analysis.

    ERIC Educational Resources Information Center

    Imasaka, Totaro; Nobuhiko, Ishibashi

    1990-01-01

    Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)

  8. Analysis of Boling's laser-damage morphology

    SciTech Connect

    Sparks, M.S.

    1980-08-15

    Boling observed that his total-internal-reflection laser-damage sites in glass closely resembled the scattering cross section for small (ka << 1), perfectly conducting sphere and suggested that a very small plasma formed and grew to a larger size, still with ka << 1 satisfied. Even with ka = 1, for which the cross section is different from that observed, the scattered field still is too small to explain the damage in terms of constructive interference between the incident- and scattered fields. Furthermore, the characteristic shape of the scattering cross section that matches the damage patterns is for circular polarization or unpolarized light, in contrast to the experimental plane polarizations. Extending the ideas to include effects of the scattered field outside the glass, such as plasma formation, and to include the correct field (with interesting polarization, including longitudinal circuler polarization at certain distances from the surface) incident on the sphere may explain the experiments. Additional experiments and analysis would be useful to determine if the extended model is valid and to investigate related materials improvement, nondestructive testing, and the relation between laser damage, plasma initiation, and failure under stress, all initiated at small isolated spots.

  9. Multispectral laser imaging for advanced food analysis

    NASA Astrophysics Data System (ADS)

    Senni, L.; Burrascano, P.; Ricci, M.

    2016-07-01

    A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.

  10. Positive Action Programmes for Women. 1. A Theoretical Analysis.

    ERIC Educational Resources Information Center

    Vogel-Polsky, Eliane

    1985-01-01

    The author discusses the theoretical aspects of positive action programs for women. In looking at the results achieved by the various laws and institutional machinery introduced in Western Europe to enforce equal pay and equal treatment for men and women in employment, she concludes that no notable progress has been made over the past 10 years.…

  11. Structural analysis of direct laser written waveguides

    NASA Astrophysics Data System (ADS)

    Salter, P. S.; Jesacher, A.; Huang, L.; Liu, X.; Baum, M.; Alexeev, I.; Schmidt, M.; Booth, M. J.

    2014-03-01

    We perform structural characterisation of direct laser write (DLW) waveguides. Quantitative phase microscopy, based on solution of the transfer of intensity equation, is used to measure the cumulative refractive index change through a waveguide perpendicular to its axis. Results are compared with interferometry, cross-sectional measurements using third harmonic microscopy, and analysis of the near-field image of the mode propagating in the waveguide. We show that in many situations, notably in the presence of depth dependent spherical aberrations, the cross-section for DLW waveguides may not be assumed symmetric about the waveguide axis. This is particularly important when fabricating at depths greater than 2 mm in fused silica. Therefore additional measurements are required to fully characterise the refractive index profile.

  12. Exploring the distinction between experimental resonant modes and theoretical eigenmodes: From vibrating plates to laser cavities

    NASA Astrophysics Data System (ADS)

    Tuan, P. H.; Wen, C. P.; Yu, Y. T.; Liang, H. C.; Huang, K. F.; Chen, Y. F.

    2014-02-01

    Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity.

  13. Exploring the distinction between experimental resonant modes and theoretical eigenmodes: from vibrating plates to laser cavities.

    PubMed

    Tuan, P H; Wen, C P; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2014-02-01

    Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity.

  14. Laser cooling of the AlCl molecule with a three-electronic-level theoretical model

    NASA Astrophysics Data System (ADS)

    Wan, Mingjie; Yuan, Di; Jin, Chengguo; Wang, Fanhou; Yang, Yujie; Yu, You; Shao, Juxiang

    2016-07-01

    Feasibility of laser-cooling AlCl molecule is investigated using ab initio quantum chemistry. Potential energy curves, permanent dipole moments, and transition dipole moments for the X1Σ+, a3Π, and A1Π states are studied based on multi-reference configuration interaction plus Davidson corrections (MRCI+Q) method with ACVQZ basis set, spin-orbit coupling effects are considered at the MRCI+Q level. Highly diagonally distributed Franck-Condon factors (f00 = 0.9988 and f11 = 0.9970) and branching ratios (R00 = 0.9965, R01 = 2.85 × 10-3, R02 = 6.35 × 10-4, and R03 = 2.05 × 10-6) for the A 1 Π 1 ( ν ' = 0 ) → X 1 Σ0 + + ( ν ″ = 0 ) transition are determined. A sufficiently radiative lifetime τ (A1Π1) = 4.99 ns is predicted for rapid laser cooling. The proposed cooling wavelength is deep in the ultraviolet region at λ00 = 261.75 nm. Total emission rates for the a 3 Π 0 + → X 1 Σ0 + + , a 3 Π 1 → X 1 Σ0 + + , A1Π1 → a3Π0+, and A1Π1 → a3Π1 transitions are particularly small (˜10 s-1-650 s-1). The calculated vibrational branching loss ratio to the intermediate a3Π0+ and a3Π1 states can be negligible. The results imply the probability of laser cooling AlCl molecule with three-electronic-level.

  15. Laser cooling of the AlCl molecule with a three-electronic-level theoretical model.

    PubMed

    Wan, Mingjie; Yuan, Di; Jin, Chengguo; Wang, Fanhou; Yang, Yujie; Yu, You; Shao, Juxiang

    2016-07-14

    Feasibility of laser-cooling AlCl molecule is investigated using ab initio quantum chemistry. Potential energy curves, permanent dipole moments, and transition dipole moments for the X(1)Σ(+), a(3)Π, and A(1)Π states are studied based on multi-reference configuration interaction plus Davidson corrections (MRCI+Q) method with ACVQZ basis set, spin-orbit coupling effects are considered at the MRCI+Q level. Highly diagonally distributed Franck-Condon factors (f00 = 0.9988 and f11 = 0.9970) and branching ratios (R00 = 0.9965, R01 = 2.85 × 10(-3), R02 = 6.35 × 10(-4), and R03 = 2.05 × 10(-6)) for the A(1)Π1(ν(')=0)→X(1)Σ0(+) (+)(ν(″)=0) transition are determined. A sufficiently radiative lifetime τ (A(1)Π1) = 4.99 ns is predicted for rapid laser cooling. The proposed cooling wavelength is deep in the ultraviolet region at λ00 = 261.75 nm. Total emission rates for the a(3)Π0(+) →X(1)Σ0(+) (+), a(3)Π1→X(1)Σ0(+) (+), A(1)Π1 → a(3)Π0(+) , and A(1)Π1 → a(3)Π1 transitions are particularly small (∼10 s(-1)-650 s(-1)). The calculated vibrational branching loss ratio to the intermediate a(3)Π0(+) and a(3)Π1 states can be negligible. The results imply the probability of laser cooling AlCl molecule with three-electronic-level.

  16. Theoretical study of transverse mode selection in laser resonator with volume Bragg gratings

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Gao, Fan; Zhang, Xiang; Yuan, Xiao

    2016-11-01

    Volume Bragg grating (VBG) can be used in laser resonator to control the transverse distribution due to its excellent Bragg selectivity. The coupled-wave theory is used to analyze the angular selectivity of VBG, and the output modes of the volume Bragg resonator are simulated with the fast Fourier transform (FFT) method and the coupled-wave theory. In this paper, the volume Bragg grating is inserted into a plane-parallel resonator, the intensity distribution and diffraction losses for the mode of TEM00, TEM10 and TEM20 are simulated, and the loss difference for different modes at different angular selectivity of VBGs are discussed. At the VBG angular selectivity of 3 mrad, the diffraction loss for fundamental mode is of 6.3%, while the diffraction loss for TEM10 and TEM20 mode are 19.8% and 32.7%, respectively. Therefore, TEM10 and TEM20 can be easily suppressed if the gain is between 6.3% and 19.8%, and a fundamental transverse mode can be obtained. Besides, the simulation results show that the intensity distribution profile of the transverse modes become smooth with the insertion of VBG, but the diffraction losses of transverse modes are increasing, and the diffraction loss increases with the order number of transverse modes increasing. Moreover, the loss difference between modes is getting large under the effect of VBG. The high loss difference between different modes is good for transverse mode selection, and VBG with reasonable angular selectivity in laser resonator will force the multi-mode to operate in a single transverse mode, which may has potential applications in lasers.

  17. Four-wave mixing analysis of quantum dot semiconductor lasers for linewidth enhancement factor extraction.

    PubMed

    Lin, Chih-Hao; Lin, Hung-Hsin; Lin, Fan-Yi

    2012-01-02

    We apply a four-wave mixing analysis on a quantum dot laser to simultaneously obtain the linewidth enhancement factor α and other intrinsic laser parameters. By fitting the experimentally obtained regenerative signals and power spectra at different detuning frequencies with the respective curves analytically calculated from the rate equations, parameters including the linewidth enhancement factor, the carrier decay rate in the dots, the differential gain, and the photon decay rate can be determined all at once under the same operating conditions. In this paper, a theoretical model for the four-wave mixing analysis of the QD lasers is derived and verified. The sensitivity and accuracy of the parameter extraction using the four-wave mixing method are presented. Moreover, how each each parameters alter the shapes of the regenerative signals and the power spectra are also discussed.

  18. Secure key generation using an ultra-long fiber laser: transient analysis and experiment.

    PubMed

    Zadok, Avi; Scheuer, Jacob; Sendowski, Jacob; Yariv, Amnon

    2008-10-13

    The secure distribution of a secret key is the weakest point of shared-key encryption protocols. While quantum key distribution schemes could theoretically provide unconditional security, their practical implementation remains technologically challenging. Here we provide an extended analysis and present an experimental support of a concept for a classical key generation system, based on establishing laser oscillation between two parties, which is realized using standard fiber-optic components. In our Ultra-long Fiber Laser (UFL) system, each user places a randomly chosen, spectrally selective mirror at his/her end of a fiber laser, with the two-mirror choice representing a key bit. We demonstrate the ability of each user to extract the mirror choice of the other using a simple analysis of the UFL signal, while an adversary can only reconstruct a small fraction of the key. The simplicity of this system renders it a promising alternative for practical key distribution in the optical domain.

  19. Theoretical Calculation for the Ionization of Molecules by Short Strong Laser Pulses

    SciTech Connect

    Nagy, L.; Borbely, S.

    2011-10-03

    We have developed several calculation methods for the ionization of atoms and molecules by strong and ultrashort laser pulses, based on the numerical solution of the time dependent Schroedinger equation (TDSE) in the momentum space. We have performed calculations within the strong field approximation (Volkov) and using iterative and direct methods for solving the TDSE. The investigated molecules are H{sub 2}{sup +} and H{sub 2}O. In case of the ionization of diatomic molecules the interference effects in the ejected electron spectra due to the coherent addition of the waves associated to the electrons ejected from the vicinity of different nuclei were also analysed.

  20. Theoretical Analysis of Positional Uncertainty in Direct Georeferencing

    NASA Astrophysics Data System (ADS)

    Coskun Kiraci, Ali; Toz, Gonul

    2016-10-01

    GNSS/INS system composed of Global Navigation Satellite System and Inertial Navigation System together can provide orientation parameters directly by the observations collected during the flight. Thus orientation parameters can be obtained by GNSS/INS integration process without any need for aero triangulation after the flight. In general, positional uncertainty can be estimated with known coordinates of Ground Control Points (GCP) which require field works such as marker construction and GNSS measurement leading additional cost to the project. Here the question arises what should be the theoretical uncertainty of point coordinates depending on the uncertainties of orientation parameters. In this study the contribution of each orientation parameter on positional uncertainty is examined and theoretical positional uncertainty is computed without GCP measurement for direct georeferencing using a graphical user interface developed in MATLAB.

  1. Photoexcitation of lasers and chemical reactions for NASA missions: A theoretical study. [optical pumping in high pressure gas

    NASA Technical Reports Server (NTRS)

    Javan, A.; Guerra, M.

    1981-01-01

    The possibility of obtaining CW laser oscillation by optical pumping in the infrared at an elevated gas pressure is reviewed. A specific example utilizing a mixture of CO and NO gases is included. The gas pressures considered are in excess of several atmospheres. Laser frequency tuning over a broad region becomes possible at such elevated gas pressures due to collisional broadening of the amplifying transitions. The prior-rate and surprisal analysis are applied to obtain detailed VV and VT rates for CO and NO molecules and the transfer rates in a CO-NO gas mixture. The analysis is capable of giving temperature dependence of the rate constants. Computer estimates of the rates are presented for vibrational levels up to v = 50. The results show that in the high-lying vibrational states the VV transfer rates with Delta nu = 2 become appreciable.

  2. [Theoretical and physical aspects of excimer laser trabeculotomy (ELT) ab interno with the AIDA laser with a wave length of 308 mm].

    PubMed

    Walker, R; Specht, H

    2002-05-01

    Ablation of tissue structures containing and surrounded by water differs from tissue ablation at a surface, not only theoretically, but also in terms of outcome. In contrast to the situation often observed with surface ablation, it is shown that the trabecular meshwork in the anterior chamber of the eye can be ablated cleanly and accurately with the 308 nm Excimer laser without causing collateral thermal damage. The reason for this is that in the trabecular meshwork, the ratio of radiation-absorbing tissue to water--which absorbs very little energy--is very small. A marked cooling effect thus results, which permits the development of only a very small amount of collateral thermal damage at the boundaries of the ablation zone.

  3. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  4. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  5. Laser Resistance of Endotracheal Tubes II: ObservedTemperature Rise and Theoretical Explanation.

    PubMed

    Foth, H J

    1999-03-01

    An infrared camera was used to measure the temperature rise which takes place in endotracheal tubes exposed to a 20 W CO2 laser beam. It was seen that a metallic tube was heated up within 1 s to temperatures of 200-300°C which was very destructive to the PVC conduits inside the tube. A compound tube, on the other hand, reached temperatures of only 60°C at its inner surface after an exposure of 20 s. The experimental results can be explained by a physical model which uses the heat conduction and the heat capacities of both tubes. Whereas heat conduction in the metal tube is isotropic, heat conduction in the compound tube is anisotropic with a high conductivity along the outer surface and a low conductivity to the inside. This anisotropy and the cooling mechanism in the compound tube due to vaporising water are the reason for the high laser resistance of the tube.

  6. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  7. Experimental evidence and theoretical modeling of two-photon absorption dynamics in the reduction of intensity noise of solid-state Er:Yb lasers.

    PubMed

    El Amili, Abdelkrim; Kervella, Gaël; Alouini, Mehdi

    2013-04-08

    A theoretical and experimental investigation of the intensity noise reduction induced by two-photon absorption in a Er,Yb:Glass laser is reported. The time response of the two-photon absorption mechanism is shown to play an important role on the behavior of the intensity noise spectrum of the laser. A model including an additional rate equation for the two-photon-absorption losses is developed and allows the experimental observations to be predicted.

  8. Theoretical and experimental study on reabsorption effect and temperature characteristic of a quasi-three-level 946nm Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Wan, Yuan; Chen, Weibiao

    2015-02-01

    The influence of temperature and incident pump power on reabsorption loss is theoretically discussed. Temperature characteristic and reabsorption loss rate of a diode-pumped quasi-three-level 946 nm Nd:YAG laser are investigated. Reabsorption effect has a significant impact on laser performance. The results indicate that reabsorption loss increases as the working temperature rises and decreases with the increased incident pump power.

  9. [Analysis and experimental verification of sensitivity and SNR of laser warning receiver].

    PubMed

    Zhang, Ji-Long; Wang, Ming; Tian, Er-Ming; Li, Xiao; Wang, Zhi-Bin; Zhang, Yue

    2009-01-01

    In order to countermeasure increasingly serious threat from hostile laser in modern war, it is urgent to do research on laser warning technology and system, and the sensitivity and signal to noise ratio (SNR) are two important performance parameters in laser warning system. In the present paper, based on the signal statistical detection theory, a method for calculation of the sensitivity and SNR in coherent detection laser warning receiver (LWR) has been proposed. Firstly, the probabilities of the laser signal and receiver noise were analyzed. Secondly, based on the threshold detection theory and Neyman-Pearson criteria, the signal current equation was established by introducing detection probability factor and false alarm rate factor, then, the mathematical expressions of sensitivity and SNR were deduced. Finally, by using method, the sensitivity and SNR of the sinusoidal grating laser warning receiver developed by our group were analyzed, and the theoretic calculation and experimental results indicate that the SNR analysis method is feasible, and can be used in performance analysis of LWR.

  10. Experimental and theoretical studies of laser-induced breakdown spectroscopy emission from iron oxide: Studies of atmospheric effects

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Barefield, J. E.; Judge, E. J.; Campbell, K.; Johns, H. M.; Kilcrease, D. P.; McInroy, R.; Clegg, S. M.

    2016-08-01

    We report on a comprehensive study of the emission spectra from laser-induced breakdown spectroscopy (LIBS) measurements on iron oxide. Measurements have been made of the emission from Fe2O3 under atmospheres of air, He, and Ar, and at different atmospheric pressures. The effect of varying the time delay of the measurement is also explored. Theoretical calculations were performed to analyze the plasma conditions and find that a reasonably consistent picture of the change in plasma temperature and density for different atmospheric conditions can be reached. We also investigate the sensitivity of the OI 777 nm emission lines to the plasma conditions, something that has not been explored in detail in the previous work. Finally, we also show that LIBS can be used to differentiate between FeO and Fe2O3 by examining the ratio of the intensities of selected Fe emission to O emission lines.

  11. Theoretical and experimental study of laser radiation propagating in a medium with thermally induced birefringence and cubic nonlinearity.

    PubMed

    Kuzmina, M S; Martyanov, M A; Poteomkin, A K; Khazanov, E A; Shaykin, A A

    2011-10-24

    We consider a problem of laser radiation propagating in a medium with birefringence of two types: linear birefringence independent of intensity and polarization, and intensity and polarization dependent circular birefringence caused by cubic nonlinearity. It is shown theoretically and experimentally that the efficiency of the broadly employed method of linear depolarization compensation by means of a 90° polarization rotator decreases with increasing В-integral (nonlinear phase incursion induced by cubic nonlinearity). The accuracy of polarization transformation by means of a half-wave and a quarter-wave plate also decreases if В > 1. By the example of a λ/4 plate it is shown that this parasitic effect may be suppressed considerably by choosing an optimal angle of inclination of the optical axis of the plate.

  12. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    PubMed

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide.

  13. Theoretical and experimental analysis on effect of porous silicon surface treatment in multicrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Khezami, Lotfi; Al Megbel, Abdulrahman Omar; Jemai, Abdelbasset Bessadok; Rabha, Mohamed Ben

    2015-10-01

    As widely known in silicon-based solar cells, the intrinsic parameters are decisive factors for internal quantum efficiency (IQE) and solar cells performances. Particularly, the front surface recombination velocity is one of the most important electrical parameters used to quantify the optoelectronic quality of the solar cells. In this study, the impact of the front surface recombination velocities (Sf) and anti-reflection coating are examined. Theoretical analysis shows that a decrease in Sf enhances the IQE for photons with shorter wavelengths (400-700 nm). Cells with front porous silicon treatment (PS) was made and studied under ambient condition to improve performance of solar cells. In fact, internal quantum efficiency of mc-Si solar cells with PS was enhanced in shorter wavelengths, while the reflectivity was reduced to about 7% after PS treatment and conversion efficiency was improved by about 5% compared with conventional mc-Si solar cells. Furthermore, the laser-beam-induced current (LBIC) mapping shows that the PS treatment improves their quantum response.

  14. Imaging and analysis of photomechanical effects induced in water by high-power laser-target interaction

    NASA Astrophysics Data System (ADS)

    Siano, S.; Pini, R.; Salimbeni, R.; Vannini, M.

    1996-05-01

    The kinetics of cavitation and associated photo-mechanical effects induced by underwater pulsed-laser irradiation of solid targets has been studied experimentally and analyzed with theoretical methods. A xenon-chloride excimer laser of 150 ns pulse duration has been utilized to produce ablation and local photofragmentation of artificial samples of hard tissues at fluences of 12 24 J/cm2. The evolution of pressure wave and cavitation formations developing in the liquid from the target surface after laser irradiation has been observed with a time-resolved imaging technique employing a pump-probe laser arrangement. The analysis of experimental results has been performed by using the theoretical model of “point explosion” that has been successfully applied to fit the cavitation kinetics, providing also quantitative information on the energy transfer during photo-acoustic interactions.

  15. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  16. Numerical and theoretical study of the generation of extreme ultraviolet radiation by relativistic laser interaction with a grating

    SciTech Connect

    Lavocat-Dubuis, X.; Matte, J.-P.

    2010-09-15

    The generation of harmonics by the interaction of a femtosecond, relativistic intensity laser pulse with a grating of subwavelength periodicity was studied numerically and theoretically. For normal incidence, strong, coherent emission at the wavelength of the grating period and its harmonics is obtained, nearly parallel to the target surface, due to relativistic electron bunches emanating from each protuberance. For oblique incidence (30 deg.), only even harmonics of the grating periodicity are seen, but with an even higher intensity. This is due to constructive interference of the emission from the grating protuberances. The emission along the grating surface is composed of trains of attosecond pulses; therefore there is no need to use a filter. An efficiency greater than 10{sup -4} is obtained for the 24th harmonic. The conversion efficiency is fairly constant when the similarity parameter S=n{sub e}/(a{sub 0}n{sub c})({proportional_to}n{sub e{lambda}L}/I{sub L}{sup 1/2}) is held fixed, and is optimum when S{approx_equal}4. Here, n{sub e} and n{sub c} are the electron density and the critical density; a{sub 0}=eE{sub L}/(m{sub e{omega}L}c) is the quiver momentum in the laser field E{sub L} normalized to m{sub e}c.

  17. Theoretical study on enhanced differential gain and extremely reduced linewidth enhancement factor in quantum-well lasers

    NASA Astrophysics Data System (ADS)

    Yamanaka, Takayuki; Yoshikuni, Yuzo; Yokoyama, Kiyoyuki; Lui, Wayne; Seki, Shunji

    1993-06-01

    Low-chirped lasing operation in semiconductor lasers is desirable for high-speed high-bit-rate optical transmission. This paper addresses this issue with a theoretical investigation of possibility of extreme reductions in the linewidth enhancement factor (alpha factor) in quantum-well (QW) lasers to a value of zero. We show that in reducing the alpha factor it is essential that lasing oscillation be around the peak of the differential gain spectrum, not in the vicinity of the gain peak. The condition for such lasing oscillation is analytically derived. The wavelength dependence of the material gain, the differential gain, and the alpha factor are calculated in detail taking into account the effects of compressive-strain and band mixing on the valence subband structure. Along with the derived condition, we also discuss the effect of p-type modulation doping in compressive-strained QW's. It is shown that alpha-factor, the anomalous dispersion part in the spectrum, crosses zero in the region of positive material gain, which makes it possible to attain virtual chirpless operation by detuning.

  18. Theoretical and experimental analyses of the performance of two-color laser ranging systems

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Gardner, C. S.

    1985-01-01

    The statistical properties of the signals reflected from the retroreflector equipped satellites were studied. It is found that coherence interference between pulse reflections from retroreflectors of different ranges on the array platform is the primary cause of signal fluctuations. The performance of a cross-correlation technique to estimate the differential propagation time is analyzed by considering both shot noise and speckle. For the retroreflector arrays, timing performance is dominated by interference induced speckle, and the differential propagation time cannot be resolved to better than the pulse widths of the received signals. The differential timing measurements obtained over a horizontal path are analyzed. The ocean-reflected pulse measurements obtained from the airborne two-color laser altimeter experiment are presented.

  19. Air-coupled laser vibrometry: analysis and applications.

    PubMed

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2009-03-01

    Acousto-optic interaction between a narrow laser beam and acoustic waves in air is analyzed theoretically. The photoelastic relation in air is used to derive the phase modulation of laser light in air-coupled reflection vibrometry induced by angular spatial spectral components comprising the acoustic beam. Maximum interaction was found for the zero spatial acoustic component propagating normal to the laser beam. The angular dependence of the imaging efficiency is determined for the axial and nonaxial acoustic components with the regard for the laser beam steering in the scanning mode. The sensitivity of air-coupled vibrometry is compared with conventional "Doppler" reflection vibrometry. Applications of the methodology for visualization of linear and nonlinear air-coupled fields are demonstrated.

  20. Sparsity analysis of DS spread spectrum signals via theoretical analysis and dictionary learning

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Wu, Bin; Wang, Bo

    2017-04-01

    For the purpose of solving the problem of high sampling rate and massive data processing brought by high bandwidth in the field of Aerospace Communication, researchers applied CS theory to spread spectrum signal processing. Sparsity analysis is the prerequisite for the application of CS theory. This paper studies the sparsity of the DS spread spectrum signals, which is the most common kind of signal in the current TT&C systems. Based on the theoretical analysis we get the sparse dictionary, then the dictionary is optimized by K-SVD dictionary learning algorithm. The simulation results show that the two signals have strong sparsity in the constructed sparse base dictionary, which lays a theoretical foundation for the TT&C spread spectrum signal processing based on CS theory.

  1. Theoretical analysis of optical conveyor belt with plasmonic nanodisk array

    NASA Astrophysics Data System (ADS)

    Lee, Changhun; Kim, Donghyun

    2017-07-01

    Plasmonic optical trapping allows trapping and manipulation of micro- and even nanometer-sized particles using localized and enhanced electric fields by plasmon resonance in metallic nanostructure. We consider an optical conveyor belt consisting of an array of nanodisks acting as optical tweezers with different sizes to implement a system to trap and manipulate particles through a laser-induced gradient force. An electric field induced and localized at each optical resonator is sensitive to the wavelength and polarization. The maximum electric field is enhanced at resonant wavelength depending on the shape and size of the plasmonic nanostructure used for light localization. By changing the light wavelength and polarization, the position of localized light induced in the disk can be determined and nanoparticles can be moved to a desired location through the variation of resonance conditions without any mechanical forces.

