The DNA damage response activates HPV16 late gene expression at the level of RNA processing.
Nilsson, Kersti; Wu, Chengjun; Kajitani, Naoko; Yu, Haoran; Tsimtsirakis, Efthymios; Gong, Lijing; Winquist, Ellenor B; Glahder, Jacob; Ekblad, Lars; Wennerberg, Johan; Schwartz, Stefan
2018-06-01
We show that the alkylating cancer drug melphalan activated the DNA damage response and induced human papillomavirus type 16 (HPV16) late gene expression in an ATM- and Chk1/2-dependent manner. Activation of HPV16 late gene expression included inhibition of the HPV16 early polyadenylation signal that resulted in read-through into the late region of HPV16. This was followed by activation of the exclusively late, HPV16 splice sites SD3632 and SA5639 and production of spliced late L1 mRNAs. Altered HPV16 mRNA processing was paralleled by increased association of phosphorylated BRCA1, BARD1, BCLAF1 and TRAP150 with HPV16 DNA, and increased association of RNA processing factors U2AF65 and hnRNP C with HPV16 mRNAs. These RNA processing factors inhibited HPV16 early polyadenylation and enhanced HPV16 late mRNA splicing, thereby activating HPV16 late gene expression.
ERIC Educational Resources Information Center
Fisher, Evelyn L.
2017-01-01
Purpose: The purpose of this study was to explore the literature on predictors of outcomes among late talkers using systematic review and meta-analysis methods. We sought to answer the question: What factors predict preschool-age expressive-language outcomes among late-talking toddlers? Method: We entered carefully selected search terms into the…
Role of the DNA Damage Response in Human Papillomavirus RNA Splicing and Polyadenylation.
Nilsson, Kersti; Wu, Chengjun; Schwartz, Stefan
2018-06-12
Human papillomaviruses (HPVs) have evolved to use the DNA repair machinery to replicate its DNA genome in differentiated cells. HPV activates the DNA damage response (DDR) in infected cells. Cellular DDR factors are recruited to the HPV DNA genome and position the cellular DNA polymerase on the HPV DNA and progeny genomes are synthesized. Following HPV DNA replication, HPV late gene expression is activated. Recent research has shown that the DDR factors also interact with RNA binding proteins and affects RNA processing. DDR factors activated by DNA damage and that associate with HPV DNA can recruit splicing factors and RNA binding proteins to the HPV DNA and induce HPV late gene expression. This induction is the result of altered alternative polyadenylation and splicing of HPV messenger RNA (mRNA). HPV uses the DDR machinery to replicate its DNA genome and to activate HPV late gene expression at the level of RNA processing.
Zhu, Luchang; Lin, Jingjun; Kuang, Zhizhou; Vidal, Jorge E.; Lau, Gee W.
2015-01-01
Summary The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 “late” competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes. Graphical abstract During genetic transformation of pneumococcus, the alternative sigma factor ComX regulates expression of 14 late competence genes important for virulence. The constitutive baseline expression of some of these genes is important for bacteremia and acute pneumonia infections. In contrast, elevated expression of DprA, CbpD, CibAB, and Cinbox are dependent on competence development, enhancing the release of pneumolysin. These results distinguish the role of basal expression versus competence induction in virulence determinants regulated by ComX. PMID:25846124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berretta, Marcelo F.; Deshpande, Mandar; Crouch, Erin A.
2006-04-25
We compared the abilities of late gene transcription and DNA replication machineries of the baculoviruses Autographa californica nucleopolyhedrovirus (AcMNPV) and Bombyx mori NPV (BmNPV) in SF-21 cells, an insect-derived cell line permissive for AcMNPV infection. It has been well established that 19 AcMNPV late expression factors (lefs) stimulate substantial levels of late gene promoter activity in SF-21 cells. Thus, we constructed a set of clones containing the BmNPV homologs of the AcMNPV lefs under control of the constitutive Drosophila heat shock 70 protein promoter and tested their ability to activate an AcMNPV late promoter-reporter gene cassette in SF-21 cells. Wemore » tested the potential of individual or predicted functional groups of BmNPV lefs to successfully replace the corresponding AcMNPV gene(s) in transient late gene expression assays. We found that most, but not all, BmNPV lefs were able to either fully or partially substitute for the corresponding AcMNPV homolog in the context of the remaining AcMNPV lefs with the exception of BmNPV p143, ie-2, and p35. BmNPV p143 was unable to support late gene expression or be imported into the nucleus of cells in the presence of the AcMNPV or the BmNPV LEF-3, a P143 nuclear shuttling factor. Our results suggest that host-specific factors may affect the function of homologous proteins.« less
Involvement of Brain-Derived Neurotrophic Factor in Late-Life Depression
Dwivedi, Yogesh
2013-01-01
Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hypothesis of depression. Late-life depression is associated with disturbances in structural and neural plasticity as well as impairments in cognitive behavior. Stress and aging also play a crucial role in late-life depression. Many recent studies have suggested that not only expression of BDNF is decreased in the serum/plasma of patients with late-life depression, but structural abnormalities in the brain of these patients may be associated with a polymorphism in the BDNF gene, and that there is a relationship between a BDNF polymorphism and antidepressant remission rates. This review provides a critical review of the involvement of BDNF in major depression, in general, and in late-life depression, in particular. PMID:23570887
Downie, Kelsey; Adetola, Gbolagade; Carstens, Eric B
2013-11-01
Autographa californica nucleopolyhedrovirus late expression factor 3 (LEF-3) is required for late viral gene expression probably through its numerous functions related to DNA replication, including nuclear localization of the virus helicase P143 and binding to ssDNA. LEF-3 appears to interact with itself as a homo-oligomer, although the details of this oligomeric structure are not yet known. To examine LEF-3-LEF-3 interactions, a bimolecular fluorescent protein complementation assay was used. Pairs of recombinant plasmids expressing full-length LEF-3 fused to one of two complementary fragments (V1 or V2) of a variant of yellow fluorescent protein named 'Venus' were constructed. Plasmids expressing fusions with complementary fragments of Venus were co-transfected into Sf21 cells and analysed by fluorescence microscopy. Co-transfected plasmids expressing full-length V1-LEF-3 and V2-LEF-3 showed positive fluorescence, confirming the formation of homo-oligomers. A series of truncated V1/V2-LEF-3 fusions was constructed and used to investigate interactions with one another as well as with full-length LEF-3.
Syed, Mubarak Hussain; Mark, Brandon; Doe, Chris Q
2017-04-10
An important question in neuroscience is how stem cells generate neuronal diversity. During Drosophila embryonic development, neural stem cells (neuroblasts) sequentially express transcription factors that generate neuronal diversity; regulation of the embryonic temporal transcription factor cascade is lineage-intrinsic. In contrast, larval neuroblasts generate longer ~50 division lineages, and currently only one mid-larval molecular transition is known: Chinmo/Imp/Lin-28+ neuroblasts transition to Syncrip+ neuroblasts. Here we show that the hormone ecdysone is required to down-regulate Chinmo/Imp and activate Syncrip, plus two late neuroblast factors, Broad and E93. We show that Seven-up triggers Chinmo/Imp to Syncrip/Broad/E93 transition by inducing expression of the Ecdysone receptor in mid-larval neuroblasts, rendering them competent to respond to the systemic hormone ecdysone. Importantly, late temporal gene expression is essential for proper neuronal and glial cell type specification. This is the first example of hormonal regulation of temporal factor expression in Drosophila embryonic or larval neural progenitors.
Factors influencing young adults' attitudes and knowledge of late-life sexuality among older women.
Allen, Rebecca S; Petro, Kathryn N; Phillips, Laura L
2009-03-01
Although sexuality is valued throughout the lifespan, older women's sexual expression can be influenced by physical, mental and social factors, including attitudes and stereotypes held by younger generations. By gaining an understanding of what influences negative attitudes toward sexuality and beliefs about sexual consent capacity, the stigma associated with sexuality in late life may be reduced. Using vignette methodology in an online survey, we examined older women's health and young adults' (N = 606; mean age = 18.86, SD = 1.42, range 17-36) general knowledge and attitudes toward aging and sexuality, personal sexual behavior, religious beliefs and perceived closeness with an older adult on attitudes towards sexual behavior and perceptions of consent capacity among older women. The health status of older women proved important in determining young adults' acceptance and perception of sexual consent capacity regarding late-life heterosexual/autoerotic and homosexual behaviors. Specifically, young adults expressed lower acceptance and more doubt regarding capacity to consent to sexual expression when the older woman was described as cognitively impaired. Additionally, young adults' personal attitudes toward late-life sexuality, but not knowledge, predicted acceptance toward sexual expression and belief in sexual consent capacity. Attention toward the influence of older women's cognitive health and young adults' attitudes toward late-life sexuality may prove beneficial in designing interventions to decrease the stigma associated with sexual activity in later life.
Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression
Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A
2014-01-01
To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division. PMID:24714560
Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.
Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A
2014-05-02
To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.
Tollot, Marie; Assmann, Daniela; Becker, Christian; Altmüller, Janine; Dutheil, Julien Y.; Wegner, Carl-Eric; Kahmann, Regine
2016-01-01
The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U. maydis. ros1 expression is induced only late during infection and hence Ros1 is neither involved in plant colonization of dikaryotic fungal hyphae nor in plant tumor formation. However, during late stages of infection Ros1 is essential for fungal karyogamy, massive proliferation of diploid fungal cells and spore formation. Premature expression of ros1 revealed that Ros1 counteracts the b-dependent filamentation program and induces morphological alterations resembling the early steps of sporogenesis. Transcriptional profiling and ChIP-seq analyses uncovered that Ros1 remodels expression of about 30% of all U. maydis genes with 40% of these being direct targets. In total the expression of 80 transcription factor genes is controlled by Ros1. Four of the upregulated transcription factor genes were deleted and two of the mutants were affected in spore development. A large number of b-dependent genes were differentially regulated by Ros1, suggesting substantial changes in this regulatory cascade that controls filamentation and pathogenic development. Interestingly, 128 genes encoding secreted effectors involved in the establishment of biotrophic development were downregulated by Ros1 while a set of 70 “late effectors” was upregulated. These results indicate that Ros1 is a master regulator of late development in U. maydis and show that the biotrophic interaction during sporogenesis involves a drastic shift in expression of the fungal effectome including the downregulation of effectors that are essential during early stages of infection. PMID:27332891
Syed, Mubarak Hussain; Mark, Brandon; Doe, Chris Q
2017-01-01
An important question in neuroscience is how stem cells generate neuronal diversity. During Drosophila embryonic development, neural stem cells (neuroblasts) sequentially express transcription factors that generate neuronal diversity; regulation of the embryonic temporal transcription factor cascade is lineage-intrinsic. In contrast, larval neuroblasts generate longer ~50 division lineages, and currently only one mid-larval molecular transition is known: Chinmo/Imp/Lin-28+ neuroblasts transition to Syncrip+ neuroblasts. Here we show that the hormone ecdysone is required to down-regulate Chinmo/Imp and activate Syncrip, plus two late neuroblast factors, Broad and E93. We show that Seven-up triggers Chinmo/Imp to Syncrip/Broad/E93 transition by inducing expression of the Ecdysone receptor in mid-larval neuroblasts, rendering them competent to respond to the systemic hormone ecdysone. Importantly, late temporal gene expression is essential for proper neuronal and glial cell type specification. This is the first example of hormonal regulation of temporal factor expression in Drosophila embryonic or larval neural progenitors. DOI: http://dx.doi.org/10.7554/eLife.26287.001 PMID:28394252
Dynamic Analysis of Gene Expression in Rice Superior and Inferior Grains by RNA-Seq
Sun, Hongzheng; Peng, Ting; Zhao, Yafan; Du, Yanxiu; Zhang, Jing; Li, Junzhou; Xin, Zeyu; Zhao, Quanzhi
2015-01-01
Poor grain filling of inferior grains located on lower secondary panicle branch causes great drop in rice yield and quality. Dynamic gene expression patterns between superior and inferior grains were examined from the view of the whole transcriptome by using RNA-Seq method. In total, 19,442 genes were detected during rice grain development. Genes involved in starch synthesis, grain storage and grain development were interrogated in particular in superior and inferior grains. Of the genes involved in sucrose to starch transformation process, most were expressed at lower level in inferior grains at early filling stage compared to that of superior grains. But at late filling stage, the expression of those genes was higher in inferior grains and lower in superior grains. The same trends were observed in the expression of grain storage protein genes. While, evidence that genes involved in cell cycle showed higher expression in inferior grains during whole period of grain filling indicated that cell proliferation was active till the late filling stage. In conclusion, delayed expression of most starch synthesis genes in inferior grains and low capacity of sink organ might be two important factors causing low filling rate of inferior grain at early filling stage, and shortage of carbohydrate supply was a limiting factor at late filling stage. PMID:26355995
Shah, Dilip; Romero, Freddy; Stafstrom, William; Duong, Michelle; Summer, Ross
2014-01-01
Acute lung injury (ALI) is a severe inflammatory condition whose pathogenesis is irrevocably linked to neutrophil emigration to the lung. Activation and recruitment of neutrophils to the lung is mostly attributable to local production of the chemokines. However, much of our understanding of neutrophil recruitment to the lung is based on studies focusing on early time points after initiation of injury. In this study, we sought to evaluate the extended temporal relationship between neutrophil chemotactic factor expression and influx of neutrophils into the lung after intratracheal administration of either LPS or bleomycin. In both models, results demonstrated two phases of neutrophil chemotactic factor expression; first, an early phase characterized by high levels of CXCL1/keratinocyte-derived chemokine, CXCL2/monocyte-inhibitory protein-2, and CXCL5/LPS-induced chemokine expression, and second, a late phase distinguished by increases in extracellular ATP. Furthermore, we show that strategies aimed at either enhancing ATP catabolism (ip ecto-5'-nucleotidase administration) or inhibiting glycolytic ATP production (ip 2-deoxy-d-glucose treatment) reduce extracellular ATP accumulation, limit vascular leakage, and effectively block the late, but not the early, stages of neutrophil recruitment to the lung after LPS instillation. In conclusion, this study illustrates that neutrophil recruitment to the lung is mediated by the time-dependent expression of chemotactic factors and suggests that novel strategies, which reduce extracellular ATP accumulation, may attenuate late neutrophil recruitment and limit lung injury during ALI.
Shah, Dilip; Romero, Freddy; Stafstrom, William; Duong, Michelle
2013-01-01
Acute lung injury (ALI) is a severe inflammatory condition whose pathogenesis is irrevocably linked to neutrophil emigration to the lung. Activation and recruitment of neutrophils to the lung is mostly attributable to local production of the chemokines. However, much of our understanding of neutrophil recruitment to the lung is based on studies focusing on early time points after initiation of injury. In this study, we sought to evaluate the extended temporal relationship between neutrophil chemotactic factor expression and influx of neutrophils into the lung after intratracheal administration of either LPS or bleomycin. In both models, results demonstrated two phases of neutrophil chemotactic factor expression; first, an early phase characterized by high levels of CXCL1/keratinocyte-derived chemokine, CXCL2/monocyte-inhibitory protein-2, and CXCL5/LPS-induced chemokine expression, and second, a late phase distinguished by increases in extracellular ATP. Furthermore, we show that strategies aimed at either enhancing ATP catabolism (ip ecto-5′-nucleotidase administration) or inhibiting glycolytic ATP production (ip 2-deoxy-d-glucose treatment) reduce extracellular ATP accumulation, limit vascular leakage, and effectively block the late, but not the early, stages of neutrophil recruitment to the lung after LPS instillation. In conclusion, this study illustrates that neutrophil recruitment to the lung is mediated by the time-dependent expression of chemotactic factors and suggests that novel strategies, which reduce extracellular ATP accumulation, may attenuate late neutrophil recruitment and limit lung injury during ALI. PMID:24285266
Liu, Tianxin; Mahesh, Guruswamy; Houl, Jerry H; Hardin, Paul E
2015-06-03
Circadian pacemaker neurons in the Drosophila brain control daily rhythms in locomotor activity. These pacemaker neurons can be subdivided into early or late groups depending on whether rhythms in period (per) and timeless (tim) expression are initiated at the first instar (L1) larval stage or during metamorphosis, respectively. Because CLOCK-CYCLE (CLK-CYC) heterodimers initiate circadian oscillator function by activating per and tim transcription, a Clk-GFP transgene was used to mark when late pacemaker neurons begin to develop. We were surprised to see that CLK-GFP was already expressed in four of five clusters of late pacemaker neurons during the third instar (L3) larval stage. CLK-GFP is only detected in postmitotic neurons from L3 larvae, suggesting that these four late pacemaker neuron clusters are formed before the L3 larval stage. A GFP-cyc transgene was used to show that CYC, like CLK, is also expressed exclusively in pacemaker neurons from L3 larval brains, demonstrating that CLK-CYC is not sufficient to activate per and tim in late pacemaker neurons at the L3 larval stage. These results suggest that most late pacemaker neurons develop days before novel factors activate circadian oscillator function during metamorphosis. Copyright © 2015 the authors 0270-6474/15/358662-10$15.00/0.
Differential mesodermal expression of two amphioxus MyoD family members (AmphiMRF1 and AmphiMRF2)
NASA Technical Reports Server (NTRS)
Schubert, Michael; Meulemans, Daniel; Bronner-Fraser, Marianne; Holland, Linda Z.; Holland, Nicholas D.
2003-01-01
To explore the evolution of myogenic regulatory factors in chordates, we isolated two MyoD family genes (AmphiMRF1 and AmphiMRF2) from amphioxus. AmphiMRF1 is first expressed at the late gastrula in the paraxial mesoderm. As the first somites form, expression is restricted to their myotomal region. In the early larva, expression is strongest in the most anterior and most posterior somites. AmphiMRF2 transcription begins at mid/late gastrula in the paraxial mesoderm, but never spreads into its most anterior region. Through much of the neurula stage, AmphiMRF2 expression is strong in the myotomal region of all somites except the most anterior pair; by late neurula expression is downregulated except in the most posterior somites forming just rostral to the tail bud. These two MRF genes of amphioxus have partly overlapping patterns of mesodermal expression and evidently duplicated independent of the diversification of the vertebrate MRF family.
Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function
Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua
2015-01-01
SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609
Torres-Oliva, Montserrat; Schneider, Julia; Wiegleb, Gordon
2018-01-01
Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb) regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells) and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells. PMID:29360820
Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R.; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald
2017-01-01
ABSTRACT The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis-acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. PMID:28559488
Tavalai, Nina; Adler, Martina; Scherer, Myriam; Riedl, Yvonne; Stamminger, Thomas
2011-01-01
In recent studies, the nuclear domain 10 (ND10) components PML and hDaxx were identified as cellular restriction factors that inhibit the initiation of human cytomegalovirus (HCMV) replication. The antiviral function of ND10, however, is antagonized by the IE1 protein, which induces ND10 disruption. Here we show that IE1 not only de-SUMOylates PML immediately upon infection but also directly targets Sp100. IE1 expression alone was sufficient to downregulate endogenous Sp100 independently of the presence of PML. Moreover, cotransfection experiments revealed that IE1 negatively interferes with the SUMOylation of all Sp100 isoforms. The modulation of Sp100 at immediate-early (IE) times of infection, indeed, seemed to have an in vivo relevance for HCMV replication, since knockdown of Sp100 resulted in more cells initiating the viral gene expression program. In addition, we observed that Sp100 was degraded in a proteasome-dependent manner at late times postinfection, suggesting that Sp100 may play an additional antiviral role during the late phase. Infection experiments conducted with Sp100 knockdown human foreskin fibroblasts (HFFs) confirmed this hypothesis: depletion of Sp100 resulted in augmented release of progeny virus particles compared to that from control cells. Consistent with this observation, we noted increased amounts of viral late gene products in the absence of Sp100. Importantly, this elevated late gene expression was not dependent on enhanced viral IE gene expression. Taken together, our data provide evidence that Sp100 is the first ND10-related factor identified that not only possesses the potential to restrict the initial stage of infection but also inhibits HCMV replication during the late phase. PMID:21734036
Al-Hinai, Mohab A.; Jones, Shawn W.
2014-01-01
Sporulation in the model endospore-forming organism Bacillus subtilis proceeds via the sequential and stage-specific activation of the sporulation-specific sigma factors, σH (early), σF, σE, σG, and σK (late). Here we show that the Clostridium acetobutylicum σK acts both early, prior to Spo0A expression, and late, past σG activation, thus departing from the B. subtilis model. The C. acetobutylicum sigK deletion (ΔsigK) mutant was unable to sporulate, and solventogenesis, the characteristic stationary-phase phenomenon for this organism, was severely diminished. Transmission electron microscopy demonstrated that the ΔsigK mutant does not develop an asymmetric septum and produces no granulose. Complementation of sigK restored sporulation and solventogenesis to wild-type levels. Spo0A and σG proteins were not detectable by Western analysis, while σF protein levels were significantly reduced in the ΔsigK mutant. spo0A, sigF, sigE, sigG, spoIIE, and adhE1 transcript levels were all downregulated in the ΔsigK mutant, while those of the sigH transcript were unaffected during the exponential and transitional phases of culture. These data show that σK is necessary for sporulation prior to spo0A expression. Plasmid-based expression of spo0A in the ΔsigK mutant from a nonnative promoter restored solventogenesis and the production of Spo0A, σF, σE, and σG, but not sporulation, which was blocked past the σG stage of development, thus demonstrating that σK is also necessary in late sporulation. sigK is expressed very early at low levels in exponential phase but is strongly upregulated during the middle to late stationary phase. This is the first sporulation-specific sigma factor shown to have two developmentally separated roles. PMID:24187083
Al-Hinai, Mohab A; Jones, Shawn W; Papoutsakis, Eleftherios T
2014-01-01
Sporulation in the model endospore-forming organism Bacillus subtilis proceeds via the sequential and stage-specific activation of the sporulation-specific sigma factors, σ(H) (early), σ(F), σ(E), σ(G), and σ(K) (late). Here we show that the Clostridium acetobutylicum σ(K) acts both early, prior to Spo0A expression, and late, past σ(G) activation, thus departing from the B. subtilis model. The C. acetobutylicum sigK deletion (ΔsigK) mutant was unable to sporulate, and solventogenesis, the characteristic stationary-phase phenomenon for this organism, was severely diminished. Transmission electron microscopy demonstrated that the ΔsigK mutant does not develop an asymmetric septum and produces no granulose. Complementation of sigK restored sporulation and solventogenesis to wild-type levels. Spo0A and σ(G) proteins were not detectable by Western analysis, while σ(F) protein levels were significantly reduced in the ΔsigK mutant. spo0A, sigF, sigE, sigG, spoIIE, and adhE1 transcript levels were all downregulated in the ΔsigK mutant, while those of the sigH transcript were unaffected during the exponential and transitional phases of culture. These data show that σ(K) is necessary for sporulation prior to spo0A expression. Plasmid-based expression of spo0A in the ΔsigK mutant from a nonnative promoter restored solventogenesis and the production of Spo0A, σ(F), σ(E), and σ(G), but not sporulation, which was blocked past the σ(G) stage of development, thus demonstrating that σ(K) is also necessary in late sporulation. sigK is expressed very early at low levels in exponential phase but is strongly upregulated during the middle to late stationary phase. This is the first sporulation-specific sigma factor shown to have two developmentally separated roles.
Regulation of Chlamydia Gene Expression by Tandem Promoters with Different Temporal Patterns.
Rosario, Christopher J; Tan, Ming
2016-01-15
Chlamydia is a genus of pathogenic bacteria with an unusual intracellular developmental cycle marked by temporal waves of gene expression. The three main temporal groups of chlamydial genes are proposed to be controlled by separate mechanisms of transcriptional regulation. However, we have noted genes with discrepancies, such as the early gene dnaK and the midcycle genes bioY and pgk, which have promoters controlled by the late transcriptional regulators EUO and σ(28). To resolve this issue, we analyzed the promoters of these three genes in vitro and in Chlamydia trachomatis bacteria grown in cell culture. Transcripts from the σ(28)-dependent promoter of each gene were detected only at late times in the intracellular infection, bolstering the role of σ(28) RNA polymerase in late gene expression. In each case, however, expression prior to late times was due to a second promoter that was transcribed by σ(66) RNA polymerase, which is the major form of chlamydial polymerase. These results demonstrate that chlamydial genes can be transcribed from tandem promoters with different temporal profiles, leading to a composite expression pattern that differs from the expression profile of a single promoter. In addition, tandem promoters allow a gene to be regulated by multiple mechanisms of transcriptional regulation, such as DNA supercoiling or late regulation by EUO and σ(28). We discuss how tandem promoters broaden the repertoire of temporal gene expression patterns in the chlamydial developmental cycle and can be used to fine-tune the expression of specific genes. Chlamydia is a pathogenic bacterium that is responsible for the majority of infectious disease cases reported to the CDC each year. It causes an intracellular infection that is characterized by coordinated expression of chlamydial genes in temporal waves. Chlamydial transcription has been shown to be regulated by DNA supercoiling, alternative forms of RNA polymerase, and transcription factors, but the number of transcription factors found in Chlamydia is far fewer than the number found in most bacteria. This report describes the use of tandem promoters that allow the temporal expression of a gene or operon to be controlled by more than one regulatory mechanism. This combinatorial strategy expands the range of expression patterns that are available to regulate chlamydial genes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Ferguson, Alison C; Pearce, Simon; Band, Leah R; Yang, Caiyun; Ferjentsikova, Ivana; King, John; Yuan, Zheng; Zhang, Dabing; Wilson, Zoe A
2017-01-01
Viable pollen is essential for plant reproduction and crop yield. Its production requires coordinated expression at specific stages during anther development, involving early meiosis-associated events and late pollen wall formation. The ABORTED MICROSPORES (AMS) transcription factor is a master regulator of sporopollenin biosynthesis, secretion and pollen wall formation in Arabidopsis. Here we show that it has complex regulation and additional essential roles earlier in pollen formation. An inducible-AMS reporter was created for functional rescue, protein expression pattern analysis, and to distinguish between direct and indirect targets. Mathematical modelling was used to create regulatory networks based on wild-type RNA and protein expression. Dual activity of AMS was defined by biphasic protein expression in anther tapetal cells, with an initial peak around pollen meiosis and then later during pollen wall development. Direct AMS-regulated targets exhibit temporal regulation, indicating that additional factors are associated with their regulation. We demonstrate that AMS biphasic expression is essential for pollen development, and defines distinct functional activities during early and late pollen development. Mathematical modelling suggests that AMS may competitively form a protein complex with other tapetum-expressed transcription factors, and that biphasic regulation is due to repression of upstream regulators and promotion of AMS protein degradation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Zhu, Luchang; Lin, Jingjun; Kuang, Zhizhou; Vidal, Jorge E; Lau, Gee W
2015-07-01
The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 'late' competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes. © 2015 John Wiley & Sons Ltd.
Waelput, W; Verhee, A; Broekaert, D; Eyckerman, S; Vandekerckhove, J; Beattie, J H; Tavernier, J
2000-05-15
Using PC12 cells as an in vitro model system, we have identified a series of transcripts induced through activation of the leptin receptor. On the basis of kinetic studies, two distinct gene sets could be discerned: signal transducer and activator of transciption-3 (STAT-3), suppressor of cytokine signalling-3 (SOCS-3), MT-II (metallothionein-II), the serine/threonine kinase fibroblast-growth-factor-inducible kinase (Fnk) and modulator recognition factor (MRF-1), which are immediate early response genes, and pancreatitis-associated protein I (PAP I), squalene epoxidase, uridine diphosphate glucuronosyltransferase and annexin VIII, which are late induced target genes. At late time points a strong co-stimulation with beta-nerve growth factor or with the adenylate cyclase activator forskolin was observed. To assess the validity of the PC12-cell model system, we examined the effect of leptin administration on the gene transcription of STAT-3, MT-II, Fnk and PAP I in vivo. Leptin treatment of leptin-deficient ob/ob mice increased the STAT-3, SOCS-3, MT-II and Fnk mRNA, and MT-I protein levels in liver, whereas, in jejunum, expression of PAP I mRNA was down-regulated. Furthermore, administration of leptin to starved wild-type mice enhanced the expression of MT-II and Fnk mRNA in liver, but decreased MT-II and PAP I mRNA expression in jejunum. These findings may help to explain the obese phenotype observed in some colonies of MT-I- and MT-II-null mice and/or the observation that leptin protects against tumour-necrosis-factor toxicity in vivo.
Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W
Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.
García-López, Angel; Sánchez-Amaya, María Isabel; Prat, Francisco
2011-11-01
A real-time PCR-based gene expression survey was performed on isolated European sea bass follicles from primary growth to late vitellogenesis. Expression levels of 18 transcripts with demonstrated relevance during oogenesis, encoding gonadotropin, thyrotropin, estrogen, androgen, and vitellogenin receptors, steroidogenesis-related as well as growth and transcription factors were measured. Primary oocytes showed high mRNA levels of insulin-like growth factors 1 and 2, bone morphogenetic protein 4, estrogen receptor 2b, androgen receptor b, and SRY-box containing gene 17 together with low transcript amounts of gonadotropin receptors. Follicles at the lipid vesicles stage (i.e., the beginning of the secondary growth phase) showed elevated mRNA amounts of follicle stimulating hormone receptor (fshr) and anti-Mullerian hormone. Early-to-mid vitellogenic follicles showed high mRNA levels of fshr and cytochrome P450, family 19, subfamily A, polypeptide 1a while mid-to-late vitellogenic follicles expressed increasing transcript amounts of luteinizing hormone/choriogonadotropin receptor, steroidogenic acute regulatory protein, and estrogen receptors 1 and 2a. The molecular data presented here may serve as a solid base for future studies focused on unraveling the specific mechanisms orchestrating follicular development in teleost fish. Copyright © 2011 Elsevier Inc. All rights reserved.
Fisher, Evelyn L
2017-10-17
The purpose of this study was to explore the literature on predictors of outcomes among late talkers using systematic review and meta-analysis methods. We sought to answer the question: What factors predict preschool-age expressive-language outcomes among late-talking toddlers? We entered carefully selected search terms into the following electronic databases: Communication & Mass Media Complete, ERIC, Medline, PsycEXTRA, Psychological and Behavioral Sciences, and PsycINFO. We conducted a separate, random-effects model meta-analysis for each individual predictor that was used in a minimum of 5 studies. We also tested potential moderators of the relationship between predictors and outcomes using metaregression and subgroup analysis. Last, we conducted publication-bias and sensitivity analyses. We identified 20 samples, comprising 2,134 children, in a systematic review. According to the results of the meta-analyses, significant predictors of expressive-language outcomes included toddlerhood expressive-vocabulary size, receptive language, and socioeconomic status. Nonsignificant predictors included phrase speech, gender, and family history. To our knowledge this is the first synthesis of the literature on predictors of outcomes among late talkers using meta-analysis. Our findings clarify the contributions of several constructs to outcomes and highlight the importance of early receptive language to expressive-language development. https://doi.org/10.23641/asha.5313454.
Miyoshi, Yuichiro; Shien, Tadahiko; Ogiya, Akiko; Ishida, Naoko; Yamazaki, Kieko; Horii, Rie; Horimoto, Yoshiya; Masuda, Norikazu; Yasojima, Hiroyuki; Inao, Touko; Osako, Tomofumi; Takahashi, Masato; Tomioka, Nobumoto; Endo, Yumi; Hosoda, Mitsuchika; Doihara, Hiroyoshi; Miyoshi, Shinichiro; Yamashita, Hiroko
2016-07-02
The significance of the expression of aldehyde dehydrogenase 1 (ALDH1), a cancer stem cell marker, for predicting the recurrence of estrogen receptor (ER)-positive/human epidermal growth factor receptor type 2 (HER2)-negative breast cancer is still poorly understood. The value of ALDH1 in predicting the time of recurrence remains unknown. In total, 184 patients with early distant recurrence, 134 patients with late distant recurrence, and 321 control patients without recurrence for more than 10 years after starting initial treatment for ER-positive/HER2-negative breast cancer, registered in 9 institutions, were analyzed. We assessed relationships between ALDH1 and other clinicopathological features, and ALDH1 expression was compared among the three groups. The relationship between ALDH1 expression and overall survival after recurrence was also evaluated in each group. The rates of ALDH1 expression positivity (more than 1 %) in the early, late, and no recurrence groups were 18.4 %, 13.4 %, and 8.4 %, respectively. ALDH1 expression correlated significantly with lymph node metastases (p = 0.048) and the Ki-67 labeling index (p < 0.001) in the early recurrence group. Multivariate analysis revealed ALDH1 expression to be significantly higher in the early recurrence group than in the no recurrence group (adjusted OR 2.140, 95 % CI 1.144-4.003, p = 0.016). Moreover, there was a significant difference in ALDH1 expression between the early and no recurrence groups receiving adjuvant endocrine therapy and chemotherapy (adjusted OR 4.625, 95 % CI 1.881-12.474, p < 0.001). However, there was no difference in ALDH1 expression between the late and no recurrence groups in univariate analysis (OR 1.507, 95 % CI 0.738-2.998, p = 0.253). In multivariate analysis, ALDH1 was not a factor independently predicting overall survival after the detection of recurrence (adjusted OR 1.451, 95 % CI 0.985-2.085, p = 0.059). Among patients with ER-positive/HER2-negative breast cancer, ALDH1 expression was more common in those with early recurrence, and this expression was found to be associated with a more aggressive breast cancer phenotype than that in the patients without recurrence. Further study is needed to clarify the prognostic significance of the heterogeneity of cancer stem cells and to confirm their role in resistance to chemotherapy.
Prosodic and Lexical Aspects of Maternal Linguistic Input to Late-Talking Toddlers
ERIC Educational Resources Information Center
D'Odorico, Laura; Jacob, Valentina
2006-01-01
Background: Children who have reached the age of 2 years without having acquired a 50-word vocabulary and/or who use no word combinations are referred to in the literature as "Late Talkers". Research has not yet identified the factors that cause slow development of expressive language; in particular, relatively little research has been carried out…
Uniyal, S; Panda, R P; Chouhan, V S; Yadav, V P; Hyder, I; Dangi, S S; Gupta, M; Khan, F A; Sharma, G T; Bag, S; Sarkar, M
2015-01-01
This study investigated the expression and localization of insulin-like growth factor (IGF) system at different stages of buffalo CL and the role of IGF-I in stimulating vascular endothelial growth factor (VEGF) and progesterone (P4) production in cultured luteal cells. The mRNA expression of IGF system, VEGF, steroidogenic acute regulatory protein, P450scc, and hydroxysteroid dehydrogenase (HSD) was investigated by quantitative real-time polymerase chain reaction (PCR). Protein expression of IGF was demonstrated by Western blot and localization by immunohistochemistry. Progesterone and VEGF production was assayed using RIA and ELISA. A relatively high mRNA expression of IGF-I and IGF-II in early, mid- and late luteal phases with immunoreactivity mostly restricted to cytoplasm of large luteal cells indicates their autocrine role, whereas very weak immunoreactivity in endothelial cells during the mid-luteal phase indicates their paracrine role. Insulin-like growth factor receptors, IGF-IR and IGF-IIR, were restricted to large luteal cells with high mRNA and protein expressions in the mid-luteal phase. The significantly higher expression of insulin-like growth factor binding protein (IGFBP)-1, -3, -5, and -6 in the early or mid-luteal phase suggested their stimulatory role, whereas that of IGFBP-2 and -4 in mid-, late, and regressive luteal stages implied their inhibitory role. The mRNA expressions of key steroidogenic factors and VEGF were significantly higher (P < 0.05) when the culture medium was supplemented with 100 ng/mL of IGF-I for 72 hours. Moreover, IGF-I at a dose of 100 ng/mL increased P4 and VEGF production (P < 0.05). It can be concluded that IGF family members via their autocrine and paracrine effect play significant roles in promoting angiogenesis through the production of VEGF in luteal cells and steroid synthesis through the production of key steroidogenic factors. Copyright © 2015 Elsevier Inc. All rights reserved.
Brady, J; Radonovich, M; Thoren, M; Das, G; Salzman, N P
1984-01-01
We have previously identified an 11-base DNA sequence, 5'-G-G-T-A-C-C-T-A-A-C-C-3' (simian virus 40 [SV40] map position 294 to 304), which is important in the control of SV40 late RNA expression in vitro and in vivo (Brady et al., Cell 31:625-633, 1982). We report here the identification of another domain of the SV40 late promoter. A series of mutants with deletions extending from SV40 map position 0 to 300 was prepared by nuclease BAL 31 treatment. The cloned templates were then analyzed for efficiency and accuracy of late SV40 RNA expression in the Manley in vitro transcription system. Our studies showed that, in addition to the promoter domain near map position 300, there are essential DNA sequences between nucleotide positions 74 and 95 that are required for efficient expression of late SV40 RNA. Included in this SV40 DNA sequence were two of the six GGGCGG SV40 repeat sequences and an 11-nucleotide segment which showed strong homology with the upstream sequences required for the efficient in vitro and in vivo expression of the histone H2A gene. This upstream promoter sequence supported transcription with the same efficiency even when it was moved 72 nucleotides closer to the major late cap site. In vitro promoter competition analysis demonstrated that the upstream promoter sequence, independent of the 294 to 304 promoter element, is capable of binding polymerase-transcription factors required for SV40 late gene transcription. Finally, we show that DNA sequences which control the specificity of RNA initiation at nucleotide 325 lie downstream of map position 294. Images PMID:6321950
Endale, Mehari; Ahlfeld, Shawn; Bao, Erik; Chen, Xiaoting; Green, Jenna; Bess, Zach; Weirauch, Matthew; Xu, Yan; Perl, Anne Karina
2017-08-01
The following data are derived from key stages of acinar lung development and define the developmental role of lung interstitial fibroblasts expressing platelet-derived growth factor alpha (PDGFRα). This dataset is related to the research article entitled "Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development" (Endale et al., 2017) [1]. At E16.5 (canalicular), E18.5 (saccular), P7 (early alveolar) and P28 (late alveolar), PDGFRα GFP mice, in conjunction with immunohistochemical markers, were utilized to define the spatiotemporal relationship of PDGFRα + fibroblasts to endothelial, stromal and epithelial cells in both the proximal and distal acinar lung. Complimentary analysis with flow cytometry was employed to determine changes in cellular proliferation, define lipofibroblast and myofibroblast populations via the presence of intracellular lipid or alpha smooth muscle actin (αSMA), and evaluate the expression of CD34, CD29, and Sca-1. Finally, PDGFRα + cells isolated at each stage of acinar lung development were subjected to RNA-Seq analysis, data was subjected to Bayesian timeline analysis and transcriptional factor promoter enrichment analysis.
Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming
2017-05-30
The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P 811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis -acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P 811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single-stranded oligonucleotides targeting the replication fork on either leading or lagging strands, we showed that viral lagging-strand replication activates the promoter. We also identified a transcriptional repressor element located upstream of the promoter transcription start site which interacts with cellular proteins hnRNP D0B and hnRNP A/B and modulates the late promoter activity. This is the first report on how DNA replication activates a viral late promoter. Copyright © 2017 Wang et al.
Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole
2010-06-09
Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be used to alter the transcriptional response to prevent the motor neurons from entering a state of hyper-excitability.
Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury
2010-01-01
Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be used to alter the transcriptional response to prevent the motor neurons from entering a state of hyper-excitability. PMID:20534130
Seizure-mediated neuronal activation induces DREAM gene expression in the mouse brain.
Matsu-ura, Toru; Konishi, Yoshiyuki; Aoki, Tsutomu; Naranjo, Jose R; Mikoshiba, Katsuhiko; Tamura, Taka-aki
2002-12-30
Various transcriptional activators are induced in neurons concomitantly with long-lasting neural activity, whereas only a few transcription factors are known to act as neural activity-inducible transcription repressors. In this study, mRNA of DREAM (DRE-antagonizing modulator), a Ca(2+)-modulated transcriptional repressor, was demonstrated to accumulate in the mouse brain after pentylenetetrazol (PTZ)-induced seizures. Accumulation in the mouse hippocampus reached maximal level in the late phase (at 7-8 h) after PTZ injection. Kainic acid induced the same response. Interestingly, the late induction of DREAM expression required new protein synthesis and was blocked by MK801 suggesting that Ca(2+)-influx via NMDA receptors is necessary for the PTZ-mediated DREAM expression. In situ hybridization revealed that PTZ-induced DREAM mRNA accumulation was observed particularly in the dentate gyrus, cerebral cortex, and piriform cortex. The results of the present study demonstrate that DREAM is a neural activity-stimulated late gene and suggest its involvement in adaptation to long-lasting neuronal activity.
Yu, Linlin; Zhou, Qingxiang; Pignoni, Francesca
2015-01-01
The Gal4/UAS system is one of the most powerful tools for the study of cellular and developmental processes in Drosophila. Gal4 drivers can be used to induce targeted expression of dominant-negative and dominant-active proteins, histological markers, activity sensors, gene-specific dsRNAs, modulators of cell survival or proliferation, and other reagents. We describe here novel atonal-Gal4 lines that contain regions of the regulatory DNA of atonal, the proneural gene for photoreceptors, stretch receptors, auditory organ and some olfactory sensilla. During neurogenesis, the atonal gene is expressed at a critical juncture, a time of transition from progenitor cell to developing neuron. Thus, these lines are particularly well suited for the study of the transcription factors and signaling molecules orchestrating this critical transition. To demonstrate their usefulness, we focus on two visual organs, the eye and the Bolwig. We demonstrate the induction of predicted eye phenotypes when expressing the dominant-negative EGF receptor, EGFRDN, or a dsRNA against Notch, NotchRNAi, in the developing eye disc. In another example, we show the deletion of the Bolwig’s organ using the proapoptotic factor Hid. Lastly, we investigate the function of the eye specification factor Eyes absent or Eya in late retinal progenitors, shortly before they begin morphogenesis. We show that Eya is still required in these late progenitors to promote eye formation, and show failure to induce the target gene atonal and consequent lack of neuron formation. PMID:25980363
Yu, Linlin; Zhou, Qingxiang; Pignoni, Francesca
2015-06-01
The Gal4/UAS system is one of the most powerful tools for the study of cellular and developmental processes in Drosophila. Gal4 drivers can be used to induce targeted expression of dominant-negative and dominant-active proteins, histological markers, activity sensors, gene-specific dsRNAs, modulators of cell survival or proliferation, and other reagents. Here, we describe novel atonal-Gal4 lines that contain regions of the regulatory DNA of atonal, the proneural gene for photoreceptors, stretch receptors, auditory organ, and some olfactory sensilla. During neurogenesis, the atonal gene is expressed at a critical juncture, a time of transition from progenitor cell to developing neuron. Thus, these lines are particularly well suited for the study of the transcription factors and signaling molecules orchestrating this critical transition. To demonstrate their usefulness, we focus on two visual organs, the eye and the Bolwig. We demonstrate the induction of predicted eye phenotypes when expressing the dominant-negative EGF receptor or a dsRNA against Notch in the developing eye disc. In another example, we show the deletion of the Bolwig's organ using the proapoptotic factor Hid. Finally, we investigate the function of the eye specification factor Eyes absent or Eya in late retinal progenitors, shortly before they begin morphogenesis. We show that Eya is still required in these late progenitors to promote eye formation, and show failure to induce the target gene atonal and consequent lack of neuron formation. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawawi, M.S.F.; Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005; Dharmapatni, A.A.S.S.K.
2012-10-19
Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway inmore » osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p < 0.05) reduced the expression of NFATc1, CathK, OSCAR, FcR{gamma}, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p < 0.05) decreased CathK, OSCAR, FcR{gamma}, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.« less
Morash, Michael G; Brassinga, Ann Karen C; Warthan, Michelle; Gourabathini, Poornima; Garduño, Rafael A; Goodman, Steven D; Hoffman, Paul S
2009-04-01
Legionella pneumophila is an intracellular parasite of protozoa that differentiates late in infection into metabolically dormant cysts that are highly infectious. Regulation of this process is poorly understood. Here we report that the small DNA binding regulatory proteins integration host factor (IHF) and HU are reciprocally expressed over the developmental cycle, with HU expressed during exponential phase and IHF expressed postexponentially. To assess the role of these regulatory proteins in development, chromosomal deletions were constructed. Single (ihfA or ihfB) and double deletion (Deltaihf) IHF mutants failed to grow in Acanthamoeba castellanii unless complemented in trans when expressed temporally from the ihfA promoter but not under P(tac) (isopropyl-beta-d-thiogalactopyranoside). In contrast, IHF mutants were infectious for HeLa cells, though electron microscopic examination revealed defects in late-stage cyst morphogenesis (thickened cell wall, intracytoplasmic membranes, and inclusions of poly-beta-hydroxybutyrate), and were depressed for the developmental marker MagA. Green fluorescent protein promoter fusion assays indicated that IHF and the stationary-phase sigma factor RpoS were required for full postexponential expression of magA. Finally, defects in cyst morphogenesis noted for Deltaihf mutants in HeLa cells correlated with a loss of both detergent resistance and hyperinfectivity compared with results for wild-type cysts. These studies establish IHF and HU as markers of developmental stages and show that IHF function is required for both differentiation and full virulence of L. pneumophila in natural amoebic hosts.
Feng, Xiao-Yu; Wu, Xiao-Shan; Wang, Jin-Song; Zhang, Chun-Mei; Wang, Song-Lin
2018-02-01
Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway. © 2017 Eur J Oral Sci.
de Britto, Alan A; Moraes, Davi J A
2017-03-15
Hypercapnia or parafacial respiratory group (pFRG) disinhibition at normocapnia evokes active expiration in rats by recruitment of pFRG late-expiratory (late-E) neurons. We show that hypercapnia simultaneously evoked active expiration and exaggerated glottal dilatation by late-E synaptic excitation of abdominal, hypoglossal and laryngeal motoneurons. Simultaneous rhythmic expiratory activity in previously silent pFRG late-E neurons, which did not express the marker of ventral medullary CO 2 -sensitive neurons (transcription factor Phox2b), was also evoked by hypercapnia. Hypercapnia-evoked active expiration, neural and neuronal late-E activities were eliminated by pFRG inhibition, but not after blockade of synaptic excitation. Hypercapnia produces disinhibition of non-chemosensitive pFRG late-E neurons to evoke active expiration and concomitant cranial motor respiratory responses controlling the oropharyngeal and upper airway patency. Hypercapnia produces active expiration in rats and the recruitment of late-expiratory (late-E) neurons located in the parafacial respiratory group (pFRG) of the ventral medullary brainstem. We tested the hypothesis that hypercapnia produces active expiration and concomitant cranial respiratory motor responses controlling the oropharyngeal and upper airway patency by disinhibition of pFRG late-E neurons, but not via synaptic excitation. Phrenic nerve, abdominal nerve (AbN), cranial respiratory motor nerves, subglottal pressure, and medullary and spinal neurons/motoneurons were recorded in in situ preparations of juvenile rats. Hypercapnia evoked AbN active expiration, exaggerated late-E discharges in cranial respiratory motor outflows, and glottal dilatation via late-E synaptic excitation of abdominal, hypoglossal and laryngeal motoneurons. Simultaneous rhythmic late-E activity in previously silent pFRG neurons, which did not express the marker of ventral medullary CO 2 -sensitive neurons (transcription factor Phox2b), was also evoked by hypercapnia. In addition, hypercapnia-evoked AbN active expiration, neural and neuronal late-E activities were eliminated by pFRG inhibition, but not after blockade of synaptic excitation. On the other hand, pFRG inhibition did not affect either hypercapnia-induced inspiratory increases in respiratory motor outflows or CO 2 sensitivity of the more medial Phox2b-positive neurons in the retrotrapezoid nucleus (RTN). Our data suggest that neither RTN Phox2b-positive nor other CO 2 -sensitive brainstem neurons activate Phox2b-negative pFRG late-E neurons under hypercapnia to produce AbN active expiration and concomitant cranial motor respiratory responses controlling the oropharyngeal and upper airway patency. Hypercapnia produces disinhibition of non-chemosensitive pFRG late-E neurons in in situ preparations of juvenile rats to activate abdominal, hypoglossal and laryngeal motoneurons. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon).
Dai, Xiaodong; Ding, Younian; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Zhu, Zuofeng; Sun, Xianyou; Sun, Xuewen; Gu, Ping; Cai, Hongwei; Sun, Chuanqing
2012-10-01
Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of the important factors for controlling heading date. Common wild rice, the ancestor of cultivated rice, exhibits a late heading date and a more sensitive photoperiodic response than cultivated rice. Here, through map-based cloning, we identified a major quantitative trait loci (QTL) LHD1 (Late Heading Date 1), an allele of DTH8/Ghd8, which controls the late heading date of wild rice and encodes a putative HAP3/NF-YB/CBF-A subunit of the CCAAT-box-binding transcription factor. Sequence analysis revealed that several variants in the coding region of LHD1 were correlated with a late heading date, and a further complementary study successfully rescued the phenotype. These results suggest that a functional site for LHD1 could be among those variants present in the coding region. We also found that LHD1 could down-regulate the expression of several floral transition activators such as Ehd1, Hd3a and RFT1 under long-day conditions, but not under short-day conditions. This indicates that LHD1 may delay flowering by repressing the expression of Ehd1, Hd3a and RFT1 under long-day conditions. © 2012 Institute of Botany, Chinese Academy of Sciences.
Association of apolipoprotein E allele {epsilon}4 with late-onset sporadic Alzheimer`s disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucotte, G.; David, F.; Berriche, S.
1994-09-15
Apolipoprotein E, type {epsilon}4 allele (ApoE {epsilon}4), is associated with late-onset sporadic Alzheimer`s disease (AD) in French patients. The association is highly significant (0.45 AD versus 0.12 controls for {epsilon}4 allele frequencies). These data support the involvement of ApoE {epsilon}4 allele as a very important risk factor for the clinical expression of AD. 22 refs., 1 fig., 3 tabs.
Ajiro, Masahiko; Tang, Shuang; Doorbar, John; Zheng, Zhi-Ming
2016-10-15
Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors. Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Ajiro, Masahiko; Tang, Shuang; Doorbar, John
2016-01-01
ABSTRACT Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors. IMPORTANCE Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer. PMID:27489271
Friedmacher, Florian; Doi, Takashi; Gosemann, Jan-Hendrik; Fujiwara, Naho; Kutasy, Balazs; Puri, Prem
2012-02-01
Nitrofen model of congenital diaphragmatic hernia (CDH) has been widely used to investigate the pathogenesis of pulmonary hypoplasia (PH). Fibroblast growth factor (FGF) signaling pathway plays a fundamental role in fetal lung development. FGF7 and FGF10, which are critical for lung morphogenesis, have been reported to be downregulated in nitrofen-induced PH. FGF signaling is mediated by a family of four single transmembrane receptors, FGFR1-4. FGFR2 and FGFR3 have been shown to be expressed predominantly in the late stages of developing lungs. In addition, the upregulation of FGFR2 gene expression has been associated with severe defects in lung development and resulted in arrested alveologenesis similar to PH seen in the nitrofen model. Furthermore, FGFR3(-/-)FGFR4(-/-) double mutants showed thinner mesenchyme and larger air spaces. We designed this study to test the hypothesis that FGFR gene expression is upregulated in the late stages of lung development in the nitrofen CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Cesarean section was performed and fetuses were harvested on D18 and D21. Fetal lungs were divided into three groups: control, nitrofen without CDH [CDH(-)], and nitrofen with CDH [CDH(+)] (n = 24 at each time-point). Pulmonary gene expression levels of FGFR1-4 were analyzed by real-time RT-PCR. Immunohistochemistry was also performed to evaluate protein expression/distribution at each time-point. The relative messenger RNA expression levels of pulmonary FGFR2 and FGFR3 on D21 were significantly increased in CDH(-) (6.38 ± 1.93 and 7.84 ± 2.86, respectively) and CDH(+) (7.09 ± 2.50 and 7.25 ± 3.43, respectively) compared to controls (P < 0.05 and P < 0.01, respectively), whereas no significant alteration was observed on D18. There were no differences in FGFR1 and FGFR4 expression at both time-points. Increased immunoreactivity of FGFR2 and FGFR3, mainly in the distal epithelium and mesenchyme, was observed in the nitrofen-induced hypoplastic lungs on D21 compared to controls. Upregulation of FGFR2 and FGFR3 pulmonary gene expression in the late stages of fetal lung development may disrupt FGFR-mediated alveologenesis resulting in PH in the CDH model.
Hoermann, Astrid; Cicin-Sain, Damjan; Jaeger, Johannes
2016-03-15
Understanding eukaryotic transcriptional regulation and its role in development and pattern formation is one of the big challenges in biology today. Most attempts at tackling this problem either focus on the molecular details of transcription factor binding, or aim at genome-wide prediction of expression patterns from sequence through bioinformatics and mathematical modelling. Here we bridge the gap between these two complementary approaches by providing an integrative model of cis-regulatory elements governing the expression of the gap gene giant (gt) in the blastoderm embryo of Drosophila melanogaster. We use a reverse-engineering method, where mathematical models are fit to quantitative spatio-temporal reporter gene expression data to infer the regulatory mechanisms underlying gt expression in its anterior and posterior domains. These models are validated through prediction of gene expression in mutant backgrounds. A detailed analysis of our data and models reveals that gt is regulated by domain-specific CREs at early stages, while a late element drives expression in both the anterior and the posterior domains. Initial gt expression depends exclusively on inputs from maternal factors. Later, gap gene cross-repression and gt auto-activation become increasingly important. We show that auto-regulation creates a positive feedback, which mediates the transition from early to late stages of regulation. We confirm the existence and role of gt auto-activation through targeted mutagenesis of Gt transcription factor binding sites. In summary, our analysis provides a comprehensive picture of spatio-temporal gene regulation by different interacting enhancer elements for an important developmental regulator. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Redekar, Neelam R; Biyashev, Ruslan M; Jensen, Roderick V; Helm, Richard F; Grabau, Elizabeth A; Maroof, M A Saghai
2015-12-18
Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes. RNA sequencing data of lpa and normal PA soybean lines from five seed-developmental stages (total of 30 libraries) were used for differential expression and functional enrichment analyses. A total of 4235 differentially expressed genes, including 512-transcription factor genes were identified. Eighteen biological processes such as apoptosis, glucan metabolism, cellular transport, photosynthesis and 9 transcription factor families including WRKY, CAMTA3 and SNF2 were enriched during seed development. Genes associated with apoptosis, glucan metabolism, and cellular transport showed enhanced expression in early stages of lpa seed development, while those associated with photosynthesis showed decreased expression in late developmental stages. The results suggest that lpa-causing mutations play a role in inducing and suppressing plant defense responses during early and late stages of seed development, respectively. This study provides a global perspective of transcriptomal changes during soybean seed development in an lpa mutant. The mutants are characterized by earlier expression of genes associated with cell wall biosynthesis and a decrease in photosynthetic genes in late stages. The biological processes and transcription factors identified in this study are signatures of lpa-causing mutations.
Cellular and molecular maturation in fetal and adult ovine calcaneal tendons
Russo, Valentina; Mauro, Annunziata; Martelli, Alessandra; Di Giacinto, Oriana; Di Marcantonio, Lisa; Nardinocchi, Delia; Berardinelli, Paolo; Barboni, Barbara
2015-01-01
Processes of development during fetal life profoundly transform tendons from a plastic tissue into a highly differentiated structure, characterised by a very low ability to regenerate after injury in adulthood. Sheep tendon is frequently used as a translational model to investigate cell-based regenerative approaches. However, in contrast to other species, analytical and comparative baseline studies on the normal developmental maturation of sheep tendons from fetal through to adult life are not currently available. Thus, a detailed morphological and biochemical study was designed to characterise tissue maturation during mid- (2 months of pregnancy: 14 cm of length) and late fetal (4 months: 40 cm of length) life, through to adulthood. The results confirm that ovine tendon morphology undergoes profound transformations during this period. Endotenon was more developed in fetal tendons than in adult tissues, and its cell phenotype changed through tendon maturation. Indeed, groups of large rounded cells laying on smaller and more compacted ones expressing osteocalcin, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were identified exclusively in fetal mid-stage tissues, and not in late fetal or adult tendons. VEGF, NGF as well as blood vessels and nerve fibers showed decreased expression during tendon development. Moreover, the endotenon of mid- and late fetuses contained identifiable cells that expressed several pluripotent stem cell markers [Telomerase Reverse Transcriptase (TERT), SRY Determining Region Y Box-2 (SOX2), Nanog Homeobox (NANOG) and Octamer Binding Transcription Factor-4A (OCT-4A)]. These cells were not identifiable in adult specimens. Ovine tendon development was also accompanied by morphological modifications to cell nuclei, and a progressive decrease in cellularity, proliferation index and expression of connexins 43 and 32. Tendon maturation was similarly characterised by modulation of several other gene expression profiles, including Collagen type I, Collagen type III, Scleraxis B, Tenomodulin, Trombospondin 4 and Osteocalcin. These gene profiles underwent a dramatic reduction in adult tissues. Transforming growth factor-1 expression (involved in collagen synthesis) underwent a similar decrease. In conclusion, these morphological studies carried out on sheep tendons at different stages of development and aging offer normal structural and molecular baseline data to allow accurate evaluation of data from subsequent interventional studies investigating tendon healing and regeneration in ovine experimental models. PMID:25546075
Chen, Qi; Wang, Yao; Zhao, Min; Hyett, Jonathan; da Silva Costa, Fabricio; Nie, Guiying
2016-07-01
Preeclampsia is a pregnancy specific disorder affecting 3-5% of pregnancies worldwide. It is clinically divided into early-onset and late-onset subtypes. Placental factors are involved in the pathogenesis of preeclampsia. Growth differentiation factor 15 (GDF15), a protein of the transforming growth factor beta superfamily, is highly expressed in the placenta. However, it is unclear whether the circulating levels of GDF15 are altered in preeclampsia at the time of or prior to disease presentation. Serum samples across three trimesters from 29 healthy pregnancies, third trimester sera from 34 women presenting with preeclampsia (early-onset n=16, late-onset n=18) and 66 gestation-age-matched controls, and sera at 11-13weeks of pregnancy from women who later did (n=36) or did not (n=33) develop late-onset preeclampsia, were examined for GDF15 by ELISA. Serum GDF15 levels increased significantly with gestation in normal pregnancy. Serum GDF15 was significantly reduced in the third trimester in women presenting with preeclampsia compared to their gestation-age-matched controls. This reduction was apparent in both early-onset and late-onset subtypes, but it was more profound in late-onset cases. At 11-13weeks of gestation, however, serum levels of GDF15 were similar between women who subsequently did and did not develop late-onset preeclampsia. Serum GDF15 increased with gestation age, reaching the highest level in the third trimester. Serum GDF15 was significantly reduced in the third trimester in women presenting with preeclampsia, especially in late-onset cases. However, serum GDF15 was not altered in the first trimester in women destined to develop late-onset preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Limitation of HIF-1α with pentoxifillyne on renal tubular ischemia result of hiperoxaluria and ESWL.
Erturhan, Sakip; Bayrak, Omer; Seckiner, Ilker; Celik, Mehmet; Karakok, Metin
2014-03-01
To evaluate hypoxia-inducible factor 1 subunit α (HIF-1α) expression during the performance of extracorporeal shock wave lithotripsy (ESWL) and to investigate the effects of pentoxyphylline on HIF-1α expression. One hundred New Zealand Albino rabbit were used in the study divided in 5 groups. There were 20 rabbits in each group. The groups were divided in two parts: early (7 days) and late period (14 days) according to follow up duration. Immunohistochemical analyses were performed using nuclear staining to show HIF-1α expression in rabbit renal tissue sample. HIF-1α expression was higher in rabbits undergoing ESWL (group 4). In the hyperoxaluria group taking pentoxyphylline before ESWL (group 5), HIF-1α expression was lower in both early and late period subgroups (p < 0.05) CONCLUSION: In this study we evaluated HIF-1α expression and showed that ESWL may cause renal cell injury. Our results suggest that pentoxyphylline, as a circulatory regulator agent, may prevent renal cell injury induced by ESWL.
Liu, Jianhua; Zeng, Weiqiang; Huang, Chengzhi; Wang, Junjiang; Xu, Lishu; Ma, Dong
2018-05-01
The present study aimed to investigate whether c-mesenchymal epithelial transition factor (C-MET) overexpression combined with RAS (including KRAS, NRAS and HRAS ) or BRAF mutations were associated with late distant metastases and the prognosis of patients with colorectal cancer (CRC). A total of 374 patients with stage III CRC were classified into 4 groups based on RAS/BRAF and C-MET status for comprehensive analysis. Mutations in RAS / BRAF were determined using Sanger sequencing and C-MET expression was examined using immunohistochemistry. The associations between RAS/BRAF mutations in combination with C-MET overexpression and clinicopathological variables including survival were evaluated. In addition, their predictive value for late distant metastases were statistically analyzed via logistic regression and receiver operating characteristic analysis. Among 374 patients, mutations in KRAS, NRAS, HRAS, BRAF and C-MET overexpression were observed in 43.9, 2.4, 0.3, 5.9 and 71.9% of cases, respectively. Considering RAS/BRAF mutations and C-MET overexpression, vascular invasion (P=0.001), high carcino-embryonic antigen level (P=0.031) and late distant metastases (P<0.001) were more likely to occur in patients of group 4. Furthermore, survival analyses revealed RAS/BRAF mutations may have a more powerful impact on survival than C-MET overexpression, although they were both predictive factors for adverse prognosis. Further logistic regression suggested that RAS/BRAF mutations and C-MET overexpression may predict late distant metastases. In conclusion, RAS/BRAF mutations and C-MET overexpression may serve as predictive indicators for metastatic behavior and poor prognosis of CRC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Dong Suk; Choi, Yoorim; Choi, Seong Mi
2015-11-27
Resveratrol is a sirtuin 1 (SIRT1) activator and can function as an anti-inflammatory and antioxidant factor. In mesenchymal stem cells (MSCs), resveratrol enhances the proliferation and differentiation potential and has an anti-aging effect. However, contradictory effects of resveratrol on MSC cultures have been reported. In this study, we found that resveratrol had different effects on MSC cultures according to their cell passage and SIRT1 expression. Resveratrol enhanced the self-renewal potential and multipotency of early passage MSCs, but accelerated cellular senescence of late passage MSCs. In early passage MSCs expressing SIRT1, resveratrol decreased ERK and GSK-3β phosphorylation, suppressing β-catenin activity. Inmore » contrast, in late passage MSCs, which did not express SIRT1, resveratrol increased ERK and GSK-3β phosphorylation, activating β-catenin. We confirmed that SIRT1-deficient early passage MSCs treated with resveratrol lost their self-renewal potential and multipotency, and became senescent due to increased β-catenin activity. Sustained treatment with resveratrol at early passages maintained the self-renewal potential and multipotency of MSCs up to passage 10. Our findings suggest that resveratrol can be effectively applied to early passage MSC cultures, whereas parameters such as cell passage and SIRT1 expression must be taken into consideration before applying resveratrol to late passage MSCs. - Highlights: • Resveratrol enhances self-renewal potential and multipotency of early passage MSCs. • Resveratrol accelerates the cellular senescence of late passage MSCs. • The effects of resveratrol on MSCs are dependent on the presence of SIRT1. • SIRT1 modulates ERK/GSK-3β/β-catenin signaling. • Sustained resveratrol treatment maintains MSC stemness up to P10.« less
Cheung, Zelda H
2009-01-01
Endophilin B1 is a member of the endophilin family that is localized predominantly to intracellular membranes. Also known as Bax-interacting factor-1 (Bif-1), this protein has been observed to regulate the membrane dynamics of various intracellular compartments, such as the control of mitochondrial morphology and autophagosome formation in fibroblast. Endophilin B1 is expressed in the brain, but its functions in neurons had remained unknown. Recently, we have observed a novel role of endophilin B1 in neurons where it controls the trafficking of TrkA, cognate receptor for the prototypic neurotrophin nerve growth factor (NGF). Knock-down of endophilin B1 expression induces precocious targeting of NGF/TrkA to late endosomes and lysosomes, thereby leading to reduced TrkA levels. This is accompanied by marked attenuation of NGF-induced gene transcription and neurite outgrowth. Our observations suggest that endophilin B1 regulates TrkA level and downstream functions by controlling the movement of TrkA to late endosomes/lysosomes, possibly acting at the level of early endosomes. PMID:19704909
Zhang, Huan; Zhu, Ning-Xia; Huang, Keng; Cai, Bo-Zhi; Zeng, Yang; Xu, Yan-Ming; Liu, Yang; Yuan, Yan-Ping; Lin, Chang-Min
2016-01-01
Alopecia is an exceedingly prevalent problem that lacks effective therapy. Recently, research has focused on early-passage dermal papilla cells (DPCs), which have hair inducing activity both in vivo and in vitro. Our previous study indicated that factors secreted from early-passage DPCs contribute to hair follicle (HF) regeneration. To identify which factors are responsible for HF regeneration and why late-passage DPCs lose this potential, we collected 48-h-culture medium (CM) from both of passage 3 and 9 DPCs, and subcutaneously injected the DPC-CM into NU/NU mice. Passage 3 DPC-CM induced HF regeneration, based on the emergence of a white hair coat, but passage 9 DPC-CM did not. In order to identify the key factors responsible for hair induction, CM from passage 3 and 9 DPCs was analyzed by iTRAQ-based quantitative proteomic technology. We identified 1360 proteins, of which 213 proteins were differentially expressed between CM from early-passage vs. late-passage DPCs, including SDF1, MMP3, biglycan and LTBP1. Further analysis indicated that the differentially-expressed proteins regulated the Wnt, TGF-β and BMP signaling pathways, which directly and indirectly participate in HF morphogenesis and regeneration. Subsequently, we selected 19 proteins for further verification by multiple reaction monitoring (MRM) between the two types of CM. These results indicate DPC-secreted proteins play important roles in HF regeneration, with SDF1, MMP3, biglycan, and LTBP1 being potential key inductive factors secreted by dermal papilla cells in the regeneration of hair follicles.
2010-01-01
Background The amygdala-kindled rat is a model for human temporal lobe epilepsy and activity-dependent synaptic plasticity. Hippocampal RNA isolated from amygdala-kindled rats at different kindling stages was analyzed to identify kindling-induced genes. Furthermore, effects of the anti-epileptic drug levetiracetam on kindling-induced gene expression were examined. Results Cyclooxygenase-2 (Cox-2), Protocadherin-8 (Pcdh8) and TGF-beta-inducible early response gene-1 (TIEG1) were identified and verified as differentially expressed transcripts in the hippocampus of kindled rats by in situ hybridization and quantitative RT-PCR. In addition, we identified a panel of 16 additional transcripts which included Arc, Egr3/Pilot, Homer1a, Ania-3, MMP9, Narp, c-fos, NGF, BDNF, NT-3, Synaptopodin, Pim1 kinase, TNF-α, RGS2, Egr2/krox-20 and β-A activin that were differentially expressed in the hippocampus of amygdala-kindled rats. The list consists of many synaptic plasticity-related immediate early genes (IEGs) as well as some late response genes encoding transcription factors, neurotrophic factors and proteins that are known to regulate synaptic remodelling. In the hippocampus, induction of IEG expression was dependent on the afterdischarge (AD) duration. Levetiracetam, 40 mg/kg, suppressed the development of kindling measured as severity of seizures and AD duration. In addition, single animal profiling also showed that levetiracetam attenuated the observed kindling-induced IEG expression; an effect that paralleled the anti-epileptic effect of the drug on AD duration. Conclusions The present study provides mRNA expression data that suggest that levetiracetam attenuates expression of genes known to regulate synaptic remodelling. In the kindled rat, levetiracetam does so by shortening the AD duration thereby reducing the seizure-induced changes in mRNA expression in the hippocampus. PMID:20105316
Seehusen, Frauke; Al-Azreg, Seham A.; Raddatz, Barbara B.; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang
2016-01-01
In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease. PMID:27441688
Seehusen, Frauke; Al-Azreg, Seham A; Raddatz, Barbara B; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang
2016-01-01
In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease.
Paradis, Francois; Wood, Katie M; Swanson, Kendall C; Miller, Stephen P; McBride, Brian W; Fitzsimmons, Carolyn
2017-08-18
Manipulating maternal nutrition during specific periods of gestation can result in re-programming of fetal and post-natal development. In this experiment we investigated how a feed restriction of 85% compared with 140% of total metabolizable energy requirements, fed to cows during mid-to-late gestation, influences phenotypic development of fetuses and mRNA expression of growth (Insulin-Like Growth Factor family and Insulin Receptor (INSR)), myogenic (Myogenic Differentiation 1 (MYOD1), Myogenin (MYOG), Myocyte Enhancer Factor 2A (MEF2A), Serum Response Factor (SRF)) and adipogenic (Peroxisome Proliferator Activated Receptor Gamma (PPARG)) genes in fetal longissimus dorsi (LD) and semitendinosus (ST) muscle. DNA methylation of imprinted genes, Insulin Like Growth Factor 2 (IGF2) and Insulin Like Growth Factor 2 Receptor (IGF2R), and micro RNA (miRNA) expression, were also examined as potential consequences of poor maternal nutrition, but also potential regulators of altered gene expression patterns. While the nutrient restriction impacted dam body weight, no differences were observed in phenotypic fetal measurements (weight, crown-rump length, or thorax circumference). Interestingly, LD and ST muscles responded differently to the differential pre-natal nutrient levels. While LD muscle of restricted fetal calves had greater mRNA abundances for Insulin Like Growth Factor 1 and its receptor (IGF1 and IGF1R), IGF2R, INSR, MYOD1, MYOG, and PPARG, no significant differences were observed for gene expression in ST muscle. Similarly, feed restriction had a greater impact on the methylation level of IGF2 Differentially Methylated Region 2 (DMR2) in LD muscle as compared to ST muscle between treatment groups. A negative correlation existed between IGF2 mRNA expression and IGF2 DMR2 methylation level in both LD and ST muscles. Differential expression of miRNAs 1 and 133a were also detected in LD muscle. Our data suggests that a nutrient restriction of 85% as compared to 140% of total metabolizable energy requirements during the 2nd half of gestation can alter the expression of growth, myogenic and adipogenic genes in fetal muscle without apparent differences in fetal phenotype. It also appears that the impact of feed restriction varies between muscles suggesting a priority for nutrient partitioning depending on muscle function and/or fiber composition. Differences in the methylation level in IGF2, a well-known imprinted gene, as well as differences in miRNA expression, may be functional mechanisms that precede the differences in gene expression observed, and could lead to trans-generational epigenetic programming.
Coordination of flower development by homeotic master regulators.
Ito, Toshiro
2011-02-01
Floral homeotic genes encode transcription factors and act as master regulators of flower development. The homeotic protein complex is expressed in a specific whorl of the floral primordium and determines floral organ identity by the combinatorial action. Homeotic proteins continue to be expressed until late in flower development to coordinate growth and organogenesis. Recent genomic studies have shown that homeotic proteins bind thousands of target sites in the genome and regulate the expression of transcription factors, chromatin components and various proteins involved in hormone biosynthesis and signaling and other physiological activities. Further, homeotic proteins program chromatin to direct the developmental coordination of stem cell maintenance and differentiation in shaping floral organs. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ma, Xing; Zhu, Xiujuan; Han, Yingying; Story, Benjamin; Do, Trieu; Song, Xiaoqing; Wang, Su; Zhang, Ying; Blanchette, Marco; Gogol, Madelaine; Hall, Kate; Peak, Allison; Anoja, Perera; Xie, Ting
2017-04-24
Piwi family protein Aubergine (Aub) maintains genome integrity in late germ cells of the Drosophila ovary through Piwi-associated RNA-mediated repression of transposon activities. Although it is highly expressed in germline stem cells (GSCs) and early progeny, it remains unclear whether it plays any roles in early GSC lineage development. Here we report that Aub promotes GSC self-renewal and GSC progeny differentiation. RNA-iCLIP results show that Aub binds the mRNAs encoding self-renewal and differentiation factors in cultured GSCs. Aub controls GSC self-renewal by preventing DNA-damage-induced Chk2 activation and by translationally controlling the expression of self-renewal factors. It promotes GSC progeny differentiation by translationally controlling the expression of differentiation factors, including Bam. Therefore, this study reveals a function of Aub in GSCs and their progeny, which promotes translation of self-renewal and differentiation factors by directly binding to its target mRNAs and interacting with translational initiation factors. Copyright © 2017 Elsevier Inc. All rights reserved.
EPO improved neurologic outcome in rat pups late after traumatic brain injury.
Schober, Michelle E; Requena, Daniela F; Rodesch, Christopher K
2018-05-01
In adult rats, erythropoietin improved outcomes early and late after traumatic brain injury, associated with increased levels of Brain Derived Neurotrophic Factor. Using our model of pediatric traumatic brain injury, controlled cortical impact in 17-day old rats, we previously showed that erythropoietin increased hippocampal neuronal fraction in the first two days after injury. Erythropoietin also decreased activation of caspase3, an apoptotic enzyme modulated by Brain Derived Neurotrophic Factor, and improved Novel Object Recognition testing 14 days after injury. Data on long-term effects of erythropoietin on Brain Derived Neurotrophic Factor expression, histology and cognitive function after developmental traumatic brain injury are lacking. We hypothesized that erythropoietin would increase Brain Derived Neurotrophic Factor and improve long-term object recognition in rat pups after controlled cortical impact, associated with increased neuronal fraction in the hippocampus. Rats pups received erythropoietin or vehicle at 1, 24, and 48 h and 7 days after injury or sham surgery followed by histology at 35 days, Novel Object Recognition testing at adulthood, and Brain Derived Neurotrophic Factor measurements early and late after injury. Erythropoietin improved Novel Object Recognition performance and preserved hippocampal volume, but not neuronal fraction, late after injury. Improved object recognition in erythropoietin treated rats was associated with preserved hippocampal volume late after traumatic brain injury. Erythropoietin is approved to treat various pediatric conditions. Coupled with exciting experimental and clinical studies suggesting it is beneficial after neonatal hypoxic ischemic brain injury, our preliminary findings support further study of erythropoietin use after developmental traumatic brain injury. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Teruel, T; Valverde, A M; Alvarez, A; Benito, M; Lorenzo, M
1995-01-01
Rat brown adipocytes at day 22 of foetal development showed greater size, higher mitochondria content and larger amounts of lipids, as determined by flow cytometry, than 20-day foetal cells. Simultaneously, an inhibition on the percentage of brown adipocytes into S+G2/M phases of the cell cycle was observed between days 20 and 22 of foetal development. The expression of several adipogenesis-related genes, such as fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase and insulin-regulated glucose transporter, increased at the end of foetal life in brown adipose tissue. In addition, the lipogenic enzyme activities and the lipogenic flux increased during late foetal development, resulting in mature brown adipocytes showing a multilocular fat droplet phenotype. Concurrently, brown adipocytes induced the expression of the uncoupling protein (UP) mRNA and UP protein, as visualized by immunofluorescence. The three isoforms of CCAAT enhancer-binding proteins (C/EBPs) were expressed at the mRNA level in brown adipose tissue at day 20. C/EBP alpha decreased and C/EBP beta and delta increased their expression between days 20 and 22 of foetal development, respectively. Brown adipose tissue constitutively expressed insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR) mRNAs. Moreover, IGF-IR mRNA content increased between days 20 and 22 in parallel with the occurrence of tissue differentiation. Images Figure 2 Figure 3 Figure 4 PMID:7575409
Role of EGE-related Growth Factor Cripto in Murine Mammary Tumorigenesis
1998-10-01
overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign...5101-5107 (1997). 8. Thinakaran, G. et aL Endoproteolysis of presenilin 1 and accumulation of processed derivatives in trically expressed in a...streak and head process distally, but is tb ikr proximally towards the embryonic/extra- (Fig. 1k, 1). Cripto expression disappears completely by the late
Regulation of Bovine Leukemia Virus tax and pol mRNA Levels by Interleukin-2 and -10
Pyeon, Dohun; Splitter, Gary A.
1999-01-01
Recently, particular cytokines have been identified to affect progression of a variety of diseases and retrovirus infections. Previously, we demonstrated that interleukin-2 (IL-2), IL-12, and gamma interferon increased in peripheral blood mononuclear cells (PBMCs) from animals with early disease and decreased in PBMCs from animals with late disease stages of bovine leukemia virus (BLV) infection. In contrast, IL-10 increased with disease progression. To examine the effects of these cytokines on BLV expression, BLV tax and pol mRNA and p24 protein were quantified by competitive PCR and immunoblotting, respectively. IL-10 inhibited BLV tax and pol mRNA levels in BLV-infected PBMCs; however, the inhibitory effect of IL-10 was prevented in PBMCs depleted of monocytes and/or macrophages (monocyte/macrophages). To determine whether these factors were secreted or monocyte/macrophage associated, monocyte/macrophage-depleted PBMCs were cultured with isolated monocyte/macrophages in transwells where contact between monocyte/macrophages and nonadherent PBMCs was blocked. BLV tax and pol mRNA levels increased in transwell cultures similar to cultures containing nonseparated cells, and IL-10 addition inhibited the increase of BLV tax and pol mRNA. These results suggest that monocyte/macrophages secrete soluble factor(s) that increases BLV mRNA levels and that secretion of these soluble factor(s) could be inhibited by IL-10. In contrast, IL-2 increased BLV tax and pol mRNA and p24 protein production. Thus, IL-10 production by BLV-infected animals with late stage disease may serve to control BLV mRNA levels, while IL-2 may increase BLV mRNA in the early disease stage. To determine a correlation between cell proliferation and BLV expression, the effect of IL-2 and IL-10 on PBMC proliferation was tested. As anticipated, IL-2 stimulated while IL-10 suppressed antigen-specific PBMC proliferation. The present study, combined with our previous findings, suggests that increased IL-10 production in late disease stages suppresses BLV mRNA levels, while IL-2-activated immune responses stimulate BLV expression by BLV-infected B cells. PMID:10482594
Hormone-dependent control of developmental timing through regulation of chromatin accessibility
Uyehara, Christopher M.; Nystrom, Spencer L.; Niederhuber, Matthew J.; Leatham-Jensen, Mary; Ma, Yiqin; Buttitta, Laura A.
2017-01-01
Specification of tissue identity during development requires precise coordination of gene expression in both space and time. Spatially, master regulatory transcription factors are required to control tissue-specific gene expression programs. However, the mechanisms controlling how tissue-specific gene expression changes over time are less well understood. Here, we show that hormone-induced transcription factors control temporal gene expression by regulating the accessibility of DNA regulatory elements. Using the Drosophila wing, we demonstrate that temporal changes in gene expression are accompanied by genome-wide changes in chromatin accessibility at temporal-specific enhancers. We also uncover a temporal cascade of transcription factors following a pulse of the steroid hormone ecdysone such that different times in wing development can be defined by distinct combinations of hormone-induced transcription factors. Finally, we show that the ecdysone-induced transcription factor E93 controls temporal identity by directly regulating chromatin accessibility across the genome. Notably, we found that E93 controls enhancer activity through three different modalities, including promoting accessibility of late-acting enhancers and decreasing accessibility of early-acting enhancers. Together, this work supports a model in which an extrinsic signal triggers an intrinsic transcription factor cascade that drives development forward in time through regulation of chromatin accessibility. PMID:28536147
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eom, Young Woo; Biomedical Research Institute, Lifeliver Co., Ltd., Suwon; Lee, Jong Eun
2011-04-29
Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of humanmore » adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.« less
Gene expression correlates of postinfective fatigue syndrome after infectious mononucleosis.
Cameron, Barbara; Galbraith, Sally; Zhang, Yun; Davenport, Tracey; Vollmer-Conna, Ute; Wakefield, Denis; Hickie, Ian; Dunsmuir, William; Whistler, Toni; Vernon, Suzanne; Reeves, William C; Lloyd, Andrew R
2007-07-01
Infectious mononucleosis (IM) commonly triggers a protracted postinfective fatigue syndrome (PIFS) of unknown pathogenesis. Seven subjects with PIFS with 6 or more months of disabling symptoms and 8 matched control subjects who had recovered promptly from documented IM were studied. The expression of 30,000 genes was examined in the peripheral blood by microarray analysis in 65 longitudinally collected samples. Gene expression patterns associated with PIFS were sought by correlation with symptom factor scores. Differential expression of 733 genes was identified when samples collected early during the illness and at the late (recovered) time point were compared. Of these genes, 234 were found to be significantly correlated with the reported severity of the fatigue symptom factor, and 180 were found to be correlated with the musculoskeletal pain symptom factor. Validation by analysis of the longitudinal expression pattern revealed 35 genes for which changes in expression were consistent with the illness course. These genes included several that are involved in signal transduction pathways, metal ion binding, and ion channel activity. Gene expression correlates of the cardinal symptoms of PIFS after IM have been identified. Further studies of these gene products may help to elucidate the pathogenesis of PIFS.
Acute brief heat stress in late gestation alters neonatal calf innate immune functions.
Strong, R A; Silva, E B; Cheng, H W; Eicher, S D
2015-11-01
Heat stress, as one of the environmental stressors affecting the dairy industry, compromises the cow milk production, immune function, and reproductive system. However, few studies have looked at how prenatal heat stress (HS) affects the offspring. The objective of this study was to evaluate the effect of HS during late gestation on calf immunity. Calves were born to cows exposed to evaporative cooling (CT) or HS (cyclic 23-35°C) for 1 wk at 3 wk before calving. Both bull and heifer calves (CT, n=10; HS, n=10) were housed in similar environmental temperatures after birth. Both CT and HS calves received 3.78 L of pooled colostrum within 12 h after birth and were fed the same diet throughout the study. In addition to tumor necrosis factor α, IL-1β, IL-1 receptor antagonist (IL-1RA), and toll-like receptor (TLR)2, and TLR4 mRNA expression, the expression of CD14(+) and CD18(+) cells, and DEC205(+) dendritic cells were determined in whole blood samples at d 0, 3, 7, 14, 21, and 28. The neutrophil to lymphocyte ratio, differential cell counts, and the hematocrit were also determined. During late gestation, the HS cows had greater respiration rates, rectal temperatures, and tended to spend more time standing compared with the CT cows. The HS calves had less expression of tumor necrosis factor-α and TLR2 and greater levels of IL-1β, IL-1RA, and TLR4 compared with CT calves. The HS calves also had a greater percentage of CD18(+) cells compared with the CT calves. Additionally, a greater percentage of neutrophils and lesser percentage of lymphocytes were in the HS calves compared with the CT calves. The results indicate that biomarkers of calves' immunity are affected in the first several weeks after birth by HS in the dam during late gestation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Passarelli, A L; Kovacs, G R; Moss, B
1996-01-01
Evidence is presented that a 26-kDa protein encoded by the vaccinia virus A2L open reading frame, originally shown to be one of three intermediate-stage genes that together can transactivate late-stage gene expression in transfection assays (J. G. Keck, C. J. Baldick, and B. Moss, Cell 61:801-809, 1990), is required for in vitro transcription of a template with a late promoter. The critical step in this analysis was the preparation of an extract containing all the required factors except for the A2L protein. This extract was prepared from cells infected with a recombinant vaccinia virus expressing the bacteriophage T7 RNA polymerase in the presence of the DNA synthesis inhibitor cytosine arabinoside and transfected with plasmids containing the two other known transactivator genes, A1L and G8R, under T7 promoter control. Reaction mixtures made with extracts of these cells had background levels of late transcription activity, unless they were supplemented with extracts of cells transfected with the A2L gene. Active transcription mixtures were also made by mixing extracts from three sets of cells, each transfected with a gene (A1L, A2L, or G8R) encoding a separate factor, indicating the absence of any requirement for their coexpression. To minimize the possibility that the A2L protein functions indirectly by activating another viral or cellular protein, this gene was expressed in insect cells by using a baculovirus vector. The partially purified recombinant protein complemented the activity of A2L-deficient cell extracts. Recombinant A1L, A2L, and G8R proteins, all produced in insect cells, together complemented extracts from mammalian cells containing only viral early proteins, concordant with previous in vivo transfection data. PMID:8676468
Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J
2013-05-01
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.
Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA
Fox, Rebecca M.; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J.
2013-01-01
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously. PMID:23578928
Zebrafish CiA interneurons are late-born primary neurons.
Yeo, Sang-Yeob
2009-12-11
Pax2 is a neural-related transcription factor downstream of Notch signaling and is expressed in the developing spinal cord of zebrafish, including in CiA interneurons. However, the characteristics of pax2-positive neurons are largely unknown. The goal of this study was to characterize Pax2-positive neurons by examining their expression in embryos in which Notch function had been knocked down by mutation or injection of a morpholino or mRNA. I found that Pax2-positive CiA interneurons were late-differentiating primary neurons. pax2.1 was expressed in CoPA commissural neurons and CiA interneurons at 26 hpf. The number of pax2.1-positive cells increased in mind bomb mutant embryos or embryos injected with Su(H)1-MO, but not in cells injected with Xenopus Delta or Delta(stu) mRNA. These observations imply that Notch signaling plays a role in regulating the number of CiA neurons by preventing uncommitted precursors from acquiring a neuronal fate during vertebrate development.
Kim, Girak; Jang, Mi Seon; Son, Young Min; Seo, Min Ji; Ji, Sang Yun; Han, Seung Hyun; Jung, In Duk; Park, Yeong-Min; Jung, Hyun Jung; Yun, Cheol-Heui
2013-01-01
Background Curcumin is a promising candidate for a natural medicinal agent to treat chronic inflammatory diseases. Although CD4+ T cells have been implicated in the pathogenesis of chronic inflammation, whether curcumin directly regulates CD4+ T cells has not been definitively established. Here, we showed curcumin-mediated regulation of CD2/CD3/CD28-initiated CD4+ T cell activation in vitro. Methodology/Principal Findings Primary human CD4+ T cells were stimulated with anti-CD2/CD3/CD28 antibody-coated beads as an in vitro surrogate system for antigen presenting cell-T cell interaction and treated with curcumin. We found that curcumin suppresses CD2/CD3/CD28-initiated CD4+ T cell activation by inhibiting cell proliferation, differentiation and cytokine production. On the other hand, curcumin attenuated the spontaneous decline of CD69 expression and indirectly increased expression of CCR7, L-selectin and Transforming growth factor-β1 (TGF-β1) at the late phase of CD2/CD3/CD28-initiated T cell activation. Curcumin-mediated up-regulation of CD69 at late phase was associated with ERK1/2 signaling. Furthermore, TGF-β1 was involved in curcumin-mediated regulation of T cell activation and late-phase generation of regulatory T cells. Conclusions/Significance Curcumin not merely blocks, but regulates CD2/CD3/CD28-initiated CD4+ T cell activation by augmenting CD69, CCR7, L-selectin and TGF-β1 expression followed by regulatory T cell generation. These results suggest that curcumin could directly reduce T cell-dependent inflammatory stress by modulating CD4+ T cell activation at multiple levels. PMID:23658623
Toraih, Eman A; Fawzy, Manal S; El-Falouji, Abdullah I; Hamed, Elham O; Nemr, Nader A; Hussein, Mohammad H; Fadeal, Noha M Abd El
2016-01-01
Stem cell transcriptional signature activation is an essential event in the development of cancer. This study aimed to investigate the differential expression profiles of three pluripotency-associated genes, OCT4, NANOG and SOX2, G-protein-coupled chemokine receptor 4 (CXCR4) and the ligand CXCL2, and alpha-fetoprotein (AFP) in hepatogenic differentiated stem cells and in sera of hepatitis C virus (HCV) and HCV-induced hepatocellular carcinoma (HCC) patients. Mesenchymal stem cells derived from umbilical cord blood were differentiated using hepatogenic differentiation media. Serum specimens were collected from 96 patients (32 cirrhotic HCV, 32 early HCC and 32 late HCC) and 96 controls. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed for relative quantification of the six target genes using the Livak method. In silico network analysis was also executed to explore the pluripotency and tumorigenetic regulatory circuits in liver cancer. The expression levels of all genes declined gradually during the stages of stem cell differentiation. On univariate and multivariate analyses, NANOG, CXCR4 and AFP were significantly upregulated in late clinical stage HCC patients. In contrast, SOX2 and CXCL2 were markedly overexpressed in cirrhotic patients and could be used for clear demarcation between cirrhotic and HCC patients in our cases. In conclusion, our data highlight the potential role of the SOX2 stem cell marker and CXCL2 chemokine in liver cell degeneration and fibrogenesis in HCV-induced hepatic cirrhosis in our sample of the Egyptian population. In addition, the significant association of NANOG and CXCR4 high expression with late HCC could contribute to the acquisition of stem cell–like properties in hepatic cancer and dissemination in late stages, respectively. Taken together, our results could have potential application in HCC prognosis and treatment. PMID:27623812
Isern, Joan; He, Zhiyong; Fraser, Stuart T.; Nowotschin, Sonja; Ferrer-Vaquer, Anna; Moore, Rebecca; Hadjantonakis, Anna-Katerina; Schulz, Vincent; Tuck, David; Gallagher, Patrick G.
2011-01-01
Primitive erythroid (EryP) progenitors are the first cell type specified from the mesoderm late in gastrulation. We used a transgenic reporter to image and purify the earliest blood progenitors and their descendants from developing mouse embryos. EryP progenitors exhibited remarkable proliferative capacity in the yolk sac immediately before the onset of circulation, when these cells comprise nearly half of all cells of the embryo. Global expression profiles generated at 24-hour intervals from embryonic day 7.5 through 2.5 revealed 2 abrupt changes in transcript diversity that coincided with the entry of EryPs into the circulation and with their late maturation and enucleation, respectively. These changes were paralleled by the expression of critical regulatory factors. Experiments designed to test predictions from these data demonstrated that the Wnt-signaling pathway is active in EryP progenitors, which display an aerobic glycolytic profile and the numbers of which are regulated by transforming growth factor-β1 and hypoxia. This is the first transcriptome assembled for a single hematopoietic lineage of the embryo over the course of its differentiation. PMID:21263157
Yogendra, Kalenahalli N; Dhokane, Dhananjay; Kushalappa, Ajjamada C; Sarmiento, Felipe; Rodriguez, Ernesto; Mosquera, Teresa
2017-03-01
The resistance to late blight is either qualitative or quantitative in nature. Quantitative resistance is durable, but challenging due to polygenic inheritance. In the present study, the diploid potato genotypes resistant and susceptible to late blight, were profiled for metabolites. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs) in response to pathogen infection revealed increased accumulation of morphinone, codeine-6-glucuronide and morphine-3-glucuronides. These BIAs are antimicrobial compounds and possibly involved in cell wall reinforcement, especially through cross-linking cell wall pectins. Quantitative reverse transcription-PCR studies revealed higher expressions of TyDC, NCS, COR-2 and StWRKY8 transcription factor genes, in resistant genotypes than in susceptible genotype, following pathogen inoculation. A luciferase transient expression assay confirmed the binding of the StWRKY8 TF to promoters of downstream genes, elucidating a direct regulatory role on BIAs biosynthetic genes. Sequence analysis of StWRKY8 in potato genotypes revealed polymorphism in the WRKY DNA binding domain in the susceptible genotype, which is important for the regulatory function of this gene. A complementation assay of StWRKY8 in Arabidopsis wrky33 mutant background was associated with decreased fungal biomass. In conclusion, StWRKY8 regulates the biosynthesis of BIAs that are both antimicrobial and reinforce cell walls to contain the pathogen to initial infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Moreira-Gonçalves, Daniel; Ferreira, Rita; Fonseca, Hélder; Padrão, Ana Isabel; Moreno, Nuno; Silva, Ana Filipa; Vasques-Nóvoa, Francisco; Gonçalves, Nádia; Vieira, Sara; Santos, Mário; Amado, Francisco; Duarte, José Alberto; Leite-Moreira, Adelino F; Henriques-Coelho, Tiago
2015-11-01
Clinical studies suggest that aerobic exercise can exert beneficial effects in pulmonary arterial hypertension (PAH), but the underlying mechanisms are largely unknown. We compared the impact of early or late aerobic exercise training on right ventricular function, remodeling and survival in experimental PAH. Male Wistar rats were submitted to normal cage activity (SED), exercise training in early (EarlyEX) and in late stage (LateEX) of PAH induced by monocrotaline (MCT, 60 mg/kg). Both exercise interventions resulted in improved cardiac function despite persistent right pressure-overload, increased exercise tolerance and survival, with greater benefits in EarlyEX+MCT. This was accompanied by improvements in the markers of cardiac remodeling (SERCA2a), neurohumoral activation (lower endothelin-1, brain natriuretic peptide and preserved vascular endothelial growth factor mRNA), metabolism and mitochondrial oxidative stress in both exercise interventions. EarlyEX+MCT provided additional improvements in fibrosis, tumor necrosis factor-alpha/interleukin-10 and brain natriuretic peptide mRNA, and beta/alpha myosin heavy chain protein expression. The present study demonstrates important cardioprotective effects of aerobic exercise in experimental PAH, with greater benefits obtained when exercise training is initiated at an early stage of the disease.
hnRNP L controls HPV16 RNA polyadenylation and splicing in an Akt kinase-dependent manner
Kajitani, Naoko; Glahder, Jacob; Wu, Chengjun; Yu, Haoran; Nilsson, Kersti
2017-01-01
Abstract Inhibition of the Akt kinase activates HPV16 late gene expression by reducing HPV16 early polyadenylation and by activating HPV16 late L1 mRNA splicing. We identified ‘hot spots’ for RNA binding proteins at the early polyA signal and at splice sites on HPV16 late mRNAs. We observed that hnRNP L was associated with sequences at all HPV16 late splice sites and at the early polyA signal. Akt kinase inhibition resulted in hnRNP L dephosphorylation and reduced association of hnRNP L with HPV16 mRNAs. This was accompanied by an increased binding of U2AF65 and Sam68 to HPV16 mRNAs. Furthermore, siRNA knock-down of hnRNP L or Akt induced HPV16 gene expression. Treatment of HPV16 immortalized keratinocytes with Akt kinase inhibitor reduced hnRNP L binding to HPV16 mRNAs and induced HPV16 L1 mRNA production. Finally, deletion of the hnRNP L binding sites in HPV16 subgenomic expression plasmids resulted in activation of HPV16 late gene expression. In conclusion, the Akt kinase inhibits HPV16 late gene expression at the level of RNA processing by controlling the RNA-binding protein hnRNP L. We speculate that Akt kinase activity upholds an intracellular milieu that favours HPV16 early gene expression and suppresses HPV16 late gene expression. PMID:28934469
RpoS induces expression of the Vibrio anguillarum quorum-sensing regulator VanT.
Weber, Barbara; Croxatto, Antony; Chen, Chang; Milton, Debra L
2008-03-01
In vibrios, regulation of the Vibrio harveyi-like LuxR transcriptional activators occurs post-transcriptionally via small regulatory RNAs (sRNAs) that destabilize the luxR mRNA at a low cell population, eliminating expression of LuxR. Expression of the sRNAs is modulated by the vibrio quorum-sensing phosphorelay systems. However, vanT mRNA, which encodes a LuxR homologue in Vibrio anguillarum, is abundant at low and high cell density, indicating that VanT expression may be regulated via additional mechanisms. In this study, Western analyses showed that VanT was expressed throughout growth with a peak of expression during late exponential growth. VanO induced partial destabilization of vanT mRNA via activation of at least one Qrr sRNA. Interestingly, the sigma factor RpoS significantly stabilized vanT mRNA and induced VanT expression during late exponential growth. This induction was in part due to RpoS repressing expression of Hfq, an RNA chaperone. RpoS is not part of the quorum-sensing regulatory cascade since RpoS did not regulate expression or activity of VanO, and RpoS was not regulated by VanO or VanT. VanT and RpoS were needed for survival following UV irradiation and for pigment and metalloprotease production, suggesting that RpoS works with the quorum-sensing systems to modulate expression of VanT, which regulates survival and stress responses.
Park, In-Hyun; Chen, Jie
2005-09-09
Skeletal myogenesis is a well orchestrated cascade of events regulated by multiple signaling pathways, one of which is recently characterized by its sensitivity to the bacterial macrolide rapamycin. Previously we reported that the mammalian target of rapamycin (mTOR) regulates the initiation of the differentiation program in mouse C2C12 myoblasts by controlling the expression of insulin-like growth factor-II in a kinase-independent manner. Here we provide experimental evidence suggesting that a different mode of mTOR signaling regulates skeletal myogenesis at a later stage. In the absence of endogenous mTOR function in C2C12 cells treated with rapamycin, a kinase-inactive mTOR fully supports myogenin expression, but causes a delay in contractile protein expression. Myoblasts fuse to form nascent myotubes in the absence of kinase-active mTOR, whereas the formation of mature myotubes by further fusion requires the catalytic activity of mTOR. Therefore, the two stages of myocyte fusion are molecularly separable at the level of mTOR signaling. In addition, our data suggest that a factor secreted into the culture medium is responsible for mediating the function of mTOR in regulating the late-stage fusion leading to mature myotubes. Furthermore, taking advantage of the unique features of cells stably expressing a mutant mTOR, we have performed cDNA microarray analysis to compare global gene expression profiles between mature and nascent myotubes, the results of which have implicated classes of genes and revealed candidate regulators in myotube maturation or functions of mature myotubes.
Park, Hyun Jung; Costa, Robert H.; Lau, Lester F.; Tyner, Angela L.; Raychaudhuri, Pradip
2008-01-01
The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G1 phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G1 phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G1 phase and that its proteolysis is important for regulated entry into S phase. PMID:18573889
Park, Hyun Jung; Costa, Robert H; Lau, Lester F; Tyner, Angela L; Raychaudhuri, Pradip
2008-09-01
The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G(1) phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G(1) phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G(1) phase and that its proteolysis is important for regulated entry into S phase.
Zhang, Huasheng; Zhang, Dingding; Li, Hua; Yan, Huiying; Zhang, Zihuan; Zhou, Chenhui; Chen, Qiang; Ye, Zhennan; Hang, Chunhua
2018-06-01
The transcription factor nuclear factor-κB (NF-κB) has been shown to function as a key regulator of cell death or survival in neuronal cells. Previous studies indicate that the biphasic activation of NF-κB occurs following experimental neonatal hypoxia-ischemia and subarachnoid hemorrhage. However, the comprehensive understanding of NF-κB activity following traumatic brain injury (TBI) is incomplete. In the current study, an in vitro model of TBI was designed to investigate the NF-κB activity and expression of p65 and c-Rel subunits following traumatic neuronal injury. Primary cultured neurons were assigned to control and transected groups. NF-κB activity was detected by electrophoretic mobility shift assay. Western blotting and immunofluorescence were used to investigate the expression and distribution of p65 and c-Rel. Reverse transcription-quantitative polymerase chain reaction was performed to assess the downstream genes of NF-κB. Lactate dehydrogenase (LDH) quantification and trypan blue staining were used to estimate the neuronal injury. Double peaks of elevated NF-κB activity were observed at 1 and 24 h following transection. The expression levels of downstream genes exhibited similar changes. The protein levels of p65 also presented double peaks while c-Rel was elevated significantly in the late stage. The results of the trypan blue staining and LDH leakage assays indicated there was no sustained neuronal injury during the late peak of NF-κB activity. In conclusion, biphasic activation of NF-κB is induced following experimental traumatic neuronal injury. The elevation of p65 and c-Rel levels at different time periods suggests that within a single neuron, NF-κB may participate in different pathophysiological processes.
Expression of CAR in SW480 and HepG2 cells during G1 is associated with cell proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osabe, Makoto; Sugatani, Junko; Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka
Constitutive androstane receptor (CAR) is a transcription factor to regulate the expression of several genes related to drug-metabolism. Here, we demonstrate that CAR protein accumulates during G1 in human SW480 and HepG2 cells. After the G1/S phase transition, CAR protein levels decreased, and CAR was hardly detected in cells by the late M phase. CAR expression in both cell lines was suppressed by RNA interference-mediated suppression of CDK4. Depletion of CAR by RNA interference in both cells and by hepatocyte growth factor treatment in HepG2 cells resulted in decreased MDM2 expression that led to p21 upregulation and repression of HepG2more » cell growth. Thus, our results demonstrate that CAR expression is an early G1 event regulated by CDK4 that contributes to MDM2 expression; these findings suggest that CAR may influence the expression of genes involved in not only the metabolism of endogenous and exogenous substances but also in the cell proliferation.« less
Zhu, Ming-Xia; Zhao, Jin-Yuan; Chen, Gui-An; Guan, Li
2011-09-01
hESCs (human embryonic stem cells) can differentiate into tissue derivatives of all three germ layers in vitro and mimic the development of the embryo in vivo. In this study, we have investigated the potential of an hESC-based assay for the detection of toxicity to cardiac differentiation in embryonic development. First of all, we developed the protocol of cardiac induction from hESCs according to our previous work and distinguished cardiac precursor cells and late mature cardiomyocytes from differentiated cells, demonstrated by the Q-PCR (quantitative real-time PCR), immunocytochemistry and flow cytometry analysis. In order to test whether CPA (cyclophosphamide) induces developmental and cellular toxicity in the human embryo, we exposed the differentiating cells from hESCs to CPA (a well-known proteratogen) at different stages. We have found that a high concentration of CPA could inhibit cardiac differentiation of hESCs. Two separate exposure intervals were used to determine the effects of CPA on cardiac precursor cells and late mature cardiomyocytes respectively. The cardiac precursor cells were sensitive to CPA in non-cytotoxic concentrations for the expression of the cardiac-specific mRNA markers Nkx2.5 (NK2 transcription factor related, locus 5), GATA-4 (GATA binding protein 4 transcription factor) and TNNT2 (troponin T type 2). Non-cytotoxic CPA concentrations did not affect the mRNA markers' expression in late mature cardiomyocytes, indicating that cardiac precursors were more sensitive to CPA than late cardiomyocytes in cardiogenesis. We set up the in vitro developmental toxicity test model so as to reduce the number of test animals and expenses without compromising the safety of consumers and patients. Furthermore, such in vitro methods may be possibly suited to test a large number of chemicals than the classical employed in vivo tests.
Temporal Changes in Gene Expression after Injury in the Rat Retina
Vázquez-Chona, Félix; Song, Bong K.; Geisert, Eldon E.
2010-01-01
Purpose The goal of this study was to define the temporal changes in gene expression after retinal injury and to relate these changes to the inflammatory and reactive response. A specific emphasis was placed on the tetraspanin family of proteins and their relationship with markers of reactive gliosis. Methods Retinal tears were induced in adult rats by scraping the retina with a needle. After different survival times (4 hours, and 1, 3, 7, and 30 days), the retinas were removed, and mRNA was isolated, prepared, and hybridized to the Affymatrix RGU34A microarray (Santa Clara, CA). Microarray results were confirmed by using RT-PCR and correlation to protein levels was determined. Results Of the 8750 genes analyzed, approximately 393 (4.5%) were differentially expressed. Clustering analysis revealed three major profiles: (1) The early response was characterized by the upregulation of transcription factors; (2) the delayed response included a high percentage of genes related to cell cycle and cell death; and (3) the late, sustained profile clustered a significant number of genes involved in retinal gliosis. The late, sustained cluster also contained the upregulated crystallin genes. The tetraspanins Cd9, Cd81, and Cd82 were also associated with the late, sustained response. Conclusions The use of microarray technology enables definition of complex genetic changes underlying distinct phases of the cellular response to retinal injury. The early response clusters genes associate with the transcriptional regulation of the wound-healing process and cell death. Most of the genes in the late, sustained response appear to be associated with reactive gliosis. PMID:15277499
Yoon, D S; Kim, Y H; Jung, H S; Paik, S; Lee, J W
2011-10-01
This study has aimed to repopulate 'primitive' cells from late-passage mesenchymal stem cells (MSCs) of poor multipotentiality and low cell proliferation rate, by simply altering plating density. Effects of low density culture compared t high density culture on late-passage bone marrow (BM)-derived MSCs and pluripotency markers of multipotentiality were investigated. Cell proliferation, gene expression, RNA interference and differentiation potential were assayed. We repopulated 'primitive' cells by replating late-passage MSCs at low density (17 cells/cm(2) ) regardless of donor age. Repopulated MSCs from low-density culture were smaller cells with spindle shaped morphology compared to MSCs from high-density culture. The latter had enhanced colony-forming ability, proliferation rate, and adipogenic and chondrogenic potential. Strong expression of osteogenic-related genes (Cbfa1, Dlx5, alkaline phosphatase and type Ι collagen) in late-passage MSCs was reduced by replating at low density, whereas expression of three pluripotency markers (Sox2, Nanog and Oct-4), Osterix and Msx2 reverted to levels of early-passage MSCs. Knockdown of Sox2 and Msx2 but not Nanog, using RNA interference, showed significant decrease in colony-forming ability. Specifically, knockdown of Sox2 significantly inhibited multipotentiality and cell proliferation. Our data suggest that plating density should be considered to be a critical factor for enrichment of 'primitive' cells from heterogeneous BM and that replicative senescence and multipotentiality of MSCs during in vitro expansion may be predominantly regulated through Sox2. © 2011 Blackwell Publishing Ltd.
Meehan, Crystal; Harms, Lauren; Frost, Jade D; Barreto, Rafael; Todd, Juanita; Schall, Ulrich; Shannon Weickert, Cynthia; Zavitsanou, Katerina; Michie, Patricia T; Hodgson, Deborah M
2017-07-01
Maternal exposure to infectious agents during gestation has been identified as a significant risk factor for schizophrenia. Using a mouse model, past work has demonstrated that the gestational timing of the immune-activating event can impact the behavioural phenotype and expression of dopaminergic and glutamatergic neurotransmission markers in the offspring. In order to determine the inter-species generality of this effect to rats, another commonly used model species, the current study investigated the impact of a viral mimetic Poly (I:C) at either an early (gestational day 10) or late (gestational day 19) time-point on schizophrenia-related behaviour and neurotransmitter receptor expression in rat offspring. Exposure to Poly (I:C) in late, but not early, gestation resulted in transient impairments in working memory. In addition, male rats exposed to maternal immune activation (MIA) in either early or late gestation exhibited sensorimotor gating deficits. Conversely, neither early nor late MIA exposure altered locomotor responses to MK-801 or amphetamine. In addition, increased dopamine 1 receptor mRNA levels were found in the nucleus accumbens of male rats exposed to early gestational MIA. The findings from this study diverge somewhat from previous findings in mice with MIA exposure, which were often found to exhibit a more comprehensive spectrum of schizophrenia-like phenotypes in both males and females, indicating potential differences in the neurodevelopmental vulnerability to MIA exposure in the rat with regards to schizophrenia related changes. Copyright © 2016. Published by Elsevier Inc.
Nieva, Claudia; Busk, Peter K; Domínguez-Puigjaner, Eva; Lumbreras, Victoria; Testillano, Pilar S; Risueño, Maria-Carmen; Pagès, Montserrat
2005-08-01
The plant hormone abscisic acid regulates gene expression in response to growth stimuli and abiotic stress. Previous studies have implicated members of the bZIP family of transcription factors as mediators of abscisic acid dependent gene expression through the ABRE cis-element. Here, we identify two new maize bZIP transcription factors, EmBP-2 and ZmBZ-1 related to EmBP-1 and OsBZ-8 families. They are differentially expressed during embryo development; EmBP-2 is constitutive, whereas ZmBZ-1 is abscisic acid-inducible and accumulates during late embryogenesis. Both factors are nuclear proteins that bind to ABREs and activate transcription of the abscisic acid-inducible gene rab28 from maize. EmBP-2 and ZmBZ-1 are phosphorylated by protein kinase CK2 and phosphorylation alters their DNA binding properties. Our data suggest that EmBP-2 and ZmBZ-1 are involved in the expression of abscisic acid inducible genes such as rab28 and their activity is modulated by ABA and by phosphorylation.
Mearls, Elizabeth B.; Jackter, Jacquelin; Colquhoun, Jennifer M.; Matthews, Allison J.; Fenton, Colleen
2018-01-01
A cascade of alternative sigma factors directs developmental gene expression during spore formation by the bacterium Bacillus subtilis. As the spore develops, a tightly regulated switch occurs in which the early-acting sigma factor σF is replaced by the late-acting sigma factor σG. The gene encoding σG (sigG) is transcribed by σF and by σG itself in an autoregulatory loop; yet σG activity is not detected until σF-dependent gene expression is complete. This separation in σF and σG activities has been suggested to be due at least in part to a poorly understood intercellular checkpoint pathway that delays sigG expression by σF. Here we report the results of a careful examination of sigG expression during sporulation. Unexpectedly, our findings argue against the existence of a regulatory mechanism to delay sigG transcription by σF and instead support a model in which sigG is transcribed by σF with normal timing, but at levels that are very low. This low-level expression of sigG is the consequence of several intrinsic features of the sigG regulatory and coding sequence—promoter spacing, secondary structure potential of the mRNA, and start codon identity—that dampen its transcription and translation. Especially notable is the presence of a conserved hairpin in the 5’ leader sequence of the sigG mRNA that occludes the ribosome-binding site, reducing translation by up to 4-fold. Finally, we demonstrate that misexpression of sigG from regulatory and coding sequences lacking these features triggers premature σG activity in the forespore during sporulation, as well as inappropriate σG activity during vegetative growth. Altogether, these data indicate that transcription and translation of the sigG gene is tuned to prevent vegetative expression of σG and to ensure the precise timing of the switch from σF to σG in the developing spore. PMID:29702640
Yan, Xu; Zhu, Mei J; Xu, Wei; Tong, Jun F; Ford, Stephen P; Nathanielsz, Peter W; Du, Min
2010-01-01
Maternal obesity is increasing at an alarming rate. We previously showed that maternal obesity induces an inflammatory response and enhances adipogenesis in fetal skeletal muscle at midgestation. The objective of this study was to evaluate effects of maternal obesity on adipogenesis, inflammatory signaling, and insulin pathways at late gestation when ovine fetal skeletal muscle matures. Nonpregnant ewes were assigned to a control diet (Con, fed 100% of National Research Council nutrient recommendations, n = 6) or obesogenic diet (OB, fed 150% of National Research Council recommendations, n = 6) from 60 d before to 135 d after conception (term 148 d) when the fetal semitendenosus skeletal muscle was sampled. Expression of the adipogenic marker, peroxisome proliferator-activated receptor-gamma, was increased in OB compared with Con fetal semitendenosus muscle, indicating up-regulation of adipogenesis. More intramuscular adipocytes were observed in OB muscle. Phosphorylation of inhibitor-kappaB kinase-alpha/beta and nuclear factor-kappaB RelA/p65 were both increased in OB fetal muscle, indicating activation of nuclear factor-kappaB pathway. Phosphorylation of c-Jun N-terminal kinase and c-Jun (at Ser 63 and Ser 73) was also elevated. Toll-like receptor 4 expression was higher in OB than Con fetal muscle. Moreover, despite higher insulin concentrations in OB vs. Con fetal plasma (2.89 +/- 0.53 vs. 1.06 +/- 0.52 ng/ml; P < 0.05), phosphorylation of protein kinase B at Ser 473 was reduced, indicating insulin resistance. In conclusion, our data show maternal obesity-induced inflammatory signaling in late gestation fetal muscle, which correlates with increased im adipogenesis and insulin resistance, which may predispose offspring to later-life obesity and diabetes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min
2013-01-18
Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulatingmore » the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.« less
Negrotto, Soledad; Ng, Kwok Peng; Jankowska, Ania M.; Bodo, Juraj; Gopalan, Banu; Guinta, Kathryn; Mulloy, James C.; Hsi, Eric; Maciejewski, Jaroslaw; Saunthararajah, Yogen
2011-01-01
The DNA hypomethylating drug decitabine maintains normal hematopoietic stem cell (HSC) self-renewal but induces terminal differentiation in acute myeloid leukemia (AML) cells. The basis for these contrasting cell-fates, and for selective CpG hypomethylation by decitabine, is poorly understood. Promoter CpGs, with methylation measured by microarray, were classified by the direction of methylation change with normal myeloid maturation. In AML cells, the methylation pattern at maturation-responsive CpG suggested at least partial maturation. Consistent with partial maturation, in gene expression analyses, AML cells expressed high levels of the key lineage-specifying factor CEBPA, but relatively low levels of the key late-differentiation driver CEBPE. In methylation analysis by mass-spectrometry, CEBPE promoter CpG that are usually hypomethylated during granulocyte maturation were significantly hypermethylated in AML cells. Decitabine treatment induced cellular differentiation of AML cells, and the largest methylation decreases were at CpG that are hypomethylated with myeloid maturation, including CEBPE promoter CpG. In contrast, decitabine-treated normal HSC retained immature morphology, and methylation significantly decreased at CpG that are less methylated in immature cells. High expression of lineage-specifying factor and aberrant epigenetic repression of some key late-differentiation genes distinguishes AML cells from normal HSC and could explain the contrasting differentiation and methylation responses to decitabine. PMID:21836612
Manuel, Martine; Price, David J.
2011-01-01
The ventricular zone (VZ) of the embryonic dorsal telencephalon is a major site for generating cortical projection neurons. The transcription factor Pax6 is highly expressed in apical progenitors (APs) residing in the VZ from the earliest stages of corticogenesis. Previous studies mainly focused on Pax6−/− mice have implicated Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of superficial cortical layers. We analyzed the developing cortex of PAX77 transgenic mice that overexpress Pax6 in its normal domains of expression. We show that Pax6 overexpression increases cell cycle length of APs and drives the system toward neurogenesis. These effects are specific to late stages of corticogenesis, when superficial layer neurons are normally generated, in cortical regions that express Pax6 at the highest levels. The number of superficial layer neurons is reduced in postnatal PAX77 mice, whereas radial migration and lamina specification of cortical neurons are not affected by Pax6 overexpression. Conditional deletion of Pax6 in cortical progenitors at midstages of corticogenesis, by using a tamoxifen-inducible Emx1-CreER line, affected both numbers and specification of late-born neurons in superficial layers of the mutant cortex. Our analyses suggest that correct levels of Pax6 are essential for normal production of superficial layers of the cortex. PMID:20413449
Affar, El Bachir; Gay, Frédérique; Shi, Yujiang; Liu, Huifei; Huarte, Maite; Wu, Su; Collins, Tucker; Li, En; Shi, Yang
2006-01-01
Constitutive ablation of the Yin Yang 1 (YY1) transcription factor in mice results in peri-implantation lethality. In this study, we used homologous recombination to generate knockout mice carrying yy1 alleles expressing various amounts of YY1. Phenotypic analysis of yy1 mutant embryos expressing ∼75%, ∼50%, and ∼25% of the normal complement of YY1 identified a dosage-dependent requirement for YY1 during late embryogenesis. Indeed, reduction of YY1 levels impairs embryonic growth and viability in a dose-dependent manner. Analysis of the corresponding mouse embryonic fibroblast cells also revealed a tight correlation between YY1 dosage and cell proliferation, with a complete ablation of YY1 inducing cytokinesis failure and cell cycle arrest. Consistently, RNA interference-mediated inhibition of YY1 in HeLa cells prevents cytokinesis, causes proliferative arrest, and increases cellular sensitivity to various apoptotic agents. Genome-wide expression profiling identified a plethora of YY1 target genes that have been implicated in cell growth, proliferation, cytokinesis, apoptosis, development, and differentiation, suggesting that YY1 coordinates multiple essential biological processes through a complex transcriptional network. These data not only shed new light on the molecular basis for YY1 developmental roles and cellular functions, but also provide insight into the general mechanisms controlling eukaryotic cell proliferation, apoptosis, and differentiation. PMID:16611997
CDK5RAP2 gene and tau pathophysiology in late-onset sporadic Alzheimer's disease.
Miron, Justin; Picard, Cynthia; Nilsson, Nathalie; Frappier, Josée; Dea, Doris; Théroux, Louise; Poirier, Judes
2018-06-01
Because currently known Alzheimer's disease (AD) single-nucleotide polymorphisms only account for a small fraction of the genetic variance in this disease, there is a need to identify new variants associated with AD. Our team performed a genome-wide association study in the Quebec Founder Population isolate to identify novel protective or risk genetic factors for late-onset sporadic AD and examined the impact of these variants on gene expression and AD pathology. The rs10984186 variant is associated with an increased risk of developing AD and with a higher CDK5RAP2 mRNA prevalence in the hippocampus. On the other hand, the rs4837766 variant, which is among the best cis-expression quantitative trait loci in the CDK5RAP2 gene, is associated with lower mild cognitive impairment/AD risk and conversion rate. The rs10984186 risk and rs4837766 protective polymorphic variants of the CDK5RAP2 gene might act as potent genetic modifiers for AD risk and/or conversion by modulating the expression of this gene. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; ...
2015-06-17
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
Badawy, Afkar A.; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Helal, Noha S.; Kamel, Amira
2017-01-01
Introduction Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand-receptor combination constitutes an important event in multistep tumorigenesis. Methods This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immuohistochemically stained with EGFR and TGFα antibodies. Results EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy. PMID:28413380
Jose, Jency; Jalali, S K; Shivalingaswamy, T M; Kumar, N K Krishna; Bhatnagar, R; Bandyopadhyay, A
2013-06-01
A PCR based method for detection of viral DNA in nucleopolyhedrovirus of three lepidopterans, Spodoptera litura, Amsacta albistriga and Helicoverpa armigera, was developed by employing the late expression factor-8 (lef-8) gene of three NPV using specific primers. The amplicons of 689, 699 and 665 bp were amplified, respectively, and the nucleotide sequences were submitted to GenBank and the accession numbers were obtained. The sequences of lef-8 gene of S. litura NPV and H. armigera NPV matched with those of their respective references in the GenBank database, thereby confirming their identity, however, the sequence of A. albistriga NPV was the first sequence submitted to the GenBank database. The sequence similarity analysis between the three lef-8 gene of NPV sequenced in the present study revealed that there was no significant similarity between them, however A. albistriga NPV and S. litura NPV were found to be closely related. CLUSTAL alignment of the sequences generated revealed general relatedness among NPVs lef-8 gene. The study confirmed that lef-8 gene can be used for quick and correct discriminatory identification of insect viruses.
Elevated systemic galectin-1 levels characterize HELLP syndrome.
Schnabel, Annegret; Blois, Sandra M; Meint, Peter; Freitag, Nancy; Ernst, Wolfgang; Barrientos, Gabriela; Conrad, Melanie L; Rose, Matthias; Seelbach-Göbel, Birgit
2016-04-01
Galectin-1 (gal-1), a member of a family of conserved β-galactoside-binding proteins, has been shown to exert a key role during gestation. Though gal-1 is expressed at higher levels in the placenta from HELLP patients, it is still poorly understood whether systemic gal-1 levels also differ in HELLP patients. In the present study, we evaluated the systemic expression of gal-1, together with the angiogenic factors, placental growth factor (PlGF) and soluble fms-like tyrosine kinase 1 (sFlt-1) in conjunction with HELLP syndrome severity. Systemic levels of gal-1 and sFlt-1 were elevated in patients with both early- and late-onset HELLP syndrome as compared to healthy controls. In contrast, peripheral PlGF levels were decreased in early- and late-onset HELLP. A positive correlation between systemic gal-1 levels and sFlt-1/PlGF ratios was found in early onset HELLP patients. Our results show that HELLP syndrome is associated with increased circulating levels of gal-1; integrating systemic gal-1 measurements into the diagnostic analyses of pregnant women may provide more effective prediction of HELLP syndrome development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wongdee, Kannikar; Thonapan, Natchayaporn; Saengamnart, Wasana; Krishnamra, Nateetip; Charoenphandhu, Narattaphol
2013-09-01
In lactating rats, the endochondral bone growth is markedly enhanced, leading to the lengthening of long bone. This lactation-induced bone elongation could be abolished by a dopaminergic D2 receptor agonist bromocriptine, but how bromocriptine altered the expression of major chondroregulatory proteins in the growth plate cartilage was elusive. Here, we performed a quantitative immunohistochemical analysis to determine the expression of various peptides and transcription factors known to control the growth plate chondrocyte proliferation and differentiation [i.e., parathyroid hormone-related protein (PTHrP), PTHrP receptor, Indian hedgehog (Ihh), and runt-related transcription factor 2 (Runx2)], in bromocriptine-treated lactating rats. The results showed that bromocriptine markedly increased Ihh expression in hypertrophic chondrocytes during early and mid-lactation, while the expression of PTHrP receptor, but not its ligand PTHrP, was upregulated in the proliferative and hypertrophic zones during mid and late lactation. In contrast, the expression of Runx2, an important transcription factor for chondrocyte differentiation, was suppressed in the hypertrophic chondrocytes of bromocriptine-treated rats. In conclusion, bromocriptine increased Ihh and PTHrP receptor expressions and decreased Runx2 expression, which might, in turn, enhance chondrocyte proliferation and delay chondrocyte hypertrophy, thereby slowing down endochondral bone growth. This finding could explain how bromocriptine compromised the lactation-induced bone elongation.
Dawel, Amy; Palermo, Romina; O'Kearney, Richard; McKone, Elinor
2015-01-01
Much is known about development of the ability to label facial expressions of emotion (e.g., as happy or sad), but rather less is known about the emergence of more complex emotional face processing skills. The present study investigates one such advanced skill: the ability to tell if someone is genuinely feeling an emotion or just pretending (i.e., authenticity discrimination). Previous studies have shown that children can discriminate authenticity of happy faces, using expression intensity as an important cue, but have not tested the negative emotions of sadness or fear. Here, children aged 8-12 years (n = 85) and adults (n = 57) viewed pairs of faces in which one face showed a genuinely-felt emotional expression (happy, sad, or scared) and the other face showed a pretend version. For happy faces, children discriminated authenticity above chance, although they performed more poorly than adults. For sad faces, for which our pretend and genuine images were equal in intensity, adults could discriminate authenticity, but children could not. Neither age group could discriminate authenticity of the fear faces. Results also showed that children judged authenticity based on intensity information alone for all three expressions tested, while adults used a combination of intensity and other factor/s. In addition, novel results show that individual differences in empathy (both cognitive and affective) correlated with authenticity discrimination for happy faces in adults, but not children. Overall, our results indicate late maturity of skills needed to accurately determine the authenticity of emotions from facial information alone, and raise questions about how this might affect social interactions in late childhood and the teenage years.
Dawel, Amy; Palermo, Romina; O’Kearney, Richard; McKone, Elinor
2015-01-01
Much is known about development of the ability to label facial expressions of emotion (e.g., as happy or sad), but rather less is known about the emergence of more complex emotional face processing skills. The present study investigates one such advanced skill: the ability to tell if someone is genuinely feeling an emotion or just pretending (i.e., authenticity discrimination). Previous studies have shown that children can discriminate authenticity of happy faces, using expression intensity as an important cue, but have not tested the negative emotions of sadness or fear. Here, children aged 8–12 years (n = 85) and adults (n = 57) viewed pairs of faces in which one face showed a genuinely-felt emotional expression (happy, sad, or scared) and the other face showed a pretend version. For happy faces, children discriminated authenticity above chance, although they performed more poorly than adults. For sad faces, for which our pretend and genuine images were equal in intensity, adults could discriminate authenticity, but children could not. Neither age group could discriminate authenticity of the fear faces. Results also showed that children judged authenticity based on intensity information alone for all three expressions tested, while adults used a combination of intensity and other factor/s. In addition, novel results show that individual differences in empathy (both cognitive and affective) correlated with authenticity discrimination for happy faces in adults, but not children. Overall, our results indicate late maturity of skills needed to accurately determine the authenticity of emotions from facial information alone, and raise questions about how this might affect social interactions in late childhood and the teenage years. PMID:25999868
Baijnath, Sooraj; Murugesan, Saravanakumar; Mackraj, Irene; Gathiram, Prem; Moodley, Jagidesa
2017-03-01
We investigated the effects of sildenafil citrate (SC) on podocyturia in N ω -nitro-L-arginine methyl ester hydrochloride (L-NAME) model of pre-eclampsia (PE). One hundred and twenty Sprague-Dawley rats (SDR) were divided into five groups like pregnant control (PC), early-onset PE (EOPE), late-onset PE(LOPE), early and late-onset PE with SC-treated groups [EOPE (SC); LOPE (SC)]. PE was induced in SDR by oral administration of L-NAME in drinking water for 4-8 days for EOPE and 8-14 day for LOPE. The blood pressure, urine volume and total urine protein were increased in EOPE and LOPE groups when compared to PC, and all the above parameters decreased in EOPE (SC) and LOPE (SC) groups when compared to EOPE and LOPE groups, respectively. The EOPE and LOPE groups showed an increase in urinary nephrin mRNA and podocin mRNA levels compared to PC group. Increases in serum and renal soluble fms-like tyrosine kinase-1 (sFlt-1) expression levels and decreases in renal vascular endothelial growth factor (VEGF) expression and serum placenta growth factor (PlGF) levels were observed in EOPE and LOPE groups when compared to PC group. In addition, decreases in serum and renal sFlt-1 expression levels and increases in renal VEGF expression and serum PlGF levels were observed in EOPE (SC) and LOPE (SC) groups when compared to EOPE and LOPE groups, respectively. The light microscopy showed that the renal tissue of L-NAME-treated rats had extensive glomerular damage, tubular damage and infiltration by mononuclear cells when compared to PC group. Therefore, SC ameliorated podocyturia through its effects on the antiangiogenic/angiogenic status in this animal model.
Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs.
Carlson, M R; Bryant, S V; Gardiner, D M
1998-12-15
Msx genes are transcription factors that are expressed during embryogenesis of developing appendages in regions of epithelial-mesenchymal interactions. Various lines of evidence indicate that these genes function to maintain embryonic tissues in an undifferentiated, proliferative state. We have identified the axolotl homolog of Msx-2, and investigated its expression during limb development, limb regeneration, and wound healing. As in limb buds of higher vertebrates, axolotl Msx-2 is expressed in the apical epidermis and mesenchyme; however, its expression domain is more extensive, reflecting the broader region of the apical epidermal cap in amphibians. Msx-2 expression is downregulated at late stages of limb development, but is reexpressed within one hour after limb amputation. Msx-2 is also reexpressed during wound healing, and may be essential in the early stages of initiation of the limb regeneration cascade.
Ren, He-Lin; Hu, Yuan; Guo, Ya-Jun; Li, Lu-Lin
2016-06-01
Within Baculoviridae, little is known about the molecular mechanisms of replication in betabaculoviruses, despite extensive studies in alphabaculoviruses. In this study, the promoters of nine late genes of the betabaculovirus Plutella xylostella granulovirus (PlxyGV) were cloned into a transient expression vector and the alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome, and compared with homologous late gene promoters of AcMNPV in Sf9 cells. In transient expression assays, all PlxyGV late promoters were activated in cells transfected with the individual reporter plasmids together with an AcMNPV bacmid. In infected cells, reporter gene expression levels with the promoters of PlxyGV e18 and AcMNPV vp39 and gp41 were significantly higher than those of the corresponding AcMNPV or PlxyGV promoters, which had fewer late promoter motifs. Observed expression levels were lower for the PlxyGV p6.9, pk1, gran, p10a, and p10b promoters than for the corresponding AcMNPV promoters, despite equal numbers of late promoter motifs, indicating that species-specific elements contained in some late promoters were favored by the native viral RNA polymerases for optimal transcription. The 8-nt sequence TAAATAAG encompassing the ATAAG motif was conserved in the AcMNPV polh, p10, and pk1 promoters. The 5-nt sequence CAATT located 4 or 5 nt upstream of the T/ATAAG motif was conserved in the promoters of PlxyGV gran, p10c, and pk1. The results of this study demonstrated that PlxyGV late gene promoters could be effectively activated by the RNA polymerase from AcMNPV, implying that late gene expression systems are regulated by similar mechanisms in alphabaculoviruses and betabaculoviruses.
Garcia, Patricia; Leal, Pamela; Alvarez, Hector; Brebi, Priscilla; Ili, Carmen; Tapia, Oscar; Roa, Juan C
2013-02-01
Gallbladder cancer (GBC) is an aggressive neoplasia associated with late diagnosis, unsatisfactory treatment, and poor prognosis. Molecular mechanisms involved in GBC pathogenesis remain poorly understood. Connective tissue growth factor (CTGF) is thought to play a role in the pathologic processes and is overexpressed in several human cancers, including GBC. No information is available about CTGF expression in early stages of gallbladder carcinogenesis. Objective.- To evaluate the expression level of CTGF in benign and malignant lesions of gallbladder and its correlation with clinicopathologic features and GBC prognosis. Connective tissue growth factor protein was examined by immunohistochemistry on tissue microarrays containing tissue samples of chronic cholecystitis (n = 51), dysplasia (n = 15), and GBC (n = 169). The samples were scored according to intensity of staining as low/absent and high CTGF expressers. Statistical analysis was performed using the χ(2) test or Fisher exact probability test with a significance level of P < .05. Survival analysis was assessed by the Kaplan-Meier method and the log-rank test. Connective tissue growth factor expression showed a progressive increase from chronic cholecystitis to dysplasia and then to early and advanced carcinoma. Immunohistochemical expression (score ≥2) was significantly higher in advanced tumors, in comparison with chronic cholecystitis (P < .001) and dysplasia (P = .03). High levels of CTGF expression correlated with better survival (P = .04). Our results suggest a role for CTGF in GBC progression and a positive association with better prognosis. In addition, they underscore the importance of considering the involvement of inflammation on GBC development.
Cencioni, Chiara; Spallotta, Francesco; Savoia, Matteo; Kuenne, Carsten; Guenther, Stefan; Re, Agnese; Wingert, Susanne; Rehage, Maike; Sürün, Duran; Siragusa, Mauro; Smith, Jacob G; Schnütgen, Frank; von Melchner, Harald; Rieger, Michael A; Martelli, Fabio; Riccio, Antonella; Fleming, Ingrid; Braun, Thomas; Zeiher, Andreas M; Farsetti, Antonella; Gaetano, Carlo
2018-03-29
Nitric oxide (NO) synthesis is a late event during differentiation of mouse embryonic stem cells (mESC) and occurs after release from serum and leukemia inhibitory factor (LIF). Here we show that after release from pluripotency, a subpopulation of mESC, kept in the naive state by 2i/LIF, expresses endothelial nitric oxide synthase (eNOS) and endogenously synthesizes NO. This eNOS/NO-positive subpopulation (ESNO+) expresses mesendodermal markers and is more efficient in the generation of cardiovascular precursors than eNOS/NO-negative cells. Mechanistically, production of endogenous NO triggers rapid Hdac2 S-nitrosylation, which reduces association of Hdac2 with the transcriptional repression factor Zeb1, allowing mesendodermal gene expression. In conclusion, our results suggest that the interaction between Zeb1, Hdac2, and eNOS is required for early mesendodermal differentiation of naive mESC.
Westbury, Charlotte B; Freeman, Alex; Rashid, Mohammed; Pearson, Ann; Yarnold, John R; Short, Susan C
2014-05-01
Mast cells are involved in the pathogenesis of radiation fibrosis and may be a therapeutic target. The mechanism of increased mast cell number in relation to acute and late tissue responses in human skin was investigated. Punch biopsies of skin 1 and 15-18 months after breast radiotherapy and a contralateral control biopsy were collected. Mast cells were quantified by immunohistochemistry using the markers c-Kit and tryptase. Stem cell factor (SCF) and collagen-1 expression was analysed by qRT-PCR. Clinical photographic scores were performed at post-surgical baseline and 18 months and 5 years post-radiotherapy. Primary human dermal microvascular endothelial cell (HDMEC) cultures were exposed to 2Gy ionising radiation and p53 and SCF expression was analysed by Western blotting and ELISA. Dermal mast cell numbers were increased at 1 (p=0.047) and 18 months (p=0.040) using c-Kit, and at 18 months (p=0.024) using tryptase immunostaining. Collagen-1 mRNA in skin was increased at 1 month (p=0.047) and 18 months (p=0.032) and SCF mRNA increased at 1 month (p=0.003). None of 16 cases scored had a change in photographic appearance at 5 years, compared to baseline. SCF expression was not increased in HDMECs irradiated in vitro. Increased mast cell number was associated with up-regulated collagen-1 expression in human skin at early and late time points. This increase could be secondary to elevated SCF expression at 1 month after radiotherapy. Although mast cells accumulate around blood vessels, no endothelial cell secretion of SCF was seen after in vitro irradiation. Modification of mast cell number and collagen-1 expression may be observed in skin at 1 and 18 months after radiotherapy in breast cancer patients with no change in photographic breast appearance at 5 years. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kim, H; You, S; Foster, L K; Farris, J; Choi, Y J; Foster, D N
2001-01-01
We have used differential display PCR to study altered gene expression in immortalized chicken embryo fibroblasts (CEFs) that have been established in our laboratory. This technique resulted in the cloning of a novel counterpart of the previously cloned chicken dimerization cofactor of hepatocyte nuclear factor (HNF)-1 (cDcoH), which was identified as cDcoHalpha. The steady-state mRNA levels of cDcoHalpha were up-regulated in all immortal CEFs tested compared with primary CEF cells. cDcoH and cDcoHalpha showed opposite patterns of mRNA expression due to differential regulation of transcription rates, but not mRNA half-lives, in primary and immortal CEFs. Expression of cDcoHalpha increased in the late G1 and early S phases of the cell cycle, while cDcoH mRNA increased in the late S and G2/M phases. In contrast with consistent expression of both genes in primary quiescent cells, cDcoH mRNA, but not cDcoHalpha mRNA, was dramatically decreased in primary senescent cells. The highest levels of cDcoHalpha mRNA were found in the kidney, liver, heart and ovarian follicles, while the major tissues expressing cDcoH were hypothalamus, kidney and liver. cDcoH and cDcoHalpha probes did not cross-hybridize to human hepatocyte mRNA. When transfected into human HepG2 cells, both cDcoH and cDcoHalpha showed similar functional activity as measured by increased expression of a reporter gene, as well as alpha-fetoprotein and albumin genes that both contain HNF-1 binding elements in their promoters. Our results suggest that the novel chicken DcoHalpha might function as a transcriptional cofactor for HNF-1 in specific cellular-environmental states. PMID:11237869
Chen, Y-L; Wang, S-Y; Liu, R-S; Wang, H-E; Chen, J-C; Chiou, S-H; Chang, C A; Lin, L-T; Tan, D T W; Lee, Y-J
2012-01-01
A balance between cell proliferation and cell loss is essential for tumor progression. Although up to 90% of cells are lost in late-stage carcinomas, the progression and characteristics of remnant living cells in tumor mass are unclear. Here we used molecular imaging to track the progression of living cells in a syngeneic tumor model, and ex vivo investigated the properties of this population at late-stage tumor. The piggyBac transposon system was used to stably introduce the dual reporter genes, including monomeric red fluorescent protein (mRFP) and herpes simplex virus type-1 thymidine kinase (HSV1-tk) genes for fluorescence-based and radionuclide-based imaging of tumor growth in small animals, respectively. Iodine-123-labeled 5-iodo-2′-fluoro-1-beta-𝒟-arabinofuranosyluracil was used as a radiotracer for HSV1-tk gene expression in tumors. The fluorescence- and radionuclide-based imaging using the single-photon emission computed tomography/computed tomography revealed that the number of living cells reached the maximum at 1 week after implantation of 4T1 tumors, and gradually decreased and clustered near the side of the body until 4 weeks accompanied by enlargement of tumor mass. The remnant living cells at late-stage tumor were isolated and investigated ex vivo. The results showed that these living cells could form mammospheres and express cancer stem cell (CSC)-related biomarkers, including octamer-binding transcription factor 4, SRY (sex-determining region Y)-box 2, and CD133 genes compared with those cultured in vitro. Furthermore, this HSV1-tk-expressing CSC-like population was sensitive to ganciclovir applied for the suicide therapy. Taken together, the current data suggested that cells escaping from cell loss in late-stage tumors exhibit CSC-like characteristics, and HSV1-tk may be considered a theranostic agent for targeting this population in vivo. PMID:23034334
Analysis of plant hormone profiles in response to moderate dehydration stress.
Urano, Kaoru; Maruyama, Kyonoshin; Jikumaru, Yusuke; Kamiya, Yuji; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2017-04-01
Plant responses to dehydration stress are mediated by highly complex molecular systems involving hormone signaling and metabolism, particularly the major stress hormone abscisic acid (ABA) and ABA-dependent gene expression. To understand the roles of plant hormones and their interactions during dehydration, we analyzed the plant hormone profiles with respect to dehydration responses in Arabidopsis thaliana wild-type (WT) plants and ABA biosynthesis mutants (nced3-2). We developed a procedure for moderate dehydration stress, and then investigated temporal changes in the profiles of ABA, jasmonic acid isoleucine (JA-Ile), salicylic acid (SA), cytokinin (trans-zeatin, tZ), auxin (indole-acetic acid, IAA), and gibberellin (GA 4 ), along with temporal changes in the expression of key genes involved in hormone biosynthesis. ABA levels increased in a bi-phasic pattern (at the early and late phases) in response to moderate dehydration stress. JA-Ile levels increased slightly in WT plants and strongly increased in nced3-2 mutant plants at 72 h after the onset of dehydration. The expression profiles of dehydration-inducible genes displayed temporal responses in an ABA-dependent manner. The early phase of ABA accumulation correlated with the expression of touch-inducible genes and was independent of factors involved in the major ABA regulatory pathway, including the ABA-responsive element-binding (AREB/ABF) transcription factor. JA-Ile, SA, and tZ were negatively regulated during the late dehydration response phase. Transcriptome analysis revealed important roles for hormone-related genes in metabolism and signaling during dehydration-induced plant responses. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Gertz, Jacqueline M; McLean, Kelley C; Bouchard, Beth A
2018-05-15
Plasma- and platelet-derived factor Va are essential for thrombin generation catalyzed by the prothrombinase complex; however, several observations demonstrate that the platelet-derived cofactor, which is formed following megakaryocyte endocytosis and modification of the plasma procofactor, factor V, is more hemostatically relevant. Factor V endocytosis, as a function of megakaryocyte differentiation and proplatelet formation, was assessed by flow cytometry and microscopy in CD34 + hematopoietic progenitor cells isolated from human umbilical cord blood and cultured for 12 days in the presence of cytokines to induce ex vivo differentiation into megakaryocytes. Expression of an early marker of megakaryocyte differentiation, CD41, endocytosis of factor V, and the percentage of CD41 + cells that endocytosed factor V increased from days 6 to 12 of differentiation. In contrast, statistically significant decreases in expression of the stem cell marker, CD34, and in the percentage of CD34 + cells that endocytosed factor V were observed. A statistically significant increase in the expression of CD42b, a late marker of megakaryocyte differentiation, was also observed over time, such that by Day 12, all CD42b + cells endocytosed factor V and expressed CD41. This endocytosed factor V was trafficked to proplatelet extensions and was localized in a punctate pattern in the cytoplasm consistent with its storage in α-granules. In conclusion, loss of CD34 and expression of CD42b define cells capable of factor V endocytosis and trafficking to proplatelet extensions during differentiation of megakaryocytes ex vivo from progenitor cells isolated from umbilical cord blood. © 2018 Wiley Periodicals, Inc.
Gallou, Adrien; Declerck, Stéphane; Cranenbrouck, Sylvie
2012-03-01
The establishment of arbuscular mycorrhizal associations causes major changes in plant roots and affects significantly the host in term of plant nutrition and resistance against biotic and abiotic stresses. As a consequence, major changes in root transcriptome, especially in plant genes related to biotic stresses, are expected. Potato microarray analysis, followed by real-time quantitative PCR, was performed to detect the wide transcriptome changes induced during the pre-, early and late stages of potato root colonization by Glomus sp. MUCL 41833. The microarray analysis revealed 526 up-regulated and 132 down-regulated genes during the pre-stage, 272 up-regulated and 109 down-regulated genes during the early stage and 734 up-regulated and 122 down-regulated genes during the late stage of root colonization. The most important class of regulated genes was associated to plant stress and in particular to the WRKY transcription factors genes during the pre-stage of root colonization. The expression profiling clearly demonstrated a wide transcriptional change during the pre-, early and late stages of root colonization. It further suggested that the WRKY transcription factor genes are involved in the mechanisms controlling the arbuscular mycorrhizal establishment by the regulation of plant defence genes.
Mellblom, Anneli V; Ruud, Ellen; Loge, Jon Håvard; Lie, Hanne C
2017-11-01
To explore whether negative emotions expressed by adolescent cancer survivors during follow-up consultations were associated with potential late effects (persisting disease or treatment-related health problems). We video-recorded 66 follow-up consultations between 10 pediatricians and 66 adolescent survivors of leukemia, lymphoma or stem-cell transplantations. In transcripts of the recordings, we identified utterances coded as both 1) expressions of negative emotions (VR-CoDES), and 2) late effect-related discussions. Principles of thematic content analysis were used to investigate associations between the two. Of the 66 video-recorded consultations, 22 consultations contained 56 (49%) utterances coded as both emotional concerns and discussions of potential late effects. Negative emotions were most commonly associated with late effects such as fatigue ("I'm struggling with not having energy"), psychosocial distress ("When I touch this (scar) I become nauseous"), pain ("I'm wondering how long I am going to have this pain?"), and treatment-related effects on physical appearance ("Am I growing?"). Negative emotions expressed by adolescent cancer survivors during follow-up consultations were frequently associated with potential late effects. These late effects were not the medically most serious ones, but reflected issues affecting the adolescents' daily life. Eliciting and exploring patients' emotional concerns serve as means to obtain clinically relevant information regarding potential late effect and to provide emotional support. Copyright © 2017 Elsevier B.V. All rights reserved.
MAEWEST expression in flower development of two petunia species.
Segatto, Ana Lúcia A; Turchetto-Zolet, Andreia Carina; Aizza, Lilian Cristina B; Monte-Bello, Carolina C; Dornelas, Marcelo C; Margis, Rogerio; Freitas, Loreta B
2013-07-03
Changes in flower morphology may influence the frequency and specificity of animal visitors. In Petunia (Solanaceae), adaptation to different pollinators is one of the factors leading to species diversification within the genus. This study provides evidence that differential expression patterns of MAWEWEST (MAW) homologs in different Petunia species may be associated with adaptive changes in floral morphology. The Petunia × hybrida MAW gene belongs to the WOX (WUSCHEL-related homeobox) transcription factor family and has been identified as a controller of petal fusion during corolla formation. We analyzed the expression patterns of P. inflata and P. axillaris MAW orthologs (PiMAW and PaMAW, respectively) by reverse transcriptase polymerase chain reaction (RT-PCR), reverse transcription-quantitative PCR (qRT-PCR) and in situ hybridization in different tissues and different developmental stages of flowers in both species. The spatial expression patterns of PiMAW and PaMAW were similar in P. inflata and P. axillaris. Nevertheless, PaMAW expression level in P. axillaris was higher during the late bud development stage as compared to PiMAW in P. inflata. This work represents an expansion of petunia developmental research to wild accessions.
Alterations in cholesterol metabolism-related genes in sporadic Alzheimer's disease.