  2. Extending and automating a Systems-Theoretic hazard analysis for requirements generation and analysis.

    SciTech Connect

    Thomas, John

    2012-05-01

    Systems Theoretic Process Analysis (STPA) is a powerful new hazard analysis method designed to go beyond traditional safety techniques - such as Fault Tree Analysis (FTA) - that overlook important causes of accidents like flawed requirements, dysfunctional component interactions, and software errors. While proving to be very effective on real systems, no formal structure has been defined for STPA and its application has been ad-hoc with no rigorous procedures or model-based design tools. This report defines a formal mathematical structure underlying STPA and describes a procedure for systematically performing an STPA analysis based on that structure. A method for using the results of the hazard analysis to generate formal safety-critical, model-based system and software requirements is also presented. Techniques to automate both the analysis and the requirements generation are introduced, as well as a method to detect conflicts between the safety and other functional model-based requirements during early development of the system.

  3. Inter-satellite laser link simulation analysis

    NASA Astrophysics Data System (ADS)

    Tong, Lanjuan; Guan, Hui; Wang, Zhilin

    2015-11-01

    The characteristic of satellite communication link was firstly described and four application modes were put forward. By comparison, it is suggested that microwave link is used in satellite-to-ground communication and laser link is used in inter-satellite communication. Secondly the condition and composition of laser link establishment was analyzed and laser link model was set up, and the principle and composition of APT system was described. Finally, based on STK and MATLAB platform, the process of inter-satellite laser link establishment was designed, and setting the scene of TDRS capturing and tracking user's satellite as an example, simulation was realized and demonstrated.

  4. Anion order in perovskites: a group-theoretical analysis.

    PubMed

    Talanov, M V; Shirokov, V B; Talanov, V M

    2016-03-01

    Anion ordering in the structure of cubic perovskite has been investigated by the group-theoretical method. The possibility of the existence of 261 ordered low-symmetry structures, each with a unique space-group symmetry, is established. These results include five binary and 14 ternary anion superstructures. The 261 idealized anion-ordered perovskite structures are considered as aristotypes, giving rise to different derivatives. The structures of these derivatives are formed by tilting of BO6 octahedra, distortions caused by the cooperative Jahn-Teller effect and other physical effects. Some derivatives of aristotypes exist as real substances, and some as virtual ones. A classification of aristotypes of anion superstructures in perovskite is proposed: the AX class (the simultaneous ordering of A cations and anions in cubic perovskite structure), the BX class (the simultaneous ordering of B cations and anions) and the X class (the ordering of anions only in cubic perovskite structure). In most perovskites anion ordering is accompanied by cation ordering. Therefore, the main classes of anion order in perovskites are the AX and BX classes. The calculated structures of some anion superstructures are reported. Comparison of predictions and experimentally investigated anion superstructures shows coherency of theoretical and experimental results.

  5. An information theoretic synthesis and analysis of Compton profiles

    NASA Astrophysics Data System (ADS)

    Sears, Stephen B.; Gadre, Shridhar R.

    1981-11-01

    The information theoretic technique of entropy maximization is applied to Compton profile (CP) data, employing single and double distribution moments theoretic quantities—Shannon entropies, information contents, and surprisals—are also presented. Based upon the ''sum'' constraint

  6. Ultrasensitive laser spectroscopy for breath analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Bielecki, Z.; Stacewicz, T.; Mikołajczyk, J.; Nowakowski, M.

    2012-03-01

    At present there are many reasons for seeking new methods and technologies that aim to develop new and more perfect sensors for different chemical compounds. However, the main reasons are safety ensuring and health care. In the paper, recent advances in the human breath analysis by the use of different techniques are presented. We have selected non-invasive ones ensuring detection of pathogenic changes at a molecular level. The presence of certain molecules in the human breath is used as an indicator of a specific disease. Thus, the analysis of the human breath is very useful for health monitoring. We have shown some examples of diseases' biomarkers and various methods capable of detecting them. Described methods have been divided into non-optical and optical methods. The former ones are the following: gas chromatography, flame ionization detection, mass spectrometry, ion mobility spectrometry, proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry. In recent twenty years, the optical methods have become more popular, especially the laser techniques. They have a great potential for detection and monitoring of the components in the gas phase. These methods are characterized by high sensitivity and good selectivity. The spectroscopic sensors provide the opportunity to detect specific gases and to measure their concentration either in a sampling place or a remote one. Multipass spectroscopy, cavity ring-down spectroscopy, and photo-acoustic spectroscopy were characterised in the paper as well.

  7. Task Analysis in Instructional Program Development. Theoretical Paper No. 52.

    ERIC Educational Resources Information Center

    Bernard, Michael E.

    A review of task analysis procedures beginning with the military training and systems development approach and covering the more recent work of Gagne, Klausmeier, Merrill, Resnick, and others is presented along with a plan for effective instruction based on the review of task analysis. Literature dealing with the use of task analysis in programmed…

  8. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects

    NASA Astrophysics Data System (ADS)

    Xu, Jiangming; Lou, Zhaokai; Ye, Jun; Wu, Jian; Leng, Jinyong; Xiao, Hu; Zhang, Hanwei; Zhou, Pu

    2017-03-01

    We present a hundred-watt-level linearly-polarized random fiber laser (RFL) pumped by incoherent broadband amplified spontaneous emission (ASE) source and prospect the power scaling potential theoretically. The RFL employs half-opened cavity structure which is composed by a section of 330 m polarization maintained (PM) passive fiber and two PM high reflectivity fiber Bragg gratings. The 2nd order Stokes light centered at 1178 nm reaches the pump limited maximal power of 100.7 W with a full width at half-maximum linewidth of 2.58 nm and polarization extinction ratio of 23.5 dB. The corresponding ultimate quantum efficiency of pump to 2nd order Stokes light is 89.01%. To the best of our knowledge, this is the first demonstration of linearly-polarized high-order RFL with hundred-watt output power. Furthermore, the theoretical investigation indicates that 300 W-level linearly-polarized single-mode 1st order Stokes light can be obtained from incoherently pumped RFL with 100 m PM passive fiber.

  9. Analysis and testing of a new method for drop size measurement using laser scatter interferometry

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1984-01-01

    Research was conducted on a laser light scatter detection method for measuring the size and velocity of spherical particles. The method is based upon the measurement of the interference fringe pattern produced by spheres passing through the intersection of two laser beams. A theoretical analysis of the method was carried out using the geometrical optics theory. Experimental verification of the theory was obtained by using monodisperse droplet streams. Several optical configurations were tested to identify all of the parametric effects upon the size measurements. Both off-axis forward and backscatter light detection were utilized. Simulated spray environments and fuel spray nozzles were used in the evaluation of the method. The measurements of the monodisperse drops showed complete agreement with the theoretical predictions. The method was demonstrated to be independent of the beam intensity and extinction resulting from the surrounding drops. Signal processing concepts were considered and a method was selected for development.

  10. Analysis of surfaces, films and multilayers by resonant laser ablation

    SciTech Connect

    Allen, T.M.; Smith, C.H.; Kelly, P.B.; Anderson, J.E.; Eiden, G.C.; Garrett, A.W.; Gill, C.G.; Hemberger, P.H.; Nogar, N.S.

    1995-02-01

    In this manuscript we review briefly the history of Resonant Laser Ablation (RLA), and discuss some current ideas regarding sample preparation, laser parameters, and mechanisms. We also discuss current applications including spectral analysis of trace components, depth profiling of thin films and multilayer structures, and the use of RLA with the Ion Trap Mass Spectrometer (ITMS).

  11. A Theoretical Analysis of the k-Satisfiability Search Space

    NASA Astrophysics Data System (ADS)

    Sutton, Andrew M.; Howe, Adele E.; Whitley, L. Darrell

    Local search algorithms perform surprisingly well on the k-satisfiability (k-SAT) problem. However, few theoretical analyses of the k-SAT search space exist. In this paper we study the search space of the k-SAT problem and show that it can be analyzed by a decomposition. In particular, we prove that the objective function can be represented as a superposition of exactly k elementary landscapes. We show that this decomposition allows us to immediately compute the expectation of the objective function evaluated across neighboring points. We use this result to prove previously unknown bounds for local maxima and plateau width in the 3-SAT search space. We compute these bounds numerically for a number of instances and show that they are non-trivial across a large set of benchmarks.

  12. Theoretical analysis of tin incorporated group IV alloy based QWIP

    NASA Astrophysics Data System (ADS)

    Pareek, Prakash; Das, Mukul K.; Kumar, S.

    2017-07-01

    Detailed theoretical investigation on the frequency response, responsivity and detectivity of tin incorporated GeSn based quantum well infrared photodetector (QWIP) is presented in this paper. Rate equation and continuity equation in the well are solved simultaneously to obtained photo generated current. Quantum mechanical carrier transport like carrier capture in QW, escape of carrier from the well due to thermionic emission and tunneling are considered in this calculation. Impact of Sn composition in the GeSn well on the frequency response, bandwidth, responsivity and detectivity are studied. Results show that Sn concentration and applied bias have important role on the performance of the device. Significant bandwidth is obtained at low reverse bias voltage, e.g., 150 GHz is obtained at 0.14 V bias for single Ge0.83Sn0.17 layer. Detectivity, in the range of 107 cm Hz1/2 W-1 is obtained for particular choice of Sn-composition and bias.

  13. Theoretical analysis of transcription process with polymerase stalling

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Zhang, Yunxin

    2015-05-01

    Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.

  14. Theoretical analysis of transcription process with polymerase stalling.

    PubMed

    Li, Jingwei; Zhang, Yunxin

    2015-05-01

    Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.

  15. Theoretical and software considerations for nonlinear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1983-01-01

    In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.

  16. Quantitative study of laser damage probabilities in silica and calibrated liquids: comparison with theoretical prediction

    NASA Astrophysics Data System (ADS)

    Natoli, Jean-Yves; Gallais, Laurent; Akhouayri, Hassan; Amra, Claude

    2001-04-01

    The experimental setup developed in Marseille for the laser damage testing allows a localized study. Indeed the use of a 25 micrometers for the waist of the focused beam, permits to de-correlate the extrinsic damage due to the micronic defects (visible under microscope) for the intrinsic ones (non-detectable before damage with conventional imaging systems). The probability of damage versus incident fluence is an S curve given in the range of two thresholds, SL and SH, the low and high damage thresholds. Most often the shape of probability damage curves are different between the intrinsic and the extrinsic cases. In our arrangement the beam size and the extrinsic defect size are in the same range, so by pointing at these visible defects it is possible to determine their specific threshold, and the density of defect is directly obtained from the optical image. Therefore a specific study of the intrinsic zones by pointing the beam at a zone free of extrinsic point, allows us to focus our attention only on these invisible defects. These particles are supposed to be nano-sized. The highlight and the identification of these nono-precursors is the aim of this paper.

  17. Theoretical modeling of laser-induced plasmas using the ATOMIC code

    NASA Astrophysics Data System (ADS)

    Colgan, James; Johns, Heather; Kilcrease, David; Judge, Elizabeth; Barefield, James, II; Clegg, Samuel; Hartig, Kyle

    2014-10-01

    We report on efforts to model the emission spectra generated from laser-induced breakdown spectroscopy (LIBS). LIBS is a popular and powerful method of quickly and accurately characterizing unknown samples in a remote manner. In particular, LIBS is utilized by the ChemCam instrument on the Mars Science Laboratory. We model the LIBS plasma using the Los Alamos suite of atomic physics codes. Since LIBS plasmas generally have temperatures of somewhere between 3000 K and 12000 K, the emission spectra typically result from the neutral and singly ionized stages of the target atoms. We use the Los Alamos atomic structure and collision codes to generate sets of atomic data and use the plasma kinetics code ATOMIC to perform LTE or non-LTE calculations that generate level populations and an emission spectrum for the element of interest. In this presentation we compare the emission spectrum from ATOMIC with an Fe LIBS laboratory-generated plasma as well as spectra from the ChemCam instrument. We also discuss various physics aspects of the modeling of LIBS plasmas that are necessary for accurate characterization of the plasma, such as multi-element target composition effects, radiation transport effects, and accurate line shape treatments. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  18. Optimization of the ionization time of an atom with tailored laser pulses: a theoretical study

    NASA Astrophysics Data System (ADS)

    Kammerlander, David; Castro, Alberto; Marques, Miguel A. L.

    2017-05-01

    How fast can a laser pulse ionize an atom? We address this question by considering pulses that carry a fixed time-integrated energy per-area, and finding those that achieve the double requirement of maximizing the ionization that they induce, while having the shortest duration. We formulate this double-objective quantum optimal control problem by making use of the Pareto approach to multi-objective optimization, and the differential evolution genetic algorithm. The goal is to find out how a precise time-profiling of ultra-fast, large-bandwidth pulses may speed up the ionization process. We work on a simple one-dimensional model of hydrogen-like atoms (the Pöschl-Teller potential) that allows to tune the number of bound states that play a role in the ionization dynamics. We show how the detailed shape of the pulse accelerates the ionization, and how the presence or absence of bound states influences the velocity of the process.

  19. Adequacy of laser diffraction for soil particle size analysis.

    PubMed

    Fisher, Peter; Aumann, Colin; Chia, Kohleth; O'Halloran, Nick; Chandra, Subhash

    2017-01-01

    Sedimentation has been a standard methodology for particle size analysis since the early 1900s. In recent years laser diffraction is beginning to replace sedimentation as the prefered technique in some industries, such as marine sediment analysis. However, for the particle size analysis of soils, which have a diverse range of both particle size and shape, laser diffraction still requires evaluation of its reliability. In this study, the sedimentation based sieve plummet balance method and the laser diffraction method were used to measure the particle size distribution of 22 soil samples representing four contrasting Australian Soil Orders. Initially, a precise wet riffling methodology was developed capable of obtaining representative samples within the recommended obscuration range for laser diffraction. It was found that repeatable results were obtained even if measurements were made at the extreme ends of the manufacturer's recommended obscuration range. Results from statistical analysis suggested that the use of sample pretreatment to remove soil organic carbon (and possible traces of calcium-carbonate content) made minor differences to the laser diffraction particle size distributions compared to no pretreatment. These differences were found to be marginally statistically significant in the Podosol topsoil and Vertosol subsoil. There are well known reasons why sedimentation methods may be considered to 'overestimate' plate-like clay particles, while laser diffraction will 'underestimate' the proportion of clay particles. In this study we used Lin's concordance correlation coefficient to determine the equivalence of laser diffraction and sieve plummet balance results. The results suggested that the laser diffraction equivalent thresholds corresponding to the sieve plummet balance cumulative particle sizes of < 2 μm, < 20 μm, and < 200 μm, were < 9 μm, < 26 μm, < 275 μm respectively. The many advantages of laser diffraction for soil particle size analysis

  20. Theoretical Analysis Of A Sagnac Fiber Optic Interferometer

    NASA Astrophysics Data System (ADS)

    Szustakowski, Mieczyslaw; Jaroszewicz, Leszek R.

    1990-04-01

    The analytical description of a closed optical fiber interferometer system based on Jones calculus is presented. This calculus adapation for the optical fiber elements analysis allows for a uniform description of system built on the basis of a single-mode optical fiber. The analysis of a Sagnac fiber optic interferometer is an example of this method application.

  1. Cold collisions of ground-state calcium atoms in a laser field: A theoretical study

    SciTech Connect

    Bussery-Honvault, Beatrice; Launay, Jean-Michel; Moszynski, Robert

    2003-09-01

    State-of-the-art ab initio techniques have been applied to compute the potential-energy curves for the ground X {sup 1}{sigma}{sub g}{sup +} and excited {sup 1}{pi}{sub g}(4s3d) states of the calcium dimer in the Born-Oppenheimer approximation. The weakly bound ground state was calculated by symmetry-adapted perturbation theory, while the strongly bound excited state was computed using a combination of the linear-response theory within the coupled-cluster singles and doubles framework for the core-valence electronic correlation and of the full configuration interaction for the valence-valence correlation. The ground-state potential has been corrected by considering the relativistic terms resulting from the first-order many-electron Breit theory, and the retardation corrections. The magnetic electronic transition dipole moment governing the {sup 1}{pi}{sub g}(leftarrow){sup 1}{sigma}{sub g}{sup +} transitions has been obtained as the first residue of the polarization propagator computed with the coupled-cluster method restricted to single and double excitations. The computed energies and transition moments have been analytically fitted and used in the dynamical calculations of the rovibrational energy levels, ground-state scattering length, photoassociation intensities at ultralow temperatures, and spontaneous emission coefficients from the {sup 1}{pi}{sub g}(4s3d) to the X {sup 1}{sigma}{sub g}{sup +} state. The spectroscopic constants of the theoretical ground-state potential are in a good agreement with the experimental values derived from the Fourier-transform spectra [O. Allard et al., Eur. Phys. J. D (to be published)]. The theoretical s-wave scattering length for the ground state is a=44 bohrs, suggesting that it should be possible to obtain a stable Bose-Einstein condensate of calcium atoms. Finally, the computed photoassociation intensities and spontaneous emission coefficients suggest that it should be possible to obtain cold calcium molecules by

  2. Theoretical analysis of single molecule spectroscopy lineshapes of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Devi, Murali

    Conjugated Polymers(CPs) exhibit a wide range of highly tunable optical properties. Quantitative and detailed understanding of the nature of excitons responsible for such a rich optical behavior has significant implications for better utilization of CPs for more efficient plastic solar cells and other novel optoelectronic devices. In general, samples of CPs are plagued with substantial inhomogeneous broadening due to various sources of disorder. Single molecule emission spectroscopy (SMES) offers a unique opportunity to investigate the energetics and dynamics of excitons and their interactions with phonon modes. The major subject of the present thesis is to analyze and understand room temperature SMES lineshapes for a particular CP, called poly(2,5-di-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (DEH-PPV). A minimal quantum mechanical model of a two-level system coupled to a Brownian oscillator bath is utilized. The main objective is to identify the set of model parameters best fitting a SMES lineshape for each of about 200 samples of DEH-PPV, from which new insight into the nature of exciton-bath coupling can be gained. This project also entails developing a reliable computational methodology for quantum mechanical modeling of spectral lineshapes in general. Well-known optimization techniques such as gradient descent, genetic algorithms, and heuristic searches have been tested, employing an L2 measure between theoretical and experimental lineshapes for guiding the optimization. However, all of these tend to result in theoretical lineshapes qualitatively different from experimental ones. This is attributed to the ruggedness of the parameter space and inadequateness of the L2 measure. On the other hand, when the dynamic reduction of the original parameter space to a 2-parameter space through feature searching and visualization of the search space paths using directed acyclic graphs(DAGs), the qualitative nature of the fitting improved significantly. For a more

  3. [Laser Raman spectrum analysis of carbendazim pesticide].

    PubMed

    Wang, Xiao-bin; Wu, Rui-mei; Liu, Mu-hua; Zhang, Lu-ling; Lin, Lei; Yan, Lin-yuan

    2014-06-01

    Raman signal of solid and liquid carbendazim pesticide was collected by laser Raman spectrometer. The acquired Raman spectrum signal of solid carbendazim was preprocessed by wavelet analysis method, and the optimal combination of wavelet denoising parameter was selected through mixed orthogonal test. The results showed that the best effect was got with signal to noise ratio (SNR) being 62.483 when db2 wavelet function was used, decomposition level was 2, the threshold option scheme was 'rigisure' and reset mode was 'sln'. According to the vibration mode of different functional groups, the de-noised Raman bands could be divided into 3 areas: 1 400-2 000, 700-1 400 and 200-700 cm(-1). And the de-noised Raman bands were assigned with and analyzed. The characteristic vibrational modes were gained in different ranges of wavenumbers. Strong Raman signals were observed in the Raman spectrum at 619, 725, 964, 1 022, 1 265, 1 274 and 1 478 cm(-1), respectively. These characteristic vibrational modes are characteristic Raman peaks of solid carbendazim pesticide. Find characteristic Raman peaks at 629, 727, 1 001, 1 219, 1 258 and 1 365 cm(-1) in Raman spectrum signal of liquid carbendazim. These characteristic peaks were basically tallies with the solid carbendazim. The results can provide basis for the rapid screening of pesticide residue in food and agricultural products based on Raman spectrum.

  4. Graph theoretical analysis of EEG functional connectivity during music perception.

    PubMed

    Wu, Junjie; Zhang, Junsong; Liu, Chu; Liu, Dongwei; Ding, Xiaojun; Zhou, Changle

    2012-11-05

    The present study evaluated the effect of music on large-scale structure of functional brain networks using graph theoretical concepts. While most studies on music perception used Western music as an acoustic stimulus, Guqin music, representative of Eastern music, was selected for this experiment to increase our knowledge of music perception. Electroencephalography (EEG) was recorded from non-musician volunteers in three conditions: Guqin music, noise and silence backgrounds. Phase coherence was calculated in the alpha band and between all pairs of EEG channels to construct correlation matrices. Each resulting matrix was converted into a weighted graph using a threshold, and two network measures: the clustering coefficient and characteristic path length were calculated. Music perception was found to display a higher level mean phase coherence. Over the whole range of thresholds, the clustering coefficient was larger while listening to music, whereas the path length was smaller. Networks in music background still had a shorter characteristic path length even after the correction for differences in mean synchronization level among background conditions. This topological change indicated a more optimal structure under music perception. Thus, prominent small-world properties are confirmed in functional brain networks. Furthermore, music perception shows an increase of functional connectivity and an enhancement of small-world network organizations.

  5. A game theoretic analysis of research data sharing

    PubMed Central

    Wiersma, Paulien H.; van Weerden, Anne; Schieving, Feike

    2015-01-01

    While reusing research data has evident benefits for the scientific community as a whole, decisions to archive and share these data are primarily made by individual researchers. In this paper we analyse, within a game theoretical framework, how sharing and reuse of research data affect individuals who share or do not share their datasets. We construct a model in which there is a cost associated with sharing datasets whereas reusing such sets implies a benefit. In our calculations, conflicting interests appear for researchers. Individual researchers are always better off not sharing and omitting the sharing cost, at the same time both sharing and not sharing researchers are better off if (almost) all researchers share. Namely, the more researchers share, the more benefit can be gained by the reuse of those datasets. We simulated several policy measures to increase benefits for researchers sharing or reusing datasets. Results point out that, although policies should be able to increase the rate of sharing researchers, and increased discoverability and dataset quality could partly compensate for costs, a better measure would be to directly lower the cost for sharing, or even turn it into a (citation-) benefit. Making data available would in that case become the most profitable, and therefore stable, strategy. This means researchers would willingly make their datasets available, and arguably in the best possible way to enable reuse. PMID:26401453

  6. A theoretical analysis of water transport through chondrocytes.

    PubMed

    Ateshian, G A; Costa, K D; Hung, C T

    2007-01-01

    Because of the avascular nature of adult cartilage, nutrients and waste products are transported to and from the chondrocytes by diffusion and convection through the extracellular matrix. The convective interstitial fluid flow within and around chondrocytes is poorly understood. This theoretical study demonstrates that the incorporation of a semi-permeable membrane when modeling the chondrocyte leads to the following findings: under mechanical loading of an isolated chondrocyte the intracellular fluid pressure is on the order of tens of Pascals and the transmembrane fluid outflow, on the order of picometers per second, takes several days to subside; consequently, the chondrocyte behaves practically as an incompressible solid whenever the loading duration is on the order of minutes or hours. When embedded in its extracellular matrix (ECM), the chondrocyte response is substantially different. Mechanical loading of the tissue leads to a fluid pressure difference between intracellular and extracellular compartments on the order of tens of kilopascals and the transmembrane outflow, on the order of a nanometer per second, subsides in about 1 h. The volume of the chondrocyte decreases concomitantly with that of the ECM. The interstitial fluid flow in the extracellular matrix is directed around the cell, with peak values on the order of tens of nanometers per second. The viscous fluid shear stress acting on the cell surface is several orders of magnitude smaller than the solid matrix shear stresses resulting from the ECM deformation. These results provide new insight toward our understanding of water transport in chondrocytes.

  7. Theoretical limits on detection and analysis of small earthquakes

    NASA Astrophysics Data System (ADS)

    Kwiatek, Grzegorz; Ben-Zion, Yehuda

    2016-08-01

    We investigate theoretical limits on detection and reliable estimates of source characteristics of small earthquakes using synthetic seismograms for shear/tensile dislocations on kinematic circular ruptures and observed seismic noise and properties of several acquisition systems (instrument response, sampling rate). Simulated source time functions for shear/tensile dislocation events with different magnitudes, static stress drops, and rupture velocities provide estimates for the amplitude and frequency content of P and S phases at various observation angles. The source time functions are convolved with a Green's function for a homogenous solid assuming given P, S wave velocities and attenuation coefficients and a given instrument response. The synthetic waveforms are superposed with average levels of the observed ambient seismic noise up to 1 kHz. The combined seismograms are used to calculate signal-to-noise ratios and expected frequency content of P and S phases at various locations. The synthetic simulations of signal-to-noise ratio reproduce observed ratios extracted from several well-recorded data sets. The results provide guidelines on detection of small events in various geological environments, along with information relevant to reliable analyses of earthquake source properties.