Picard, Cynthia; Julien, Cédric; Frappier, Josée; Miron, Justin; Théroux, Louise; Dea, Doris; Breitner, John C S; Poirier, Judes
2018-06-01
Genome-wide association studies have identified several cholesterol metabolism-related genes as top risk factors for late-onset Alzheimer's disease (LOAD). We hypothesized that specific genetic variants could act as disease-modifying factors by altering the expression of those genes. Targeted association studies were conducted with available genomic, transcriptomic, proteomic, and histopathological data from 3 independent cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Quebec Founder Population (QFP), and the United Kingdom Brain Expression Consortium (UKBEC). First, a total of 273 polymorphisms located in 17 cholesterol metabolism-related loci were screened for associations with cerebrospinal fluid LOAD biomarkers beta amyloid, phosphorylated tau, and tau (from the ADNI) and with amyloid plaque and tangle densities (from the QFP). Top polymorphisms were then contrasted with gene expression levels measured in 134 autopsied healthy brains (from the UKBEC). In the end, only SREBF2 polymorphism rs2269657 showed significant dual associations with LOAD pathological biomarkers and gene expression levels. Furthermore, SREBF2 expression levels measured in LOAD frontal cortices inversely correlated with age at death; suggesting a possible influence on survival rate. Copyright © 2018 Elsevier Inc. All rights reserved.
Tao, Zhangsheng; Huang, Yi; Zhang, Lida; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong
2017-01-01
Silique shattering resistance is one of the most important agricultural traits in oil crop breeding. Seed shedding from siliques prior to and during harvest causes devastating losses in oilseed yield. Lignin biosynthesis in the silique walls is thought to affect silique-shattering resistance in oil crops. Here, we identified and characterized B. napus LATE FLOWERING (BnLATE), which encodes a Cys2/His2-type zinc-finger protein. Heterologous expression of BnLATE under the double enhanced CaMV 35S promoter (D35S) in wild-type Arabidopsis plants resulted in a marked decrease in lignification in the replum, valve layer (carpel) and dehiscence zone. pBnLATE::GUS activity was strong in the yellowing silique walls of transgenic lines. Furthermore, the expression pattern of BnLATE and the lignin content gradient in the silique walls at 48 days after pollination (DAP) of 73290, a B. napus silique shattering-resistant line, are similar to those in transgenic Arabidopsis lines expressing BnLATE. Transcriptome sequencing of the silique walls revealed that genes encoding peroxidases, which polymerize monolignols and lignin in the phenylpropanoid pathway, were down-regulated at least two-fold change in the D35S::BnLATE transgenic lines. pBnLATE::BnLATE transgenic lines were further used to identify the function of BnLATE, and the results showed that lignification in the carpel and dehiscence zone of yellowing silique also remarkably decreased compared with the wild-type control, the silique shattering-resistance and expression pattern of peroxidase genes are very similar to results with D35S::BnLATE. These results suggest that BnLATE is a negative regulator of lignin biosynthesis in the yellowing silique walls, and promotes silique-shattering resistance in B. napus through restraining the polymerization of monolignols and lignin. PMID:28081140
Guo, Feng; Si, Chenchen; Zhou, Mingjuan; Wang, Jingwen; Zhang, Dan; Leung, Peter C K; Xu, Bufang; Zhang, Aijun
2018-05-01
Is recurrent implantation failure (RIF) associated with decreased expression of platelet and endothelial cell adhesion molecule 1 (PECAM1) and transforming growth factor β1 (TGF-β1) in the endometrium during the implantation window? The present study demonstrates that the expression of PECAM1 and TGF-β1 is significantly decreased in the mid-secretory endometrium in women with RIF, which may account for embryo implantation failure. RIF has become a bottleneck issue that hampers the improvement of pregnancy rates in IVF-embryo transfer (IVF-ET). The causes of RIF are complex and may involve the dysregulation of various growth factors, metabolites, and inflammatory cytokines. At present, the precise pathogenesis of RIF has not been elucidated. This was a prospective case-control study. Endometrial tissue samples were obtained from January 2014 to December 2016 from two groups of women who had undergone IVF (RIF group, 22 women who underwent ≥3 ETs including a total of ≥4 good-quality embryos without pregnancy, control group, 18 women who conceived in their first treatment cycle). At the same time, samples were obtained from 18 women with infertility secondary to tubal factor in the early proliferative, late proliferative and mid-secretory phases of the menstrual cycle (n = 6 per group). Samples used for isolation of primary human endometrial epithelial cells and stromal cells (HEECs and HESCs) were collected in December 2017 from six women with infertility secondary to tubal factor. We investigated gene expression using integrative whole genome expression microarray analysis, including differentially expressed gene screening, principal component analysis, and functional enrichment analysis. RT-qPCR, western blotting, immunohistochemistry, immunofluorescence co-localization analysis and short hairpin RNA (shRNA) plasmid transfection in Ishikawa cell line, HEECs and HESCs were used to investigate the expression of PECAM1 and TGF-β1. Integrative data mining of whole-genome expression profiles identified cell adhesion as a key regulator in RIF. Database retrieval and literature review screened several novel cell adhesion-related genes that might participate in embryo implantation, which include PECAM1, intercellular adhesion molecule 2 (ICAM2), integrin subunit β2 (ITGB2), selectin P (SELP) and TEK receptor tyrosine kinase (TEK). Among these targets, the mRNA and protein levels of PECAM1 were significantly lower in the RIF group than those in the control group. During the menstrual cycles of women with secondary infertility, the protein expression level of PECAM1 was the lowest in early proliferative phase, slightly increased in late proliferative phase and was the highest in mid-secretory phase. While the expression level of HOXA10, an endometrial receptivity marker, kept at a low level in early proliferative phase and increased in late proliferative phase, then maintained at a high level in the mid-secretory phase. Furthermore, TGF-β1, mediated by PECAM1, was also decreased significantly in the RIF group. Using shRNA-based approach, we demonstrated that the depletion of PECAM1 significantly decreased the expression of TGF-β1 in Ishikawa cells, as well as in primary HEECs and HESCs. These results indicated that PECAM1 and TGF-β1 might play a pivotal role in modulating endometrial receptivity. Although we have shown that PECAM1 and TGF-β1 were down-regulated in the women with RIF, the molecular mechanism of the effect of the factors on the endometrial receptivity remain unclear. Our findings provide insight into the contribution of PECAM1 and TGF-β1 in regulating implantation, which could be used to develop potential therapeutic methods for RIF. This work was supported by grants from the National Natural Science Foundation of China (Nos. 81771656 and 81370763), Special fund for clinical research of the Chinese Medical Association (No. 16020480664), and the Merck Serono China Research Fund for Fertility Agreement. The authors have no competing interests.
Quintero, H; Gómez-Montalvo, A I; Lamas, M
2016-03-01
Cell-type determination is a complex process driven by the combinatorial effect of extrinsic signals and the expression of transcription factors and regulatory genes. MicroRNAs (miRNAs) are non-coding RNAs that, generally, inhibit the expression of target genes and have been involved, among other processes, in cell identity acquisition. To search for candidate miRNAs putatively involved in mice rod photoreceptor and Müller glia (MG) identity, we compared miRNA expression profiles between late-stage retinal progenitor cells (RPCs), CD73-immunopositive (CD73+) rods and postnatal MG. We found a close similarity between RPCs and CD73+ miRNA expression profiles but a divergence between CD73+ and MG miRNA signatures. We validated preferentially expressed miRNAs in the CD73+ subpopulation (miR-182, 183, 124a, 9(∗), 181c and 301b(∗)) or MG (miR-143, 145, 214, 199a-5p, 199b(∗), and 29a). Taking advantage of the unique capacity of MG to dedifferentiate into progenitor-like cells that can be differentiated to a rod phenotype in response to external cues, we evaluated changes of selected miRNAs in MG-derived progenitors (MGDP) during neuronal differentiation. We found decreased levels of miR-143 and 145, but increased levels of miR-29a in MGDP. In MGDPs committed to early neuronal lineages we found increased levels of miR-124a and upregulation of miR-124a, 9(∗) and 181c during MGDP acquisition of rod phenotypes. Furthermore, we demonstrated that ectopic miR-124 expression is sufficient to enhance early neuronal commitment of MGDP. Our data reveal a dynamic regulation of miRNAs in MGDP through early and late neuronal commitment and miRNAs that could be potential targets to exploit the silent neuronal differentiation capacity of MG in mammals. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Sex-specific gene expression during asexual development of Neurospora crassa.
Wang, Zheng; Kin, Koryu; López-Giráldez, Francesc; Johannesson, Hanna; Townsend, Jeffrey P
2012-07-01
The impact of loci that determine sexual identity upon the asexual, dominant stage of fungal life history has been well studied. To investigate their impact, expression differences between strains of different mating type during asexual development were assayed, with RNA sampled from otherwise largely isogenic mat A and mat a strains of Neurospora crassa at early, middle, and late clonal stages of development. We observed significant differences in overall gene expression between mating types across clonal development, especially at late development stages. The expression levels of mating-type genes and pheromone genes were assayed by reverse transcription and quantitative PCR, revealing expression of pheromone and receptor genes in strains of both mating types in all development stages, and revealing that mating type (mat) genes were increasingly expressed over the course of asexual development. Interestingly, among differentially expressed genes, the mat A genotype more frequently exhibited a higher expression level than mat a, and demonstrated greater transcriptional regulatory dynamism. Significant up-regulation of expression was observed for many late light-responsive genes at late asexual development stages. Further investigation of the impact of light and the roles of light response genes in asexual development of both mating types are warranted. Copyright © 2012 Elsevier Inc. All rights reserved.
Liu, Peng-Cheng; Liu, Kuan; Liu, Jun-Feng; Xia, Kuo; Chen, Li-Yang; Wu, Xing
2016-09-27
The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.
The role of Mixer in patterning the early Xenopus embryo.
Kofron, Matt; Wylie, Chris; Heasman, Janet
2004-05-01
The transcription factor VegT, is required in early Xenopus embryos for the formation of both the mesoderm and endoderm germ layers. Inherited as a maternal mRNA localized only in vegetal cells, VegT activates the transcription of a large number of transcription factors, as well as signaling ligands that induce cells in the vegetal mass to form endoderm, and the marginal zone to form mesoderm. It is important now to understand the extent to which transcription factors downstream of VegT play individual, or overlapping, roles in the specification and patterning of the endoderm and mesoderm. In addition, it is important to understand the mechanism that specifies the boundary between endoderm and mesoderm. One of the downstream targets of VegT, the homeodomain protein Mixer, is expressed at high levels at the mesoderm/endoderm boundary at the late blastula stage. We therefore examined its functions by blocking its translation using morpholino oligos. In Mixer-depleted embryos, the expression of many signaling ligands and transcription factors was affected. In particular, we found that the expression of several genes, including several normally expressed in mesoderm, was upregulated. Functional assays of Mixer-depleted vegetal cells showed that they have increased mesoderm-inducing activity. This demonstrates that Mixer plays an essential role in controlling the amount of mesoderm induction by the vegetal cells.
Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis
Worth, Danielle; Huang, Sherri
2018-01-01
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host. PMID:29718996
Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis.
Radke, Joshua B; Worth, Danielle; Hong, David; Huang, Sherri; Sullivan, William J; Wilson, Emma H; White, Michael W
2018-05-01
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host.
Penfold, Christopher A.; Jenkins, Dafyd J.; Legaie, Roxane; Lawson, Tracy; Vialet-Chabrand, Silvere R.M.; Subramaniam, Sunitha; Hickman, Richard; Feil, Regina; Bowden, Laura; Hill, Claire; Lunn, John E.; Finkenstädt, Bärbel; Buchanan-Wollaston, Vicky; Beynon, Jim; Wild, David L.; Ott, Sascha
2016-01-01
In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincided with a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses. PMID:26842464
Judelson, Howard S; Ah-Fong, Audrey M V; Aux, George; Avrova, Anna O; Bruce, Catherine; Cakir, Cahid; da Cunha, Luis; Grenville-Briggs, Laura; Latijnhouwers, Maita; Ligterink, Wilco; Meijer, Harold J G; Roberts, Samuel; Thurber, Carrie S; Whisson, Stephen C; Birch, Paul R J; Govers, Francine; Kamoun, Sophien; van West, Pieter; Windass, John
2008-04-01
Much of the pathogenic success of Phytophthora infestans, the potato and tomato late blight agent, relies on its ability to generate from mycelia large amounts of sporangia, which release zoospores that encyst and form infection structures. To better understand these stages, Affymetrix GeneChips based on 15,650 unigenes were designed and used to profile the life cycle. Approximately half of P. infestans genes were found to exhibit significant differential expression between developmental transitions, with approximately (1)/(10) being stage-specific and most changes occurring during zoosporogenesis. Quantitative reverse-transcription polymerase chain reaction assays confirmed the robustness of the array results and showed that similar patterns of differential expression were obtained regardless of whether hyphae were from laboratory media or infected tomato. Differentially expressed genes encode potential cellular regulators, especially protein kinases; metabolic enzymes such as those involved in glycolysis, gluconeogenesis, or the biosynthesis of amino acids or lipids; regulators of DNA synthesis; structural proteins, including predicted flagellar proteins; and pathogenicity factors, including cell-wall-degrading enzymes, RXLR effector proteins, and enzymes protecting against plant defense responses. Curiously, some stage-specific transcripts do not appear to encode functional proteins. These findings reveal many new aspects of oomycete biology, as well as potential targets for crop protection chemicals.
Qiao, Wen-Liang; Shi, Bo-Wen; Han, Yu-Dong; Tang, Hua-Mei; Lin, Jun; Hu, Hai-Yang; Lin, Qiang
2018-01-01
Testes-specific protease 50 (TSP50) is normally expressed in the testes and is overexpressed in various types of human cancers, including breast cancer, colorectal carcinoma and laryngocarcinoma. However, little has been reported on the association between TSP50 and non-small cell lung cancer (NSCLC). The present study aimed to detect TSP50 expression in 198 strict follow-up cases of paired NSCLC and 15 cases of normal lung parenchymal specimens using immunohistochemical staining. The expression levels of TSP50 were then correlated with the clinicopathological factors of NSCLC to assess its potential diagnostic and prognostic value. The relationship between TSP50 expression and the clinicopathological parameters of NSCLC was evaluated using χ2 and Fisher's exact tests. Survival rates for the overall population (n=198) were calculated using the Kaplan-Meier method, and univariate and multivariate analyses were performed using the Cox's proportional hazards regression model. P<0.05 was considered to indicate a statistically significant difference. The expression of TSP50 was significantly increased in NSCLC tissue compared with in adjacent non-tumor or normal lung parenchymal tissue (P<0.001). A significant association was revealed between high expression levels of TSP50 and clinicopathological characteristics including tumor differentiation (P=0.012), late tumor status (P=0.004) and late tumor node metastasis stage (P=0.026), as well as a reduced disease free survival (P=0.009) and overall survival rate (P=0.002) in all patients with NSCLC. Multivariate analyses demonstrated that high TSP50 expression in tumor tissues was significantly associated with a shorter disease-free survival rate [hazard ratio (HR) =1.590, 95% confidence interval (CI): 1.035–2.441], and with a shorter overall survival rate (HR=1.814; 95% CI: 1.156–2.846). In conclusion, the present data demonstrated that increased TSP50 protein expression may be a potential predictor of early recurrence and poor prognosis in NSCLC, and that TSP50 expression levels possess the potential to be used as a biomarker and therapeutic target for the treatment of patients with NSCLC. PMID:29805619
Qiao, Wen-Liang; Shi, Bo-Wen; Han, Yu-Dong; Tang, Hua-Mei; Lin, Jun; Hu, Hai-Yang; Lin, Qiang
2018-06-01
Testes-specific protease 50 (TSP50) is normally expressed in the testes and is overexpressed in various types of human cancers, including breast cancer, colorectal carcinoma and laryngocarcinoma. However, little has been reported on the association between TSP50 and non-small cell lung cancer (NSCLC). The present study aimed to detect TSP50 expression in 198 strict follow-up cases of paired NSCLC and 15 cases of normal lung parenchymal specimens using immunohistochemical staining. The expression levels of TSP50 were then correlated with the clinicopathological factors of NSCLC to assess its potential diagnostic and prognostic value. The relationship between TSP50 expression and the clinicopathological parameters of NSCLC was evaluated using χ 2 and Fisher's exact tests. Survival rates for the overall population (n=198) were calculated using the Kaplan-Meier method, and univariate and multivariate analyses were performed using the Cox's proportional hazards regression model. P<0.05 was considered to indicate a statistically significant difference. The expression of TSP50 was significantly increased in NSCLC tissue compared with in adjacent non-tumor or normal lung parenchymal tissue (P<0.001). A significant association was revealed between high expression levels of TSP50 and clinicopathological characteristics including tumor differentiation (P=0.012), late tumor status (P=0.004) and late tumor node metastasis stage (P=0.026), as well as a reduced disease free survival (P=0.009) and overall survival rate (P=0.002) in all patients with NSCLC. Multivariate analyses demonstrated that high TSP50 expression in tumor tissues was significantly associated with a shorter disease-free survival rate [hazard ratio (HR) =1.590, 95% confidence interval (CI): 1.035-2.441], and with a shorter overall survival rate (HR=1.814; 95% CI: 1.156-2.846). In conclusion, the present data demonstrated that increased TSP50 protein expression may be a potential predictor of early recurrence and poor prognosis in NSCLC, and that TSP50 expression levels possess the potential to be used as a biomarker and therapeutic target for the treatment of patients with NSCLC.
Yamagishi, J; Isobe, R; Takebuchi, T; Bando, H
2003-03-01
We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the best-studied members of the family Baculoviridae, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV). In this study, a viral DNA chip (Ac-BmNPV chip) was fabricated and used to characterize the viral gene expression profile for AcMNPV in different cell types. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of PCR-amplified viral DNA fragments on glass for ORFs in the NPV genome. Viral gene expression was monitored by hybridization to the DNA fragment microarrays with fluorescently labeled cDNAs prepared from infected Spodoptera frugiperda, Sf9 cells and Trichoplusia ni, TnHigh-Five cells, the latter a major producer of baculovirus and recombinant proteins. A comparison of expression profiles of known ORFs in AcMNPV elucidated six genes (ORF150, p10, pk2, and three late gene expression factor genes lef-3, p35 and lef- 6) the expression of each of which was regulated differently in the two cell lines. Most of these genes are known to be closely involved in the viral life cycle such as in DNA replication, late gene expression and the release of polyhedra from infected cells. These results imply that the differential expression of these viral genes accounts for the differences in viral replication between these two cell lines. Thus, these fabricated microarrays of NPV DNA which allow a rapid analysis of gene expression at the viral genome level should greatly speed the functional analysis of large genomes of NPV.
Grosheva, Maria; Nohroudi, Klaus; Schwarz, Alisa; Rink, Svenja; Bendella, Habib; Sarikcioglu, Levent; Klimaschewski, Lars; Gordon, Tessa; Angelov, Doychin N
2016-05-01
After peripheral nerve injury, recovery of motor performance negatively correlates with the poly-innervation of neuromuscular junctions (NMJ) due to excessive sprouting of the terminal Schwann cells. Denervated muscles produce short-range diffusible sprouting stimuli, of which some are neurotrophic factors. Based on recent data that vibrissal whisking is restored perfectly during facial nerve regeneration in blind rats from the Sprague Dawley (SD)/RCS strain, we compared the expression of brain derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF2), insulin growth factors 1 and 2 (IGF1, IGF2) and nerve growth factor (NGF) between SD/RCS and SD-rats with normal vision but poor recovery of whisking function after facial nerve injury. To establish which trophic factors might be responsible for proper NMJ-reinnervation, the transected facial nerve was surgically repaired (facial-facial anastomosis, FFA) for subsequent analysis of mRNA and proteins expressed in the levator labii superioris muscle. A complicated time course of expression included (1) a late rise in BDNF protein that followed earlier elevated gene expression, (2) an early increase in FGF2 and IGF2 protein after 2 days with sustained gene expression, (3) reduced IGF1 protein at 28 days coincident with decline of raised mRNA levels to baseline, and (4) reduced NGF protein between 2 and 14 days with maintained gene expression found in blind rats but not the rats with normal vision. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of lesion-associated neurotrophic factors and cytokines in denervated muscles. The increase of FGF-2 protein and concomittant decrease of NGF (with no significant changes in BDNF or IGF levels) during the first week following FFA in SD/RCS blind rats possibly prevents the distal branching of regenerating axons resulting in reduced poly-innervation of motor endplates. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kageyama, Daisuke; Anbutsu, Hisashi; Shimada, Masakazu; Fukatsu, Takema
2007-04-01
Symbiont-induced male-killing phenotypes have been found in a variety of insects. Conventionally, these phenotypes have been divided into two categories according to the timing of action: early male killing at embryonic stages and late male killing at late larval stages. In Drosophila species, endosymbiotic bacteria of the genus Spiroplasma have been known to cause early male killing. Here, we report that a spiroplasma strain normally causing early male killing also induces late male killing depending on the maternal host age: male-specific mortality of larvae and pupae was more frequently observed in the offspring of young females. As the lowest spiroplasma density and occasional male production were also associated with newly emerged females, we proposed the density-dependent hypothesis for the expression of early and late male-killing phenotypes. Our finding suggested that (1) early and late male-killing phenotypes can be caused by the same symbiont and probably by the same mechanism; (2) late male killing may occur as an attenuated expression of early male killing; (3) expression of early and late male-killing phenotypes may be dependent on the symbiont density, and thus, could potentially be affected by the host immunity and regulation; and (4) early male killing and late male killing could be alternative strategies adopted by microbial reproductive manipulators.
Liu, Xiaozhen; Yang, Yang; Feng, Xiaolong; Shen, Honghong; Liu, Jian; Liu, Xia; Niu, Yun
2016-01-01
As a new subtype of breast cancer, molecular apocrine breast cancer (MABC) is estrogen receptor (ER) and progesterone receptor (PR) negative expression, but androgen receptor (AR) positive expression. The prognostic significance and clinical biological behavior of MABC have remained unclear up to now. This study aimed to analysis the distant metastasis behavior and response to adjuvant radiotherapy and chemotherapy of MABC subgroup. The report showed that there were significant differences between early and late distant metastasizing tumors with respect to Ki67, epidermal growth factor receptor 2 (HER2) and vascular endothelial growth factor (VEGF) expressions by a retrospective analysis consisting of 410 invasive breast cancer patients, which included 205 MABC and 205 nonMABC cases. MABC subgroup metastasized earlier than nonMABC subgroup, and MABC showed a tendency for a higher metastasis rate in lung, liver and brain, but lower in bone. HER2-positive or VEGF-positive tumors were more inclined to develop bone metastasis within MABC subgroup. The survival rate was superior for patients undergone both adjuvant radiotherapy and chemotherapy than those undergone chemotherapy alone in nonMABC subgroup, but there was no significant difference in MABC subgroup. Our data suggested that MABC subgroup seemed to develop distant metastasis earlier than nonMABC subgroup, and patients with MABC indicated poor prognosis. This study might also provide a foundation for helping patients receive reasonable treatments according to molecular subtype. PMID:27340922
Liu, Xiaozhen; Yang, Yang; Feng, Xiaolong; Shen, Honghong; Liu, Jian; Liu, Xia; Niu, Yun
2016-08-02
As a new subtype of breast cancer, molecular apocrine breast cancer (MABC) is estrogen receptor (ER) and progesterone receptor (PR) negative expression, but androgen receptor (AR) positive expression. The prognostic significance and clinical biological behavior of MABC have remained unclear up to now. This study aimed to analysis the distant metastasis behavior and response to adjuvant radiotherapy and chemotherapy of MABC subgroup. The report showed that there were significant differences between early and late distant metastasizing tumors with respect to Ki67, epidermal growth factor receptor 2 (HER2) and vascular endothelial growth factor (VEGF) expressions by a retrospective analysis consisting of 410 invasive breast cancer patients, which included 205 MABC and 205 nonMABC cases. MABC subgroup metastasized earlier than nonMABC subgroup, and MABC showed a tendency for a higher metastasis rate in lung, liver and brain, but lower in bone. HER2-positive or VEGF-positive tumors were more inclined to develop bone metastasis within MABC subgroup. The survival rate was superior for patients undergone both adjuvant radiotherapy and chemotherapy than those undergone chemotherapy alone in nonMABC subgroup, but there was no significant difference in MABC subgroup. Our data suggested that MABC subgroup seemed to develop distant metastasis earlier than nonMABC subgroup, and patients with MABC indicated poor prognosis. This study might also provide a foundation for helping patients receive reasonable treatments according to molecular subtype.
NASA Technical Reports Server (NTRS)
Balcer-Kubiczek, Elizabeth K.; Harrison, George H.; Xu, Jing-Fan; Gutierrez, Peter L.
2002-01-01
The trefoil factors (TFFs) are pleiotropic factors involved in organization and homeostasis of the gastrointestinal tract, estrogen responsiveness, inflammatory disorders, and carcinogenesis. In an earlier study using cDNA array technologies to identify new genes expressed in irradiated cell survivors, we isolated a cDNA clone corresponding to the reported human TFF1 gene (E. K. Balcer-Kubiczek et al., Int. J. Radiat. Biol., 75: 529-541, 1999). To determine whether expression of other TFFs is altered by ionizing radiation, we quantified changes in expression of TFF3 as well as TFF1 in RNA samples obtained from irradiated and control human tumor breast, colon, and gastric tumor cells and examined expression kinetics up to 2 weeks after irradiation. X-ray-induced TFF1 and TFF3 expression profiles were compared with those induced by hydrogen peroxide (H2O2) or 17beta-estradiol (ES). The results revealed that TFF1 and TFF3 mRNA are coinduced by X-irradiation in a subset of the lines, but substantial heterogeneity in their responses was observed in cells derived from a single cell type. TFF1 and TFF3 transcriptional response to X-irradiation differed from that to H2O2 or ES in the timing of their induction as well as tissue-type dependence, i.e., their induction pattern after X-irradiation was late and sustained, whereas their induction by H2O2 or ES was early and transient. TFF1 mRNA, protein production in the cytoplasm, and secretion in the culture supernatant were coordinately regulated after X-irradiation. There was no requirement for TP53 in this induction. These results demonstrate the existence of a novel class of radiation-responsive genes that might be involved in bystander effects.
Mandal, Gunjan; Biswas, Subir; Roy Chowdhury, Sougata; Chatterjee, Annesha; Purohit, Suman; Khamaru, Poulomi; Chakraborty, Sayan; Mandal, Palash Kumar; Gupta, Arnab; de la Mare, Jo-Anne; Edkins, Adrienne Lesley; Bhattacharyya, Arindam
2018-06-01
The multifunctional cytokine TGF-β crucially participates in breast cancer (BCa) metastasis and works differently in the disease stages, thus contributing in BCa progression. We address connections between TGF-β and the stem cell-related transcription factor (TF) Oct4 in BCa. In 147 BCa patients with infiltrating duct carcinoma, we identified a significantly higher number of cases with both moderate/high Oct4 expression and high TGF-β in late stages compared to early stages of the disease. In vitro studies showed that TGF-β elevated Oct4 expression, which in turn, regulated Epithelial-to-Mesenchymal transition (EMT)-regulatory gene (Snail and Slug) expression, migratory ability, chemotactic invasiveness and extracellular matrix (ECM) degradation potential of BCa cells. Putative binding sites for Oct4 on the snail, slug and cxcl13 promoters and for Smad3 on the snail and slug promoters were identified. Promoter activities of snail and slug were greater in dual-treated cells than only TGF-β-treated or Oct4-overexpressing cells. CXCL13 mRNA fold changes, however, were low in cells induced with TGF-β, compared to dual-treated or Oct4-overexpressing cells. Our co-IP studies confirmed that Oct4 and Smad3 form heterodimers that recognize specific promoter sequences to promote Snail and Slug expression, but which in turn, indirectly inhibits Smad3-mediated repression of CXCL13 expression, allowing Oct4 to act as a positive TF for CXCL13. Taken together, these data suggest that TGF-β signaling and Oct4 cooperate to induce expression of EMT-related genes Snail, Slug and CXCL13, which accelerates disease progression, particularly in the late stages, and may indicate a poor prognosis for BCa patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Elwell, Jennifer A.; Lovato, TyAnna L.; Adams, Melanie M.; Baca, Erica M.; Lee, Thai; Cripps, Richard M.
2015-01-01
Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arise through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist expression in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. PMID:25704510
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichimura, Ryohei, E-mail: red0828@hotmail.co.j; Mizukami, Sayaka, E-mail: non_sugar_life@hotmail.co.j; Takahashi, Miwa, E-mail: mtakahashi@nihs.go.j
2010-08-01
To clarify the involvement of signaling of transforming growth factor (TGF)-{beta} during the hepatocarcinogenesis, the immunohistochemical distribution of related molecules was analyzed in relation with liver cell lesions expressing glutathione S-transferase placental form (GST-P) during liver tumor promotion by fenbendazole, phenobarbital, piperonyl butoxide, or thioacetamide, using rats. Our study focused on early-stage promotion (6 weeks after starting promotion) and late-stage promotion (57 weeks after starting promotion). With regard to Smad-dependent signaling, cytoplasmic accumulation of phosphorylated Smad (phospho-Smad)-2/3 - identified as Smad3 by later immunoblot analysis - increased in the subpopulation of GST-P{sup +} foci, while Smad4, a nuclear transporter ofmore » Smad2/3, decreased during early-stage promotion. By late-stage promotion, GST-P{sup +} lesions lacking phospho-Smad2/3 had increased in accordance with lesion development from foci to carcinomas, while Smad4 largely disappeared in most proliferative lesions. With regard to Smad-independent mitogen-activated protein kinases, GST-P{sup +} foci that co-expressed phospho-p38 mitogen-activated protein kinase increased during early-stage promotion; however, p38-downstream phospho-activating transcriptional factor (ATF)-2, ATF3, and phospho-c-Myc, were inversely downregulated without relation to promotion. By late-stage promotion, proliferative lesions downregulated phospho-ATF2 and phospho-c-Myc along with lesion development, as with downregulation of phospho-p38 in all lesions. These results suggest that from the early stages, carcinogenic processes were facilitated by disruption of tumor suppressor functions of Smad-dependent signaling, while Smad-independent activation of p38 was an early-stage phenomenon. GST-P{sup -} foci induced by promotion with agonists of peroxisome proliferator-activated receptor-{alpha} did not change Smad expression, suggesting an aberration in the Smad-dependent signaling prerequisites for induction of GST-P{sup +} proliferative lesions.« less
The RB-related gene Rb2/p130 in neuroblastoma differentiation and in B-myb promoter down-regulation.
Raschellà, G; Tanno, B; Bonetto, F; Negroni, A; Claudio, P P; Baldi, A; Amendola, R; Calabretta, B; Giordano, A; Paggi, M G
1998-05-01
The retinoblastoma family of nuclear factors is composed of RB, the prototype of the tumour suppressor genes and of the strictly related genes p107 and Rb2/p130. The three genes code for proteins, namely pRb, p107 and pRb2/p130, that share similar structures and functions. These proteins are expressed, often simultaneously, in many cell types and are involved in the regulation of proliferation and differentiation. We determined the expression and the phosphorylation of the RB family gene products during the DMSO-induced differentiation of the N1E-115 murine neuroblastoma cells. In this system, pRb2/p130 was strongly up-regulated during mid-late differentiation stages, while, on the contrary, pRb and p107 resulted markedly decreased at late stages. Differentiating N1E-115 cells also showed a progressive decrease in B-myb levels, a proliferation-related protein whose constitutive expression inhibits neuronal differentiation. Transfection of each of the RB family genes in these cells was able, at different degrees, to induce neuronal differentiation, to inhibit [3H]thymidine incorporation and to down-regulate the activity of the B-myb promoter.
Recent advancements to study flowering time in almond and other Prunus species
Sánchez-Pérez, Raquel; Del Cueto, Jorge; Dicenta, Federico; Martínez-Gómez, Pedro
2014-01-01
Flowering time is an important agronomic trait in almond since it is decisive to avoid the late frosts that affect production in early flowering cultivars. Evaluation of this complex trait is a long process because of the prolonged juvenile period of trees and the influence of environmental conditions affecting gene expression year by year. Consequently, flowering time has to be studied for several years to have statistical significant results. This trait is the result of the interaction between chilling and heat requirements. Flowering time is a polygenic trait with high heritability, although a major gene Late blooming (Lb) was described in “Tardy Nonpareil.” Molecular studies at DNA level confirmed this polygenic nature identifying several genome regions (Quantitative Trait Loci, QTL) involved. Studies about regulation of gene expression are scarcer although several transcription factors have been described as responsible for flowering time. From the metabolomic point of view, the integrated analysis of the mechanisms of accumulation of cyanogenic glucosides and flowering regulation through transcription factors open new possibilities in the analysis of this complex trait in almond and in other Prunus species (apricot, cherry, peach, plum). New opportunities are arising from the integration of recent advancements including phenotypic, genetic, genomic, transcriptomic, and metabolomics studies from the beginning of dormancy until flowering. PMID:25071812
Cloning and expression profile of FLT3 gene during progenitor cell-dependent liver regeneration.
Aydin, Iraz T; Tokcaer, Zeynep; Dalgic, Aydin; Konu, Ozlen; Akcali, Kamil C
2007-12-01
The liver has a unique capacity to regenerate upon exposure to viral infections, toxic reactions and cancer formation. Liver regeneration is a complex phenomenon in which several factors participate during its onset. Cellular proliferation is an important component of this process and the factors that regulate this proliferation have a vital role. FLT3, a well-known hematopoietic stem cell and hepatic lineage surface marker, is involved in proliferative events of hematopoietic stem cells. However, its contribution to liver regeneration is not known. Therefore, the aim of this study was to clone and examine the role of FLT3 during liver regeneration in rats. Partial cDNA of rat homolog of FLT3 gene was cloned from thymus and the tissue specific expression of this gene at mRNA and protein levels was examined by RT-PCR and Western blot. After treating with 2-AAF and performing hepatectomy in rats to induce progenitor-dependent liver regeneration, the mRNA and protein expression profile of FLT3 was investigated by real-time PCR and Western blot during liver regeneration. In addition, cellular localization of FLT3 protein was determined by immunohistochemistry. The results indicated that rat FLT3 cDNA has high homology with mouse and human FLT3 cDNA. It was also found that FLT3 is expressed in most of the rat tissues and during liver regeneration. In addition, its intracellular localization is altered during the late stages of liver regeneration. The FLT3 receptor is activated at the late stages of liver regeneration and participates in the proliferation response that is observed during progenitor-dependent liver regeneration.
Li, Zhenjun; Zhang, Lili; Wang, Aoxue; Xu, Xiangyang; Li, Jingfu
2013-01-01
Plant heat stress transcription factors (Hsfs) are the critical components involved in mediating responses to various environmental stressors. However, the detailed roles of many plant Hsfs are far from fully understood. In this study, an Hsf (SlHsfA3) was isolated from the cultivated tomato (Solanum lycopersicum, Sl) and functionally characterized at the genetic and developmental levels. The nucleus-localized SlHsfA3 was basally and ubiquitously expressed in different plant organs. The expression of SlHsfA3 was induced dramatically by heat stress, moderately by high salinity, and slightly by drought, but was not induced by abscisic acid (ABA). The ectopic overexpression of SlHsfA3 conferred increased thermotolerance and late flowering phenotype to transgenic Arabidopsis plants. Moreover, SlHsfA3 played a negative role in controlling seed germination under salt stress. RNA-sequencing data demonstrated that a number of heat shock proteins (Hsps) and stress-associated genes were induced in Arabidopsis plants overexpressing SlHsfA3. A gel shift experiment and transient expression assays in Nicotiana benthamiana leaves demonstrated that SlHsfA3 directly activates the expression of SlHsp26.1-P and SlHsp21.5-ER. Taken together, our results suggest that SlHsfA3 behaves as a typical Hsf to contribute to plant thermotolerance. The late flowering and seed germination phenotypes and the RNA-seq data derived from SlHsfA3 overexpression lines lend more credence to the hypothesis that plant Hsfs participate in diverse physiological and biochemical processes related to adverse conditions. PMID:23349984
Molecular Regulation of Alternative Polyadenylation (APA) within the Drosophila Nervous System.
Vallejos Baier, Raul; Picao-Osorio, Joao; Alonso, Claudio R
2017-10-27
Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3'UTR extensions of different length leads us to suggest a novel relation between 3'UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yan, Jian-Ying; Wang, Xiao-Juan
2010-12-01
To investigate the change of adipocyte fatty acid-binding protein (FABP4) in maternal serum and umbilical cord blood and FABP4 mRNA placental expression in patients with preeclampsia (PE). A total of 60 women with PE and 60 normal pregnant women as control participated in this study.All are admitted to Fujian Maternity and Children Health Hospital for delivery from December 2008 to October 2009. Patients with PE were divided into early-onset group (n = 30, presented at ≤ 34 weeks of gestation) and late-onset group (n = 30, presented at > 34 weeks of gestation), with 30 normal pregnant women as early control group (≤ 34 weeks of gestation) and 30 as late control group (> 34 weeks of gestation). Enzyme-linked immunosorbent assay (ELISA) was used to detect FABP4, fasting serum glucose, fasting insulin (FINS) in maternal serum and FABP4 in umbilical cord blood. Real-time fluorescent quantitative reverse transcription PCR was used to detect placental FABP4 mRNA expression. Furthermore, clinical and biochemical parameters were recorded, such as body mass index (BMI), systolic pressure (SP), diastolic pressure (DP), mean arterial pressure (MAP), total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), creatinine (Cr), uric acid (UA), glomerular filtration rate (GFR), 24 hours urine protein in pregnant women and neonatal weight. (1) Maternal serum FABP4 was (176 ± 9) ng/L in early-onset PE group and (170 ± 9) ng/L in late-onset PE group, significantly elevated as compared to (81 ± 13) ng/L in early control group and (94 ± 15) ng/L in late control group. (2) Mean maternal FINS, homeostasis model of assessment for insulin resistence index (HOMA-IR) were significantly elevated in the early-onset PE group and late-onset PE group as compared to control groups, respectively. (3) Mean placental FABP4 mRNA expression were significantly elevated in the early-onset PE group and late-onset PE group as compared to late control group. However, no significant difference was found in placental FABP4 mRNA expression between early-onset and late-onset PE groups. (4) Mean umbilical cord blood FABP4 concentrations were significantly decreased in the early-onset PE group and late-onset PE group as compared to late control group. Furthermore, umbilical cord blood FABP4 concentration correlated negatively with maternal serum FABP4 level and placental FABP4 mRNA expression, but positively with neonatal weight. (5) Mean maternal serum FABP4 concentrations correlated positively with placental FABP4 mRNA expression, TG, FINS, HOMA-IR, Cr, UA; and negatively with HDL, GFR. Increased FABP4 expression in maternal serum and placenta may be involved in the pathogenesis of preeclampsia. Increased FABP4 mRNA expression in placenta may contribute to high serum FABP4 level in women with PE.
Liang, Mengmeng; Niu, Jianmin; Zhang, Liang; Deng, Hua; Ma, Jian; Zhou, Weiping; Duan, Dongmei; Zhou, Yuheng; Xu, Huikun; Chen, Longding
2016-04-01
Early-onset preeclampsia and late-onset preeclampsia have been regarded as two different phenotypes with heterogeneous manifestations; To gain insights into the pathogenesis of the two traits, we analyzed the gene expression profiles in preeclamptic placentas. A whole genome-wide microarray was used to determine the gene expression profiles in placental tissues from patients with early-onset (n = 7; <34 weeks), and late-onset (n = 8; >36 weeks) preeclampsia and their controls who delivered preterm (n = 5; <34 weeks) or at term (n = 5; >36 weeks). Genes were termed differentially expressed if they showed a fold-change ≥ 2 and q-value < 0.05. Quantitative real-time reverse transcriptase PCR was used to verify the results. Western blotting was performed to verify the expressions of secreted genes at the protein level. Six hundred twenty-seven genes were differentially expressed in early-compared with late-onset preeclampsia (177 genes were up-regulated and 450 were down-regulated). Gene ontology analysis identified significant alterations in several biological processes; the top two were immune response and cell surface receptor linked signal transduction. Among the cell surface receptor linked signal transduction-related, differentially expressed genes, those involved in the G-protein coupled receptor protein signaling pathway were significantly enriched. G-protein coupled receptor signaling pathway related genes, such as GPR124 and MRGPRF, were both found to be down-regulated in early-onset preeclampsia. The results were consistent with those of western blotting that the abundance of GPR124 was lower in early-onset compared with late-onset preeclampsia. The different gene expression profiles reflect the different levels of transcription regulation between the two conditions and supported the hypothesis that they are separate disease entities. Moreover, the G-protein coupled receptor signaling pathway related genes may contribute to the mechanism underlying early- and late-onset preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B
Nathwani, A.C.; Reiss, U.M.; Tuddenham, E.G.D.; Rosales, C.; Chowdary, P.; McIntosh, J.; Della Peruta, M.; Lheriteau, E.; Patel, N.; Raj, D.; Riddell, A.; Pie, J.; Rangarajan, S.; Bevan, D.; Recht, M.; Shen, Y.-M.; Halka, K.G.; Basner-Tschakarjan, E.; Mingozzi, F.; High, K.A.; Allay, J.; Kay, M.A.; Ng, C.Y.C.; Zhou, J.; Cancio, M.; Morton, C.L.; Gray, J.T.; Srivastava, D.; Nienhuis, A.W.; Davidoff, A.M.
2014-01-01
BACKGROUND In patients with severe hemophilia B, gene therapy that is mediated by a novel self-complementary adeno-associated virus serotype 8 (AAV8) vector has been shown to raise factor IX levels for periods of up to 16 months. We wanted to determine the durability of transgene expression, the vector dose–response relationship, and the level of persistent or late toxicity. METHODS We evaluated the stability of transgene expression and long-term safety in 10 patients with severe hemophilia B: 6 patients who had been enrolled in an initial phase 1 dose-escalation trial, with 2 patients each receiving a low, intermediate, or high dose, and 4 additional patients who received the high dose (2×1012 vector genomes per kilogram of body weight). The patients subsequently underwent extensive clinical and laboratory monitoring. RESULTS A single intravenous infusion of vector in all 10 patients with severe hemophilia B resulted in a dose-dependent increase in circulating factor IX to a level that was 1 to 6% of the normal value over a median period of 3.2 years, with observation ongoing. In the high-dose group, a consistent increase in the factor IX level to a mean (±SD) of 5.1±1.7% was observed in all 6 patients, which resulted in a reduction of more than 90% in both bleeding episodes and the use of prophylactic factor IX concentrate. A transient increase in the mean alanine aminotransferase level to 86 IU per liter (range, 36 to 202) occurred between week 7 and week 10 in 4 of the 6 patients in the high-dose group but resolved over a median of 5 days (range, 2 to 35) after prednisolone treatment. CONCLUSIONS In 10 patients with severe hemophilia B, the infusion of a single dose of AAV8 vector resulted in long-term therapeutic factor IX expression associated with clinical improvement. With a follow-up period of up to 3 years, no late toxic effects from the therapy were reported. (Funded by the National Heart, Lung, and Blood Institute and others; ClinicalTrials.gov number, NCT00979238.) PMID:25409372
Molecular characterization of the acquisition of longevity during seed maturation in soybean
Lalanne, David; Rossi, Rubiana Falopa; Pelletier, Sandra; da Silva, Edvaldo Aparecido Amaral
2017-01-01
Seed longevity, defined as the ability to remain alive during storage, is an important agronomic factor. Poor longevity negatively impacts seedling establishment and consequently crop yield. This is particularly problematic for soybean as seeds have a short lifespan. While the economic importance of soybean has fueled a large number of transcriptome studies during embryogenesis and seed filling, the mechanisms regulating seed longevity during late maturation remain poorly understood. Here, a detailed physiological and molecular characterization of late seed maturation was performed in soybean to obtain a comprehensive overview of the regulatory genes that are potentially involved in longevity. Longevity appeared at physiological maturity at the end of seed filling before maturation drying and progressively doubled until the seeds reached the dry state. The increase in longevity was associated with the expression of genes encoding protective chaperones such as heat shock proteins and the repression of nuclear and chloroplast genes involved in a range of chloroplast activities, including photosynthesis. An increase in the raffinose family oligosaccharides (RFO)/sucrose ratio together with changes in RFO metabolism genes was also associated with longevity. A gene co-expression network analysis revealed 27 transcription factors whose expression profiles were highly correlated with longevity. Eight of them were previously identified in the longevity network of Medicago truncatula, including homologues of ERF110, HSF6AB, NFXL1 and members of the DREB2 family. The network also contained several transcription factors associated with auxin and developmental cell fate during flowering, organ growth and differentiation. A transcriptional transition occurred concomitant with seed chlorophyll loss and detachment from the mother plant, suggesting the activation of a post-abscission program. This transition was enriched with AP2/EREBP and WRKY transcription factors and genes associated with growth, germination and post-transcriptional processes, suggesting that this program prepares the seed for the dry quiescent state and germination. PMID:28700604
Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C
2013-01-01
Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. PMID:23593935
Liu, Lin; Ge, Wei
2007-02-01
Growth differentiation factor 9 (GDF9) is a member of the transforming growth factor beta (TGFB) superfamily. As an oocyte-specific growth factor, GDF9 plays critical roles in controlling folliculogenesis in mammals. In the present study, we cloned a 2.1-kb cDNA of the zebrafish GDF9 homolog (Gdf9, gdf9), which shares approximately 60% homology with that of mammals in the mature region. RT-PCR analysis showed that zebrafish gdf9 expression was present only in the gonads and Northern blot analysis revealed a single transcript of about 2.0 kb in the ovary. Real-time RT-PCR analysis revealed that gdf9 expression was highest in primary growth (PG, stage I) follicles and gradually decreased during follicular development, with the lowest level being found in fully grown (FG) follicles. The expression of gdf9 was maintained through fertilization and early embryonic development until gastrulation, at which point the expression level dramatically decreased. Expression was barely detectable after the late gastrula stage. Within the follicle, gdf9 mRNA was localized exclusively in the oocytes, as demonstrated by RT-PCR of denuded oocytes and freshly isolated follicle layers as well as by in situ hybridization. Interestingly, when amplified for high numbers of cycles, the expression of gdf9 was detected in cultured zebrafish follicular cells that were free of oocytes. The expression of gdf9 was downregulated by hCG in both ovarian fragments and isolated follicles in dose- and time-dependent manners, and this inhibition appeared to be stage-dependent, with the strongest inhibition observed for the FG follicles and no effect seen for the PG follicles. This correlates well with the expression profile of the LH receptor (lhcgr) in zebrafish follicles. In conclusion, as an oocyte-derived growth factor, GDF9 is highly conserved across vertebrates. With its biological advantages, zebrafish provides an alternative model for studying gene function and regulation.
Zhang, Lili; Li, Zhenjun; Li, Jingfu; Wang, Aoxue
2013-01-01
The C-repeat (CRT)/dehydration-responsive element (DRE) binding factor (CBF/DREB1) transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1) was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193–228 (SsCBF1193–228). The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions. PMID:23755095
Rosbottom, Anne; Gibney, E. Helen; Guy, Catherine S.; Kipar, Anja; Smith, Robert F.; Kaiser, Pete; Trees, Alexander J.; Williams, Diana J. L.
2008-01-01
The protozoan parasite Neospora caninum causes fetal death after experimental infection of pregnant cattle in early gestation, but the fetus survives a similar infection in late gestation. An increase in Th1-type cytokines in the placenta in response to the presence of the parasite has been implicated as a contributory factor to fetal death due to immune-mediated pathological alterations. We measured, using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay, the levels of cytokines in the placentas of cattle experimentally infected with N. caninum in early and late gestation. After infection in early gestation, fetal death occurred, and the levels of mRNA of both Th1 and Th2 cytokines, including interleukin-2 (IL-2), gamma interferon (IFN-γ), IL-12p40, tumor necrosis factor alpha (TNF-α), IL-18, IL-10, and IL-4, were significantly (P < 0.01) increased by up to 1,000-fold. There was extensive placental necrosis and a corresponding infiltration of CD4+ T cells and macrophages. IFN-γ protein expression was also highly increased, and a modest increase in transforming growth factor β was detected. A much smaller increase in the same cytokines and IFN-γ protein expression, with minimal placental necrosis and inflammatory infiltration, occurred after N. caninum infection in late gestation when the fetuses survived. Comparison of cytokine mRNA levels in separated maternal and fetal placental tissue that showed maternal tissue was the major source of all cytokine mRNA except for IL-10 and TNF-α, which were similar in both maternal and fetal tissues. These results suggest that the magnitude of the cytokine response correlates with but is not necessarily the cause of fetal death and demonstrate that a polarized Th1 response was not evident in the placentas of N. caninum-infected cattle. PMID:18362132
Myxoma virus M130R is a novel virulence factor required for lethal myxomatosis in rabbits.
Barrett, John W; Werden, Steven J; Wang, Fuan; McKillop, William M; Jimenez, June; Villeneuve, Danielle; McFadden, Grant; Dekaban, Gregory A
2009-09-01
Myxoma virus (MV) is a highly lethal, rabbit-specific poxvirus that induces a disease called myxomatosis in European rabbits. In an effort to understand the function of predicted immunomodulatory genes we have deleted various viral genes from MV and tested the ability of these knockout viruses to induce lethal myxomatosis. MV encodes a unique 15 kD cytoplasmic protein (M130R) that is expressed late (12h post infection) during infection. M130R is a non-essential gene for MV replication in rabbit, monkey or human cell lines. Construction of a targeted gene knockout virus (vMyx130KO) and infection of susceptible rabbits demonstrate that the M130R knockout virus is attenuated and that loss of M130R expression allows the rabbit host immune system to effectively respond to and control the lethal effects of MV. M130R expression is a bona fide poxviral virulence factor necessary for full and lethal development of myxomatosis.
MAEWEST Expression in Flower Development of Two Petunia Species
Segatto, Ana Lúcia A.; Turchetto-Zolet, Andreia Carina; Aizza, Lilian Cristina B.; Monte-Bello, Carolina C.; Dornelas, Marcelo C.; Margis, Rogerio; Freitas, Loreta B.
2013-01-01
Changes in flower morphology may influence the frequency and specificity of animal visitors. In Petunia (Solanaceae), adaptation to different pollinators is one of the factors leading to species diversification within the genus. This study provides evidence that differential expression patterns of MAWEWEST (MAW) homologs in different Petunia species may be associated with adaptive changes in floral morphology. The Petunia × hybrida MAW gene belongs to the WOX (WUSCHEL-related homeobox) transcription factor family and has been identified as a controller of petal fusion during corolla formation. We analyzed the expression patterns of P. inflata and P. axillaris MAW orthologs (PiMAW and PaMAW, respectively) by reverse transcriptase polymerase chain reaction (RT-PCR), reverse transcription–quantitative PCR (qRT-PCR) and in situ hybridization in different tissues and different developmental stages of flowers in both species. The spatial expression patterns of PiMAW and PaMAW were similar in P. inflata and P. axillaris. Nevertheless, PaMAW expression level in P. axillaris was higher during the late bud development stage as compared to PiMAW in P. inflata. This work represents an expansion of petunia developmental research to wild accessions. PMID:23823801
Nizyaeva, N V; Kulikova, G V; Nagovitsyna, M N; Kan, N E; Prozorovskaya, K N; Shchegolev, A I; Sukhikh, G T
2017-07-01
We studied the expression of microRNA-146a and microRNA-155 in placental villi from 18 women (26-39 weeks of gestation) of reproductive age with early- or late-onset preeclampsia. The reference group consisted of women with physiological pregnancy and full-term gestation and with preterm birth after caesarian section on gestation week 26-31. MicroRNA-146a and microRNA-155 were detected by in situ hybridization with digoxigenin on paraffin sections. It was found that the expression of microRNA-146a in both syncytiotrophoblast of the intermediate villi and syncytial knots was lower at late-onset preeclampsia than at physiologic pregnancy of full-term period (p=0.037 and p=0.001 respectively). The expression of microRNA-155 in syncytiotrophoblast of intermediate placental villi in early-onset preeclampsia was higher than in group with preterm delivery (p=0.003). However, in syncytiotrophoblast of intermediate villi and in syncytial knots, the expression of microRNA-155 was lower at late-onset preeclampsia in comparison with full-term physiological pregnancy (p=0.005). In addition, the expression of microRNA-146a and microRNA-155 did not increase in the later terms in preeclampsia, while in the reference groups demonstrating gradual increase in the expression of these markers with increasing gestational age. Expression microRNA-146a and microRNA-155 little differed in early- and late-onset preeclampsia. These findings suggest that different variants of preeclampsia are probably characterized by common pathogenetic pathways. Damaged trophoblast cannot maintain of microRNAs synthesis at the required level, which determines the formation of a vicious circle in preeclampsia and further progression of the disease.
Tsunashima, Ryo; Naoi, Yasuto; Shimazu, Kenzo; Kagara, Naofumi; Shimoda, Masashi; Tanei, Tomonori; Miyake, Tomohiro; Kim, Seung Jin; Noguchi, Shinzaburo
2018-05-04
Prediction models for late (> 5 years) recurrence in ER-positive breast cancer need to be developed for the accurate selection of patients for extended hormonal therapy. We attempted to develop such a prediction model focusing on the differences in gene expression between breast cancers with early and late recurrence. For the training set, 779 ER-positive breast cancers treated with tamoxifen alone for 5 years were selected from the databases (GSE6532, GSE12093, GSE17705, and GSE26971). For the validation set, 221 ER-positive breast cancers treated with adjuvant hormonal therapy for 5 years with or without chemotherapy at our hospital were included. Gene expression was assayed by DNA microarray analysis (Affymetrix U133 plus 2.0). With the 42 genes differentially expressed in early and late recurrence breast cancers in the training set, a prediction model (42GC) for late recurrence was constructed. The patients classified by 42GC into the late recurrence-like group showed a significantly (P = 0.006) higher late recurrence rate as expected but a significantly (P = 1.62 × E-13) lower rate for early recurrence than non-late recurrence-like group. These observations were confirmed for the validation set, i.e., P = 0.020 for late recurrence and P = 5.70 × E-5 for early recurrence. We developed a unique prediction model (42GC) for late recurrence by focusing on the biological differences between breast cancers with early and late recurrence. Interestingly, patients in the late recurrence-like group by 42GC were at low risk for early recurrence.
Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication
Courtney, David G.
2018-01-01
Polyomaviruses are a family of small DNA tumor viruses that includes several pathogenic human members, including Merkel cell polyomavirus, BK virus and JC virus. As is characteristic of DNA tumor viruses, gene expression in polyomaviruses is temporally regulated into an early phase, consisting of the viral regulatory proteins, and a late phase, consisting of the viral structural proteins. Previously, the late transcripts expressed by the prototypic polyomavirus simian virus 40 (SV40) were reported to contain several adenosines bearing methyl groups at the N6 position (m6A), although the precise location of these m6A residues, and their phenotypic effects, have not been investigated. Here, we first demonstrate that overexpression of the key m6A reader protein YTHDF2 induces more rapid viral replication, and larger viral plaques, in SV40 infected BSC40 cells, while mutational inactivation of the endogenous YTHDF2 gene, or the m6A methyltransferase METTL3, has the opposite effect, thus suggesting a positive role for m6A in the regulation of SV40 gene expression. To directly test this hypothesis, we mapped sites of m6A addition on SV40 transcripts and identified two m6A sites on the viral early transcripts and eleven m6A sites on the late mRNAs. Using synonymous mutations, we inactivated the majority of the m6A sites on the SV40 late mRNAs and observed that the resultant viral mutant replicated more slowly than wild type SV40. Alternative splicing of SV40 late mRNAs was unaffected by the reduction in m6A residues and our data instead suggest that m6A enhances the translation of viral late transcripts. Together, these data argue that the addition of m6A residues to the late transcripts encoded by SV40 plays an important role in enhancing viral gene expression and, hence, replication. PMID:29447282
Nevalainen, Jaana; Skarp, Sini; Savolainen, Eeva-Riitta; Ryynänen, Markku; Järvenpää, Jouko
2017-10-26
To evaluate placental gene expression in severe early- or late-onset preeclampsia with intrauterine growth restriction compared to controls. Chorionic villus sampling was conducted after cesarean section from the placentas of five women with early- or late-onset severe preeclampsia and five controls for each preeclampsia group. Microarray analysis was performed to identify gene expression differences between the groups. Pathway analysis showed over-representation of gene ontology (GO) biological process terms related to inflammatory and immune response pathways, platelet development, vascular development, female pregnancy and reproduction in early-onset preeclampsia. Pathways related to immunity, complement and coagulation cascade were overrepresented in the hypergeometric test for the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Ten genes (ABI3BP, C7, HLA-G, IL2RB, KRBOX1, LRRC15, METTL7B, MPP5, RFLNB and SLC20A) had a ≥±1 fold expression difference in severe early-onset preeclampsia group compared to early controls. There were 362 genes that had a ≥±1 fold expression difference in severe early-onset preeclampsia group compared to late-onset preeclampsia group including ABI3BP, C7, HLA-G and IL2RB. There are significant differences in placental gene expression between severe early- and late-onset preeclampsia when both are associated with intrauterine growth restriction. ABI3BP, C7, HLA-G and IL2RB might contribute to the development of early form of severe preeclampsia.
Involvement of Clostridium botulinum ATCC 3502 Sigma Factor K in Early-Stage Sporulation
Kirk, David G.; Dahlsten, Elias; Zhang, Zhen; Korkeala, Hannu
2012-01-01
A key survival mechanism of Clostridium botulinum, the notorious neurotoxic food pathogen, is the ability to form heat-resistant spores. While the genetic mechanisms of sporulation are well understood in the model organism Bacillus subtilis, nothing is known about these mechanisms in C. botulinum. Using the ClosTron gene-knockout tool, sigK, encoding late-stage (stage IV) sporulation sigma factor K in B. subtilis, was disrupted in C. botulinum ATCC 3502 to produce two different mutants with distinct insertion sites and orientations. Both mutants were unable to form spores, and their elongated cell morphology suggested that the sporulation pathway was blocked at an early stage. In contrast, sigK-complemented mutants sporulated successfully. Quantitative real-time PCR analysis of sigK in the parent strain revealed expression at the late log growth phase in the parent strain. Analysis of spo0A, encoding the sporulation master switch, in the sigK mutant and the parent showed significantly reduced relative levels of spo0A expression in the sigK mutant compared to the parent strain. Similarly, sigF showed significantly lower relative transcription levels in the sigK mutant than the parent strain, suggesting that the sporulation pathway was blocked in the sigK mutant at an early stage. We conclude that σK is essential for early-stage sporulation in C. botulinum ATCC 3502, rather than being involved in late-stage sporulation, as reported for the sporulation model organism B. subtilis. Understanding the sporulation mechanism of C. botulinum provides keys to control the public health risks that the spores of this dangerous pathogen cause through foods. PMID:22544236
Involvement of Clostridium botulinum ATCC 3502 sigma factor K in early-stage sporulation.
Kirk, David G; Dahlsten, Elias; Zhang, Zhen; Korkeala, Hannu; Lindström, Miia
2012-07-01
A key survival mechanism of Clostridium botulinum, the notorious neurotoxic food pathogen, is the ability to form heat-resistant spores. While the genetic mechanisms of sporulation are well understood in the model organism Bacillus subtilis, nothing is known about these mechanisms in C. botulinum. Using the ClosTron gene-knockout tool, sigK, encoding late-stage (stage IV) sporulation sigma factor K in B. subtilis, was disrupted in C. botulinum ATCC 3502 to produce two different mutants with distinct insertion sites and orientations. Both mutants were unable to form spores, and their elongated cell morphology suggested that the sporulation pathway was blocked at an early stage. In contrast, sigK-complemented mutants sporulated successfully. Quantitative real-time PCR analysis of sigK in the parent strain revealed expression at the late log growth phase in the parent strain. Analysis of spo0A, encoding the sporulation master switch, in the sigK mutant and the parent showed significantly reduced relative levels of spo0A expression in the sigK mutant compared to the parent strain. Similarly, sigF showed significantly lower relative transcription levels in the sigK mutant than the parent strain, suggesting that the sporulation pathway was blocked in the sigK mutant at an early stage. We conclude that σ(K) is essential for early-stage sporulation in C. botulinum ATCC 3502, rather than being involved in late-stage sporulation, as reported for the sporulation model organism B. subtilis. Understanding the sporulation mechanism of C. botulinum provides keys to control the public health risks that the spores of this dangerous pathogen cause through foods.
Functional analysis of the ComK protein of Bacillus coagulans.
Kovács, Ákos T; Eckhardt, Tom H; van Hartskamp, Mariska; van Kranenburg, Richard; Kuipers, Oscar P
2013-01-01
The genes for DNA uptake and recombination in Bacilli are commonly regulated by the transcriptional factor ComK. We have identified a ComK homologue in Bacillus coagulans, an industrial relevant organism that is recalcitrant for transformation. Introduction of B. coagulans comK gene under its own promoter region into Bacillus subtilis comK strain results in low transcriptional induction of the late competence gene comGA, but lacking bistable expression. The promoter regions of B. coagulans comK and the comGA genes are recognized in B. subtilis and expression from these promoters is activated by B. subtilis ComK. Purified ComK protein of B. coagulans showed DNA-binding ability in gel retardation assays with B. subtilis- and B. coagulans-derived probes. These experiments suggest that the function of B. coagulans ComK is similar to that of ComK of B. subtilis. When its own comK is overexpressed in B. coagulans the comGA gene expression increases 40-fold, while the expression of another late competence gene, comC is not elevated and no reproducible DNA-uptake could be observed under these conditions. Our results demonstrate that B. coagulans ComK can recognize several B.subtilis comK-responsive elements, and vice versa, but indicate that the activation of the transcription of complete sets of genes coding for a putative DNA uptake apparatus in B. coagulans might differ from that of B. subtilis.
Warenius, H. M.; Jones, M.; Jones, M. D.; Browning, P. G.; Seabra, L. A.; Thompson, C. C.
1998-01-01
We have previously reported a correlation between high endogenous expression of the protein product of the RAF-1 proto-oncogene, intrinsic cellular radiosensitivity and rapid exit from a G2/M delay induced by 2 Gy of gamma-irradiation. Raf1 is a positive serine/threonine kinase signal transduction factor that relays signals from the cell membrane to the MAP kinase system further downstream and is believed to be involved in an ionizing radiation signal transduction pathway modulating the G1/S checkpoint. We therefore extended our flow cytometric studies to investigate relationships between radiosensitivity, endogenous expression of the Raf1 protein and perturbation of cell cycle checkpoints, leading to alterations in the G1, S and G2/M populations after 2 Gy of gamma-irradiation. Differences in intrinsic radiosensitivity after modulation of the G1/S checkpoint have generally been understood to involve p53 function up to the present time. A role for dominant oncogenes in control of G1/S transit in radiation-treated cells has not been identified previously. Here, we show in 12 human in vitro cancer cell lines that late G1 accumulation after 2 Gy of radiation is related to both Raf1 expression (r = 0.91, P = 0.0001) and the radiosensitivity parameter SF2 (r = -0.71, P = 0.009). PMID:9579826
Sudou, Norihiro; Yamamoto, Shinji; Ogino, Hajime; Taira, Masanori
2012-01-01
How multiple developmental cues are integrated on cis-regulatory modules (CRMs) for cell fate decisions remains uncertain. The Spemann–Mangold organizer in Xenopus embryos expresses the transcription factors Lim1/Lhx1, Otx2, Mix1, Siamois (Sia) and VegT. Reporter analyses using sperm nuclear transplantation and DNA injection showed that cerberus (cer) and goosecoid (gsc) are activated by the aforementioned transcription factors through CRMs conserved between X. laevis and X. tropicalis. ChIP-qPCR analysis for the five transcription factors revealed that cer and gsc CRMs are initially bound by both Sia and VegT at the late blastula stage, and subsequently bound by all five factors at the gastrula stage. At the neurula stage, only binding of Lim1 and Otx2 to the gsc CRM, among others, persists, which corresponds to their co-expression in the prechordal plate. Based on these data, together with detailed expression pattern analysis, we propose a new model of stepwise formation of the organizer, in which (1) maternal VegT and Wnt-induced Sia first bind to CRMs at the blastula stage; then (2) Nodal-inducible Lim1, Otx2, Mix1 and zygotic VegT are bound to CRMs in the dorsal endodermal and mesodermal regions where all these genes are co-expressed; and (3) these two regions are combined at the gastrula stage to form the organizer. Thus, the in vivo dynamics of multiple transcription factors highlight their roles in the initiation and maintenance of gene expression, and also reveal the stepwise integration of maternal, Nodal and Wnt signaling on CRMs of organizer genes to generate the organizer. PMID:22492356
Sudou, Norihiro; Yamamoto, Shinji; Ogino, Hajime; Taira, Masanori
2012-05-01
How multiple developmental cues are integrated on cis-regulatory modules (CRMs) for cell fate decisions remains uncertain. The Spemann-Mangold organizer in Xenopus embryos expresses the transcription factors Lim1/Lhx1, Otx2, Mix1, Siamois (Sia) and VegT. Reporter analyses using sperm nuclear transplantation and DNA injection showed that cerberus (cer) and goosecoid (gsc) are activated by the aforementioned transcription factors through CRMs conserved between X. laevis and X. tropicalis. ChIP-qPCR analysis for the five transcription factors revealed that cer and gsc CRMs are initially bound by both Sia and VegT at the late blastula stage, and subsequently bound by all five factors at the gastrula stage. At the neurula stage, only binding of Lim1 and Otx2 to the gsc CRM, among others, persists, which corresponds to their co-expression in the prechordal plate. Based on these data, together with detailed expression pattern analysis, we propose a new model of stepwise formation of the organizer, in which (1) maternal VegT and Wnt-induced Sia first bind to CRMs at the blastula stage; then (2) Nodal-inducible Lim1, Otx2, Mix1 and zygotic VegT are bound to CRMs in the dorsal endodermal and mesodermal regions where all these genes are co-expressed; and (3) these two regions are combined at the gastrula stage to form the organizer. Thus, the in vivo dynamics of multiple transcription factors highlight their roles in the initiation and maintenance of gene expression, and also reveal the stepwise integration of maternal, Nodal and Wnt signaling on CRMs of organizer genes to generate the organizer.
Liu, Xiaoguang; Liu, Yu; Zhao, Linlin; Zeng, Zhigang; Xiao, Weihua; Chen, Peijie
2017-03-01
Though macrophages are essential for skeletal muscle regeneration, which is a complex process, the roles and mechanisms of the macrophages in the process of muscle regeneration are still not fully understood. The objective of this study is to explore the roles of macrophages and the mechanisms involved in the regeneration of injured skeletal muscle. One hundred and twelve C57BL/6 mice were randomly divided into muscle contusion and macrophages depleted groups. Their gastrocnemius muscles were harvested at the time points of 12 h, 1, 3, 5, 7, 14 d post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (HE) stain. The gene expression was analyzed by real-time polymerase chain reaction. The data showed that CL-liposomes treatment did affect the expression of myogenic regulatory factors (MyoD, myogenin) after injury. In addition, CL-liposomes treatment decreased the expression of regulatory factors of muscle regeneration (HGF, uPA, COX-2, IGF-1, MGF, FGF6) and increased the expression of inflammatory cytokines (TGF-β1, TNF-α, IL-1β, RANTES) in the late stage of regeneration. Moreover, there were significant correlations between macrophages and some regulatory factors (such as HGF, uPA) for muscle regeneration. These results suggested that macrophages depletion impairs skeletal muscle regeneration and that the regulatory factors for muscle regeneration may play important roles in this process. © 2017 International Federation for Cell Biology.
Recio, Guillermo; Wilhelm, Oliver; Sommer, Werner; Hildebrandt, Andrea
2017-04-01
Despite a wealth of knowledge about the neural mechanisms behind emotional facial expression processing, little is known about how they relate to individual differences in social cognition abilities. We studied individual differences in the event-related potentials (ERPs) elicited by dynamic facial expressions. First, we assessed the latent structure of the ERPs, reflecting structural face processing in the N170, and the allocation of processing resources and reflexive attention to emotionally salient stimuli, in the early posterior negativity (EPN) and the late positive complex (LPC). Then we estimated brain-behavior relationships between the ERP factors and behavioral indicators of facial identity and emotion-processing abilities. Structural models revealed that the participants who formed faster structural representations of neutral faces (i.e., shorter N170 latencies) performed better at face perception (r = -.51) and memory (r = -.42). The N170 amplitude was not related to individual differences in face cognition or emotion processing. The latent EPN factor correlated with emotion perception (r = .47) and memory (r = .32), and also with face perception abilities (r = .41). Interestingly, the latent factor representing the difference in EPN amplitudes between the two neutral control conditions (chewing and blinking movements) also correlated with emotion perception (r = .51), highlighting the importance of tracking facial changes in the perception of emotional facial expressions. The LPC factor for negative expressions correlated with the memory for emotional facial expressions. The links revealed between the latency and strength of activations of brain systems and individual differences in processing socio-emotional information provide new insights into the brain mechanisms involved in social communication.
Haberman, Amnon; Bakhshian, Ortal; Cerezo-Medina, Sergio; Paltiel, Judith; Adler, Chen; Ben-Ari, Giora; Mercado, Jose Angel; Pliego-Alfaro, Fernando; Lavee, Shimon; Samach, Alon
2017-08-01
Olive (Olea europaea L.) inflorescences, formed in lateral buds, flower in spring. However, there is some debate regarding time of flower induction and inflorescence initiation. Olive juvenility and seasonality of flowering were altered by overexpressing genes encoding flowering locus T (FT). OeFT1 and OeFT2 caused early flowering under short days when expressed in Arabidopsis. Expression of OeFT1/2 in olive leaves and OeFT2 in buds increased in winter, while initiation of inflorescences occurred i n late winter. Trees exposed to an artificial warm winter expressed low levels of OeFT1/2 in leaves and did not flower. Olive flower induction thus seems to be mediated by an increase in FT levels in response to cold winters. Olive flowering is dependent on additional internal factors. It was severely reduced in trees that carried a heavy fruit load the previous season (harvested in November) and in trees without fruit to which cold temperatures were artificially applied in summer. Expression analysis suggested that these internal factors work either by reducing the increase in OeFT1/2 expression or through putative flowering repressors such as TFL1. With expected warmer winters, future consumption of olive oil, as part of a healthy Mediterranean diet, should benefit from better understanding these factors. © 2017 John Wiley & Sons Ltd.
Lie, Shervi; Hui, Melisa; McMillen, I. Caroline; Muhlhausler, Beverly S.; Posterino, Giuseppe S.; Dunn, Stacey L.; Wang, Kimberley C.; Botting, Kimberley J.
2014-01-01
It is unknown whether cardiomyocyte hypertrophy and the transition to fatty acid oxidation as the main source of energy after birth is dependent on the maturation of the cardiomyocytes' metabolic system, or on the limitation of substrate availability before birth. This study aimed to investigate whether intrafetal administration of a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, rosiglitazone, during late gestation can stimulate the expression of factors regulating cardiac growth and metabolism in preparation for birth, and the consequences of cardiac contractility in the fetal sheep at ∼140 days gestation. The mRNA expression and protein abundance of key factors regulating growth and metabolism were quantified using quantitative RT-PCR and Western blot analysis, respectively. Cardiac contractility was determined by measuring the Ca2+ sensitivity and maximum Ca2+-activated force of skinned cardiomyocyte bundles. Rosiglitazone-treated fetuses had a lower cardiac abundance of insulin-signaling molecules, including insulin receptor-β, insulin receptor substrate-1 (IRS-1), phospho-IRS-1 (Tyr-895), phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, PI3K catalytic subunit p110α, phospho-3-phosphoinositide-dependent protein kinase 1 (Ser-241), protein kinase B (Akt-1), phospho-Akt (Ser-273), PKCζ, phospho-PKCζ(Thr-410), Akt substrate 160 kDa (AS160), phospho-AS160 (Thr-642), and glucose transporter type-4. Additionally, cardiac abundance of regulators of fatty acid β-oxidation, including adiponectin receptor 1, AMPKα, phospho-AMPKα (Thr-172), phospho-acetyl CoA carboxylase (Ser-79), carnitine palmitoyltransferase-1, and PGC-1α was lower in the rosiglitazone-treated group. Rosiglitazone administration also resulted in a decrease in cardiomyocyte size. Rosiglitazone administration in the late-gestation sheep fetus resulted in a decreased abundance of factors regulating cardiac glucose uptake, fatty acid β-oxidation, and cardiomyocyte size. These findings suggest that activation of PPAR-γ using rosiglitazone does not promote the maturation of cardiomyocytes; rather, it may decrease cardiac metabolism and compromise cardiac health later in life. PMID:24477540
Lie, Shervi; Hui, Melisa; McMillen, I Caroline; Muhlhausler, Beverly S; Posterino, Giuseppe S; Dunn, Stacey L; Wang, Kimberley C; Botting, Kimberley J; Morrison, Janna L
2014-03-15
It is unknown whether cardiomyocyte hypertrophy and the transition to fatty acid oxidation as the main source of energy after birth is dependent on the maturation of the cardiomyocytes' metabolic system, or on the limitation of substrate availability before birth. This study aimed to investigate whether intrafetal administration of a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, rosiglitazone, during late gestation can stimulate the expression of factors regulating cardiac growth and metabolism in preparation for birth, and the consequences of cardiac contractility in the fetal sheep at ∼140 days gestation. The mRNA expression and protein abundance of key factors regulating growth and metabolism were quantified using quantitative RT-PCR and Western blot analysis, respectively. Cardiac contractility was determined by measuring the Ca(2+) sensitivity and maximum Ca(2+)-activated force of skinned cardiomyocyte bundles. Rosiglitazone-treated fetuses had a lower cardiac abundance of insulin-signaling molecules, including insulin receptor-β, insulin receptor substrate-1 (IRS-1), phospho-IRS-1 (Tyr-895), phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, PI3K catalytic subunit p110α, phospho-3-phosphoinositide-dependent protein kinase 1 (Ser-241), protein kinase B (Akt-1), phospho-Akt (Ser-273), PKCζ, phospho-PKCζ(Thr-410), Akt substrate 160 kDa (AS160), phospho-AS160 (Thr-642), and glucose transporter type-4. Additionally, cardiac abundance of regulators of fatty acid β-oxidation, including adiponectin receptor 1, AMPKα, phospho-AMPKα (Thr-172), phospho-acetyl CoA carboxylase (Ser-79), carnitine palmitoyltransferase-1, and PGC-1α was lower in the rosiglitazone-treated group. Rosiglitazone administration also resulted in a decrease in cardiomyocyte size. Rosiglitazone administration in the late-gestation sheep fetus resulted in a decreased abundance of factors regulating cardiac glucose uptake, fatty acid β-oxidation, and cardiomyocyte size. These findings suggest that activation of PPAR-γ using rosiglitazone does not promote the maturation of cardiomyocytes; rather, it may decrease cardiac metabolism and compromise cardiac health later in life.
Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes
Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen
2017-01-01
Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357
The influence of sex steroid hormones in the immunopathology of experimental pulmonary tuberculosis.
Bini, Estela Isabel; Mata Espinosa, Dulce; Marquina Castillo, Brenda; Barrios Payán, Jorge; Colucci, Darío; Cruz, Alejandro Francisco; Zatarain, Zyanya Lucía; Alfonseca, Edgar; Pardo, Marta Romano; Bottasso, Oscar; Hernández Pando, Rogelio
2014-01-01
The relation between men and women suffering pulmonary tuberculosis is 7/3 in favor to males. Sex hormones could be a significant factor for this difference, considering that testosterone impairs macrophage activation and pro-inflammatory cytokines production, while estrogens are proinflammatory mediator's inducer. The aim of this work was to compare the evolution of tuberculosis in male and female mice using a model of progressive disease. BALB/c mice, male and female were randomized into two groups: castrated or sham-operated, and infected by the intratracheal route with a high dose of Mycobacterium tuberculosis strain H37Rv. Mice were euthanized at different time points and in their lungs were determined bacilli loads, inflammation, cytokines expression, survival and testosterone levels in serum. Non-castrated male mice showed significant higher mortality and bacilli burdens during late disease than female and castrated male animals. Compared to males, females and castrated males exhibited significant higher inflammation in all lung compartments, earlier formation of granulomas and pneumonia, while between castrated and non-castrated females there were not significant differences. Females and castrated males expressed significant higher TNF-α, IFN γ, IL12, iNOS and IL17 than non-castrated males during the first month of infection. Serum Testosterone of males showed higher concentration during late infection. Orchidectomy at day 60 post-infection produced a significant decrease of bacilli burdens in coexistence with higher expression of TNFα, IL-12 and IFNγ. Thus, male mice are more susceptible to tuberculosis than females and this was prevented by castration suggesting that testosterone could be a tuberculosis susceptibility factor.
The Influence of Sex Steroid Hormones in the Immunopathology of Experimental Pulmonary Tuberculosis
Bini, Estela Isabel; Mata Espinosa, Dulce; Marquina Castillo, Brenda; Barrios Payán, Jorge; Colucci, Darío; Cruz, Alejandro Francisco; Zatarain, Zyanya Lucía; Alfonseca, Edgar; Pardo, Marta Romano; Bottasso, Oscar; Pando, Rogelio Hernández
2014-01-01
The relation between men and women suffering pulmonary tuberculosis is 7/3 in favor to males. Sex hormones could be a significant factor for this difference, considering that testosterone impairs macrophage activation and pro-inflammatory cytokines production, while estrogens are proinflammatory mediator’s inducer. The aim of this work was to compare the evolution of tuberculosis in male and female mice using a model of progressive disease. BALB/c mice, male and female were randomized into two groups: castrated or sham-operated, and infected by the intratracheal route with a high dose of Mycobacterium tuberculosis strain H37Rv. Mice were euthanized at different time points and in their lungs were determined bacilli loads, inflammation, cytokines expression, survival and testosterone levels in serum. Non-castrated male mice showed significant higher mortality and bacilli burdens during late disease than female and castrated male animals. Compared to males, females and castrated males exhibited significant higher inflammation in all lung compartments, earlier formation of granulomas and pneumonia, while between castrated and non-castrated females there were not significant differences. Females and castrated males expressed significant higher TNF-α, IFN γ, IL12, iNOS and IL17 than non-castrated males during the first month of infection. Serum Testosterone of males showed higher concentration during late infection. Orchidectomy at day 60 post-infection produced a significant decrease of bacilli burdens in coexistence with higher expression of TNFα, IL-12 and IFNγ. Thus, male mice are more susceptible to tuberculosis than females and this was prevented by castration suggesting that testosterone could be a tuberculosis susceptibility factor. PMID:24722144
Induction of the early-late Ddc gene during Drosophila metamorphosis by the ecdysone receptor.
Chen, Li; Reece, Christian; O'Keefe, Sandra L; Hawryluk, Gregory W L; Engstrom, Monica M; Hodgetts, Ross B
2002-06-01
During Drosophila metamorphosis, the 'early-late' genes constitute a unique class regulated by the steroid hormone 20-hydroxyecdysone. Their induction is comprised of both a primary and a secondary response to ecdysone. Previous work has suggested that the epidermal expression of the dopa decarboxylase gene (Ddc) is likely that of a typical early-late gene. Accumulation of the Ddc transcript is rapidly initiated in the absence of protein synthesis, which implies that the ecdysone receptor plays a direct role in induction. However, full Ddc expression requires the participation of one of the transcription factors encoded by the Broad-Complex. In this paper, we characterize an ecdysone response element (EcRE) that contributes to the primary response. Using gel mobility shift assays and transgenic assays, we identified a single functional EcRE, located at position -97 to -83 bp relative to the transcription initiation site. This is the first report of an EcRE associated with an early-late gene in Drosophila. Competition experiments indicated that the affinity of the Ddc EcRE for the ecdysone receptor complex was at least four-fold less than that of the canonical EcRE of the hsp27 gene. Using in vitro mutagenesis, we determined that the reduced affinity of the EcRE resided at two positions where the nucleotides differed from those found in the canonical sequence. The ecdysone receptor, acting through this EcRE, releases Ddc from a silencing mechanism, whose cis-acting domain we have mapped to the 5'-upstream region between -2067 and -1427 bp. Deletion of this repressive element resulted in precocious expression of Ddc in both epidermis and imaginal discs. Thus, epidermal Ddc induction at pupariation is under the control of an extended genomic region that contains both positive and negative regulatory elements. Copyright 2002 Elsevier Science Ireland Ltd.
Development of emotional facial recognition in late childhood and adolescence.
Thomas, Laura A; De Bellis, Michael D; Graham, Reiko; LaBar, Kevin S
2007-09-01
The ability to interpret emotions in facial expressions is crucial for social functioning across the lifespan. Facial expression recognition develops rapidly during infancy and improves with age during the preschool years. However, the developmental trajectory from late childhood to adulthood is less clear. We tested older children, adolescents and adults on a two-alternative forced-choice discrimination task using morphed faces that varied in emotional content. Actors appeared to pose expressions that changed incrementally along three progressions: neutral-to-fear, neutral-to-anger, and fear-to-anger. Across all three morph types, adults displayed more sensitivity to subtle changes in emotional expression than children and adolescents. Fear morphs and fear-to-anger blends showed a linear developmental trajectory, whereas anger morphs showed a quadratic trend, increasing sharply from adolescents to adults. The results provide evidence for late developmental changes in emotional expression recognition with some specificity in the time course for distinct emotions.
Cuf2 Is a Novel Meiosis-Specific Regulatory Factor of Meiosis Maturation
Ioannoni, Raphael; Beaudoin, Jude; Lopez-Maury, Luis; Codlin, Sandra; Bahler, Jurg; Labbe, Simon
2012-01-01
Background Meiosis is the specialized form of the cell cycle by which diploid cells produce the haploid gametes required for sexual reproduction. Initiation and progression through meiosis requires that the expression of the meiotic genes is precisely controlled so as to provide the correct gene products at the correct times. During meiosis, four temporal gene clusters are either induced or repressed by a cascade of transcription factors. Principal Findings In this report a novel copper-fist-type regulator, Cuf2, is shown to be expressed exclusively during meiosis. The expression profile of the cuf2+ mRNA revealed that it was induced during middle-phase meiosis. Both cuf2+ mRNA and protein levels are unregulated by copper addition or starvation. The transcription of cuf2+ required the presence of a functional mei4+ gene encoding a key transcription factor that activates the expression of numerous middle meiotic genes. Microscopic analyses of cells expressing a functional Cuf2-GFP protein revealed that Cuf2 co-localized with both homologous chromosomes and sister chromatids during the meiotic divisions. Cells lacking Cuf2 showed an elevated and sustained expression of several of the middle meiotic genes that persisted even during late meiosis. Moreover, cells carrying disrupted cuf2Δ/cuf2Δ alleles displayed an abnormal morphology of the forespore membranes and a dramatic reduction of spore viability. Significance Collectively, the results revealed that Cuf2 functions in the timely repression of the middle-phase genes during meiotic differentiation. PMID:22558440
Shirata, Mika; Araye, Quenta; Maehara, Kazunori; Enya, Sora; Takano-Shimizu, Toshiyuki; Sawamura, Kyoichi
2014-02-01
In the cross between Drosophila melanogaster females and D. simulans males, hybrid males die at the late larval stage, and the sibling females also die at later stages at high temperatures. Removing the D. simulans allele of the Lethal hybrid rescue gene (Lhr (sim) ) improves the hybrid incompatibility phenotypes. However, the loss-of-function mutation of Lhr (sim) (Lhr (sim0) ) does not rescue the hybrid males in crosses with several D. melanogaster strains. We first describe the genetic factor possessed by the D. melanogaster strains. It has been suggested that removing the D. melanogaster allele of Lhr (Lhr (mel) ), that is Lhr (mel0) , does not have the hybrid male rescue effect, contrasting to Lhr (sim0) . Because the expression level of the Lhr gene is known to be Lhr (sim) > Lhr (mel) in the hybrid, Lhr (mel0) may not lead to enough of a reduction in total Lhr expression. Then, there is a possibility that the D. melanogaster factor changes the expression level to Lhr (sim) < Lhr (mel) . But in fact, the expression level was Lhr (sim) > Lhr (mel) in the hybrid irrespectively of the presence of the factor. At last, we showed that Lhr (mel0) slightly improves the viability of hybrid females, which was not realized previously. All of the present results are consistent with the allelic asymmetry model of the Lhr gene expression in the hybrid.
Belting, H G; Hauptmann, G; Meyer, D; Abdelilah-Seyfried, S; Chitnis, A; Eschbach, C; Söll, I; Thisse, C; Thisse, B; Artinger, K B; Lunde, K; Driever, W
2001-11-01
The vertebrate midbrain-hindbrain boundary (MHB) organizes patterning and neuronal differentiation in the midbrain and anterior hindbrain. Formation of this organizing center involves multiple steps, including positioning of the MHB within the neural plate, establishment of the organizer and maintenance of its regional identity and signaling activities. Juxtaposition of the Otx2 and Gbx2 expression domains positions the MHB. How the positional information is translated into activation of Pax2, Wnt1 and Fgf8 expression during MHB establishment remains unclear. In zebrafish spiel ohne grenzen (spg) mutants, the MHB is not established, neither isthmus nor cerebellum form, the midbrain is reduced in size and patterning abnormalities develop within the hindbrain. In spg mutants, despite apparently normal expression of otx2, gbx1 and fgf8 during late gastrula stages, the initial expression of pax2.1, wnt1 and eng2, as well as later expression of fgf8 in the MHB primordium are reduced. We show that spg mutants have lesions in pou2, which encodes a POU-domain transcription factor. Maternal pou2 transcripts are distributed evenly in the blastula, and zygotic expression domains include the midbrain and hindbrain primordia during late gastrulation. Microinjection of pou2 mRNA can rescue pax2.1 and wnt1 expression in the MHB of spg/pou2 mutants without inducing ectopic expression. This indicates an essential but permissive role for pou2 during MHB establishment. pou2 is expressed normally in noi/pax2.1 and ace/fgf8 zebrafish mutants, which also form no MHB. Thus, expression of pou2 does not depend on fgf8 and pax2.1. Our data suggest that pou2 is required for the establishment of the normal expression domains of wnt1 and pax2.1 in the MHB primordium.
Identification of defense-related genes newly-associated with tomato flower abscission.
Meir, Shimon; Philosoph-Hadas, Sonia; Sundaresan, Srivignesh; Selvaraj, K S Vijay; Burd, Shaul; Ophir, Ron; Kochanek, K S Bettina; Reid, Michael S; Jiang, Cai-Zhong; Lers, Amnon
2011-04-01
The current abscission model suggests the formation of a post-abscission trans-differentiation of a protective layer as the last step of the process. The present report expands the repertoire of genes activated in the tomato flower abscission zone (AZ), which are likely to be involved in defense responses. We identified four different defense-related genes, including: Cysteine-type endopeptidase, α-Dioxygenase 1 (α-DOX1), HopW-1-1-Interacting protein2 (WIN2), and Stomatal-derived factor-2 (SDF2), that are newly-associated with the late stage of the abscission process. The late expression of these genes, induced at 8-14 h after flower removal when pedicel abscission was already in progress, was AZ-specific, and was inhibited by treatments that prevented pedicel abscission, including 1-methylcyclopropene pretreatment or IAA application. This information supports the activation of different defense responses and strategies at the late abscission stages, which may enable efficient protection of the exposed tissue toward different environmental stresses.
Development of Emotional Facial Recognition in Late Childhood and Adolescence
ERIC Educational Resources Information Center
Thomas, Laura A.; De Bellis, Michael D.; Graham, Reiko; Labar, Kevin S.
2007-01-01
The ability to interpret emotions in facial expressions is crucial for social functioning across the lifespan. Facial expression recognition develops rapidly during infancy and improves with age during the preschool years. However, the developmental trajectory from late childhood to adulthood is less clear. We tested older children, adolescents…
Sayanthooran, Saravanabavan; Magana-Arachchi, Dhammika N; Gunerathne, Lishanthe; Abeysekera, Tilak
2017-01-19
In Sri Lanka, there exists chronic kidney disease of both known (CKD) and unknown etiologies (CKDu). Identification of novel biomarkers that are customized to the specific causative factors would lead to early diagnosis and clearer prognosis of the diseases. This study aimed to find genetic biomarkers in blood to distinguish and identify CKDu from CKD as well as healthy populations from CKDu endemic and non-endemic areas of Sri Lanka. The expression patterns of a selected panel of 12 potential genetic biomarkers were analyzed in blood using RT-qPCR. Fold changes of gene expressions in early and late stages of CKD and CKDu patients, and an apparently healthy population of a CKDu endemic area, Girandurukotte (GH) were calculated relative to apparently healthy volunteers from a CKDu non-endemic area, Kandy (KH) of Sri Lanka, using the comparative CT method. Significant differences were observed between KH and early stage CKDu for both the insulin-like growth factor binding protein 1 (IGFBP1; p = 0.012) and kidney injury molecule-1 (KIM1; p = 0.003) genes, and KH and late stage CKD and CKDu for the glutathione-S-transferase mu 1 (GSTM1; p < 0.05) gene. IGFBP1 and KIM1 genes showed significant difference between the early and late stage CKDu (p < 0.01). The glutamate cysteine ligase catalytic subunit (GCLC) gene had significantly different expression between KH and all the other study groups (p < 0.01). The GH group was significantly different from the KH group for the oxidative stress related genes, G6PD, GCLC and GSTM1 (p < 0.01), and also the KIM1 gene (p = 0.003). IGFBP1, insulin-like growth factor binding protein 3 (IGFBP3), fibronectin 1 (FN1) and KIM1 showed significant correlations with serum creatinine, and IGFBP1, KIM1 and kallikrein 1 (KLK1) with eGFR (p < 0.05). A panel consisting of IGFBP1, KIM1, GCLC and GSTM1 genes could be used in combination for early screening of CKDu, whereas these genes in addition with FN1, IGFBP3 and KLK1 could be used to monitor progression of CKDu. The regulation of these genes has to be studied on larger populations to validate their efficiency for further clinical use.
Ruttenstock, Elke Maria; Doi, Takashi; Dingemann, Jens; Puri, Prem
2011-02-01
Pulmonary hypoplasia (PH), the leading cause of mortality in congenital diaphragmatic hernia (CDH), is associated with arrested alveolarization. Late gestation lung protein 1 (LGL1) plays a crucial role in the regulation of alveolarization. Inhibition of LGL1 impairs alveolar maturation in fetal rat lungs. LGL1 heterozygotus knockout mice display delayed lung maturation. It is well known that prenatal administration of retinoic acid (RA) stimulates alveologenesis in nitrofen-induced PH. In vitro studies have reported that RA is a key modulator of LGL1 during alveologenesis. We hypothesized, that pulmonary gene expression of LGL1 is downregulated in the late stage of lung development, and that prenatal administration of RA upregulates pulmonary LGL1 expression in the nitrofen CDH model. Pregnant rats were exposed to nitrofen on day 9 (D9) of gestation. RA was given intraperitoneally on D18, D19 and D20. Fetal lungs were dissected on D21 and divided into control, control + RA, CDH and CDH + RA group. Expression levels of LGL1 were determined using RT-PCR and immunohistochemistry. On D21, LGL1 relative mRNA expression levels were significantly downregulated in CDH group compared to controls. After RA treatment, gene expression levels of LGL1 were significantly upregulated in CDH + RA and control + RA compared to CDH group. Immunohistochemical studies confirmed these results. Downregulation of pulmonary LGL1 gene expression in the late stage of lung development may interfere with normal alveologenesis. Upregulation of LGL1 pulmonary gene expression after RA treatment may promote lung growth by stimulating alveologenesis in the nitrofen CDH model.
Goetzenich, Andreas; Hatam, Nima; Preuss, Stephanie; Moza, Ajay; Bleilevens, Christian; Roehl, Anna B.; Autschbach, Rüdiger; Bernhagen, Jürgen; Stoppe, Christian
2014-01-01
OBJECTIVES The protective effects of late-phase preconditioning can be triggered by several stimuli. Unfortunately, the transfer from bench to bedside still represents a challenge, as concomitant medication or diseases influence the complex signalling pathways involved. In an established model of primary neonatal rat cardiomyocytes, we analysed the cardioprotective effects of three different stimulating pharmaceuticals of clinical relevance. The effect of additional β-blocker treatment was studied as these were previously shown to negatively influence preconditioning. METHODS Twenty-four hours prior to hypoxia, cells pre-treated with or without metoprolol (0.55 µg/ml) were preconditioned with isoflurane, levosimendan or xenon. The influences of these stimuli on hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) as well as inducible and endothelial nitric synthase (iNOS/eNOS) and cyclooxygenase-2 (COX-2) were analysed by polymerase chain reaction and western blotting. The preconditioning was proved by trypan blue cell counts following 5 h of hypoxia and confirmed by fluorescence staining. RESULTS Five hours of hypoxia reduced cell survival in unpreconditioned control cells to 44 ± 4%. Surviving cell count was significantly higher in cells preconditioned either by 2 × 15 min isoflurane (70 ± 16%; P = 0.005) or by xenon (59 ± 8%; P = 0.049). Xenon-preconditioned cells showed a significantly elevated content of VEGF (0.025 ± 0.010 IDV [integrated density values when compared with GAPDH] vs 0.003 ± 0.006 IDV in controls; P = 0.0003). The protein expression of HIF-1α was increased both by levosimendan (0.563 ± 0.175 IDV vs 0.142 ± 0.042 IDV in controls; P = 0.0289) and by xenon (0.868 ± 0.222 IDV; P < 0.0001) pretreatment. A significant elevation of mRNA expression of iNOS was measureable following preconditioning by xenon but not by the other chosen stimuli. eNOS mRNA expression was found to be suppressed by β-blocker treatment for all stimuli. In our model, independently of the chosen stimulus, β-blocker treatment had no significant effect on cell survival. CONCLUSIONS We found that the stimulation of late-phase preconditioning involves several distinct pathways that are variably addressed by the different stimuli. In contrast to isoflurane treatment, xenon-induced preconditioning does not lead to an increase in COX-2 gene transcription but to a significant increase in HIF-1α and subsequently VEGF. PMID:24351506
Goetzenich, Andreas; Hatam, Nima; Preuss, Stephanie; Moza, Ajay; Bleilevens, Christian; Roehl, Anna B; Autschbach, Rüdiger; Bernhagen, Jürgen; Stoppe, Christian
2014-03-01
The protective effects of late-phase preconditioning can be triggered by several stimuli. Unfortunately, the transfer from bench to bedside still represents a challenge, as concomitant medication or diseases influence the complex signalling pathways involved. In an established model of primary neonatal rat cardiomyocytes, we analysed the cardioprotective effects of three different stimulating pharmaceuticals of clinical relevance. The effect of additional β-blocker treatment was studied as these were previously shown to negatively influence preconditioning. Twenty-four hours prior to hypoxia, cells pre-treated with or without metoprolol (0.55 µg/ml) were preconditioned with isoflurane, levosimendan or xenon. The influences of these stimuli on hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) as well as inducible and endothelial nitric synthase (iNOS/eNOS) and cyclooxygenase-2 (COX-2) were analysed by polymerase chain reaction and western blotting. The preconditioning was proved by trypan blue cell counts following 5 h of hypoxia and confirmed by fluorescence staining. Five hours of hypoxia reduced cell survival in unpreconditioned control cells to 44 ± 4%. Surviving cell count was significantly higher in cells preconditioned either by 2 × 15 min isoflurane (70 ± 16%; P = 0.005) or by xenon (59 ± 8%; P = 0.049). Xenon-preconditioned cells showed a significantly elevated content of VEGF (0.025 ± 0.010 IDV [integrated density values when compared with GAPDH] vs 0.003 ± 0.006 IDV in controls; P = 0.0003). The protein expression of HIF-1α was increased both by levosimendan (0.563 ± 0.175 IDV vs 0.142 ± 0.042 IDV in controls; P = 0.0289) and by xenon (0.868 ± 0.222 IDV; P < 0.0001) pretreatment. A significant elevation of mRNA expression of iNOS was measureable following preconditioning by xenon but not by the other chosen stimuli. eNOS mRNA expression was found to be suppressed by β-blocker treatment for all stimuli. In our model, independently of the chosen stimulus, β-blocker treatment had no significant effect on cell survival. We found that the stimulation of late-phase preconditioning involves several distinct pathways that are variably addressed by the different stimuli. In contrast to isoflurane treatment, xenon-induced preconditioning does not lead to an increase in COX-2 gene transcription but to a significant increase in HIF-1α and subsequently VEGF.
Chagné, David; Lin-Wang, Kui; Espley, Richard V.; Volz, Richard K.; How, Natalie M.; Rouse, Simon; Brendolise, Cyril; Carlisle, Charmaine M.; Kumar, Satish; De Silva, Nihal; Micheletti, Diego; McGhie, Tony; Crowhurst, Ross N.; Storey, Roy D.; Velasco, Riccardo; Hellens, Roger P.; Gardiner, Susan E.; Allan, Andrew C.
2013-01-01
Anthocyanin accumulation is coordinated in plants by a number of conserved transcription factors. In apple (Malus × domestica), an R2R3 MYB transcription factor has been shown to control fruit flesh and foliage anthocyanin pigmentation (MYB10) and fruit skin color (MYB1). However, the pattern of expression and allelic variation at these loci does not explain all anthocyanin-related apple phenotypes. One such example is an open-pollinated seedling of cv Sangrado that has green foliage and develops red flesh in the fruit cortex late in maturity. We used methods that combine plant breeding, molecular biology, and genomics to identify duplicated MYB transcription factors that could control this phenotype. We then demonstrated that the red-flesh cortex phenotype is associated with enhanced expression of MYB110a, a paralog of MYB10. Functional characterization of MYB110a showed that it was able to up-regulate anthocyanin biosynthesis in tobacco (Nicotiana tabacum). The chromosomal location of MYB110a is consistent with a whole-genome duplication event that occurred during the evolution of apple within the Maloideae family. Both MYB10 and MYB110a have conserved function in some cultivars, but they differ in their expression pattern and response to fruit maturity. PMID:23096157
Sgroi, Dennis C; Carney, Erin; Zarrella, Elizabeth; Steffel, Lauren; Binns, Shemeica N; Finkelstein, Dianne M; Szymonifka, Jackie; Bhan, Atul K; Shepherd, Lois E; Zhang, Yi; Schnabel, Catherine A; Erlander, Mark G; Ingle, James N; Porter, Peggy; Muss, Hyman B; Pritchard, Katherine I; Tu, Dongsheng; Rimm, David L; Goss, Paul E
2013-07-17
Biomarkers to optimize extended adjuvant endocrine therapy for women with estrogen receptor (ER)-positive breast cancer are limited. The HOXB13/IL17BR (H/I) biomarker predicts recurrence risk in ER-positive, lymph node-negative breast cancer patients. H/I was evaluated in MA.17 trial for prognostic performance for late recurrence and treatment benefit from extended adjuvant letrozole. A prospective-retrospective, nested case-control design of 83 recurrences matched to 166 nonrecurrences from letrozole- and placebo-treated patients within MA.17 was conducted. Expression of H/I within primary tumors was determined by reverse-transcription polymerase chain reaction with a prespecified cutpoint. The predictive ability of H/I for ascertaining benefit from letrozole was determined using multivariable conditional logistic regression including standard clinicopathological factors as covariates. All statistical tests were two-sided. High H/I was statistically significantly associated with a decrease in late recurrence in patients receiving extended letrozole therapy (odds ratio [OR] = 0.35; 95% confidence interval [CI] = 0.16 to 0.75; P = .007). In an adjusted model with standard clinicopathological factors, high H/I remained statistically significantly associated with patient benefit from letrozole (OR = 0.33; 95% CI = 0.15 to 0.73; P = .006). Reduction in the absolute risk of recurrence at 5 years was 16.5% for patients with high H/I (P = .007). The interaction between H/I and letrozole treatment was statistically significant (P = .03). In the absence of extended letrozole therapy, high H/I identifies a subgroup of ER-positive patients disease-free after 5 years of tamoxifen who are at risk for late recurrence. When extended endocrine therapy with letrozole is prescribed, high H/I predicts benefit from therapy and a decreased probability of late disease recurrence.
CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.
Ma, Xiaoding; Ma, Jian; Zhai, Honghong; Xin, Peiyong; Chu, Jinfang; Qiao, Yongli; Han, Longzhi
2015-01-01
CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.
Biasiotto, Roberta; Akusjärvi, Göran
2015-01-28
Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing factor that controls L1 alternative splicing via an interaction with the cellular protein kinases Protein Kinase A (PKA) and DNA-dependent protein kinase (DNA-PK). L4-22K is a viral transcription factor that also has been implicated in the splicing of a subset of late viral mRNAs. E4-ORF4 is a viral protein that binds the cellular protein phosphatase IIA (PP2A) and controls Serine/Arginine (SR)-rich protein activity by inducing SR protein dephosphorylation. The L4-33K, and most likely also the L4-22K protein, are highly phosphorylated in vivo. Here we will review the function of these viral proteins in the post-transcriptional control of adenoviral gene expression and further discuss the significance of potential protein kinases phosphorylating the L4-33K and/or L4-22K proteins.
Plett, Jonathan M; Khachane, Amit; Ouassou, Malika; Sundberg, Björn; Kohler, Annegret; Martin, Francis
2014-04-01
The plant hormones ethylene, jasmonic acid and salicylic acid have interconnecting roles during the response of plant tissues to mutualistic and pathogenic symbionts. We used morphological studies of transgenic- or hormone-treated Populus roots as well as whole-genome oligoarrays to examine how these hormones affect root colonization by the mutualistic ectomycorrhizal fungus Laccaria bicolor S238N. We found that genes regulated by ethylene, jasmonic acid and salicylic acid were regulated in the late stages of the interaction between L. bicolor and poplar. Both ethylene and jasmonic acid treatments were found to impede fungal colonization of roots, and this effect was correlated to an increase in the expression of certain transcription factors (e.g. ETHYLENE RESPONSE FACTOR1) and a decrease in the expression of genes associated with microbial perception and cell wall modification. Further, we found that ethylene and jasmonic acid showed extensive transcriptional cross-talk, cross-talk that was opposed by salicylic acid signaling. We conclude that ethylene and jasmonic acid pathways are induced late in the colonization of root tissues in order to limit fungal growth within roots. This induction is probably an adaptive response by the plant such that its growth and vigor are not compromised by the fungus. © 2013 The Authors New Phytologist © 2013 New Phytologist Trust.
Cai, Qian; Lu, Li; Tian, Jin-Hua; Zhu, Yi-Bing; Qiao, Haifa; Sheng, Zu-Hang
2010-10-06
Neuron maintenance and survival require late endocytic transport from distal processes to the soma where lysosomes are predominantly localized. Here, we report a role for Snapin in attaching dynein to late endosomes through its intermediate chain (DIC). snapin(-/-) neurons exhibit aberrant accumulation of immature lysosomes, clustering and impaired retrograde transport of late endosomes along processes, reduced lysosomal proteolysis due to impaired delivery of internalized proteins and hydrolase precursors from late endosomes to lysosomes, and impaired clearance of autolysosomes, combined with reduced neuron viability and neurodegeneration. The phenotypes are rescued by expressing the snapin transgene, but not the DIC-binding-defective Snapin-L99K mutant. Snapin overexpression in wild-type neurons enhances late endocytic transport and lysosomal function, whereas expressing the mutant defective in Snapin-DIC coupling shows a dominant-negative effect. Altogether, our study highlights new mechanistic insights into how Snapin-DIC coordinates retrograde transport and late endosomal-lysosomal trafficking critical for autophagy-lysosomal function, and thus neuronal homeostasis. Copyright © 2010 Elsevier Inc. All rights reserved.
Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C
2013-06-01
Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.
Elwell, Jennifer A; Lovato, TyAnna L; Adams, Melanie M; Baca, Erica M; Lee, Thai; Cripps, Richard M
2015-04-15
Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arises through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. Copyright © 2015 Elsevier Inc. All rights reserved.
Graubert, Michael D.; Asuncion Ortega, Maria; Kessel, Bruce; Mortola, Joseph F.; Iruela-Arispe, M. Luisa
2001-01-01
Regeneration of the endometrium after menstruation requires a rapid and highly organized vascular response. Potential regulators of this process include members of the vascular endothelial growth factor (VEGF) family of proteins and their receptors. Although VEGF expression has been detected in the endometrium, the relationship between VEGF production, receptor activation, and endothelial cell proliferation during the endometrial cycle is poorly understood. To better ascertain the relevance of VEGF family members during postmenstrual repair, we have evaluated ligands, receptors, and activity by receptor phosphorylation in human endometrium throughout the menstrual cycle. We found that VEGF is significantly increased at the onset of menstruation, a result of the additive effects of hypoxia, transforming growth factor-α, and interleukin-1β. Both VEGF receptors, FLT-1 and KDR, followed a similar pattern. However, functional activity of KDR, as determined by phosphorylation studies, revealed activation in the late menstrual and early proliferative phases. The degree of KDR phosphorylation was inversely correlated with the presence of sFLT-1. Endothelial cell proliferation analysis in endometrium showed a peak during the late menstrual and early proliferative phases in concert with the presence of VEGF, VEGF receptor phosphorylation, and decrease of sFLT-1. Together, these results suggest that VEGF receptor activation and the subsequent modulation of sFLT-1 in the late menstrual phase likely contributes to the onset of angiogenesis and endothelial repair in the human endometrium. PMID:11290558
MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2.
Zhou, Yu; Song, Yan; Shaikh, Zahir; Li, Hui; Zhang, Haiju; Caudle, Yi; Zheng, Shouhua; Yan, Hui; Hu, Dan; Stuart, Charles; Yin, Deling
2017-07-18
Cardiac dysfunction is correlated with detrimental prognosis of sepsis and contributes to a high risk of mortality. After an initial hyperinflammatory reaction, most patients enter a protracted state of immunosuppression (late sepsis) that alters both innate and adaptive immunity. The changes of cardiac function in late sepsis are not yet known. MicroRNA-155 (miR-155) is previously found to play important roles in both regulations of immune activation and cardiac function. In this study, C57BL/6 mice were operated to develop into early and late sepsis phases, and miR-155 mimic was injected through the tail vein 48 h after cecal ligation and puncture (CLP). The effect of miR-155 on CLP-induced cardiac dysfunction was explored in late sepsis. We found that increased expression of miR-155 in the myocardium protected against cardiac dysfunction in late sepsis evidenced by attenuating sepsis-reduced cardiac output and enhancing left ventricular systolic function. We also observed that miR-155 markedly reduced the infiltration of macrophages and neutrophils into the myocardium and attenuated the inflammatory response via suppression of JNK signaling pathway. Moreover, overexpression of β-arrestin 2 (Arrb2) exacerbated the mice mortality and immunosuppression in late sepsis. Furthermore, transfection of miR-155 mimic reduced Arrb2 expression, and then restored immunocompetence and improved survival in late septic mice. We conclude that increased miR-155 expression through systemic administration of miR-155 mimic attenuates cardiac dysfunction and improves late sepsis survival by targeting JNK associated inflammatory signaling and Arrb2 mediated immunosuppression.
Luteal function during the estrous cycle in arginine-treated ewes fed different planes of nutrition.
Bass, Casie S; Redmer, Dale A; Kaminski, Samantha L; Grazul-Bilska, Anna T
2017-03-01
Functions of corpus luteum (CL) are influenced by numerous factors including hormones, growth and angiogenic factors, nutritional plane and dietary supplements such as arginine (Arg), a semi-essential amino acid and precursor for proteins, polyamines and nitric oxide (NO). The aim of this study was to determine if Arg supplementation to ewes fed different planes of nutrition influences: (1) progesterone (P4) concentrations in serum and luteal tissue, (2) luteal vascularity, cell proliferation, endothelial NO synthase (eNOS) and receptor (R) soluble guanylate cyclase β protein and mRNA expression and (3) luteal mRNA expression for selected angiogenic factors during the estrous cycle. Ewes (n = 111) were categorized by weight and randomly assigned to one of three nutritional planes: maintenance control (C), overfed (2× C) and underfed (0.6× C) beginning 60 days prior to onset of estrus. After estrus synchronization, ewes from each nutritional plane were assigned randomly to one of two treatments: Arg or saline. Serum and CL were collected at the early, mid and late luteal phases. The results demonstrated that: (1) nutritional plane affected ovulation rates, luteal vascularity, cell proliferation and NOS3, GUCY1B3, vascular endothelial growth factor (VEGF) and VEGFR2 mRNA expression, (2) Arg affected luteal vascularity, cell proliferation and NOS3, GUCY1B3, VEGF and VEGFR2 mRNA expression and (3) luteal vascularity, cell proliferation and the VEGF and NO systems depend on the stage of the estrous cycle. These data indicate that plane of nutrition and/or Arg supplementation can alter vascularization and expression of selected angiogenic factors in luteal tissue during the estrous cycle in sheep. © 2017 Society for Reproduction and Fertility.
Teren, A; Kirsten, H; Beutner, F; Scholz, M; Holdt, L M; Teupser, D; Gutberlet, M; Thiery, J; Schuler, G; Eitel, I
2017-02-03
Prognostic relevant pathways of leukocyte involvement in human myocardial ischemic-reperfusion injury are largely unknown. We enrolled 136 patients with ST-elevation myocardial infarction (STEMI) after primary angioplasty within 12 h after onset of symptoms. Following reperfusion, whole blood was collected within a median time interval of 20 h (interquartile range: 15-25 h) for genome-wide gene expression analysis. Subsequent CMR scans were performed using a standard protocol to determine infarct size (IS), area at risk (AAR), myocardial salvage index (MSI) and the extent of late microvascular obstruction (lateMO). We found 398 genes associated with lateMO and two genes with IS. Neither AAR, nor MSI showed significant correlations with gene expression. Genes correlating with lateMO were strongly related to several canonical pathways, including positive regulation of T-cell activation (p = 3.44 × 10 -5 ), and regulation of inflammatory response (p = 1.86 × 10 -3 ). Network analysis of multiple gene expression alterations associated with larger lateMO identified the following functional consequences: facilitated utilisation and decreased concentration of free fatty acid, repressed cell differentiation, enhanced phagocyte movement, increased cell death, vascular disease and compensatory vasculogenesis. In conclusion, the extent of lateMO after acute, reperfused STEMI correlated with altered activation of multiple genes related to fatty acid utilisation, lymphocyte differentiation, phagocyte mobilisation, cell survival, and vascular dysfunction.
Control of bacteriophage P2 gene expression: analysis of transcription of the ogr gene.
Birkeland, N K; Lindqvist, B H; Christie, G E
1991-01-01
The bacteriophage P2 ogr gene encodes an 8.3-kDa protein that is a positive effector of P2 late gene transcription. The ogr gene is preceded by a promoter sequence (Pogr) resembling a normal Escherichia coli promoter and is located just downstream of a late transcription unit. We analyzed the kinetics and regulation of ogr gene transcription by using an ogr-specific antisense RNA probe in an S1 mapping assay. During a normal P2 infection, ogr gene transcription starts from Pogr at an intermediate time between the onset of early and late transcription. At late times after infection the ogr gene is cotranscribed with the late FETUD operon; the ogr gene product thus positively regulates its own synthesis from the P2 late promoter PF. Expression of the P2 late genes also requires P2 DNA replication. Complementation experiments and transcriptional analysis show that a nonreplicating P2 phage expresses the ogr gene from Pogr but is unable to transcribe the late genes. A P2 ogr-defective phage makes an increased level of ogr mRNA, consistent with autogenous control from Pogr. Transcription of the ogr gene in the prophage of a P2 heteroimmune lysogen is stimulated after infection with P2, suggesting that Pogr is under indirect immunity control and is activated by a yet-unidentified P2 early gene product during infection. Images FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 PMID:1938896
Zepeda, Rodrigo; Contreras, Valentina; Pissani, Claudia; Stack, Katherine; Vargas, Macarena; Owen, Gareth I; Lazo, Oscar M; Bronfman, Francisca C
2016-08-01
Neuromodulators, such as antidepressants, may contribute to neuroprotection by modulating growth factor expression to exert anti-inflammatory effects and to support neuronal plasticity after stroke. Our objective was to study whether early treatment with venlafaxine, a serotonin-norepinephrine reuptake inhibitor, modulates growth factor expression and positively contributes to reducing the volume of infarcted brain tissue resulting in increased functional recovery. We studied the expression of BDNF, FGF2 and TGF-β1 by examining their mRNA and protein levels and cellular distribution using quantitative confocal microscopy at 5 days after venlafaxine treatment in control and infarcted brains. Venlafaxine treatment did not change the expression of these growth factors in sham rats. In infarcted rats, BDNF mRNA and protein levels were reduced, while the mRNA and protein levels of FGF2 and TGF-β1 were increased. Venlafaxine treatment potentiated all of the changes that were induced by cortical stroke alone. In particular, increased levels of FGF2 and TGF-β1 were observed in astrocytes at 5 days after stroke induction, and these increases were correlated with decreased astrogliosis (measured by GFAP) and increased synaptophysin immunostaining at twenty-one days after stroke in venlafaxine-treated rats. Finally, we show that venlafaxine reduced infarct volume after stroke resulting in increased functional recovery, which was measured using ladder rung motor tests, at 21 days after stroke. Our results indicate that the early oral administration of venlafaxine positively contributes to neuroprotection during the acute and late events that follow stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fernandes, Claudia B; Loux, Shavahn C; Scoggin, Kirsten E; Squires, Edward L; Troedsson, Mats H; Esteller-Vico, Alejandro; Ball, Barry A
2017-12-01
The cervix is a dynamic structure that undergoes dramatic changes during the estrous cycle, pregnancy and parturition. It is well established that hormonal changes, including estrogens, progestogens and prostaglandins, regulate the expression of key proteins involved in cervical function. The arachidonic acid cascade is important in the remodeling and relaxation of the cervix in the days preceding parturition. Despite the complexity of this mechanism, regulation of cervical function has received little study in the mare. Therefore, the objective of this study was to compare the expression of estrogen receptor α (ESR1) and β (ESR2), progesterone receptor (PGR), prostaglandin E2 type 2 (PTGER2) and type 4 (PTGER4) receptors as well as cyclooxygenase-1 (PTGS1) and -2 (PTGS2) in the equine cervical mucosa and stroma during estrus, diestrus and late pregnancy using qPCR. Immunohistochemistry was used to localize ESR1, ESR2, PGR, PTGER2 and PTGER4 receptors in these regions of the cervix. Relative mRNA expression of ESR1 and PGR was greater during estrus and diestrus than in late pregnancy in both the mucosa and stroma of the cervix. Expression of PTGER2 was highest in the cervical stroma during late pregnancy compared to either estrus or diestrus. Moreover, PTGS1 expression in mucosa and PTGS2 in stroma was greater during late pregnancy compared with estrus, but not diestrus. Immunostaining for ESR1, ESR2, PGR, PTGER2 and PTGER4 was consistently detected in the nucleus and cytoplasm of epithelium of the endocervix as well as the smooth muscle cytoplasm of the cervix in all stages evaluated. Immunolabeling in smooth muscle nuclei was detected for ESR1 and PGR in estrus, diestrus and late pregnancy, and for ESR2 in estrus and late pregnancy stages. The changes noted in late gestation likely reflect preparation of the equine cervix for subsequent parturition. Copyright © 2017 Elsevier B.V. All rights reserved.
An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles1
Medina-Puche, Laura; Molina-Hidalgo, Francisco Javier; Boersma, Maaike; Schuurink, Robert C.; López-Vidriero, Irene; Solano, Roberto; Franco-Zorrilla, José-Manuel; Caballero, José Luis; Blanco-Portales, Rosario; Muñoz-Blanco, Juan
2015-01-01
Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (EMISSION OF BENZENOID II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of CINNAMYL ALCOHOL DEHYDROGENASE1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles. PMID:25931522
Huang, Youhua; Huang, Xiaohong; Cai, Jia; OuYang, Zhengliang; Wei, Shina; Wei, Jingguang; Qin, Qiwei
2015-02-01
Interferon regulatory factor 3 (IRF3) is an important transcription factor which regulates the expression of interferon (IFN) and IFN-stimulated genes (ISGs) following virus recognition. In this study, a novel IRF3 gene was cloned from grouper Epinephelus coioides (EcIRF3) and its effects against Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) was investigated. The full-length of EcIRF3 cDNA was composed of 2513 bp and encoded a polypeptide of 458 amino acids which shared 82% identity with European seabass (Dicentrarchus labrax). EcIRF3 contained three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain. Expression profile analysis revealed that EcIRF3 was abundant in head kidney, kidney, spleen and gill. Upon different stimuli in vitro, the transcript of EcIRF3 was significantly up-regulated after RGNNV infection or treatment with polyinosin-polycytidylic acid (poly I:C). During SGIV infection, the increase of the EcIRF3 transcription was only detected at the late stage, suggesting that EcIRF3 was differently regulated by different stimuli. Immune fluorescence assay indicated that the fluorescence signal of EcIRF3 was increased significantly after infection with RGNNV or treatment with poly I:C, but moderately at the late stage of SGIV infection. Reporter gene assay showed that EcIRF3 activated zebrafish type I IFN and type III IFN promoter in vitro. The viral gene transcription and virus production of RGNNV were significantly decreased in EcIRF3 overexpressing cells. However, the ectopic expression of EcIRF3 did not affect the gene transcription and virus production of SGIV. Moreover, the mRNA expression levels of type I IFN and IFN-inducible genes (MxI, ISG15 and ISG56) were increased in RGNNV infected EcIRF3 overexpressing cells compared to empty vector transfected cells. Together, our results demonstrated that IFN immune response mediated by grouper IRF3 was exerted crucial roles for fish RNA virus, but not for DNA virus replication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thörnqvist, Per-Ove; Höglund, Erik; Winberg, Svante
2015-04-01
In stream-spawning salmonid fishes there is a considerable variation in the timing of when fry leave the spawning nests and establish a feeding territory. The timing of emergence from spawning nests appears to be related to behavioural and physiological traits, e.g. early emerging fish are bolder and more aggressive. In the present study, emerging Atlantic salmon (Salmo salar L.) alevins were sorted into three fractions: early, intermediate and late emerging. At the parr stage, behaviour, stress responses, hindbrain monoaminergic activity and forebrain gene expression were explored in fish from the early and late emerging fractions (first and last 25%). The results show that when subjected to confinement stress, fish from the late emerging fraction respond with a larger activation of the brain serotonergic system than fish from the early fraction. Similarly, in late emerging fish, stress resulted in elevated expression of mRNA coding for serotonin 1A receptors (5-HT1A), GABA-A receptor-associated protein and ependymin, effects not observed in fish from the early emerging fraction. Moreover, fish from the early emerging fraction displayed bolder behaviour than their late emerging littermates. Taken together, these results suggest that time of emergence, boldness and aggression are linked to each other, forming a behavioural syndrome in juvenile salmon. Differences in brain gene expression between early and late emerging salmon add further support to a relationship between stress coping style and timing of emergence. However, early and late emerging salmon do not appear to differ in hypothalamus-pituitary-interrenal (HPI) axis reactivity, another characteristic of divergent stress coping styles. © 2015. Published by The Company of Biologists Ltd.
Wang, Qing; Liu, Yun; Peng, Cheng; Wang, Xiang; Xiao, Ling; Wang, Dengdong; Chen, Jiaxing; Zhang, Haifa; Zhao, Huihong; Li, Shuisheng; Zhang, Yong; Lin, Haoran
2017-08-01
The sex identity of fish can be easily manipulated by exogenous hormones. Treatment with 17-methyltestosterone (MT) has been widely used to induce a male fate, but the molecular and cellular processes underlying sex changes induced by MT treatments and the withdrawal of MT are not well studied. In this study, we systematically investigated gonadal histology, gene expression profiles, sex steroid hormone levels, and cellular changes during sex changes induced by MT-feeding and MT-feeding withdrawal in the protogynous orange-spotted grouper, Epinephelus coioides. Based on gonadal histology, we demonstrated that MT-feeding-induced sex reversal can be divided into early and late phases: in the early phase, male and female germ cells coexist, and MT-feeding withdrawal leads to a female fate; in the late phase, only male germ cells are observed, and MT-feeding withdrawal does not reverse the process, leading to a male fate. In both the early and late phases, cytochrome P450 family19 subfamily A member 1 (cyp19a1a) gene expression increased in response to MT-feeding withdrawal. Finally, by tracing doublesex- and Mab-3-related transcription factor 1 (dmrt1)-expressing cells, we found that gonia-like cells in the germinal epithelium might be the major germ cell sources for developing testes during sex reversal. Collectively, our findings provide insights into the molecular and cellular mechanisms underlying sex changes induced by exogenous hormones. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rodríguez Díaz, M A; Candal, E; Santos-Durán, G N; Adrio, F; Rodríguez-Moldes, I
2011-08-01
We studied the organization of Met-enkephalin-containing cells and fibers in the developing preoptic-hypophyseal system of the brown trout (Salmo trutta fario) by immunohistochemistry and determined the relationship of these cells and fibers to the galaninergic and GABAergic systems. Met-enkephalin immunoreactivity was observed in cells in the preoptic area, the hypothalamus and the pituitary of late larvae. In the hypophysis, a few Met-enkephalin-containing cells were present in all divisions of the adenohypophysis, and some immunoreactive fibers were present in the interdigitations of the neural lobe with the proximal pars distalis. Concurrently, GABAergic fibers innervated the anterior and posterior neural lobe. Galanin cells coexisted with Met-enkephalin cells in neuronal groups of the preoptic-hypophyseal system. Galaninergic and GABAergic fibers innervated the preoptic and hypothalamic areas, but GABAergic fibers containing galanin were not observed. These results indicate that Met-enkephalin, galanin and GABA may modulate neuroendocrine activities in the preoptic area, hypothalamus and pituitary during the transition from larval to juvenile period. To better know how the development of the trout preoptic-hypophyseal system takes place, we studied the patterns of cell proliferation and expression of Pax6, a conserved transcription factor involved in the hypophysis development. Pax6 expressing cells and proliferating cells were present in the Rathke's pouch, the hypothalamus and the hypophysis of early larvae. In late larvae, Pax6 expression was no longer observed in these areas, and the density of proliferating cells largely decreased throughout development, although they remained in the hypophysis of late larvae and juveniles, suggesting that Pax6 might play an important role in the early regionalization of the pituitary in the trout. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontag, Ryan L.; Weber, Thomas J.
2012-05-04
In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediatedmore » toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.« less
Mayank, A K; Sharma, S; Nailwal, H; Lal, S K
2015-12-17
Apoptosis of host cells profoundly influences virus propagation and dissemination, events that are integral to influenza A virus (IAV) pathogenesis. The trigger for activation of apoptosis is regulated by an intricate interplay between cellular and viral proteins, with a strong bearing on IAV replication. Though the knowledge of viral proteins and mechanisms employed by IAV to induce apoptosis has advanced considerably of late, we know relatively little about the repertoire of host factors targeted by viral proteins. Thus, identification of cellular proteins that are hijacked by the virus will help us not only to understand the molecular underpinnings of IAV-induced apoptosis, but also to design future antiviral therapies. Here we show that the nucleoprotein (NP) of IAV directly interacts with and suppresses the expression of API5, a host antiapoptotic protein that antagonizes E2F1-dependent apoptosis. siRNA-mediated depletion of API5, in NP-overexpressed as well as IAV-infected cells, leads to upregulation of apoptotic protease activating factor 1 (APAF1), a downstream modulator of E2F1-mediated apoptosis, and cleavage of caspases 9 and 3, although a reciprocal pattern of these events was observed on ectopic overexpression of API5. In concordance with these observations, annexin V and 7AAD staining assays exhibit downregulation of early and late apoptosis in IAV-infected or NP-transfected cells on overexpression of API5. Most significantly, while overexpression of API5 decreases viral titers, cellular NP protein as well as mRNA levels in IAV-infected A549 cells, silencing of API5 expression causes a steep rise in the same parameters. From the data reported in this manuscript, we propose a proapoptotic role for NP in IAV pathogenesis, whereby it suppresses expression of antiapoptotic factor API5, thus potentiating the E2F1-dependent apoptotic pathway and ensuring viral replication.
Saldanha-Araujo, Felipe; Haddad, Rodrigo; de Farias, Kelen C R Malmegrim; Souza, Alessandra de Paula Alves; Palma, Patrícia V; Araujo, Amélia G; Orellana, Maristela D; Voltarelli, Julio C; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A
2012-01-01
Abstract Mesenchymal stem cells (MSCs) are known to induce the conversion of activated T cells into regulatory T cells in vitro. The marker CD69 is a target of canonical nuclear factor kappa-B (NF-κB) signalling and is transiently expressed upon activation; however, stable CD69 expression defines cells with immunoregulatory properties. Given its enormous therapeutic potential, we explored the molecular mechanisms underlying the induction of regulatory cells by MSCs. Peripheral blood CD3+ T cells were activated and cultured in the presence or absence of MSCs. CD4+ cell mRNA expression was then characterized by microarray analysis. The drug BAY11-7082 (BAY) and a siRNA against v-rel reticuloendotheliosis viral oncogene homolog B (RELB) were used to explore the differential roles of canonical and non-canonical NF-κB signalling, respectively. Flow cytometry and real-time PCR were used for analyses. Genes with immunoregulatory functions, CD69 and non-canonical NF-κB subunits (RELB and NFKB2) were all expressed at higher levels in lymphocytes co-cultured with MSCs. The frequency of CD69+ cells among lymphocytes cultured alone progressively decreased after activation. In contrast, the frequency of CD69+ cells increased significantly following activation in lymphocytes co-cultured with MSCs. Inhibition of canonical NF-κB signalling by BAY immediately following activation blocked the induction of CD69; however, inhibition of canonical NF-κB signalling on the third day further induced the expression of CD69. Furthermore, late expression of CD69 was inhibited by RELB siRNA. These results indicate that the canonical NF-κB pathway controls the early expression of CD69 after activation; however, in an immunoregulatory context, late and sustained CD69 expression is promoted by the non-canonical pathway and is inhibited by canonical NF-κB signalling. PMID:21777379
Wang, Fan; Xiao, Mi; Chen, Ru-Juan; Lin, Xiao-Jie; Siddiq, Muhammad; Liu, Li
2017-02-01
To evaluate the effect of regulatory T cells (Tregs) on the inflammation resulting from lipopolysaccharide (LPS) challenge in prenatal brain tissue, Tregs isolated from pregnant mice were transferred into model mice, and the expression levels of fork head family transcription factor (Foxp3), interleukin-6 (IL-6), CD68 (a marker of microglia), and toll-like receptor 4 (TLR-4) were assessed in the fetal brain tissue. Foxp3, IL-6, and TLR-4 expression were detected by polymerase chain reaction and Western blot; CD68 expression level was detected using immunochemical analysis. Foxp3, IL-6, TLR-4, and CD68 expressions in fetal brain were significantly induced by maternal LPS administration, and the increased expression levels were markedly reduced by adoptive transfer of Tregs. Maternal LPS exposure significantly induced inflammation in perinatal brain tissue, and Tregs negatively regulated this LPS-induced inflammation. © 2016 International Federation for Cell Biology.
Pajares, M J; Agorreta, J; Salvo, E; Behrens, C; Wistuba, I I; Montuenga, L M; Pio, R; Rouzaut, A
2014-03-18
Transforming growth factor β-induced protein (TGFBI) is a secreted protein that mediates cell anchoring to the extracellular matrix. This protein is downregulated in lung cancer, and when overexpressed, contributes to apoptotic cell death. Using a small series of stage IV non-small cell lung cancer (NSCLC) patients, we previously suggested the usefulness of TGFBI as a prognostic and predictive factor in chemotherapy-treated late-stage NSCLC. In order to validate and extend these results, we broaden the analysis and studied TGFBI expression in a large series of samples obtained from stage I-IV NSCLC patients. TGFBI expression was assessed by immunohistochemistry in 364 completely resected primary NSCLC samples: 242 adenocarcinomas (ADCs) and 122 squamous cell carcinomas (SCCs). Kaplan-Meier curves, log-rank tests and the Cox proportional hazards model were used to analyse the association between TGFBI expression and survival. High TGFBI levels were associated with longer overall survival (OS, P<0.001) and progression-free survival (PFS, P<0.001) in SCC patients who received adjuvant platinium-based chemotherapy. Moreover, multivariate analysis demonstrated that high TGFBI expression is an independent predictor of better survival in patients (OS: P=0.030 and PFS: P=0.026). TGFBI may be useful for the identification of a subset of NSCLC who may benefit from adjuvant therapy.
Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K; Jovinge, Stefan
2013-01-01
Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes.
Wang, Zhaoyun; Xia, Yeqiang; Lin, Siyuan; Wang, Yanru; Guo, Baohuan; Song, Xiaoning; Ding, Shaochen; Zheng, Liyu; Feng, Ruiying; Chen, Shulin; Bao, Yalin; Sheng, Cong; Zhang, Xin; Wu, Jianguo; Niu, Dongdong; Jin, Hailing; Zhao, Hongwei
2018-05-18
Exploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense-related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa-miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over-expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more ROS accumulation and callose deposition, and up-regulation of defense-related genes. By using transgenic rice over-expressing osa-miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co-expression of OsNAC60 and osa-miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K.; Jovinge, Stefan
2013-01-01
Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes. PMID:24386094
The hepatic transcriptome of young suckling and aging intrauterine growth restricted male rats
Freije, William A.; Thamotharan, Shanthie; Lee, Regina; Shin, Bo-Chul; Devaskar, Sherin U.
2015-01-01
Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non-alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray-based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin-like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non-transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation. PMID:25371150
The hepatic transcriptome of young suckling and aging intrauterine growth restricted male rats.
Freije, William A; Thamotharan, Shanthie; Lee, Regina; Shin, Bo-Chul; Devaskar, Sherin U
2015-04-01
Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non-alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray-based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin-like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non-transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation. © 2014 Wiley Periodicals, Inc.
Functional Analysis of the ComK Protein of Bacillus coagulans
Kovács, Ákos T.; Eckhardt, Tom H.; van Kranenburg, Richard; Kuipers, Oscar P.
2013-01-01
The genes for DNA uptake and recombination in Bacilli are commonly regulated by the transcriptional factor ComK. We have identified a ComK homologue in Bacillus coagulans, an industrial relevant organism that is recalcitrant for transformation. Introduction of B. coagulans comK gene under its own promoter region into Bacillus subtilis comK strain results in low transcriptional induction of the late competence gene comGA, but lacking bistable expression. The promoter regions of B. coagulans comK and the comGA genes are recognized in B. subtilis and expression from these promoters is activated by B. subtilis ComK. Purified ComK protein of B. coagulans showed DNA-binding ability in gel retardation assays with B. subtilis- and B. coagulans-derived probes. These experiments suggest that the function of B. coagulans ComK is similar to that of ComK of B. subtilis. When its own comK is overexpressed in B. coagulans the comGA gene expression increases 40-fold, while the expression of another late competence gene, comC is not elevated and no reproducible DNA-uptake could be observed under these conditions. Our results demonstrate that B. coagulans ComK can recognize several B. subtilis comK-responsive elements, and vice versa, but indicate that the activation of the transcription of complete sets of genes coding for a putative DNA uptake apparatus in B. coagulans might differ from that of B. subtilis. PMID:23301076
Kramer, Jan; Steinhoff, Jürgen; Klinger, Matthias; Fricke, Lutz; Rohwedel, Jürgen
2006-03-01
Differentiation of mouse embryonic stem (ES) cells via embryoid bodies (EB) is established as a suitable model to study cellular processes of development in vitro. ES cells are known to be pluripotent because of their capability to differentiate into cell types of all three germ layers including germ cells. Here, we show that ES cells differentiate into renal cell types in vitro. We found that genes were expressed during EB cultivation, which have been previously described to be involved in renal development. Marker molecules characteristic for terminally differentiated renal cell types were found to be expressed predominantly during late stages of EB cultivation, while marker molecules involved in the initiation of nephrogenesis were already expressed during early steps of EB development. On the cellular level--using immunostaining--we detected cells expressing podocin, nephrin and wt-1, characteristic for differentiated podocytes and other cells, which expressed Tamm-Horsfall protein, a marker for distal tubule epithelial cells of kidney tissue. Furthermore, the proximal tubule marker molecules renal-specific oxido reductase, kidney androgen-related protein and 25-hydroxyvitamin D3alpha-hydroxylase were found to be expressed in EBs. In particular, we could demonstrate that cells expressing podocyte marker molecules assemble to distinct ring-like structures within the EBs. Because the differentiation efficiency into these cell types is still relatively low, application of fibroblast growth factor (FGF)-2 in combination with leukaemia inhibitory factor was tested for induction, but did not enhance ES cell-derived renal differentiation in vitro.
Chen, Ji; Lv, Fengjuan; Liu, Jingran; Ma, Yina; Wang, Youhua; Chen, Binglin; Meng, Yali; Zhou, Zhiguo; Oosterhuis, Derrick M.
2014-01-01
Cotton-rapeseed or cotton-wheat double cropping systems are popular in the Yangtze River Valley and Yellow River Valley of China. Due to the competition of temperature and light resources during the growing season of double cropping system, cotton is generally late-germinating and late-maturing and has to suffer from the coupling of declining temperature and low light especially in the late growth stage. In this study, late planting (LP) and shading were used to fit the coupling stress, and the coupling effect on fiber cellulose synthesis was investigated. Two cotton (Gossypium hirsutum L.) cultivars were grown in the field in 2010 and 2011 at three planting dates (25 April, 25 May and 10 June) each with three shading levels (normal light, declined 20% and 40% PAR). Mean daily minimum temperature was the primary environmental factor affected by LP. The coupling of LP and shading (decreased cellulose content by 7.8%–25.5%) produced more severe impacts on cellulose synthesis than either stress alone, and the effect of LP (decreased cellulose content by 6.7%–20.9%) was greater than shading (decreased cellulose content by 0.7%–5.6%). The coupling of LP and shading hindered the flux from sucrose to cellulose by affecting the activities of related cellulose synthesis enzymes. Fiber cellulose synthase genes expression were delayed under not only LP but shading, and the coupling of LP and shading markedly postponed and even restrained its expression. The decline of sucrose-phosphate synthase activity and its peak delay may cause cellulose synthesis being more sensitive to the coupling stress during the later stage of fiber secondary wall development (38–45 days post-anthesis). The sensitive difference of cellulose synthesis between two cultivars in response to the coupling of LP and shading may be mainly determined by the sensitiveness of invertase, sucrose-phosphate synthase and cellulose synthase. PMID:25133819
Loss of LRIG1 locus increases risk of early and late relapse of stage I/II breast cancer.
Thompson, Patricia A; Ljuslinder, Ingrid; Tsavachidis, Spyros; Brewster, Abenaa; Sahin, Aysegul; Hedman, Håkan; Henriksson, Roger; Bondy, Melissa L; Melin, Beatrice S
2014-06-01
Gains and losses at chromosome 3p12-21 are common in breast tumors and associated with patient outcomes. We hypothesized that the LRIG1 gene at 3p14.1, whose product functions in ErbB-family member degradation, is a critical tumor modifier at this locus. We analyzed 971 stage I/II breast tumors using Affymetrix Oncoscan molecular inversion probe arrays that include 12 probes located within LRIG1. Copy number results were validated against gene expression data available in the public database. By partitioning the LRIG1 probes nearest exon 12/13, we confirm a breakpoint in the gene and show that gains and losses in the subregions differ by tumor and patient characteristics including race/ethnicity. In analyses adjusted for known prognostic factors, loss of LRIG1 was independently associated with risk of any relapse (HR, 1.90; 95% CI, 1.32-2.73), relapse≥5 years (HR, 2.39; 95% CI, 1.31-4.36), and death (HR, 1.55; 95% CI, 1.11-2.16). Analyses of copy number across chromosome 3, as well as expression data from pooled, publicly available datasets, corroborated the hypothesis of an elevated and persistent risk among cases with loss of or low LRIG1. We concluded that loss/low expression of LRIG1 is an independent risk factor for breast cancer metastasis and death in stage I/II patients. Increased hazard in patients with loss/low LRIG1 persists years after diagnosis, suggesting that LRIG1 is acting as a critical suppressor of tumor metastasis and is an early clinical indicator of risk for late recurrences in otherwise low-risk patients. ©2014 American Association for Cancer Research.
Garcia, J A; Ferreira, H L; Vieira, F V; Gameiro, R; Andrade, A L; Eugênio, F R; Flores, E F; Cardoso, T C
2017-06-01
Oncolytic virotherapy is a novel strategy for treatment of cancer in humans and companion animals as well. Canine distemper virus (CDV), a paramyxovirus, has proven to be oncolytic through induction of apoptosis in canine-derived tumour cells, yet the mechanism behind this inhibitory action is poorly understood. In this study, three human mammary tumour cell lines and one canine-derived adenofibrosarcoma cell line were tested regarding to their susceptibility to CDV infection, cell proliferation, apoptosis, mitochondrial membrane potential and expression of tumour necrosis factor-alpha-induced protein 8 (TNFAIP8). CDV replication-induced cytopathic effect, decrease of cell proliferation rates, and >45% of infected cells were considered death and/or under late apoptosis/necrosis. TNFAIP8 and CDVM gene expression were positively correlated in all cell lines. In addition, mitochondrial membrane depolarization was associated with increase in virus titres (p < 0.005). Thus, these results strongly suggest that both human and canine mammary tumour cells are potential candidates for studies concerning CDV-induced cancer therapy. © 2015 John Wiley & Sons Ltd.
Gervais, Julie; Plissonneau, Clémence; Linglin, Juliette; Meyer, Michel; Labadie, Karine; Cruaud, Corinne; Fudal, Isabelle; Rouxel, Thierry; Balesdent, Marie-Hélène
2017-10-01
Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an 'adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven 'late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the 'late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the 'early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Andreuzza, Sébastien; Nishal, Bindu; Singh, Aparna; Siddiqi, Imran
2015-01-01
Meiosis produces haploid cells essential for sexual reproduction. In yeast, entry into meiosis activates transcription factors which trigger a transcriptional cascade that results in sequential co-expression of early, middle and late meiotic genes. However, these factors are not conserved, and the factors and regulatory mechanisms that ensure proper meiotic gene expression in multicellular eukaryotes are poorly understood. Here, we report that DUET/MMD1, a PHD finger protein essential for Arabidopsis male meiosis, functions as a transcriptional regulator in plant meiosis. We find that DUET-PHD binds H3K4me2 in vitro, and show that this interaction is critical for function during meiosis. We also show that DUET is required for proper microtubule organization during meiosis II, independently of its function in meiosis I. Remarkably, DUET protein shows stage-specific expression, confined to diplotene. We identify two genes TDM1 and JAS with critical functions in cell cycle transitions and spindle organization in male meiosis, as DUET targets, with TDM1 being a direct target. Thus, DUET is required to regulate microtubule organization and cell cycle transitions during male meiosis, and functions as a direct transcription activator of the meiotic gene TDM1. Expression profiling showed reduced expression of a subset comprising about 12% of a known set of meiosis preferred genes in the duet mutant. Our results reveal the action of DUET as a transcriptional regulator during male meiosis in plants, and suggest that transcription of meiotic genes is under stagewise control in plants as in yeast. PMID:26348709
Andreuzza, Sébastien; Nishal, Bindu; Singh, Aparna; Siddiqi, Imran
2015-09-01
Meiosis produces haploid cells essential for sexual reproduction. In yeast, entry into meiosis activates transcription factors which trigger a transcriptional cascade that results in sequential co-expression of early, middle and late meiotic genes. However, these factors are not conserved, and the factors and regulatory mechanisms that ensure proper meiotic gene expression in multicellular eukaryotes are poorly understood. Here, we report that DUET/MMD1, a PHD finger protein essential for Arabidopsis male meiosis, functions as a transcriptional regulator in plant meiosis. We find that DUET-PHD binds H3K4me2 in vitro, and show that this interaction is critical for function during meiosis. We also show that DUET is required for proper microtubule organization during meiosis II, independently of its function in meiosis I. Remarkably, DUET protein shows stage-specific expression, confined to diplotene. We identify two genes TDM1 and JAS with critical functions in cell cycle transitions and spindle organization in male meiosis, as DUET targets, with TDM1 being a direct target. Thus, DUET is required to regulate microtubule organization and cell cycle transitions during male meiosis, and functions as a direct transcription activator of the meiotic gene TDM1. Expression profiling showed reduced expression of a subset comprising about 12% of a known set of meiosis preferred genes in the duet mutant. Our results reveal the action of DUET as a transcriptional regulator during male meiosis in plants, and suggest that transcription of meiotic genes is under stagewise control in plants as in yeast.
Time course of gene expression during mouse skeletal muscle hypertrophy
Lee, Jonah D.; England, Jonathan H.; Esser, Karyn A.; McCarthy, John J.
2013-01-01
The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy. PMID:23869057
Time course of gene expression during mouse skeletal muscle hypertrophy.
Chaillou, Thomas; Lee, Jonah D; England, Jonathan H; Esser, Karyn A; McCarthy, John J
2013-10-01
The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy.
Lin, Yu-Fu; Chen, You-Yi; Hsiao, Yu-Yun; Shen, Ching-Yu; Hsu, Jui-Ling; Yeh, Chuan-Ming; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Liu, Zhong-Jian; Tsai, Wen-Chieh
2016-01-01
TEOSINTE-BRANCHED/CYCLOIDEA/PCF (TCP) proteins are plant-specific transcription factors known to have a role in multiple aspects of plant growth and development at the cellular, organ and tissue levels. However, there has been no related study of TCPs in orchids. Here we identified 23 TCP genes from the genome sequence of Phalaenopsis equestris. Phylogenetic analysis distinguished two homology classes of PeTCP transcription factor families: classes I and II. Class II was further divided into two subclasses, CIN and CYC/TB1. Spatial and temporal expression analysis showed that PePCF10 was predominantly expressed in ovules at early developmental stages and PeCIN8 had high expression at late developmental stages in ovules, with overlapping expression at day 16 after pollination. Subcellular localization and protein–protein interaction analyses revealed that PePCF10 and PeCIN8 could form homodimers and localize in the nucleus. However, PePCF10 and PeCIN8 could not form heterodimers. In transgenic Arabidopsis thaliana plants (overexpression and SRDX, a super repression motif derived from the EAR-motif of the repression domain of tobacco ETHYLENE-RESPONSIVE ELEMENT-BINDING FACTOR 3 and SUPERMAN, dominantly repressed), the two genes helped regulate cell proliferation. Together, these results suggest that PePCF10 and PeCIN8 play important roles in orchid ovule development by modulating cell division. PMID:27543606
Saber, Anne T; Jacobsen, Nicklas R; Bornholdt, Jette; Kjær, Sanna L; Dybdahl, Marianne; Risom, Lotte; Loft, Steffen; Vogel, Ulla; Wallin, Håkan
2006-01-01
Background Particulate air pollution has been associated with lung and cardiovascular disease, for which lung inflammation may be a driving mechanism. The pro-inflammatory cytokine, tumor necrosis factor (TNF) has been suggested to have a key-role in particle-induced inflammation. We studied the time course of gene expression of inflammatory markers in the lungs of wild type mice and Tnf-/- mice after exposure to diesel exhaust particles (DEPs). Mice were exposed to either a single or multiple doses of DEP by inhalation. We measured the mRNA level of the cytokines Tnf and interleukin-6 (Il-6) and the chemokines, monocyte chemoattractant protein (Mcp-1), macrophage inflammatory protein-2 (Mip-2) and keratinocyte derived chemokine (Kc) in the lung tissue at different time points after exposure. Results Tnf mRNA expression levels increased late after DEP-inhalation, whereas the expression levels of Il-6, Mcp-1 and Kc increased early. The expression of Mip-2 was independent of TNF if the dose was above a certain level. The expression levels of the cytokines Kc, Mcp-1 and Il-6, were increased in the absence of TNF. Conclusion Our data demonstrate that Tnf is not important in early DEP induced inflammation and rather exerts negative influence on Mcp-1 and Kc mRNA levels. This suggests that other signalling pathways are important, a candidate being one involving Mcp-1. PMID:16504008
Zhang, Xiuming; Mormino, Elizabeth C; Sun, Nanbo; Sperling, Reisa A; Sabuncu, Mert R; Yeo, B T Thomas
2016-10-18
We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer's disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid-positive (Aβ+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in Aβ+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research.