  8. A computational and theoretical analysis of falling frequency VLF emissions

    NASA Astrophysics Data System (ADS)

    Nunn, David; Omura, Yoshiharu

    2012-08-01

    Recently much progress has been made in the simulation and theoretical understanding of rising frequency triggered emissions and rising chorus. Both PIC and Vlasov VHS codes produce risers in the region downstream from the equator toward which the VLF waves are traveling. The VHS code only produces fallers or downward hooks with difficulty due to the coherent nature of wave particle interaction across the equator. With the VHS code we now confine the interaction region to be the region upstream from the equator, where inhomogeneity factor S is positive. This suppresses correlated wave particle interaction effects across the equator and the tendency of the code to trigger risers, and permits the formation of a proper falling tone generation region. The VHS code now easily and reproducibly triggers falling tones. The evolution of resonant particle current JE in space and time shows a generation point at -5224 km and the wavefield undergoes amplification of some 25 dB in traversing the nonlinear generation region. The current component parallel to wave magnetic field (JB) is positive, whereas it is negative for risers. The resonant particle trap shows an enhanced distribution function or `hill', whereas risers have a `hole'. According to recent theory (Omura et al., 2008, 2009) sweeping frequency is due primarily to the advective term. The nonlinear frequency shift term is now negative (˜-12 Hz) and the sweep rate of -800 Hz/s is approximately nonlinear frequency shift divided by TN, the transition time, of the order of a trapping time.

  9. Theoretical analysis of high-resolution digital mammography

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Sankararaman; Karellas, Andrew; Vedantham, Srinivasan; Sechopoulos, Ioannis

    2006-06-01

    The performance of a high-resolution charge coupled device-based full-field digital mammography imager was analysed using a mathematical framework based on an adaptation of cascaded linear systems theory described by other investigators. This work has been conducted in order to understand the impact of various design parameters on the physical performance characteristics of the imager. Specifically, the effect of pixel size, scintillator thickness and packing density, x-ray spectra, air kerma, dark current, charge integration time, and pixel fill-factor on the frequency dependent detective quantum efficiency was studied using a charge-coupled device as a reference platform. The imaging system was modelled as a series of physical processes with gain and spatial spreading. For each stage, the signal and noise power spectra were computed and propagated through the imaging chain as inputs to subsequent stages. Good agreement between experimental and theoretical predictions was obtained for various x-ray spectral conditions that were investigated. The modulation transfer function, MTF(f) and detective quantum efficiency DQE(f) characteristics obtained in this study are encouraging and comparable to other digital mammography systems. The results of this study strongly suggest the feasibility of large area scintillator-based digital mammography imagers with pixel sizes below 100 µm.

  10. Genome mapping by random anchoring: A discrete theoretical analysis

    NASA Astrophysics Data System (ADS)

    Zhang, M. Q.; Marr, T. G.

    1993-11-01

    As a part of the international human genome project, large-scale genomic maps of human and other model organisms are being generated. More recently, mapping using various anchoring (as opposed to the traditional "fingerprinting") strategies have been proposed based largely on mathematical models. In all of the theoretical work dealing with anchoring, an anchor has been idealized as a point on a continuous, infinite-length genome. In general, it is not desirable to make these assumptions, since in practice they may be violated under a variety of actual biological situations. Here we analyze a discrete model that can be used to predict the expected progress made when mapping by random anchoring. By virtue of keeping all three length scales (genome length, clone length, and probe length) finite, our results for the random anchoring strategy are derived in full generality, which contain previous results as special cases and hence can have broad application for planning mapping experiments or assessing the accuracy of the continuum models. Finally, we pose a challenging nonrandom anchoring model corresponding to a more efficient mapping scheme.

  11. Updated laser safety & hazard analysis for the ARES laser system based on the 2007 ANSI Z136.1 standard.

    SciTech Connect

    Augustoni, Arnold L.

    2007-08-01

    A laser safety and hazard analysis was performed for the temperature stabilized Big Sky Laser Technology (BSLT) laser central to the ARES system based on the 2007 version of the American National Standards Institutes (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2005 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. The ARES laser system is a Van/Truck based mobile platform, which is used to perform laser interaction experiments and tests at various national test sites.

  12. Dissecting Situational Strength: Theoretical Analysis and Empirical Tests

    DTIC Science & Technology

    2012-09-01

    stronger task-orientation, regardless of their natural level of trait conscientiousness ( Bekkers , 2005; 7 Fleeson, 2007). Some sample...analysis. Journal of Applied Psychology, 92, 410-424. Bekkers , R. (2005). Participation in voluntary associations: Relations with resources, personality

  13. Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks

    PubMed Central

    Rutter, Lindsay; Nadar, Sreenivasan R.; Holroyd, Tom; Carver, Frederick W.; Apud, Jose; Weinberger, Daniel R.; Coppola, Richard

    2013-01-01

    Complex networks have been observed to comprise small-world properties, believed to represent an optimal organization of local specialization and global integration of information processing at reduced wiring cost. Here, we applied magnitude squared coherence to resting magnetoencephalographic time series in reconstructed source space, acquired from controls and patients with schizophrenia, and generated frequency-dependent adjacency matrices modeling functional connectivity between virtual channels. After configuring undirected binary and weighted graphs, we found that all human networks demonstrated highly localized clustering and short characteristic path lengths. The most conservatively thresholded networks showed efficient wiring, with topographical distance between connected vertices amounting to one-third as observed in surrogate randomized topologies. Nodal degrees of the human networks conformed to a heavy-tailed exponentially truncated power-law, compatible with the existence of hubs, which included theta and alpha bilateral cerebellar tonsil, beta and gamma bilateral posterior cingulate, and bilateral thalamus across all frequencies. We conclude that all networks showed small-worldness, minimal physical connection distance, and skewed degree distributions characteristic of physically-embedded networks, and that these calculations derived from graph theoretical mathematics did not quantifiably distinguish between subject populations, independent of bandwidth. However, post-hoc measurements of edge computations at the scale of the individual vertex revealed trends of reduced gamma connectivity across the posterior medial parietal cortex in patients, an observation consistent with our prior resting activation study that found significant reduction of synthetic aperture magnetometry gamma power across similar regions. The basis of these small differences remains unclear. PMID:23874288

  14. Accuracy Analysis of a Box-wing Theoretical SRP Model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui

    2016-07-01

    For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.

  15. Theoretical performance analysis of multislice channelized Hotelling observers

    NASA Astrophysics Data System (ADS)

    Goossens, Bart; Platiša, Ljiljana; Philips, Wilfried

    2012-02-01

    Quality assessment of 3D medical images is becoming increasingly important, because of clinical practice rapidly moving in the direction of volumetric imaging. In a recent publication, three multi-slice channelized Hotelling observer (msCHO) models are presented for the task of detecting 3D signals in multi-slice images, where each multi-slice image is inspected in a so called stack-browsing mode. The observer models are based on the assumption that humans observe multi-slice images in a simple two stage process, and each of the models implement this principle in a different way. In this paper, we investigate the theoretical performance, in terms of detection signal-to-noise-ratio (SNR) of msCHO models, for the task of detecting a separable signal in a Gaussian background with separable covariance matrix. We find that, despite the differences in architecture of the three models, they all have the same asymptotical performance in this task (i.e., when the number of training images tends to infinity). On the other hand, when backgrounds with nonseparable covariance matrices are considered, the third model, msCHOc, is expected to perform slightly better than the other msCHO models (msCHOa and msCHOb), but only when sufficient training images are provided. These findings suggest that the choice between the msCHO models mainly depends on the experiment setup (e.g., the number of available training samples), while the relation to human observers depends on the particular choice of the "temporal" channels that the msCHO models use.

  16. Theoretical performance analysis for CMOS based high resolution detectors.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2013-03-06

    High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.

  17. Retrospective Analysis Of CO2 Laser Myringotomy

    NASA Astrophysics Data System (ADS)

    Lipman, Sidney P.; Guelcher, Robert T.

    1988-06-01

    A retrospective review of the author's series of 91 carbon dioxide (CO2) laser myringotomy cases performed between 1983 and 1986 is presented. Patients with chronic otitis media with effusion (COME) were selected on the basis of possible benefit from shorter ventilation time than tympanostomy tube insertion. The proceedings were performed on an outpatient basis with topical iontophoretic anesthesia, which offers significant cost savings and a lack of possible complications. The CO2 laser gives clean precise 0.8mm perforations which remain open for 2-4 weeks, this shorter ventilation time minimizing the period of water precautions and other side effects. The laser perforations heal well. With a success rate of 52 % reported, which could be increased with careful patient selection, we feel that the advantages of carbon dioxide laser myringotomy over myringotomy plus intubation outweight the risk of recurrent otitis media with effusion formation in those patients to whom this procedure is applicable.

  18. An Optimality-Theoretic Analysis of Codas in Brazilian Portuguese

    ERIC Educational Resources Information Center

    Goodin-Mayeda, C. Elizabeth

    2015-01-01

    Brazilian Portuguese allows only /s, N, l, r/ syllable finally, and of these, only /s/ is realized faithfully (as well as /r/ for some speakers). In order to avoid unacceptable codas, dialects of Brazilian Portuguese employ such strategies as epenthesis, nasal absorption, debucalization, and gliding. The current analysis argues that codas in…

  19. Theoretical analysis of subwavelength high contrast grating reflectors.

    PubMed

    Karagodsky, Vadim; Sedgwick, Forrest G; Chang-Hasnain, Connie J

    2010-08-02

    A simple analytic analysis of the ultra-high reflectivity feature of subwavelength dielectric gratings is developed. The phenomenon of ultra high reflectivity is explained to be a destructive interference effect between the two grating modes. Based on this phenomenon, a design algorithm for broadband grating mirrors is suggested.

  20. Analysis of Theoretical Metaphors with Illustrations from Family Systems Theory.

    ERIC Educational Resources Information Center

    Rosenblatt, Paul C.

    Metaphoric analysis of family systems theory illustrates how metaphors and alternatives to those metaphors identify what a psychological theory has highlighted and obscured about the phenomena at its focus and how it has structured that phenomena. The most commonly used metaphors in family systems theory are the metaphors of system (system…

  1. Theoretical Consideration of Forcible Rape: A Critical Analysis.

    ERIC Educational Resources Information Center

    Clagett, Arthur F.

    1988-01-01

    Examined differences in hypothetical apperceptive fantasies of committing forcible rape, which are held by male subjects, as compared with the hypothetical apperceptive fantasies of being forcibly raped, held by the female subjects. Developed a critical analysis of social and cross-cultural variables affecting rape. (Author/ABL)

  2. An Optimality-Theoretic Analysis of Codas in Brazilian Portuguese

    ERIC Educational Resources Information Center

    Goodin-Mayeda, C. Elizabeth

    2015-01-01

    Brazilian Portuguese allows only /s, N, l, r/ syllable finally, and of these, only /s/ is realized faithfully (as well as /r/ for some speakers). In order to avoid unacceptable codas, dialects of Brazilian Portuguese employ such strategies as epenthesis, nasal absorption, debucalization, and gliding. The current analysis argues that codas in…

  3. Laser dissection sampling modes for direct mass spectral analysis.

    PubMed

    Cahill, John F; Kertesz, Vilmos; Van Berkel, Gary J

    2016-03-15

    Laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis of single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (~4-15 μm) even when agglomerated together. Turbid Allium Cepa cells (~150 μm) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for

  4. Theoretical analysis of wake-induced parachute collapse

    SciTech Connect

    Spahr, H.R.; Wolf, D.F.

    1981-01-01

    During recent drop tests of a prototype weapon system, the parachute collapsed soon after it became fully inflated. The magnitude and duration of the collapses were severe enough to degrade parachute performance drastically. A computer-assisted analysis is presented which models parachute inflation, forebody and parachute wake generation, and interaction between the wake and the inflating or collapsing parachute. Comparison of the analysis results with full-scale drop test results shows good agreement for two parachute sizes; both parachutes were tested with and without permanent reefing. Computer-generated graphics (black and white drawings, color slides, and color movies) show the forebody and inflating parachute, the wake, and the wake and parachute interaction.

  5. Sequential Phenomena in Psychophysical Judgments: A Theoretical Analysis

    NASA Technical Reports Server (NTRS)

    Atkinson, R. C.; Carterette, E. C.; Kinchla, R. A.

    1962-01-01

    This paper deals with an analysis of psychophysical detection experiments designed to assess the limit of a human observer's level of sensitivity. A mathematical theory or the detection process is introduced that, in contrast to previous theories, provides an analysis of the sequential effects observed in psychophysical data. Two variations of the detection task are considered: information feedback and no-information feedback. In the feedback situation the subject is given information concerning the correctness of his responses, whereas in the no-feedback situation he is not. Data from a visual detection experiment with no-information feedback, and from an auditory detection experiment with information feedback are analyzed in terms of the theory. Finally, some general results are derived concerning the relationship between performance in the feedback situation and the no-feedback situation.

  6. Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation

    DTIC Science & Technology

    2011-04-14

    presentation [2] has been made at a national conference of this subject. b.2-Thermomechanics of reactive gases Transient, spatially...Integrated Analysis and Computation 5a. CONTRACT NUMBER FA9550-10-C-0088 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Kassoy...KISS and JPL personnel. 15. SUBJECT TERMS Combustion, Thermomechanics, Turbulent Reacting Flow, Supercritical Gases , Rocket Engine Stability 16

  7. Theoretical modelling and meteorological analysis for the AASE mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Newman, Paul A.; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    Providing real time constituent data analysis and potential vorticity computations in support of the Airborne Arctic Stratospheric Experiment (AASE) is discussed. National Meteorological Center (NMC) meteorological data and potential vorticity computations derived from NMC data are projected onto aircraft coordinates and provided to the investigators in real time. Balloon and satellite constituent data are composited into modified Lagrangian mean coordinates. Various measurements are intercompared, trends deduced and reconstructions of constituent fields performed.

  8. Hydraulically interconnected vehicle suspension: theoretical and experimental ride analysis

    NASA Astrophysics Data System (ADS)

    Smith, Wade A.; Zhang, Nong; Jeyakumaran, Jeku

    2010-01-01

    In this paper, a previously derived model for the frequency-domain analysis of vehicles with hydraulically interconnected suspension (HIS) systems is applied to the ride analysis of a four-degrees of freedom roll-plane, half-car under a rough road input. The entire road surface is assumed to be a realisation of a two-dimensional Gaussian homogenous and isotropic random process. The frequency responses of the half-car, in terms of bounce and roll acceleration, suspension deflection and dynamic tyre forces, are obtained under the road input of a single profile represented by its power spectral density function. Simulation results obtained for the roll-plane half-car fitted with an HIS and those with conventional suspensions are compared in detail. In addition, sensitivity analysis of key parameters of the HIS to the ride performance is carried out through simulations. The paper also presents the experimental validation of the analytical results of the free and forced vibrations of the roll-plane half-car. The hydraulic and mechanical system layouts, data acquisition system and the external force actuation mechanism of the test set-up are described in detail. The methodology for free and forced vibration tests and the application of mathematical models to account for the effective damper valve pressure loss are explained. Results are provided for the free and forced vibration testing of the half-car with different mean operating pressures. Comparisons are also given between the test results and those obtained from the system model with estimated damper valve loss coefficients. Furthermore, discussions on the deficiencies and practical implications of the proposed model and suggestions for future investigation are provided. Finally, the key findings of the investigation on the ride performance of the roll-plane half-car are summarised.

  9. Graph theoretical analysis of complex networks in the brain.

    PubMed

    Stam, Cornelis J; Reijneveld, Jaap C

    2007-07-05

    Since the discovery of small-world and scale-free networks the study of complex systems from a network perspective has taken an enormous flight. In recent years many important properties of complex networks have been delineated. In particular, significant progress has been made in understanding the relationship between the structural properties of networks and the nature of dynamics taking place on these networks. For instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph spectral analysis. These developments in the theory of complex networks have inspired new applications in the field of neuroscience. Graph analysis has been used in the study of models of neural networks, anatomical connectivity, and functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain can be modelled as a complex network, and may have a small-world structure both at the level of anatomical as well as functional connectivity. This small-world structure is hypothesized to reflect an optimal situation associated with rapid synchronization and information transfer, minimal wiring costs, as well as a balance between local processing and global integration. The topological structure of functional networks is probably restrained by genetic and anatomical factors, but can be modified during tasks. There is also increasing evidence that various types of brain disease such as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with deviations of the functional network topology from the optimal small-world pattern.

  10. Laser/lidar analysis and testing

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1994-01-01

    Section 1 of this report details development of a model of the output pulse frequency spectrum of a pulsed transversely excited (TE) CO2 laser. In order to limit the computation time required, the model was designed around a generic laser pulse shape model. The use of such a procedure allows many possible laser configurations to be examined. The output pulse shape is combined with the calculated frequency chirp to produce the electric field of the output pulse which is then computationally mixed with a local oscillator field to produce the heterodyne beat signal that would fall on a detector. The power spectral density of this heterodyne signal is then calculated. Section 2 reports on a visit to the LAWS laser contractors to measure the performance of the laser breadboards. The intention was to acquire data using a digital oscilloscope so that it could be analyzed. Section 3 reports on a model developed to assess the power requirements of a 5J LAWS instrument on a Spot MKII platform in a polar orbit. The performance was assessed for three different latitude dependent sampling strategies.

  11. Laser photoacoustics for gas analysis and materials testing

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus W.

    1995-07-01

    The application of laser photoacoustics to two different areas is discussed. First, laser-induced spallation and interferometric detection of transient surface displacements is proposed as a powerful noncontact tool for the investigation of adhesion properties of solid surface coatings. Results for nickel and plasma-sprayed ceramic coatings are presented. Delamination processes at the interface between substrate and coating could be detected with excellent spatial and temporal resolution and adhesion strengths in the 0.2 to 2 GPa range be determined. Second, laser photoacoustic spectroscopy is applied to trace gas monitoring. An automated mobile CO2$ laser photoacoustic system is employed for in situ air monitoring with parts per billion sensitivity in industrial, urban, and rural environments. An improvement in detection selectivity for multicomponent gas mixtures is achieved with a continuously tunable high- pressure CO2 laser with a narrow linewidth of 0.017 cm-1. A CO laser photoacoustic system previously used for the analysis of motor vehicle exhausts is now employed for studying dimerization phenomena in fatty acid vapors. Finally, emphasis is put on the development of widely tunable, narrow-band, mid-IR laser sources based on optical parametric oscillation or difference frequency generation employing tunable diode lasers and AgGaSe2 as nonlinear material.

  12. Quality Analysis and Correction of Mobile Backpack Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Rönnholm, P.; Liang, X.; Kukko, A.; Jaakkola, A.; Hyyppä, J.

    2016-06-01

    Backpack laser scanning systems have emerged recently enabling fast data collection and flexibility to make measurements also in areas that cannot be reached with, for example, vehicle-based laser scanners. Backpack laser scanning systems have been developed both for indoor and outdoor use. We have developed a quality analysis process in which the quality of backpack laser scanning data is evaluated in the forest environment. The reference data was collected with an unmanned aerial vehicle (UAV) laser scanning system. The workflow included noise filtering, division of data into smaller patches, ground point extraction, ground data decimation, and ICP registration. As a result, we managed to observe the misalignments of backpack laser scanning data for 97 patches each including data from circa 10 seconds period of time. This evaluation revealed initial average misalignments of 0.227 m, 0.073 and -0.083 in the easting, northing and elevation directions, respectively. Furthermore, backpack data was corrected according to the ICP registration results. Our correction algorithm utilized the time-based linear transformation of backpack laser scanning point clouds. After the correction of data, the ICP registration was run again. This revealed remaining misalignments between the corrected backpack laser scanning data and the original UAV data. We found average misalignments of 0.084, 0.020 and -0.005 meters in the easting, northing and elevation directions, respectively.

  13. Toward understanding the dissociation of I2 in chemical oxygen-iodine lasers: Combined experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Waichman, K.; Rybalkin, V.; Katz, A.; Dahan, Z.; Barmashenko, B. D.; Rosenwaks, S.

    2007-07-01

    The dissociation of I2 molecules at the optical axis of a supersonic chemical oxygen-iodine laser (COIL) was studied via detailed measurements and three-dimensional computational fluid dynamics calculations. The measurements, briefly reported in a recent paper [Rybalkin et al., Appl. Phys. Lett. 89, 021115 (2006)] and reanalyzed in detail here, revealed that the number N of consumed O2(aΔg1) molecules per dissociated I2 molecule depends on the experimental conditions: it is 4.5±0.4 for typical conditions and I2 densities applied for optimal operation of the COIL but increases at lower I2 densities. Comparing the measurements and the calculations enabled critical examination of previously proposed dissociation mechanisms and suggestion of a mechanism consistent with the experimental and theoretical results obtained in a supersonic COIL for the gain, temperature, I2 dissociation fraction, and N at the optical axis. The suggested mechanism combines the recent scheme of Azyazov and Heaven [AIAA J. 44, 1593 (2006)], where I2(A'Π2u3), I2(AΠ1u3), and O2(aΔg1,v) are significant dissociation intermediates, with the "standard" chain branching mechanism of Heidner III et al. [J. Phys. Chem. 87, 2348 (1983)], involving I(P1/22) and I2(XΣg +1,v).

  14. Progress in theoretical, experimental, and computational investigations in turbid tissue phantoms and human teeth using laser infrared photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2002-03-01

    This paper reviews and describes the state-of-the-art in the development of frequency-domain infrared photothermal radiometry (FD-PTR) for biomedical and dental applications. The emphasis is placed on the measurement of the optical and thermal properties of tissue-like materials using FD-PTR. A rigorous three-dimensional thermal-wave formulation with three-dimensional diffuse and coherent photon-density-wave sources is presented, and is applied to data from model tissue phantoms and dental enamel samples. The combined theoretical, experimental and computational methodology shows good promise with regard to its analytical ability to measure optical properties of turbid media uniquely, as compared to PPTR, which exhibits uniqueness problems. From data sets obtained with calibrated test phantoms, the reduced optical scattering and absorption coefficients were found to be within 20% and 10%, respectively, from the independently derived values using Mie scattering theory and spectrophotometric measurements. Furthermore, the state-of-the-art and recent developments in applications of laser infrared FD-PTR to dental caries research is described, with examples and histological studies from carious dental tissue. The correlation of PTR signals with modulated dental luminescence is discussed as a very promising potential quantitative methodology for the clinical diagnosis of sub-surface incipient dental caries. The application of the turbid-medium thermal-wave model to the measurement of the optical absorption and scattering coefficients of enamel is also presented.

  15. Static and Hypersonic Experimental Analysis of Impulse Generation in Air-Breathing Laser-Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Salvador, Israel Irone

    The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models

  16. Theoretical analysis of the 2D thermal cloaking problem

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Spivak, Yu E.; Yashchenko, E. N.

    2017-01-01

    Coefficient inverse problems for the model of heat scattering with variable coefficients arising when developing technologies of design of thermal cloaking devices are considered. By the optimization method, these problems are reduced to respective control problems. The material parameters (radial and azimuthal conductivities) of the inhomogeneous anisotropic medium, filling the thermal cloak, play the role of control. The model of heat scattering acts as a functional restriction. A unique solvability of direct heat scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and efficient numerical algorithm of solving thermal cloaking problems is proposed.

  17. A Theoretical Analysis of Thermal Radiation from Neutron Stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1993-01-01

    As soon as it was realized that the direct URCA process is allowed by many modern nuclear equation of state, an analysis of its effect on the cooling of neutron stars was undertaken. A primary study showed that the occurrence of the direct URCA process makes the surface temperature of a neutron star suddenly drop by almost an order of magnitude when the cold wave from the core reaches the surface when the star is a few years old. The results of this study are published in Page and Applegate. As a work in progress, we are presently extending the above work. Improved expressions for the effect of nucleon pairing on the neutrino emissivity and specific heat are now available, and we have incorporated them in a recalculation of rate of the direct URCA process.

  18. Theoretic analysis on electric conductance of nano-wire transistors

    NASA Astrophysics Data System (ADS)

    Tsai, N.-C.; Chiang, Y.-R.; Hsu, S.-L.

    2010-01-01

    By employing the commercial software nanoMos and Vienna ab Initio Simulation Package ( VASP), the performance of nano-wire field-effect transistors is investigated. In this paper, the Density-Gradient Model (DG Model) is used to describe the carrier transport behavior of the nano-wire transistor under quantum effects. The analysis of the drain current with respect to channel length, body dielectric constant and gate contact work function is presented. In addition, Fermi energy and DOS (Density of State) are introduced to explore the relative stability of carrier transport and electrical conductance for the silicon crystal with dopants. Finally, how the roughness of the surface of the silicon-based crystal is affected by dopants and their allocation can be illuminated by a few broken bonds between atoms near the skin of the crystal.

  19. Theoretical analysis of the density within an orbiting molecular shield

    NASA Technical Reports Server (NTRS)

    Hueser, J. E.; Brock, F. J.

    1976-01-01

    An analytical model based on the kinetic theory of a drifting Maxwellian gas is used to determine the nonequilibrium molecular density distribution within a hemispherical shell open aft with its axis parallel to its velocity. Separate numerical results are presented for the primary and secondary density distribution components due to the drifting Maxwellian gas for speed ratios between 2.5 and 10. An analysis is also made of the density component due to gas desorbed from the wall of the hemisphere, and numerical results are presented for the density distribution. It is shown that the adsorption process may be completely ignored. The results are applicable to orbital trajectories in any planet-atmosphere system and interplanetary transfer trajectories. Application to the earth's atmosphere is mentioned briefly.

  20. Theoretical analysis of the density within an orbiting molecular shield

    NASA Technical Reports Server (NTRS)

    Hueser, J. E.; Brock, F. J.

    1976-01-01

    An analytical model based on the kinetic theory of a drifting Maxwellian gas is used to determine the nonequilibrium molecular density distribution within a hemispherical shell open aft with its axis parallel to its velocity. Separate numerical results are presented for the primary and secondary density distribution components due to the drifting Maxwellian gas for speed ratios between 2.5 and 10. An analysis is also made of the density component due to gas desorbed from the wall of the hemisphere, and numerical results are presented for the density distribution. It is shown that the adsorption process may be completely ignored. The results are applicable to orbital trajectories in any planet-atmosphere system and interplanetary transfer trajectories. Application to the earth's atmosphere is mentioned briefly.

  1. Motility of a model bristle-bot: A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Cicconofri, Giancarlo; DeSimone, Antonio

    2015-11-01

    Bristle-bots are legged robots that can be easily made out of a toothbrush head and a small vibrating engine. Despite their simple appearance, the mechanism enabling them to propel themselves by exploiting friction with the substrate is far from trivial. Numerical experiments on a model bristle-bot have been able to reproduce such a mechanism revealing, in addition, the ability to switch direction of motion by varying the vibration frequency. This paper provides a detailed account of these phenomena through a fully analytical treatment of the model. The equations of motion are solved through an expansion in terms of a properly chosen small parameter. The convergence of the expansion is rigorously proven. In addition, the analysis delivers formulas for the average velocity of the robot and for the frequency at which the direction switch takes place. A quantitative description of the mechanism for the friction modulation underlying the motility of the bristle-bot is also provided.

  2. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process

    NASA Astrophysics Data System (ADS)

    El Cheikh, Hussam; Courant, Bruno; Branchu, Samuel; Hascoët, Jean-Yves; Guillén, Ronald

    2012-03-01

    Direct Laser Fabrication is a promising new manufacturing technology coming from laser cladding process. From a coaxial nozzle, powder is fed through a laser beam on a substrate. The powder melting and solidification processes lead to the fabrication of a part layer by layer. In this work 316L stainless steel powder is used to form laser tracks on a low carbon steel substrate. The layer geometry is an important process characteristic to control the final part of fabrication. This paper presents analytical relationships between the laser tracks geometrical characteristics (width, height, area, penetration depth) and the processing parameters (laser power P, scanning speed V and powder mass flow Qm). Three values of each processing parameters are fixed and so 27 different experiments have been made and analyzed. The validity of these results is discussed studying the correlation coefficient R, the graphical analysis of the residuals and the uncertainty evaluations. Two kinds of models are studied to predict the form and the geometrical characteristics of the single laser tracks cross sections. The first one is an analytical model in which the distribution of the powder in the feed jet is supposed to govern the laser clad geometry. Three distributions are proposed: Gaussian, uniform and polynomial. In the second model the general form of the clad cross section is supposed to be a disk due to the surface tension forces. Analytical relationships are established between the radius and the center of the disk in one hand and the process parameters in the other hand. This way we show that we can reproduce the laser track geometry in all the area experimentally explored.

  3. Laser-induced breakdown spectroscopy (LIBS) analysis of laser processing in active crystal with nanosecond laser pulses.

    PubMed

    Alvira, F C; Ródenas, A; Torchia, G A

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) analysis is applied to study the ablation threshold and the main plasma features of active crystals used for laser processing with Nd(3+) ions. The experiments were conducted by using nanosecond laser pulses from a neodymium-doped yttrium aluminum garnet (Nd : YAG) laser and its harmonics. In particular, we have studied the ablation process in SBN, strontium barium niobate (SrxBa1-xNb2O6, x = 0.6), and SBN, sodium barium niobate (Ba2NaNb5O15), nonlinear and ferroelectric crystals. Two different ablation regimes have been identified by LIBS analysis with high sensitivity compared with the standard method of hole-diameter measurement. Analyzing spectroscopically the plasma emission, we have found a particular behavior with the excitation wavelength. For example, the electronic density and temperature in SBN-generated plasmas present an abnormal behavior with the excitation wavelength. We therefore conclude that the energy gap corresponding to these crystals plays an important role in describing this fact. Hence, the resonant ablation in doped crystals can be a suitable point for exploration in further works in order to use the plasma performances to optimize the laser processing by nanosecond pulses for technological applications.

  4. Analysis of Ultraviolet and Visible Laser Effects

    DTIC Science & Technology

    1981-01-01

    Schriempf, J.T., Cronburg, T.L., Eninger , J.E., and Woodroffe, J.A., "Pulsed CO 2 Laser Interaction with a Metal Surface at Oblique Incidence," Appl...REFERENCES 1. McKay, J.A., Schriempf, J.T., Cronburg, T.L., Eninger , J.E., and Woodroffe, J.A., "Pulsed CO2 Laser Interaction with a Metal Surface at...McKay, J.A., Schriempf, J.T., Cronburg, T.L., Eninger , J.E., and Woodroffe, J.A., Appi. Phys. Lett. 36, 125 (1980). 2. Jacob, J.H., Hsia, J.C., Mangano

  5. Target signatures for laser altimeters: an analysis.

    PubMed

    Gardner, C S

    1982-02-01

    The statistical characteristics of the received signal for short pulse laser altimeters are investigated. Expressions are derived for the mean and temporal covariances of the received pulse for a direct detection receiver. The effects of laser speckle, shot noise, and surface profile of the ground target are considered. The results are used to compute the means and variances of the total received energy, propagation delay, and rms width of the received pulse. These parameters are shown to be directly related to the statistics of the surface profile.

  6. Theoretical and numerical analysis of the corneal air puff test

    NASA Astrophysics Data System (ADS)

    Simonini, Irene; Angelillo, Maurizio; Pandolfi, Anna

    2016-08-01

    Ocular analyzers are used in the current clinical practice to estimate, by means of a rapid air jet, the intraocular pressure and other eye's parameters. In this study, we model the biomechanical response of the human cornea to the dynamic test with two approaches. In the first approach, the corneal system undergoing the air puff test is regarded as a harmonic oscillator. In the second approach, we use patient-specific geometries and the finite element method to simulate the dynamic test on surgically treated corneas. In spite of the different levels of approximation, the qualitative response of the two models is very similar, and the most meaningful results of both models are not significantly affected by the inclusion of viscosity of the corneal material in the dynamic analysis. Finite element calculations reproduce the observed snap-through of the corneal shell, including two applanate configurations, and compare well with in vivo images provided by ocular analyzers, suggesting that the mechanical response of the cornea to the air puff test is actually driven only by the elasticity of the stromal tissue. These observations agree with the dynamic characteristics of the test, since the frequency of the air puff impulse is several orders of magnitude larger than the reciprocal of any reasonable relaxation time for the material, downplaying the role of viscosity during the fast snap-through phase.

  7. Analysis of an information-theoretic model for communication

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; Moloney, Nicholas R.; Altmann, Eduardo G.

    2012-12-01

    We study the cost-minimization problem posed by Ferrer i Cancho and Solé in their model of communication that aimed at explaining the origin of Zipf’s law (2003 Proc. Nat. Acad. Sci. 100 788). Direct analysis shows that the minimum cost is min{λ,1 - λ}, where λ determines the relative weights of speaker’s and hearer’s costs in the total, as shown in several previous works using different approaches. The nature and multiplicity of the minimizing solution change discontinuously at λ = 1/2, being qualitatively different for λ < 1/2, λ > 1/2, and λ = 1/2. Zipf’s law is found only in a vanishing fraction of the minimum-cost solutions at λ = 1/2 and therefore is not explained by this model. Imposing the further condition of equal costs yields distributions substantially closer to Zipf’s law ones, but significant differences persist. We also investigate the solutions reached with the previously used minimization algorithm and find that they correctly recover global minimum states at the transition.

  8. Molecular magnetic properties of heteroporphyrins: a theoretical analysis.

    PubMed

    Campomanes, Pablo; Menéndez, María Isabel; Cárdenas-Jirón, Gloria Inés; Sordo, Tomás Luis

    2007-11-14

    B3LYP/6-31G(d) optimization of porphyrin, tetraphenylporphyrin and their 21,23-diheteroatom substituted derivatives with O, S, and Se heteroatoms was performed. A planar macrocycle was found in all cases except 21,23-dioxatetraphenylporphyrin which presents only slight deviations from planarity. A Bader analysis uncovers the presence of S-S and Se-Se interactions in the four corresponding heteroporphyrins, which appreciably distort the original unsubstituted macrocycles. In the minimum energy structures of heterotetraphenylporphyrins the four meso phenyl groups slant alternatively to right or left so that the two pairs of opposite phenyls present a staggered conformation. The pi current induced by a perpendicular magnetic field in porphyrin bifurcates across both types of pyrrole subunits but the presence of O, S and Se heteroatoms in 21,23-diheteroporphyrins causes a diminution of the current density through the inner section of the two heterorings and, consequently, the current path goes then through the outer section of these rings. The NICS values at the ring critical points of the heterorings are much larger (in absolute value) than those at the pyrrole ring critical points but appreciably smaller than that at the ring critical point of a pyrrole molecule. In agreement with experimental data the (1)H NMR present appreciable downfield shifts for the beta H atoms of the heterorings in the 21,23-heterosubstituted molecules.

  9. Theoretical and experimental analysis of double-pass ytterbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Su, Rongtao; Huang, Long; Du, Daiyan; Yang, Lijia

    2016-11-01

    We theoretically and experimentally demonstrate a double-pass ytterbium-doped fiber amplifier. First, we numerically analyze the impact of fiber length on the amplifier. In our experiment, a laser seed with output power of 100 μW and wavelength of 1064 nm is amplified to 51.2 mW with a signal gain of 27.1 dB. With this double-pass configuration, amplified spontaneous emission (ASE) is effectively suppressed to more than 30 dB. Compared with single pass configuration, it is found that double-pass amplification configuration enhances the gain coefficient and improves the signal-to-noise ratio.

  10. Spectral derivative analysis of solar spectroradiometric measurements: Theoretical basis

    NASA Astrophysics Data System (ADS)

    Hansell, R. A.; Tsay, S.-C.; Pantina, P.; Lewis, J. R.; Ji, Q.; Herman, J. R.

    2014-07-01

    Spectral derivative analysis, a commonly used tool in analytical spectroscopy, is described for studying cirrus clouds and aerosols using hyperspectral, remote sensing data. The methodology employs spectral measurements from the 2006 Biomass-burning Aerosols in Southeast Asia field study to demonstrate the approach. Spectral peaks associated with the first two derivatives of measured/modeled transmitted spectral fluxes are examined in terms of their shapes, magnitudes, and positions from 350 to 750 nm, where variability is largest. Differences in spectral features between media are mainly associated with particle size and imaginary term of the complex refractive index. Differences in derivative spectra permit cirrus to be conservatively detected at optical depths near the optical thin limit of ~0.03 and yield valuable insight into the composition and hygroscopic nature of aerosols. Biomass-burning smoke aerosols/cirrus generally exhibit positive/negative slopes, respectively, across the 500-700 nm spectral band. The effect of cirrus in combined media is to increase/decrease the slope as cloud optical thickness decreases/increases. For thick cirrus, the slope tends to 0. An algorithm is also presented which employs a two model fit of derivative spectra for determining relative contributions of aerosols/clouds to measured data, thus enabling the optical thickness of the media to be partitioned. For the cases examined, aerosols/clouds explain ~83%/17% of the spectral signatures, respectively, yielding a mean cirrus cloud optical thickness of 0.08 ± 0.03, which compared reasonably well with those retrieved from a collocated Micropulse Lidar Network Instrument (0.09 ± 0.04). This method permits extracting the maximum informational content from hyperspectral data for atmospheric remote sensing applications.

  11. Analysis Techniques for Airborne Laser Range Safety Evaluations

    DTIC Science & Technology

    1982-08-01

    Subtitle) $- TYPE OP "EPORT 6 PERIOD COVEMEb Final ANALYSIS TECHNIQUES FOR AIRBORNE LASER RANGE SAFETY EVALUATIONS 6, PERFORMING ORO . REPORT NUMBER 7...the total energy available will pass through various aperture sizes (i.e., 8-cm entrance aperture optics). One approximation is the range equation...Q a Total available energy out of the laser 11 - Radiant energy RELATIVE RADIANT ENERGY 1.0 ".,, I• .,•., -0.5 e20 . BEAM • DIAMETER - Figure 3. A

  12. Software for visualization, analysis, and manipulation of laser scan images

    NASA Astrophysics Data System (ADS)

    Burnsides, Dennis B.

    1997-03-01

    The recent introduction of laser surface scanning to scientific applications presents a challenge to computer scientists and engineers. Full utilization of this two- dimensional (2-D) and three-dimensional (3-D) data requires advances in techniques and methods for data processing and visualization. This paper explores the development of software to support the visualization, analysis and manipulation of laser scan images. Specific examples presented are from on-going efforts at the Air Force Computerized Anthropometric Research and Design (CARD) Laboratory.

  13. Theoretical temperature-dependent branching ratios and laser thresholds of the (5)I7 yields (5)I8 levels of Ho3(+) in ten garnets

    NASA Astrophysics Data System (ADS)

    Morrison, Clyde A.; Filer, Elizabeth D.; Barnes, Norman P.; Turner, Gregory A.

    1990-09-01

    This report presents a comparative study of triply ionized holmium in ten garnets. The point charge model of crystal fields is used to predict the energy levels of Ho3+ in YAG, LaLuGG, GdScAG, YScAG, GdGG, GDScGG, YGG, LuGG, LuAG and GdAG. The magnetic and electric dipole transition probabilities are used to predict theoretical temperature dependent branching ratios and laser thresholds of a quasi four level laser for each of these garnets.

  14. Theoretical analysis of droplet transition from Cassie to Wenzel state

    NASA Astrophysics Data System (ADS)

    Liu, Tian-Qing; Yan-Jie, Li; Xiang-Qin, Li; Wei, Sun

    2015-11-01

    Whether droplets transit from the Cassie to the Wenzel state (C-W) on a textured surface is the touchstone that the superhydrophobicity of the surface is still maintained. However, the C-W transition mechanism, especially the spontaneous transition of small droplets, is still not very clear to date. The interface free energy gradient of a small droplet is firstly proposed and derived as the driving force for its C-W evolution in this study based on the energy and gradient analysis. Then the physical and mathematical model of the C-W transition is found after the C-W driving force or transition pressure, the resistance, and the parameters of the meniscus beneath the droplet are formulated. The results show that the micro/nano structural parameters significantly affect the C-W driving force and resistance. The smaller the pillar diameter and pitch, the minor the C-W transition pressure, and the larger the resistance. Consequently, the C-W transition is difficult to be completed for the droplets on nano-textured surfaces. Meanwhile if the posts are too short, the front of the curved liquid-air interface below the droplet will touch the structural substrate easily even though the three phase contact line (TPCL) has not depinned. When the posts are high enough, the TPCL beneath the drop must move firstly before the meniscus can reach the substrate. As a result, the droplet on a textured surface with short pillars is easy to complete its C-W evolution. On the other hand, the smaller the droplet, the easier the C-W shift, since the transition pressure becomes larger, which well explains why an evaporating drop will collapse spontaneously from composite to Wenzel state. Besides, both intrinsic and advancing contact angles affect the C-W transition as well. The greater the two angles, the harder the C-W transition. In the end, the C-W transition parameters and the critical conditions measured in literatures are calculated and compared, and the calculations accord well with

  15. Theoretical analysis of oxygen supply to contracted skeletal muscle.

    PubMed

    Groebe, K; Thews, G

    1986-01-01

    Honig and collaborators reported striking contradictions in current understanding of O2 supply to working skeletal muscle. Therefore we re-examined the problem by means of a new composite computer simulation. As inclusion of erythrocytic O2 desaturation and oxygen transport and consumption inside the muscle cell into a single model would entail immense numerical difficulties, we broke up the whole process into its several components: O2 desaturation of erythrocytes O2 transport and consumption in muscle fiber capillary transit time characterizing the period of contact between red cell and muscle fiber. "Erythrocyte model" as well as "muscle fiber model" both consist of a central core cylinder surrounded by a concentric diffusion layer representing the extracellular resistance to O2 diffusion (Fig. 1). Resistance layers in both models are to be conceived of as one and the same anatomical structure--even though in each model their shape is adapted to the respective geometry. By means of this overlap region a spatial connexion between both is given, whereas temporal coherence governing O2 fluxes and red cell spacing is derived from capillary transit time. Analysis of individual components is outlined as follows: Assuming axial symmetry of the problem a numerical algorithm was employed to solve the parabolic system of partial differential equations describing red cell O2 desaturation. Hb-O2 reaction kinetics, free and facilitated O2 diffusion in axial and radial directions, and red cell movement in capillary were considered. Resulting time courses of desaturation, which are considerably faster than the ones computed by Honig et al., are given in the following table (see also Fig. 3). (Formula: see text) Furthermore, we studied the respective importance of the several processes included in our model: Omission of longitudinal diffusion increased desaturation time by 15% to 23%, whereas effects of reaction kinetics and axial movement were 5% and 2% respectively. For time

  16. Analysis of infrared laser tissue ablation

    NASA Astrophysics Data System (ADS)

    McKenzie, Gordon P.; Timmerman, Brenda H.; Bryanston-Cross, Peter J.

    2005-04-01

    The mechanisms involved in infrared laser tissue ablation are studied using a free electron laser (FELIX) in order to clarify whether the increased ablation efficiency reported in literature for certain infrared wavelengths is due to a wavelength effect or to the specific pulse structure of the lasers that are generally used in these studies. Investigations are presented of ablation of vitreous from pigs" eyes using several techniques including protein gel electrophoresis and ablation plume visualization. The ablation effects of three different infrared wavelengths are compared: 3 mm, which is currently in clinical surgical use, and the wavelengths associated with the amide I and amide II bands, i.e. 6.2 mm and 6.45mm, respectively. The results suggest a different ablation mechanism to be in operation for each studied wavelength, thus indicating that the generally reported increased ablation efficiency in the 6-6.5 micron range is due to the wavelength rather than the typical free electron laser pulse structure.

  17. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  18. Laser ablation of powdered samples and analysis by means of laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ctvrtnickova, T.; Cabalin, L.; Laserna, J.; Kanicky, V.; Nicolas, G.

    2009-03-01

    The presented work proves the capacities of laser-induced breakdown spectroscopy (LIBS) as a fast, universal, and versatile technique for analysis of complex materials as ceramics. This paper reports on the analysis of ceramic raw materials (brick clays and kaolin) submitted to laser ablation in the form of pressed pellets. Spectrographic study was provided by standard single-pulse LIBS technique and orthogonal reheating double-pulse LIBS. It was found that both methods are comparable in terms of analytical performance, if adequate experimental parameters and signal detection systems are used.

  19. Modeling and Theoretical Analysis of On-Chip Phase-Sensitive Amplifiers

    DTIC Science & Technology

    2016-04-19

    SECURITY CLASSIFICATION OF: We performed a theoretical study of phase-sentisitive amplification in semiconductor optical amplifiers (SOAs), so as to...wavelength mixing in semiconductor optical amplifiers (SOAs) based on coupled-mode equations. The proposed model applies to all kinds of SOA...Unlimited UU UU UU UU 19-04-2016 1-Jun-2014 30-Nov-2015 Final Report: Modeling and Theoretical Analysis of On-Chip Phase-Sensitive Amplifiers The

  20. Theoretical analysis of cell separation based on cell surface marker density.

    PubMed

    Chalmers, J J; Zborowski, M; Moore, L; Mandal, S; Fang, B B; Sun, L

    1998-07-05

    A theoretical analysis was performed to determine the number of fractions a multidisperse, immunomagnetically labeled cell population can be separated into based on the surface marker (antigen) density. A number of assumptions were made in this analysis: that there is a proportionality between the number of surface markers on the cell surface and the number of immunomagnetic labels bound; that this surface marker density is independent of the cell diameter; and that there is only the presence of magnetic and drag forces acting on the cell. Due to the normal distribution of cell diameters, a "randomizing" effect enters into the analysis, and an analogy between the "theoretical plate" analysis of distillation, adsorption, and chromatography can be made. Using the experimentally determined, normal distribution of cell diameters for human lymphocytes and a breast cancer cell line, and fluorescent activated cell screening data of specific surface marker distributions, examples of theoretical plate calculations were made and discussed.

  1. Intraoral Laser Welding (ILW): ultrastructural and mechanical analysis

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Nammour, Samir

    2010-05-01

    Nd:YAG, currently used since 1970 in dental laboratories to weld metals on dental prostheses has some limits such great dimensions, high costs and fixed delivery system. Recently it was proposed the possibility to use the Nd:YAG laser device commonly utilised in dental office, to repair broken fixed, removable and orthodontic prostheses and to weld metals directly into the mouth. The aim of this work is to value, through SEM (Scanning Electron Microscope), EDS (Energy Dispersive X-Ray Spectroscopy) and DMA (Dynamic Mechanical Analysis), quality and mechanical strength of the welding process comparing a device normally used in dental lab and a device normally used in dental office for oral surgery. Sixteen CoCrMo metal plates and twenty steel orthodontic wires were divided in four groups: one was welded without metal apposition by laboratory laser, one was welded with metal apposition by laboratory laser, one was welded without metal apposition by office laser and one was welded with metal apposition by office laser. The welding process was analysed by SEM, EDS and DMA to compare the differences between the different samples. By SEM analysis it was seen that the plates welded by office laser without apposition metal showed a greater number of fissurations compared with the other samples. By EDS analysis it was seen a homogeneous composition of the metals in all the samples. The mechanical tests showed a similar elastic behaviour of the samples, with minimal differences between the two devices. No wire broke even under the maximum strength by the Analyser. This study seems to demonstrate that the welding process by office Nd:YAG laser device and the welding process by laboratory Nd:YAG laser device, analysed by SEM, EDS and DMA, showed minimal and not significant differences even if these data will be confirmed by a greater number of samples.

  2. Analysis of laser preconditioning experiments on Z Beamlet Laser for MagLIF

    NASA Astrophysics Data System (ADS)

    Glinsky, Michael; Weis, Matthew; Harvey-Thompson, Adam; Geissel, Matthias; Jennings, Christopher; Nagayama, Taisuke; Peterson, Kyle

    2016-10-01

    Presented is an analysis of a series of laser preconditioning experiments on the Z Beamlet Laser (ZBL). These experiments examine the penetration of the laser through the plastic window (a few microns thick), the energy deposition into a gas behind the window, and the resulting density variations in the gas. The ZBL is a glass laser, frequency doubled to 527 μm, capable of delivering up to 4 kJ on target with a pulse length of a few ns. This is the same laser that is used to preheat the fuel in the MagLIF scheme before it is magnetically imploded on the Z generator. The design space for the laser pulse is explored in a series of experiments. Diagnostics include transmitted energy, backscattered energy, x-ray self emission images, and density shadowgrams at several times. These results are matched against HYDRA simulations using the uncertainty quantification engine Dakota. The potential for SBS, SRS, and filamentation are evaluated. Estimates of the energy deposition profile and disposition of the window (important because of potential mix with the fuel) are obtained with uncertainty. Work was performed by Sandia National Laboratories for USDoE under contract DE-AC04-94AL85000. SAND NO. 2016-6689C.

  3. Spectroscopic Analysis of High Intensity Laser Beam Jets Interaction Experiments on the Leopard Laser at UNR

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Weller, M. E.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Shrestha, I.; Shlyapsteva, V. V.; Stafford, A.; Keim, S. F.; University of Nevada Reno Team

    2013-10-01

    Results of Ar gas-puff experiments performed on the high power Leopard laser at UNR are presented. Flux density of laser radiation in focal spot was up to 2 × 1016 W/cm2 (pulse duration was 0.8 ns and laser wavelength was 1.057 μm). Specifically, spectroscopic analysis of K-shell Ar spectra are investigated and compared as functions of the orientation of the laser beam to linear gas jet. The laser beam axis was positioned either along the jet plane or orthogonal to it at a distance of 1 mm from the nozzle output. The diagnostics used included a time-integrated x-ray spectrometer along with a set of filtered Si diodes with various cutoff energies. In order to identify lines, a non-local thermodynamic equilibrium (non-LTE) kinetic model was utilized and was also used to determine plasma parameters such as electron temperature and density. The importance of the spectroscopic study of high intensity laser beam-jets interaction experiments is discussed. This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno, and in part by the DOE/NNSA Cooperative agreements DE-NA0001984 and DE-FC52-06NA27616.

  4. Laser spot detection and characteristic analysis in space optical communication

    NASA Astrophysics Data System (ADS)

    Duan, Jin; Kong, Chuiliu; Jing, Wenbo; Zhang, Dan; Jiang, Huilin

    2007-11-01

    In the space laser communication, the link of communication is builded in atmospheric random channel. the laser transmission is affected by the atmospheric turbulence seriously. The communication laser is modulated to circular polarized light in order to reduce the influence of the atmospheric turbulence. A several experiments are designed to validate that the circular polarized laser is available to reduce the communication noise in the space optical communication. The methods of the laser spot detection and spot parameter analysis is put forward in this paper: Firstly the subtraction of the background is used in image preprocessing in order to eliminate the influence of static background, then a series of methods such as the local dynamic threshold segmentation, edge extraction are used to detect and recognize the spot. Finally the parameters of the spot are calculated such as spot's average brightness, background's average brightness and the contrast gradient, and the characteristic of the laser communication is analyzed. The experiment results show that the circular polarized laser can enhance the contrast and improve the communication quality in the spatial optical communication. This method satisfies the request of real-time processing in communication, and is also effective and practical. practical.

  5. Experimental and theoretical studies of laser cooling and emittance control of neutral beams. Final report, 1 November 1981-31 January 1987

    SciTech Connect

    Lam, J.F.; McFarlane, R.A.; Palmer, A.J.; Steel, D.G.; Turley, R.S.

    1987-01-31

    Experimental and theoretical studies are made of issues relevant to laser cooling and emittance control of neutral beams. Experimental accomplishments include development of a technique for state specific velocity selection in atomic beams, observation of the optical Kapitza Dirac Effect, construction of sodium and atomic hydrogen beam facilities, and initial development of a tunable, transform-limited, vacuum-ultraviolet source. Theoretical accomplishments include development of a theory of pi pulse cooling, a theory of two-photon ionization in atomic hydrogen resonant with the Lyman-alpha transition, and an incorporation of the effects of intense fields in the theory of the Optical Kapitza Dirac Effect.