Mishra, B; Kizaki, K; Koshi, K; Ushizawa, K; Takahashi, T; Hosoe, M; Sato, T; Ito, A; Hashizume, K
2012-02-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) and its induced matrix metalloproteinases (MMPs) play a crucial role in tissue remodeling during the peri-implantation period. However, the role of EMMPRIN in the bovine placenta is still unclear. We have postulated that EMMPRIN might play a regulatory role in trophoblastic cell functions during gestation by itself or through the regulation of MMP expression. In this study, EMMPRIN mRNA was detected in the bovine placentome and interplacentome throughout gestation, and its expression was significantly higher in the cotyledon during late gestation. In situ hybridization showed that EMMPRIN mRNA was expressed in the caruncular epithelium and the cotyledonary epithelium, including binucleate cells. Western blot analysis detected a band representing a protein of approximately 65 kDa in the caruncular and cotyledonary tissues, and the intensity of its expression was increased in both of these tissues during late gestation. The expression levels of MMP-2 and MMP-14 in the bovine placenta were higher during late gestation, as was observed for EMMPRIN. Therefore, EMMPRIN might regulate trophoblastic cell functions, especially those of binucleate cells, through MMP expression in the bovine placenta. Copyright © 2012 Elsevier Inc. All rights reserved.
Giovanoli, Sandra; Notter, Tina; Richetto, Juliet; Labouesse, Marie A; Vuillermot, Stéphanie; Riva, Marco A; Meyer, Urs
2015-11-25
Prenatal exposure to infection and/or inflammation is increasingly recognized to play an important role in neurodevelopmental brain disorders. It has recently been postulated that prenatal immune activation, especially when occurring during late gestational stages, may also induce pathological brain aging via sustained effects on systemic and central inflammation. Here, we tested this hypothesis using an established mouse model of exposure to viral-like immune activation in late pregnancy. Pregnant C57BL6/J mice on gestation day 17 were treated with the viral mimetic polyriboinosinic-polyribocytidilic acid (poly(I:C)) or control vehicle solution. The resulting offspring were first tested using cognitive and behavioral paradigms known to be sensitive to hippocampal damage, after which they were assigned to quantitative analyses of inflammatory cytokines, microglia density and morphology, astrocyte density, presynaptic markers, and neurotrophin expression in the hippocampus throughout aging (1, 5, and 22 months of age). Maternal poly(I:C) treatment led to a robust increase in inflammatory cytokine levels in late gestation but did not cause persistent systemic or hippocampal inflammation in the offspring. The late prenatal manipulation also failed to cause long-term changes in microglia density, morphology, or activation, and did not induce signs of astrogliosis in pubescent, adult, or aged offspring. Despite the lack of persistent inflammatory or glial anomalies, offspring of poly(I:C)-exposed mothers showed marked and partly age-dependent deficits in hippocampus-regulated cognitive functions as well as impaired hippocampal synaptophysin and brain-derived neurotrophic factor (BDNF) expression. Late prenatal exposure to viral-like immune activation in mice causes hippocampus-related cognitive and synaptic deficits in the absence of chronic inflammation across aging. These findings do not support the hypothesis that this form of prenatal immune activation may induce pathological brain aging via sustained effects on systemic and central inflammation. We further conclude that poly(I:C)-based prenatal immune activation models are reliable in their effectiveness to induce (hippocampal) neuropathology across aging, but they appear unsuited for studying the role of chronic systemic or central inflammation in brain aging.
Zhu, Yan; Zhang, Ke; Hu, Lan; Xiao, Mi-Li; Li, Zhi-Hua; Chen, Chao
2017-05-01
To investigate the risk factors, clinical features, and magnetic resonance imaging (MRI) changes of encephalopathy in high-risk late preterm infants. Head MRI scan was performed for late preterm infants with high-risk factors for brain injury who were hospitalized between January 2009 and December 2014. The risk factors, clinical features, and head MRI features of encephalopathy in late preterm infants were analyzed. A total of 1 007 late preterm infants underwent MRI scan, among whom 313 (31.1%) had imaging features in accordance with the features of encephalopathy of prematurity. Of all infants, 76.7% had white matter damage. There was no association between the development of encephalopathy and gestational age in late preterm infants, but the detection rate of encephalopathy gradually increased with the increasing birth weight (P<0.05). The logistic regression analysis showed that a history of resuscitation was an independent risk factor for encephalopathy of prematurity (P<0.01). Encephalopathy of prematurity is commonly seen in high-risk late preterm infants, especially white matter damage. A history of resuscitation is an independent risk factor for encephalopathy in late preterm infants.
High-order tail in Schwarzschild spacetime
NASA Astrophysics Data System (ADS)
Casals, Marc; Ottewill, Adrian
2015-12-01
We present an analysis of the behavior at late times of linear field perturbations of a Schwarzschild black hole spacetime. In particular, we give explicit analytic expressions for the field perturbations (for a specific ℓ-multipole) of general spin up to the first four orders at late times. These expressions are valid at arbitrary radius and include, apart from the well-known power-law tail decay at leading order (˜t-2 ℓ-3), a new logarithmic behavior at third leading order (˜t-2 ℓ-5ln t ). We obtain these late-time results by developing an analytical formalism initially formulated by Mano, Suzuki and Takasugi (MST) [Prog. Theor. Phys. 95, 1079 (1996); 96, 549 (1996)] formalism and by expanding the various MST Fourier-mode quantities for small frequency. While we give explicit expansions up to the first four leading orders (for small frequency for the Fourier modes, for late time for the field perturbation), we give a prescription for obtaining expressions to arbitrary order within a "perturbative regime."
Son, Bo-Ra; Marquez-Curtis, Leah A; Kucia, Magda; Wysoczynski, Marcin; Turner, A Robert; Ratajczak, Janina; Ratajczak, Mariusz Z; Janowska-Wieczorek, Anna
2006-05-01
Human mesenchymal stem cells (MSCs) are increasingly being considered in cell-based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal-derived factor (SDF)-1 and hepatocyte growth factor (HGF) become up-regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo-expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c-met, the cognate receptors of SDF-1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)-MMP, matrix-degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM- or CB-derived MSCs for up to 15-18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c-met, and 3) MMPs. We found that for up to 15-18 passages, both BM- and CB-derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE-cadherin; 2) express CXCR4 and c-met receptors and are strongly attracted by SDF-1 and HGF gradients; 3) express MMP-2 and MT1-MMP transcripts and proteins; and 4) are chemo-invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF-1-CXCR4 and HGF-c-met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.
Genetic dissection of Alzheimer disease, a heterogeneous disorder.
Schellenberg, G D
1995-09-12
The genetics of Alzheimer disease (AD) are complex and not completely understood. Mutations in the amyloid precursor protein gene (APP) can cause early-onset autosomal dominant AD. In vitro studies indicate that cells expressing mutant APPs overproduce pathogenic forms of the A beta peptide, the major component of AD amyloid. However, mutations in the APP gene are responsible for 5% or less of all early-onset familial AD. A locus on chromosome 14 is responsible for AD in other early-onset AD families and represents the most severe form of the disease in terms of age of onset and rate of decline. Attempts to identify the AD3 gene by positional cloning methods are underway. At least one additional early-onset AD locus remains to be located. In late-onset AD, the apolipoprotein E gene allele epsilon 4 is a risk factor for AD. This allele appears to act as a dose-dependent age-of-onset modifier. The epsilon 2 allele of this gene may be protective. Other late-onset susceptibility factors remain to be identified.
Sakata, Kazuko; Martinowich, Keri; Woo, Newton H.; Schloesser, Robert J.; Jimenez, Dennisse V.; Ji, Yuanyuan; Shen, Liya; Lu, Bai
2013-01-01
Activity-dependent gene transcription, including that of the brain-derived neurotrophic factor (Bdnf) gene, has been implicated in various cognitive functions. We previously demonstrated that mutant mice with selective disruption of activity-dependent BDNF expression (BDNF-KIV mice) exhibit deficits in GABA-mediated inhibition in the prefrontal cortex (PFC). Here, we show that disruption of activity-dependent BDNF expression impairs BDNF-dependent late-phase long-term potentiation (L-LTP) in CA1, a site of hippocampal output to the PFC. Interestingly, early-phase LTP and conventional L-LTP induced by strong tetanic stimulation were completely normal in BDNF-KIV mice. In parallel, attenuation of activity-dependent BDNF expression significantly impairs spatial memory reversal and contextual memory extinction, two executive functions that require intact hippocampal–PFC circuitry. In contrast, spatial and contextual memory per se were not affected. Thus, activity-dependent BDNF expression in the hippocampus and PFC may contribute to cognitive and behavioral flexibility. These results suggest distinct roles for different forms of L-LTP and provide a link between activity-dependent BDNF expression and behavioral perseverance, a hallmark of several psychiatric disorders. PMID:23980178
Sun, Mingliang; He, Yunfan; Zhou, Tao; Zhang, Pan; Gao, Jianhua; Lu, Feng
2017-01-01
Mesenchymal stem cells are an attractive cell type for cytotherapy in wound healing. The authors recently developed a novel, adipose-tissue-derived, injectable extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel) for stem cell therapy. This study was designed to assess the therapeutic effects of ECM/SVF-gel on wound healing and potential mechanisms. ECM/SVF-gel was prepared for use in nude mouse excisional wound healing model. An SVF cell suspension and phosphate-buffered saline injection served as the control. The expression levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and monocyte chemotactic protein-1 (MCP-1) in ECM/SVF-gel were analyzed at different time points. Angiogenesis (tube formation) assays of ECM/SVF-gel extracts were evaluated, and vessels density in skin was determined. The ECM/SVF-gel extract promoted tube formation in vitro and increased the expression of the angiogenic factors VEGF and bFGF compared with those in the control. The expression of the inflammatory chemoattractant MCP-1 was high in ECM/SVF-gel at the early stage and decreased sharply during the late stage of wound healing. The potent angiogenic effects exerted by ECM/SVF-gel may contribute to the improvement of wound healing, and these effects could be related to the enhanced inflammatory response in ECM/SVF-gel during the early stage of wound healing.
Expression of Wise in chick embryos.
Shigetani, Y; Itasaki, N
2007-08-01
We have performed in situ hybridization to study the expression of Wise in early chick embryos. Wise expression is first detectable in the ectoderm at posterior levels of late neurula. As development proceeds, Wise expression is seen in specific patterns in the ectoderm of the trunk region, pharyngeal arches, limb buds, and feather buds. In addition to these areas, particular cartilages such as the ones in the maxillary process and limbs start to express Wise at the late pharyngula stage, and the expression in these cartilages becomes stronger than that in epidermal components at later stages. Importantly, Wise is expressed in regions where other signaling molecules such as Wnt, Bmp, and Shh are known to function in morphogenesis and differentiation. Direct comparisons of the expression of Wise and these genes are also demonstrated. (c) 2007 Wiley-Liss, Inc.
Dasgupta, Ananya; Kim, Joonki; Manakkadan, Anoop; Arumugam, Thiruma V; Sajikumar, Sreedharan
2017-12-19
Metaplasticity is the inherent property of a neuron or neuronal population to undergo activity-dependent changes in neural function that modulate subsequent synaptic plasticity. Here we studied the effect of intermittent fasting (IF) in governing the interactions of associative plasticity mechanisms in the pyramidal neurons of rat hippocampal area CA1. Late long-term potentiation and its associative mechanisms such as synaptic tagging and capture at an interval of 120 min were evaluated in four groups of animals, AL (Ad libitum), IF12 (daily IF for 12 h), IF16 (daily IF for 16 h) and EOD (every other day IF for 24 h). IF had no visible effect on the early or late plasticity but it manifested a critical role in prolonging the associative interactions between weak and strong synapses at an interval of 120 min in IF16 and EOD animals. However, both IF12 and AL did not show associativity at 120 min. Plasticity genes such as Bdnf and Prkcz, which are well known for their expressions in late plasticity and synaptic tagging and capture, were significantly upregulated in IF16 and EOD in comparison to AL. Specific inhibition of brain derived neurotropic factor (BDNF) prevented the prolonged associativity expressed in EOD. Thus, daily IF for 16 h or more can be considered to enhance the metaplastic properties of synapses by improving their associative interactions that might translate into animprovedmemoryformation. Copyright © 2017. Published by Elsevier Inc.
Workman, Aspen; Eudy, James; Smith, Lynette; Frizzo da Silva, Leticia; Sinani, Devis; Bricker, Halie; Cook, Emily; Doster, Alan
2012-01-01
Bovine herpesvirus 1 (BHV-1), an alphaherpesvirinae subfamily member, establishes latency in sensory neurons. Elevated corticosteroid levels, due to stress, reproducibly triggers reactivation from latency in the field. A single intravenous injection of the synthetic corticosteroid dexamethasone (DEX) to latently infected calves consistently induces reactivation from latency. Lytic cycle viral gene expression is detected in sensory neurons within 6 h after DEX treatment of latently infected calves. These observations suggested that DEX stimulated expression of cellular genes leads to lytic cycle viral gene expression and productive infection. In this study, a commercially available assay—Bovine Gene Chip—was used to compare cellular gene expression in the trigeminal ganglia (TG) of calves latently infected with BHV-1 versus DEX-treated animals. Relative to TG prepared from latently infected calves, 11 cellular genes were induced more than 10-fold 3 h after DEX treatment. Pentraxin three, a regulator of innate immunity and neurodegeneration, was stimulated 35- to 63-fold after 3 or 6 h of DEX treatment. Two transcription factors, promyelocytic leukemia zinc finger (PLZF) and Slug were induced more than 15-fold 3 h after DEX treatment. PLZF or Slug stimulated productive infection 20- or 5-fold, respectively, and Slug stimulated the late glycoprotein C promoter more than 10-fold. Additional DEX-induced transcription factors also stimulated productive infection and certain viral promoters. These studies suggest that DEX-inducible cellular transcription factors and/or signaling pathways stimulate lytic cycle viral gene expression, which subsequently leads to successful reactivation from latency in a small subset of latently infected neurons. PMID:22190728
Hellwig, Birte; Madjar, Katrin; Edlund, Karolina; Marchan, Rosemarie; Cadenas, Cristina; Heimes, Anne-Sophie; Almstedt, Katrin; Lebrecht, Antje; Sicking, Isabel; Battista, Marco J; Micke, Patrick; Schmidt, Marcus; Hengstler, Jan G; Rahnenführer, Jörg
2016-01-01
In breast cancer, gene signatures that predict the risk of metastasis after surgical tumor resection are mainly indicative of early events. The purpose of this study was to identify genes linked to metastatic recurrence more than three years after surgery. Affymetrix HG U133A and Plus 2.0 array datasets with information on metastasis-free, disease-free or overall survival were accessed via public repositories. Time restricted Cox regression models were used to identify genes associated with metastasis during or after the first three years post-surgery (early- and late-type genes). A sequential validation study design, with two non-adjuvantly treated discovery cohorts (n = 409) and one validation cohort (n = 169) was applied and identified genes were further evaluated in tamoxifen-treated breast cancer patients (n = 923), as well as in patients with non-small cell lung (n = 1779), colon (n = 893) and ovarian (n = 922) cancer. Ten late- and 243 early-type genes were identified in adjuvantly untreated breast cancer. Adjustment to clinicopathological factors and an established proliferation-related signature markedly reduced the number of early-type genes to 16, whereas nine late-type genes still remained significant. These nine genes were associated with metastasis-free survival (MFS) also in a non-time restricted model, but not in the early period alone, stressing that their prognostic impact was primarily based on MFS more than three years after surgery. Four of the ten late-type genes, the ribosome-related factors EIF4B, RPL5, RPL3, and the tumor angiogenesis modifier EPN3 were significantly associated with MFS in the late period also in a meta-analysis of tamoxifen-treated breast cancer cohorts. In contrast, only one late-type gene (EPN3) showed consistent survival associations in more than one cohort in the other cancer types, being associated with worse outcome in two non-small cell lung cancer cohorts. No late-type gene was validated in ovarian and colon cancer. Ribosome-related genes were associated with decreased risk of late metastasis in both adjuvantly untreated and tamoxifen-treated breast cancer patients. In contrast, high expression of epsin (EPN3) was associated with increased risk of late metastasis. This is of clinical relevance considering the well-understood role of epsins in tumor angiogenesis and the ongoing development of epsin antagonizing therapies.
Zachut, M; Kra, G; Livshitz, L; Portnick, Y; Yakoby, S; Friedlander, G; Levin, Y
2017-03-31
Environmental heat stress and metabolic stress during transition from late gestation to lactation are main factors limiting production in dairy cattle, and there is a complex interaction between them. Many proteins expressed in adipose tissue are involved in metabolic responses to stress. We aimed to investigate the effects of seasonal heat stress on adipose proteome in late-pregnant cows, and to identify biomarkers of heat stress. Late pregnant cows during summer heat stress (S, n=18), or during the winter season (W, n=12) were used. Subcutaneous adipose tissue biopsies sampled 14days prepartum from S (n=10) and W (n=8) were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nano-LC-MS/MS). Plasma concentrations of malondialdehyde and cortisol were higher in S than in W cows. Proteomic analysis revealed that 107/1495 proteins were differentially abundant in S compared to W (P<0.05 and fold change of at least ±1.5). Top canonical pathways in S vs. W adipose were Nrf2-mediated oxidative stress response, acute-phase response, and FXR/RXR and LXR/RXR activation. Novel biomarkers of heat stress in adipose tissue were found. These findings indicate that seasonal heat stress has a unique effect on adipose tissue in late-pregnant cows. This work shows that seasonal heat stress increases plasma concentrations of the oxidative stress marker malondialdehyde and cortisol in transition dairy cows. As many proteins expressed in the adipose tissue are involved in metabolic responses to stress, we investigated the effects of heat stress on the proteome of adipose tissue from late-pregnant cows during summer or winter seasons. We demonstrated that heat stress enriches several stress-related pathways, such as the Nrf2-mediated oxidative stress response and the acute-phase response in adipose tissues. Thus, environmental heat stress has a unique effect on adipose tissue in late-pregnant cows, as part of the regulatory adaptations to chronic heat load during the summer season. In addition, this study presents the widest available dataset of adipose tissue proteome in dairy cows, and revealed several novel biomarkers of heat stress in adipose tissue of dairy cows, the use of which awaits further validation. Copyright © 2017 Elsevier B.V. All rights reserved.
Villar, Cristina C; Zhao, Xiang R; Livi, Carolina B; Cochran, David L
2015-05-01
A fundamental issue limiting the efficacy of surgical approaches designed to correct periodontal mucogingival defects is that new tissues rely on limited sources of blood supply from the adjacent recipient bed. Accordingly, therapies based on tissue engineering that leverage local self-healing potential may represent promising alternatives for the treatment of mucogingival defects by inducing local vascularization. The aim of this study is to evaluate the effect of commercially available living cellular sheets (LCS) on the angiogenic potential of neonatal dermal human microvascular endothelial cells (HMVEC-dNeo). The effect of LCS on HMVEC-dNeo proliferation, migration, capillary tube formation, gene expression, and production of angiogenic factors was evaluated over time. LCS positively influenced HMVEC-dNeo proliferation and migration. Moreover, HMVEC-dNeo incubated with LCS showed transcriptional profiles different from those of untreated cells. Whereas increased expression of angiogenic genes predominated early on in response to LCS, late-phase responses were characterized by up- and downregulation of angiostatic and angiogenic genes. However, this trend was not confirmed at the protein level, as LCS induced increased production of most of the angiogenic factors tested (i.e., epidermal growth factor [EGF], heparin-binding EGF-like growth factor, interleukin 6, angiopoietin, platelet-derived growth factor-BB, placental growth factor, and vascular endothelial growth factor) throughout the investigational period. Finally, although LCS induced HMVEC-dNeo proliferation, migration, and expression of angiogenic factors, additional factors and environmental pressures are likely to be required to promote the development of complex, mesh-like vascular structures. LCS favor initial mechanisms that govern angiogenesis but failed to enhance or accelerate HMVEC-dNeo morphologic transition to complex vascular structures.
Heusinger, Elena; Kirchhoff, Frank
2017-01-01
The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle. PMID:28261165
Sánchez, J; Castillo, G; Medrano, A I; Martinez-Palomo, A; Rodríguez, M H
1995-01-01
We report on the physiological response of Vibrio cholerae upon growth on bacteria-free intestinal fluids prepared from feces of individuals in the acute phase of cholera. Sterilized stool fluids supported growth of V. cholerae to reach 0.3-0.4 O.D. units (600 nm) at 37 degrees C. Scanning electron microscopy showed vibrios to be slender and elongated as compared to bacteria in synthetic media. Growth in stool fluid apparently induced expression of several immunoreactive proteins using cholera convalescent sera. Supernatants of fluid-grown vibrios had undetectable cholera toxin (CT) concentrations. Soluble hemagglutinins and soluble proteases were much less reduced when compared to cultures in Syncase or AKI media while cell-associated mannose-sensitive hemagglutinin (MSHA) was expressed at good levels. Lack of production of CT in fluid devoid of tissue may be due to absence of stimulating elements in intact intestine. Alternatively, culturing V. cholerae in stool fluid might resemble a late proliferation stage where downregulation of toxin might occur. Irrespectively, concomitant production of other virulence factors represents a phenomenon of differential regulation by fluid. Efforts are now underway to determine if this response depends upon factors in stool fluid acting through known genetic regulatory cascades or other. Attempts are also geared to identify fluid-induced proteins and their genes.
Frattini, M G; Lim, H B; Laimins, L A
1996-01-01
Human papillomavirus (HPV) types 16, 18, 31, and 51 are the etiologic agents of many anogenital cancers including those of the cervix. These "high risk" HPVs specifically target genital squamous epithelia, and their lytic life cycle is closely linked to epithelial differentiation. We have developed a genetic assay for HPV functions during pathogenesis using recircularized cloned HPV 31 genomes that were transfected together with a drug resistance marker into monolayer cultures of normal human foreskin keratinocytes, the natural host cell. After drug selection, cell lines were isolated that stably maintained HPV 31 DNA as episomes and underwent terminal differentiation when grown in organotypic raft cultures. In differentiated rafts, the expression of late viral genes, amplification of viral DNA, and production of viral particles were detected in suprabasal cells. This demonstrated the ability to synthesize HPV 31 virions from transfected DNA templates and allowed an examination of HPV functions during the vegetative viral life cycle. We then used this system to investigate whether an episomal genome was required for the induction of late viral gene expression. When an HPV 31 genome (31E1*) containing a missense mutation in the E1 open reading frame was transfected into normal human keratinocytes, the mutant viral sequences were found to integrate into the host cell chromosomal DNA with both early and late regions intact. While high levels of early viral gene transcription were observed, no late gene expression was detected in rafts of cell lines containing the mutant viral genome despite evidence of terminal differentiation. Therefore, the induction of late viral gene expression required that the viral genomes be maintained as extrachromosomal elements, and terminal differentiation alone was not sufficient. These studies provide the basis for a detailed examination of HPV functions during viral pathogenesis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8610168
Elsalini, Osama A; von Gartzen, Julia; Cramer, Matthias; Rohr, Klaus B
2003-11-01
During zebrafish development, the thyroid primordium initiates expression of molecular markers such as hhex and nk2.1a in the endoderm prior to pharynx formation. As expected for an endodermally derived organ, initiation of thyroid development depends on Nodal signalling. We find that it also depends on three downstream effectors of Nodal activity, casanova (cas), bonnie and clyde (bon), and faust (fau)/gata5. Despite their early Nodal-dependent expression in the endoderm, both hhex and nk2.1a are only required relatively late during thyroid development. In hhex and nk2.1a loss-of-function phenotypes, thyroid development is initiated and arrests only after the primordium has evaginated from the pharyngeal epithelium. Thus, like pax2.1, both hhex and nk2.1a have similarly late roles in differentiation or growth of thyroid follicular cells, and here, we show that all three genes act in parallel rather than in a single pathway. Our functional analysis suggests that these genes have similar roles as in mammalian thyroid development, albeit in a different temporal mode of organogenesis.
Hmga2 regulates self-renewal of retinal progenitors.
Parameswaran, Sowmya; Xia, Xiaohuan; Hegde, Ganapati; Ahmad, Iqbal
2014-11-01
In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cell-extrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal of late retinal progenitor cells (RPCs). We observed that a small subset of RPCs was capable of clonal propagation and retained multipotentiality of parents in the presence of endothelial cells (ECs), known self-renewal regulators in various stem cell niches. The self-renewing effects, also observed in vivo, involve multiple intercellular signaling pathways, engaging Hmga2. As progenitors exhaust during retinal development, expression of Hmga2 progressively decreases. Analyses of Hmga2-expression perturbation, in vitro and in vivo, revealed that Hmga2 functionally helps to mediate cell-extrinsic influences on late-retinal progenitor self-renewal. Our results provide a framework for integrating the diverse intercellular influences elicited by epigenetic regulators for self-renewal in a dynamic stem cell niche: the developing vertebrate retina. © 2014. Published by The Company of Biologists Ltd.
Mutational Analysis of a C-Dependent Late Promoter of Bacteriophage Mu
Chiang, L. W.; Howe, M. M.
1993-01-01
Late transcription of bacteriophage Mu initiates at four promoters, P(lys), P(I), P(P) and P(mom), and requires the Mu C protein and the host RNA polymerase. Promoter-containing DNA fragments extending ~200 bp upstream and downstream of the 5' starts of the lys, I and P transcripts were cloned into a multicopy lacZ-expression plasmid. Promoter activity, assayed by β-galactosidase expression, was determined under two different conditions: (1) with C provided from a compatible plasmid in the absence of other Mu factors and (2) with C provided from an induced Mu prophage. β-galactosidase activities were greatest for P(lys), intermediate for P(I), and lowest for P(P). Similar analysis of plasmids containing nested sets of deletions removing 5' or 3' sequences of P(lys) demonstrated that a 68-bp region was sufficient for full activity. Point mutations were generated within the 68-bp region by mutagenic oligonucleotide-directed PCR (Mod-PCR). Properties of the lys promoter mutants indicated that, in addition to the -10 region, a 19-bp region from -52 to -34 containing the C footprint is required for C-dependent promoter activity. PMID:8293968
Revilla-i-Domingo, Roger; Bilic, Ivan; Vilagos, Bojan; Tagoh, Hiromi; Ebert, Anja; Tamir, Ido M; Smeenk, Leonie; Trupke, Johanna; Sommer, Andreas; Jaritz, Markus; Busslinger, Meinrad
2012-01-01
Pax5 controls the identity and development of B cells by repressing lineage-inappropriate genes and activating B-cell-specific genes. Here, we used genome-wide approaches to identify Pax5 target genes in pro-B and mature B cells. In these cell types, Pax5 bound to 40% of the cis-regulatory elements defined by mapping DNase I hypersensitive (DHS) sites, transcription start sites and histone modifications. Although Pax5 bound to 8000 target genes, it regulated only 4% of them in pro-B and mature B cells by inducing enhancers at activated genes and eliminating DHS sites at repressed genes. Pax5-regulated genes in pro-B cells account for 23% of all expression changes occurring between common lymphoid progenitors and committed pro-B cells, which identifies Pax5 as an important regulator of this developmental transition. Regulated Pax5 target genes minimally overlap in pro-B and mature B cells, which reflects massive expression changes between these cell types. Hence, Pax5 controls B-cell identity and function by regulating distinct target genes in early and late B lymphopoiesis. PMID:22669466
ERIC Educational Resources Information Center
Polce-Lynch, Mary; Myers, Barbara J.; Kliewer, Wendy; Kilmartin, Christopher
2001-01-01
Evaluated self-reported influences on self-esteem involving the media, sexual harassment, body image, family and peer relationships, and emotional expression for 93 boys and 116 girls in grades 5, 8, and 12. Results generally supported a pattern in which boys and girls were most similar in late childhood and again in late adolescence. Discusses…
Xie, Wu-Wei; Gao, Shun; Wang, Sheng-Hua; Zhu, Jin-Qiu; Xu, Ying; Tang, Lin; Chen, Fang
2010-01-01
A full-length cDNA of the carboxyltransferase (accA) gene of acetyl-coenzym A (acetyl-CoA) carboxylase from Jatropha curcas was cloned and sequenced. The gene with an open reading frame (ORF) of 1149 bp encodes a polypeptide of 383 amino acids, with a molecular mass of 41.9 kDa. Utilizing fluorogenic real-time polymerase chain reaction (RT-PCR), the expression levels of the accA gene in leaves and fruits at early, middle and late stages under pH 7.0/8.0 and light/darkness stress were investigated. The expression levels of the accA gene in leaves at early, middle and late stages increased significantly under pH 8.0 stress compared to pH 7.0. Similarly, the expression levels in fruits showed a significant increase under darkness condition compared to the control. Under light stress, the expression levels in the fruits at early, middle and late stages showed the largest fluctuations compared to those of the control. These findings suggested that the expression levels of the accA gene are closely related to the growth conditions and developmental stages in the leaves and fruits of Jatropha curcas.
Xu, W H; Sato, Y; Ikeda, M; Yamashita, O
1995-02-24
Embryonic diapause and sex pheromone biosynthesis in the silkworm, Bombyx mori, are, respectively, induced by diapause hormone (DH) and pheromone biosynthesis activating neuropeptide (PBAN), which are produced in the subesophageal ganglion from a common polyprotein precursor (DH-PBAN precursor) encoded by a single gene (DH-PBAN gene). Using DH-PBAN cDNA as a probe, we quantitatively measured DH-PBAN mRNA content throughout embryonic and postembryonic development and observed the effects of incubation temperature, which is a key factor for determination of diapause, on DH-PBAN gene expression. The silkworm, which is programmed to lay diapause eggs by being incubated at 25 degrees C, showed peaks of DH-PBAN mRNA content at five different stages throughout the life cycle: at the late embryonic stage, at the middle of the fourth and the fifth larval instars, and at early and late stages of pupal-adult development. In the non-diapause type silkworms programmed by a 15 degrees C incubation, only the last peak of DH-PBAN mRNA in pupal-adult development was found, and the other peaks were absent. Furthermore, interruption of the incubation period at 25 degrees C by incubation at 15 degrees C decreased both DH-PBAN mRNA content in mature embryos and in subesophageal ganglia of day 3 pupae and the incidence of diapause eggs. Thus, there were two types of regulatory mechanisms for DH-PBAN gene expression. One is a temperature-controlled expression that is responsible for diapause induction, and the other is a temperature-independent, stage-dependent expression related to pheromone production.
Comparative analysis of Six 3 and Six 6 distribution in the developing and adult mouse brain.
Conte, Ivan; Morcillo, Julian; Bovolenta, Paola
2005-11-01
Six 3 and Six 6 genes are two closely related members of the Six/sine oculis family of homeobox containing transcription factors. Their expression and function at early stages of embryonic development has been widely addressed in a variety of species. However, their mRNA distribution during late embryonic, postnatal, and adult brain barely has been analyzed. Here, we show that despite their initial overlap in the anterior neural plate, the expression of Six 3 and Six 6 progressively segregates to different regions during mammalian brain development, maintaining only few areas of partial overlap in the thalamic and hypothalamic regions. Six 3, but not Six 6, is additionally expressed in the olfactory bulb, cerebral cortex, hippocampus, midbrain, and cerebellum. These distinct patterns support the idea that Six 3 and Six 6 are differentially required during forebrain development. Developmental Dynamics 234:718-725, 2005. (c) 2005 Wiley-Liss, Inc.
Haga, Yutaka; Dominique, Vincent J; Du, Shao Jun
2009-10-01
To characterize the process of vertebral segmentation and disc formation in living animals, we analyzed tiggy-winkle hedgehog (twhh):green fluorescent protein (gfp) and sonic hedgehog (shh):gfp transgenic zebrafish models that display notochord-specific GFP expression. We found that they showed distinct patterns of expression in the intervertebral discs of late stage fish larvae and adult zebrafish. A segmented pattern of GFP expression was detected in the intervertebral disc of twhh:gfp transgenic fish. In contrast, little GFP expression was found in the intervertebral disc of shh:gfp transgenic fish. Treating twhh:gfp transgenic zebrafish larvae with exogenous retinoic acid (RA), a teratogenic factor on normal development, resulted in disruption of notochord segmentation and formation of oversized vertebrae. Histological analysis revealed that the oversized vertebrae are likely due to vertebral fusion. These studies demonstrate that the twhh:gfp transgenic zebrafish is a useful model for studying vertebral segmentation and disc formation, and moreover, that RA signaling may play a role in this process.
Proteomic Analysis of Bacillus thuringiensis Strain 4.0718 at Different Growth Phases
Li, Xiaohui; Ding, Xuezhi; Xia, Liqiu; Sun, Yunjun; Yuan, Can; Yin, Jia
2012-01-01
The growth process of Bacillus thuringiensis Bt4.0718 strain was studied using proteomic technologies. The proteins of Bt whole cells at three phases—middle vegetative, early sporulation, and late sporulation—were extracted with lysis buffer, followed with separation by 2-DE and identified by MALDI-TOF/TOF MS. Bioactive factors such as insecticidal crystal proteins (ICPs) including Cry1Ac(3), Cry2Aa, and BTRX28, immune inhibitor (InhA), and InhA precursor were identified. InhA started to express at the middle vegetative phase, suggesting its contribution to the survival of Bt in the host body. At the early sporulation phase, ICPs started their expression. CotJC, OppA, ORF1, and SpoIVA related to the formation of crystals and spores were identified, the expression characteristics of which ensured the stable formation of crystals and spores. This study provides an important foundation for further exploration of the stable expression of ICPs, the smooth formation of crystals, and the construction of recombinant strains. PMID:22649324
Contrasting Levels of Molecular Evolution on the Mouse X Chromosome
Larson, Erica L.; Vanderpool, Dan; Keeble, Sara; Zhou, Meng; Sarver, Brice A. J.; Smith, Andrew D.; Dean, Matthew D.; Good, Jeffrey M.
2016-01-01
The mammalian X chromosome has unusual evolutionary dynamics compared to autosomes. Faster-X evolution of spermatogenic protein-coding genes is known to be most pronounced for genes expressed late in spermatogenesis, but it is unclear if these patterns extend to other forms of molecular divergence. We tested for faster-X evolution in mice spanning three different forms of molecular evolution—divergence in protein sequence, gene expression, and DNA methylation—across different developmental stages of spermatogenesis. We used FACS to isolate individual cell populations and then generated cell-specific transcriptome profiles across different stages of spermatogenesis in two subspecies of house mice (Mus musculus), thereby overcoming a fundamental limitation of previous studies on whole tissues. We found faster-X protein evolution at all stages of spermatogenesis and faster-late protein evolution for both X-linked and autosomal genes. In contrast, there was less expression divergence late in spermatogenesis (slower late) on the X chromosome and for autosomal genes expressed primarily in testis (testis-biased). We argue that slower-late expression divergence reflects strong regulatory constraints imposed during this critical stage of sperm development and that these constraints are particularly acute on the tightly regulated sex chromosomes. We also found slower-X DNA methylation divergence based on genome-wide bisulfite sequencing of sperm from two species of mice (M. musculus and M. spretus), although it is unclear whether slower-X DNA methylation reflects development constraints in sperm or other X-linked phenomena. Our study clarifies key differences in patterns of regulatory and protein evolution across spermatogenesis that are likely to have important consequences for mammalian sex chromosome evolution, male fertility, and speciation. PMID:27317678
Ma, Yan; Zhu, Mei J; Zhang, Liren; Hein, Sarah M; Nathanielsz, Peter W; Ford, Stephen P
2010-07-01
In pregnant sheep, maternal:fetal exchange occurs across placentomes composed of placental cotyledonary and uterine caruncular tissues. Recently, we reported that fetal weights of obese (OB) ewes [fed a diet of 150% of National Research Council (NRC) recommendations] were approximately 30% greater than those of control (C) ewes (fed a diet 100% of NRC recommendations) at midgestation (MG), but fetal weights were similar in late gestation (LG). Transplacental nutrient exchange is dependent on placental blood flow, which itself is dependent on placental vascularity. The current study investigated whether the observed initial faster and subsequent slower fetal growth rate of OB compared with C was associated with changes in cotyledonary vascularity and expression of angiogenic factors (vascular endothelial growth factor, fibroblast growth factor-2, placental growth factor, angiopoietin-1 and -2). Cotyledonary arteriole diameters were markedly greater (P < 0.05) in OB than C ewes at MG, but while arteriole diameter of C ewes increased (P < 0.05) from MG to LG, they remained unchanged in OB ewes. Cotyledonary arterial angiogenic factors mRNA and protein expression were lower (P < 0.05) in OB than C ewes at MG and remained low from MG to LG. In contrast, mRNA levels of angiogenic factors in C ewes declined from high levels at MG to reach those of OB ewes by LG. The increase in cotyledonary arteriole diameter in early to MG may function to accelerate fetal growth rate in OB ewes, while the decreased cotyledonary arterial angiogenic factors from MG-LG may function to protect the fetus from excessive placental vascular development, increased maternal nutrient delivery, and excessive weight gain.
Ma, Yan; Zhu, Mei J.; Zhang, Liren; Hein, Sarah M.; Nathanielsz, Peter W.
2010-01-01
In pregnant sheep, maternal:fetal exchange occurs across placentomes composed of placental cotyledonary and uterine caruncular tissues. Recently, we reported that fetal weights of obese (OB) ewes [fed a diet of 150% of National Research Council (NRC) recommendations] were ∼30% greater than those of control (C) ewes (fed a diet 100% of NRC recommendations) at midgestation (MG), but fetal weights were similar in late gestation (LG). Transplacental nutrient exchange is dependent on placental blood flow, which itself is dependent on placental vascularity. The current study investigated whether the observed initial faster and subsequent slower fetal growth rate of OB compared with C was associated with changes in cotyledonary vascularity and expression of angiogenic factors (vascular endothelial growth factor, fibroblast growth factor-2, placental growth factor, angiopoietin-1 and -2). Cotyledonary arteriole diameters were markedly greater (P < 0.05) in OB than C ewes at MG, but while arteriole diameter of C ewes increased (P < 0.05) from MG to LG, they remained unchanged in OB ewes. Cotyledonary arterial angiogenic factors mRNA and protein expression were lower (P < 0.05) in OB than C ewes at MG and remained low from MG to LG. In contrast, mRNA levels of angiogenic factors in C ewes declined from high levels at MG to reach those of OB ewes by LG. The increase in cotyledonary arteriole diameter in early to MG may function to accelerate fetal growth rate in OB ewes, while the decreased cotyledonary arterial angiogenic factors from MG-LG may function to protect the fetus from excessive placental vascular development, increased maternal nutrient delivery, and excessive weight gain. PMID:20427725
Gupta, M; Dangi, S S; Chouhan, V S; Hyder, I; Babitha, V; Yadav, V P; Khan, F A; Sonwane, A; Singh, G; Das, G K; Mitra, A; Bag, S; Sarkar, M
2014-07-01
Evidence obtained during recent years provided has insight into the regulation of corpus luteum (CL) development, function, and regression by locally produced ghrelin. The present study was carried out to evaluate the expression and localization of ghrelin and its receptor (GHS-R1a) in bubaline CL during different stages of the estrous cycle and investigate the role of ghrelin on progesterone (P4) production along with messenger RNA (mRNA) expression of P4 synthesis intermediates. The mRNA and protein expression of ghrelin and GHS-R1a was significantly greater in mid- and late luteal phases. Both factors were localized in luteal cells, exclusively in the cytoplasm. Immunoreactivity of ghrelin and GHS-R1a was greater during mid- and late luteal phases. Luteal cells were cultured in vitro and treated with ghrelin each at 1, 10, and 100 ng/mL concentrations for 48 h after obtaining 75% to 80% confluence. At a dose of 1 ng/mL, there was no significant difference in P4 secretion between control and treatment group. At 10 and 100 ng/mL, there was a decrease (P < 0.05) in P4 concentration, cytochrome P45011A1 (CYP11A1), and 3-beta-hydroxysteroid dehydrogenase mRNA expression and localization. There was no difference in mRNA expression of steroidogenic acute regulatory protein between control and treatment group. In summary, the present study provided evidence that ghrelin and its receptor are expressed in bubaline CL and are localized exclusively in the cell cytoplasm and ghrelin has an inhibitory effect on P4 production in buffalo. Copyright © 2014 Elsevier Inc. All rights reserved.
Szczyglowski, K; Hamburger, D; Kapranov, P; de Bruijn, F J
1997-01-01
A range of novel expressed sequence tags (ESTs) associated with late developmental events during nodule organogenesis in the legume Lotus japonicus were identified using mRNA differential display; 110 differentially displayed polymerase chain reaction products were cloned and analyzed. Of 88 unique cDNAs obtained, 22 shared significant homology to DNA/protein sequences in the respective databases. This group comprises, among others, a nodule-specific homolog of protein phosphatase 2C, a peptide transporter protein, and a nodule-specific form of cytochrome P450. RNA gel-blot analysis of 16 differentially displayed ESTs confirmed their nodule-specific expression pattern. The kinetics of mRNA accumulation of the majority of the ESTs analyzed were found to resemble the expression pattern observed for the L. japonicus leghemoglobin gene. These results indicate that the newly isolated molecular markers correspond to genes induced during late developmental stages of L. japonicus nodule organogenesis and provide important, novel tools for the study of nodulation. PMID:9276951
Su, Lina; Zhou, Fengjuan; Ding, Zhujin; Gao, Zexia; Wen, Jiufu; Wei, Wei; Wang, Qijun; Wang, Weimin; Liu, Hong
2015-12-01
Doublesex and Mab3 related transcription factor (DMRT), characterized by a conserved DM domain, function as sex-related transcription factors and also play critical roles in ontogenesis. In this study, 4 Dmrt genes in the blunt snout bream, Megalobrama amblycephala, were identified, characterized and their mRNA expression in different adult organs, during embryogenesis and gonadal development in larvae were determined by quantitative real time PCR. There are 4 Dmrt1 isoforms in the M. amblycephala genome, which were expressed highly in the testis and weakly in the ovary. The complete cDNAs of the M. amblycephala Dmrt2a, Dmrt2b and Dmrt3 were predicted to encode 510, 328 and 449 amino acids, respectively. The M. amblycephala Dmrt2a mRNA peaked at 11hpf (hour post fertilizing) during early embryonic stages, while Dmrt2b was highly expressed during late embryonic stages. Both the M. amblycephala Dmrt2a and Dmrt2b were expressed highly in the gill and exhibited a sexually dimorphic expression pattern. The M. amblycephala Dmrt3 was expressed highly in the gill, muscle and brain, at 40dph (day post hatching) during early development and at stage V in the testis during gonadal development. All fish Dmrts except Dmrt5 were found in the M. amblycephala genome. The observed expression patterns of these Dmrts in developing embryos and larvae, as well as different adult organs indicate conserved sexual or extragonadal functions of the Dmrts through evolution. Copyright © 2015 Elsevier B.V. All rights reserved.
Chouhan, V S; Dangi, S S; Gupta, M; Babitha, V; Khan, F A; Panda, R P; Yadav, V P; Singh, G; Sarkar, M
2014-08-01
The objectives of the present study were to investigate the effects of vascular endothelial growth factor (VEGF) on progesterone (P4) synthesis in cultured luteal cells from different stages of the estrous cycle and on expression of steroidogenic acute regulatory protein (STARD1), cytochrome P450 cholesterol side chain cleavage (CYP11A1) and 3β-hydroxysteroid dehydrogenase (HSD3B), antiapoptotic gene PCNA, and proapoptotic gene BAX in luteal cells obtained from mid-luteal phase (MLP) of estrous cycle in buffalo. Corpus luteum samples from the early luteal phase (ELP; day 1st-4th; n=4), MLP (day 5th-10th; n=4), and the late luteal phase (LLP; day 11th-16th; n=4) of oestrous cycle were obtained from a slaughterhouse. Luteal cell cultures were treated with VEGF (0, 1, 10 and 100 ng/ml) for 24, 48 and 72h. Progesterone was assessed by RIA, while mRNA expression was determined by quantitative real-time PCR (qRT-PCR). Results indicated a dose- and time-dependent stimulatory effect of VEGF on P4 synthesis and expression of steroidogenic enzymes. Moreover, VEGF treatment led to an increase in PCNA expression and decrease in BAX expression. In summary, these findings suggest that VEGF acts locally in the bubaline CL to modulate steroid hormone synthesis and cell survivability, which indicates that this factor has an important role as a regulator of CL development and function in buffalo. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Akhil; Ohm, Robin A.; Oxiles, Lindsay
2011-10-26
Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen with a broad host range within the family Brassicaceae. It produces secondary metabolites that marginally affect virulence. Cell wall degrading enzymes (CDWE) have been considered important for pathogenesis but none of them individually have been identified as significant virulence factors in A. brassicicola. In this study, knockout mutants of a gene, AbVf19, were created and produced considerably smaller lesions than the wild type on inoculated host plants. The presence of tandem zinc-finger domains in the predicted amino acid sequence and nuclear localization of AbVf19- reporter protein suggested that it wasmore » a transcription factor. Gene expression comparisons using RNA-seq identified 74 genes being downregulated in the mutant during a late stage of infection. Among the 74 downregulated genes, 28 were putative CWDE genes. These were hydrolytic enzyme genes that composed a small fraction of genes within each family of cellulases, pectinases, cutinases, and proteinases. The mutants grew slower than the wild type on an axenic medium with pectin as a major carbon source. This study demonstrated the existence and the importance of a transcription factor that regulates a suite of genes that are important for decomposing and utilizing plant material during the late stage of plant infection.« less
Breast cancer risk factors and HER2 over-expression in tumors.
Swede, H; Moysich, K B; Freudenheim, J L; Quirk, J T; Muti, P C; Hurd, T C; Edge, S B; Winston, J S; Michalek, A M
2001-01-01
Few epidemiologic studies have investigated the potential role of HER2 in the etiology of breast cancer. We conducted a case-case study of 156 women with incident, invasive ductal carcinoma. Multivariate unconditional logistic regression was used to estimate the odds ratios for a HER2 positive tumor in relation to known and putative risk factors of breast cancer. HER2 status was detected by immunohistochemistry on archival tissue. HER2 positive breast cancers tended to be larger and were less likely to express estrogen receptors, and the incidence rate was higher in patients less than 40 years old. We observed an association between a self-reported history of benign breast disease and the occurrence of HER2 positive breast cancer (OR, 2.1;95% CI, 1.1-4.1). We did not detect associations between HER2 over-expression and family history of breast cancer, parity, late age at first birth, ever having breast fed an infant, or oral contraceptive use. Our findings merit consideration in light of recent evidence of HER2 amplification or over-expression in benign breast disease. Should the link to breast cancer be established, HER2 positive benign breast disease could potentially serve as an early marker for preventive intervention.
Pajares, M J; Agorreta, J; Salvo, E; Behrens, C; Wistuba, I I; Montuenga, L M; Pio, R; Rouzaut, A
2014-01-01
Background: Transforming growth factor β-induced protein (TGFBI) is a secreted protein that mediates cell anchoring to the extracellular matrix. This protein is downregulated in lung cancer, and when overexpressed, contributes to apoptotic cell death. Using a small series of stage IV non-small cell lung cancer (NSCLC) patients, we previously suggested the usefulness of TGFBI as a prognostic and predictive factor in chemotherapy-treated late-stage NSCLC. In order to validate and extend these results, we broaden the analysis and studied TGFBI expression in a large series of samples obtained from stage I–IV NSCLC patients. Methods: TGFBI expression was assessed by immunohistochemistry in 364 completely resected primary NSCLC samples: 242 adenocarcinomas (ADCs) and 122 squamous cell carcinomas (SCCs). Kaplan–Meier curves, log-rank tests and the Cox proportional hazards model were used to analyse the association between TGFBI expression and survival. Results: High TGFBI levels were associated with longer overall survival (OS, P<0.001) and progression-free survival (PFS, P<0.001) in SCC patients who received adjuvant platinium-based chemotherapy. Moreover, multivariate analysis demonstrated that high TGFBI expression is an independent predictor of better survival in patients (OS: P=0.030 and PFS: P=0.026). Conclusions: TGFBI may be useful for the identification of a subset of NSCLC who may benefit from adjuvant therapy. PMID:24481402
Mohamad Ishak, Nur Syafiqah; Nong, Quang Dang; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime
2017-11-01
Divergence of upstream regulatory pathways of the transcription factor Doublesex (Dsx) serves as a basis for evolution of sex-determining mechanisms in animals. However, little is known about the regulation of Dsx in environmental sex determination. In the crustacean Daphnia magna, environmental sex determination is implemented by male-specific expression of the Dsx ortholog, Dsx1. Transcriptional regulation of Dsx1 comprises at least three phases during embryogenesis: non-sex-specific initiation, male-specific up-regulation, and its maintenance. Herein, we demonstrate that the male-specific up-regulation is controlled by the bZIP transcription factor, Vrille (Vri), an ortholog of the circadian clock genes-Drosophila Vri and mammalian E4BP4/NFIL3. Sequence analysis of the Dsx1 promoter/enhancer revealed a conserved element among two Daphnia species (D. magna and D. pulex), which contains a potential enhancer harboring a consensus Vri binding site overlapped with a consensus Dsx binding site. Besides non-sex-specific expression of Vri in late embryos, we found male-specific expression in early gastrula before the Dsx1 up-regulation phase begins. Knockdown of Vri in male embryos showed reduction of Dsx1 expression. In addition, transient overexpression of Vri in early female embryos up-regulated the expression of Dsx1 and induced male-specific trait. Targeted mutagenesis using CRISPR/Cas9 disrupted the enhancer on genome in males, which led to the reduction of Dsx1 expression. These results indicate that Vri was co-opted as a transcriptional activator of Dsx1 in environmental sex determination of D. magna. The data suggests the remarkably plastic nature of gene regulatory network in sex determination.
Balazadeh, Salma; Siddiqui, Hamad; Allu, Annapurna D; Matallana-Ramirez, Lilian P; Caldana, Camila; Mehrnia, Mohammad; Zanor, Maria-Inés; Köhler, Barbara; Mueller-Roeber, Bernd
2010-04-01
The onset and progression of senescence are under genetic and environmental control. The Arabidopsis thaliana NAC transcription factor ANAC092 (also called AtNAC2 and ORE1) has recently been shown to control age-dependent senescence, but its mode of action has not been analysed yet. To explore the regulatory network administered by ANAC092 we performed microarray-based expression profiling using estradiol-inducible ANAC092 overexpression lines. Approximately 46% of the 170 genes up-regulated upon ANAC092 induction are known senescence-associated genes, suggesting that the NAC factor exerts its role in senescence through a regulatory network that includes many of the genes previously reported to be senescence regulated. We selected 39 candidate genes and confirmed their time-dependent response to enhanced ANAC092 expression by quantitative RT-PCR. We also found that the majority of them (24 genes) are up-regulated by salt stress, a major promoter of plant senescence, in a manner similar to that of ANAC092, which itself is salt responsive. Furthermore, 24 genes like ANAC092 turned out to be stage-dependently expressed during seed growth with low expression at early and elevated expression at late stages of seed development. Disruption of ANAC092 increased the rate of seed germination under saline conditions, whereas the opposite occurred in respective overexpression plants. We also detected a delay of salinity-induced chlorophyll loss in detached anac092-1 mutant leaves. Promoter-reporter (GUS) studies revealed transcriptional control of ANAC092 expression during leaf and flower ageing and in response to salt stress. We conclude that ANAC092 exerts its functions during senescence and seed germination through partly overlapping target gene sets.
Nong, Quang Dang; Matsuura, Tomoaki; Watanabe, Hajime
2017-01-01
Divergence of upstream regulatory pathways of the transcription factor Doublesex (Dsx) serves as a basis for evolution of sex-determining mechanisms in animals. However, little is known about the regulation of Dsx in environmental sex determination. In the crustacean Daphnia magna, environmental sex determination is implemented by male-specific expression of the Dsx ortholog, Dsx1. Transcriptional regulation of Dsx1 comprises at least three phases during embryogenesis: non-sex-specific initiation, male-specific up-regulation, and its maintenance. Herein, we demonstrate that the male-specific up-regulation is controlled by the bZIP transcription factor, Vrille (Vri), an ortholog of the circadian clock genes—Drosophila Vri and mammalian E4BP4/NFIL3. Sequence analysis of the Dsx1 promoter/enhancer revealed a conserved element among two Daphnia species (D. magna and D. pulex), which contains a potential enhancer harboring a consensus Vri binding site overlapped with a consensus Dsx binding site. Besides non-sex-specific expression of Vri in late embryos, we found male-specific expression in early gastrula before the Dsx1 up-regulation phase begins. Knockdown of Vri in male embryos showed reduction of Dsx1 expression. In addition, transient overexpression of Vri in early female embryos up-regulated the expression of Dsx1 and induced male-specific trait. Targeted mutagenesis using CRISPR/Cas9 disrupted the enhancer on genome in males, which led to the reduction of Dsx1 expression. These results indicate that Vri was co-opted as a transcriptional activator of Dsx1 in environmental sex determination of D. magna. The data suggests the remarkably plastic nature of gene regulatory network in sex determination. PMID:29095827
Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L.)
Kant, Chandra; Pradhan, Seema; Bhatia, Sabhyata
2016-01-01
A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to convert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea. PMID:27348121
Interaction between Fibronectin and β1 Integrin Is Essential for Tooth Development
Yamada, Aya; Yuasa, Kenji; Yoshizaki, Keigo; Iwamoto, Tsutomu; Saito, Masahiro; Nakamura, Takashi; Fukumoto, Satoshi
2015-01-01
The dental epithelium and extracellular matrix interact to ensure that cell growth and differentiation lead to the formation of teeth of appropriate size and quality. To determine the role of fibronectin in differentiation of the dental epithelium and tooth formation, we analyzed its expression in developing incisors. Fibronectin mRNA was expressed during the presecretory stage in developing dental epithelium, decreased in the secretory and early maturation stages, and then reappeared during the late maturation stage. The binding of dental epithelial cells derived from postnatal day-1 molars to a fibronectin-coated dish was inhibited by the RGD but not RAD peptide, and by a β1 integrin-neutralizing antibody, suggesting that fibronectin-β1 integrin interactions contribute to dental epithelial-cell binding. Because fibronectin and β1 integrin are highly expressed in the dental mesenchyme, it is difficult to determine precisely how their interactions influence dental epithelial differentiation in vivo. Therefore, we analyzed β1 integrin conditional knockout mice (Intβ1lox-/lox-/K14-Cre) and found that they exhibited partial enamel hypoplasia, and delayed eruption of molars and differentiation of ameloblasts, but not of odontoblasts. Furthermore, a cyst-like structure was observed during late ameloblast maturation. Dental epithelial cells from knockout mice did not bind to fibronectin, and induction of ameloblastin expression in these cells by neurotrophic factor-4 was inhibited by treatment with RGD peptide or a fibronectin siRNA, suggesting that the epithelial interaction between fibronectin and β1 integrin is important for ameloblast differentiation and enamel formation. PMID:25830530
Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B
2016-03-31
Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all four species that have no known homologs in other metazoans. This study provides a comprehensive list of differentially expressed transcripts during wing development, revealing potential candidate genes that may be involved in regulating butterfly wing patterns. Some differentially expressed genes have no known homologs possibly representing genes unique to butterflies. Results from this study also indicate that development of nymphalid wing patterns may arise not only from melanin and ommochrome pigments but also the pteridine pigment pathway.
Penke, Zsuzsa; Chagneau, Carine; Laroche, Serge
2011-01-01
Egr1, a member of the Egr family of transcription factors, and Arc are immediate early genes known to play major roles in synaptic plasticity and memory. Despite evidence that Egr family members can control Arc transcriptional regulation, demonstration of a selective role of Egr1 alone is lacking. We investigated the extent to which activity-dependent Arc expression is dependent on Egr1 by analyzing Arc mRNA expression using fluorescence in situ hybridization in the dorsal dentate gyrus and CA1 of wild-type (WT) and Egr1 knockout mice. Following electroconvulsive shock, we found biphasic expression of Arc in area CA1 in mice, consisting in a rapid (30 min) and transient wave followed by a second late-phase of expression (8 h), and a single but prolonged wave of expression in the dentate gyrus. Egr1 deficiency abolished the latest, but not the early wave of Arc expression in CA1, and curtailed that of the dentate gyrus. Since the early wave of Arc expression was not affected in Egr1 mutant mice, we next analyzed behaviorally induced Arc expression patterns as an index of neural ensemble activation in the dentate gyrus and area CA1 of WT and Egr1 mutant mice. Spatial exploration of novel or familiar environments induced in mice a single early and transient wave of Arc expression in the dentate gyrus and area CA1, which were not affected in Egr1 mutant mice. Analyses of Arc-expressing cells revealed that exploration recruits similar size dentate gyrus and CA1 neural ensembles in WT and Egr1 knockout mice. These findings suggest that hippocampal neural ensembles are normally activated immediately following spatial exploration in Egr1 knockout mice, indicating normal hippocampal encoding of information. They also provide evidence that in condition of strong activation Egr1 alone can control late-phases of activity-dependent Arc transcription in the dentate gyrus and area CA1 of the hippocampus. PMID:21887136
Pragmatic Functions of Toddlers Who Are Late Talkers
ERIC Educational Resources Information Center
MacRoy-Higgins, Michelle; Kaufman, Ilana
2012-01-01
Toddlers who are "late talkers" demonstrate reduced expressive vocabulary in the absence of physical, social, cognitive, or sensory impairment; they are usually identified at age 2, when they produce fewer than 50 words and do not combine words (Rescorla, 1989). This study analyzed spontaneous language samples of 10 late talking toddlers and 11…
Occludin as a functional marker of vascular endothelial cells on tube-forming activity.
Kanayasu-Toyoda, Toshie; Ishii-Watabe, Akiko; Kikuchi, Yutaka; Kitagawa, Hiroko; Suzuki, Hiroko; Tamura, Hiroomi; Tada, Minoru; Suzuki, Takuo; Mizuguchi, Hiroyuki; Yamaguchi, Teruhide
2018-02-01
Cell therapy using endothelial progenitor cells (EPCs) is a promising strategy for the treatment of ischemic diseases. Two types of EPCs have been identified: early EPCs and late EPCs. Late EPCs are able to form tube structure by themselves, and have a high proliferative ability. The functional marker(s) of late EPCs, which relate to their therapeutic potential, have not been fully elucidated. Here we compared the gene expression profiles of several human cord blood derived late EPC lines which exhibit different tube formation activity, and we observed that the expression of occludin (OCLN) in these lines correlated with the tube formation ability, suggesting that OCLN is a candidate functional marker of late EPCs. When OCLN was knocked down by transfecting siRNA, the tube formation on Matrigel, the S phase + G 2 /M phase in the cell cycle, and the spheroid-based sprouting of late EPCs were markedly reduced, suggesting the critical role of OCLN in tube formation, sprouting, and proliferation. These results indicated that OCLN plays a novel role in neovascularization and angiogenesis. © 2017 Wiley Periodicals, Inc.
Tahboub, Yahya R
2014-12-01
Chromatographic behavior of co-eluted compounds from un-extracted drug-free plasma samples was studied by LC-MS and LC-MS/MS with positive APCI. Under soft gradient, total ion chromatogram (TIC) consisted of two major peaks separated by a constant lower intensity region. Early peak (0.15-0.4 min) belongs to polar plasma compounds and consisted of smaller mass ions ( m / z <250); late peak (3.6-4.6 min) belongs to thermally unstable phospholipids and consisted of fragments with m / z <300. Late peak is more sensitive to variations in chromatographic and MS parameters. Screening of most targeted cardiovascular drugs at levels lower than 50 ng/mL has been possible by LC-MS for drugs with retention factors larger than three. Matrix effects and recovery, at 20 and 200 ng/mL, were evaluated for spiked plasma samples with 15 cardiovascular drugs, by MRM-LC-MS/MS. Average recoveries were above 90% and matrix effects expressed as percent matrix factor (% MF) were above 100%, indicating enhancement character for APCI. Large uncertainties were significant for drugs with smaller masses ( m / z <250) and retention factors lower than two.
Late Talkers: A Population-Based Study of Risk Factors and School Readiness Consequences
ERIC Educational Resources Information Center
Hammer, Carol Scheffner; Morgan, Paul; Farkas, George; Hillemeier, Marianne; Bitetti, Dana; Maczuga, Steve
2017-01-01
Purpose: This study was designed to (a) identify sociodemographic, pregnancy and birth, family health, and parenting and child care risk factors for being a late talker at 24 months of age; (b) determine whether late talkers continue to have low vocabulary at 48 months; and (c) investigate whether being a late talker plays a unique role in…
Formulaic Language in Alzheimer’s Disease
Bridges, Kelly Ann; Van Lancker Sidtis, Diana
2013-01-01
Background Studies of productive language in Alzheimer’s disease (AD) have focused on formal testing of syntax and semantics but have directed less attention to naturalistic discourse and formulaic language. Clinical observations suggest that individuals with AD retain the ability to produce formulaic language long after other cognitive abilities have deteriorated. Aims This study quantifies production of formulaic expressions in the spontaneous speech of individuals with AD. Persons with early- and late-onset forms of the disease were compared. Methods & Procedures Conversational language samples of individuals with early- (n = 5) and late-onset (n = 6) AD and healthy controls (n = 5) were analyzed to determine whether formulaic language, as measured by the number of words in formulaic expressions, differs between groups. Outcomes & Results Results indicate that individuals with AD, regardless of age of onset, used significantly more formulaic expressions than healthy controls. The early- and late-onset AD groups did not differ on formulaic language measures. Conclusions These findings contribute to a dual process model of cerebral function, which proposes differing processing principles for formulaic and novel expressions. In this model, subcortical areas, which remain intact into late in the progression of Alzheimer’s disease, play an important role in the production of formulaic language. Applications to clinical practice include identifying preserved formulaic language and providing informed counseling to patient and family. PMID:24187417
Yin, Zongzhi; Li, Yun; He, Wenzhu; Li, Dan; Li, Hongyan; Yang, Yuanyuan; Shen, Bing; Wang, Xi; Cao, Yunxia; Khalil, Raouf A.
2018-01-01
Objective The aim of this study was to investigate the effect and mechanism by which progesterone regulates uterine contraction in late pregnant rats Results Progesterone caused concentration-dependent relaxation of uterine strips that was enhanced compared with control nontreated uterine strips. Uterine strips incubated with progesterone showed a significant increase in TREK-1 mRNA expression and protein level. TREK-1 inhibitor L-methionine partly reversed uterine relaxation caused by the progesterone, while TREK-1 activator arachidonic acid did not cause significant change in progesterone-induced relaxation. Conclusions Progesterone inhibits uterine contraction and induces uterine relaxation in late pregnancy. The progesterone-induced inhibition of uterine contraction appears to partly involve increased potassium channel TREK-1 expression/activity. Materials and Methods Uterus from late-pregnant rats (gestational day 19) was isolated, and uterine strips were prepared for isometric contraction measurement. Oxytocin-induced contraction was compared in uterine strips pretreated with different concentration of progesterone. TREK-1 potassium channel inhibitor L-methionine and TREK-1 agonist arachidonic acid were used to determine whether the changes caused by progesterone involve changes in TREK-1 activity. The mRNA and protein expression of TREK-1 in uterine tissues were measured using qPCR and Western blot. PMID:29416642
Late-life factors associated with healthy aging in older men.
Bell, Christina L; Chen, Randi; Masaki, Kamal; Yee, Priscilla; He, Qimei; Grove, John; Donlon, Timothy; Curb, J David; Willcox, D Craig; Poon, Leonard W; Willcox, Bradley J
2014-05-01
To identify potentially modifiable late-life biological, lifestyle, and sociodemographic factors associated with overall and healthy survival to age 85. Prospective longitudinal cohort study with 21 years of follow-up (1991-2012). Hawaii Lifespan Study. American men of Japanese ancestry (mean age 75.7, range 71-82) without baseline major clinical morbidity and functional impairments (N = 1,292). Overall survival and healthy survival (free from six major chronic diseases and without physical or cognitive impairment) to age 85. Factors were measured at late-life baseline examinations (1991-1993). Of 1,292 participants, 1,000 (77%) survived to 85 (34% healthy) and 309 (24%) to 95 (<1% healthy). Late-life factors associated with survival and healthy survival included biological (body mass index, ankle-brachial index, cognitive score, blood pressure, inflammatory markers), lifestyle (smoking, alcohol use, physical activity), and sociodemographic factors (education, marital status). Cumulative late-life baseline risk factor models demonstrated that age-standardized (at 70) probability of survival to 95 ranged from 27% (no factors) to 7% (≥ 5 factors); probability of survival to 100 ranged from 4% (no factors) to 0.1% (≥ 5 factors). Age-standardized (at 70) probability of healthy survival to 90 ranged from 4% (no factors) to 0.01% (≥ 5 factors). There were nine healthy survivors at 95 and one healthy survivor at 100. Several potentially modifiable risk factors in men in late life (mean age 75.7) were associated with markedly greater probability of subsequent healthy survival and longevity. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
[Crespi d'Adda: psychosocial risk factors in a late 19th century company town].
Punzi, S
2012-01-01
Crespi d'Adda is a late 19th century company town established around a textile factory by Cristoforo Benigno Crespi and his son Silvio. It was an ideal model of company residency being a self-sufficient microcosm equipped with all the services needed by a community where the life of workers and their families was revolving around the factory and the working requirements. It was the expression of philanthropic and patronizing enlightened entrepreneurs at that time, committed in protecting workers' life inside and outside the factory, resulting into a more affectionate and productive manpower. Silvio Benigno Crespi developed an extensive activity to improve working conditions, with special reference to accident prevention and work-related diseases, as well as night work in factories, weekly day off, reduction of working hours: we can say that in some ways he was concerned also with psychosocial risks.
The Alzheimer's Disease Mitochondrial Cascade Hypothesis: Progress and Perspectives
Swerdlow, Russell H.; Burns, Jeffrey M.; Khan, Shaharyar M.
2013-01-01
Ten years ago we first proposed the Alzheimer's disease (AD) mitochondrial cascade hypothesis. This hypothesis maintains gene inheritance defines an individual's baseline mitochondrial function; inherited and environmental factors determine rates at which mitochondrial function changes over time; and baseline mitochondrial function and mitochondrial change rates influence AD chronology. Our hypothesis unequivocally states in sporadic, late-onset AD, mitochondrial function affects amyloid precursor protein (APP) expression, APP processing, or beta amyloid (Aβ) accumulation and argues if an amyloid cascade truly exists, mitochondrial function triggers it. We now review the state of the mitochondrial cascade hypothesis, and discuss it in the context of recent AD biomarker studies, diagnostic criteria, and clinical trials. Our hypothesis predicts biomarker changes reflect brain aging, new AD definitions clinically stage brain aging, and removing brain Aβ at any point will marginally impact cognitive trajectories. Our hypothesis, therefore, offers unique perspective into what sporadic, late-onset AD is and how to best treat it. PMID:24071439
The Mars Express/NASA Project at JPL
NASA Astrophysics Data System (ADS)
Thompson, T. W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S.; Goltz, G.
2006-03-01
The Mars Express/NASA Project at JPL supports much of the U.S. involvement in ESA's Mars Express mission. Mars Express has just completed its prime mission in late 2005 and has embarked on its first extended mission cycle.
Parrott, Fiona R; Mwafulirwa, Charles; Ngwira, Bagrey; Nkhwazi, Sothini; Floyd, Sian; Houben, Rein M G J; Glynn, Judith R; Crampin, Amelia C; French, Neil
2011-01-01
Treatment seeking delays among people living with HIV have adverse consequences for outcome. Gender differences in treatment outcomes have been observed in sub-Saharan Africa. To better understand antiretroviral treatment (ART) seeking behaviour in HIV-infected adults in rural Malawi. Qualitative interviews with male and female participants in an ART cohort study at a treatment site in rural northern Malawi triangulated with analysis of baseline clinical and demographic data for 365 individuals attending sequentially for ART screening between January 2008 and September 2009. 43% of the cohort presented with late stage HIV disease classified as WHO stage 3/4. Respondents reported that women's frequency of testing, health awareness and commitment to children led to earlier ART uptake and that men's commitment to wider social networks of influence, masculine ideals of strength, and success with sexual and marital partners led them to refuse treatment until they were sick. Quantitative analysis of the screening cohort provided supporting evidence for these expressed views. Overall, male gender (adjusted OR 2.3, 95% CI1.3-3.9) and never being married (adjusted OR 4.1, 95% CI1.5-11.5) were risk factors for late presentation, whereas having ≥3 dependent children was associated with earlier presentation (adjusted OR 0.31, 95% CI0.15-0.63), compared to those with no dependent children. Gender-specific barriers and facilitators operate throughout the whole process of seeking care. Further efforts to enrol men into care earlier should focus on the masculine characteristics that they value, and the risks to these of severe health decline. Our results emphasise the value of exploring as well as identifying behavioural correlates of late presentation.