  6. Chapter 2. General theoretical perspectives of narrative analysis of substance use-related dependency.

    PubMed

    Larsson, Sam; Lilja, John; von Braun, Therese; Sjöblom, Yvonne

    2013-11-01

    This chapter provides a short introduction to, and an overview for, using narrative analysis in the understanding of the use and misuse of alcohol and drugs. Important theoretical and methodological dimensions are discussed. Some tentative conclusions, limitations, and unresolved critical issues concerning the use of narrative research methods in the analysis of substance use-related dependency problems are also presented.

  7. A Theoretical Analysis of Potential Extinction Properties of Behavior-Specific Manual Restraint

    ERIC Educational Resources Information Center

    Cipani, Ennio; Thomas, Melvin; Martin, Daniel

    2007-01-01

    This paper will examine possible extinction properties of behavior-specific manual restraint. It will analyze the possibility of extinction being produced via restraint with respect to the target behavior's possible environmental functions. The theoretical analysis will involve the analysis of behavioral properties of restraint during two temporal…

  8. Study on the Theoretical Foundation of Business English Curriculum Design Based on ESP and Needs Analysis

    ERIC Educational Resources Information Center

    Zhu, Wenzhong; Liu, Dan

    2014-01-01

    Based on a review of the literature on ESP and needs analysis, this paper is intended to offer some theoretical supports and inspirations for BE instructors to develop BE curricula for business contexts. It discusses how the theory of need analysis can be used in Business English curriculum design, and proposes some principles of BE curriculum…

  9. Recent applications of theoretical analysis to V/STOL inlet design

    NASA Technical Reports Server (NTRS)

    Stockman, N. O.

    1979-01-01

    The theoretical analysis methods, potential flow, and boundary layer, used at Lewis are described. Recent application to Navy V/STOL aircraft, both fixed and tilt nacelle configurations, are presented. A three dimensional inlet analysis computer program is described and preliminary results presented. An approach to optimum design of inlets for high angle of attack operations is dicussed.

  10. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    SciTech Connect

    Castro, Alonso

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  11. Theoretical calculation on ICI reduction using digital coherent superposition of optical OFDM subcarrier pairs in the presence of laser phase noise.

    PubMed

    Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun

    2014-12-15

    Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.

  12. Adequacy of laser diffraction for soil particle size analysis

    PubMed Central

    Fisher, Peter; Aumann, Colin; Chia, Kohleth; O'Halloran, Nick; Chandra, Subhash

    2017-01-01

    Sedimentation has been a standard methodology for particle size analysis since the early 1900s. In recent years laser diffraction is beginning to replace sedimentation as the prefered technique in some industries, such as marine sediment analysis. However, for the particle size analysis of soils, which have a diverse range of both particle size and shape, laser diffraction still requires evaluation of its reliability. In this study, the sedimentation based sieve plummet balance method and the laser diffraction method were used to measure the particle size distribution of 22 soil samples representing four contrasting Australian Soil Orders. Initially, a precise wet riffling methodology was developed capable of obtaining representative samples within the recommended obscuration range for laser diffraction. It was found that repeatable results were obtained even if measurements were made at the extreme ends of the manufacturer’s recommended obscuration range. Results from statistical analysis suggested that the use of sample pretreatment to remove soil organic carbon (and possible traces of calcium-carbonate content) made minor differences to the laser diffraction particle size distributions compared to no pretreatment. These differences were found to be marginally statistically significant in the Podosol topsoil and Vertosol subsoil. There are well known reasons why sedimentation methods may be considered to ‘overestimate’ plate-like clay particles, while laser diffraction will ‘underestimate’ the proportion of clay particles. In this study we used Lin’s concordance correlation coefficient to determine the equivalence of laser diffraction and sieve plummet balance results. The results suggested that the laser diffraction equivalent thresholds corresponding to the sieve plummet balance cumulative particle sizes of < 2 μm, < 20 μm, and < 200 μm, were < 9 μm, < 26 μm, < 275 μm respectively. The many advantages of laser diffraction for soil particle

  13. Particle analysis using laser ablation mass spectroscopy

    DOEpatents

    Parker, Eric P.; Rosenthal, Stephen E.; Trahan, Michael W.; Wagner, John S.

    2003-09-09

    The present invention provides a method of quickly identifying bioaerosols by class, even if the subject bioaerosol has not been previously encountered. The method begins by collecting laser ablation mass spectra from known particles. The spectra are correlated with the known particles, including the species of particle and the classification (e.g., bacteria). The spectra can then be used to train a neural network, for example using genetic algorithm-based training, to recognize each spectra and to recognize characteristics of the classifications. The spectra can also be used in a multivariate patch algorithm. Laser ablation mass specta from unknown particles can be presented as inputs to the trained neural net for identification as to classification. The description below first describes suitable intelligent algorithms and multivariate patch algorithms, then presents an example of the present invention including results.

  14. Avoidance of crack inducement when laser welding hot-formed car body components - a variable analysis

    NASA Astrophysics Data System (ADS)

    Larsson, Johnny K.

    The Volvo XC60 car body contains numerous parts in Ultra High Strength Steels (UHSS) in order to guarantee the structural integrity of the car in the event of a crash situation. Most of the parts are manufactured in a hot-forming process, so called presshardening, resulting in component tensile strength in the range of 1,500 MPa. As this type of material also presents fairly high carbon content (˜0.22%) it brings a challenge when it comes to welding. The Volvo XC60 car body is at the same time to a large extent assembled by laser welding technology. In early development stages of the project (Y413), it was observed that laser welding of hot-formed components presented a number of challenges due to the unique conditions offered by this welding method. The presentation will thoroughly describe the modes of procedure how to avoid crack inducement during the welding operation. A variable analysis approach was used based on the present circumstances at the production facility in the Gent plant. Crucial variables at laser welding such as gap between sheets, focal point position, welding speed and laser weld position relative to the flange edge were included in a test matrix and welding trials were carried out accordingly in the Pilot Plant in Gothenburg. The paper will discuss those welding results, the subsequent analysis and plausible theoretic explanations. From the lessons learnt in this research, the optimum laser welding parameters were then transferred to the laser welding stations in the Gent plant. There it has been proven, that also at high volume automotive manufacturing, it is possible to provide an outstanding weld quality also at such difficult pre-conditions. The presentation ends with some facts and figures and experiences from high volume series production, which also includes aspects on quality assurance.

  15. Compositional Analysis of Drugs by Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Beldjilali, S. A.; Axente, E.; Belasri, A.; Baba-Hamed, T.; Hermann, J.

    2017-07-01

    The feasibility of the compositional analysis of drugs by calibration-free laser-induced breakdown spectroscopy (LIBS) was investigated using multivitamin tablets as a sample material. The plasma was produced by a frequencyquadrupled Nd:YAG laser delivering UV pulses with a duration of 5 ns and an energy of 12 mJ, operated at a repetition rate of 10 Hz. The relative fractions of the elements composing the multivitamin drug were determined by comparing the emission spectrum of the laser-produced plume with the spectral radiance computed for a plasma in a local thermodynamic equilibrium. Fair agreement of the measured fractions with those given by the manufacturer was observed for all elements mentioned in the leafl et of the drug. Additional elements such as Ca, Na, Sr, Al, Li, K, and Si were detected and quantifi ed. The present investigations demonstrate that laser-induced breakdown spectroscopy is a viable technique for the quality control of drugs.

  16. Theoretical analysis of the particle gradient distribution in centrifugal field during solidification

    SciTech Connect

    Liu, Q.; Jiao, Y.; Yang, Y.; Hu, Z.

    1996-12-01

    A theoretical analysis is presented to obtain gradient distribution of particles in centrifugal field, by which the particle distribution in gradient composite can be predicted. Particle movement in liquid is described and gradient distribution of particles in composite is calculated in a centrifugal field during the solidification. The factors which affect the particle distribution and its gradient are discussed in detail. The theoretical analysis indicated that a composite zone and a blank zone exist in gradient composite, which can be controlled to the outside or inside of the tubular composite by the density difference of particle and liquid metal. The comparison of the SiC particle distribution in Al matrix composite produced by centrifugal casting between the theory model and the experiment denotes that the theoretical analysis is reasonable.

  17. Development of Isotope Analysis Based on Laser Induced Fluorescence

    SciTech Connect

    Sakai, T.; Watanabe, K.; Uritani, A.; Tomita, H.; Iguchi, T.

    2009-03-17

    We have proposed Laser Induced Fluorescence analysis using Doppler Shift of laser ablated atoms for Isotope Analysis (LIF-DS-IA). This isotope analysis is expected to have a small mass discrimination effect because the detection target is fluorescence photons instead of ions, which distort the measured isotope ratio by the space charge effect. We demonstrate this technique to be feasible through the model calculations. We experimentally confirmed the fundamental behavior in LIF-DS-IA that the shift in the irradiating laser frequency corresponds to that of peak position in the time domain LIF spectra. The reason of poor mass resolution in the present system was considered to be inadequate definition in the field of view of the fluorescence detector.

  18. Hydrodynamic analysis of laser-driven cylindrical implosions

    SciTech Connect

    Ramis, R.

    2013-08-15

    Three-dimensional hydrodynamic simulations are performed to study laser-driven cylindrical implosions in the context of experiments (F. Perez et al., Plasma Phys. Controlled Fusion 51, 124035 (2009)) carried out at the Rutherford Appleton Laboratory in the framework of the HiPER project. The analysis is carried out by using the 3D version of the hydrocode MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475-505 (1988)). The influence of the main laser parameters on implosion performance and symmetry is consistently studied and compared with the results of 2D analysis. Furthermore, the effects of uncertainties in laser irradiation (pointing, focusing, power balance, and time jitter) on implosion performance (average peak density and temperature) are studied by means of statistical analysis.

  19. An in-depth analysis of theoretical frameworks for the study of care coordination1

    PubMed Central

    Van Houdt, Sabine; Heyrman, Jan; Vanhaecht, Kris; Sermeus, Walter; De Lepeleire, Jan

    2013-01-01

    Introduction Complex chronic conditions often require long-term care from various healthcare professionals. Thus, maintaining quality care requires care coordination. Concepts for the study of care coordination require clarification to develop, study and evaluate coordination strategies. In 2007, the Agency for Healthcare Research and Quality defined care coordination and proposed five theoretical frameworks for exploring care coordination. This study aimed to update current theoretical frameworks and clarify key concepts related to care coordination. Methods We performed a literature review to update existing theoretical frameworks. An in-depth analysis of these theoretical frameworks was conducted to formulate key concepts related to care coordination. Results Our literature review found seven previously unidentified theoretical frameworks for studying care coordination. The in-depth analysis identified fourteen key concepts that the theoretical frameworks addressed. These were ‘external factors’, ‘structure’, ‘tasks characteristics’, ‘cultural factors’, ‘knowledge and technology’, ‘need for coordination’, ‘administrative operational processes’, ‘exchange of information’, ‘goals’, ‘roles’, ‘quality of relationship’, ‘patient outcome’, ‘team outcome’, and ‘(inter)organizational outcome’. Conclusion These 14 interrelated key concepts provide a base to develop or choose a framework for studying care coordination. The relational coordination theory and the multi-level framework are interesting as these are the most comprehensive. PMID:23882171

  20. Laser Brazing with Beam Scanning: Experimental and Simulative Analysis

    NASA Astrophysics Data System (ADS)

    Heitmanek, M.; Dobler, M.; Graudenz, M.; Perret, W.; Göbel, G.; Schmidt, M.; Beyer, E.

    Laser beam brazing with copper based filler wire is a widely established technology for joining zinc-coated steel plates in the body-shop. Successful applications are the divided tailgate or the zero-gap joint, which represents the joint between the side panel and the roof-top of the body-in-white. These joints are in direct view to the customer, and therefore have to fulfil highest optical quality requirements. For this reason a stable and efficient laser brazing process is essential. In this paper the current results on quality improvement due to one dimensional laser beam deflections in feed direction are presented. Additionally to the experimental results a transient three-dimensional simulation model for the laser beam brazing process is taken into account. With this model the influence of scanning parameters on filler wire temperature and melt pool characteristics is analyzed. The theoretical predictions are in good accordance with the experimental results. They show that the beam scanning approach is a very promising method to increase process stability and seam quality.

  1. Optomechanical analysis of the mounting performance of large laser transport mirrors

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Cao, Tingfen; Xiong, Zhao; Yuan, Xiaodong; Yao, Chao; Zhang, Zheng; Ma, Guohui

    2015-03-01

    In the high-power laser facility (SG-III), focusing 48 laser beams into the target center better than 50 microns (RMS) within a few picoseconds is dependent on the stringent specifications of thousands of large optics and also puts huge challenges on the engineering characteristics of the design and mounting. A parametric optomechanical method is proposed to evaluate the performance of a 400 mm large-aperture transport mirror. With theoretical modeling and numerical analysis, the impacts of assembly structure, manufacturing errors, mounting loads, and gravity on the mirror surface aberrations are calculated and discussed in detail. With field experiments and case studies, the proposed method shows a powerful performance on the mirror surface aberrations' evaluation, and negative impacts of currently used mounting techniques for the mirror are found. Finally, a new assembly design is presented based on a discussion of its advantages.

  2. Analysis of influential factors on a space target's laser radar cross-section

    NASA Astrophysics Data System (ADS)

    Han, Yi; Sun, Huayan; Guo, Huichao

    2014-03-01

    This paper utilises the idea of theoretical analysis to introduce a fast and visual laser radar cross-section (LRCS) calculation method for space targets that is implemented with OpenGL. We chose the cube, cylinder and cone as targets based on the general characteristics of satellite shapes. The four-parameter mono-station BRDF is used, and we assume the surface materials are either purely diffuse, purely specular or mixed. The degree of influence on a target's total LRCS of the target's shape and size and the surface materials' BRDF are described. We describe the general laws governing influential factors by comparing simulated results. These conclusions can provide a reference for new research directions and methods to determine a target's laser scattering characteristics.

  3. Analysis of a space debris laser removal system

    NASA Astrophysics Data System (ADS)

    Gjesvold, Evan; Straub, Jeremy

    2017-05-01

    As long as man ventures into space, he will leave behind debris, and as long as he ventures into space, this debris will pose a threat to him and his projects. Space debris must be located and decommissioned. Lasers may prove to be the ideal method, as they can operate at a distance from the debris, have a theoretically infinite supply of energy from the sun, and are a seemingly readily available technology. This paper explores the requirements and reasoning for such a laser debris removal method. A case is made for the negligibility of eliminating rotational velocity from certain systems, while a design schematic is also presented for the implementation of a cube satellite proof of concept.

  4. Ab initio theoretical reinvestigation of the ground and excited state properties of silylated coumarins: Good candidates for solid state dye lasers and dye-sensitized solar cells.

    PubMed

    Jain, Virendra Kumar

    2015-11-05

    We present ab initio theoretical calculations of various properties of the ground and excited states of basic coumarin (1) and its derivatives: 4-methylcoumarin (2), 7-aminocoumarin (3), 7-amino-4-methylcoumarin or coumarin 120 (4), 4-trifluoromethylcoumarin (5), 7-amino-4-trifluoromethylcoumarin or coumarin 151 (6), silylated coumarin 120 (7) and silylated coumarin 151 (8). We calculate the following: (i) ground and excited state dipole moments (ii) energies and locations of HOMOs and LUMOs (iii) SCF total energies of ground state (iv) excitation energies with oscillator strengths for first six excited states (v) C=O and C-N bond lengths in ground and excited states (vi) ground state thermodynamic and electronic properties. The ground and excited state properties of coumarins 1-8 are obtained within the framework of density functional theory using B3LYP and long-range-corrected (LRC) ωB97X-D functionals with 6-31G(d,p) basis set. A detailed comparative analysis of different photo physical and electronic properties of silylated and unsilylated coumarins is made. On the basis of theoretical results we find many interesting features of silylation process and we can conclude that silylation will result in better long-term photo and thermodynamic stability compared to its unsilylated counterpart due to increase in the values of thermodynamic parameters like SCF total energy, G(0) and H(0), etc. Therefore, silylated molecules may become good candidates for solid state dye lasers and dye sensitized solar cells. In contrast, we find that both the functional B3LYP and LRC-ωB97X-D predict nearly the same results for electronic, thermodynamic and photo physical properties of studied coumarins 1-8 in their ground states but B3LYP hybrid functional severely overestimates excited state dipole moments, underestimates vertical excitation energies, oscillator strengths, C=O and C-N bond lengths of studied coumarins. On the basis of our theoretical results we conclude that LRC

  5. Theoretical study on the need for laser iridotomy in an implantable collamer lens with a hole using computational fluid dynamics.

    PubMed

    Kawamorita, T; Shimizu, K; Shoji, N

    2017-05-01

    PurposeAlthough one of the advantages of the Hole-ICL implantation is that laser iridotomy (LI) is unnecessary, the evidence have not been reported from the viewpoint of aqueous humor circulation. We investigated the effect of laser iridotomy (LI) on the fluid dynamics of aqueous humor in an implantable collamer lens (ICL) with a central hole, that is, a Hole-ICL using computational fluid dynamics.MethodsA fluid dynamics simulation was performed using the thermal-hydraulic analysis software FloEFD (Mentor Graphics Corp.). For the simulation, three-dimensional eye models with a conventional ICL (Model ICM, STAAR SURGICAL) and a Hole-ICL were used. The LI diameters were 250 and 500 μm. The flow distribution between the anterior surface of the crystalline lens and the posterior surface of the ICL was also calculated.ResultsThe flow velocity 0.25 mm in front of the center of the crystalline lens in the Hole-ICL without LI, with LI of 250 μm, and with LI of 500 μm was 1.48 × 10(-1), 1.20 × 10(-1), and 4.52 × 10(-2) mm/s, respectively. The flow velocity in the conventional ICL without LI, with LI of 250 μm, and with LI of 500 μm was 1.21 × 10(-5), 3.60 × 10(-4), and 6.33 × 10(-4) mm/s, respectively.ConclusionsThese results suggest that there is less need for LI in a posterior chamber phakic intraocular lens with a central hole from the viewpoint of aqueous humor circulation, although the results can be considered only in an ideal condition and further studies are needed to clarify the effect of LI in clinical practice.

  6. Analysis of Retinal Function Following Laser Irradiation.

    DTIC Science & Technology

    1992-06-26

    temperature rise is a function of the energy must relied on suitable animal model for their density, duration, and wavelength of the expos- investigations in... model was based on the similarity of its retinal tions of less than a microsecond. Theoretical anatomy, physiology, and visual sensitivities models ...absorbing calorimeter i experimental chamber also indicating that the (Scientech, Model 363) and were expressed in shock had no lasting psychological

  7. GEOS-1 laser pulse return shape analysis

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.

    1972-01-01

    An attempt has been made to predict the shape of the laser return pulse from the corner cube retroreflectors on the GEOS-1 spacecraft. The study is geometrical only, and neglects factors such as optical interference, atmospheric perturbations, etc. A function giving the intensity of the return signal at any given time has been derived. In addition, figures are given which show the predicted return pulse shape as a function of time, the angle between the beam and the spin axis, and an in-plane angle (designating the orientation of the intersection of the planar waves with the plane of the corner cubes).

  8. Fabrication, characterization, and theoretical analysis of controlled disorder in the core of optical fibers.

    PubMed

    Puente, Norma P; Chaikina, Elena I; Herath, Sumudu; Yamilov, Alexey

    2011-02-20

    We present results of experimental and theoretical studies of polarization-resolved light transmission through optical fiber with disorder generated in its germanium-doped core via UV radiation transmitted through a diffuser. In samples longer than a certain characteristic length, the power transmitted with preserved polarization is observed to be distributed over all forward-propagating modes, as evidenced by the Rayleigh negative exponential distribution of the near-field intensity at the output surface of the fiber. Furthermore, the transmitted power becomes also equally distributed over both polarizations. To describe the optical properties of the fibers with the experimentally induced disorder, a theoretical model based on coupled-mode theory is developed. The obtained analytical expression for the correlation function describing spatial properties of the disorder shows that it is highly anisotropic. Our calculations demonstrate that this experimentally controllable anisotropy can lead to suppression of the radiative leakage of the propagating modes, so that intermode coupling becomes the dominant scattering process. The obtained theoretical expressions for the polarization-resolved transmission fit very well with the experimental data, and the information extracted from the fit shows that radiative leakage is indeed small. The reported technique provides an easy way to fabricate different configurations of controlled disorder in optical fibers suitable for such applications as random fiber lasers.

  9. Theoretical investigation of a tunable external cavity diode laser based on a single cavity all-dielectric thin-film Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Heng, Zhao; Xiao, Xiao; Bo, Li; Jin, Wang Wen; Yi, Hu; Youqin, Wang

    2016-07-01

    The single cavity all-dielectric thin film Fabry-Perot filter (s-AFPF) has been theoretically investigated in this paper as a means of tuning the wavelength in an external cavity diode laser (ECDL), and the means of limiting longitudinal mode hopping has been also theoretically investigated. When a TE or TM plane wave irradiates an s-AFPF, a quasi-linear relationship is found in a certain wavelength range between the optical intensity peak transmittance wavelength of s-AFPF and the cosine value of plane wave incident angle at s-AFPF. Based on this feature, we proposed and theoretically investigated an ECDL configuration based on an s-AFPF. By theoretical calculation, the actuator flat edge against the steel ball may be replaced by a bent edge to convert the mode-hop wavelength region into mode-hop-free wavelength region. The ECDL can be used in the application of environmental monitoring, atomic and molecular laser spectroscopy research, precise measurements, and so on.

  10. Laser neurosurgery: A systematic analysis of magnetic resonance-guided laser interstitial thermal therapies.

    PubMed

    Lagman, Carlito; Chung, Lawrance K; Pelargos, Panayiotis E; Ung, Nolan; Bui, Timothy T; Lee, Seung J; Voth, Brittany L; Yang, Isaac

    2017-02-01

    Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a novel minimally invasive modality that uses heat from laser probes to destroy tissue. Advances in probe design, cooling mechanisms, and real-time MR thermography have increased laser utilization in neurosurgery. The authors perform a systematic analysis of two commercially available MRgLITT systems used in neurosurgery: the Visualase® thermal therapy and NeuroBlate® Systems. Data extraction was performed in a blinded fashion. Twenty-two articles were included in the quantitative synthesis. A total of 223 patients were identified with the majority having undergone treatment with Visualase (n=154, 69%). Epilepsy was the most common indication for Visualase therapy (n=8 studies, 47%). Brain mass was the most common indication for NeuroBlate therapy (n=3 studies, 60%). There were no significant differences, except in age, wherein the NeuroBlate group was nearly twice as old as the Visualase group (p<0.001). Frame, total complications, and length-of-stay (LOS) were non-significant when adjusted for age and number of patients. Laser neurosurgery has evolved over recent decades. Clinical indications are currently being defined and will continue to emerge as laser technologies become more sophisticated. Head-to-head comparison of these systems was difficult given the variance in indications (and therefore patient population) and disparate literature.

  11. Petri nets modeling and analysis using extended bag-theoretic relational algebra.

    PubMed

    Kim, Y C; Kim, T G

    1996-01-01

    Petri nets are a powerful modeling tool for studying reactive, concurrent systems. Analysis of the nets can reveal important information concerning the behavior of a modeled system. While various means for the analysis of the nets has been developed, a major limitation in the analysis, is explosion of large states space in simulation. An efficient method to manage large states space would overcome such a limitation. This paper proposes a framework for the modeling and analysis of Petri nets using relational database technologies. Formalism of the framework is based on a bag-theoretic relational algebra extended from the conventional, Within the framework, Petri nets are formalized by bag relations, and analysis algorithms are developed based on such formal relations. Properties associated with the nets are formalized by queries described in terms of the bag-theoretic relational algebra. The framework has been realized in a commercial relational database system using a standard SQL.

  12. Analysis of imaging for laser triangulation sensors under Scheimpflug rule.

    PubMed

    Miks, Antonin; Novak, Jiri; Novak, Pavel

    2013-07-29

    In this work a detailed analysis of the problem of imaging of objects lying in the plane tilted with respect to the optical axis of the rotationally symmetrical optical system is performed by means of geometrical optics theory. It is shown that the fulfillment of the so called Scheimpflug condition (Scheimpflug rule) does not guarantee the sharp image of the object as it is usually declared because of the fact that due to the dependence of aberrations of real optical systems on the object distance the image becomes blurred. The f-number of a given optical system also varies with the object distance. It is shown the influence of above mentioned effects on the accuracy of the laser triangulation sensors measurements. A detailed analysis of laser triangulation sensors, based on geometrical optics theory, is performed and relations for the calculation of measurement errors and construction parameters of laser triangulation sensors are derived.

  13. Analysis of exhaled breath by laser detection

    NASA Astrophysics Data System (ADS)

    Thrall, Karla D.; Toth, James J.; Sharpe, Steven W.

    1996-04-01

    The goal of our work is two fold: (1) to develop a portable rapid laser based breath analyzer for monitoring metabolic processes, and (2) predict these metabolic processes through physiologically based pharmacokinetic (PBPK) modeling. Small infrared active molecules such as ammonia, carbon monoxide, carbon dioxide, methane and ethane are present in exhaled breath and can be readily detected by laser absorption spectroscopy. In addition, many of the stable isotopomers of these molecules can be accurately detected, making it possible to follow specific metabolic processes. Potential areas of applications for this technology include the diagnosis of certain pathologies (e.g. Helicobacter Pylori infection), detection of trauma due to either physical or chemical causes and monitoring nutrient uptake (i.e., malnutrition). In order to understand the origin and elucidate the metabolic processes associated with these small molecules, we are employing physiologically based pharmacokinetic (PBPK) models. A PBPK model is founded on known physiological processes (i.e., blood flow rates, tissue volumes, breathing rate, etc.), chemical-specific processes (i.e., tissue solubility coefficients, molecular weight, chemical density, etc.), and on metabolic processes (tissue site and rate of metabolic biotransformation). Since many of these processes are well understood, a PBPK model can be developed and validated against the more readily available experimental animal data, and then by extrapolating the parameters to apply to man, the model can predict chemical behavior in humans.