Lin, Yu-Fu; Chen, You-Yi; Hsiao, Yu-Yun; Shen, Ching-Yu; Hsu, Jui-Ling; Yeh, Chuan-Ming; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Liu, Zhong-Jian; Tsai, Wen-Chieh
2016-09-01
TEOSINTE-BRANCHED/CYCLOIDEA/PCF (TCP) proteins are plant-specific transcription factors known to have a role in multiple aspects of plant growth and development at the cellular, organ and tissue levels. However, there has been no related study of TCPs in orchids. Here we identified 23 TCP genes from the genome sequence of Phalaenopsis equestris Phylogenetic analysis distinguished two homology classes of PeTCP transcription factor families: classes I and II. Class II was further divided into two subclasses, CIN and CYC/TB1. Spatial and temporal expression analysis showed that PePCF10 was predominantly expressed in ovules at early developmental stages and PeCIN8 had high expression at late developmental stages in ovules, with overlapping expression at day 16 after pollination. Subcellular localization and protein-protein interaction analyses revealed that PePCF10 and PeCIN8 could form homodimers and localize in the nucleus. However, PePCF10 and PeCIN8 could not form heterodimers. In transgenic Arabidopsis thaliana plants (overexpression and SRDX, a super repression motif derived from the EAR-motif of the repression domain of tobacco ETHYLENE-RESPONSIVE ELEMENT-BINDING FACTOR 3 and SUPERMAN, dominantly repressed), the two genes helped regulate cell proliferation. Together, these results suggest that PePCF10 and PeCIN8 play important roles in orchid ovule development by modulating cell division. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Francischetti, Ivo MB; Seydel, Karl B; Monteiro, Robson Q; Whitten, Richard O; Erexson, Cindy R; Noronha, Almério LL; Ostera, Graciela R.; Kamiza, Steve B; Molyneux, Malcolm E; Ward, Jerrold M; Taylor, Terrie E
2010-01-01
Summary Background Plasmodium falciparum malaria infects 300–500 million people every year causing 1–2 million deaths annually. Evidence of a coagulation disorder, activation of endothelial cells (EC) and increase in inflammatory cytokines are often present in malaria. Objectives We have asked whether parasitized red blood cells (pRBC) interaction with EC induces Tissue Factor expression in vitro and in vivo. The potential of phosphatidylserine-containing pRBC to support the assembly of blood coagulation complexes was also investigated. Results We demonstrate that mature forms of pRBC induce functional expression of tissue factor (TF) by endothelial cells (EC) in vitro with productive assembly of the extrinsic Xnase complex and initiation of the coagulation cascade. Late stage pRBC also support the prothrombinase and intrinsic Xnase complex formation in vitro, and may function as activated platelets in the amplification phase of the blood coagulation. Notably, postmortem brain sections obtained from P. falciparum-infected children who died from Cerebral Malaria and other causes display a consistent staining for TF in the EC. Conclusions These findings place TF expression by endothelium and the amplification of the coagulation cascade by pRBC and/or activated platelets as potentially critical steps in the pathogenesis of malaria. Furthermore, it may allow investigators to test other therapeutic alternatives targeting TF or modulators of EC function in the treatment of malaria and/or its complications. PMID:17002660
Hancock, Kerry R.; Collette, Vern; Fraser, Karl; Greig, Margaret; Xue, Hong; Richardson, Kim; Jones, Chris; Rasmussen, Susanne
2012-01-01
Proanthocyanidins (PAs) are oligomeric flavonoids and one group of end products of the phenylpropanoid pathway. PAs have been reported to be beneficial for human and animal health and are particularly important in pastoral agricultural systems for improved animal production and reduced greenhouse gas emissions. However, the main forage legumes grown in these systems, such as Trifolium repens and Medicago sativa, do not contain any substantial amounts of PAs in leaves. We have identified from the foliar PA-accumulating legume Trifolium arvense an R2R3-MYB transcription factor, TaMYB14, and provide evidence that this transcription factor is involved in the regulation of PA biosynthesis in legumes. TaMYB14 expression is necessary and sufficient to up-regulate late steps of the phenylpropanoid pathway and to induce PA biosynthesis. RNA interference silencing of TaMYB14 resulted in almost complete cessation of PA biosynthesis in T. arvense, whereas Nicotiana tabacum, M. sativa, and T. repens plants constitutively expressing TaMYB14 synthesized and accumulated PAs in leaves up to 1.8% dry matter. Targeted liquid chromatography-multistage tandem mass spectrometry analysis identified foliar PAs up to degree of polymerization 6 in leaf extracts. Hence, genetically modified M. sativa and T. repens plants expressing TaMYB14 provide a viable option for improving animal health and mitigating the negative environmental impacts of pastoral animal production systems. PMID:22566493
Pregnancy toxemia of ewes, does, and beef cows.
Rook, J S
2000-07-01
Pregnancy toxemia commonly affects pregnant ewes and does during late gestation. This metabolic disease is thought to result from disruption of the dam's glucose homeostatic mechanism in response to increased nutritional demands of the rapidly developing fetal placental unit. Commercial production systems are comprised of a variety of nutritional, metabolic, genetic, physiologic, environmental, economic, health, and management factors that singularly or as a group influence the clinical expression of pregnancy toxemia. Recognizing the role management plays in controlling these inputs is crucial to pregnancy toxemia prevention and treatment programs.
Sophonsritsuk, Areepan; Appt, Susan E; Clarkson, Thomas B; Shively, Carol A; Espeland, Mark A; Register, Thomas C
2013-05-01
The aim of this study was to determine the effects of estrogen therapy (ET) on carotid artery inflammation when initiated early and late relative to surgical menopause. Female cynomolgus macaques consuming atherogenic diets were ovariectomized and randomized to control or oral estradiol (E2; human equivalent dose of 1 mg/d micronized E2) initiated at 1 month (early menopause, n = 24) or 54 months (late menopause, n = 40) after ovariectomy. The treatment period was 8 months. Carotid artery expression of the markers of monocyte/macrophages (CD68 and CD163), dendritic cells (CD83), natural killer cells (neural cell adhesion molecule-1), and interferon-γ was significantly lower in E2-treated animals in the early menopause group but not in the late menopause group (P < 0.05). In contrast, carotid artery transcripts for T-cell markers (CD3, CD4, CD8, and CD25), interleukin-10, type I collagen, monocyte chemoattractant protein-1, matrix metalloproteinase-9, and tumor necrosis factor-α were lower in E2-treated monkeys regardless of menopausal stage (P < 0.05). ET initiated soon after menopause inhibits macrophage accumulation in the carotid artery, an effect that is not observed when E2 is administered after several years of estrogen deficiency. No evidence for pro-inflammatory effects of late ET is observed. The results provide support for the timing hypothesis of postmenopausal ET with implications for the interpretation of outcomes in the Women's Health Initiative.
Abdulla, Maha-Hamadien; Valli-Mohammed, Mansoor-Ali; Al-Khayal, Khayal; Shkieh, Abdulmalik Al; Zubaidi, Ahmad; Ahmad, Rehan; Al-Saleh, Khalid; Al-Obeed, Omar; McKerrow, James
2017-01-01
Cathepsin B (CTSB), is a cysteine protease belonging to the cathepsin (Clan CA) family. The diagnostic and prognostic significance of increased CTSB in the serum of cancer patients have been evaluated for some tumor types. CTSB serum and protein levels have also been reported previously in colorectal cancer (CRC) with contradictory results. The aim of the present study was to investigate CTSB expression in CRC patients and the association of CTSB expression with various tumor stages in a Middle East population. Serum CTSB levels were evaluated in 70 patients and 20 healthy control subjects using enzyme-linked immunosorbant assay (ELISA) technique. CTSB expression was determined in 100 pairs of CRC tumor and adjacent normal colonic tissue using quantitative PCR for mRNA levels. Detection of CTSB protein expression in tissues was carried out using both immunohistochemistry and western blotting techniques. ELISA analysis showed that in sera obtained from CRC patients, the CTSB concentration was significantly higher in late stage patients with lymph node metastases when compared to early stage patients with values of 2.9 and 0.33 ng/ml, respectively (P=0.001). The majority of tumors studied had detectable CTSB protein expression with significant increased positive staining in tumors cells when compared with matched normal colon subjects (P=0.006). The mRNA expression in early stage CRC compared to late stage CRC was 0.04±0.01 and 0.07±0.02, respectively. Increased mRNA expression was more frequently observed in the advanced cancer stages with lymph node metastases when compared with the control (P=0.002). Mann-Whitney test and paired t-test were used to compare serum CTSB and mRNA levels in early and late tumor stage. A subset of four paired tissue extracts were analyzed by western blotting. The result confirmed a consistent increase in the CTSB protein expression level in tumor tissues compared with that noted in the adjacent normal mucosal cells. These findings indicate that CTSB may be an important prognostic biomarker for late stage CRC and cases with lymph node metastases in the Middle Eastern population. Monitoring serum CTSB in CRC patients may predict and/or diagnose cases with lymph node metastases. PMID:28440429
Chen, Chih-Ming; Orefice, Lauren L.; Chiu, Shu-Ling; LeGates, Tara A.; Huganir, Richard L.; Zhao, Haiqing; Xu, Baoji; Kuruvilla, Rejji
2017-01-01
Stability of neuronal connectivity is critical for brain functions, and morphological perturbations are associated with neurodegenerative disorders. However, how neuronal morphology is maintained in the adult brain remains poorly understood. Here, we identify Wnt5a, a member of the Wnt family of secreted morphogens, as an essential factor in maintaining dendritic architecture in the adult hippocampus and for related cognitive functions in mice. Wnt5a expression in hippocampal neurons begins postnatally, and its deletion attenuated CaMKII and Rac1 activity, reduced GluN1 glutamate receptor expression, and impaired synaptic plasticity and spatial learning and memory in 3-mo-old mice. With increased age, Wnt5a loss caused progressive attrition of dendrite arbors and spines in Cornu Ammonis (CA)1 pyramidal neurons and exacerbated behavioral defects. Wnt5a functions cell-autonomously to maintain CA1 dendrites, and exogenous Wnt5a expression corrected structural anomalies even at late-adult stages. These findings reveal a maintenance factor in the adult brain, and highlight a trophic pathway that can be targeted to ameliorate dendrite loss in pathological conditions. PMID:28069946
Li, Baiwen; Wan, Xinjian; Zhu, Qi; Li, Lei; Zeng, Yue; Hu, Duanmin; Qian, Yueqin; Lu, Lungen; Wang, Xingpeng; Meng, Xiangjun
2013-01-01
Pancreatic ductal adenocarcinoma has a poor prognosis due to late diagnosis and a lack of effective therapeutic options. Thus, it is important to better understand its molecular mechanisms and to develop more effective treatments for the disease. The ternary complex factor Net, which exerts its strong inhibitory function on transcription of proto-oncogene gene c-fos by forming ternary complexes with a second transcription factor, has been suspected of being involved in pancreatic cancer and other tumors biology. In this study, we found that the majority of pancreatic ductal adenocarcinoma tissues and cell lines had weak or no expression of Net, whereas significantly high level of Net expression occurred in paired adjacent normal tissues we studied. Furthermore, using in vitro and in vivo model systems, we found that overexpression of Net inhibited cell growth and survival and induced cell apoptosis in human pancreatic ductal adenocarcinoma cell PL45; the mechanisms by which Net inhibited the cell cycle progression were mainly through P21-Cyclin D1/CDK4 Pathway. Our data thus suggested that Net might play an important role in pancreatic carcinogenesis, possibly by acting as a tumor suppressor gene. PMID:23469073
Transcription factor Afmac1 controls copper import machinery in Aspergillus fumigatus.
Kusuya, Yoko; Hagiwara, Daisuke; Sakai, Kanae; Yaguchi, Takashi; Gonoi, Tohru; Takahashi, Hiroki
2017-08-01
Copper (Cu) is an essential metal for all living organisms, although it is toxic in excess. Filamentous fungus must acquire copper from its environment for growth. Despite its essentiality for growth, the mechanisms that maintain copper homeostasis are not fully understood in filamentous fungus. To gain insights into copper homeostasis, we investigated the roles of a copper transcription factor Afmac1 in the life-threatening fungus Aspergillus fumigatus, a homolog of the yeast MAC1. We observed that the Afmac1 deletion mutant exhibited not only significantly slower growth, but also incomplete conidiation including a short chain of conidia and defective melanin. Moreover, the expressions of the copper transporters, ctrA1, ctrA2, and ctrC, and metalloreductases, Afu8g01310 and fre7, were repressed in ∆Afmac1 cells, while those expressions were induced under copper depletion conditions in wild-type. The expressions of pksP and wetA, which are, respectively, involved in biosynthesis of conidia-specific melanin and the late stage of conidiogenesis, were decreased in the ∆Afmac1 strain under minimal media condition. Taken together, these results indicate that copper acquisition through AfMac1 functions in growth as well as conidiation.
Magai, C; Cohen, C I; Culver, C; Gomberg, D; Malatesta, C
1997-11-01
Twenty-seven nursing home patients with mid- to late-stage dementia participated in a study of the relation between preillness personality, as indexed by attachment and emotion regulation style, and current emotional behavior. Preillness measures were completed by family members and current assessments of emotion were supplied by nursing home aides and family members; in addition, emotion was coded during a family visit using an objective coding system for facial emotion expressions. Attachment style was found to be related to the expression of positive affect, with securely attached individuals displaying more positive affect than avoidantly attached individuals. In addition, high ratings on premorbid hostility were associated with higher rates of negative affect and lower rates of positive affect. These findings indicate that premorbid aspects of personality show continuity over time, even in mid- to late-stage dementia.
Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome
Gunewardena, Sumedha S.; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D.; Cui, Julia Yue
2015-01-01
During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome. PMID:26496202
Martínez-Solís, María; Jakubowska, Agata K; Herrero, Salvador
2017-10-01
Baculoviruses are a broad group of viruses infecting insects, predominately of the order Lepidoptera. They are used worldwide as biological insecticides and as expression vectors to produce recombinant proteins. Baculoviruses replicate in their host, although several cell lines have been developed for in vitro replication. Nevertheless, replication of baculoviruses in cell culture involves the generation of defective viruses with a decrease in productivity and virulence. Transcriptional studies of the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infective process revealed differences in the expression patterns when the virus replicated under in vitro (Se301 cells) or in vivo (S. exigua larvae) conditions. The late expression factor 5 (lef5) gene was found to be highly overexpressed when the virus replicates in larvae. To test the possible role of lef5 expression in viral stability, recombinant AcMNPV expressing the lef5 gene from SeMNPV (Se-lef5) was generated and its stability was monitored during successive infection passages in Sf21 cells by evaluating the loss of several essential and non-essential genes. The gfp transgene was more stable in those viruses expressing the Se-LEF5 protein and the GFP-defective viruses were accumulated at a lower level when compared to its control viruses, confirming the positive influence of lef5 in viral stability during the multiplication process. This work describes for the first time a viral factor involved in transgene stability when baculoviruses replicate in cell culture, opening new ways to facilitate the in vitro production of recombinant proteins using baculovirus.
Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome.
Gunewardena, Sumedha S; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D; Cui, Julia Yue
2015-01-01
During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome.
Araya, B M; Díaz, M; Paredes, D; Ortiz, J
2017-06-01
Chile is a post-transitional country evolving towards a stationary population pyramid, which may be associated with increasing preterm birth (PTB) rates. This study aimed to compare maternal sociodemographic characteristics between the start of the post-transition phase (1994) and an established stage (2013) and to evaluate associations between these characteristics and PTB. An observational analytic design was conducted using national birth records (n = 4,956,311). Variables analysed in the 20 birth cohorts from 1994 to 2013 were: length of gestation (preterm <37 weeks) subdivided by gestational age (extreme, moderate/severe and late); maternal age (≤19, 20-35 and >35 years); education level (<8, 8-12 and >12 years of education); employment; marital status; area of residence; and type of birth (singleton, twins, and triplets or higher order). The prevalence of PTB was expressed as a percentage, and associations between PTB and predictor variables were analysed using logistic regression models. Education level, age >35 years, maternal employment, unmarried status, twin delivery and urban residency rates increased between 1994 and 2013. According to the adjusted models, age >35 years and delivery of more than two foetuses were risk factors for all PTB subtypes. Maternal employment was a risk factor for moderate/severe, late and total PTB, and a low level of education was a risk factor for late and total PTB. On the other hand, age ≤19 years was protective against all PTB subtypes. All maternal characteristics changed between 1994 and 2013. Furthermore, the prevalence of PTB increased for all predictor variables studied over this period. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Draffehn, Astrid M; Li, Li; Krezdorn, Nicolas; Ding, Jia; Lübeck, Jens; Strahwald, Josef; Muktar, Meki S; Walkemeier, Birgit; Rotter, Björn; Gebhardt, Christiane
2013-01-01
Resistance to pathogens is essential for survival of wild and cultivated plants. Pathogen susceptibility causes major losses of crop yield and quality. Durable field resistance combined with high yield and other superior agronomic characters are therefore, important objectives in every crop breeding program. Precision and efficacy of resistance breeding can be enhanced by molecular diagnostic tools, which result from knowledge of the molecular basis of resistance and susceptibility. Breeding uses resistance conferred by single R genes and polygenic quantitative resistance. The latter is partial but considered more durable. Molecular mechanisms of plant pathogen interactions are elucidated mainly in experimental systems involving single R genes, whereas most genes important for quantitative resistance in crops like potato are unknown. Quantitative resistance of potato to Phytophthora infestans causing late blight is often compromised by late plant maturity, a negative agronomic character. Our objective was to identify candidate genes for quantitative resistance to late blight not compromised by late plant maturity. We used diagnostic DNA-markers to select plants with different field levels of maturity corrected resistance (MCR) to late blight and compared their leaf transcriptomes before and after infection with P. infestans using SuperSAGE (serial analysis of gene expression) technology and next generation sequencing. We identified 2034 transcripts up or down regulated upon infection, including a homolog of the kiwi fruit allergen kiwellin. 806 transcripts showed differential expression between groups of genotypes with contrasting MCR levels. The observed expression patterns suggest that MCR is in part controlled by differential transcript levels in uninfected plants. Functional annotation suggests that, besides biotic and abiotic stress responses, general cellular processes such as photosynthesis, protein biosynthesis, and degradation play a role in MCR.
Andrews, Rachel N; Metheny-Barlow, Linda J; Peiffer, Ann M; Hanbury, David B; Tooze, Janet A; Bourland, J Daniel; Hampson, Robert E; Deadwyler, Samuel A; Cline, J Mark
2017-05-01
Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6-11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and vascular endothelial growth factor beta (VEGFB) mRNAs were increased within temporal white matter. We also demonstrate that radiation-induced brain injury is associated with decreases in white matter-specific expression of neurotransmitter receptors SYP, GRIN2A and GRIA4. We additionally provide evidence that macrophage/microglial mediated neuroinflammation may contribute to RIBI through increased gene expression of the macrophage chemoattractant CCL2 and macrophage/microglia associated CD68. Global patterns in cerebral gene expression varied significantly between regions examined (P < 0.0001, Friedman's test), with effects most prominent within cerebral white matter.
Lionakis, Michail S.; Swamydas, Muthulekha; Wan, Wuzhou; Richard Lee, Chyi-Chia; Cohen, Jeffrey I.; Scheinberg, Phillip; Gao, Ji-Liang; Murphy, Philip M.
2012-01-01
Invasive candidiasis is the 4th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1lo to Ccr1high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1+/+ and Ccr1−/− donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ. PMID:22916017
Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors.
Saera-Vila, Alfonso; Louie, Ke'ale W; Sha, Cuilee; Kelly, Ryan M; Kish, Phillip E; Kahana, Alon
2018-01-01
Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood. Using adult zebrafish extraocular muscle (EOM) regeneration as an experimental model, we show that Igf1 receptor blockage using either chemical inhibitors (BMS754807 and NVP-AEW541) or translation-blocking morpholino oligonucleotides (MOs) reduced EOM regeneration. Zebrafish EOMs regeneration depends on myocyte dedifferentiation, which is driven by early epigenetic reprogramming and requires autophagy activation and cell cycle reentry. Inhibition of Igf signaling had no effect on either autophagy activation or cell proliferation, indicating that Igf signaling was not involved in the early reprogramming steps of regeneration. Instead, blocking Igf signaling produced hypercellularity of regenerating EOMs and diminished myosin expression, resulting in lack of mature differentiated muscle fibers even many days after injury, indicating that Igf was involved in late re-differentiation steps. Although it is considered the main mediator of myogenic Igf actions, Akt activation decreased in regenerating EOMs, suggesting that alternative signaling pathways mediate Igf activity in muscle regeneration. In conclusion, Igf signaling is critical for re-differentiation of reprogrammed myoblasts during late steps of zebrafish EOM regeneration, suggesting a regulatory mechanism for determining regenerated muscle size and timing of differentiation, and a potential target for regenerative therapy.
Ling, Daijun; Salvaterra, Paul M
2011-02-01
Aging is known to be the most prominent risk factor for Alzheimer's disease (AD); however, the underlying mechanism linking brain aging with AD pathogenesis remains unknown. The expression of human amyloid beta 42 peptide (Aβ₁₋₄₂), but not Aβ₁₋₄₀ in Drosophila brain induces an early onset and progressive autophagy-lysosomal neuropathology. Here we show that the natural process of brain aging also accompanies a chronic and late-onset deterioration of neuronal autophagy-lysosomal system. This process is characterized by accumulation of dysfunctional autophagy-lysosomal vesicles, a compromise of these vesicles leading to damage of intracellular membranes and organelles, necrotic-like intraneuronal destruction and neurodegeneration. In addition, conditional activation of neuronal autophagy in young animals is protective while late activation is deleterious for survival. Intriguingly, conditional Aβ₁₋₄₂ expression limited to young animals exacerbates the aging process to a greater extent than Aβ₁₋₄₂ expression in old animals. These data suggest that the neuronal autophagy-lysosomal system may shift from a functional and protective state to a pathological and deleterious state either during brain aging or via Aβ₁₋₄₂ neurotoxicity. A chronic deterioration of the neuronal autophagy-lysosomal system is likely to be a key event in transitioning from normal brain aging to pathological aging leading to Alzheimer's neurodegeneration.
In vitro long-term development of cultured inner ear stem cells of newborn rat.
Carricondo, Francisco; Iglesias, Mari Cruz; Rodríguez, Fernando; Poch-Broto, Joaquin; Gil-Loyzaga, Pablo
2010-10-01
The adult mammalian auditory receptor lacks any ability to repair and/or regenerate after injury. However, the late developing cochlea still contains some stem-cell-like elements that might be used to regenerate damaged neurons and/or cells of the organ of Corti. Before their use in any application, stem cell numbers need to be amplified because they are usually rare in late developing and adult tissues. The numerous re-explant cultures required for the progressive amplification process can result in a spontaneous differentiation process. This aspect has been implicated in the tumorigenicity of stem cells when transplanted into a tissue. The aim of this study has been to determine whether cochlear stem cells can proliferate and differentiate spontaneously in long-term cultures without the addition of any factor that might influence these processes. Cochlear stem cells, which express nestin protein, were cultured in monolayers and fed with DMEM containing 5% FBS. They quickly organized themselves into typical spheres exhibiting a high proliferation rate, self-renewal property, and differentiation ability. Secondary cultures of these stem cell spheres spontaneously differentiated into neuroectodermal-like cells. The expression of nestin, glial-fibrillary-acidic protein, vimentin, and neurofilaments was evaluated to identify early differentiation. Nestin expression appeared in primary and secondary cultures. Other markers were also identified in differentiating cells. Further research might demonstrate the spontaneous differentiation of cochlear stem cells and their teratogenic probability when they are used for transplantation.
Peitz, Michael; Bechler, Tamara; Thiele, Catrin Cornelia; Veltel, Monika; Bloschies, Melanie; Fliessbach, Klaus; Ramirez, Alfredo; Brüstle, Oliver
2018-04-23
Alzheimer's disease (AD) is most the frequent neurodegenerative disease, and the APOE ε4 allele is the most prominent risk factor for late-onset AD. Here, we present an iPSC line generated from peripheral blood cells of a male AD patient employing Sendai virus vectors encoding the transcription factors OCT4, SOX2, KLF4 and c-MYC. The characterized iPSC line expresses typical human pluripotency markers and shows differentiation into all three germ layers, complete reprogramming vector clearance, a normal SNP genotype and maintenance of the APOE ε4/ε4 allele. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Jin, Shasha; Chang, Cuiqing; Zhang, Lantao; Liu, Yang; Huang, Xianren; Chen, Zhimin
2015-01-01
The aim of this study was to examine the effects of chlorogenic acid (CGA) on glucose and lipid metabolism in late diabetic db/db mice, as well as on adiponectin receptors and their signaling molecules, to provide evidence for CGA in the prevention of type 2 diabetes. We randomly divided 16 female db/db mice into db/db-CGA and db/db-control (CON) groups equally; db/m mice were used as control mice. The mice in both the db/db-CGA and db/m-CGA groups were administered 80 mg/kg/d CGA by lavage for 12 weeks, whereas the mice in both CON groups were given equal volumes of phosphate-buffered saline (PBS) by lavage. At the end of the intervention, we assessed body fat and the parameters of glucose and lipid metabolism in the plasma, liver and skeletal muscle tissues as well as the levels of aldose reductase (AR) and transforming growth factor-β1 (TGF-β1) in the kidneys and measured adiponectin receptors and the protein expression of their signaling molecules in liver and muscle tissues. After 12 weeks of intervention, compared with the db/db-CON group, the percentage of body fat, fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c) in the db/db-CGA group were all significantly decreased; TGF-β1 protein expression and AR activity in the kidney were both decreased; and the adiponectin level in visceral adipose was increased. The protein expression of adiponectin receptors (ADPNRs), the phosphorylation of AMP-activated protein kinase (AMPK) in the liver and muscle, and the mRNA and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) in the liver were all significantly greater. CGA could lower the levels of fasting plasma glucose and HbA1c during late diabetes and improve kidney fibrosis to some extent through the modulation of adiponectin receptor signaling pathways in db/db mice. PMID:25849026
Master, V A; Kourakis, M J; Martindale, M Q
1996-12-01
The msx gene family is one of the most highly conserved of the nonclustered homeobox-containing genes. We have isolated an msx homolog (Le-msx) from the glossiphoniid leech, Helobdella robusta, and characterized its pattern of expression by whole mount in situ hybridization. In situ expression and reverse transcription polymerase chain reaction (RT-PCR) data results show that Le-msx is a maternal transcript initially uniformly distributed in the cortex of immature oocytes that becomes asymmetrically localized to the polar regions of the uncleaved zygote. This is the earliest reported expression for the msx gene family and the first maternally expressed homeodomain-containing transcription factor reported in annelids. During embryonic development, Le-msx is expressed in all 10 embryonic stem cells and their segmental founder cell descendants. At midembryonic stages, Le-msx is expressed in the expanding germinal plate. Le-msx is confined to the central nervous system and nephridia at late (stage 9) stages and subsequently disappears from nephridia. In addition, we present a phylogenetic hypothesis for the evolution of the msx gene family, including the identification of a putative C. elegans msx homolog and the realignment of the sponge msx homolog to the NK class of homeodomain genes.
Diabetes mellitus is associated with late-onset post-stroke depression.
Zhang, Yu; He, Ji-Rong; Liang, Huai-Bin; Lu, Wen-Jing; Yang, Guo-Yuan; Liu, Jian-Rong; Zeng, Li-Li
2017-10-15
To explore the associated factors of late-onset post-stroke depression (PSD). A total of 251 patients with acute ischemic stroke were recruited. The evaluation of depression was performed 2 weeks after ischemia. 206 patients showing no depression in 2 weeks were followed up. They were divided into late-onset PSD group and non-depressed group by clinical interview with Hamilton depression scale score 3 months after stroke. On the first day following hospitalization, the clinical data including age, gender, educational level and vascular risk factors were recorded. The severity, etiological subtype and location of stroke were evaluated. The inflammatory mediators, glucose and lipid levels were recorded on the day of admission. The association between clinical factors and late-onset PSD was explored by logistic regression analysis. The ROC analysis was performed to evaluate the predicting power of the clinical factors. 187 of 206 patients completed the assessment 3 months after stroke. 19 (10.16%) patients were diagnosed as late onset PSD. Diabetes mellitus was an independent risk factor for late-onset PSD (OR 2.675, p = 0.047). ROC analysis demonstrated that glucose and HbA1C could predict late-onset PSD with specificity of 84.4%. The sample of our study was small. The results should be further confirmed in a larger cohort of patients with acute ischemic stroke. The acute ischemic stroke patients with diabetes mellitus were more tendered to suffer late-onset PSD. Copyright © 2017 Elsevier B.V. All rights reserved.
Ramani, Pramila; Taylor, Scott; Miller, Elizabeth; Sowa-Avugrah, Emile; May, Margaret T.
2015-01-01
Phosphohistone H3 (pHH3), a biomarker of the late G2- and M-phase of the cell cycle, provides a powerful indication of the proliferative state of many cancers. We investigated the prognostic significance of pHH3 by immunostaining 80 neuroblastomas and counting the average number of strongly stained nuclei and mitotic figures. The median and 75th percentile pHH3 proliferation indices (PIs) were 0.54% and 1.06% (range, 0.01% to 2.23%) respectively. pHH3 expression was significantly higher in neuroblastomas from patients with adverse clinical characteristics, all unfavorable pathological factors including high mitosis karyorrhexis index (MKI), and adverse biological factors including MYCN oncogene amplification. High pHH3-PIs, at 1% threshold, were significantly associated with a shorter overall survival (OS) and event-free survival (EFS) in the univariable Cox regression analyses. In the multivariable models, high pHH3 counts were significantly associated with worse OS after adjustment for age but were not independent of either high MKI or MYCN amplification. In children less than 18 months of age, high MKIs and high PHH3-PIs were associated with significantly worse OS and EFS. In conclusion, high pHH3 expression correlates strongly with high MKI and MYCN amplification and indicates poor prognosis in neuroblastomas. PMID:25711230
Yocum, George D; Childers, Anna K; Rinehart, Joseph P; Rajamohan, Arun; Pitts-Singer, Theresa L; Greenlee, Kendra J; Bowsher, Julia H
2018-05-10
Our understanding of the mechanisms controlling insect diapause has increased dramatically with the introduction of global gene expression techniques, such as RNA-seq. However, little attention has been given to how ecologically relevant field conditions may affect gene expression during diapause development because previous studies have focused on laboratory reared and maintained insects. To determine whether gene expression differs between laboratory and field conditions, prepupae of the alfalfa leafcutting bee, Megachile rotundata , entering diapause early or late in the growing season were collected. These two groups were further subdivided in early autumn into laboratory and field maintained groups, resulting in four experimental treatments of diapausing prepupae: early and late field, and early and late laboratory. RNA-seq and differential expression analyses were performed on bees from the four treatment groups in November, January, March and May. The number of treatment-specific differentially expressed genes (97 to 1249) outnumbered the number of differentially regulated genes common to all four treatments (14 to 229), indicating that exposure to laboratory or field conditions had a major impact on gene expression during diapause development. Principle component analysis and hierarchical cluster analysis yielded similar grouping of treatments, confirming that the treatments form distinct clusters. Our results support the conclusion that gene expression during the course of diapause development is not a simple ordered sequence, but rather a highly plastic response determined primarily by the environmental history of the individual insect. © 2018. Published by The Company of Biologists Ltd.
Gómez-Suaga, Patricia; Rivero-Ríos, Pilar; Fdez, Elena; Blanca Ramírez, Marian; Ferrer, Isidro; Aiastui, Ana; López De Munain, Adolfo; Hilfiker, Sabine
2014-12-20
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset autosomal dominant Parkinson's disease (PD), and sequence variations at the LRRK2 locus are associated with increased risk for sporadic PD. LRRK2 contains both GTPase and kinase domains flanked by protein interaction motifs, and mutations associated with familial PD have been described for both catalytic domains. LRRK2 has been implicated in diverse cellular processes, and recent evidence pinpoints to an important role for LRRK2 in modulating a variety of intracellular membrane trafficking pathways. However, the underlying mechanisms are poorly understood. Here, by studying the classical, well-understood, degradative trafficking pathway of the epidermal growth factor receptor (EGFR), we show that LRRK2 regulates endocytic membrane trafficking in an Rab7-dependent manner. Mutant LRRK2 expression causes a slight delay in early-to-late endosomal trafficking, and a pronounced delay in trafficking out of late endosomes, which become aberrantly elongated into tubules. This is accompanied by a delay in EGFR degradation. The LRRK2-mediated deficits in EGFR trafficking and degradation can be reverted upon coexpression of active Rab7 and of a series of proteins involved in bridging the EGFR to Rab7 on late endosomes. Effector pulldown assays indicate that pathogenic LRRK2 decreases Rab7 activity both in cells overexpressing LRRK2, as well as in fibroblasts from pathogenic mutant LRRK2 PD patients when compared with healthy controls. Together, these findings provide novel insights into a previously unknown regulation of Rab7 activity by mutant LRRK2 which impairs membrane trafficking at very late stages of the endocytic pathway. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sinha, Somya; Raxwal, Vivek K.; Joshi, Bharat; Jagannath, Arun; Katiyar-Agarwal, Surekha; Goel, Shailendra; Kumar, Amar; Agarwal, Manu
2015-01-01
Low temperature is a major abiotic stress that impedes plant growth and development. Brassica juncea is an economically important oil seed crop and is sensitive to freezing stress during pod filling subsequently leading to abortion of seeds. To understand the cold stress mediated global perturbations in gene expression, whole transcriptome of B. juncea siliques that were exposed to sub-optimal temperature was sequenced. Manually self-pollinated siliques at different stages of development were subjected to either short (6 h) or long (12 h) durations of chilling stress followed by construction of RNA-seq libraries and deep sequencing using Illumina's NGS platform. De-novo assembly of B. juncea transcriptome resulted in 133,641 transcripts, whose combined length was 117 Mb and N50 value was 1428 bp. We identified 13,342 differentially regulated transcripts by pair-wise comparison of 18 transcriptome libraries. Hierarchical clustering along with Spearman correlation analysis identified that the differentially expressed genes segregated in two major clusters representing early (5–15 DAP) and late stages (20–30 DAP) of silique development. Further analysis led to the discovery of sub-clusters having similar patterns of gene expression. Two of the sub-clusters (one each from the early and late stages) comprised of genes that were inducible by both the durations of cold stress. Comparison of transcripts from these clusters led to identification of 283 transcripts that were commonly induced by cold stress, and were referred to as “core cold-inducible” transcripts. Additionally, we found that 689 and 100 transcripts were specifically up-regulated by cold stress in early and late stages, respectively. We further explored the expression patterns of gene families encoding for transcription factors (TFs), transcription regulators (TRs) and kinases, and found that cold stress induced protein kinases only during early silique development. We validated the digital gene expression profiles of selected transcripts by qPCR and found a high degree of concordance between the two analyses. To our knowledge this is the first report of transcriptome sequencing of cold-stressed B. juncea siliques. The data generated in this study would be a valuable resource for not only understanding the cold stress signaling pathway but also for introducing cold hardiness in B. juncea. PMID:26579175
Habig, Jeffrey W; Rowland, Aaron; Pence, Matthew G; Zhong, Cathy X
2018-06-01
Resistance genes (R-genes) from wild potato species confer protection against disease and can be introduced into cultivated potato varieties using breeding or biotechnology. The R-gene, Rpi-vnt1, which encodes the VNT1 protein, protects against late blight, caused by Phytophthora infestans. Heterologous expression and purification of active VNT1 in quantities sufficient for regulatory biosafety studies was problematic, making it impractical to generate hazard characterization data. As a case study for R-proteins, a weight-of-evidence, tiered approach was used to evaluate the safety of VNT1. The hazard potential of VNT1 was identified from relevant safety information including history of safe use, bioinformatics, mode of action, expression levels, and dietary intake. From the assessment it was concluded that Tier II hazard characterization was not needed. R-proteins homologous to VNT1 and identified in edible crops, have a history of safe consumption. VNT1 does not share sequence identity with known allergens. Expression levels of R-proteins are generally low, and VNT1 was not detected in potato varieties expressing the Rpi-vnt1 gene. With minimal hazard and negligible exposure, the risks associated with consumption of R-proteins in late blight protected potatoes are exceedingly low. R-proteins introduced into potatoes to confer late blight protection are safe for consumption. Copyright © 2018 Elsevier Inc. All rights reserved.
2014-01-01
Background The present study sought to clarify the relationship between empathy trait and attention responses to happy, angry, surprised, afraid, and sad facial expressions. As indices of attention, we recorded event-related potentials (ERP) and focused on N170 and late positive potential (LPP) components. Methods Twenty-two participants (12 males, 10 females) discriminated facial expressions (happy, angry, surprised, afraid, and sad) from emotionally neutral faces under an oddball paradigm. The empathy trait of participants was measured using the Interpersonal Reactivity Index (IRI, J Pers Soc Psychol 44:113–126, 1983). Results Participants with higher IRI scores showed: 1) more negative amplitude of N170 (140 to 200 ms) in the right posterior temporal area elicited by happy, angry, surprised, and afraid faces; 2) more positive amplitude of early LPP (300 to 600 ms) in the parietal area elicited in response to angry and afraid faces; and 3) more positive amplitude of late LPP (600 to 800 ms) in the frontal area elicited in response to happy, angry, surprised, afraid, and sad faces, compared to participants with lower IRI scores. Conclusions These results suggest that individuals with high empathy pay attention to various facial expressions more than those with low empathy, from very-early stage (reflected in N170) to late-stage (reflected in LPP) processing of faces. PMID:24975115
Temporal requirements of insulin/IGF-1 signaling for proteotoxicity protection.
Cohen, Ehud; Du, Deguo; Joyce, Derek; Kapernick, Erik A; Volovik, Yuli; Kelly, Jeffery W; Dillin, Andrew
2010-04-01
Toxic protein aggregation (proteotoxicity) is a unifying feature in the development of late-onset human neurodegenerative disorders. Reduction of insulin/IGF-1 signaling (IIS), a prominent lifespan, developmental and reproductive regulatory pathway, protects worms from proteotoxicity associated with the aggregation of the Alzheimer's disease-linked Abeta peptide. We utilized transgenic nematodes that express human Abeta and found that late life IIS reduction efficiently protects from Abeta toxicity without affecting development, reproduction or lifespan. To alleviate proteotoxic stress in the animal, the IIS requires heat shock factor (HSF)-1 to modulate a protein disaggregase, while DAF-16 regulates a presumptive active aggregase, raising the question of how these opposing activities could be co-regulated. One possibility is that HSF-1 and DAF-16 have distinct temporal requirements for protection from proteotoxicity. Using a conditional RNAi approach, we found an early requirement for HSF-1 that is distinct from the adult functions of DAF-16 for protection from proteotoxicity. Our data also indicate that late life IIS reduction can protect from proteotoxicity when it can no longer promote longevity, strengthening the prospect that IIS reduction might be a promising strategy for the treatment of neurodegenerative disorders caused by proteotoxicity.
Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex
Wolle, Daniel; Cleard, Fabienne; Aoki, Tsutomu; Deshpande, Girish; Karch, Francois
2015-01-01
Chromatin boundaries are architectural elements that determine the three-dimensional folding of the chromatin fiber and organize the chromosome into independent units of genetic activity. The Fab-7 boundary from the Drosophila bithorax complex (BX-C) is required for the parasegment-specific expression of the Abd-B gene. We have used a replacement strategy to identify sequences that are necessary and sufficient for Fab-7 boundary function in the BX-C. Fab-7 boundary activity is known to depend on factors that are stage specific, and we describe a novel ∼700-kDa complex, the late boundary complex (LBC), that binds to Fab-7 sequences that have insulator functions in late embryos and adults. We show that the LBC is enriched in nuclear extracts from late, but not early, embryos and that it contains three insulator proteins, GAF, Mod(mdg4), and E(y)2. Its DNA binding properties are unusual in that it requires a minimal sequence of >65 bp; however, other than a GAGA motif, the three Fab-7 LBC recognition elements display few sequence similarities. Finally, we show that mutations which abrogate LBC binding in vitro inactivate the Fab-7 boundary in the BX-C. PMID:26303531
Andrews, Rachel N.; Metheny-Barlow, Linda J.; Peiffer, Ann M.; Hanbury, David B.; Tooze, Janet A.; Bourland, J. Daniel; Hampson, Robert E.; Deadwyler, Samuel A.; Cline, J. Mark
2017-01-01
Andrews, R. N., Metheny-Barlow, L. J., Peiffer, A. M., Hanbury, D. B., Tooze, J. A., Bourland, J. D., Hampson, R. E., Deadwyler, S. A. and Cline, J. M. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat. Res. 187, 599–611 (2017). Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6–11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and vascular endothelial growth factor beta (VEGFB) mRNAs were increased within temporal white matter. We also demonstrate that radiation-induced brain injury is associated with decreases in white matter-specific expression of neurotransmitter receptors SYP, GRIN2A and GRIA4. We additionally provide evidence that macrophage/microglial mediated neuroinflammation may contribute to RIBI through increased gene expression of the macrophage chemoattractant CCL2 and macrophage/ microglia associated CD68. Global patterns in cerebral gene expression varied significantly between regions examined (P < 0.0001, Friedman’s test), with effects most prominent within cerebral white matter. PMID:28398880
Mendes, L F; Katagiri, H; Tam, W L; Chai, Y C; Geris, L; Roberts, S J; Luyten, F P
2018-02-21
Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units.
Zhang, Yufan; Clemens, Adam; Maximova, Siela N; Guiltinan, Mark J
2014-04-24
The Arabidopsis thaliana LEC2 gene encodes a B3 domain transcription factor, which plays critical roles during both zygotic and somatic embryogenesis. LEC2 exerts significant impacts on determining embryogenic potential and various metabolic processes through a complicated genetic regulatory network. An ortholog of the Arabidopsis Leafy Cotyledon 2 gene (AtLEC2) was characterized in Theobroma cacao (TcLEC2). TcLEC2 encodes a B3 domain transcription factor preferentially expressed during early and late zygotic embryo development. The expression of TcLEC2 was higher in dedifferentiated cells competent for somatic embryogenesis (embryogenic calli), compared to non-embryogenic calli. Transient overexpression of TcLEC2 in immature zygotic embryos resulted in changes in gene expression profiles and fatty acid composition. Ectopic expression of TcLEC2 in cacao leaves changed the expression levels of several seed related genes. The overexpression of TcLEC2 in cacao explants greatly increased the frequency of regeneration of stably transformed somatic embryos. TcLEC2 overexpressing cotyledon explants exhibited a very high level of embryogenic competency and when cultured on hormone free medium, exhibited an iterative embryogenic chain-reaction. Our study revealed essential roles of TcLEC2 during both zygotic and somatic embryo development. Collectively, our evidence supports the conclusion that TcLEC2 is a functional ortholog of AtLEC2 and that it is involved in similar genetic regulatory networks during cacao somatic embryogenesis. To our knowledge, this is the first detailed report of the functional analysis of a LEC2 ortholog in a species other then Arabidopsis. TcLEC2 could potentially be used as a biomarker for the improvement of the SE process and screen for elite varieties in cacao germplasm.
Meloche, S; Seuwen, K; Pagès, G; Pouysségur, J
1992-05-01
We have examined the phosphorylation and protein kinase activity of p44 mitogen-activated protein kinase (p44mapk) in growth factor-stimulated hamster fibroblasts using a specific antiserum. The activity of p44mapk was stimulated both by receptor tyrosine kinases and G protein-coupled receptors. Detailed kinetics revealed that alpha-thrombin induces a biphasic activation of p44mapk in CCL39 cells: a rapid phase appearing at 5-10 min was followed by a late and sustained phase still elevated after 4 h. Inactivation of alpha-thrombin with hirudin after 30 sec, which prevented DNA synthesis, did not alter the early p44mapk response but completely abolished the late phase. Pretreatment of the cells with pertussis toxin, which inhibits by more than 95% alpha-thrombin-induced mitogenicity, resulted in the complete loss of late phase activity, while the early peak was partially attenuated. Treatment of CCL39 cells with basic fibroblast growth factor also induced a strong activation of p44mapk. Serotonin, which is not a mitogen by its own, had no effect on late phase p44mapk activity, but synergized with basic fibroblast growth factor to induce late kinase response and DNA synthesis. Both early and late phase activation of p44mapk were accompanied by tyrosine phosphorylation of the enzyme. Together, the results indicate that there is a very close correlation between the ability of a growth factor to induce late and sustained p44mapk activation and its mitogenic potential. Therefore, we propose that sustained p44mapk activation is an obligatory event for growth factor-induced cell cycle progression.
Influence of chick hatch time and access to feed on broiler muscle development.
Powell, D J; Velleman, S G; Cowieson, A J; Singh, M; Muir, W I
2016-06-01
The effect of hatch time and the timing of access to feed on growth rate and breast muscle development was assessed in Ross 308 broiler chickens. Chicks were removed from the incubator upon hatching, and classified as early (EH), midterm (MH), or late (LH) hatchers, based on the duration of their incubation. Feed and water were available either immediately at hatch, or 24 h after the conclusion of the hatch period. Hatchling body weight was uniform regardless of hatch time. Subsequently, bodyweight was increased in EH compared to LH birds following immediate access to feed, until 7 d in female, and 14 d in male birds. Relative breast weight was increased until 28 d in birds with immediate access to feed, and also EH and MH birds regardless of access to feed. Pectoralis major muscle morphology and expression of the myogenic regulatory factors myogenic determination factor 1 (MYOD1) and myogenin, and the proteoglycans syndecan-4, glypican-1, and decorin were measured. Myogenin and glypican-1 stimulate satellite cell (SC) differentiation. Glypican-1 expression was unaffected by treatment. A late increase in myogenin expression was observed in MH birds with delayed access to feed, and all LH birds. Syndecan-4 and MYOD1, expressed in proliferating SC, and decorin, which stimulates satellite cell proliferation and differentiation, were variably upregulated in the first wk posthatch in the same birds. These data suggest SC were activated and proliferating, but had reduced differentiation in later hatching and feed deprived birds. Conversely, EH birds with immediate access to feed had maximal myofiber width at 7 d, while fiber width was increased in birds with immediate access to feed compared to those with delayed access to feed through 40 d of age. These results demonstrate that delaying chick access to feed for 24 h upon removal from the incubator will impair muscle growth. Additionally, hatch time influences muscle development, with accelerated muscle growth in EH and MH, compared to LH birds, irrespective of access to feed. © 2016 Poultry Science Association Inc.
Schlötzer-Schrehardt, Ursula; Hammer, Christian M; Krysta, Anita W; Hofmann-Rummelt, Carmen; Pasutto, Francesca; Sasaki, Takako; Kruse, Friedrich E; Zenkel, Matthias
2012-09-01
To test the hypothesis that a primary disturbance in lysyl oxidase-like 1 (LOXL1) and elastin metabolism in the lamina cribrosa of eyes with pseudoexfoliation syndrome constitutes an independent risk factor for glaucoma development and progression. Observational, consecutive case series. Posterior segment tissues obtained from 37 donors with early and late stages of pseudoexfoliation syndrome without glaucoma, 37 normal age-matched control subjects, 5 eyes with pseudoexfoliation-associated open-angle glaucoma, and 5 eyes with primary open-angle glaucoma (POAG). Protein and mRNA expression of major elastic fiber components (elastin, fibrillin-1, fibulin-4), collagens (types I, III, and IV), and lysyl oxidase crosslinking enzymes (LOX, LOXL1, LOXL2) were assessed in situ by quantitative real-time polymerase chain reaction, (immuno)histochemistry, and light and electron microscopy. Lysyl oxidase-dependent elastin fiber assembly was assessed by primary optic nerve head astrocytes in vitro. Expression levels of elastic proteins, collagens, and lysyl oxidases in the lamina cribrosa. Lysyl oxidase-like 1 proved to be the major lysyl oxidase isoform in the normal lamina cribrosa in association with a complex elastic fiber network. Compared with normal and POAG specimens, lamina cribrosa tissues obtained from early and late stages of pseudoexfoliation syndrome without and with glaucoma consistently revealed a significant coordinated downregulation of LOXL1 and elastic fiber constituents on mRNA and protein level. In contrast, expression levels of collagens and other lysyl oxidase isoforms were not affected. Dysregulated expression of LOXL1 and elastic proteins was associated with pronounced (ultra)structural alterations of the elastic fiber network in the laminar beams of pseudoexfoliation syndrome eyes. Inhibition of LOXL1 interfered with elastic fiber assembly by optic nerve head astrocytes in vitro. The findings provide evidence for a pseudoexfoliation-specific elastinopathy of the lamina cribrosa resulting from a primary disturbance in LOXL1 regulation and elastic fiber homeostasis, possibly rendering pseudoexfoliation syndrome eyes more vulnerable to pressure-induced optic nerve damage and glaucoma development and progression. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oestberg, Sara, E-mail: sara.ostberg@imbim.uu.se; Toermaenen Persson, Heidi, E-mail: heidi.tormanen.persson@imbim.uu.se; Akusjaervi, Goeran, E-mail: goran.akusjarvi@imbim.uu.se
2012-11-25
The adenovirus L4-33K protein is a key regulator involved in the temporal shift from early to late pattern of mRNA expression from the adenovirus major late transcription unit. L4-33K is a virus-encoded alternative splicing factor, which enhances processing of 3 Prime splice sites with a weak sequence context. Here we show that L4-33K expressed from a plasmid is localized at the nuclear margin of uninfected cells. During an infection L4-33K is relocalized to the periphery of E2A-72K containing viral replication centers. We also show that serine 192 in the tiny RS repeat of the conserved carboxy-terminus of L4-33K, which ismore » critical for the splicing enhancer function of L4-33K, is necessary for the nuclear localization and redistribution of the protein to viral replication sites. Collectively, our results show a good correlation between the activity of L4-33K as a splicing enhancer protein and its localization to the periphery of viral replication centers.« less
de Cid, Rafael; Riveira-Munoz, Eva; Zeeuwen, Patrick L.J.M.; Robarge, Jason; Liao, Wilson; Dannhauser, Emma N.; Giardina, Emiliano; Stuart, Philip E.; Nair, Rajan; Helms, Cynthia; Escaramís, Georgia; Ballana, Ester; Martín-Ezquerra, Gemma; den Heijer, Martin; Kamsteeg, Marijke; Joosten, Irma; Eichler, Evan E.; Lázaro, Conxi; Pujol, Ramón M.; Armengol, Lluís; Abecasis, Gonçalo; Elder, James T.; Novelli, Giuseppe; Armour, John A.L.; Kwok, Pui; Bowcock, Anne; Schalkwijk, Joost; Estivill, Xavier
2011-01-01
Psoriasis is a common inflammatory skin disease with a prevalence of 2% to 3% in Caucasians1. In a genome-wide search for copy number variants (CNV) using a sample pooling approach we have identified a deletion comprising LCE3B and LCE3C, members of the late cornified envelope (LCE) gene cluster2. The absence of LCE3B and LCE3C (LCE3C-LCE3B-del) is significantly associated (p=1.38E-08) with risk of psoriasis in 2,831 samples from Spain, The Netherlands, Italy and the USA, and in a family-based study (p=5.4E-04). LCE3C-LCE3B-del is tagged by rs4112788 (r2=0.93), which is also strongly associated with psoriasis (p<6.6E-09). LCE3C-LCE3B-del shows epistatic effects with the HLA-Cw6 allele on the development of psoriasis in Dutch samples, and multiplicative effects in the other samples. LCE expression can be induced in normal epidermis by skin barrier disruption and is strongly expressed in psoriatic lesions, suggesting that compromised skin barrier function plays a role in psoriasis susceptibility. PMID:19169253
Frühholz, Sascha; Fehr, Thorsten; Herrmann, Manfred
2009-10-01
Contextual features during recognition of facial affect are assumed to modulate the temporal course of emotional face processing. Here, we simultaneously presented colored backgrounds during valence categorizations of facial expressions. Subjects incidentally learned to perceive negative, neutral and positive expressions within a specific colored context. Subsequently, subjects made fast valence judgments while presented with the same face-color-combinations as in the first run (congruent trials) or with different face-color-combinations (incongruent trials). Incongruent trials induced significantly increased response latencies and significantly decreased performance accuracy. Contextual incongruent information during processing of neutral expressions modulated the P1 and the early posterior negativity (EPN) both localized in occipito-temporal areas. Contextual congruent information during emotional face perception revealed an emotion-related modulation of the P1 for positive expressions and of the N170 and the EPN for negative expressions. Highest amplitude of the N170 was found for negative expressions in a negatively associated context and the N170 amplitude varied with the amount of overall negative information. Incongruent trials with negative expressions elicited a parietal negativity which was localized to superior parietal cortex and which most likely represents a posterior manifestation of the N450 as an indicator of conflict processing. A sustained activation of the late LPP over parietal cortex for all incongruent trials might reflect enhanced engagement with facial expression during task conditions of contextual interference. In conclusion, whereas early components seem to be sensitive to the emotional valence of facial expression in specific contexts, late components seem to subserve interference resolution during emotional face processing.
The prediction of late-onset preeclampsia: Results from a longitudinal proteomics study.
Erez, Offer; Romero, Roberto; Maymon, Eli; Chaemsaithong, Piya; Done, Bogdan; Pacora, Percy; Panaitescu, Bogdan; Chaiworapongsa, Tinnakorn; Hassan, Sonia S; Tarca, Adi L
2017-01-01
Late-onset preeclampsia is the most prevalent phenotype of this syndrome; nevertheless, only a few biomarkers for its early diagnosis have been reported. We sought to correct this deficiency using a high through-put proteomic platform. A case-control longitudinal study was conducted, including 90 patients with normal pregnancies and 76 patients with late-onset preeclampsia (diagnosed at ≥34 weeks of gestation). Maternal plasma samples were collected throughout gestation (normal pregnancy: 2-6 samples per patient, median of 2; late-onset preeclampsia: 2-6, median of 5). The abundance of 1,125 proteins was measured using an aptamers-based proteomics technique. Protein abundance in normal pregnancies was modeled using linear mixed-effects models to estimate mean abundance as a function of gestational age. Data was then expressed as multiples of-the-mean (MoM) values in normal pregnancies. Multi-marker prediction models were built using data from one of five gestational age intervals (8-16, 16.1-22, 22.1-28, 28.1-32, 32.1-36 weeks of gestation). The predictive performance of the best combination of proteins was compared to placental growth factor (PIGF) using bootstrap. 1) At 8-16 weeks of gestation, the best prediction model included only one protein, matrix metalloproteinase 7 (MMP-7), that had a sensitivity of 69% at a false positive rate (FPR) of 20% (AUC = 0.76); 2) at 16.1-22 weeks of gestation, MMP-7 was the single best predictor of late-onset preeclampsia with a sensitivity of 70% at a FPR of 20% (AUC = 0.82); 3) after 22 weeks of gestation, PlGF was the best predictor of late-onset preeclampsia, identifying 1/3 to 1/2 of the patients destined to develop this syndrome (FPR = 20%); 4) 36 proteins were associated with late-onset preeclampsia in at least one interval of gestation (after adjustment for covariates); 5) several biological processes, such as positive regulation of vascular endothelial growth factor receptor signaling pathway, were perturbed; and 6) from 22.1 weeks of gestation onward, the set of proteins most predictive of severe preeclampsia was different from the set most predictive of the mild form of this syndrome. Elevated MMP-7 early in gestation (8-22 weeks) and low PlGF later in gestation (after 22 weeks) are the strongest predictors for the subsequent development of late-onset preeclampsia, suggesting that the optimal identification of patients at risk may involve a two-step diagnostic process.
The prediction of late-onset preeclampsia: Results from a longitudinal proteomics study
Erez, Offer; Romero, Roberto; Maymon, Eli; Chaemsaithong, Piya; Done, Bogdan; Pacora, Percy; Panaitescu, Bogdan; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.
2017-01-01
Background Late-onset preeclampsia is the most prevalent phenotype of this syndrome; nevertheless, only a few biomarkers for its early diagnosis have been reported. We sought to correct this deficiency using a high through-put proteomic platform. Methods A case-control longitudinal study was conducted, including 90 patients with normal pregnancies and 76 patients with late-onset preeclampsia (diagnosed at ≥34 weeks of gestation). Maternal plasma samples were collected throughout gestation (normal pregnancy: 2–6 samples per patient, median of 2; late-onset preeclampsia: 2–6, median of 5). The abundance of 1,125 proteins was measured using an aptamers-based proteomics technique. Protein abundance in normal pregnancies was modeled using linear mixed-effects models to estimate mean abundance as a function of gestational age. Data was then expressed as multiples of-the-mean (MoM) values in normal pregnancies. Multi-marker prediction models were built using data from one of five gestational age intervals (8–16, 16.1–22, 22.1–28, 28.1–32, 32.1–36 weeks of gestation). The predictive performance of the best combination of proteins was compared to placental growth factor (PIGF) using bootstrap. Results 1) At 8–16 weeks of gestation, the best prediction model included only one protein, matrix metalloproteinase 7 (MMP-7), that had a sensitivity of 69% at a false positive rate (FPR) of 20% (AUC = 0.76); 2) at 16.1–22 weeks of gestation, MMP-7 was the single best predictor of late-onset preeclampsia with a sensitivity of 70% at a FPR of 20% (AUC = 0.82); 3) after 22 weeks of gestation, PlGF was the best predictor of late-onset preeclampsia, identifying 1/3 to 1/2 of the patients destined to develop this syndrome (FPR = 20%); 4) 36 proteins were associated with late-onset preeclampsia in at least one interval of gestation (after adjustment for covariates); 5) several biological processes, such as positive regulation of vascular endothelial growth factor receptor signaling pathway, were perturbed; and 6) from 22.1 weeks of gestation onward, the set of proteins most predictive of severe preeclampsia was different from the set most predictive of the mild form of this syndrome. Conclusions Elevated MMP-7 early in gestation (8–22 weeks) and low PlGF later in gestation (after 22 weeks) are the strongest predictors for the subsequent development of late-onset preeclampsia, suggesting that the optimal identification of patients at risk may involve a two-step diagnostic process. PMID:28738067
Upadhyay, Anuradha; Gaonkar, Tulsi; Upadhyay, Ajay Kumar; Jogaiah, Satisha; Shinde, Manisha P; Kadoo, Narendra Y; Gupta, Vidya S
2018-05-31
Among the different abiotic stresses, salt stress has a significant effect on the growth and yield of grapevine (Vitis vinifera L.). In this study, we employed RNA sequence based transcriptome analysis to study salinity stress response in grape variety Thompson Seedless. Salt stress adversely affected the growth related and physiological parameters and the effect on physiological parameters was significant within 10 days of stress imposition. A total of 343 genes were differentially expressed in response to salt stress. Among the differentially expressed genes (DEGs) only 42 genes were common at early and late stages of stress. The gene enrichment analysis revealed that GO terms related to transcription factors were over-represented. Among the DEGs, 52 were transcription factors belonging to WRKY, EREB, MYB, NAC and bHLH families. Salt stress significantly affected several pathways like metabolic pathways, biosynthesis of secondary metabolites, membrane transport development related pathways etc. 343 DEGs were distributed on all the 19 chromosomes, however clustered regions of DEGs were present on chromosomes 2, 5, 6 and 12 suggesting probable QTLs for imparting tolerance to salt and other abiotic stresses. Real-time PCR of selected genes in control and treated samples of grafted and own root vines demonstrated that rootstock influenced expression of salt stress responsive genes. Microsatellite regions were identified in ten selected salt responsive genes and highly polymorphic markers were identified using fifteen grape genotypes. This information will be useful for the identification of key genes involved in salt stress tolerance in grape. The identified DEGs could also be useful for genome wide analysis for the identification of polymorphic markers for their subsequent use in molecular breeding for developing salt tolerant grape genotypes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radeleff, Boris, E-mail: Boris.radeleff@med.uni-heidelberg.de; Thierjung, Heidi; Stampfl, Ulrike
2008-09-15
PurposeTo date no direct experimental comparison between the CYPHER-Select and TAXUS-Express stents is available. Therefore, we investigated late in-stent stenosis, thrombogenicity, and inflammation, comparing the CYPHER-Select, TAXUS-Express, and custom-made cobalt chromium Polyzene-F nanocoated stents (CCPS) in the minipig coronary artery model.MethodsThe three stent types were implanted in the right coronary artery of 30 minipigs. The primary endpoint was in-stent stenosis assessed by quantitative angiography and microscopy. Secondary endpoints were inflammation and thrombogenicity evaluated by scores for inflammation and immunoreactivity (C-reactive protein and transforming growth factor beta). Follow-up was at 4 and 12 weeks.ResultsStent placement was successful in all animals; nomore » thrombus deposition occurred. Quantitative angiography did not depict statistically significant differences between the three stent types after 4 and 12 weeks. Quantitative microscopy at 4 weeks showed a statistically significant thicker neointima (p = 0.0431) for the CYPHER (105.034 {+-} 62.52 {mu}m) versus the TAXUS (74.864 {+-} 66.03 {mu}m) and versus the CCPS (63.542 {+-} 39.57 {mu}m). At 12 weeks there were no statistically significant differences. Inflammation scores at 4 weeks were significantly lower for the CCPS and CYPHER compared with the TAXUS stent (p = 0.0431). After 12 weeks statistical significance was only found for the CYPHER versus the TAXUS stent (p = 0.0431). The semiquantitative immunoreactivity scores for C-reactive protein and transforming growth factor beta showed no statistically significant differences between the three stent types after 4 and 12 weeks.ConclusionsThe CCPS provided effective control of late in-stent stenosis and thrombogenicity in this porcine model compared with the two drug-eluting stents. Its low inflammation score underscores its noninflammatory potential and might explain its equivalence to the two DES.« less
Li, Fang; Li, Jinjin; Qian, Ming; Han, Mingyu; Cao, Lijun; Liu, Hangkong; Zhang, Dong; Zhao, Caiping
2016-01-01
The NAP (NAC-like, activated by AP3/P1) transcription factor belongs to a subfamily of the NAC transcription factor family, and is believed to have an important role in regulating plant growth and development. However, there is very little information about this subfamily in Rosaceous plants. We identified seven NAP genes in the peach genome. PpNAP2 was categorized in the NAP I group, and contained a conserved transcription activation region. The other PpNAP genes belonged to the NAP II group. The expression patterns of the PpNAP genes differed in various organs and developmental stages. PpNAP1 and PpNAP2 were highly expressed in mature and senescing flowers, but not in leaves, fruits, and flower buds. PpNAP3 and PpNAP5 were only expressed in leaves. The PpNAP4 expression level was high in mature and senescing fruits, while PpNAP6 and PpNAP7 expression was up-regulated in mature and senescent leaves and flowers. During the fruit development period, the PpNAP4 and PpNAP6 expression levels rapidly increased during the S1 and S4 stages, which suggests these genes are involved in the first exponential growth phase and fruit ripening. During the fruit ripening and softening period, the PpNAP1, PpNAP4, and PpNAP6 expression levels were high during the early storage period, which was accompanied by a rapid increase in ethylene production. PpNAP1, PpNAP4, and PpNAP6 expression slowly increased during the middle or late storage periods, and peaked at the end of the storage period. Additionally, abscisic acid (ABA)-treated fruits were softer and produced more ethylene than the controls. Furthermore, the PpNAP1, PpNAP4, and PpNAP6 expression levels were higher in ABA-treated fruits. These results suggest that PpNAP1, PpNAP4, and PpNAP6 are responsive to ABA and may regulate peach fruit ripening. PMID:26909092
Are Happy Faces Attractive? The Roles of Early vs. Late Processing
Sun, Delin; Chan, Chetwyn C. H.; Fan, Jintu; Wu, Yi; Lee, Tatia M. C.
2015-01-01
Facial attractiveness is closely related to romantic love. To understand if the neural underpinnings of perceived facial attractiveness and facial expression are similar constructs, we recorded neural signals using an event-related potential (ERP) methodology for 20 participants who were viewing faces with varied attractiveness and expressions. We found that attractiveness and expression were reflected by two early components, P2-lateral (P2l) and P2-medial (P2m), respectively; their interaction effect was reflected by LPP, a late component. The findings suggested that facial attractiveness and expression are first processed in parallel for discrimination between stimuli. After the initial processing, more attentional resources are allocated to the faces with the most positive or most negative valence in both the attractiveness and expression dimensions. The findings contribute to the theoretical model of face perception. PMID:26648885
Graziotto, John J; Farkas, Michael H; Bujakowska, Kinga; Deramaudt, Bertrand M; Zhang, Qi; Nandrot, Emeline F; Inglehearn, Chris F; Bhattacharya, Shomi S; Pierce, Eric A
2011-01-01
Mutations in genes that produce proteins involved in mRNA splicing, including pre-mRNA processing factors 3, 8, and 31 (PRPF3, 8, and 31), RP9, and SNRNP200 are common causes of the late-onset inherited blinding disorder retinitis pigmentosa (RP). It is not known how mutations in these ubiquitously expressed genes lead to retina-specific disease. To investigate the pathogenesis of the RNA splicing factor forms of RP, the authors generated and characterized the retinal phenotypes of Prpf3-T494M, Prpf8-H2309P knockin mice. The retinal ultrastructure of Prpf31-knockout mice was also investigated. The knockin mice have single codon alterations in their endogenous Prpf3 and Prpf8 genes that mimic the most common disease causing mutations in human PRPF3 and PRPF8. The Prpf31-knockout mice mimic the null alleles that result from the majority of mutations identified in PRPF31 patients. The retinal phenotypes of the gene targeted mice were evaluated by electroretinography (ERG), light, and electron microscopy. The RPE cells of heterozygous Prpf3(+/T494M) and Prpf8(+/H2309P) knockin mice exhibited loss of the basal infoldings and vacuolization, with accumulation of amorphous deposits between the RPE and Bruch[b]'s membrane at age two years. These changes were more severe in the homozygous mice, and were associated with decreased rod function in the Prpf3-T494M mice. Similar degenerative changes in the RPE were detected in Prpf31(±) mice at one year of age. The finding of similar degenerative changes in RPE cells of all three mouse models suggests that the RPE may be the primary cell type affected in the RNA splicing factor forms of RP. The relatively late-onset phenotype observed in these mice is consistent with the typical adult onset of disease in patients with RP.
Vandeleest, Jessica J.; Capitanio, John P.
2012-01-01
There is a great deal of variability in mother-infant interactions and infant behavior across the first year of life in rhesus monkeys. The current paper has two specific aims: 1) to determine if birth timing predicts variability in the mother-infant relationship and infant behavior during weaning and maternal breeding, and 2) to identify predictors of infant behavior during a period of acute challenge, maternal breeding. Forty-one mother-infant pairs were observed during weaning when infants were 4.5 months old, and 33 were followed through maternal breeding. Subjective ratings of 16 adjectives reflecting qualities of maternal attitude, mother-infant interactions, and infant attitude were factor analyzed to construct factors relating to the mother-infant relationship (Relaxed and Aggressive), and infant behavior (Positive Engagement and Distress). During weaning, late born infants were more Positively Engaged than peak born infants (ANOVA, P < 0.05); however, birth timing did not affect the mother-infant relationship factors Relaxed and Aggressive or the infant attitude factor Distress. During maternal breeding early born infants had less Relaxed relationships with their mothers than peak or late born infants, higher Positive Engagement scores than peak or late born infants, and tended to have higher Distress scores than peak born infants (Repeated-measures ANOVA, P < 0.05). In addition, Distress scores were higher during maternal breeding than during the pre- and post-breeding phases. Finally, multiple regression (P < 0.05) indicated that while infant behavioral responsiveness predicted infant Positive Engagement during the acute challenge of maternal breeding, qualities of the mother-infant relationship predicted infant Distress. These data suggest that birth timing influences the patterns of mother-infant interactions during weaning and maternal breeding. Additionally, infant behavioral responsiveness and mother-infant relationship quality impact infant social engagement and affect expression, respectively. PMID:24436198
Rouillard, Maud; Audiffren, Michel; Albinet, Cédric; Ali Bahri, Mohamed; Garraux, Gaëtan; Collette, Fabienne
2017-03-01
Cognitive reserve (CR) was proposed to explain how individual differences in brain function help to cope with the effects of normal aging and neurodegenerative diseases. Education, professional solicitations, and engagement in leisure and physical activities across the lifetime are considered as major determinants of this reserve. Using multiple linear regression analyses, we tested separately in healthy elderly and Parkinson's disease (PD) populations to what extent cognitive performance in several domains was explained by (a) any of these four environmental lifespan variables; (b) demographic and clinical variables (age, gender, depression score, and, for the PD group, duration of disease and dopaminergic drugs). We also tested for an interaction, if any, between these lifespan variables and brain pathology indexed by global atrophy measured from high-resolution anatomical magnetic resonance imaging. Age was negatively associated with cognitive performance in the PD group. In healthy elderly participants, we observed significant positive associations between cognitive performance and (a) education, (b) leisure activities, and (c) professional solicitation (decisional latitude). Furthermore, participants with greater brain atrophy benefited more from CR. In PD patients, education and professional solicitations contributed to cognitive performance but to a lesser extent than in controls. CR factors modulated the relationship between cognition and brain atrophy only in patients with a slight or moderate brain atrophy. Education is the CR factor that contributed the most to late cognitive functioning in both groups, closely followed by leisure activity in normal aging and professional solicitations in PD. Our results also provide evidence suggesting that the effects of CR does not express similarly in normal aging and PD. From a broader perspective, these results seem to indicate that CR factors the most consistently practiced across lifespan (education and professional solicitation) are those that are the more strongly associated to late cognitive efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chundong; Zhang, Ying; Li, Yi
Recently, we have demonstrated that proline-rich protein 11 (PRR11) is a novel tumor-related gene product likely implicated in the regulation of cell cycle progression as well as lung cancer development. However, its precise role in cell cycle progression remains unclear. In the present study, we have further investigated the expression pattern and functional implication of PRR11 during cell cycle in detail in human lung carcinoma-derived H1299 cells. According to our immunofluorescence study, PRR11 was expressed largely in cytoplasm, the amount of PRR11 started to increase in the late S phase, and was retained until just before mitotic telophase. Consistent withmore » those observations, siRNA-mediated knockdown of PRR11 caused a significant cell cycle arrest in the late S phase. Intriguingly, the treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. Moreover, knockdown of PRR11 also resulted in a remarkable retardation of G2/M progression, and PRR11-knockdown cells subsequently underwent G2 phase cell cycle arrest accompanied by obvious mitotic defects such as multipolar spindles and multiple nuclei. In addition, forced expression of PRR11 promoted the premature Chromatin condensation (PCC), and then proliferation of PRR11-expressing cells was massively attenuated and induced apoptosis. Taken together, our current observations strongly suggest that PRR11, which is strictly regulated during cell cycle progression, plays a pivotal role in the regulation of accurate cell cycle progression through the late S phase to mitosis. - Highlights: • PRR11 started to increase in the late S phase and was retained until just before mitotic telophase. • PRR11-knockdown caused a significant cell cycle arrest in the late S phase and G2 phase. • The treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. • PRR11-knockdown led to multipolar spindles and multiple nuclei. • Forced expression of PRR11 promoted the PCC and inhibited cell proliferation.« less
Herrero-Fresneda, Immaculada; Torras, Joan; Cruzado, Josep M.; Condom, Enric; Vidal, August; Riera, Marta; Lloberas, Nuria; Alsina, Jeroni; Grinyo, Josep M.
2003-01-01
This study assesses the individual contributions of the nonalloreactive factor, cold ischemia (CI), and alloreactivity to late functional and structural renal graft changes, and examines the effect of the association of both factors on the progression of chronic allograft nephropathy. Lewis rats acted as receptors of kidneys from either Lewis or Fischer rats. For CI, kidneys were preserved for 5 hours. The rats were divided into four groups: Syn, syngeneic graft; SynI, syngeneic graft and CI; Allo, allogeneic graft; AlloI, allogeneic graft and CI. Renal function was assessed every 4 weeks for 24 weeks. Grafts were evaluated for acute inflammatory response at 1 week and for chronic histological damage at 24 weeks. Only when CI and allogenicity were combined did immediate posttransplant mortality occur, while survivors showed accelerated renal insufficiency that induced further mortality at 12 weeks after transplant. Solely ischemic rats developed renal insufficiency. Renal structural damage in ischemic rats was clearly tubulointerstitial, while significant vasculopathy and glomerulosclerosis appeared only in the allogeneic groups. There was increased infiltration of macrophages and expression of mRNA-transforming growth factor-β1 in the ischemic groups, irrespective of the allogeneic background. The joint association of CI plus allogenicity significantly increased cellular infiltration at both early and late stages, aggravating tubulointerstitial and vascular damage considerably. In summary, CI is mainly responsible for tubulointerstitial damage, whereas allogenicity leads to vascular lesion. The association of both factors accelerates and aggravates the progression of experimental chronic allograft nephropathy. PMID:12507896
Kheolamai, Pakpoom; Dickson, Alan J
2009-04-23
Induction of stem cell differentiation toward functional hepatocytes is hampered by lack of knowledge of the hepatocyte differentiation processes. The overall objective of this project is to characterize key stages in the hepatocyte differentiation process. We established a mouse embryonic stem (mES) cell culture system which exhibited changes in gene expression profiles similar to those observed in the development of endodermal and hepatocyte-lineage cells previously described in the normal mouse embryo. Transgenic mES cells were established that permitted isolation of enriched hepatocyte-lineage populations. This approach has isolated mES-derived hepatocyte-lineage cells that express several markers of mature hepatocytes including albumin, glucose-6-phosphatase, tyrosine aminotransferase, cytochrome P450-3a, phosphoenolpyruvate carboxykinase and tryptophan 2,3-dioxygenase. In addition, our results show that the up-regulation of the expression levels of hepatocyte nuclear factor-3alpha, -4alpha, -6, and CCAAT-enhancer binding protein-beta might be critical for passage into late-stage differentiation towards functional hepatocytes. These data present important steps for definition of regulatory phenomena that direct specific cell fate determination. The mES cell culture system generated in this study provides a model for studying transition between stages of the hepatocyte development and has significant potential value for studying the molecular basis of hepatocyte differentiation in vitro.