  14. Semianalytical thermal analysis of the heat capacity of YAG laser rods

    SciTech Connect

    Shi Peng; Bai Bing; Zhang Linli; Li Long; Xin Yu

    2009-12-10

    Based on the theory of semianalytical thermal analysis, we investigate the heat capacity of Nd:YAG laser rods for pumping and cooling. A general expression for the temperature field within Nd:YAG laser rod crystals is obtained for the pumping stage and the relation of the maximum temperature rise with pumping time. We also achieve an expression for the temperature field for the cooling stage and the relation of the maximum temperature rise with cooling time. These results show that, when using the output power of 300 W LD pumped Nd:YAG laser rod crystals for 5 s, the maximum temperature rise in the center of the pump face is 154.79 deg. C. After we stop the pumping for 30 s, the maximum temperature rise drops to 0.8%. These results are in agreement with those reported by others. Our results provide a theoretical basis for the optimized design of a LD end-pumped heat capacity laser.

  15. Two 27 MHz Simple Inductive Loops, as Hyperthermia Treatment Applicators: Theoretical Analysis and Development

    PubMed Central

    Kouloulias, Vassilis; Karanasiou, Irene; Koutsoupidou, Maria; Matsopoulos, George; Kouvaris, John; Uzunoglu, Nikolaos

    2015-01-01

    Background. Deep heating is still the main subject for research in hyperthermia treatment. Aim. The purpose of this study was to develop and analyze a simple loop as a heating applicator. Methods. The performance of two 27 MHz inductive loop antennas as potential applicators in hyperthermia treatment was studied theoretically as well as experimentally in phantoms. Two inductive loop antennas with radii 7 cm and 9 cm were designed, simulated, and constructed. The theoretical analysis was performed by using Green's function and Bessel's function technique. Experiments were performed with phantoms radiated by the aforementioned loop antennas. Results. The specific absorption rate (SAR) distributions were estimated from the respective local phantom temperature measurements. Comparisons of the theoretical, simulation, and experimental studies showed satisfying agreement. The penetration depth was measured theoretically and experimentally in the range of 2–3.5 cm. Conclusion. The theoretical and experimental analysis showed that current loops are efficient in the case where the peripheral heating of spherical tumor formation located at 2–3.5 cm depth is required. PMID:26649070

  16. Theoretical analysis of a ceramic plate thickness-shear mode piezoelectric transformer.

    PubMed

    Xu, Limei; Zhang, Ying; Fan, Hui; Hu, Junhui; Yang, Jiashi

    2009-03-01

    We perform a theoretical analysis on a ceramic plate piezoelectric transformer operating with thickness-shear modes. Mindlin's first-order theory of piezoelectric plates is employed, and a forced vibration solution is obtained. Transforming ratio, resonant frequencies, and vibration mode shapes are calculated, and the effects of plate thickness and electrode dimension are examined.

  17. A Theoretical Analysis of Social Interactions in Computer-based Learning Environments: Evidence for Reciprocal Understandings.

    ERIC Educational Resources Information Center

    Jarvela, Sanna; Bonk, Curtis Jay; Lehtinen, Erno; Lehti, Sirpa

    1999-01-01

    Presents a theoretical and empirical analysis of social interactions in computer-based learning environments. Explores technology use to support reciprocal understanding between teachers and students based on three technology-based learning environments in Finland and the United States, and discusses situated learning, cognitive apprenticeships,…

  18. Forming Future Specialists' Valeological Competency: Theoretical Analysis of Domestic and Foreign Scholars' Views

    ERIC Educational Resources Information Center

    Maksymchuk, Borys

    2016-01-01

    The article deals with the analysis of theoretical and methodical principles of forming students' valeological competency in the process of physical education in higher pedagogical education institutions in domestic and foreign scientific literature. It has been defined that one of the most prominent factors in future teachers' training for…

  19. Study of visible and mid-infrared laser ablation mechanism of PMMA and intraocular lenses: experimental and theoretical results.

    PubMed

    Spyratou, E; Makropoulou, M; Serafetinides, A A

    2008-04-01

    Laser-polymer interactions have attracted extensive attention both for understanding the inherent basic ablation mechanism and for development of tissue simulators in several biomedical laser applications such as in human ophthalmology. Ablation experiments were performed on polymethylmethacrylate used as cornea tissue simulator and PMMA intraocular lenses. The polymer-ablation mechanism was examined with two different wavelengths and pulse durations. The experiments were conducted with Nd:YAG and Er:YAG solid-state lasers, and the ablation rates were simulated by a mathematical model in each case. Furthermore, to investigate the role of tissue hydration during laser ablation, we performed a set of experiments in which Er:YAG laser ablation of hydrophilic acrylic intraocular lenses, with different H(2)O and D(2)O concentrations, was studied. The hydrophilic acrylic lenses with the higher concentration of H(2)O gave the most satisfactory results regarding both the ablation efficiency and the quality of the ablated craters.

  20. Monitoring of high-power fiber laser welding based on principal component analysis of a molten pool configuration

    NASA Astrophysics Data System (ADS)

    Xiangdong, Gao; Qian, Wen

    2013-12-01

    There exists plenty of welding quality information on a molten pool during high-power fiber laser welding. An approach for monitoring the high-power fiber laser welding status based on the principal component analysis (PCA) of a molten pool configuration is investigated. An infrared-sensitive high-speed camera was used to capture the molten pool images during laser butt-joint welding of Type 304 austenitic stainless steel plates with a high-power (10 kW) continuous wave fiber laser. In order to study the relationship between the molten pool configuration and the welding status, a new method based on PCA is proposed to analyze the welding stability by comparing the situation when the laser beam spot moves along, and when it deviates from the weld seam. Image processing techniques were applied to process the molten pool images and extract five characteristic parameters. Moreover, the PCA method was used to extract a composite indicator which is the linear combination of the five original characteristics to analyze the different status during welding. Experimental results showed that the extracted composite indicator had a close relationship with the actual welding results and it could be used to evaluate the status of the high-power fiber laser welding, providing a theoretical basis for the monitoring of laser welding quality.

  1. [The analysis of surgical treatment with laser of ingrown toenail].

    PubMed

    Listratenkov, K V; Lelianov, A D

    2013-01-01

    The article presents data on the retrospective analysis of medical treatment of ingrown toenail in 264 cases with use of carbonic laser. We describe the methods of operation and way of treatment for postoperative wound. We assess the effectiveness of treatment on the basis of dynamics of wound healing, bacteriological research of wound discharge, length of disability and number of relapses of disorder.

  2. Mathematical modelling and linear stability analysis of laser fusion cutting

    SciTech Connect

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich

    2016-06-08

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

  3. Security Analysis of Selected AMI Failure Scenarios Using Agent Based Game Theoretic Simulation

    SciTech Connect

    Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T

    2014-01-01

    Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. We concentrated our analysis on the Advanced Metering Infrastructure (AMI) functional domain which the National Electric Sector Cyber security Organization Resource (NESCOR) working group has currently documented 29 failure scenarios. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain. From these five selected scenarios, we characterize them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrates how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.

  4. The theoretical analysis of an instrument for linear and angular displacements of the steered wheel measuring

    NASA Astrophysics Data System (ADS)

    Wach, K.

    2016-09-01

    In the paper the theoretical analysis of the measuring instrument for determination of translation and rotation of the stub axle with the steered wheel against car body was presented. The instrument is made of nine links with elongation sensors embedded in it. One of several possible structures of instrument of this kind was presented. Basing on solution of the geometrical constraints system of equations of the device, the numerical analysis of the measurement accuracy was conducted.

  5. Diffraction patterns from multiple tilted laser apertures: numerical analysis

    NASA Astrophysics Data System (ADS)

    Kovalev, Anton V.; Polyakov, Vadim M.

    2016-03-01

    We propose a Rayleigh-Sommerfeld based method for numerical calculation of multiple tilted apertures near and far field diffraction patterns. Method is based on iterative procedure of fast Fourier transform based circular convolution of the initial field complex amplitudes distribution and impulse response function modified in order to account aperture and observation planes mutual tilt. The method is computationally efficient and has good accordance with the results of experimental diffraction patterns and can be applied for analysis of spatial noises occurring in master oscillator power amplifier laser systems. The example of diffraction simulation for a Phobos-Ground laser rangefinder amplifier is demonstrated.

  6. Experimental and Theoretical Analysis of Chemical Vapor Deposition with Prediction of Gravity Effects

    NASA Technical Reports Server (NTRS)

    Stinespring, C. D.; Spear, K. E.

    1985-01-01

    A combined experimental and theoretical study to characterize the effects of gravitationally-induced transport on atmospheric pressure silicon epitaxy by SiH4 pyrolysis is planned. Experimentally, flow regimes in which free convective transport contributes to the Chemical Vapor Deposition (CVD) process will be identified, and, for these conditions, the flow and deposition process will be characterized. Specifically, this will include measurements of three dimensional temperature variations using in situ Rayleigh scattering, gas phase composition profiles using laser absorption and fluorescence techniques, and deposition rates and defect densities. Subsequently, the free convective transport contribution to the CVD process will be minimized and/or altered while leaving deposition chemistry unaltered, and the characterization will be repeated. Based on these analyses, the effects of gravitationally-induced transport on atmospheric pressure CVD will be assessed.

  7. Determination of laser-evaporated uranium dioxide by neutron activation analysis

    SciTech Connect

    Allred, R.

    1987-05-01

    Safety analyses of nuclear reactors require information about the loss of fuel which may occur at high temperatures. In this study, the surface of a uranium dioxide target was heated rapidly by a laser. The uranium surface was vaporized into a vacuum. The uranium bearing species condensed on a graphite disk placed in the pathway of the expanding uranium vapor. Scanning electron microscopy and X-ray analysis showed very little droplet ejection directly from the laser target surface. Neutron activation analysis was used to measure the amount of uranium deposited. The surface temperature was measured by a fast-response automatic optical pyrometer. The maximum surface temperature ranged from 2400 to 3700/sup 0/K. The Hertz-Langmuir formula, in conjunction with the measured surface temperature transient, was used to calculate the theoretical amount of uranium deposited. There was good agreement between theory and experiment above the melting point of 3120/sup 0/K. Below the melting point much more uranium was collected than was expected theoretically. This was attributed to oxidation of the surface. 29 refs., 16 figs., 7 tabs.

  8. The slab geometry laser. I - Theory

    NASA Technical Reports Server (NTRS)

    Eggleston, J. M.; Kane, T. J.; Kuhn, K.; Byer, R. L.; Unternahrer, J.

    1984-01-01

    Slab geometry solid-state lasers offer significant performance improvements over conventional rod-geometry lasers. A detailed theoretical description of the thermal, stress, and beam-propagation characteristics of a slab laser is presented. The analysis includes consideration of the effects of the zig-zag optical path, which eliminates thermal and stress focusing and reduces residual birefringence.

  9. The slab geometry laser. I - Theory

    NASA Technical Reports Server (NTRS)

    Eggleston, J. M.; Kane, T. J.; Kuhn, K.; Byer, R. L.; Unternahrer, J.

    1984-01-01

    Slab geometry solid-state lasers offer significant performance improvements over conventional rod-geometry lasers. A detailed theoretical description of the thermal, stress, and beam-propagation characteristics of a slab laser is presented. The analysis includes consideration of the effects of the zig-zag optical path, which eliminates thermal and stress focusing and reduces residual birefringence.

  10. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency-doubled Alexandrite laser wavelength in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, Nabil M.

    1987-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for three different sets of relaxation rates. These rates correspond to: (1) Far Infrared (FIR) Raman lasers in the diabatic collision regime without consideration of coupled population decay in a closed system, (2) Raman FIR lasers in the diabatic collision regime with coupled population conserving decay, and (3) IR Raman gain in cesium vapor. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled Alexandrite laser-pumped cesium vapor gain cell.

  11. Analysis of laser speckle patterns from fingertips

    NASA Astrophysics Data System (ADS)

    Iversen, T. F. Q.; Hanson, S. G.

    2010-04-01

    The trend in human-machine interface technology is heading towards optical solutions for tracking and movement detection. Especially, interactive touch screens and pads, in which the movement of the user's fingertips is detected and tracked, are of great commercial interest. The applications range from mobile phones to laptops and PDA´s. However, the dynamics of scattered light from live tissue must be taken into account when designing optical sensor systems for tracking e.g. fingertips in touch-applications. Especially, when using coherent light sources, the statistics of the speckle-pattern originating from the scattering structure is of critical importance for the sensor performance and has to be understood in details. We investigate theoretically and experimentally the characteristics of the dynamics of backscattered speckle pattern generated by a human fingertip and address the effects of an intermediate optically flat interface, between the fingertip and the illuminating light source.

  12. Theoretical Noise Analysis on a Position-sensitive Metallic Magnetic Calorimeter

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2007-01-01

    We report on the theoretical noise analysis for a position-sensitive Metallic Magnetic Calorimeter (MMC), consisting of MMC read-out at both ends of a large X-ray absorber. Such devices are under consideration as alternatives to other cryogenic technologies for future X-ray astronomy missions. We use a finite-element model (FEM) to numerically calculate the signal and noise response at the detector outputs and investigate the correlations between the noise measured at each MMC coupled by the absorber. We then calculate, using the optimal filter concept, the theoretical energy and position resolution across the detector and discuss the trade-offs involved in optimizing the detector design for energy resolution, position resolution and count rate. The results show, theoretically, the position-sensitive MMC concept offers impressive spectral and spatial resolving capabilities compared to pixel arrays and similar position-sensitive cryogenic technologies using Transition Edge Sensor (TES) read-out.

  13. Theoretical analysis and experimental research on the finline ferrite isolator (abstract)

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-chuan; Hao, Yan-ming; Zhang, Yao-xi

    1991-04-01

    Recently, the finline ferrite devices have attracted people's attention. Beyer et al. have done theoretical and experimental researches for a finline isolator.1,2 In order to make it convenient for theoretical design and experimental adjustment of this device, we have developed a synthetical theory and have carried out the experimental research successfully.3 In this paper, we have done the further theoretical analysis and experimental researches for the finline ferrite isolator, such as the impedance matching, the effects of device structure on performances, and the transplantation of a waveguide isolator to a finline isolator problem. Good agreement between design and experiment is obtained. The performances of a X-band finline isolator are as follows A+<1.5 dB, A-≳18 dB, VSWR<1.5 in a 8% bandwidth, and the bia-field is lower (about 1000 Oe).

  14. Performance analysis of a laser propelled interorbital tansfer vehicle

    NASA Technical Reports Server (NTRS)

    Minovitch, M. A.

    1976-01-01

    Performance capabilities of a laser-propelled interorbital transfer vehicle receiving propulsive power from one ground-based transmitter was investigated. The laser transmits propulsive energy to the vehicle during successive station fly-overs. By applying a series of these propulsive maneuvers, large payloads can be economically transferred between low earth orbits and synchronous orbits. Operations involving the injection of large payloads onto escape trajectories are also studied. The duration of each successive engine burn must be carefully timed so that the vehicle reappears over the laser station to receive additional propulsive power within the shortest possible time. The analytical solution for determining these time intervals is presented, as is a solution to the problem of determining maximum injection payloads. Parameteric computer analysis based on these optimization studies is presented. The results show that relatively low beam powers, on the order of 50 MW to 60 MW, produce significant performance capabilities.

  15. Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection

    SciTech Connect

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-µm diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance

  16. Design and analysis of the satellite laser communications network

    NASA Astrophysics Data System (ADS)

    Ren, Pei-an; Qian, Fengchen; Liu, Qiang; Jin, Linlin

    2015-02-01

    A satellite laser communications network structure with two layers and multiple domains has been proposed, which performance has been simulated by OPENT. To simulation, we design several OPNET models of the network's components based on a satellite constellation with two layers and multiple domains, as network model, node model, MAC layer protocol and optical antenna model. The network model consists of core layer and access layer. The core network consists of four geostationary orbit (GEO) satellites which are uniformly distributed in the geostationary orbit. The access network consists of 6 low Earth orbit (LEO) satellites which is the walker delta (walk-δ) constellation with three orbit planes. In access layer, each plane has two satellites, and the constellation is stably. The satellite constellation presented for space laser network can meet the demand of coverage in the middle and low latitude by a few satellites. Also several terminal device models such as the space laser transmitter, receiver, protocol layer module and optical antenna have been designed according to the inter-satellite links in different orbits t from GEO to LEO or GEO to ground. The influence to network of different transmitting throughput, receiving throughput, network protocol and average time delay are simulated. Simulation results of network coverage, connectivity and traffic load performance in different scenes show that the satellite laser network presented by the paper can be fit for high-speed satellite communications. Such analysis can provide effective reference for the research of satellite laser networking and communication protocol.

  17. Development of a code system DEURACS for theoretical analysis and prediction of deuteron-induced reactions

    NASA Astrophysics Data System (ADS)

    Nakayama, Shinsuke; Kouno, Hiroshi; Watanabe, Yukinobu; Iwamoto, Osamu; Ye, Tao; Ogata, Kazuyuki

    2017-09-01

    We have developed an integrated code system dedicated for theoretical analysis and prediction of deuteron-induced reactions, which is called DEUteron-induced Reaction Analysis Code System (DEURACS). DEURACS consists of several calculation codes based on theoretical models to describe respective reaction mechanisms and it was successfully applied to (d,xp) and (d,xn) reactions. In the present work, the analysis of (d,xn) reactions is extended to higher incident energy up to nearly 100 MeV and also DEURACS is applied to (d,xd) reactions at 80 and 100 MeV. The DEURACS calculations reproduce the experimental double-differential cross sections for the (d,xn) and (d,xd) reactions well.

  18. Analysis of the ac free electron laser

    NASA Astrophysics Data System (ADS)

    Chung, Tae Hung; Lee, Jin Hyun

    1990-06-01

    An ac free-electron laser (FEL) with a superconductor cavity and a FEL with a plasma wave wiggler are analyzed. The ac FEL has a small effective wiggler wavelength and higher wiggler strength. Therefore, it can supply high-power coherent radiation with a short wavelength. From the linear fluid theory and Maxwell's equations, the dispersion relation is derived. When the coupling term is much less than unity, the growth rate of electromagnetic instability is calculated. The intrinsic efficiency of radiation production is also estimated. For the small-signal gain regime, the gain coefficient is formulated. In a FEL with a plasma wiggler, the electron beam passing through the wiggler plasma might begin to thermalize due to various particle-particle and wave-particle interactions. To avoid such interactions, the electron beam should be bunched and narrower than the skin depth. It has been found that the growth rate has a linear dependence on the amplitude of the electric wiggler and decreases with increasing beam energy. The intrinsic efficiency of radiation production decreases with increasing beam energy. In a FEL with a plasma wiggler, the efficiency is enhanced by an increase in the electron beam density.

  19. Analysis and interpretation of lunar laser altimetry.

    NASA Technical Reports Server (NTRS)

    Kaula, W. M.; Schubert, G.; Lingenfelter, R. E.; Sjogren, W. L.; Wollenhaupt, W. R.

    1972-01-01

    About 4.5 revolutions of laser altimetry were obtained by Apollo 15. This altimetry indicates a 2-km displacement of the center of mass from the center of figure toward the earthside. The terrae are quite rough, with frequent changes of 1 km or more in successive altitudes at about 33-km intervals. The mean altitude of terrae above maria is about 3 km with respect to the center of mass, indicating a thickness of about 24 km for a high-alumina crust. The maria are extremely level, with elevations varying not more than plus or minus 150 m about the mean over some stretches of 200 to 600 km. However, different maria have considerably different mean elevations. The largest unanticipated feature found is a 1400 km wide depression centered at about 180 deg longitude, and 2 km deep with respect to a 1737-km sphere (about 6 km deep with respect to the surrounding terrae). This basin has the appearance of typical terrae, although there are indications of a ring structure of about 600-km radius in the Orbiter photography. Altitudes across circum-Orientale features suggest that Mare Orientale is also a deep basin. The data appear to corroborate a model of early large-scale differentiation of a crust, followed a considerable time later by short intense episodes of mare filling with low viscosity lavas.

  20. Composite Characterization Using Laser Doppler Vibrometry and Multi-Frequency Wavenumber Analysis

    NASA Technical Reports Server (NTRS)

    Juarez, Peter; Leckey, Cara

    2015-01-01

    NASA has recognized the need for better characterization of composite materials to support advances in aeronautics and the next generation of space exploration vehicles. An area of related research is the evaluation of impact induced delaminations. Presented is a non-contact method of measuring the ply depth of impact delamination damage in a composite through use of a Scanning Laser Doppler Vibrometer (SLDV), multi-frequency wavenumber analysis, and a wavenumber-ply correlation algorithm. A single acquisition of a chirp excited lamb wavefield in an impacted composite is post-processed into a numerous single frequency excitation wavefields through a deconvolution process. A spatially windowed wavenumber analysis then extracts local wavenumbers from the wavefield, which are then correlated to theoretical dispersion curves for ply depth determination. SLDV based methods to characterize as-manufactured composite variation using wavefield analysis will also be discussed.

  1. APPLICATION OF LASERS AND LASER-OPTICAL METHODS IN LIFE SCIENCES Two-photon fluorescence microscopy signal formation in highly scattering media: theoretical and numerical simulation

    NASA Astrophysics Data System (ADS)

    Sergeeva, Ekaterina A.; Katichev, A. R.; Kirillin, M. Yu

    2011-01-01

    Using the radiative transfer theory and Monte Carlo simulations, we analyse the effect of scattering in a medium and of the size of the detector pinhole on the formation of the fluorescent signal in standard two-photon fluorescence microscopy (TPFM) systems. The theoretical analysis is based on a small-angle diffusion approximation of the radiative transfer equation, adapted to calculate the propagation of focused infrared radiation in media similar to the biological tissues in their optical properties. The accuracy of the model is evaluated by comparing the calculated excitation intensity in a highly scattering medium with the results of Monte Carlo simulations. To simulate a tightly focused Gaussian beam by the Monte Carlo method, the so called 'ray-optics' approach that correctly takes into account the finite size and shape of the beam waist is applied. It is shown that in the combined confocal and two-photon scanning microscopy systems not equipped with an external 'nondescanned' detector, the scattering significantly affects both the nonlinear excitation efficiency in the medium and the fluorescence collection efficiency of the system. In such systems, the rate of the useful TPFM signal in-depth decay is 1.5 — 2 times higher than in systems equipped with a 'nondescanned' detector.

  2. Threshold analysis of pulsed lasers with application to a room-temperature Co:MgF2 laser

    NASA Technical Reports Server (NTRS)

    Harrison, James; Welford, David; Moulton, Peter F.

    1989-01-01

    Rate-equation calculations are used to model accurately the near-threshold behavior of a Co:MgF2 laser operating at room temperature. The results demonstrate the limitations of the conventional threshold analysis in cases of practical interest. This conclusion is applicable to pulsed solid-state lasers in general. The calculations, together with experimental data, are used to determine emission cross sections for the Co:MgF2 laser.

  3. Wavefront analysis of the laser beam propagating through a turbid medium

    SciTech Connect

    Galaktionov, I V; Sheldakova, J V; Kudryashov, A V

    2015-02-28

    Laser beam propagation through a scattering suspension of polystyrene microspheres in distilled water is studied theoretically and experimentally. The dependence of wavefront aberrations on the particle concentration is investigated. The existence of symmetric wavefront aberrations of the laser beam passed through a turbid medium is shown. (light scattering)

  4. Experimental and theoretical analysis of a hybrid solar thermoelectric generator with forced convection cooling

    NASA Astrophysics Data System (ADS)

    Sundarraj, Pradeepkumar; Taylor, Robert A.; Banerjee, Debosmita; Maity, Dipak; Sinha Roy, Susanta

    2017-01-01

    Hybrid solar thermoelectric generators (HSTEGs) have garnered significant research attention recently due to their potential ability to cogenerate heat and electricity. In this paper, theoretical and experimental investigations of the electrical and thermal performance of a HSTEG system are reported. In order to validate the theoretical model, a laboratory scale HSTEG system (based on forced convection cooling) is developed. The HSTEG consists of six thermoelectric generator modules, an electrical heater, and a stainless steel cooling block. Our experimental analysis shows that the HSTEG is capable of producing a maximum electrical power output of 4.7 W, an electrical efficiency of 1.2% and thermal efficiency of 61% for an average temperature difference of 92 °C across the TEG modules with a heater power input of 382 W. These experimental results of the HSTEG system are found to be in good agreement with the theoretical prediction. This experimental/theoretical analysis can also serve as a guide for evaluating the performance of the HSTEG system with forced convection cooling.

  5. Breath analysis using external cavity diode lasers: a review

    NASA Astrophysics Data System (ADS)

    Bayrakli, Ismail

    2017-04-01

    Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.

  6. Breath analysis using external cavity diode lasers: a review.

    PubMed

    Bayrakli, Ismail

    2017-04-01

    Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.

  7. Elemental analysis of slurry samples with laser induced breakdown spectroscopy

    SciTech Connect

    Eseller, Kemal E.; Tripathi, Markandey M.; Yueh, Fang-Yu; Singh, Jagdish P.

    2010-05-01

    Direct analysis of wet slurry samples with laser induced breakdown spectroscopy (LIBS) is challenging due to problems of sedimentation, splashing, and surface turbulence. Also, water can quench the laser plasma and suppress the LIBS signal, resulting in poor sensitivity. The effect of water on LIBS spectra from slurries was investigated. As the water content decreased, the LIBS signal was enhanced and the standard deviation was reduced. To improve LIBS slurry analysis, dried slurry samples prepared by applying slurry on PVC coated slides were evaluated. Univariate and multivariate calibration was performed on the LIBS spectra of the dried slurry samples for elemental analysis of Mg, Si, and Fe. Calibration results show that the dried slurry samples give a good correlation between spectral intensity and elemental concentration.

  8. From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals

    NASA Astrophysics Data System (ADS)

    Boulon, G.; Guyot, Y.; Ito, M.; Bensalah, A.; Goutaudier, C.; Panczer, G.; Gâcon, J. C.

    2004-01-01

    A spectroscopic characterization was carried out to identify crystal-field levels for magnetic-dipole transitions of Yb3+ ions located in the Y3+ dodecahedral S4 crystallographic site in YLiF4 (YLF) crystals which were grown either by the Czochralski technique or by the laser heated pedestal growth (LHPG) technique. The concentration dependence of the measured decay time of the 2F5/2 excited level of Yb3+ was analysed in order to understand relevant concentration quenching mechanisms. Under Yb3+ ion infrared pumping, self-trapping and up-conversion non-radiative energy transfer to trace rare-earth impurities (Er3+, Tm3+) has been observed over the visible region and interpreted by a limited-diffusion process within the Yb3+ doping ion subsystem to the impurities. The principal parameters useful for a theoretical approach for potential laser applications of Yb3+-doped YLiF4 crystals have also been given.

  9. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].

    PubMed

    Wei, Hua-jiang; Xing, Da; Wu, Guo-yong; Jin, Ying; Gu, Huai-min

    2004-05-01

    A double-integrating-spheres system, basic principle of measuring technology of ray radiation, and optical model of biological tissues were used for the study. Optical properties of human normal small intestine tissue at 476.5, 488, 496.5, 514.5 and 532 nm laser and their linearly polarized laser irradiation were studied. The results of measurement showed that the total attenuation coefficient and scattering coefficient of the tissue at these wavelengths of laser and their linearly polarized laser irradiation increased with decreasing wavelengths. And obviously there was a distinction at 514.5 to 532 nm wavelength between lasers and their linearly polarized laser irradiation. Absorption coefficient of tissue at these wavelengths of laser and their linearly polarized laser irradiation increased with decreasing wavelengths. Absorption coefficient of tissue at 514.5 to 532 nm wavelength of laser was obviously decreasing, which was independent of these wavelengths of laser or their linearly polarized laser irradiation. Mean cosine of scattering of tissue at these wavelengths of laser and their linearly polarized laser irradiation also increased with decreasing wavelengths. But penetration depth of tissue at these wavelengths of laser and their linearly polarized laser irradiation also increased with increasing of wavelengths. Refractive index of tissue between these wavelengths of laser was within 1.38 to 1.48. Absorption coefficient, scattering coefficient, total attenuation coefficient, effective attenuation coefficients of tissue in Kubelka-Munk two-flux model at the same wavelength of laser and their linearly polarized laser irradiation showed no prominent distinction (P>0.01). Absorption coefficient, scattering coefficient, total attenuation coefficient, effective attenuation coefficients of tissue in Kubelka-Munk two-flux model at different wavelength of laser and their linearly polarized laser irradiation showed obvious distinction. Optical properties of tissue

  10. Medical diagnostics by laser-based analysis of exhaled breath

    NASA Astrophysics Data System (ADS)

    Giubileo, Gianfranco

    2002-08-01

    IMany trace gases can be found in the exhaled breath, some of them giving the possibility of a non invasive diagnosis of related diseases or allowing the monitoring of the disease in the course of its therapy. In the present lecture the principle of medical diagnosis based on the breath analysis will be introduced and the detection of trace gases in exhaled breath by high- resolution molecular spectroscopy in the IR spectral region will be discussed. A number of substrates and the optical systems for their laser detection will be reported. The following laser based experimental systems has been realised in the Molecular Spectroscopy Laboratory in ENEA in Frascati for the analysis of specific substances in the exhaled breath. A tuneable diode laser absorption spectroscopy (TDLAS) appartus for the measurement of 13C/12C isotopic ratio in carbon dioxide, a TDLAS apparatus for the detection of CH4 and a CO2 laser based photoacoustic system to detect trace ethylene at atmospheric pressure. The experimental set-up for each one of the a.m. optical systems will be shown and the related medical applications will be illustrated. The concluding remarks will be focuses on chemical species that are of major interest for medical people today and their diagnostic ability.

  11. Data Analysis for GOPEX Laser Communications Experiment

    NASA Technical Reports Server (NTRS)

    Levine, B.; Shaik, K.; Yan, T-Y.; Lesh, J.; Wilson, K.

    1993-01-01

    This paper describes the data analysis based on the image frames received at the Solid State Imaging camera of the Galileo Optical-communications from an Earth-based Transmitter demonstration conducted between December 9 and December 16 of 1992.

  12. Experimental investigation and theoretical analysis of pulse repetition rate adjustable deep ultraviolet picosecond radiation by second harmonic generation in KBe2BO3F2

    NASA Astrophysics Data System (ADS)

    Xu, Zhi; Zhang, Fengfeng; Zhang, Shenjin; Wang, Zhimin; Yang, Feng; Xu, Fengliang; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Wang, Xiaoyang; Chen, Chuangtian; Xu, Zuyan

    2014-06-01

    We reported on an experimental investigation and theoretical analysis of pulse repetition rate (PRR) adjustable deep ultraviolet (DUV) picosecond (ps) radiation by second harmonic generation (SHG) in KBe2BO3F2 (KBBF) crystal. Third harmonic radiation at 355 nm of a ps Nd:YVO4 laser output with PRR of 200 kHz-1 MHz was employed as the pump source. The dependence of the 177.3 nm output power on the 355 nm pump power was measured at different PRRs, and the maximum 177.3 nm average output power of 695 μW was obtained at the PRR of 200 kHz. The measured data agreed well with the results of the ps KBBF SHG theoretical simulations. Using simulations, the pulse width and the spectral bandwidth of the generated radiation at 177.3 nm were estimated to be 5.88 ps and 7.84 pm, respectively.

  13. Characterization of a Continuous Wave Laser for Resonance Ionization Mass Spectroscopy Analysis in Nuclear Forensics

    DTIC Science & Technology

    2015-06-01

    Light Emitting Diodes (LED) and Diode Lasers ...............................8  B.  THE LASER POWER AND MODES...RIMS selective ionization and mass analysis process, from [2] ........................1  Figure 2.  Current RIMS pump and ionization laser setup, from...element” [5]. The laser system that produces the photons for ionization is comprised of three tunable lasers (Ti:Sapph, Al2O3 crystal doped with Ti) pumped

  14. Laser speckle tracking for monitoring and analysis of retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Seifert, Eric; Bliedtner, Katharina; Brinkmann, Ralf

    2014-02-01

    Laser coagulation of the retina is an established treatment for several retinal diseases. The absorbed laser energy and thus the induced thermal damage varies with the transmittance and scattering properties of the anterior eye media and with the pigmentation of the fundus. The temperature plays the most important role in the coagulation process. An established approach to measure a mean retinal temperature rise is optoacoustics, however it provides limited information on the coagulation. Phase sensitive OCT potentially offers a three dimensional temporally resolved temperature distribution but is very sensitive to slightest movements which are clinically hard to avoid. We develop an optical technique able to monitor and quantify thermally and coagulation induced tissue movements (expansions and contractions) and changes in the tissue structure by dynamic laser speckle analysis (LSA) offering a 2D map of the affected area. A frequency doubled Nd:YAG laser (532nm) is used for photocoagulation. Enucleated porcine eyes are used as targets. The spot is 100μm. A Helium Neon laser (HeNe) is used for illumination. The backscattered light of a HeNe is captured with a camera and the speckle pattern is analyzed. A Q-switched Nd:YLF laser is used for simultaneous temperature measurements with the optoacoustic approach. Radial tissue movements in the micrometer regime have been observed. The signals evaluation by optical flow algorithms and generalized differences tuned out to be able to distinguish between regions with and without immediate cell damage. Both approaches have shown a sensitivity of 93% and a specificity above 99% at their optimal threshold.

  15. Analysis of utility-theoretic heuristics for intelligent adaptive network routing

    SciTech Connect

    Mikler, A.R.; Honavar, V.; Wong, J.S.K.

    1996-12-31

    Utility theory offers an elegant and powerful theoretical framework for design and analysis of autonomous adaptive communication networks. Routing of messages in such networks presents a real-time instance of a multi-criterion optimization problem in a dynamic and uncertain environment. In this paper, we incrementally develop a set of heuristic decision functions that can be used to guide messages along a near-optimal (e.g., minimum delay) path in a large network. We present an analysis of properties of such heuristics under a set of simplifying assumptions about the network topology and load dynamics and identify the conditions under which they are guaranteed to route messages along an optimal path. The paper concludes with a discussion of the relevance of the theoretical results presented in the paper to the design of intelligent autonomous adaptive communication networks and an outline of some directions of future research.

  16. Local structure of Se in cancrinite: X-ray absorption fine structure theoretical analysis

    NASA Astrophysics Data System (ADS)

    Soldatov, A. V.; Yalovega, G. E.

    2000-04-01

    A theoretical "ab initio" analysis of the polarized X-ray absorption spectrum of selenium in a cancrinite matrix based on a full multiple-scattering theory has been performed. Comparison of the theoretical spectra with the experimental results shows that Se atoms form dimerized chains in the channels of the cancrinite matrix with an interchain distance of about 4.8 Å. In addition the distribution of unoccupied partial s-, p- and d- electronic states of Se has been obtained. Density of states analysis provides some insight into the chemical bonding of Se in cancrinite. The results suggest that the interaction of Se atoms with the matrix is the cause of the unusually large Se-Se distance in dimers.

  17. Economic Analysis in the Pacific Northwest Land Resources Project: Theoretical Considerations and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Morse, D. R. A.; Sahlberg, J. T.

    1977-01-01

    The Pacific Northwest Land Resources Inventory Demonstration Project i s an a ttempt to combine a whole spectrum of heterogeneous geographic, institutional and applications elements in a synergistic approach to the evaluation of remote sensing techniques. This diversity is the prime motivating factor behind a theoretical investigation of alternative economic analysis procedures. For a multitude of reasons--simplicity, ease of understanding, financial constraints and credibility, among others--cost-effectiveness emerges as the most practical tool for conducting such evaluation determinatIons in the Pacific Northwest. Preliminary findings in two water resource application areas suggest, in conformity with most published studies, that Lands at-aided data collection methods enjoy substantial cost advantages over alternative techniques. The pntential for sensitivity analysis based on cost/accuracy tradeoffs is considered on a theoretical plane in the absence of current accuracy figures concerning the Landsat-aided approach.

  18. Aerodynamic design and analysis system for supersonic aircraft. Part 1: General description and theoretical development

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.; Lundry, J. L.

    1975-01-01

    An integrated system of computer programs has been developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. This part presents a general description of the system and describes the theoretical methods used.

  19. Theoretical Analysis of the Longitudinal Behavior of an Automatically Controlled Supersonic Interceptor During the Attack Phase

    NASA Technical Reports Server (NTRS)

    Gates, Ordway B., Jr.; Woodling, C. H.

    1959-01-01

    Theoretical analysis of the longitudinal behavior of an automatically controlled supersonic interceptor during the attack phase against a nonmaneuvering target is presented. Control of the interceptor's flight path is obtained by use of a pitch rate command system. Topics lift, and pitching moment, effects of initial tracking errors, discussion of normal acceleration limited, limitations of control surface rate and deflection, and effects of neglecting forward velocity changes of interceptor during attack phase.

  20. Moving Target Detection with Along-Track SAR Interferometry. A Theoretical Analysis

    DTIC Science & Technology

    2002-08-01

    1994). Intensity and Phase Statistics of Multilook Polarimetric and Interfer- ometric SAR Imagery. IEEE Trans. Geoscience and Remote Sensing, GRS-32(5... Multilook Polarimetric Signatures. IEEE Trans. Geoscience and Remote Sensing, GRS-32(3), 562-574. 4. Gierull, C.H. (July 2001). Statistics of SAR ...Along-Track SAR Interferometry A Theoretical Analysis Christoph H. Gierull DISTRIBUTION STATEMENTA Approved for Public Release Distribution Unlimited

  1. A Theoretical Analysis of the Radar Cross Section of the Biconical Corner Reflector.

    DTIC Science & Technology

    1980-05-01

    radar ,and hence the enhancement of the radar cross section is not as great as, say, that of the trihedral corner reflector . In practical...AUSTRALIA TECHNICAL REPORT ERL-0134-TR A THEORETICAL ANALYSIS OF THE RADAR CROSS SECTION OF THE BICONICAL CORNER REFLECTOR J.L. WHIT ROW ~~T!: S fl-PO.AT...biconical corner reflector is a useful device where moderate enhancement of the radar cross section

  2. Can Computer-Mediated Interventions Change Theoretical Mediators of Safer Sex? A Meta-Analysis

    ERIC Educational Resources Information Center

    Noar, Seth M.; Pierce, Larson B.; Black, Hulda G.

    2010-01-01

    The purpose of this study was to conduct a meta-analysis of computer-mediated interventions (CMIs) aimed at changing theoretical mediators of safer sex. Meta-analytic aggregation of effect sizes from k = 20 studies indicated that CMIs significantly improved HIV/AIDS knowledge, d = 0.276, p less than 0.001, k = 15, N = 6,625; sexual/condom…

  3. Can Computer-Mediated Interventions Change Theoretical Mediators of Safer Sex? A Meta-Analysis

    ERIC Educational Resources Information Center

    Noar, Seth M.; Pierce, Larson B.; Black, Hulda G.

    2010-01-01

    The purpose of this study was to conduct a meta-analysis of computer-mediated interventions (CMIs) aimed at changing theoretical mediators of safer sex. Meta-analytic aggregation of effect sizes from k = 20 studies indicated that CMIs significantly improved HIV/AIDS knowledge, d = 0.276, p less than 0.001, k = 15, N = 6,625; sexual/condom…

  4. Theoretical Basis for CTABS80: A Computer Program for Three-Dimensional Analysis of Building Systems.

    DTIC Science & Technology

    1981-09-01

    AD-AlI7 635 COMPUTERS/STRUCTURES INTERNATIONAL OAKLAND CA F/B 13/13 THEORETICAL BASIS FOR CTABSSO: A COMPUTER PROGRAM FOR THREE-DIM--ETC(U) SEP 81 E...THREE-DIMENSIONAL ANALYSIS OF BUILDING SYSTEMS by Edward L. Wilson, H-. H. Dovey Ashraf l-abibullah 3 Computers /Structures International 4009 Webster... International , Oakland, Calif. His work was sponsored with funds provided to the Automatic Data Processing (ADP) Center, U. S. Army Engineer Waterways

  5. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1994-01-01

    Accomplishments in the following areas of research are presented: receiver performance study of spaceborne laser altimeters and cloud and aerosol lidars; receiver performance analysis for space-to-space laser ranging systems; and receiver performance study for the Mars Environmental Survey (MESUR).

  6. Laser-irradiated drug chromatographic analysis and laser injection of drugs to treat staphyloccocal lesions of skin

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Latyshev, Alexei S.; Kovsh, Anna I.; Razumova, Svetlana A.; Masyukova, Svetlana A.; Volnukhin, Vladimir A.

    2001-05-01

    This article deals with further development of laser drug delivery methods. In order to estimate the effect of laser- drug interactions, we carried out the chromatographic fractionation of dexamethasone, hydrocortisone, and gentamicine, both prior to and after irradiating them by pulsed Er:YAG laser radiation. The laser radiation parameters were as follows: the wavelength, pulse energy, and pulse duration were, respectively, 2.94 micrometers , 0.7 J, and 100 microsecond(s) . The total laser radiation dose administered to a 100 (mu) l sample of these drug preparations amounted to 150 J. A chromatographic analysis revealed that drug samples exposed to Er:YAG laser radiation did not show any change. The results obtained made it possible to employ pulsed Er:YAG laser radiation to perform laser-acoustic injection of the above-mentioned drug preparations to study the treatment of staphylococcal lesions in 30 guinea pigs. The perforated channel depth was measured and the injected drug solution volume was calculated. It was found that laser injection enabled one to introduce therapeutic doses of drugs, and that it expedited the healing of lesions by 3 to 4 days, as compared to the control group that received the topical application of drugs without laser irradiation.

  7. Adiabatic Soliton Laser

    NASA Astrophysics Data System (ADS)

    Bednyakova, Anastasia; Turitsyn, Sergei K.

    2015-03-01

    The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity—the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.

  8. Analysis of gain distribution in cladding-pumped thulium-doped fiber laser and optical feedback inhibition problem in fiber-bulk laser system

    NASA Astrophysics Data System (ADS)

    Ji, En-Cai; Liu, Qiang; Hu, Zhen-Yue; Gong, Ma-Li

    2015-10-01

    The steady-state gain distribution in cladding pumped thulium-doped fiber laser (TDFL) is analytically and numerically solved based on the rate equations including loss coefficients and cross relaxation effect. With the gain curve, a problem, which is named optical feedback inhibition (OFI) and always occurs in tandem TDFL-Ho:YAG laser system, is analyzed quantitatively. The actual characteristics of output spectra and power basically prove the conclusion of theoretical analysis. Then a simple mirror-deflected L-shaped cavity is employed to restrain the external feedback and simplify the structure of fiber-bulk Ho:YAG laser. Finally, 25 W of 2097-nm laser power and 51.2% of optical-to-optical conversion efficiency are obtained, and the beam quality factor is less than 1.43 obtained by knife-edge method. Project supported by the National Natural Science Foundation of China (Grant No. 61275146), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110066), and the Special Program of the Co-construction with Beijing Municipal Government of China (Grant No. 20121000302).

  9. Laser-high-speed-DSC: Process-oriented Thermal Analysis of PA 12 in Selective Laser Sintering

    NASA Astrophysics Data System (ADS)

    Lanzl, Lydia; Wudy, Katrin; Drexler, Maximilian; Drummer, Dietmar

    In the Selective Laser Sintering process very high heating rates occur due to the melting of the material by a laser. Extreme scanning rates could not be measured by conventional thermal analysis methods, since typical heating rates for DSC (differential scanning calorimetry) are between 5-20K min-1. By using a Laser-High-Speed-DSC, a self-developed combination of a Flash-DSC and a fitted laser head, the sample is directly heated by a CO2 laser like in the SLS process. These experiments allow a process-oriented thermal analyzation of the material. In this paper, the set-up and function of this new measuring method is introduced. Furthermore, the reliability of the measurements is evaluated by statistical design of experiment methods. By using this new measuring method, the time-dependent melting behavior of the polymer can be analyzed. Moreover, sample temperatures and heating rates dependent on laser exposure times can be quantified.

  10. Experimental and theoretical study of the heating dynamics of carbon-containing optothermal fibre converters for laser surgery

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Skrypnik, A. V.; Kurnyshev, V. Yu; Shatilova, K. V.

    2016-06-01

    We have studied carbon-containing optothermal fibre converters (COTFCs) that are located on the distal end of a quartz - quartz optical fibre for delivering laser radiation in medical laser surgery systems and differ in the thickness and structure of the layer of a material converting laser radiation into heat. The heating dynamics of 'thin-film' and '3D' converters have been investigated at average incident 980-nm semiconductor laser beam powers of 0.3, 1.0 and 4.0 W, with the converters placed freely in air. The results demonstrate that, before the instant of disintegration, the efficiency of laser heating of the converter surface can reach 3000 °C W-1 for thin-film converters, 1000 °C W-1 for spherical 3D converters and 55 °C W-1 for planar 3D converters. The thin-film converter breaks down at an average laser beam power as low as 0.30 +/- 0.05 W, which is accompanied by a considerable reduction in heating efficiency and is caused by the disintegration of the carbon film on its surface. The spherical 3D converter breaks down at an average power of 4.0 +/- 0.1 W, as a result of the disintegration of the carbon film on its surface and partial melting of a modified layer containing microbubbles. The carbon film on the surface of the planar 3D converter also disintegrates at an average power of 4.0 +/- 0.1 W, but the structure of the modified layer remains unchanged. We have constructed structural and optophysical models of the converters by simulating light absorption in carbon films on the surface of the COTFC and inside the microbubbles present in the modified layer of the converters. The proposed models of the COTFCs have been shown to adequately describe real converters.

  11. An infant surgical table for laser photocoagulation: ergonomic improvement analysis.

    PubMed

    Ryland, K A; Nelson, C A; Hejkal, T W

    2010-02-01

    Current methods of treatment for retinopathy of prematurity, using laser photocoagulation, require surgeons to assume awkward standing positions, which can result in occupational injury. A new infant surgical table was designed for improving this surgical procedure. To quantify its benefits, an ergonomic comparison of the standard and modified procedures was carried out, using specialized checklists, Nordic Musculoskeletal Questionnaires, and analysis of videotaped procedures using an Ovako Working Posture Analysing System method. Analysis of the typical laser photocoagulation procedure revealed a high risk for cumulative trauma disorders. The majority of the risk factors were lowered considerably with use of the new table. Improvement was largely due to the new table allowing seated postures during surgery, relieving muscular stress on the back, shoulders and legs. This study demonstrates risk reduction through engineering design of new medical devices, and illustrates how combining different assessment approaches can help evaluate ergonomic impact of medical technologies.

  12. Ground extraction from airborne laser data based on wavelet analysis

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Yang, Yan; Jiang, Bowen; Li, Jia

    2007-11-01

    With the advantages of high resolution and accuracy, airborne laser scanning data are widely used in topographic mapping. In order to generate a DTM, measurements from object features such as buildings, vehicles and vegetation have to be classified and removed. However, the automatic extraction of bare earth from point clouds acquired by airborne laser scanning equipment remains a problem in LIDAR data filtering nowadays. In this paper, a filter algorithm based on wavelet analysis is proposed. Relying on the capability of detecting discontinuities of continuous wavelet transform and the feature of multi-resolution analysis, the object points can be removed, while ground data are preserved. In order to evaluate the performance of this approach, we applied it to the data set used in the ISPRS filter test in 2003. 15 samples have been tested by the proposed approach. Results showed that it filtered most of the objects like vegetation and buildings, and extracted a well defined ground model.

  13. Theoretical and experimental investigation of surface acoustic wave propagation on a hollow spherical shell using laser ultrasound

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojun; Tang, Xing; Wang, Zongwei; Gao, Dangzhong; Tang, Yongjian

    2016-12-01

    An analytical model of surface acoustic waves on the surface of a hollow spherical shell generated by a pulsed laser source is proposed using the Legendre polynomials expansion and contour integration method. The model predicts two interesting phenomena. The dispersive characteristic of thick spherical shells is mainly determined by the spherical Rayleigh waves, but the corresponding characteristic of thin spherical shells is dominated by zero-order anti-symmetric plate waves; The hollow spherical spheres with the same ratio of thickness to radius have the same dispersive characteristic. Using laser ultrasound technique, the proposed model is confirmed experimentally on a hollow polymer sphere of mm-sized diameter.

  14. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol

    NASA Astrophysics Data System (ADS)

    Livshts, Mikhail A.; Khomyakova, Elena; Evtushenko, Evgeniy G.; Lazarev, Vassili N.; Kulemin, Nikolay A.; Semina, Svetlana E.; Generozov, Edward V.; Govorun, Vadim M.

    2015-11-01

    Exosomes, small (40-100 nm) extracellular membranous vesicles, attract enormous research interest because they are carriers of disease markers and a prospective delivery system for therapeutic agents. Differential centrifugation, the prevalent method of exosome isolation, frequently produces dissimilar and improper results because of the faulty practice of using a common centrifugation protocol with different rotors. Moreover, as recommended by suppliers, adjusting the centrifugation duration according to rotor K-factors does not work for “fixed-angle” rotors. For both types of rotors - “swinging bucket” and “fixed-angle” - we express the theoretically expected proportion of pelleted vesicles of a given size and the “cut-off” size of completely sedimented vesicles as dependent on the centrifugation force and duration and the sedimentation path-lengths. The proper centrifugation conditions can be selected using relatively simple theoretical estimates of the “cut-off” sizes of vesicles. Experimental verification on exosomes isolated from HT29 cell culture supernatant confirmed the main theoretical statements. Measured by the nanoparticle tracking analysis (NTA) technique, the concentration and size distribution of the vesicles after centrifugation agree with those theoretically expected. To simplify this “cut-off”-size-based adjustment of centrifugation protocol for any rotor, we developed a web-calculator.

  15. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol

    PubMed Central

    Livshts, Mikhail A.; Khomyakova, Elena; Evtushenko, Evgeniy G.; Lazarev, Vassili N.; Kulemin, Nikolay A.; Semina, Svetlana E.; Generozov, Edward V.; Govorun, Vadim M.

    2015-01-01

    Exosomes, small (40–100 nm) extracellular membranous vesicles, attract enormous research interest because they are carriers of disease markers and a prospective delivery system for therapeutic agents. Differential centrifugation, the prevalent method of exosome isolation, frequently produces dissimilar and improper results because of the faulty practice of using a common centrifugation protocol with different rotors. Moreover, as recommended by suppliers, adjusting the centrifugation duration according to rotor K-factors does not work for “fixed-angle” rotors. For both types of rotors – “swinging bucket” and “fixed-angle” – we express the theoretically expected proportion of pelleted vesicles of a given size and the “cut-off” size of completely sedimented vesicles as dependent on the centrifugation force and duration and the sedimentation path-lengths. The proper centrifugation conditions can be selected using relatively simple theoretical estimates of the “cut-off” sizes of vesicles. Experimental verification on exosomes isolated from HT29 cell culture supernatant confirmed the main theoretical statements. Measured by the nanoparticle tracking analysis (NTA) technique, the concentration and size distribution of the vesicles after centrifugation agree with those theoretically expected. To simplify this “cut-off”-size-based adjustment of centrifugation protocol for any rotor, we developed a web-calculator. PMID:26616523

  16. Spectrum analysis of radar life signal in the three kinds of theoretical models

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Ma, J. F.; Wang, D.