Sp8 and COUP-TF1 reciprocally regulate patterning and Fgf signaling in cortical progenitors.
Borello, Ugo; Madhavan, Mayur; Vilinsky, Ilya; Faedo, Andrea; Pierani, Alessandra; Rubenstein, John; Campbell, Kenneth
2014-06-01
To gain new insights into the transcriptional regulation of cortical development, we examined the role of the transcription factor Sp8, which is downstream of Fgf8 signaling and known to promote rostral cortical development. We have used a binary transgenic system to express Sp8 throughout the mouse telencephalon in a temporally restricted manner. Our results show that misexpression of Sp8 throughout the telencephalon, at early but not late embryonic stages, results in cortical hypoplasia, which is accompanied by increased cell death, reduced proliferation, and precocious neuronal differentiation. Misexpression of Sp8 at early developmental stages represses COUP-TF1 expression, a negative effector of Fgf signaling and a key promoter of posterior cortical identity, while ablation of Sp8 has the opposite effect. In addition, transgenic misexpression of COUP-TF1 resulted in downregulation of Sp8, indicating a reciprocal cross-regulation between these 2 transcription factors. Although Sp8 has been suggested to induce and/or maintain Fgf8 expression in the embryonic telencephalon, neither Fgf8 nor Fgf15 was upregulated using our gain-of-function approach. However, misexpression of Sp8 greatly increased the expression of Fgf target molecules, suggesting enhanced Fgf signaling. Thus, we propose that Sp8 promotes rostral and dorsomedial cortical development by repressing COUP-TF1 and promoting Fgf signaling in pallial progenitors.
Sp8 and COUP-TF1 Reciprocally Regulate Patterning and Fgf Signaling in Cortical Progenitors
Borello, Ugo; Madhavan, Mayur; Vilinsky, Ilya; Faedo, Andrea; Pierani, Alessandra; Rubenstein, John; Campbell, Kenneth
2014-01-01
To gain new insights into the transcriptional regulation of cortical development, we examined the role of the transcription factor Sp8, which is downstream of Fgf8 signaling and known to promote rostral cortical development. We have used a binary transgenic system to express Sp8 throughout the mouse telencephalon in a temporally restricted manner. Our results show that misexpression of Sp8 throughout the telencephalon, at early but not late embryonic stages, results in cortical hypoplasia, which is accompanied by increased cell death, reduced proliferation, and precocious neuronal differentiation. Misexpression of Sp8 at early developmental stages represses COUP-TF1 expression, a negative effector of Fgf signaling and a key promoter of posterior cortical identity, while ablation of Sp8 has the opposite effect. In addition, transgenic misexpression of COUP-TF1 resulted in downregulation of Sp8, indicating a reciprocal cross-regulation between these 2 transcription factors. Although Sp8 has been suggested to induce and/or maintain Fgf8 expression in the embryonic telencephalon, neither Fgf8 nor Fgf15 was upregulated using our gain-of-function approach. However, misexpression of Sp8 greatly increased the expression of Fgf target molecules, suggesting enhanced Fgf signaling. Thus, we propose that Sp8 promotes rostral and dorsomedial cortical development by repressing COUP-TF1 and promoting Fgf signaling in pallial progenitors. PMID:23307639
A gene regulatory network armature for T-lymphocyte specification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fung, Elizabeth-sharon
Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through whichmore » T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.« less
Effects of the adenovirus 2 late promoter on simian virus 40 transcription and replication.
Grass, D S; Manley, J L
1986-01-01
A 100-base-pair fragment of adenovirus 2 (Ad2) DNA encompassing the major late transcriptional promoter was inserted into the simian virus 40 (SV40) late promoter region at SV40 nucleotide 294 to study the effects of a strong TATA box-containing promoter on SV40 late transcription. pSVAdE contains the insert in an orientation such that it would promote transcription towards the origin and early region of SV40, while the insert is in the opposite orientation in pSVAdL. Nuclease S1 analysis with 5'-end-labeled probes showed that in cells transfected with pSVAdE, the late mRNA initiation sites are essentially the same as in wild type, demonstrating that an insert of 100 base pairs can have no effect on utilization of the SV40 late start sites. In pSVAdL-transfected cells, however, the major late viral initiation site is now in the insert at +1 with respect to the Ad2 major late cap site. However, all of the SV40 initiation sites are still utilized and with the same efficiency relative to each other as in wild type. Thus, it appears that the Ad2 late promoter and the SV40 late promoter can function independently on the same DNA molecule, even when one promoter is embedded within the other. By using cytosine arabinoside to block DNA replication and thereby inhibit the onset of late expression, it has been shown that both the Ad2 late promoter and the SV40 late promoter have similar requirement for DNA replication in this context. In addition, pSVAdL showed dramatically diminished virus viability and VPI expression compared with both wildtype and pSVAdE. Possible explanations for this unexpected finding are discussed. Images PMID:3001338
Kuo, Tzu-Hsing; Williams, Julie A
2014-05-01
Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. Laboratory. Drosophila melanogaster. Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection.
Vandoolaeghe, P; Gueuning, M A; Rousseau, G G
1999-06-07
Genes that are expressed in adult muscle, but not in myotubes, are useful markers of the last steps of muscle maturation. We have investigated at what stage of differentiation the muscle-specific (M) promoter of a gene that codes for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2) becomes functional. M-PFK2 mRNA, which is present in adult muscle, did not appear during differentiation of L6 myoblasts into myotubes induced by growth factor withdrawal and hormonal treatment, even when this differentiation was stimulated by expression of transgenes coding for myf-5 or Rb. A comparison with the expression pattern of muscle genes showed that M-PFK2 is a marker of mature skeletal muscle. We also found that M-PFK2 is expressed in both types (slow-twitch and fast-twitch) of adult muscle. Thus, the M-PFK2 promoter is a novel model for studying the transcriptional control of the final steps of muscle differentiation that are common to the two types of myofibers. Copyright 1999 Academic Press.
Genomic responses in rat cerebral cortex after traumatic brain injury
von Gertten, Christina; Morales, Amilcar Flores; Holmin, Staffan; Mathiesen, Tiit; Nordqvist, Ann-Christin Sandberg
2005-01-01
Background Traumatic brain injury (TBI) initiates a complex sequence of destructive and neuroprotective cellular responses. The initial mechanical injury is followed by an extended time period of secondary brain damage. Due to the complicated pathological picture a better understanding of the molecular events occurring during this secondary phase of injury is needed. This study was aimed at analysing gene expression patterns following cerebral cortical contusion in rat using high throughput microarray technology with the goal of identifying genes involved in an early and in a more delayed phase of trauma, as genomic responses behind secondary mechanisms likely are time-dependent. Results Among the upregulated genes 1 day post injury, were transcription factors and genes involved in metabolism, e.g. STAT-3, C/EBP-δ and cytochrome p450. At 4 days post injury we observed increased gene expression of inflammatory factors, proteases and their inhibitors, like cathepsins, α-2-macroglobulin and C1q. Notably, genes with biological function clustered to immune response were significantly upregulated 4 days after injury, which was not found following 1 day. Osteopontin and one of its receptors, CD-44, were both upregulated showing a local mRNA- and immunoreactivity pattern in and around the injury site. Fewer genes had decreased expression both 1 and 4 days post injury and included genes implicated in transport, metabolism, signalling, and extra cellular matrix formation, e.g. vitronectin, neuroserpin and angiotensinogen. Conclusion The different patterns of gene expression, with little overlap in genes, 1 and 4 days post injury showed time dependence in genomic responses to trauma. An early induction of factors involved in transcription could lead to the later inflammatory response with strongly upregulated CD-44 and osteopontin expression. An increased knowledge of genes regulating the pathological mechanisms in trauma will help to find future treatment targets. Since trauma is a risk factor for development of neurodegenerative disease, this knowledge may also reduce late negative effects. PMID:16318630
Ota, Koki; Kikuchi, Yuichiro; Imamura, Kentaro; Kita, Daichi; Yoshikawa, Kouki; Saito, Atsushi; Ishihara, Kazuyuki
2017-02-01
Extracytoplasmic function (ECF) sigma factors play an important role in the bacterial response to various environmental stresses. Porphyromonas gingivalis, a prominent etiological agent in human periodontitis, possesses six putative ECF sigma factors. So far, information is limited on the ECF sigma factor, PGN_0319. The aim of this study was to investigate the role of PGN_0319 (SigCH) of P. gingivalis, focusing on the regulation of hmuY and hmuR, which encode outer-membrane proteins involved in hemin utilization, and cdhR, a transcriptional regulator of hmuYR. First, we evaluated the gene expression profile of the sigCH mutant by DNA microarray. Among the genes with altered expression levels, those involved in hemin utilization were downregulated in the sigCH mutant. To verify the microarray data, quantitative reverse transcription PCR analysis was performed. The RNA samples used were obtained from bacterial cells grown to early-log phase, in which sigCH expression in the wild type was significantly higher than that in mid-log and late-log phases. The expression levels of hmuY, hmuR, and cdhR were significantly decreased in the sigCH mutant compared to wild type. Transcription of these genes was restored in a sigCH complemented strain. Compared to the wild type, the sigCH mutant showed reduced growth in log phase under hemin-limiting conditions. Electrophoretic mobility shift assays showed that recombinant SigCH protein bound to the promoter region of hmuY and cdhR. These results suggest that SigCH plays an important role in the early growth of P. gingivalis, and directly regulates cdhR and hmuYR, thereby playing a potential role in the mechanisms of hemin utilization by P. gingivalis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Jianjun; Liu, Li; Shen, Jiayin; Chen, Panpan; Lu, Hongzhou
2017-04-19
There are few studies focus on the factors underlying the late initiation of ART in China. We analyzed the trends in the median CD4 cell counts among different patient groups over time and the risk factors for the late initiation of ART in Shanghai, China. A retrospective cross-sectional survey was made in the Department of Infectious Disease of Shanghai Public Health Clinical Center which is a designated diagnosis and treatment center for HIV-positive patients in Shanghai during the period of January 1st, 2008--June 30th, 2014. Late ART initiation was defined as a CD4 cell count <200 cells/mm 3 or having a clinical AIDS diagnosis prior to ART initiation. Trends in the median CD4 cell count at ART initiation and the proportion of late ART initiation by year were evaluated using Spearman's correlations and Chi-squared methods, respectively. We used a logistic regression model to analyze the risk factors for late ART initiation. The related factors collected in the multivariate model were the patient's age, gender, infection routes and marital status. A total of 3796 patients were analyzed in this study, with a median baseline CD4 cell count of 205 cells/mm 3 [interquartile range: 75-287]. The median CD4 cell counts of patients initiating ART late increased from 76 cells/mm 3 in 2008 to 103 cells/mm 3 in 2014 (p < 0.001), and the proportion of late ART initiation decreased from 80% to 45% (p < 0.001). The risk factors for late ART initiation were male gender, heterosexual transmission and older age (>30 years) (p < 0.001). Notable improvements were made in the median CD4 cell count at ART initiation and the proportion of late ART initiation from 2008 to 2014. However, persons with high risk of HIV exposure who are male, older even heterosexual orientation should be given more opportunities to receive frequently screening, earlier diagnoses and timely treatment.
Kurichi, Jibby E.; Xie, Dawei; Kwong, Pui L.; Bates, Barbara E.; Vogel, W. Bruce; Stineman, Margaret G.
2011-01-01
Objective To determine what patient- and facility-level characteristics drive late specialized rehabilitation among veterans who already received immediate postoperative services. Design Data were obtained from 8 administrative databases for 2,453 patients who underwent lower extremity amputation in Veterans Affairs Medical Centers in 2002-2004. A Cox proportional hazards model was used to determine the hazards ratios and 95% confidence intervals of the factors associated with days to readmission for late services after discharge from the surgical hospitalization. Results There were 2,304 patients who received only immediate postoperative services, while 152 also received late specialized rehabilitation. After adjustment, veterans who were less disabled physically, residing in the South Central compared to the Southeast region, and had their surgeries in CARF accredited facilities were all more likely to receive late services. The hazards ratios for type of immediate postoperative rehabilitation were not constant over time. At hospital discharge, there was no difference in receipt, however, after 3 months, those who received early specialized rehabilitation were significantly less likely to receive late services. Conclusion The factors associated with late specialized rehabilitation were due mainly to facility-level characteristics and care process variables. Knowledge of these factors may help with decision-making policies regarding CARF accredited units. PMID:21389847
Jha, Pawan Kumar; Bouâouda, Hanan; Gourmelen, Sylviane; Dumont, Stephanie; Fuchs, Fanny; Goumon, Yannick; Bourgin, Patrice; Kalsbeek, Andries; Challet, Etienne
2017-04-19
Circadian rhythms in nocturnal and diurnal mammals are primarily synchronized to local time by the light/dark cycle. However, nonphotic factors, such as behavioral arousal and metabolic cues, can also phase shift the master clock in the suprachiasmatic nuclei (SCNs) and/or reduce the synchronizing effects of light in nocturnal rodents. In diurnal rodents, the role of arousal or insufficient sleep in these functions is still poorly understood. In the present study, diurnal Sudanian grass rats, Arvicanthis ansorgei , were aroused at night by sleep deprivation (gentle handling) or caffeine treatment that both prevented sleep. Phase shifts of locomotor activity were analyzed in grass rats transferred from a light/dark cycle to constant darkness and aroused in early night or late night. Early night, but not late night, sleep deprivation induced a significant phase shift. Caffeine on its own induced no phase shifts. Both sleep deprivation and caffeine treatment potentiated light-induced phase delays and phase advances in response to a 30 min light pulse, respectively. Sleep deprivation in early night, but not late night, potentiated light-induced c-Fos expression in the ventral SCN. Caffeine treatment in midnight triggered c-Fos expression in dorsal SCN. Both sleep deprivation and caffeine treatment potentiated light-induced c-Fos expression in calbindin-containing cells of the ventral SCN in early and late night. These findings indicate that, in contrast to nocturnal rodents, behavioral arousal induced either by sleep deprivation or caffeine during the sleeping period potentiates light resetting of the master circadian clock in diurnal rodents, and activation of calbindin-containing suprachiasmatic cells may be involved in this effect. SIGNIFICANCE STATEMENT Arousing stimuli have the ability to regulate circadian rhythms in mammals. Behavioral arousal in the sleeping period phase shifts the master clock in the suprachiasmatic nuclei and/or slows down the photic entrainment in nocturnal animals. How these stimuli act in diurnal species remains to be established. Our study in a diurnal rodent, the Grass rat, indicates that sleep deprivation in the early rest period induces phase delays of circadian locomotor activity rhythm. Contrary to nocturnal rodents, both sleep deprivation and caffeine-induced arousal potentiate the photic entrainment in a diurnal rodent. Such enhanced light-induced circadian responses could be relevant for developing chronotherapeutic strategies. Copyright © 2017 the authors 0270-6474/17/374343-16$15.00/0.
Jang, Gun Ja; Lee, Sang Lak; Kim, Hyeon Mi
2012-04-01
This study was done to compare breast feeding rates and factors influencing feeding practice between late preterm (34 ≤ GA < 37) and preterm infants (GA<34). A survey was done of 207 late preterm and 117 preterm infants in neonatal intensive care units (NICU) of 4 university hospitals in D city. Data were collected from July 2009 to June 2010 from 324 medical records in the NICU. Breast-feeding at home was checked either by telephone survey or questioning during hospital visits. Rate of breast feeding for late preterm infants was significantly lower than for preterm infants. There was no significant difference in breast-feeding at home. We found differences in factors influencing breast feeding between the two groups. Factors influencing feeding for late preterm infants were type of delivery, mothers' occupation, feeding type during hospitalization, time elapse from hospital discharge, total admission days, infant's body weight at first feeding and length of NPO (nothing by mouth). Factors influencing feeding for preterm infants were birth order, maternal disease and obstetric complications, and one-minute Apgar score. Results of the study show low rates of breast-feeding for late preterm infants indicating a need for breast-feeding education for mothers of these infants.
Early and Late Recurrent Epistaxis Admissions: Patterns of Incidence and Risk Factors.
Cohen, Oded; Shoffel-Havakuk, Hagit; Warman, Meir; Tzelnick, Sharon; Haimovich, Yaara; Kohlberg, Gavriel D; Halperin, Doron; Lahav, Yonatan
2017-09-01
Objective Epistaxis is a common complaint, yet few studies have focused on the incidence and risk factors of recurrent epistaxis. Our objective was to determine the patterns of incidence and risk factors for recurrent epistaxis admission (REA). Study Design Case series with chart review. Settings Single academic center. Subjects and Methods The medical records of patients admitted for epistaxis between 1999 and 2015 were reviewed. The follow-up period was defined as 3 years following initial admission. REAs were categorized as early (30 days) and late (31 days to 3 years) following initial admission. Logistic regression was used to identify potential predictors of REAs. Results A total of 653 patients were included. Eighty-six patients (14%) had REAs: 48 (7.5%) early and 38 (6.5%) late. Nonlinear incidence curve was demonstrated for both early and late REAs. Based on logistic regression, prior nasal surgery and anemia were independent risk factors for early REAs. According to multivariate analysis, thrombocytopenia was significantly associated with late REAs. Conclusion Early and late REAs demonstrate different risk predictors. Knowledge of such risk factors may help in risk stratification for this selected group of patients. All patients at risk should be advised on possible preventive measures. Patients at risk for early REA may benefit from a more proactive approach.
Avanzi, Mauro P; Goldberg, Francine; Davila, Jennifer; Langhi, Dante; Chiattone, Carlos; Mitchell, William Beau
2014-03-01
The processes of megakaryocyte polyploidization and demarcation membrane system (DMS) formation are crucial for platelet production, but the mechanisms controlling these processes are not fully determined. Inhibition of Rho kinase (ROCK) signalling leads to increased polyploidization in umbilical cord blood-derived megakaryocytes. To extend these findings we determined the effect of ROCK inhibition on development of the DMS and on proplatelet formation. The underlying mechanisms were explored by analysing the effect of ROCK inhibition on the expression of MYC and NFE2, which encode two transcription factors critical for megakaryocyte development. ROCK inhibition promoted DMS formation, and increased proplatelet formation and platelet release. Rho kinase inhibition also downregulated MYC and NFE2 expression in mature megakaryocytes, and this down-regulation correlated with increased proplatelet formation. Our findings suggest a model whereby ROCK inhibition drives polyploidization, DMS growth and proplatelet formation late in megakaryocyte maturation through downregulation of MYC and NFE2 expression. © 2014 John Wiley & Sons Ltd.
Lordier, Larissa; Bluteau, Dominique; Jalil, Abdelali; Legrand, Céline; Pan, Jiajia; Rameau, Philippe; Jouni, Dima; Bluteau, Olivier; Mercher, Thomas; Leon, Catherine; Gachet, Christian; Debili, Najet; Vainchenker, William; Raslova, Hana; Chang, Yunhua
2012-03-06
Megakaryocytes are unique mammalian cells that undergo polyploidization (endomitosis) during differentiation, leading to an increase in cell size and protein production that precedes platelet production. Recent evidence demonstrates that endomitosis is a consequence of a late failure in cytokinesis associated with a contractile ring defect. Here we show that the non-muscle myosin IIB heavy chain (MYH10) is expressed in immature megakaryocytes and specifically localizes in the contractile ring. MYH10 downmodulation by short hairpin RNA increases polyploidization by inhibiting the return of 4N cells to 2N, but other regulators, such as of the G1/S transition, might regulate further polyploidization of the 4N cells. Conversely, re-expression of MYH10 in the megakaryocytes prevents polyploidization and the transition of 2N to 4N cells. During polyploidization, MYH10 expression is repressed by the major megakaryocyte transcription factor RUNX1. Thus, RUNX1-mediated silencing of MYH10 is required for the switch from mitosis to endomitosis, linking polyploidization with megakaryocyte differentiation.
Transcriptional profiles of the annual growth cycle in Populus deltoides.
Park, Sunchung; Keathley, Daniel E; Han, Kyung-Hwan
2008-03-01
Cycling between vegetative growth and dormancy is an important adaptive mechanism in temperate woody plants. To gain insights into the underlying molecular mechanisms, we carried out global transcription analyses on stem samples from poplar (Populus deltoides Bartr. ex Marsh.) trees grown in the field and in controlled environments. Among seasonal changes in the transcriptome, up-regulation of defense-related genes predominated in early winter, whereas signaling-related genes were up-regulated during late winter. Cluster analysis of the differentially expressed genes showed that plants regulated seasonal growth by integrating environmental factors with development. Short day lengths induced some cold-associated genes without concomitant low temperature exposure, and enhanced the expression of some genes when combined with low temperature exposure. These mechanisms appear to maintain closer synchrony between cold hardiness and climate than would be achieved through responses to temperature alone.
Factors Associated with Late Engagement to HIV Care in Western Kenya: A Cross-Sectional Study.
Kwobah, Charles Meja; Braitstein, Paula; Koech, Julius K; Simiyu, Gilbert; Mwangi, Ann W; Wools-Kaloustian, Kara; Siika, Abraham M
2016-11-01
Late presentation of patients contributes significantly to the high mortality reported in HIV -care and treatment programs in sub-Saharan Africa. A cross-sectional study was conducted to assess factors associated with late engagement to HIV care at the Academic Model Providing Access to Healthcare in western Kenya. Late engagement was defined as baseline CD4 ≤100 cells/mm 3 . Of the 10 533 participants included in the analysis, 67% were female and mean age was 36.7 years. Overall, 23% of the participants presented late. Factors associated with late engagement included male gender (adjusted odds ratio [AOR]: 1.54, 95% confidence interval [CI]: 1.35-1.75), older age (AOR: 1.62, 95% CI: 1.02-2.56), and longer travel time to clinic (AOR: 1.18, 95% CI: 1.04-1.34). Nearly one-quarter of HIV-infected patients in our setting present with advanced immune suppression at initial encounter. Being male, older age, and living further away from clinic are associated with late engagement to care. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Asim; Mukhopadhyay, Nitai D.; Ning, Yi
Purpose: This study tested whether racial differences in genetic polymorphisms of 4 genes involved in wound repair and response to radiation can be used to predict the occurrence of normal tissue late effects of radiation therapy and indicate potential therapeutic targets. Methods and Materials: This prospective study examined genetic polymorphisms that modulate the expression of 4 genes involved in inflammation and fibrosis and response to radiation (HMOX1, NFE2L2, NOS3, and TGFβ1). DNA from blood samples of 179 patients (∼80% breast and head and neck) collected at the time of diagnosis by their radiation oncologist as exhibiting late normal tissue toxicitymore » was used for the analysis. Patient demographics were as follows: 56% white, 43% African American, 1% other. Allelic frequencies of the different polymorphisms of the participants were compared with those of the general American population stratified by race. Twenty-six additional patients treated with radiation, but without toxicity at 3 months or later after therapy, were also analyzed. Results: Increased frequency of a long GT repeat in the HMOX1 promoter was associated with late effects in both African American and white populations. The single nucleotide polymorphisms (SNP) rs1800469 in the TGFβ1 promoter and the rs6721961 SNP in the NFE2L2 promoter were also found to significantly associate with late effects in African Americans but not whites. A combined analysis of these polymorphisms revealed that >90% of African American patients with late effects had at least 1 of these minor alleles, and 58% had 2 or more. No statistical significance was found relating the studied NOS3 polymorphisms and normal tissue toxicity. Conclusions: These results support a strong association between wound repair and late toxicities of radiation. The presence of these genetic risk factors can vary significantly among different ethnic groups, as demonstrated for some of the SNPs. Future studies should account for the possibility of such ethnic heterogeneity in the late toxicities of radiation.« less
Transient development of ovotestes in XX Sox9 transgenic mice
Gregoire, Elodie P.; Lavery, Rowena; Chassot, Anne-Amandine; Akiyama, Haruhiko; Treier, Mathias; Behringer, Richard R.; Chaboissier, Marie-Christine
2010-01-01
The sex of an individual results from the paternal transmission of the SRY gene located on the Y chromosome. In turn, SRY initiates Sox9 expression, a transcription factor required for testicular differentiation. Ectopic activation of SOX9 in XX Wt1:Sox9 transgenic mice, induces female-to-male sex reversal in adult mice. Here we show that complete sex reversal is preceded by a transient phase of ovotestis differentiation with XX Wt1:Sox9 transgenic gonads containing a testicular central region and one or both ovarian poles indicating that Wt1:Sox9 is not as efficient as Sry to induce male development. In XX Wt1:Sox9Tg/+ gonads, transgenic Sox9 is expressed earlier than Sox9 in XY gonads, and is able to induce the expression of EGFP, knocked into the 3′ UTR of Sox9 indicating that SOX9 is involved in the initiation and maintenance of its own expression. However, the delayed onset of expression of endogenous Sox9-EGFP suggests that this activation requires other factors, whose expression depends on SOX9. In the testicular regions of the XX Wt1:Sox9 ovotestes, proliferation of the XX foetal germ cells is hampered and they differentiate as pro-spermatogonia. This indicates that XX germ cells are not competent to respond to proliferative signals released from a testicular environment. In the ovarian regions, despite the continuous mRNA expression of the WT1:Sox9 transgene, the SOX9 protein does not accumulate suggesting that regulation of this gene in ovarian cells involves post-transcriptional mechanisms. Finally, ovarian cells of the XX Wt1:Sox9 ovotestis undergo apoptosis during late embryogenesis leading to complete female-to-male sex reversal of the transgenic mice at birth. PMID:20965161
Role of Krüppel-like factor 4 and heat shock protein 27 in cancer of the larynx
Karam, Jihad; Fadous-Khalifé, Marie Claude; Tannous, Rita; Fakhreddine, Sally; Massoud, Marcel; Hadchity, Joseph; Aftimos, Georges; Hadchity, Elie
2017-01-01
Late detection and lack of standard treatment strategies in larynx cancer patients result in high levels of mortality and poor prognosis. Prognostic stratification of larynx cancer patients based on molecular prognostic tumor biomarkers may lead to more efficient clinical management. Krüppel-like factor 4 (KLF4) and Heat Shock Protein 27 (HSP27) have an important role in tumorigenesis and are considered promising candidate biomarkers for various types of cancer. However, their role in larynx carcinoma remains to be elucidated. The present study aimed to determine KLF4 and HSP27 expression profiles in laryngeal tumors. The protein and mRNA expression levels of KLF4 and HSP27 were evaluated by immunohistochemical and reverse transcription-polymerase chain reaction analyses in 44 larynx carcinoma samples and 21 normal tissue samples, and then correlated with clinical characteristics. A differential expression of KLF4 and HSP27 was observed between normal and tumor tissues. The protein and mRNA expression levels of KLF4 were significantly decreased in larynx squamous cell carcinoma (LSCC) compared with normal tissue, whereas HSP27 was significantly overexpressed in tumor tissues compared with normal tissues, at the protein and mRNA levels. KLF4 expression decreased gradually with tumor progression whereas HSP27 expression increased. A significant difference was observed between stages I and IV. KLF4 and HSP27 exhibit opposite functions and roles in the carcinogenic process of LSCC. Their role in laryngeal cancer initiation and progression emphasizes their use as potential future targets for prognosis and treatment. KLF4 and HSP27 expression levels may act as potential biomarkers in patients with cancer of the larynx. PMID:29181170
Hildebrandt, V A; Babischkin, J S; Koos, R D; Pepe, G J; Albrecht, E D
2001-05-01
Vascular endothelial growth/permeability factor (VEG/PF) has an important role in angiogenesis; however, very little is known about the developmental regulation of VEG/PF and the vascular system within the placenta during human pregnancy. In the present study, therefore, a developmental approach was used in the baboon to determine the placental source of VEG/PF and its fms-like tyrosine kinase (flt-1) and kinase-insert domain containing (KDR/flk-1) receptors, and whether the rise in estrogen with advancing pregnancy was associated with a corresponding increase in placental VEG/PF expression and vascularization. VEG/PF messenger RNA (mRNA) levels were determined by competitive RT-PCR in villous cell fractions isolated by Percoll gradient centrifugation from placentas obtained on days 45 and 54 (very early), 60 (early), 100 (mid), and 165-170 (late) of baboon pregnancy (term = 184 days). Maternal peripheral serum estradiol increased from very low concentrations early in gestation (0.15-0.20 ng/ml) to an early surge of over 2.5 ng/ml on days 60-85, and peak levels of 4-6 ng/ml late in baboon pregnancy. VEG/PF mRNA was expressed in low level in the syncytiotrophoblast (<2,000 attomol/microgram total RNA), and values in this fraction did not change significantly with advancing gestation. VEG/PF mRNA expression was slightly greater in the inner villous core cell fraction; however, levels decreased (P < 0.05) between early and late gestation. Cytotrophoblasts were a major source of VEG/PF mRNA and levels increased (P < 0.01) from 3,631 +/- 844 attomol/microgram total RNA on day 45 to 25,807 +/- 5,873 attomol/microgram total RNA on day 170. VEG/PF protein expression determined by immunocytochemistry was abundant in cytotrophoblasts and lower in the syncytiotrophoblast and inner villous core cells. The flt-1 and KDR/flk-1 receptors were expressed in the vascular endothelial cells of the baboon villous placenta. The percentage of villous placenta occupied by blood vessels and the number of vessels/mm(2) villous tissue, determined by image analysis, progressively increased (P < 0.001; r = 0.97) from 3.4 +/- 0.2% and 447 +/- 29, respectively, on day 54 to 15.9 +/- 0.9% and 1,375 +/- 71, respectively, on day 170. In summary, the present study shows that villous cytotrophoblasts were a major source of VEG/PF mRNA and protein in the baboon villous placenta, and that cytotrophoblast VEG/PF mRNA levels and vascularization of the villous placenta closely paralleled the increase in estradiol concentrations of advancing pregnancy. These results are consistent with the concept that estrogen has an important role in establishing the new vascular system within the developing placenta during primate pregnancy and that VEG/PF mediates this process.
Xue, Haipeng; Wu, Sen; Papadeas, Sophia T; Spusta, Steve; Swistowska, Anna Maria; MacArthur, Chad C; Mattson, Mark P; Maragakis, Nicholas J; Capecchi, Mario R; Rao, Mahendra S; Zeng, Xianmin; Liu, Ying
2009-08-01
In this study, we targeted Olig2, a basic helix-loop-helix transcription factor that plays an important role in motoneuron and oligodendrocyte development, in human embryonic stem cell (hESC) line BG01 by homologous recombination. One allele of Olig2 locus was replaced by a green fluorescent protein (GFP) cassette with a targeting efficiency of 5.7%. Targeted clone R-Olig2 (like the other clones) retained pluripotency, typical hESC morphology, and a normal parental karyotype 46,XY. Most importantly, GFP expression recapitulated endogenous Olig2 expression when R-Olig2 was induced by sonic hedgehog and retinoic acid, and GFP-positive cells could be purified by fluorescence-activated cell sorting. Consistent with previous reports on rodents, early GFP-expressing cells appeared biased to a neuronal fate, whereas late GFP-expressing cells appeared biased to an oligodendrocytic fate. This was corroborated by myoblast coculture, transplantation into the rat spinal cords, and whole genome expression profiling. The present work reports an hESC reporter line generated by homologous recombination targeting a neural lineage-specific gene, which can be differentiated and sorted to obtain pure neural progenitor populations.
Lin, Yao-Tang; Grey, Finn
2017-01-01
The human cytomegalovirus major immediate early proteins IE1 and IE2 are critical drivers of virus replication and are considered pivotal in determining the balance between productive and latent infection. IE1 and IE2 are derived from the same primary transcript by alternative splicing and regulation of their expression likely involves a complex interplay between cellular and viral factors. Here we show that knockdown of the host ubiquitin-dependent segregase VCP/p97, results in loss of IE2 expression, subsequent suppression of early and late gene expression and, ultimately, failure in virus replication. RNAseq analysis showed increased levels of IE1 splicing, with a corresponding decrease in IE2 splicing following VCP knockdown. Global analysis of viral transcription showed the expression of a subset of viral genes is not reduced despite the loss of IE2 expression, including UL112/113. Furthermore, Immunofluorescence studies demonstrated that VCP strongly colocalised with the viral replication compartments in the nucleus. Finally, we show that NMS-873, a small molecule inhibitor of VCP, is a potent HCMV antiviral with potential as a novel host targeting therapeutic for HCMV infection. PMID:28494016
Yamauchi, N; Kiessling, A A; Cooper, G M
1994-01-01
We have used microinjection of antisense oligonucleotides, monoclonal antibody, and the dominant negative Ras N-17 mutant to interfere with Ras expression and function in mouse oocytes and early embryos. Microinjection of either ras antisense oligonucleotides or anti-Ras monoclonal antibody Y13-259 did not affect normal progression of oocytes through meiosis and arrest at metaphase II. However, microinjection of fertilized eggs with constructs expressing Ras N-17 inhibited subsequent development through the two-cell stage. The inhibitory effect of Ras N-17 was overcome by simultaneous injection of a plasmid expressing an active raf oncogene, indicating that it resulted from interference with the Ras/Raf signaling pathway. In contrast to the inhibition of two-cell embryo development resulting from microinjection of pronuclear stage eggs, microinjection of late two-cell embryos with Ras N-17 expression constructs did not affect subsequent cleavages and development to morulae and blastocysts. It thus appears that the Ras/Raf signaling pathway, presumably activated by autocrine growth factor stimulation, is specifically required at the two-cell stage, which is the time of transition between maternal and embryonic gene expression in mouse embryos. Images PMID:7935384
2012-01-01
Background Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. Methods Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. Results A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p < E-76) in the set of genes positively regulated by the liver transcription factor HNF4α, as determined in a liver-specific HNF4α knockout mouse model, while genes down regulated during this developmental period showed significant enrichment (p < E-65) for negative regulation by HNF4α. Significant enrichment of the developmentally regulated genes in the set of genes subject to positive and negative regulation by pituitary hormone was also observed. Five sex-specific transcriptional regulators showed sex-specific expression at 4 wk (male-specific Ihh; female-specific Cdx4, Cux2, Tox, and Trim24) and may contribute to the developmental changes that lead to global acquisition of liver sex-specificity by 8 wk of age. Conclusions Overall, the observed changes in gene expression during postnatal liver development reflect the deceleration of liver growth and the induction of specialized liver functions, with widespread changes in sex-specific gene expression primarily occurring in male liver. PMID:22475005
Lin, Che-Yi; Tsai, Ming-Yuan; Liu, Yu-Hsiu; Lu, Yu-Fen; Chen, Yi-Chung; Lai, Yun-Ren; Liao, Hsin-Chi; Lien, Huang-Wei; Yang, Chung-Hsiang; Huang, Chang-Jen; Hwang, Sheng-Ping L
2017-07-17
Although vertebrates are bilaterally symmetric organisms, their internal organs are distributed asymmetrically along a left-right axis. Disruption of left-right axis asymmetric patterning often occurs in human genetic disorders. In zebrafish embryos, Kupffer's vesicle, like the mouse node, breaks symmetry by inducing asymmetric expression of the Nodal-related gene, spaw, in the left lateral plate mesoderm (LPM). Spaw then stimulates transcription of itself and downstream genes, including lft1, lft2, and pitx2, specifically in the left side of the diencephalon, heart and LPM. This developmental step is essential to establish subsequent asymmetric organ positioning. In this study, we evaluated the role of krüppel-like factor 8 (klf8) in regulating left-right asymmetric patterning in zebrafish embryos. Zebrafish klf8 expression was disrupted by both morpholino antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. Whole-mount in situ hybridization was conducted to evaluate gene expression patterns of Nodal signalling components and the positions of heart and visceral organs. Dorsal forerunner cell number was evaluated in Tg(sox17:gfp) embryos and the length and number of cilia in Kupffer's vesicle were analyzed by immunocytochemistry using an acetylated tubulin antibody. Heart jogging, looping and visceral organ positioning were all defective in zebrafish klf8 morphants. At the 18-22 s stages, klf8 morphants showed reduced expression of genes encoding Nodal signalling components (spaw, lft1, lft2, and pitx2) in the left LPM, diencephalon, and heart. Co-injection of klf8 mRNA with klf8 morpholino partially rescued spaw expression. Furthermore, klf8 but not klf8△zf overexpressing embryos showed dysregulated bilateral expression of Nodal signalling components at late somite stages. At the 10s stage, klf8 morphants exhibited reductions in length and number of cilia in Kupffer's vesicle, while at 75% epiboly, fewer dorsal forerunner cells were observed. Interestingly, klf8 mutant embryos, generated by a CRISPR-Cas9 system, showed bilateral spaw expression in the LPM at late somite stages. This observation may be partly attributed to compensatory upregulation of klf12b, because klf12b knockdown reduced the percentage of klf8 mutants exhibiting bilateral spaw expression. Our results demonstrate that zebrafish Klf8 regulates left-right asymmetric patterning by modulating both Kupffer's vesicle morphogenesis and spaw expression in the left LPM.
Moayeri, Mahtab; Leppla, Stephen H; Vrentas, Catherine; Pomerantsev, Andrei P; Liu, Shihui
2015-01-01
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Tao, Zhiyun; Liu, Hongxiang; Xu, Wenjuan; Zhang, Shuangjie; Li, Huifang
2017-01-01
Pectoral muscle (PM) comprises an important component of overall meat mass in ducks. However, PM has shown arrested or even reduced growth during late embryonic development, and the molecular mechanisms underlying PM growth during the late embryonic to neonatal period in ducks have not been addressed. In this study, we characterized potential candidate genes and signaling pathways related to PM development using RNA sequencing of PM samples selected at embryonic days (E) 21 and 27 and 5 days post-hatch (dph) in two duck breeds (Gaoyou and Jinding ducks). A total of 393 differentially expressed genes (DEGs) were identified, which showed higher or lower expression levels at E27 compared with E21 and 5 dph, reflecting the pattern of PM growth rates. Among these, 43 DEGs were common to all three time points in both duck breeds. These DEGs may thus be involved in regulating this developmental process. Specifically, KEGG pathway analysis of the 393 DEGs showed that genes involved with different metabolism pathways were highly expressed, while genes involved with cell cycle pathways showed lower expression levels at E27. These DEGs may thus be involved in the mechanisms responsible for the phenomenon of static or decreased breast muscle growth in duck breeds during the late embryonic period. These results increase the available genetic information for ducks and provide valuable resources for analyzing the mechanisms underlying the process of PM development. PMID:28771592
Zhu, Chunhong; Song, Weitao; Tao, Zhiyun; Liu, Hongxiang; Xu, Wenjuan; Zhang, Shuangjie; Li, Huifang
2017-01-01
Pectoral muscle (PM) comprises an important component of overall meat mass in ducks. However, PM has shown arrested or even reduced growth during late embryonic development, and the molecular mechanisms underlying PM growth during the late embryonic to neonatal period in ducks have not been addressed. In this study, we characterized potential candidate genes and signaling pathways related to PM development using RNA sequencing of PM samples selected at embryonic days (E) 21 and 27 and 5 days post-hatch (dph) in two duck breeds (Gaoyou and Jinding ducks). A total of 393 differentially expressed genes (DEGs) were identified, which showed higher or lower expression levels at E27 compared with E21 and 5 dph, reflecting the pattern of PM growth rates. Among these, 43 DEGs were common to all three time points in both duck breeds. These DEGs may thus be involved in regulating this developmental process. Specifically, KEGG pathway analysis of the 393 DEGs showed that genes involved with different metabolism pathways were highly expressed, while genes involved with cell cycle pathways showed lower expression levels at E27. These DEGs may thus be involved in the mechanisms responsible for the phenomenon of static or decreased breast muscle growth in duck breeds during the late embryonic period. These results increase the available genetic information for ducks and provide valuable resources for analyzing the mechanisms underlying the process of PM development.
García-Culebras, Alicia; Palma-Tortosa, Sara; Moraga, Ana; García-Yébenes, Isaac; Durán-Laforet, Violeta; Cuartero, Maria I; de la Parra, Juan; Barrios-Muñoz, Ana L; Díaz-Guzmán, Jaime; Pradillo, Jesús M; Moro, María A; Lizasoain, Ignacio
2017-06-01
Hemorrhagic transformation is the main complication of revascularization therapies after stroke. Toll-like receptor 4 (TLR4) is implicated in cerebral damage and inflammation in stroke. This study was designed to determine the role of TLR4 in hemorrhagic transformation development after tissue plasminogen activator (tPA) administration. Mice expressing (TLR4 +/+ ) or lacking functional TLR4 (TLR4 - /- ) were subjected to middle cerebral artery occlusion using an in situ thromboembolic model by thrombin injection into the middle cerebral artery, and tPA (10 mg/kg) was administered 20 minutes or 3 hours after ischemia. Infarct size, hemorrhages, IgG extravasation, matrix metalloproteinase 9 expression, and neutrophil infiltration were assessed 24 hours after ischemia. In TLR4 +/+ , early reperfusion (tPA at 20 minutes) resulted infarct volume, whereas late recanalization (tPA at 3 hours) did not modify lesion size and increased the rate of the most severe hemorrhages. In TLR4 - /- mice, both early and late reperfusion did not modify lesion size. Importantly, late tPA administration did not result in worse hemorrhages and in an increased bleeding area as occurred in TLR4 +/+ group. In TLR4 - /- animals, late reperfusion produced a lesser increase in matrix metalloproteinase 9 expression when compared with TLR4 +/+ animals. Our results demonstrate TLR4 involvement in hemorrhagic transformation induced by delayed tPA administration, very likely by increasing matrix metalloproteinase 9 expression. © 2017 American Heart Association, Inc.
Associations of insulin resistance later in lactation on fertility of dairy cows.
Baruselli, P S; Vieira, L M; Sá Filho, M F; Mingoti, R D; Ferreira, R M; Chiaratti, M R; Oliveira, L H; Sales, J N; Sartori, R
2016-07-01
The challenge of getting dairy cows pregnant during early lactation is a well-described, worldwide problem. However, specifically in farms with poor reproductive, nutritional, and environmental conditions/management, a low pregnancy rate during early lactation is followed inevitably by an increased number of nonpregnant cows after 150 days in milk, with even more difficulties to achieve pregnancy. Therefore, several studies were designed to understand and develop strategies to mitigate reduced fertility of cows during late lactation. Experiments were performed under tropical regions to determine metabolic status during lactation and association of stage of lactation on oocyte quality and fertility. Lactating cows with extended days not pregnant (e.g.,>150 days in milk) often had systemic metabolic alterations, including development of peripheral insulin resistance and various oocyte alterations, including reduced expression of genes encoding glucose transport proteins, reduced amounts of mtDNA, increased expression of mitochondria-related genes, and increased expression of apoptosis-related genes. Additionally, in vitro embryo production and pregnancy per AI were lower in late- versus early-lactation cows in some but not all studies. Notwithstanding, when a normal embryo was transferred to a cow in late lactation, the pregnancy per transfer was reasonable, reinforcing the assertion that fertility problems in late-lactation cows may be associated with oocyte quality, fertilization, and/or failure of early embryo development. In conclusion, insulin resistance may reduce oocyte competence and consequently fertility in late-lactation dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.
Gubelmann, Carine; Schwalie, Petra C; Raghav, Sunil K; Röder, Eva; Delessa, Tenagne; Kiehlmann, Elke; Waszak, Sebastian M; Corsinotti, Andrea; Udin, Gilles; Holcombe, Wiebke; Rudofsky, Gottfried; Trono, Didier; Wolfrum, Christian; Deplancke, Bart
2014-01-01
Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.03346.001 PMID:25163748
Park, Ji Hyeon; Jang, Hye Ryoun; Kim, Do Hee; Kwon, Ghee Young; Lee, Jung Eun; Huh, Wooseong; Choi, Soo Jin; Oh, Wonil; Oh, Ha Young; Kim, Yoon-Goo
2017-10-01
Preemptive treatment with mesenchymal stem cells (MSCs) can attenuate cisplatin-induced acute kidney injury (AKI). However, it is uncertain whether MSC treatment after the development of renal dysfunction prevents AKI progression or if MSC immunomodulatory properties contribute to MSC therapy. In this study, human umbilical cord blood (hUCB)-derived MSCs were used to compare the effects and mechanisms of early and late MSC therapy in a murine model. After cisplatin injection into C57BL/6 mice, hUCB-MSCs were administered on day 1 (early treatment) or day 3 (late treatment). With early treatment, cisplatin nephrotoxicity was attenuated as evidenced by decreased blood urea nitrogen (BUN) and reduced apoptosis and tubular injury scores on day 3 Early treatment resulted in downregulation of intrarenal monocyte chemotactic protein-1 and IL-6 expression and upregulation of IL-10 and VEGF expression. Flow cytometric analysis showed similar populations of infiltrated immune cells in both groups; however, regulatory T-cell (Treg) infiltration was 2.5-fold higher in the early treatment group. The role of Tregs was confirmed by the blunted effect of early treatment on renal injury after Treg depletion. In contrast, late treatment (at a time when BUN levels were 2-fold higher than baseline levels) showed no renoprotective effects on day 6 Neither the populations of intrarenal infiltrating immune cells (including Tregs) nor cytokine expression levels were affected by late treatment. Our results suggest that early MSC treatment attenuates renal injury by Treg induction and immunomodulation, whereas a late treatment (i.e., after the development of renal dysfunction) does not prevent AKI progression or alter the intrarenal inflammatory micromilieu. Copyright © 2017 the American Physiological Society.
Regulatory T Cells Show Dynamic Behavior During Late Pregnancy, Delivery, and the Postpartum Period.
Lima, Jorge; Martins, Catarina; Nunes, Glória; Sousa, Maria-José; Branco, Jorge C; Borrego, Luís-Miguel
2017-07-01
Regulatory T cells (Tregs) are critical immunomodulators during early pregnancy by preventing maternal T-cell activation against fetal cells. However, how populations of maternal Tregs vary during and after pregnancy in humans is still unclear. Therefore, we investigated Treg subsets in the peripheral blood of pregnant women from late pregnancy through the postpartum period. To accomplish this, the following circulating Treg subsets were analyzed in 43 healthy pregnant women and 35 nonpregnant women by flow cytometry during the third trimester, on the day of delivery, and postpartum: CD4 Dim CD25 Hi , CD4 + CD25 Hi Foxp3 + , and CD4 + CD25 Hi CD127 -/dim . Additionally, the expression levels of the transcription factor Foxp3 in CD4 Dim CD25 Hi Treg were analyzed. We have found that CD4 Dim CD25 Hi Treg subset significantly decreased in the pregnant women on the day of delivery relative to the third trimester ( P < .05), and that all Treg subsets significantly increased postpartum compared to the third trimester and the day of delivery ( P < .05). Moreover, the Foxp3 expression ratios within the CD4 Dim CD25 Hi Treg subset decreased during pregnancy and until delivery compared to those measured in the nonpregnant women and significantly increased postpartum compared to the third trimester and the day of delivery ( P < .05). Thus, despite their established role in offering immunoprotection to the fetus in early pregnancy, the number of circulating Tregs also varies from late pregnancy to the postpartum period. Our results offer an explanation for the possible effects of pregnancy on the clinical outcomes of some autoimmune diseases during the postpartum period.
Hypomorphic alleles reveal FCA-independent roles for FY in the regulation of FLOWERING LOCUS C.
Feng, Wei; Jacob, Yannick; Veley, Kira M; Ding, Lei; Yu, Xuhong; Choe, Goh; Michaels, Scott D
2011-03-01
The autonomous floral promotion pathway plays a key role in the regulation of flowering in rapid-cycling Arabidopsis (Arabidopsis thaliana) by providing constitutive repression of the floral inhibitor FLOWERING LOCUS C (FLC). As a result, autonomous pathway mutants contain elevated levels of FLC and are late flowering. Winter annual Arabidopsis, in contrast, contain functional alleles of FRIGIDA (FRI), which acts epistatically to the autonomous pathway to up-regulate FLC and delay flowering. To further explore the relationship between FRI and the autonomous pathway, we placed autonomous pathway mutants in a FRI-containing background. Unexpectedly, we found that a hypomorphic allele of the autonomous pathway gene fy (fy null alleles are embryo lethal) displayed background-specific effects on FLC expression and flowering time; in a rapid-cycling background fy mutants contained elevated levels of FLC and were late flowering, whereas in a winter annual background fy decreased FLC levels and partially suppressed the late-flowering phenotype conferred by FRI. Because FY has been shown to have homology to polyadenylation factors, we examined polyadenylation site selection in FLC transcripts. In wild type, two polyadenylation sites were detected and used at similar levels. In fy mutant backgrounds, however, the ratio of products was shifted to favor the distally polyadenylated form. FY has previously been shown to physically interact with another member of the autonomous pathway, FCA. Interestingly, we found that fy can partially suppress FLC expression in an fca null background and promote proximal polyadenylation site selection usage in the absence of FCA. Taken together, these results indicate novel and FCA-independent roles for FY in the regulation of FLC.
Feng, Wei; Jacob, Yannick; Veley, Kira M.; Ding, Lei; Yu, Xuhong; Choe, Goh; Michaels, Scott D.
2011-01-01
The autonomous floral promotion pathway plays a key role in the regulation of flowering in rapid-cycling Arabidopsis (Arabidopsis thaliana) by providing constitutive repression of the floral inhibitor FLOWERING LOCUS C (FLC). As a result, autonomous pathway mutants contain elevated levels of FLC and are late flowering. Winter annual Arabidopsis, in contrast, contain functional alleles of FRIGIDA (FRI), which acts epistatically to the autonomous pathway to up-regulate FLC and delay flowering. To further explore the relationship between FRI and the autonomous pathway, we placed autonomous pathway mutants in a FRI-containing background. Unexpectedly, we found that a hypomorphic allele of the autonomous pathway gene fy (fy null alleles are embryo lethal) displayed background-specific effects on FLC expression and flowering time; in a rapid-cycling background fy mutants contained elevated levels of FLC and were late flowering, whereas in a winter annual background fy decreased FLC levels and partially suppressed the late-flowering phenotype conferred by FRI. Because FY has been shown to have homology to polyadenylation factors, we examined polyadenylation site selection in FLC transcripts. In wild type, two polyadenylation sites were detected and used at similar levels. In fy mutant backgrounds, however, the ratio of products was shifted to favor the distally polyadenylated form. FY has previously been shown to physically interact with another member of the autonomous pathway, FCA. Interestingly, we found that fy can partially suppress FLC expression in an fca null background and promote proximal polyadenylation site selection usage in the absence of FCA. Taken together, these results indicate novel and FCA-independent roles for FY in the regulation of FLC. PMID:21209277
Jiaojiao, Zhang; Fen, Wang; Kuanbo, Liu; Qing, Liu; Ying, Yang; Caihong, Dong
2018-05-01
Cordyceps militaris is a highly valued edible and medicinal fungus due to its production of various metabolites, including adenosine, cordycepin, N 6 -(2-hydroxyethyl)-adenosine, and carotenoids. The contents of these metabolites are indicative of the quality of commercially available fruit body of this fungus. In this work, the effects of environmental abiotic factors, including heat and light stresses, on the fruit body growth and metabolite production in C. militaris were evaluated during the late growth stage. The optimal growth temperature of C. militaris was 20 °C. It was found that a heat stress of 25 °C for 5-20 days during the late growth stage significantly promoted cordycepin and carotenoid production without affecting the biological efficiency. Light stress at 6000 lx for 5-20 days during the late growth stage significantly promoted cordycepin production but decreased the carotenoid content. Both heat and light stresses promoted N 6 -(2-hydroxyethyl)-adenosine production. In addition, gene expression analysis showed that there were simultaneous increases in the expression of genes encoding a metal-dependent phosphohydrolase (CCM_04437) and ATP phosphoribosyltransferase (CCM_04438) that are involved in the cordycepin biosynthesis pathway, which was consistent with the accumulation of cordycepin during heat stress for 5-20 days. A positive weak correlation between the cordycepin and adenosine contents was observed with a Pearson correlation coefficient of 0.338 (P < 0.05). The results presented herein provide a new strategy for the production of a superior quality fruit body of C. militaris and contribute to further elucidation of the effects of abiotic stress on metabolite accumulation in fungi.
Dual Innervation of Neonatal Merkel Cells in Mouse Touch Domes
Luo, Wenqin
2014-01-01
Merkel cell-neurite complexes are specialized mechanosensory end organs that mediate discriminative touch sensation. It is well established that type I slowly adapting (SAI) mechanoreceptors, which express neural filament heavy chain (NFH), innervate Merkel cells. It was previously shown that neurotrophic factor NT3 and its receptor TrkC play crucial roles in controlling touch dome Merkel cell innervation of NFH+ fibers. In addition, nerve fibers expressing another neurotrophic tyrosine receptor kinase (NTRK), Ret, innervate touch dome Merkel cells as well. However, the relationship between afferents responsive to NT3/TrkC signaling and those expressing Ret is unclear. It is also controversial if these Ret+ fibers belong to the early or late Ret+ DRG neurons, which are defined based on the co-expression and developmental dependence of TrkA. To address these questions, we genetically traced Ret+ and TrkC+ fibers and analyzed their developmental dependence on TrkA. We found that Merkel cells in neonatal mouse touch domes receive innervation of two types of fibers: one group is Ret+, while the other subset expresses TrkC and NFH. In addition, Ret+ fibers depend on TrkA for their survival and normal innervation whereas NFH+ Merkel cell innervating fibers are almost unaltered in TrkA mutant mice, supporting that Ret+ and NFH+/TrkC+ afferents are two distinct groups. Ret signaling, on the other hand, plays a minor role for the innervation of neonatal touch domes. In contrast, Merkel cells in the glabrous skin are mainly contacted by NFH+/TrkC+ afferents. Taken together, our results suggest that neonatal Merkel cells around hair follicles receive dual innervation while Merkel cells in the glabrous skin are mainly innervated by only SAI mechanoreceptors. In addition, our results suggest that neonatal Ret+ Merkel cell innervating fibers most likely belong to the late but not early Ret+ DRG neurons. PMID:24637732
Rosewell, Katherine L.; Li, Feixue; Puttabyatappa, Muraly; Akin, James W.; Brännström, Mats; Curry, Thomas E.
2013-01-01
ABSTRACT Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability. PMID:24048576
Rosewell, Katherine L; Li, Feixue; Puttabyatappa, Muraly; Akin, James W; Brännström, Mats; Curry, Thomas E
2013-11-01
Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability.
Molecular Genetic Analysis of Midgut Serine Proteases in Aedes aegypti Mosquitoes
Isoe, Jun; Rascón, Alberto A.; Kunz, Susan; Miesfeld, Roger L.
2009-01-01
Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (p<0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme. PMID:19883761
Serine/Threonine kinase dependent transcription from the polyhedrin promoter of SpltNPV-I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Gourav; Gautam, Hemant K.; Das, Rakha H.
2007-07-06
Polyhedrin (polh) and p10 are the two hyper-expressed very late genes of nucleopolyhedroviruses. Alpha amanitin resistant transcription from Spodoptera litura nucleopolyhedrovirus (SpltNPV-I) polyhedrin promoter was observed with virus infected nuclear extract of NIV-HA-197 cells but not with that from uninfected nuclear extract. Anti-protein kinase-1 (pk1) antibody inhibited the transcription and the inhibition reversed on addition of pk1, however, pk1 mutant protein, K50M having no phosphorylation activity did not overcome the transcription inhibition. Chromatin immuno-precipitation assays with viral anti-pk1 antibody showed the interaction of pk1 with the polh while electrophoretic mobility shift assays indicated the strong binding affinity (K {sub d}more » {approx} 5.5 x 10{sup -11}) of purified pk1 with the polh promoter. These results suggested that the viral coded pk1 acts as a transcription factor in transcribing baculovirus very late genes.« less
Distal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13
Sheth, Rushikesh; Barozzi, Iros; Langlais, David; ...
2016-12-13
The combinatorial expression of Hox genes along the body axes is a major determinant of cell fate and plays a pivotal role in generating the animal body plan. Loss of HOXA13 and HOXD13 transcription factors (HOX13) leads to digit agenesis in mice, but how HOX13 proteins regulate transcriptional outcomes and confer identity to the distal-most limb cells has remained elusive. Here, we report on the genome-wide profiling of HOXA13 and HOXD13 in vivo binding and changes of the transcriptome and chromatin state in the transition from the early to the late-distal limb developmental program, as well as in Hoxa13–/–; Hoxd13–/– limbs. Ourmore » results show that proper termination of the early limb transcriptional program and activation of the late-distal limb program are coordinated by the dual action of HOX13 on cis-regulatory modules.« less
Sehra, Bhupinder; Franks, Robert G.
2017-01-01
In the Arabidopsis thaliana seed pod, pod shatter and seed dispersal properties are in part determined by the development of a longitudinally orientated dehiscence zone (DZ) that derives from cells of the gynoecial valve margin (VM). Transcriptional regulation of the MADS protein encoding transcription factors genes SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are critical for proper VM identity specification and later on for DZ development. Current models of SHP1 and SHP2 regulation indicate that the transcription factors FRUITFULL (FUL) and REPLUMLESS (RPL) repress these SHP genes in the developing valve and replum domains, respectively. Thus the expression of the SHP genes is restricted to the VM. FUL encodes a MADS-box containing transcription factor that is predicted to act through CArG-box containing cis-regulatory motifs. Here we delimit functional modules within the SHP2 cis-regulatory region and examine the functional importance of CArG box motifs within these regulatory regions. We have characterized a 2.2kb region upstream of the SHP2 translation start site that drives early and late medial domain expression in the gynoecium, as well as expression within the VM and DZ. We identified two separable, independent cis-regulatory modules, a 1kb promoter region and a 700bp enhancer region, that are capable of giving VM and DZ expression. Our results argue for multiple independent cis-regulatory modules that support SHP2 expression during VM development and may contribute to the robustness of SHP2 expression in this tissue. Additionally, three closely positioned CArG box motifs located in the SHP2 upstream regulatory region were mutated in the context of the 2.2kb reporter construct. Mutating simultaneously all three CArG boxes caused a moderate de-repression of the SHP2 reporter that was detected within the valve domain, suggesting that these CArG boxes are involved in SHP2 repression in the valve. PMID:29085379
Jongsma, Johan; Oomen, Monique H; Noordzij, Marinus A; Van Weerden, Wytske M; Martens, Gerard J M; van der Kwast, Theodorus H; Schröder, Fritz H; van Steenbrugge, Gert J
2002-03-01
Neuroendocrine (NE) cells are androgen-independent cells and secrete growth-modulating peptide hormones via a regulated secretory pathway (RSP). We studied NE differentiation after long-term androgen withdrawal in the androgen-dependent human prostate cancer xenograft PC-310. Tumor-bearing nude mice were killed at 0, 2, 5, 7, 14, 21, 47, 84, and 154 days after castration. The half-life of the PC-310 tumor was 10 days, with a stable residual tumor volume of 30--40% after 21 days and longer periods of androgen deprivation. Proliferative activity and prostate-specific antigen serum levels decreased to zero after castration, whereas cell-cycle arrest was manifested by increased p27(kip1) expression. A temporary downregulation of androgen receptor (AR) expression was noted after androgen deprivation. The expression of chromogranin A, secretogranin III, and secretogranin V (7B2) increased 5 days after castration and later. Subsequently, pro-hormone convertase 1 and peptidyl alpha--amidating monooxygenase as well as vascular endothelial growth factor were expressed from 7 days after castration on. Finally, such growth factors as gastrin-releasing peptide and serotonin were expressed in a small part of the NE cells 21 days after castration, but strong expression was induced late during androgen deprivation, that is, 84 and 154 days after castration, respectively. Androgen deprivation of the NE-differentiated PC-310 model induced the formation of NE-differentiated AR(minus sign) and non-NE AR(+) tumor residues. The NE-differentiated cells actively produced growth factors via an RSP that may lead to hormone-refractory disease. The dormant non-NE AR(+) tumor cells were shown to remain androgen sensitive even after long-term androgen deprivation. In the PC-310 xenograft, time-dependent NE differentiation and subsequent maturation were induced after androgen depletion. The androgen-dependent PC-310 xenograft model constitutes an excellent model for studying the role of NE cells in the progression of clinical prostate cancer. Copyright 2002 Wiley-Liss, Inc.
Li, Ping; Bian, Xueyan; Liu, Chenglin; Wang, Shurong; Guo, Mengmeng; Tao, Yingjie; Huo, Bo
2018-05-01
Bone resorption is mainly mediated by osteoclasts (OCs), whose formation and function are regulated by intracellular Ca 2+ oscillation. Our previous studies demonstrated that fluid shear stress (FSS) lead to Ca 2+ oscillation through mechanosensitive cation-selective channels. However, the specific channels responsible for this FSS-induced Ca 2+ oscillation remain unknown. In the present study, we examined the expression of several Ca 2+ channels in OCs, including STIM1, ORAI1, TRPV1, TRPV4, TRPV5, and TRPV6, by western blotting and reverse transcription-polymerase chain reaction. The results showed that STIM1 was highly expressed in early stage OCs, while TRPV4 was highly expressed in late stage OCs. We observed intracellular Ca 2+ responses in OCs that were mechanically stimulated by FSS. When we blocked STIM1-dependent store-operated Ca 2+ entry or inhibited TRPV4 using siRNA or drug inhibition, FSS-induced Ca 2+ oscillations were almost undetectable in early and late stage OCs, respectively. These results indicate that STIM1 and TRPV4 act as mechanical transduction channels for OCs during the early and late differentiation stages, respectively, suggesting that these calcium channel could serve as markers of osteoclastogenesis or bone resorption. Copyright © 2017 Elsevier Ltd. All rights reserved.
Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F
1989-01-01
Uncoupling-protein (UCP) mRNA expression is decreased to 15% of virgin control levels between days 10 and 15 of pregnancy, and remains at these low values during late pregnancy and lactation. Abrupt weaning of mid-lactating rats causes a slight but significant increase in UCP mRNA. Expression of mRNA for subunit II of cytochrome c oxidase (COII) decreased to half that of virgin control in late pregnancy and during lactation. Whereas COII mRNA expression is in step with the known modifications of brown-fat mitochondria content during the breeding cycle of the rat, UCP mRNA expression appears to be diminished much earlier than the mitochondrial proton-conductance-pathway activity. On the other hand, the reactivity of brown fat to increase expression of UCP and COII mRNAs in response to acute cold or noradrenaline treatment is not impaired during lactation. Images Fig. 1. Fig. 2. Fig. 3. PMID:2557014
Lifetime hormonal factors may predict late-life depression in women
Ryan, Joanne; Carrière, Isabelle; Scali, Jacqueline; Ritchie, Karen; Ancelin, Marie-Laure
2008-01-01
Background Fluctuating hormone levels are known to influence a woman’s mood and well-being. This study aimed to determine whether lifetime hormonal markers are associated with late-life depression symptoms among elderly community-dwelling women. Method Detailed reproductive histories of 1013 women aged 65 years and over were obtained using questionnaires and depressive symptoms were assessed using the Centre for Epidemiological Studies Depression Scale. Multivariate logistic regression models were generated to determine whether any lifetime endogenous or exogenous hormonal factors were associated with late-life depression. Results The prevalence of depressive symptoms was 17%. Age at menopause was associated with depressive symptoms, but only among women with a lower education level. For these women, an earlier age at menopause increased their risk of late-life depression (linear effect, OR=0.95, 95%CI: 0.91–0.99). The odds of late-life depression were also increased for women who were past (OR=1.6, 95%CI: 1.1–2.5), but not current hormonal replacement users. On the other hand, long-term oral contraceptive use (≥10 years) was protective against depression (OR=0.3, 95%CI: 0.1–0.9). These associations remained significant even after extensive adjustment for a range of potential confounding factors, including socio-demographic factors, mental and physical incapacities, antidepressant use and past depression. The other factors examined, including age at first menses, parity, age at childbirth and surgical menopause, were not associated with late-life depressive symptoms. Conclusions Lifetime hormonal factors that are significantly associated with depression symptoms in later life have been identified. Further work is needed to determine how potential hormonal interventions could be used in the treatment of late-life depression in certain sub-groups of women. PMID:18533067
Testone, Giulio; Condello, Emiliano; Di Giacomo, Elisabetta; Nicolodi, Chiara; Caboni, Emilia; Rasori, Angela; Bonghi, Claudio; Bruno, Leonardo; Bitonti, Maria Beatrice; Giannino, Donato
2015-08-01
The Knotted-like transcription factors (KNOX) contribute to plant organ development. The expression patterns of peach KNOX genes showed that the class 1 members act precociously (S1-S2 stages) and differentially during drupe growth. Specifically, the transcription of KNOPE1 and 6 decreased from early (cell division) to late (cell expansion) S1 sub-stages, whilst that of STMlike1, 2, KNOPE2, 2.1 ceased at early S1. The KNOPE1 role in mesocarp was further addressed by studying the mRNA localization in the pulp cells and vascular net at early and late S1. The message signal was first diffuse in parenchymatous cells and then confined to hypodermal cell layers, showing that the gene down-tuning accompanied cell expansion. As for bundles, the mRNA mainly featured in the procambium/phloem of collateral open types and subsequently in the phloem side of complex structures (converging bundles, ducts). The KNOPE1 overexpression in Arabidopsis caused fruit shortening, decrease of mesocarp cell size, diminution of vascular lignification together with the repression of the major gibberellin synthesis genes AtGA20ox1 and AtGA3ox1. Negative correlation between the expression of KNOPE1 and PpGA3ox1 was observed in four cultivars at S1, suggesting that the KNOPE1 repression of PpGA3ox1 may regulate mesocarp differentiation by acting on gibberellin homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Dresselhaus, Thomas; Srilunchang, Kanok-orn; Leljak-Levanić, Dunja; Schreiber, Daniela N.; Garg, Preeti
2006-01-01
The eukaryotic genome is duplicated exactly once per cell division cycle. A strategy that limits every replication origin to a single initiation event is tightly regulated by a multiprotein complex, which involves at least 20 protein factors. A key player in this regulation is the evolutionary conserved hexameric MCM2-7 complex. From maize (Zea mays) zygotes, we have cloned MCM6 and characterized this essential gene in more detail. Shortly after fertilization, expression of ZmMCM6 is strongly induced. During progression of zygote and proembryo development, ZmMCM6 transcript amounts decrease and are low in vegetative tissues, where expression is restricted to tissues containing proliferating cells. The highest protein amounts are detectable about 6 to 20 d after fertilization in developing kernels. Subcellular localization studies revealed that MCM6 protein shuttles between cytoplasm and nucleoplasm in a cell cycle-dependent manner. ZmMCM6 is taken up by the nucleus during G1 phase and the highest protein levels were observed during late G1/S phase. ZmMCM6 is excluded from the nucleus during late S, G2, and mitosis. Transgenic maize was generated to overexpress and down-regulate ZmMCM6. Plants displaying minor antisense transcript amounts were reduced in size and did not develop cobs to maturity. Down-regulation of ZmMCM6 gene activity seems also to affect pollen development because antisense transgenes could not be propagated via pollen to wild-type plants. In summary, the transgenic data indicate that MCM6 is essential for both vegetative as well as reproductive growth and development in plants. PMID:16407440
Dresselhaus, Thomas; Srilunchang, Kanok-Orn; Leljak-Levanic, Dunja; Schreiber, Daniela N; Garg, Preeti
2006-02-01
The eukaryotic genome is duplicated exactly once per cell division cycle. A strategy that limits every replication origin to a single initiation event is tightly regulated by a multiprotein complex, which involves at least 20 protein factors. A key player in this regulation is the evolutionary conserved hexameric MCM2-7 complex. From maize (Zea mays) zygotes, we have cloned MCM6 and characterized this essential gene in more detail. Shortly after fertilization, expression of ZmMCM6 is strongly induced. During progression of zygote and proembryo development, ZmMCM6 transcript amounts decrease and are low in vegetative tissues, where expression is restricted to tissues containing proliferating cells. The highest protein amounts are detectable about 6 to 20 d after fertilization in developing kernels. Subcellular localization studies revealed that MCM6 protein shuttles between cytoplasm and nucleoplasm in a cell cycle-dependent manner. ZmMCM6 is taken up by the nucleus during G1 phase and the highest protein levels were observed during late G1/S phase. ZmMCM6 is excluded from the nucleus during late S, G2, and mitosis. Transgenic maize was generated to overexpress and down-regulate ZmMCM6. Plants displaying minor antisense transcript amounts were reduced in size and did not develop cobs to maturity. Down-regulation of ZmMCM6 gene activity seems also to affect pollen development because antisense transgenes could not be propagated via pollen to wild-type plants. In summary, the transgenic data indicate that MCM6 is essential for both vegetative as well as reproductive growth and development in plants.
Mjørud, Marit; Kirkevold, Marit; Røsvik, Janne; Engedal, Knut
2014-01-01
To investigate which factors the Quality of Life in Late-Stage Dementia (QUALID) scale holds when used among people with dementia (pwd) in nursing homes and to find out how the symptom load varies across the different severity levels of dementia. We included 661 pwd [mean age ± SD, 85.3 ± 8.6 years; 71.4% women]. The QUALID and the Clinical Dementia Rating (CDR) scale were applied. A principal component analysis (PCA) with varimax rotation and Kaiser normalization was applied to test the factor structure. Nonparametric analyses were applied to examine differences of symptom load across the three CDR groups. The mean QUALID score was 21.5 (±7.1), and the CDR scores of the three groups were 1 in 22.5%, 2 in 33.6% and 3 in 43.9%. The results of the statistical measures employed were the following: Crohnbach's α of QUALID, 0.74; Bartlett's test of sphericity, p <0.001; the Kaiser-Meyer-Olkin measure, 0.77. The PCA analysis resulted in three components accounting for 53% of the variance. The first component was 'tension' ('facial expression of discomfort', 'appears physically uncomfortable', 'verbalization suggests discomfort', 'being irritable and aggressive', 'appears calm', Crohnbach's α = 0.69), the second was 'well-being' ('smiles', 'enjoys eating', 'enjoys touching/being touched', 'enjoys social interaction', Crohnbach's α = 0.62) and the third was 'sadness' ('appears sad', 'cries', 'facial expression of discomfort', Crohnbach's α 0.65). The mean score on the components 'tension' and 'well-being' increased significantly with increasing severity levels of dementia. Three components of quality of life (qol) were identified. Qol decreased with increasing severity of dementia. © 2013 S. Karger AG, Basel.
Schwager, Evelyn E; Meng, Yue; Extavour, Cassandra G
2015-06-15
Studies in vertebrate and invertebrate model organisms on the molecular basis of primordial germ cell (PGC) specification have revealed that metazoans can specify their germ line either early in development by maternally transmitted cytoplasmic factors (inheritance), or later in development by signaling factors from neighboring tissues (induction). Regardless of the mode of PGC specification, once animal germ cells are specified, they invariably express a number of highly conserved genes. These include vasa and piwi, which can play essential roles in any or all of PGC specification, development, or gametogenesis. Although the arthropods are the most speciose animal phylum, to date there have been no functional studies of conserved germ line genes in species of the most basally branching arthropod clade, the chelicerates (which includes spiders, scorpions, and horseshoe crabs). Here we present the first such study by using molecular and functional tools to examine germ line development and the roles of vasa and piwi orthologues in the common house spider Parasteatoda (formerly Achaearanea) tepidariorum. We use transcript and protein expression patterns of Pt-vasa and Pt-piwi to show that primordial germ cells (PGCs) in the spider arise during late embryogenesis. Neither Pt-vasa nor Pt-piwi gene products are localized asymmetrically to any embryonic region before PGCs emerge as paired segmental clusters in opisthosomal segments 2-6 at late germ band stages. RNA interference studies reveal that both genes are required maternally for egg laying, mitotic progression in early embryos, and embryonic survival. Our results add to the growing body of evidence that vasa and piwi can play important roles in somatic development, and provide evidence for a previously hypothesized conserved role for vasa in cell cycle progression. Copyright © 2014 Elsevier Inc. All rights reserved.