    2017-02-01

    In the single frequency continuous wave radar life detection system, based on the Doppler effect, the theory model of radar life signal is expressed by the real function, and there is a phenomenon that can't be confirmed by the experiment. When the phase generated by the distance between the measured object and the radar measuring head is л of integer times, the main frequency spectrum of life signal (respiration and heartbeat) is not existed in radar life signal. If this phase is л/2 of odd times, the main frequency spectrum of breath and heartbeat frequency is the strongest. In this paper, we use the Doppler effect as the basic theory, using three different mathematical expressions——real function, complex exponential function and Bessel's function expansion form. They are used to establish the theoretical model of radar life signal. Simulation analysis revealed that the Bessel expansion form theoretical model solve the problem of real function form. Compared with the theoretical model of the complex exponential function, the derived spectral line is greatly reduced in the theoretical model of Bessel expansion form, which is more consistent with the actual situation.

  17. Analysis of thermal characteristics based on a new type diode laser packaging structure

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Bo, Baoxue; Qiao, Zhongliang; Xu, Yumeng; Gao, Xin

    2017-08-01

    In order to improve the thermal characteristics of single-chip semiconductor lasers and increase the output power of the device, a new type of vertical packaging structure of heat sink is proposed and analyzed. The heat sink retains the advantages of simplicity and being easy to apply, and the performance of heat dissipation has been improved obviously. The new heat sink structure is believed to be more suitable for packaging of the high-power semiconductor laser chips by heat conduction. Finite-element thermal analysis was used to simulate the thermal field distribution and thermal vector distribution in the conventional structure and the new structure. The simulation results show that the thermal resistance of the conventional structure is 2.0 K/W and the thermal resistance of the new heat sink is less than 1.6 K/W. The theoretical calculation results show that the output power of the packaged laser by new heat sinks can be significantly improved.

  18. Temporary spectral analysis of a laser plasma of mineral coal

    NASA Astrophysics Data System (ADS)

    Rebolledo, P.; Pacheco, P.; Sarmiento, R.; Cabanzo, R.; Mejía-Ospino, E.

    2013-11-01

    In this work we present results of the temporal spectral study of a plasma laser of mineral coal using the Laser-induced Breakdown Spectroscopy (LIBS) technique. The plasma was generated by focusing a laser beam of Nd:YAG laser emitting at 532 nm with energy per pulse of 35 mJ on coal target pellets. The plasma radiation was conducted by an optical fiber to the entrance slit of a spectrograph of 0.5 m, equipped with a 1200 and 2400 grooves/mm diffraction grating and an ICCD camera for registration with different delay times of the spectra in the spectral range from 250 nm to 900 nm. The temporal spectral analysis allowed the identification of the elements Al, Fe, Ca, Mg, K, and Si, and CN and C2 molecules present in natural coals. The characteristics of the spectral lines and bands were studied at different delay times obtaining the calculation of the evolution of electron temperature, electron density, and vibrational temperature of plasmas in the time. The delay times used were between 0.5 μs and 5 μs, calculating the electron temperature ranged between 5 000 K and 1 000 K.

  19. Ion Beam Analysis applied to laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Macková, A.; Havranek, V.; Malinsky, P.; Torrisi, L.; Kormunda, M.; Barchuk, M.; Ullschmied, J.; Dudzak, R.

    2016-04-01

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed.

  20. Two-mirror device for laser scanning systems: multiparameter analysis

    NASA Astrophysics Data System (ADS)

    Duma, Maria-Alexandra; Duma, Virgil-Florin

    2017-06-01

    Most laser scanners applications require a linear scanning function, i.e., a constant scanning speed. One of the possible and simplest methods to achieve this - for both scanners with rotational (i.e., polygonal) or oscillatory (i.e., galvanometer) mirrors - is to increase the distance between the mirror and the scanned plane. In order to achieve this, we propose and study a simple and low-cost optical configuration with two plane mirrors set at a certain adjustable angle. The multiple reflections of a laser beam on the two mirrors are considered, the number of images produced is deduced, and the total optical path is obtained. The device is considered for a dimensional measurement application, usually called an optical micrometer - in a set-up which includes the two angular mirrors between a laser scanner with oscillatory or rotational mirrors and its objective lens. This simple device increases the path of the laser beam between the scanning mirror and the lens in a compact construct. The linearity of the scanning function is thus increased, while the total size of the system is reduced - with regard to other possible set-ups. A multi-parameter analysis is proposed and briefly pointed out with regard to the characteristics of the system.

  1. The Probabilistic Analysis of Language Acquisition: Theoretical, Computational, and Experimental Analysis

    ERIC Educational Resources Information Center

    Hsu, Anne S.; Chater, Nick; Vitanyi, Paul M. B.

    2011-01-01

    There is much debate over the degree to which language learning is governed by innate language-specific biases, or acquired through cognition-general principles. Here we examine the probabilistic language acquisition hypothesis on three levels: We outline a novel theoretical result showing that it is possible to learn the exact "generative model"…

  2. Blade loss transient dynamics analysis, volume 1. Task 2: TETRA 2 theoretical development

    NASA Technical Reports Server (NTRS)

    Gallardo, Vincente C.; Black, Gerald

    1986-01-01

    The theoretical development of the forced steady state analysis of the structural dynamic response of a turbine engine having nonlinear connecting elements is discussed. Based on modal synthesis, and the principle of harmonic balance, the governing relations are the compatibility of displacements at the nonlinear connecting elements. There are four displacement compatibility equations at each nonlinear connection, which are solved by iteration for the principle harmonic of the excitation frequency. The resulting computer program, TETRA 2, combines the original TETRA transient analysis (with flexible bladed disk) with the steady state capability. A more versatile nonlinear rub or bearing element which contains a hardening (or softening) spring, with or without deadband, is also incorporated.

  3. Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass

    PubMed Central

    Hidai, Hirofumi; Wada, Jun; Iwamoto, Tatsuki; Matsusaka, Souta; Chiba, Akira; Kishi, Tetsuo; Morita, Noboru

    2016-01-01

    Light is able to remotely move matter. Among various driving forces, laser-induced metal sphere migration in glass has been reported. The temperature on the laser-illuminated side of the sphere was higher than that on the non-illuminated side. This temperature gradient caused non-uniformity in the interfacial tension between the glass and the melted metal as the tension decreased with increasing temperature. In the present study, we investigated laser-induced metal sphere migration in different glasses using thermal flow calculations, considering the temperature dependence of the material parameters. In addition, the velocity of the glass flow generated by the metal sphere migration was measured and compared with thermal flow calculations. The migration velocity of the stainless steel sphere increased with increasing laser power density; the maximum velocity was 104 μm/s in borosilicate glass and 47 μm/s in silica glass. The sphere was heated to more than 2000 K. The temperature gradient of the interfacial tension between the stainless steel sphere and the glass was calculated to be −2.29 × 10−5 N/m/K for borosilicate glass and −2.06 × 10−5 N/m/K for silica glass. Glass flowed in the region 15–30 μm from the surface of the sphere, and the 80-μm sphere migrated in a narrow softened channel. PMID:27934897

  4. The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. Volume 8

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Quinn, Katherine J.

    2012-01-01

    NASA s Ice, Cloud, and Land Elevation Satellite (ICESat) mission will be launched late 2001. It s primary instrument is the Geoscience Laser Altimeter System (GLAS) instrument. The main purpose of this instrument is to measure elevation changes of the Greenland and Antarctic icesheets. To accurately measure the ranges it is necessary to correct for the atmospheric delay of the laser pulses. The atmospheric delay depends on the integral of the refractive index along the path that the laser pulse travels through the atmosphere. The refractive index of air at optical wavelengths is a function of density and molecular composition. For ray paths near zenith and closed form equations for the refractivity, the atmospheric delay can be shown to be directly related to surface pressure and total column precipitable water vapor. For ray paths off zenith a mapping function relates the delay to the zenith delay. The closed form equations for refractivity recommended by the International Union of Geodesy and Geophysics (IUGG) are optimized for ground based geodesy techniques and in the next section we will consider whether these equations are suitable for satellite laser altimetry.

  5. 3rd Tech DeltaSphere-3000 Laser 3D Scene Digitizer infrared laser scanner hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-02-01

    A laser hazard analysis and safety assessment was performed for the 3rd Tech model DeltaSphere-3000{reg_sign} Laser 3D Scene Digitizer, infrared laser scanner model based on the 2000 version of the American National Standard Institute's Standard Z136.1, for the Safe Use of Lasers. The portable scanner system is used in the Robotic Manufacturing Science and Engineering Laboratory (RMSEL). This scanning system had been proposed to be a demonstrator for a new application. The manufacture lists the Nominal Ocular Hazard Distance (NOHD) as less than 2 meters. It was necessary that SNL validate this NOHD prior to its use as a demonstrator involving the general public. A formal laser hazard analysis is presented for the typical mode of operation for the current configuration as well as a possible modified mode and alternative configuration.

  6. Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation

    NASA Astrophysics Data System (ADS)

    Dai, Tianhong; Pikkula, Brian M.; Wang, Lihong V.; Anvari, Bahman

    2004-11-01

    Near-infrared wavelengths are absorbed less by epidermal melanin, and penetrate deeper into human skin dermis and blood than visible wavelengths. Therefore, laser irradiation using near-infrared wavelengths may improve the therapeutic outcome of cutaneous hyper-vascular malformations in moderately to heavily pigmented skin patients and those with large-sized blood vessels or blood vessels extending deeply into the skin. A mathematical model composed of a Monte Carlo algorithm to estimate the distribution of absorbed light, numerical solution of a bio-heat diffusion equation to calculate the transient temperature distribution, and a damage integral based on an empirical Arrhenius relationship to quantify the tissue damage was utilized to investigate the opto-thermal response of human skin to near-infrared and visible laser irradiations in conjunction with cryogen spray cooling. In addition, the thermal effects of a single continuous laser pulse and micropulse-composed laser pulse profiles were compared. Simulation results indicated that a 940 nm wavelength induces improved therapeutic outcome compared with a 585 and 595 nm wavelengths for the treatment of patients with large-sized blood vessels and moderately to heavily pigmented skin. On the other hand, a 585 nm wavelength shows the best efficacy in treating small-sized blood vessels, as characterized by the largest laser-induced blood vessel damage depth compared with 595 and 940 nm wavelengths. Dermal blood content has a considerable effect on the threshold incident dosage for epidermal damage, while the effect of blood vessel size is minimal. For the same macropulse duration and incident dosage, a micropulse-composed pulse profile results in higher peak temperature at the basal layer of skin epidermis than an ideal single continuous pulse profile.

  7. Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation.

    PubMed

    Dai, Tianhong; Pikkula, Brian M; Wang, Lihong V; Anvari, Bahman

    2004-11-07

    Near-infrared wavelengths are absorbed less by epidermal melanin, and penetrate deeper into human skin dermis and blood than visible wavelengths. Therefore, laser irradiation using near-infrared wavelengths may improve the therapeutic outcome of cutaneous hyper-vascular malformations in moderately to heavily pigmented skin patients and those with large-sized blood vessels or blood vessels extending deeply into the skin. A mathematical model composed of a Monte Carlo algorithm to estimate the distribution of absorbed light, numerical solution of a bio-heat diffusion equation to calculate the transient temperature distribution, and a damage integral based on an empirical Arrhenius relationship to quantify the tissue damage was utilized to investigate the optothermal response of human skin to near-infrared and visible laser irradiations in conjunction with cryogen spray cooling. In addition, the thermal effects of a single continuous laser pulse and micropulse-composed laser pulse profiles were compared. Simulation results indicated that a 940 nm wavelength induces improved therapeutic outcome compared with a 585 and 595 nm wavelengths for the treatment of patients with large-sized blood vessels and moderately to heavily pigmented skin. On the other hand, a 585 nm wavelength shows the best efficacy in treating small-sized blood vessels, as characterized by the largest laser-induced blood vessel damage depth compared with 595 and 940 nm wavelengths. Dermal blood content has a considerable effect on the threshold incident dosage for epidermal damage, while the effect of blood vessel size is minimal. For the same macropulse duration and incident dosage, a micropulse-composed pulse profile results in higher peak temperature at the basal layer of skin epidermis than an ideal single continuous pulse profile.

  8. Creativity in theoretical physics: A situational analysis of the fifth Solvay Council on Physics, 1927

    NASA Astrophysics Data System (ADS)

    First, Leili K.

    This dissertation investigates the intersections and interactions of factors which enhance and inhibit creativity in theoretical physics research, using a situational analysis of the fifth Solvay Council on Physics of 1927 (Solvay 1927), a pivotal point in the history of quantum physics. Situational analysis is a postmodern variant of the grounded theory method which views a situation as the unit of analysis and adds situational mapping as an analytic tool. This method specifically works against normalizing or simplifying the points of view, instead drawing out diversity, complexity, and contradiction. It results in "theorizing" rather than theory. This research differs from other analyses of the development of quantum mechanics in looking at technical issues as well as individual, collective, and societal factors. Data examined in this historical analysis includes theoretical papers, conference proceedings, personal letters, and commentary and analysis, both contemporaneous and modern. Literature related to scientific creativity was also consulted. Mapping the situation as a master discourse of Niels Bohr overlapping and interacting with co-existent major discourses on matrix mechanics/Copenhagen interpretation, wave mechanics, and the pilot-wave theory resulted in the most descriptive illustration of the factors influencing scientific creativity before and after Solvay 1927. The master discourse strongly influenced the major discourses and generated the "Copenhagen spirit" which effectively marginalized discourses other than matrix mechanics/Copenhagen interpretation after Solvay 1927.

  9. Security Analysis of Smart Grid Cyber Physical Infrastructures Using Modeling and Game Theoretic Simulation

    SciTech Connect

    Abercrombie, Robert K; Sheldon, Frederick T.

    2015-01-01

    Cyber physical computing infrastructures typically consist of a number of sites are interconnected. Its operation critically depends both on cyber components and physical components. Both types of components are subject to attacks of different kinds and frequencies, which must be accounted for the initial provisioning and subsequent operation of the infrastructure via information security analysis. Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. We concentrated our analysis on the electric sector failure scenarios and impact analyses by the NESCOR Working Group Study, From the Section 5 electric sector representative failure scenarios; we extracted the four generic failure scenarios and grouped them into three specific threat categories (confidentiality, integrity, and availability) to the system. These specific failure scenarios serve as a demonstration of our simulation. The analysis using our ABGT simulation demonstrates how to model the electric sector functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the cyber physical infrastructure network with respect to CIA.

  10. Elastic Cherenkov effects in transversely isotropic soft materials-I: Theoretical analysis, simulations and inverse method

    NASA Astrophysics Data System (ADS)

    Li, Guo-Yang; Zheng, Yang; Liu, Yanlin; Destrade, Michel; Cao, Yanping

    2016-11-01

    A body force concentrated at a point and moving at a high speed can induce shear-wave Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography method applied in clinics in recent years. Previous studies on the ECE in soft materials have focused on isotropic material models. In this paper, we investigate the existence and key features of the ECE in anisotropic soft media, by using both theoretical analysis and finite element (FE) simulations, and we apply the results to the non-invasive and non-destructive characterization of biological soft tissues. We also theoretically study the characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft material by a source moving with high speed, considering that contact between the ultrasound probe and the soft tissue may lead to finite deformation. On the basis of our theoretical analysis and numerical simulations, we propose an inverse approach to infer both the anisotropic and hyperelastic parameters of incompressible transversely isotropic (TI) soft materials. Finally, we investigate the properties of the solutions to the inverse problem by deriving the condition numbers in analytical form and performing numerical experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to demonstrate the applicability of the inverse method in practical use.

  11. An Experimental-Theoretical Analysis of Protein Adsorption on Peptidomimetic Polymer Brushes

    PubMed Central

    Lau, K.H. Aaron; Ren, Chunlai; Park, Sung Hyun; Szleifer, Igal; Messersmith, Phillip B.

    2012-01-01

    Surface-grafted water soluble polymer brushes are being intensely investigated for preventing protein adsorption to improve biomedical device function, prevent marine fouling, and enable applications in biosensing and tissue engineering. In this contribution, we present an experimental-theoretical analysis of a peptidomimetic polymer brush system with regard to the critical brush density required for preventing protein adsorption at varying chain lengths. A mussel adhesive-inspired DOPA-Lys pentapeptide surface grafting motif enabled aqueous deposition of our peptidomimetic polypeptoid brushes over a wide range of chain densities. Critical densities of 0.88 nm−2 for a relatively short polypeptoid 10-mer to 0.42 nm−2 for a 50-mer were identified from measurements of protein adsorption. The experiments were also compared with the protein adsorption isotherms predicted by a molecular theory. Excellent agreements in terms of both the polymer brush structure and the critical chain density were obtained. Furthermore, atomic force microscopy (AFM) imaging is shown to be useful in verifying the critical brush density for preventing protein adsorption. The present co-analysis of experimental and theoretical results demonstrates the significance of characterizing the critical brush density in evaluating the performance of an anti-fouling polymer brush system. The high fidelity of the agreement between the experiments and molecular theory also indicate that the theoretical approach presented can aid in the practical design of antifouling polymer brush systems. PMID:22107438

  12. Discussion on information theoretic and simulation analysis of linear shift-invariant edge detection operators

    NASA Astrophysics Data System (ADS)

    Jiang, Bo

    2013-02-01

    Generally, the designs of digital image processing algorithms and image gathering devices remain separate. However, experiments show that the image gathering process profoundly impacts the performance of digital image processing and the quality of the resulting images. We proposed an end-to-end information theory based system to assess linear shift-invariant edge detection algorithms, where the different parts, such as scene, image gathering, and processing, are assessed in an integrated manner using Shannon's information theory. We evaluated the performance of the different algorithms as a function of the characteristics of the scene and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge detection algorithm is regarded as having high performance only if the information rate from the scene to the edge image approaches its maximum possible. This goal can be achieved only by jointly optimizing all processes. To validate our information theoretical conclusions, a series of experiments simulated the whole image acquisition process are conducted. After comparison and discussion between theoretic analysis and simulation analysis, we can draw a conclusion that the proposed information-theoretic assessment provides a new tool which allows us to compare different linear shift-invariant edge detectors in a common environment.

  13. Asynchronous cellular automaton-based neuron: theoretical analysis and on-FPGA learning.

    PubMed

    Matsubara, Takashi; Torikai, Hiroyuki

    2013-05-01

    A generalized asynchronous cellular automaton-based neuron model is a special kind of cellular automaton that is designed to mimic the nonlinear dynamics of neurons. The model can be implemented as an asynchronous sequential logic circuit and its control parameter is the pattern of wires among the circuit elements that is adjustable after implementation in a field-programmable gate array (FPGA) device. In this paper, a novel theoretical analysis method for the model is presented. Using this method, stabilities of neuron-like orbits and occurrence mechanisms of neuron-like bifurcations of the model are clarified theoretically. Also, a novel learning algorithm for the model is presented. An equivalent experiment shows that an FPGA-implemented learning algorithm enables an FPGA-implemented model to automatically reproduce typical nonlinear responses and occurrence mechanisms observed in biological and model neurons.

  14. Theoretical and experimental analysis of the lubricating system of a high speed multiplier

    NASA Astrophysics Data System (ADS)

    Marian, V. G.; Mirică, R. F.; Prisecaru, T.

    2017-02-01

    Flywheel-based energy storage systems are used for energy storage in form of kinetic energy using a flywheel rotating at high speed. In order to achieve this high rotating speed a high speed multiplier could be used in order to increase the rotation speed of a conventional motor. This article presents a theoretical and experimental analysis of the lubricating system of a high speed multiplier used in a flywheel-based energy storage system. The necessary oil flow is theoretically computed using analytical formulas. The oil is used for lubricating the gears, the roller bearings and the sliding bearings. An experimental test rig is used to measure the oil flow. Finally the two results are compared.

  15. Transient gain analysis of gain-switched semiconductor lasers during pulse lasing.

    PubMed

    Chen, Shaoqiang; Ito, Takashi; Asahara, Akifumi; Nakamae, Hidekazu; Nakamura, Takahiro; Yoshita, Masahiro; Kim, Changsu; Zhang, Baoping; Yokoyama, Hiroyuki; Suemoto, Tohru; Akiyama, Hidefumi

    2015-12-10

    We analyzed the transient gain properties of three gain-switched semiconductor lasers with different materials and cavity structures during pulse lasing. All the semiconductor lasers were pumped with impulse optical pumping, and all the generated gain-switched output pulses were well described by exponential functions in their rise parts, wherein the transient gains were derived according to the rate-equation theoretical model. In spite of the different laser structures and materials, the results consistently demonstrated that a higher transient gain produces shorter output pulses, indicating the dominant role of higher transient gain in the generation of even shorter gain-switched pulses with semiconductor lasers.

  16. Information-theoretic analysis of a stimulated-Brillouin-scattering-based slow-light system.

    PubMed

    Lee, Myungjun; Zhu, Yunhui; Gauthier, Daniel J; Gehm, Michael E; Neifeld, Mark A

    2011-11-10

    We use an information-theoretic method developed by Neifeld and Lee [J. Opt. Soc. Am. A 25, C31 (2008)] to analyze the performance of a slow-light system. Slow-light is realized in this system via stimulated Brillouin scattering in a 2 km-long, room-temperature, highly nonlinear fiber pumped by a laser whose spectrum is tailored and broadened to 5 GHz. We compute the information throughput (IT), which quantifies the fraction of information transferred from the source to the receiver and the information delay (ID), which quantifies the delay of a data stream at which the information transfer is largest, for a range of experimental parameters. We also measure the eye-opening (EO) and signal-to-noise ratio (SNR) of the transmitted data stream and find that they scale in a similar fashion to the information-theoretic method. Our experimental findings are compared to a model of the slow-light system that accounts for all pertinent noise sources in the system as well as data-pulse distortion due to the filtering effect of the SBS process. The agreement between our observations and the predictions of our model is very good. Furthermore, we compare measurements of the IT for an optimal flattop gain profile and for a Gaussian-shaped gain profile. For a given pump-beam power, we find that the optimal profile gives a 36% larger ID and somewhat higher IT compared to the Gaussian profile. Specifically, the optimal (Gaussian) profile produces a fractional slow-light ID of 0.94 (0.69) and an IT of 0.86 (0.86) at a pump-beam power of 450 mW and a data rate of 2.5 Gbps. Thus, the optimal profile better utilizes the available pump-beam power, which is often a valuable resource in a system design.

  17. Applications of direct atomic laser spectral analysis of laser plasma for determination of inorganic component presence in biological objects

    NASA Astrophysics Data System (ADS)

    Kriger, Alexey E.; Surmenko, Elena L.; Surmenko, Lev A.; Tuchin, Valery V.

    2000-04-01

    The LDMA which permits to carry out the element analysis without an additional excitement of laser plasma is described. Some results on identification and differentiation of bone tumors on the basis of measured spectral characteristics are presented.

  18. Experimental and theoretical oscillator strengths of Mg i for accurate abundance analysis

    NASA Astrophysics Data System (ADS)

    Pehlivan Rhodin, A.; Hartman, H.; Nilsson, H.; Jönsson, P.

    2017-02-01

    Context. With the aid of stellar abundance analysis, it is possible to study the galactic formation and evolution. Magnesium is an important element to trace the α-element evolution in our Galaxy. For chemical abundance analysis, such as magnesium abundance, accurate and complete atomic data are essential. Inaccurate atomic data lead to uncertain abundances and prevent discrimination between different evolution models. Aims: We study the spectrum of neutral magnesium from laboratory measurements and theoretical calculations. Our aim is to improve the oscillator strengths (f-values) of Mg i lines and to create a complete set of accurate atomic data, particularly for the near-IR region. Methods: We derived oscillator strengths by combining the experimental branching fractions with radiative lifetimes reported in the literature and computed in this work. A hollow cathode discharge lamp was used to produce free atoms in the plasma and a Fourier transform spectrometer recorded the intensity-calibrated high-resolution spectra. In addition, we performed theoretical calculations using the multiconfiguration Hartree-Fock program ATSP2K. Results: This project provides a set of experimental and theoretical oscillator strengths. We derived 34 experimental oscillator strengths. Except from the Mg i optical triplet lines (3p 3P°0,1,2-4s 3S1), these oscillator strengths are measured for the first time. The theoretical oscillator strengths are in very good agreement with the experimental data and complement the missing transitions of the experimental data up to n = 7 from even and odd parity terms. We present an evaluated set of oscillator strengths, gf, with uncertainties as small as 5%. The new values of the Mg i optical triplet line (3p 3P°0,1,2-4s 3S1) oscillator strength values are 0.08 dex larger than the previous measurements.

  19. Correction for spatial averaging in laser speckle contrast analysis

    PubMed Central

    Thompson, Oliver; Andrews, Michael; Hirst, Evan

    2011-01-01

    Practical laser speckle contrast analysis systems face a problem of spatial averaging of speckles, due to the pixel size in the cameras used. Existing practice is to use a system factor in speckle contrast analysis to account for spatial averaging. The linearity of the system factor correction has not previously been confirmed. The problem of spatial averaging is illustrated using computer simulation of time-integrated dynamic speckle, and the linearity of the correction confirmed using both computer simulation and experimental results. The valid linear correction allows various useful compromises in the system design. PMID:21483623

  20. Tunable Diode Laser Absorption Spectroscopy Verification Analysis for Use in the Combustion Optimization and Analysis Laser Laboratory

    DTIC Science & Technology

    2009-03-01

    5 Figure 4: Coherent Verdi -5 Nd:YAG laser........................................................................ 6 Figure 5: Cheetah Series...broadband dye laser also assembled by ISSI, the Verdi 5 Nd:YVO4 laser produced by Coherent, and 5 the DFB diode Laser produced by Cheetah...narrowband dye laser with frequency doubler 6 Figure 4: Coherent Verdi -5 Nd:YAG laser Figure 5: Cheetah Series DFB diode laser 1.4