Enhanced Chemokine Receptor Expression on Leukocytes of Patients with Alzheimer's Disease.
Goldeck, David; Larbi, Anis; Pellicanó, Mariavaleria; Alam, Iftikhar; Zerr, Inga; Schmidt, Christian; Fulop, Tamas; Pawelec, Graham
2013-01-01
Although primarily a neurological complaint, systemic inflammation is present in Alzheimer's Disease, with higher than normal levels of proinflammatory cytokines and chemokines in the periphery as well as the brain. A gradient of these factors may enhance recruitment of activated immune cells into the brain via chemotaxis. Here, we investigated the phenotypes of circulating immune cells in AD patients with multi-colour flow cytometry to determine whether their expression of chemokine receptors is consistent with this hypothesis. In this study, we confirmed our previously reported data on the shift of early- to late-differentiated CD4+ T-cells in AD patients. The percentage of cells expressing CD25, a marker of acute T-cell activation, was higher in patients than in age-matched controls, and percentages of CCR6+ cells were elevated. This chemokine receptor is primarily expressed on pro-inflammatory memory cells and Th17 cells. The proportion of cells expressing CCR4 (expressed on Th2 cells) and CCR5 (Th1 cells and dendritic cells) was also greater in patients, and was more pronounced on CD4+ than CD8+ T-cells. These findings allow a more detailed insight into the systemic immune status of patients with Alzheimer's disease and suggest possible novel targets for immune therapy.
Cao, Sijia; Walker, Gregory B.; Wang, Xuefeng; Cui, Jing Z.
2013-01-01
Purpose Age-related macular degeneration (AMD) is a local, chronic inflammatory disease of the eye that is influenced by oxidative stress and dysregulation of the retinal pigment epithelium (RPE) associated with aging. The purpose of this study is to characterize the effects of oxidative stress and replicative senescence on the secreted cytokine profiles of RPE in vitro. Methods We used multiple, serial passages of human RPE cells from primary culture as an in vitro model of aging. Responses of early passage 5 (P5) and late passage 21 (P21) RPE cells were compared. Oxidative stress was induced in RPE cells (P5) by exposure to 75 μM hydroquinone (HQ) for 24 h. The secretome profiles of the RPE cells were measured with a multiplex suspension assay that assayed human cytokine, chemokine, and growth factors. Immunohistochemistry on younger (≤55 years old) and older (≥70 years old) human post-mortem donor eyes was used to verify selected cytokines. Results Supernatant of HQ-treated RPE cultures exhibited increased secreted levels of vascular endothelial growth factor (VEGF), interleukin (IL)-12, and IL-10 that reached statistical significance (p<0.05). Supernatant of late passage P21 RPE cultures exhibited decreased secreted levels of stromal cell-derived factor (SDF)-1α, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-8, IL-15, IL-6, and an increased level of IL-1ra compared to early passage P5 RPE cultures that reached statistical significance (p<0.05). Immunohistochemical analysis demonstrated increased expression of IL-1ra in RPE cells from older post-mortem donor eyes (≥70 years old) versus younger eyes (≤55 years old). Conclusions Our data demonstrate a unique cytokine secretion profile of primary culture RPE cells at early and late passage. Our in vitro data suggest an age-specific modulation of cytokine secretion in RPE and is consistent with immunohistochemical analysis on post-mortem eyes. The secretion profile associated with RPE under conditions that mimic oxidative stress, another factor associated with the pathogenesis of AMD, emphasizes upregulation of the angiogenic growth factor, vascular endothelial growth factor. Together, these data support the role of advanced age and oxidative stress in inflammatory cytokine modulation in RPE cells. PMID:23559866
Lin, Yan; Wimberly, Michael C
2017-04-01
The purpose of this study was to examine the geographic variations of late-stage diagnosis in colorectal cancer (CRC) and breast cancer as well as to investigate the effects of 3 neighborhood-level factors-socioeconomic deprivation, urban/rural residence, and spatial accessibility to health care-on the late-stage risks. This study used population-based South Dakota cancer registry data from 2001 to 2012. A total of 4,878 CRC cases and 6,418 breast cancer cases were included in the analyses. Two-level logistic regression models were used to analyze the risk of late-stage CRC and breast cancer. For CRC, there was a small geographic variation across census tracts in late-stage diagnosis, and residing in isolated small rural areas was significantly associated with late-stage risk. However, this association became nonsignificant after adjusting for census-tract level socioeconomic deprivation. Socioeconomic deprivation was an independent predictor of CRC late-stage risk, and it explained the elevated risk among American Indians. No relationship was found between spatial accessibility and CRC late-stage risk. For breast cancer, no geographic variation in the late-stage diagnosis was observed across census tracts, and none of the 3 neighborhood-level factors was significantly associated with late-stage risk. Results suggested that socioeconomic deprivation, rather than spatial accessibility, contributed to CRC late-stage risks in South Dakota as a rural state. CRC intervention programs could be developed to target isolated small rural areas, socioeconomically disadvantaged areas, as well as American Indians residing in these areas. © 2016 National Rural Health Association.
Role of familial factors in late-onset Alzheimer disease as a function of age.
Wu, Z; Kinslow, C; Pettigrew, K D; Rapoport, S I; Schapiro, M B
1998-09-01
Whereas early-onset Alzheimer disease (AD; usually onset at age < 50 years) has been defined with genetic mutation on chromosomes 1, 14, and 21, the degree of familial contribution to late-onset AD is unclear. Further, it is uncertain if subgroups of late-onset AD exist. To examine the influence of familial factors as a function of age in late-onset AD we investigated lifetime risks and age-specific hazard rates of AD-like illness among late-onset AD probands' and controls' first-degree relatives, using questionnaires and medical records. As part of a longitudinal study on aging and AD, we studied 78 AD probands with age of onset > or =50 years (28 "definite" and 50 "probable" AD according to NINCDS/ADRDA criteria) and 101 healthy old controls seen since 1981. Both probands and controls were screened rigorously with medical tests and brain imaging and seen regularly until autopsy. Multiple informants and medical records were used for first-degree relatives. Among first-degree relatives, 49 secondary cases of AD-like illness were found for the AD probands' relatives (391 relatives 40 years old or older) compared with 20 cases among controls' relatives (456 relatives 40 years old or older). Relatives of AD probands had a significantly increased lifetime risk of AD-like illness of 52.8+/-11.4% by age 94 years compared with a lifetime risk in relatives of controls of 22.1+/-5.8% by age 90 years. Age-specific hazard rates in relatives of AD probands increased until the 75-79-year age interval and then decreased; in contrast the age-specific hazard rates increased in relatives of controls after the 80-84-year age interval. To determine if a dividing line exist among late-onset AD, several cutoff ages were used in our study to compare cumulative risk curves of AD-like illness between relatives of late-onset probands and relatives of late-late-onset probands. Differences in the pattern of cumulative incidence of AD in relatives showed that 67-71 years is the range for a dividing line between late- and late-late-onset AD. Age-specific hazard rates of AD in relatives supported a difference between late- and late-late-onset. Whereas these rates increased until the 75-79-year age interval and then decreased in late-onset AD, the rates began increasing after the 65-69-year age interval and through the oldest age interval in both late-late-onset AD and control groups. Our results support the concept that familial factors exist in late-onset AD and that different familial factors may exist in late-onset AD subgroups.
Moon, Sunok; Oo, Moe Moe; Kim, Backki; Koh, Hee-Jong; Oh, Sung Aeong; Yi, Gihwan; An, Gynheung; Park, Soon Ki; Jung, Ki-Hong
2018-04-23
Understanding late pollen development, including the maturation and pollination process, is a key component in maintaining crop yields. Transcriptome data obtained through microarray or RNA-seq technologies can provide useful insight into those developmental processes. Six series of microarray data from a public transcriptome database, the Gene Expression Omnibus of the National Center for Biotechnology Information, are related to anther and pollen development. We performed a systematic and functional study across the rice genome of genes that are preferentially expressed in the late stages of pollen development, including maturation and germination. By comparing the transcriptomes of sporophytes and male gametes over time, we identified 627 late pollen-preferred genes that are conserved among japonica and indica rice cultivars. Functional classification analysis with a MapMan tool kit revealed a significant association between cell wall organization/metabolism and mature pollen grains. Comparative analysis of rice and Arabidopsis demonstrated that genes involved in cell wall modifications and the metabolism of major carbohydrates are unique to rice. We used the GUS reporter system to monitor the expression of eight of those genes. In addition, we evaluated the significance of our candidate genes, using T-DNA insertional mutant population and the CRISPR/Cas9 system. Mutants from T-DNA insertion and CRISPR/Cas9 systems of a rice gene encoding glycerophosphoryl diester phosphodiesterase are defective in their male gamete transfer. Through the global analyses of the late pollen-preferred genes from rice, we found several biological features of these genes. First, biological process related to cell wall organization and modification is over-represented in these genes to support rapid tube growth. Second, comparative analysis of late pollen preferred genes between rice and Arabidopsis provide a significant insight on the evolutional disparateness in cell wall biogenesis and storage reserves of pollen. In addition, these candidates might be useful targets for future examinations of late pollen development, and will be a valuable resource for accelerating the understanding of molecular mechanisms for pollen maturation and germination processes in rice.
Zhang, Jincheng; Wei, Bin; Hu, Huixian; Liu, Fanrong; Tu, Yan; Zhao, Minzhe; Wu, Dongmei
2017-01-01
The aim of the present study was to analyze the association between the transcription factor forkhead box P3 (FOXP3) and diffuse large B-cell lymphoma (DLBCL), and investigate the effect of microRNA-155 (miR-155) on the generation and development of FOXP3 in DLBCL. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) technique was used to determine the expression of FOXP3 in the human DLBCL cell lines Ly1, Ly8 and Ly10, and in normal B cells. An immunohistochemical method was used to determine FOXP3 expression in 60 DLBCL tumor and adjacent tissues, and a retrospective analysis of FOXP3 expression in tumor tissues and clinical data was performed. The lentiviral transfection technique was used to silence the miR-155 gene in mouse A20 cells to analyze the influence of miR-155 on FOXP3 in DLBCL. The A20 cell line with a silenced miR-155 gene was used to perform a tumorigenicity assay in BALB/c mice, and to compare the tumorigenicity rate and the tumor growth rate. The results identified that the expression of the transcription factor FOXP3 in the human DLBCL cell lines was increased compared with normal B cells; FOXP3 in human DLBCL tumor issues was increased compared with the tumor-adjacent tissue, and the increased expression of FOXP3 was identified as an indicator of poor prognosis of patients with DLBCL in the middle and late period; FOXP3 level decreased subsequent to silencing miR-155 in A20 cells; A20 cells with the low-expression miR-155 gene were used to determine the tumorigenicity in BALB/c mice and it was identified that the tumorigenicity of the low-expression miR-155 gene group was decreased compared with the untransfected group. Therefore, miR-155 may be a regulatory factor of FOXP3, and miR-155 may be associated with the metastasis and prognosis of patients with DLBCL. PMID:28789399
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hongxing, E-mail: Hongxing.Zhao@igp.uu.se; Chen, Maoshan; Lind, Sara Bergström
The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phasemore » and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. - Highlights: • The expression of 398 lncRNAs showed a distinct temporal pattern during Ad2 infection. • 80% of the deregulated lncRNAs were up-regulated during the late phase of infection. • The deregulated lncRNAs potentiallyinteract with 33 cellular RNA binding proteins. • These RBPs are involved in RNA splicing, nuclear export and translation. • Adenovirus exploits the cellular lncRNA network to optimize its replication.« less
Darby, Jack R T; McMillen, I Caroline; Morrison, Janna L
2018-06-01
This study investigates the impact of decreased fetal plasma glucose concentrations on the developing heart in late gestation, by subjecting pregnant ewes to a 50% global nutrient restriction. Late gestation undernutrition (LGUN) decreased fetal plasma glucose concentrations whilst maintaining a normoxemic blood gas status. LGUN increased the mRNA expression of IGF2 and IGF2R. Fetal plasma glucose concentrations, but not fetal blood pressure, were significantly correlated with IGF2 expression and the activation of CAMKII in the fetal right ventricle. LGUN increased interstitial collagen deposition and altered the protein abundance of phospho-PLB and phospho-troponin I, regulators of cardiac contractility and relaxation. This study shows that a decrease in fetal plasma glucose concentrations may play a role in the development of detrimental changes in the right ventricle in early life, highlighting CAMKII as a potential target for the development of intervention strategies. Exposure of the fetus to a range of environmental stressors, including maternal undernutrition, is associated with an increased risk of death from cardiovascular disease in adult life. This study aimed to determine the effect of maternal nutrient restriction in late gestation on the molecular mechanisms that regulate cardiac growth and development of the fetal heart. Maternal undernutrition resulted in a decrease in fetal glucose concentrations across late gestation, whilst fetal arterial PO2 remained unchanged between the control and late gestation undernutrition (LGUN) groups. There was evidence of an up-regulation of IGF2/IGF2R signalling through the CAMKII pathway in the fetal right ventricle in the LGUN group, suggesting an increase in hypertrophic signalling. LGUN also resulted in an increased mRNA expression of COL1A, TIMP1 and TIMP3 in the right ventricle of the fetal heart. In addition, there was an inverse relationship between fetal glucose concentrations and COL1A expression. The presence of interstitial fibrosis in the heart of the LGUN group was confirmed through the quantification of picrosirius red-stained sections of the right ventricle. We have therefore shown that maternal undernutrition in late gestation may drive the onset of myocardial remodelling in the fetal right ventricle and thus has negative implications for right ventricle function and cardiac health in later life. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Gosemann, Jan-Hendrik; Doi, Takashi; Kutasy, Balazs; Friedmacher, Florian; Dingemann, Jens; Puri, Prem
2012-05-01
Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in normal lung development. Peroxisome proliferator-activated receptor γ messenger RNA (mRNA) is detectable at 18 days of gestation in fetal rat lungs, and levels peak just before birth. Peroxisome proliferator-activated receptor γ agonists are reported to stimulate lung development, whereas inhibition of PPARγ disrupts postnatal lung maturation. Monocyte chemoattractant protein 1 (MCP-1), which is inhibited by PPARγ, is reported to disrupt late lung morphogenesis. This study was designed to investigate the hypothesis that PPARγ expression is downregulated and that MCP-1 expression is upregulated during the late stages of lung development in nitrofen-induced hypoplastic lungs. Pregnant rats were treated with nitrofen or vehicle on D9. RNA was extracted from fetal lungs (D18 and D21), and relative mRNA expression levels of PPARγ and MCP-1 were determined by reverse transcriptase-polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression/distribution of PPARγ and MCP-1. Relative mRNA expression levels of PPARγ were significantly downregulated in the nitrofen group compared with controls on D21, whereas MCP-1 levels were upregulated. Immunohistochemical study showed markedly decreased PPARγ and increased MCP-1 immunoreactivity in the nitrofen-induced hypoplastic lungs compared with controls on gestational day 21. Altered pulmonary gene expression of PPARγ and MCP-1 during late gestation may impair lung development and maturation, contributing to pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia model. Copyright © 2012 Elsevier Inc. All rights reserved.
Browne, H M; Churcher, M J; Stanley, M A; Smith, G L; Minson, A C
1988-06-01
The L1 open reading frame of human papillomavirus type 16 (HPV16) has been expressed in vaccinia virus under the control of both the 7.5K early and late promoter, and the 4b major late promoter. Antibodies to a beta-galactosidase fusion protein containing a C-terminal portion of the HPV16 L1 gene product were used to compare the levels of L1 expression in the two recombinants, and showed that greater levels of expression were obtained when the gene was placed under the control of the 4b late promoter. Immunofluorescence studies revealed a nuclear location of the L1 gene product when expressed in vaccinia virus. Antibodies to the beta-galactosidase fusion protein detected a major polypeptide species of 57K and a minor species of 64K in Western blots of recombinant-infected cell lysates. The 64K species was not detected when cells were infected in the presence of tunicamycin, indicating that the primary translation product of the HPV16 L1 open reading frame is modified by N-linked glycosylation when expressed in vaccinia virus. Whereas antibodies to HPV16 L1 fusion proteins and to a peptide containing amino acids from the C terminus of HPV16 L1 reacted well in Western blots with the HPV16 L1 target expressed in vaccinia virus, no reactivity was observed with antibodies to bovine papillomavirus type 1 particles or to a HPV6b fusion protein.
Mukherjee, Tapas; Taye, Nandaraj; Vijayaragavan, Bharath; Chattopadhyay, Samit; Gomes, James; Basak, Soumen
2017-01-01
The nuclear factor κB (NF-κB) transcription factors coordinate the inflammatory immune response during microbial infection. Pathogenic substances engage canonical NF-κB signaling through the heterodimer RelA:p50, which is subjected to rapid negative feedback by inhibitor of κBα (IκBα). The noncanonical NF-κB pathway is required for the differentiation of immune cells; however, crosstalk between both pathways can occur. Concomitantly activated noncanonical signaling generates p52 from the p100 precursor. The synthesis of p100 is induced by canonical signaling, leading to formation of the late-acting RelA:p52 heterodimer. This crosstalk prolongs inflammatory RelA activity in epithelial cells to ensure pathogen clearance. We found that the Toll-like receptor 4 (TLR4)–activated canonical NF-κB signaling pathway is insulated from lymphotoxin β receptor (LTβR)–induced noncanonical signaling in mouse macrophage cell lines. Combined computational and biochemical studies indicated that the extent of NF-κB–responsive expression of Nfkbia, which encodes IκBα, inversely correlated with crosstalk. The Nfkbia promoter showed enhanced responsiveness to NF-κB activation in macrophages compared to that in fibroblasts. We found that this hyperresponsive promoter engaged the RelA:p52 dimer generated during costimulation of macrophages through TLR4 and LTβR to trigger synthesis of IκBα at late time points, which prevented the late-acting RelA crosstalk response. Together, these data suggest that despite the presence of identical signaling networks in cells of diverse lineages, emergent crosstalk between signaling pathways is subject to cell type–specific regulation. We propose that the insulation of canonical and noncanonical NF-κB pathways limits the deleterious effects of macrophage-mediated inflammation. PMID:27923915
Environmental Correlates of Abundances of Mosquito Species and Stages in Discarded Vehicle Tires
YEE, DONALD A.; KNEITEL, JAMIE M.; JULIANO, STEVEN A.
2012-01-01
Discarded vehicle tires are a common habitat for container mosquito larvae, although the environmental factors that may control their presence or abundance within a tire are largely unknown. We sampled discarded vehicle tires in six sites located within four counties of central Illinois during the spring and summer of 2006 to determine associations between a suite of environmental factors and community composition of container mosquitoes. Our goal was to find patterns of association between environmental factors and abundances of early and late instars. We hypothesized that environmental factors correlated with early instars would be indicative of oviposition cues, whereas environmental factors correlated with late instars would be those important for larval survival. We collected 13 species of mosquitoes, with six species (Culex restuans, Cx. pipiens, Aedes albopictus, Cx. salinarius, Ae. atropalpus, and Ae. triseriatus) accounting for ≈95% of all larvae. There were similar associations between congenerics and environmental factors, with Aedes associated with detritus type (fine detritus, leaves, seeds) and Culex associated with factors related to the surrounding habitat (human population density, canopy cover, tire size) or microorganisms (bacteria, protozoans). Although there was some consistency in factors that were important for early and late instar abundance, there were few significant associations between early and late instars for individual species. Lack of correspondence between factors that explain variation in early versus late instars, most notable for Culex, suggests a difference between environmental determinants of oviposition and survival within tires. Environmental factors associated with discarded tires are important for accurate predictions of mosquito occurrence at the generic level. PMID:20180308
Marui, Akira; Mochizuki, Takaaki; Koyama, Tadaaki; Mitsui, Norimasa
2007-11-01
Predicting the risk factors for late aortic events in patients with type B acute aortic dissection without complications may help to determine a therapeutic strategy for this disorder. We investigated whether late aortic events in type B acute aortic dissection can be predicted accurately by an index that expresses the degree of fusiform dilatation of the proximal descending aorta during the acute phase; this index can be calculated as follows: (maximum diameter of the proximal descending aorta)/(diameter of the distal aortic arch + diameter of the descending aorta at the pulmonary artery level). Patients with type B acute aortic dissection without complications (n = 141) were retrospectively analyzed to determine the predictors of late aortic events; these include aortic dilatation, rupture, refractory pain, organ ischemia, rapid aortic enlargement, and rapid enlargement of ulcer-like projections. The fusiform index in patients with late aortic events (0.59) was higher than that in patients without late aortic events (0.53, P < .01). Patients with a higher fusiform index exhibited aortic dilatation earlier than those with a lower fusiform index. By multivariate analysis, we conclude that the predominant independent predictors of late aortic events were a maximum aortic diameter of 40 mm or more, a patent false lumen, and a fusiform index of 0.64 or more (hazard ratios, 3.18, 2.64, and 2.73, respectively). The values of actuarial freedom from aortic events for patients with all 3 predictors at 1, 5, and 10 years were 22%, 17%, and 8%, respectively, whereas the values in those without these predictors were 97%, 94%, and 90%, respectively. The degree of fusiform dilatation of the proximal descending aorta, a patent false lumen, and a large aortic diameter can be predominant predictors of late aortic events in patients with type B acute aortic dissection. Patients with these predictors should be recommended to undergo early interventions (surgery or stent-graft implantation) or at least be closely followed up during the chronic phase before such events develop.
Ejeta, Eyasu; Dabsu, Regea; Zewdie, Olifan; Merdassa, Elias
2017-01-01
Antenatal care (ANC) is important for both maternal and fetal health. However, the existing evidence from developing countries indicates that most pregnant women attending ANC in their late pregnancy. Little is known about the factors determining ANC booking and the content of care among pregnant women in West part of Ethiopia. Therefore, the present study was conducted to identify factors determining late ANC booking and the content of care among pregnant mother attending antenatal care services in East Wollega administrative zone, West Ethiopia. Institutional based cross-sectional study was conducted from July to September, 2014 among 421 pregnant women's attending ANC services in purposively selected health facilities, East Wollega zone, Ethiopia. The pretested-structured questionnaires were used to collect socio-demographic data and predictor factors of late initiation of ANC services. Five trained nurse working at ANC clinic at each health institution administered the questionnaire. The collected data was analysed using SPSS version 20. The prevalence of late ANC booking was 81.5% (343/421) in the study area. Being from Oromo ethnic group (AOR 4.27, (95% CI, 1.48-12.33)), maternal age equal or more than 25 year old (AOR 3.09 (95% CI, 1.53-6.27)), second trimester (AOR 6.05(95% CI, 3.08-11.88)) and third trimester (AOR 7.97 (95% CI, 3.92-16.23)) were main factors identified as contributing (favoring factors) for the likely occurrence of late booking for ANC whereas; monthly income more than and/or equal to 15000 Ethiopian birrs (AOR 0.38 (95% CI, 0.18-084)) were factors compromising (decreasing) the chances for late attendance for the services among the pregnant women. Late ANC initiation is high in the study area despite the services is provided free of charge. Hence, it is important to provide health education on the timing of ANC among women with reproductive age. Community's awareness on importance of receiving early ANC also needs to be promoted.
Tatsuki, Miho
2013-01-01
The fruit of melting-flesh peach (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high expression of PpACS1 (an isogene of 1-aminocyclopropane-1-carboxylic acid synthase), resulting in rapid fruit softening at the late-ripening stage. In contrast, the fruit of stony hard peach cultivars do not soften and produce little ethylene due to low expression of PpACS1. To elucidate the mechanism for suppressing PpACS1 expression in stony hard peaches, a microarray analysis was performed. Several genes that displayed similar expression patterns as PpACS1 were identified and shown to be indole-3-acetic acid (IAA)-inducible genes (Aux/IAA, SAUR). That is, expression of IAA-inducible genes increased at the late-ripening stage in melting flesh peaches; however, these transcripts were low in mature fruit of stony hard peaches. The IAA concentration increased suddenly just before harvest time in melting flesh peaches exactly coinciding with system 2 ethylene production. In contrast, the IAA concentration did not increase in stony hard peaches. Application of 1-naphthalene acetic acid, a synthetic auxin, to stony hard peaches induced a high level of PpACS1 expression, a large amount of ethylene production and softening. Application of an anti-auxin, α-(phenylethyl-2-one)-IAA, to melting flesh peaches reduced levels of PpACS1 expression and ethylene production. These observations indicate that suppression of PpACS1 expression at the late-ripening stage of stony hard peach may result from a low level of IAA and that a high concentration of IAA is required to generate a large amount of system 2 ethylene in peaches. PMID:23364941
Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.
2011-01-01
Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692
Kakrana, Atul; Kumar, Anil; Satheesh, Viswanathan; Abdin, M. Z.; Subramaniam, Kuppuswamy; Bhattacharya, R. C.; Srinivasan, Ramamurthy; Sirohi, Anil; Jain, Pradeep K.
2017-01-01
The root-knot nematode (RKN), Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi) has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS) promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants. PMID:29312363
Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant.
Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi; Sekimizu, Kazuhisa
2014-04-01
We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.
Tcf19 is a novel islet factor necessary for proliferation and survival in the INS-1 β-cell line
Krautkramer, Kimberly A.; Linnemann, Amelia K.; Fontaine, Danielle A.; Whillock, Amy L.; Harris, Ted W.; Schleis, Gregory J.; Truchan, Nathan A.; Marty-Santos, Leilani; Lavine, Jeremy A.; Cleaver, Ondine; Kimple, Michelle E.
2013-01-01
Recently, a novel type 1 diabetes association locus was identified at human chromosome 6p31.3, and transcription factor 19 (TCF19) is a likely causal gene. Little is known about Tcf19, and we now show that it plays a role in both proliferation and apoptosis in insulinoma cells. Tcf19 is expressed in mouse and human islets, with increasing mRNA expression in nondiabetic obesity. The expression of Tcf19 is correlated with β-cell mass expansion, suggesting that it may be a transcriptional regulator of β-cell mass. Increasing proliferation and decreasing apoptotic cell death are two strategies to increase pancreatic β-cell mass and prevent or delay diabetes. siRNA-mediated knockdown of Tcf19 in the INS-1 insulinoma cell line, a β-cell model, results in a decrease in proliferation and an increase in apoptosis. There was a significant reduction in the expression of numerous cell cycle genes from the late G1 phase through the M phase, and cells were arrested at the G1/S checkpoint. We also observed increased apoptosis and susceptibility to endoplasmic reticulum (ER) stress after Tcf19 knockdown. There was a reduction in expression of genes important for the maintenance of ER homeostasis (Bip, p58IPK, Edem1, and calreticulin) and an increase in proapoptotic genes (Bim, Bid, Nix, Gadd34, and Pdia2). Therefore, Tcf19 is necessary for both proliferation and survival and is a novel regulator of these pathways. PMID:23860123
Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection
Walton, Senta M.; Liao, Tingting; Stubbs, Keith A.; Marshall, Barry J.; Fulurija, Alma; Benghezal, Mohammed
2017-01-01
Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress. PMID:28644872
Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection.
Debowski, Aleksandra W; Walton, Senta M; Chua, Eng-Guan; Tay, Alfred Chin-Yen; Liao, Tingting; Lamichhane, Binit; Himbeck, Robyn; Stubbs, Keith A; Marshall, Barry J; Fulurija, Alma; Benghezal, Mohammed
2017-06-01
Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress.
Nogueira, Luciana Gabriel; Santos, Ronaldo Honorato Barros; Fiorelli, Alfredo Inácio; Mairena, Eliane Conti; Benvenuti, Luiz Alberto; Bocchi, Edimar Alcides; Stolf, Noedir Antonio; Kalil, Jorge; Cunha-Neto, Edecio
2014-01-01
Background. Chronic Chagas disease cardiomyopathy (CCC), a late consequence of Trypanosoma cruzi infection, is an inflammatory cardiomyopathy with prognosis worse than those of noninflammatory etiology (NIC). Although the T cell-rich myocarditis is known to play a pathogenetic role, the relative contribution of each of the functional T cell subsets has never been thoroughly investigated. We therefore assessed gene expression of cytokines and transcription factors involved in differentiation and effector function of each functional T cell subset (TH1/TH2/TH17/Treg) in CCC, NIC, and heart donor myocardial samples. Methods and Results. Quantitative PCR showed markedly upregulated expression of IFN-γ and transcription factor T-bet, and minor increases of GATA-3; FoxP3 and CTLA-4; IL-17 and IL-18 in CCC as compared with NIC samples. Conversely, cytokines expressed by TH2 cells (IL-4, IL-5, and IL-13) or associated with Treg (TGF-β and IL-10) were not upregulated in CCC myocardium. Expression of TH1-related genes such as T-bet, IFN-γ, and IL-18 correlated with ventricular dilation, FoxP3, and CTLA-4. Conclusions. Results are consistent with a strong local TH1-mediated response in most samples, possibly associated with pathological myocardial remodeling, and a proportionally smaller FoxP3+CTLA4+ Treg cell population, which is unable to completely curb IFN-γ production in CCC myocardium, therefore fueling inflammation. PMID:25152568
Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex.
Wolle, Daniel; Cleard, Fabienne; Aoki, Tsutomu; Deshpande, Girish; Schedl, Paul; Karch, Francois
2015-11-01
Chromatin boundaries are architectural elements that determine the three-dimensional folding of the chromatin fiber and organize the chromosome into independent units of genetic activity. The Fab-7 boundary from the Drosophila bithorax complex (BX-C) is required for the parasegment-specific expression of the Abd-B gene. We have used a replacement strategy to identify sequences that are necessary and sufficient for Fab-7 boundary function in the BX-C. Fab-7 boundary activity is known to depend on factors that are stage specific, and we describe a novel ∼700-kDa complex, the late boundary complex (LBC), that binds to Fab-7 sequences that have insulator functions in late embryos and adults. We show that the LBC is enriched in nuclear extracts from late, but not early, embryos and that it contains three insulator proteins, GAF, Mod(mdg4), and E(y)2. Its DNA binding properties are unusual in that it requires a minimal sequence of >65 bp; however, other than a GAGA motif, the three Fab-7 LBC recognition elements display few sequence similarities. Finally, we show that mutations which abrogate LBC binding in vitro inactivate the Fab-7 boundary in the BX-C. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Hani, E H; Suaud, L; Boutin, P; Chèvre, J C; Durand, E; Philippi, A; Demenais, F; Vionnet, N; Furuta, H; Velho, G; Bell, G I; Laine, B; Froguel, P
1998-01-01
Non-insulin-dependent diabetes mellitus (NIDDM) is a heterogeneous disorder characterized by hyperglycemia resulting from defects in insulin secretion and action. Recent studies have found mutations in the hepatocyte nuclear factor-4 alpha gene (HNF-4alpha) in families with maturity-onset diabetes of the young (MODY), an autosomal dominant form of diabetes characterized by early age at onset and a defect in glucose-stimulated insulin secretion. During the course of our search for susceptibility genes contributing to the more common late-onset NIDDM forms, we observed nominal evidence for linkage between NIDDM and markers in the region of the HNF-4alpha/MODY1 locus in a subset of French families with NIDDM diagnosed before 45 yr of age. Thus, we screened these families for mutations in the HNF-4alpha gene. We found a missense mutation, resulting in a valine-to-isoleucine substitution at codon 393 in a single family. This mutation cosegregated with diabetes and impaired insulin secretion, and was not present in 119 control subjects. Expression studies showed that this conservative substitution is associated with a marked reduction of transactivation activity, a result consistent with this mutation contributing to the insulin secretory defect observed in this family. PMID:9449683
Integrating multiple ‘omics’ analyses identifies serological protein biomarkers for preeclampsia
2013-01-01
Background Preeclampsia (PE) is a pregnancy-related vascular disorder which is the leading cause of maternal morbidity and mortality. We sought to identify novel serological protein markers to diagnose PE with a multi-’omics’ based discovery approach. Methods Seven previous placental expression studies were combined for a multiplex analysis, and in parallel, two-dimensional gel electrophoresis was performed to compare serum proteomes in PE and control subjects. The combined biomarker candidates were validated with available ELISA assays using gestational age-matched PE (n=32) and control (n=32) samples. With the validated biomarkers, a genetic algorithm was then used to construct and optimize biomarker panels in PE assessment. Results In addition to the previously identified biomarkers, the angiogenic and antiangiogenic factors (soluble fms-like tyrosine kinase (sFlt-1) and placental growth factor (PIGF)), we found 3 up-regulated and 6 down-regulated biomakers in PE sera. Two optimal biomarker panels were developed for early and late onset PE assessment, respectively. Conclusions Both early and late onset PE diagnostic panels, constructed with our PE biomarkers, were superior over sFlt-1/PIGF ratio in PE discrimination. The functional significance of these PE biomarkers and their associated pathways were analyzed which may provide new insights into the pathogenesis of PE. PMID:24195779
Kuo, Tzu-Hsing; Williams, Julie A.
2014-01-01
Study Objectives: Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. Setting: Laboratory. Participants: Drosophila melanogaster. Methods and Results: Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. Conclusions: Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection. Citation: Kuo TH, Williams JA. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila. SLEEP 2014;37(5):859-869. PMID:24790264
Hepp, Susan E; Borgo, Gina M; Ticau, Simina; Ohkawa, Taro; Welch, Matthew D
2018-06-01
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type species of alphabaculoviruses, is an enveloped DNA virus that infects lepidopteran insects and is commonly known as a vector for protein expression and cell transduction. AcMNPV belongs to a diverse group of viral and bacterial pathogens that target the host cell actin cytoskeleton during infection. AcMNPV is unusual, however, in that it absolutely requires actin translocation into the nucleus early in infection and actin polymerization within the nucleus late in infection coincident with viral replication. Of the six viral factors that are sufficient, when coexpressed, to induce the nuclear localization of actin, only AC102 is essential for viral replication and the nuclear accumulation of actin. We therefore sought to better understand the role of AC102 in actin mobilization in the nucleus early and late in infection. Although AC102 was proposed to function early in infection, we found that AC102 is predominantly expressed as a late protein. In addition, we observed that AC102 is required for F-actin assembly in the nucleus during late infection, as well as for proper formation of viral replication structures and nucleocapsid morphogenesis. Finally, we found that AC102 is a nucleocapsid protein and a newly recognized member of a complex consisting of the viral proteins EC27, C42, and the actin polymerization protein P78/83. Taken together, our findings suggest that AC102 is necessary for nucleocapsid morphogenesis and actin assembly during late infection through its role as a component of the P78/83-C42-EC27-AC102 protein complex. IMPORTANCE The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an important biotechnological tool for protein expression and cell transduction, and related nucleopolyhedroviruses are also used as environmentally benign insecticides. One impact of our work is to better understand the fundamental mechanisms through which AcMNPV exploits the cellular machinery of the host for replication, which may aid in the development of improved baculovirus-based research and industrial tools. Moreover, AcMNPV's ability to mobilize the host actin cytoskeleton within the cell's nucleus during infection makes it a powerful cell biological tool. It is becoming increasingly clear that actin plays important roles in the cell's nucleus, and yet the regulation and function of nuclear actin is poorly understood. Our work to better understand how AcMNPV relocalizes and polymerizes actin within the nucleus may reveal fundamental mechanisms that govern nuclear actin regulation and function, even in the absence of viral infection. Copyright © 2018 American Society for Microbiology.
Shynlova, Oksana; Tsui, Prudence; Dorogin, Anna; Langille, B Lowell; Lye, Stephen J
2007-04-01
While the insulin-like growth factor (IGF) system is known to regulate uterine function during the estrous cycle, there are limited data on its role in myometrial growth and development during pregnancy. To address this issue, we defined the expression of the Igf hormones (1 and 2), their binding proteins (Igfbp 1-6), and Igf1r receptor genes in pregnant, laboring, and postpartum rat myometrium by real-time PCR. IGF family genes were differentially expressed throughout gestation. Igf1 and Igfbp1 mRNA levels were upregulated during proliferative phase (Days 6-12) of rat gestation. Igfbp3 gene expression also was elevated in proliferating smooth muscle cells (SMCs) and was highest at the time of transition between proliferative and synthetic phases (Days 12-15). Igfbp6 gene expression profile paralleled plasma progesterone (P4) concentrations, peaking during the synthetic phase (Days 17-19) and decreasing thereafter. Administration of P4 at late pregnancy (starting from Day 20) to maintain elevated plasma P4 concentrations blocked the onset of labor and prevented the fall in Igfbp6 mRNA levels. In contrast, the treatment of pregnant rats with the P4 receptor antagonist RU486 on Day 19 induced preterm labor and the premature decrease of Igfbp6 gene expression. Igfbp2 gene expression was transiently upregulated during the contractile phase of gestation (Days 21-23) solely in the gravid horn of unilaterally pregnant rats, but it was not affected in P4- or RU486-treated animals, supporting a role for mechanical stretch imposed by the growing fetuses. Igfbp5 gene was induced during postpartum involution. Our results suggest the importance of the IGF system in phenotypic and functional changes of myometrial SMCs throughout gestation in preparation for labor.
Qin, Wenyi; Zhang, Ke; Kliethermes, Beth; Ruhlen, Rachel L; Browne, Eva P; Arcaro, Kathleen F; Sauter, Edward R
2012-03-21
First full term pregnancy (FFTP) completed at a young age has been linked to low long term breast cancer risk, whereas late FFTP pregnancy age confers high long term risk, compared to nulliparity. Our hypothesis was that proteins linked to breast cancer would be differentially expressed in human milk collected at three time points during lactation based on age at FFTP. We analyzed breast milk from 72 lactating women. Samples were collected within 10 days of the onset of lactation (baseline-BL), two months after lactation started and during breast weaning (W). We measured 16 proteins (11 kallikreins (KLKs), basic fibroblast growth factor, YKL-40, neutrophil gelatinase-associated lipocalin and transforming growth factor (TGF) β-1 and -2) associated with breast cancer, most known to be secreted into milk. During lactation there was a significant change in the expression of 14 proteins in women < 26 years old and 9 proteins in women > = 26 at FFTP. The most significant (p < .001) changes from BL to W in women divided by FFTP age (< 26 vs. > = 26) were in KLK3,6, 8, and TGFβ2 in women < 26; and KLK6, 8, and TGFβ2 in women > = 26. There was a significant increase (p = .022) in KLK8 expression from BL to W depending on FFTP age. Examination of DNA methylation in the promoter region of KLK6 revealed high levels of methylation that did not explain the observed changes in protein levels. On the other hand, KLK6 and TGFβ1 expression were significantly associated (r2 = .43, p = .0050). The expression profile of milk proteins linked to breast cancer is influenced by age at FFTP. These proteins may play a role in future cancer risk.
Shynlova, Oksana; Tsui, Prudence; Dorogin, Anna; Langille, B Lowell; Lye, Stephen J
2007-09-01
From a quiescent state in early pregnancy to a highly contractile state in labor, the myometrium displays tremendous growth and remodeling. We hypothesize that the transforming growth factor beta (TGFbeta) system is involved in the differentiation of pregnant myometrium throughout gestation and labor. Furthermore, we propose that during pregnancy the mechanical and hormonal stimuli play a role in regulating myometrial TGFbetas. The expression of TGFbeta1-3 mRNAs and proteins was examined by real-time PCR, Western immunoblot, and localized with immunohistochemistry in the rat uterus throughout pregnancy and labor. Tgfbeta1-3 genes were expressed differentially in pregnant myometrium. Tgfbeta2 gene was not affected by pregnancy, whereas the Tgfbeta1 gene showed a threefold increase during the second half of gestation. In contrast, we observed a dramatic bimodal change in Tgfbeta3 gene expression throughout pregnancy. Tgfbeta3 mRNA levels first transiently increased at mid-gestation (11-fold on day 14) and later at term (45-fold at labor, day 23). Protein expression levels paralleled the changes in mRNA. Treatment of pregnant rats with the progesterone (P4) receptor antagonist RU486 induced premature labor on day 19 and increased Tgfbeta3 mRNA, whereas artificial maintenance of elevated P4 levels at late gestation (days 20-23) caused a significant decrease in the expression of Tgfbeta3 gene. In addition, Tgfbeta3 was up-regulated specifically in the gravid horn of unilaterally pregnant rats subjected to a passive biological stretch imposed by the growing fetuses, but not in the empty horn. Collectively, these data indicate that the TGFbeta family contributes in the regulation of myometrial activation at term integrating mechanical and endocrine signals for successful labor contraction.
Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration
Flores, Natasha M.; Oviedo, Néstor J.; Sage, Julien
2016-01-01
The cellular turnover of adult tissues and injury-induced repair proceed through an exquisite integration of proliferation, differentiation, and survival signals that involve stem/progenitor cell populations, their progeny, and differentiated tissues. GATA factors are DNA binding proteins that control stem cells and the development of tissues by activating or repressing transcription. Here we examined the role of GATA transcription factors in Schmidtea mediterranea, a freshwater planarian that provides an excellent model to investigate gene function in adult stem cells, regeneration, and differentiation. Smed-gata4/5/6, the homolog of the three mammalian GATA-4,-5,-6 factors is expressed at high levels in differentiated gut cells but also at lower levels in neoblast populations, the planarian stem cells. Smed-gata4/5/6 knock-down results in broad differentiation defects, especially in response to injury. These defects are not restricted to the intestinal lineage. In particular, at late time points during the response to injury, loss of Smed-gata4/5/6 leads to decreased neoblast proliferation and to gene expression changes in several neoblast subpopulations. Thus, Smed-gata4/5/6 plays a key evolutionary conserved role in intestinal differentiation in planarians. These data further support a model in which defects in the intestinal lineage can indirectly affect other differentiation pathways in planarians. PMID:27542689
Flores, Natasha M; Oviedo, Néstor J; Sage, Julien
2016-10-01
The cellular turnover of adult tissues and injury-induced repair proceed through an exquisite integration of proliferation, differentiation, and survival signals that involve stem/progenitor cell populations, their progeny, and differentiated tissues. GATA factors are DNA binding proteins that control stem cells and the development of tissues by activating or repressing transcription. Here we examined the role of GATA transcription factors in Schmidtea mediterranea, a freshwater planarian that provides an excellent model to investigate gene function in adult stem cells, regeneration, and differentiation. Smed-gata4/5/6, the homolog of the three mammalian GATA-4,-5,-6 factors is expressed at high levels in differentiated gut cells but also at lower levels in neoblast populations, the planarian stem cells. Smed-gata4/5/6 knock-down results in broad differentiation defects, especially in response to injury. These defects are not restricted to the intestinal lineage. In particular, at late time points during the response to injury, loss of Smed-gata4/5/6 leads to decreased neoblast proliferation and to gene expression changes in several neoblast subpopulations. Thus, Smed-gata4/5/6 plays a key evolutionary conserved role in intestinal differentiation in planarians. These data further support a model in which defects in the intestinal lineage can indirectly affect other differentiation pathways in planarians. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
[Advance in the biology of pancreatic of cancer].
Buscail, Louis; Bournet, Barbara; Dufresne, Marlène; Torrisani, Jérôme; Cordelier, Pierre
2015-06-01
The understanding of the biology of pancreatic carcinoma has greatly benefited from studies of genetic/epigenetic alterations and molecular expression in experimental models as well as precancerous and cancerous tissues by mean of molecular amplification and large-scale transcriptoma analysis. P16, TP53, DPC4/Smad4 tumor suppressor pathways are genetically inactivated in the majority of pancreatic carcinomas, whereas oncogenic k-ras is activated. The activating point mutation of the KRAS oncogene on codon 12 is the major event and occurs early in pancreatic carcinogenesis. At a late stage of tumor development, an increase of telomerase activity, an over expression of growth factors and/or their receptors (EGF, Nerve Growth Factor, gastrin), of pro-angiogenic factors (VEGF, FGF, PDGF), of invasiveness factors (metalloproteinases, tissue plasminogen activators) occurs. The microenvironment plays also a key role in the invasive and metastatic process of pancreatic carcinoma with a strong relationship between cancerous cells and pancreatic stellate cells as well as extracellular matrix. This microenvironment strongly participates to the tumor fibrosis, hypoxia and hypovascularization inducing an inaccessibility of drugs. Nowadays, the targeting of microenvironment takes a special place in the new therapeutic strategies of pancreatic cancer in combination with chemotherapy. Copyright © 2015 Société Françise du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés. Published by Elsevier Masson SAS. All rights reserved.
Bahmed, Karim; Messier, Elise M; Zhou, Wenbo; Tuder, Rubin M; Freed, Curt R; Chu, Hong Wei; Kelsen, Steven G; Bowler, Russell P; Mason, Robert J; Kosmider, Beata
2016-09-01
Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation. We analyzed the cell injury obtained from nonsmokers, moderate smokers, and heavy smokers. DJ-1 protects cells from oxidative stress and induces nuclear erythroid 2-related factor-2 (Nrf2) expression, which activates the antioxidant defense system. In ATII cells isolated from moderate smokers, we found DJ-1 expression by RT-PCR, and Nrf2 and heme oxygenase (HO)-1 translocation by Western blotting and immunocytofluorescence. In ATII cells isolated from heavy smokers, we detected Nrf2 and HO-1 cytoplasmic localization. Moreover, we found high oxidative stress, as detected by 4-hydroxynonenal (4-HNE) (immunoblotting), inflammation by IL-8 and IL-6 levels by ELISA, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in ATII cells obtained from heavy smokers. Furthermore, we detected early DJ-1 and late Nrf2 expression after ATII cell treatment with CS extract. We also overexpressed DJ-1 by adenovirus construct and found that this restored Nrf2 and HO-1 expression and induced nuclear translocation in heavy smokers. Moreover, DJ-1 overexpression also decreased ATII cell apoptosis caused by CS extract in vitro. Our results indicate that DJ-1 activates the Nrf2-mediated antioxidant defense system. Furthermore, DJ-1 overexpression can restore the impaired Nrf2 pathway, leading to ATII cell protection in heavy smokers. This suggests a potential therapeutic strategy for targeting DJ-1 in CS-related lung diseases.
Dunand, C; Hoffmann, P; Sapin, V; Blanchon, L; Salomon, A; Sergent, F; Benharouga, M; Sabra, S; Guibourdenche, J; Lye, S J; Feige, J J; Alfaidy, N
2014-09-01
EG-VEGF is an angiogenic factor that we identified as a new placental growth factor during human pregnancy. EG-VEGF is also expressed in the mouse fetal membrane (FM) by the end of gestation, suggesting a local role for this protein in the mechanism of parturition. However, injection of EG-VEGF to gravid mice did not induce labor, suggesting a different role for EG-VEGF in parturition. Here, we searched for its role in the FM in relation to human parturition. Human pregnant sera and total FM, chorion, and amnion were collected during the second and third trimesters from preterm no labor, term no labor, and term labor patients. Primary human chorion trophoblast and FM explants cultures were also used. We demonstrate that circulating EG-VEGF increased toward term and significantly decreased at the time of labor. EG-VEGF production was higher in the FM compared to placentas matched for gestational age. Within the FM, the chorion was the main source of EG-VEGF. EG-VEGF receptors, PROKR1 and PROKR2, were differentially expressed within the FM with increased expression toward term and an abrupt decrease with the onset of labor. In chorion trophoblast and FM explants collected from nonlaboring patients, EG-VEGF decreased metalloproteinase-2 and -9 activities and increased PGDH (prostaglandin-metabolizing enzyme) expression. Altogether these data demonstrate that EG-VEGF is a new cytokine that acts locally to ensure FM protection in late pregnancy. Its fine contribution to the initiation of human labor is exhibited by the abrupt decrease in its levels as well as a reduction in its receptors. © 2014 by the Society for the Study of Reproduction, Inc.
Bahmed, Karim; Messier, Elise M.; Zhou, Wenbo; Tuder, Rubin M.; Freed, Curt R.; Chu, Hong Wei; Kelsen, Steven G.; Bowler, Russell P.; Mason, Robert J.
2016-01-01
Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation. We analyzed the cell injury obtained from nonsmokers, moderate smokers, and heavy smokers. DJ-1 protects cells from oxidative stress and induces nuclear erythroid 2–related factor-2 (Nrf2) expression, which activates the antioxidant defense system. In ATII cells isolated from moderate smokers, we found DJ-1 expression by RT-PCR, and Nrf2 and heme oxygenase (HO)-1 translocation by Western blotting and immunocytofluorescence. In ATII cells isolated from heavy smokers, we detected Nrf2 and HO-1 cytoplasmic localization. Moreover, we found high oxidative stress, as detected by 4-hydroxynonenal (4-HNE) (immunoblotting), inflammation by IL-8 and IL-6 levels by ELISA, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in ATII cells obtained from heavy smokers. Furthermore, we detected early DJ-1 and late Nrf2 expression after ATII cell treatment with CS extract. We also overexpressed DJ-1 by adenovirus construct and found that this restored Nrf2 and HO-1 expression and induced nuclear translocation in heavy smokers. Moreover, DJ-1 overexpression also decreased ATII cell apoptosis caused by CS extract in vitro. Our results indicate that DJ-1 activates the Nrf2-mediated antioxidant defense system. Furthermore, DJ-1 overexpression can restore the impaired Nrf2 pathway, leading to ATII cell protection in heavy smokers. This suggests a potential therapeutic strategy for targeting DJ-1 in CS-related lung diseases. PMID:27093578
Age and gender differences in depression across adolescence: real or 'bias'?
van Beek, Yolanda; Hessen, David J; Hutteman, Roos; Verhulp, Esmée E; van Leuven, Mirande
2012-09-01
Since developmental psychologists are interested in explaining age and gender differences in depression across adolescence, it is important to investigate to what extent these observed differences can be attributed to measurement bias. Measurement bias may arise when the phenomenology of depression varies with age or gender, i.e., when younger versus older adolescents or girls versus boys differ in the way depression is experienced or expressed. The Children's Depression Inventory (CDI) was administered to a large school population (N = 4048) aged 8-17 years. A 4-factor model was selected by means of factor analyses for ordered categorical measures. For each of the four factor scales measurement invariance with respect to gender and age (late childhood, early and middle adolescence) was tested using item response theory analyses. Subsequently, to examine which items contributed to measurement bias, all items were studied for differential item functioning (DIF). Finally, it was investigated how developmental patterns changed if measurement biases were accounted for. For each of the factors Self-Deprecation, Dysphoria, School Problems, and Social Problems measurement bias with respect to both gender and age was found and many items showed DIF. Developmental patterns changed profoundly when measurement bias was taken into account. The CDI seemed to particularly overestimate depression in late childhood, and underestimate depression in middle adolescent boys. For scientific as well as clinical use of the CDI, measurement bias with respect to gender and age should be accounted for. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.
Transcriptional analysis of late ripening stages of grapevine berry
2011-01-01
Background The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity. Results Whole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar) grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7), harvest (TH), and 10-days after harvest (TH+10)). Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines. In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stages of berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, a valencene synthase and a putative S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase. Conclusions This set of up- and down-regulated genes characterize the late stages of berry ripening in the two cultivars studied, and are indirectly linked to wine quality. They might be used directly or indirectly to design immunological, biochemical or molecular tools aimed at the determination of optimal ripening in these cultivars. PMID:22098939
Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; ...
2015-11-03
Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splicemore » site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.« less
Bellaire, Anke; Ischebeck, Till; Staedler, Yannick; Weinhaeuser, Isabell; Mair, Andrea; Parameswaran, Sriram; Ito, Toshiro; Schönenberger, Jürg; Weckwerth, Wolfram
2014-01-01
The interrelationship of morphogenesis and metabolism is a poorly studied phenomenon. The main paradigm is that development is controlled by gene expression. The aim of the present study was to correlate metabolism to early and late stages of flower and fruit development in order to provide the basis for the identification of metabolic adjustment and limitations. A highly detailed picture of morphogenesis is achieved using nondestructive micro computed tomography. This technique was used to quantify morphometric parameters of early and late flower development in an Arabidopsis thaliana mutant with synchronized flower initiation. The synchronized flower phenotype made it possible to sample enough early floral tissue otherwise not accessible for metabolomic analysis. The integration of metabolomic and morphometric data enabled the correlation of metabolic signatures with the process of flower morphogenesis. These signatures changed significantly during development, indicating a pronounced metabolic reprogramming in the tissue. Distinct sets of metabolites involved in these processes were identified and were linked to the findings of previous gene expression studies of flower development. High correlations with basic leucine zipper (bZIP) transcription factors and nitrogen metabolism genes involved in the control of metabolic carbon : nitrogen partitioning were revealed. Based on these observations a model for metabolic adjustment during flower development is proposed. PMID:24350948
Watkin, Peter; McCann, Donna; Law, Catherine; Mullee, Mark; Petrou, Stavros; Stevenson, Jim; Worsfold, Sarah; Yuen, Ho Ming; Kennedy, Colin
2007-09-01
The goal was to examine the relationships between management after confirmation, family participation, and speech and language outcomes in the same group of children with permanent childhood hearing impairment. Speech, oral language, and nonverbal abilities, expressed as z scores and adjusted in a regression model, and Family Participation Rating Scale scores were assessed at a mean age of 7.9 years for 120 children with bilateral permanent childhood hearing impairment from a 1992-1997 United Kingdom birth cohort. Ages at institution of management and hearing aid fitting were obtained retrospectively from case notes. Compared with children managed later (> 9 months), those managed early (< or = 9 months) had higher adjusted mean z scores for both receptive and expressive language, relative to nonverbal ability, but not for speech. Compared with children aided later, a smaller group of more-impaired children aided early did not have significantly higher scores for these outcomes. Family Participation Rating Scale scores showed significant positive correlations with language and speech intelligibility scores only for those with confirmation after 9 months and were highest for those with late confirmed, severe/profound, permanent childhood hearing impairment. Early management of permanent childhood hearing impairment results in improved language. Family participation is also an important factor in cases that are confirmed late, especially for children with severe or profound permanent childhood hearing impairment.
Cheng, Zhi Juan; Zhao, Xiang Yu; Shao, Xing Xing; Wang, Fei; Zhou, Chao; Liu, Ying Gao; Zhang, Yan; Zhang, Xian Sheng
2014-01-01
Seed development includes an early stage of endosperm proliferation and a late stage of embryo growth at the expense of the endosperm in Arabidopsis thaliana. Abscisic acid (ABA) has known functions during late seed development, but its roles in early seed development remain elusive. In this study, we report that ABA-deficient mutants produced seeds with increased size, mass, and embryo cell number but delayed endosperm cellularization. ABSCISIC ACID DEFICIENT2 (ABA2) encodes a unique short-chain dehydrogenase/reductase that functions in ABA biosynthesis, and its expression pattern overlaps that of SHORT HYPOCOTYL UNDER BLUE1 (SHB1) during seed development. SHB1 RNA accumulation was significantly upregulated in the aba2-1 mutant and was downregulated by the application of exogenous ABA. Furthermore, RNA accumulation of the basic/region leucine zipper transcription factor ABSCISIC ACID-INSENSITIVE5 (ABI5), involved in ABA signaling, was decreased in aba2-1. Consistent with this, seed size was also increased in abi5. We further show that ABI5 directly binds to two discrete regions in the SHB1 promoter. Our results suggest that ABA negatively regulates SHB1 expression, at least in part, through the action of its downstream signaling component ABI5. Our findings provide insights into the molecular mechanisms by which ABA regulates early seed development. PMID:24619610
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.
Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splicemore » site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.« less
Nussenblatt, Robert B; Lee, Richard W J; Chew, Emily; Wei, Lai; Liu, Baoying; Sen, H Nida; Dick, Andrew D; Ferris, Frederick L
2014-07-01
To describe the immune alterations associated with age-related macular degeneration (AMD); and, based on these findings, to offer an approach to possibly prevent the expression of late disease. Perspective. Review of the existing literature dealing with epidemiology, models, and immunologic findings in patients. Significant genetic associations have been identified and reported, but environmentally induced (including epigenetic) changes are also an important consideration. Immune alterations include a strong interleukin 17 family signature as well as marked expression of these molecules in the eye. Oxidative stress as well as other homeostatic altering mechanisms occur throughout life. With this immune dysregulation there is a rationale for considering immunotherapy. Indeed, immunotherapy has been shown to affect the late stages of AMD. Immune dysregulation appears to be an underlying alteration in AMD, as in other diseases thought to be degenerative and attributable to aging. Para-inflammation and immunosenescence may importantly contribute to the development of disease. The role of complement factor H still needs to be better defined, but in light of its association with ocular inflammatory conditions such as sarcoidosis, it does not appear to be unique to AMD but rather may be a marker for retinal pigment epithelium function. With the strong interleukin 17 family signature and the need to treat early on in the disease process, oral tolerance may be considered to prevent disease progression. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Milman, Doris H.
Two studies explore the late outcome of minimal brain dysfunction in 73 patients in relation to their initial presentation and predictive factors. Both studies followed the patients for a period of 10 to 20 years. Findings from the first study of initial presentation in relation to adult outcome showed that there was a strong positive correlation…
Andersson, P; Brange, C; von Kogerer, B; Sonmark, B; Stahre, G
1988-01-01
The effect of glucocorticosteroid (GCS) treatment on ovalbumine-induced IgE-mediated immediate and late allergic response was studied in sensitized guinea pigs. The results show that the GCS budesonide (BUD) inhibits the allergen-induced IgE-mediated immediate and late bronchial obstruction. The effect on the early reaction is correlated to the inhibition of leukotrienes and histamine release. The importance of mediator release inhibition for the antianaphylactic effect of GCS is discussed. In examining the effect on the late reaction, it was found that BUD had to be present during the early reaction but did not inhibit the early reaction. Furthermore, the effect on the late reaction was correlated to the inhibition of vascular leakage but not to the infiltration of inflammatory cells as examined in bronchoalveolar lavage. The results indicate that some triggering factors important for the development of the late reaction are released during the early reaction. Inhibition of the release of that factor or the activation of inflammatory cells by that factor might be the mechanism behind the antiinflammatory activities of GCS.
77 FR 46561 - Amendments to Adjudicatory Process Rules and Related Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-03
... eight late-filed factors, especially not for late-filed hearing requests or intervention petitions. The... current three Sec. 2.309(f)(2) factors. As the NRC explained in the proposed rule, whether filings after... the existence of good cause, not the other factors. The commenter has not supported its assertion that...
Plasmon mass scale in two-dimensional classical nonequilibrium gauge theory
NASA Astrophysics Data System (ADS)
Lappi, T.; Peuron, J.
2018-02-01
We study the plasmon mass scale in classical gluodynamics in a two-dimensional configuration that mimics the boost-invariant initial color fields in a heavy-ion collision. We numerically measure the plasmon mass scale using three different methods: a hard thermal loop (HTL) expression involving the quasiparticle spectrum constructed from Coulomb gauge field correlators, an effective dispersion relation, and the measurement of oscillations between electric and magnetic energies after introducing a spatially uniform perturbation to the electric field. We find that the HTL expression and the uniform electric field measurement are in rough agreement. The effective dispersion relation agrees with other methods within a factor of 2. We also study the dependence on time and occupation number, observing similar trends as in three spatial dimensions, where a power-law dependence sets in after an occupation-number-dependent transient time. We observe a decrease of the plasmon mass squared as t-1 / 3 at late times.
Rolaki, Alexandra; Coukos, George; Loutradis, Dimitris; DeLisser, Horace M.; Coutifaris, Christos; Makrigiannakis, Antonis
2007-01-01
The formation of the corpus luteum (CL) is critical for the establishment of a successful pregnancy. After ovulation, the CL develops from the remnants of the ovulated ovarian follicle. This process, which involves varying cell-matrix interactions, is poorly characterized. To understand the role and potential regulation of cell-matrix interactions in the formation of the CL, we investigated the expression and activity of the matrix protein fibronectin (FN) and several of its integrin receptors on luteinized granulosa cells (GCs). In situ, FN and several FN-binding integrins were detected around luteinizing GCs during the early luteal phase, although expression declined in the late luteal phase. In vitro, GCs released FN, and stimulation of these cells with human chorionic gonadotropin increased the surface expression of FN, α5β1, and αvβ3. Up-regulation of these proteins on GCs was reproduced by stimulation with vascular endothelial growth factor (VEGF) and was inhibited by anti-VEGF antibody. Lastly, expression of α5β1 and αvβ3 mediated adhesion to FN, facilitated migration, and prevented apoptosis. These data suggest that in vivo luteogenic hormones, in part through a VEGF-dependent mechanism, stimulate selected integrin-matrix adhesive interactions that promote the motility and survival of GCs and thus contribute to the formation and preservation of the CL. PMID:17456762
Bastian, Thomas W; Rice, Stephen A
2009-01-01
Previous studies have shown that the herpes simplex virus type 1 (HSV-1) immediate-early protein ICP22 alters the phosphorylation of the host cell RNA polymerase II (Pol II) during viral infection. In this study, we have engineered several ICP22 plasmid and virus mutants in order to map the ICP22 sequences that are involved in this function. We identify a region in the C-terminal half of ICP22 (residues 240 to 340) that is critical for Pol II modification and further show that the N-terminal half of the protein (residues 1 to 239) is not required. However, immunofluorescence analysis indicates that the N-terminal half of ICP22 is needed for its localization to nuclear body structures. These results demonstrate that ICP22's effects on Pol II do not require that it accumulate in nuclear bodies. As ICP22 is known to enhance viral late gene expression during infection of certain cultured cells, including human embryonic lung (HEL) cells, we used our engineered viral mutants to map this function of ICP22. It was found that mutations in both the N- and C-terminal halves of ICP22 result in similar defects in viral late gene expression and growth in HEL cells, despite having distinctly different effects on Pol II. Thus, our results genetically uncouple ICP22's effects on Pol II from its effects on viral late gene expression. This suggests that these two functions of ICP22 may be due to distinct activities of the protein.
Chin, Christopher R.; Savidis, George; Brass, Abraham L.; Melikyan, Gregory B.
2014-01-01
Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion (lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3 over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3's ability to block fusion pore formation at a post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with intralumenal vesicles within multivesicular bodies/late endosomes. PMID:24699674
Opposite effects on regulation of urea synthesis by early and late uraemia in rats.
Nielsen, Susanne Schouw; Grøfte, Thorbjørn; Grønbaek, Henning; Tygstrup, Niels; Vilstrup, Hendrik
2007-04-01
Acute and chronic kidney failure lead to catabolism with loss of lean body mass. Up-regulation of hepatic urea synthesis may play a role for the loss of body nitrogen and for the level of uraemia. The aims were to investigate the effects of early and late experimental renal failure on the regulation of hepatic urea synthesis and the expression of urea cycle enzyme genes in the liver. We examined the in vivo capacity of urea nitrogen synthesis, mRNA levels of urea cycle enzyme genes, and N-balances 6 days and 21 days after 5/6th partial nephrectomy in rats, and compared these data with pair- and free-fed control animals. Compared with pair-fed animals, early uraemia halved the in vivo urea synthesis capacity and decreased urea gene expressions (P<0.05). In contrast, late uraemia up-regulated in vivo urea synthesis and expression of all urea genes (P<0.05), save that of the flux-generating enzyme carbamoyl phosphate synthetase. The N-balance in rats with early uraemia was markedly negative (P<0.05) and near zero in late uraemia. Early uraemia down-regulated urea synthesis, so hepatic ureagenesis was not in itself involved in the negative N-balance. In contrast, late uraemia up-regulated urea synthesis, which probably contributed towards the reduced N-balance of this condition. These time-dependent, opposite effects on the uraemia-induced regulation of urea synthesis in vivo were not related to food restriction and probably mostly reflected regulation on gene level.
Cytokine expression during early and late phase of acute Puumala hantavirus infection
2011-01-01
Background Hantaviruses of the family Bunyaviridae are emerging zoonotic pathogens which cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. An immune-mediated pathogenesis is discussed for both syndromes. The aim of our study was to investigate cytokine expression during the course of acute Puumala hantavirus infection. Results We retrospectively studied 64 patients hospitalised with acute Puumala hantavirus infection in 2010 during a hantavirus epidemic in Germany. Hantavirus infection was confirmed by positive anti-hantavirus IgG/IgM. Cytokine expression of IL-2, IL-5, IL-6, IL-8, IL-10, IFN-γ, TNF-α and TGF-β1 was analysed by ELISA during the early and late phase of acute hantavirus infection (average 6 and 12 days after onset of symptoms, respectively). A detailed description of the demographic and clinical presentation of severe hantavirus infection requiring hospitalization during the 2010 hantavirus epidemic in Germany is given. Acute hantavirus infection was characterized by significantly elevated levels of IL-2, IL-6, IL-8, TGF-β1 and TNF-α in both early and late phase compared to healthy controls. From early to late phase of disease, IL-6, IL-10 and TNF-α significantly decreased whereas TGF-β1 levels increased. Disease severity characterized by elevated creatinine and low platelet counts was correlated with high pro-inflammatory IL-6 and TNF-α but low immunosuppressive TGF-β1 levels and vice versa . Conclusion High expression of cytokines activating T-lymphocytes, monocytes and macrophages in the early phase of disease supports the hypothesis of an immune-mediated pathogenesis. In the late phase of disease, immunosuppressive TGF-β1 level increase significantly. We suggest that delayed induction of a protective immune mechanism to downregulate a massive early pro-inflammatory immune response might contribute to the pathologies characteristic of human hantavirus infection. PMID:22085404
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Marcus; Ludwig, Christine; Kehlenbeck, Sylvia
2006-09-01
We have previously shown that Rev-dependent expression of HIV-1 Gag from CMV immediate early promoter critically depends on the AU-rich codon bias of the gag gene. Here, we demonstrate that adaptation of the green fluorescent protein (GFP) reporter gene to HIV codon bias is sufficient to turn this hivGFP RNA into a quasi-lentiviral message following the rules of late lentiviral gene expression. Accordingly, GFP expression was significantly decreased in transfected cells strictly correlating with reduced RNA levels. In the presence of the HIV 5' major splice donor, the hivGFP RNAs were stabilized in the nucleus and efficiently exported to themore » cytoplasm following fusion of the 3' Rev-responsive element (RRE) and coexpression of HIV-1 Rev. This Rev-dependent translocation was specifically inhibited by leptomycin B suggesting export via the CRM1-dependent pathway used by late lentiviral transcripts. In conclusion, this quasi-lentiviral reporter system may provide a new platform for developing sensitive Rev screening assays.« less
Kimura, Takeshi; Morimoto, Takeshi; Nakagawa, Yoshihisa; Kawai, Kazuya; Miyazaki, Shunichi; Muramatsu, Toshiya; Shiode, Nobuo; Namura, Masanobu; Sone, Takahito; Oshima, Shigeru; Nishikawa, Hideo; Hiasa, Yoshikazu; Hayashi, Yasuhiko; Nobuyoshi, Masakiyo; Mitudo, Kazuaki
2012-01-31
There is a scarcity of long-term data from large-scale drug-eluting stent registries with a large enough sample to evaluate low-frequency events such as stent thrombosis (ST). Five-year outcomes were evaluated in 12 812 consecutive patients undergoing sirolimus-eluting stent (SES) implantation in the j-Cypher registry. Cumulative incidence of definite ST was low (30 day, 0.3%; 1 year, 0.6%; and 5 years, 1.6%). However, late and very late ST continued to occur without attenuation up to 5 years after sirolimus-eluting stent implantation (0.26%/y). Cumulative incidence of target lesion revascularization within the first year was low (7.3%). However, late target lesion revascularization beyond 1 year also continued to occur without attenuation up to 5 years (2.2%/y). Independent risk factors of ST were completely different according to the timing of ST onset, suggesting the presence of different pathophysiological mechanisms of ST according to the timing of ST onset: acute coronary syndrome and target of proximal left anterior descending coronary artery for early ST; side-branch stenting, diabetes mellitus, and end-stage renal disease with or without hemodialysis for late ST; and current smoking and total stent length >28 mm for very late ST. Independent risk factors of late target lesion revascularization beyond 1 year were generally similar to those risk factors identified for early target lesion revascularization. Late adverse events such as very late ST and late target lesion revascularization are continuous hazards, lasting at least up to 5 years after implantation of the first-generation drug-eluting stents (sirolimus-eluting stents), which should be the targets for developing improved coronary stents.
Gene expression levels as endophenotypes in genome-wide association studies of Alzheimer disease
Zou, F.; Carrasquillo, M. M.; Pankratz, V. S.; Belbin, O.; Morgan, K.; Allen, M.; Wilcox, S. L.; Ma, L.; Walker, L. P.; Kouri, N.; Burgess, J. D.; Younkin, L. H.; Younkin, Samuel G.; Younkin, C. S.; Bisceglio, G. D.; Crook, J. E.; Dickson, D. W.; Petersen, R. C.; Graff-Radford, N.; Younkin, Steven G.; Ertekin-Taner, N.
2010-01-01
Background: Late-onset Alzheimer disease (LOAD) is a common disorder with a substantial genetic component. We postulate that many disease susceptibility variants act by altering gene expression levels. Methods: We measured messenger RNA (mRNA) expression levels of 12 LOAD candidate genes in the cerebella of 200 subjects with LOAD. Using the genotypes from our LOAD genome-wide association study for the cis-single nucleotide polymorphisms (SNPs) (n = 619) of these 12 LOAD candidate genes, we tested for associations with expression levels as endophenotypes. The strongest expression cis-SNP was tested for AD association in 7 independent case-control series (2,280 AD and 2,396 controls). Results: We identified 3 SNPs that associated significantly with IDE (insulin degrading enzyme) expression levels. A single copy of the minor allele for each significant SNP was associated with ∼twofold higher IDE expression levels. The most significant SNP, rs7910977, is 4.2 kb beyond the 3′ end of IDE. The association observed with this SNP was significant even at the genome-wide level (p = 2.7 × 10−8). Furthermore, the minor allele of rs7910977 associated significantly (p = 0.0046) with reduced LOAD risk (OR = 0.81 with a 95% CI of 0.70-0.94), as expected biologically from its association with elevated IDE expression. Conclusions: These results provide strong evidence that IDE is a late-onset Alzheimer disease (LOAD) gene with variants that modify risk of LOAD by influencing IDE expression. They also suggest that the use of expression levels as endophenotypes in genome-wide association studies may provide a powerful approach for the identification of disease susceptibility alleles. GLOSSARY AD = Alzheimer disease; CI = confidence interval; GWAS = genome-wide association study; LOAD = late-onset Alzheimer disease; mRNA = messenger RNA; OR = odds ratio; SNP = single nucleotide polymorphism. PMID:20142614
Ji, Zhibin; Liu, Zhaohua; Chao, Tianle; Hou, Lei; Fan, Rui; He, Rongyan; Wang, Guizhi; Wang, Jianmin
2017-09-20
In recent years, studies related to the expression profiles of miRNAs in the dairy goat mammary gland were performed, but regulatory mechanisms in the physiological environment and the dynamic homeostasis of mammary gland development and lactation are not clear. In the present study, sequencing data analysis of early and late lactation uncovered a total of 1,487 unique miRNAs, including 45 novel miRNA candidates and 1,442 known and conserved miRNAs, of which 758 miRNAs were co-expressed and 378 differentially expressed with P < 0.05. Moreover, 76 non-redundant target genes were annotated in 347 GO consortiums, with 3,143 candidate target genes grouped into 33 pathways. Additionally, 18 predicted target genes of 214 miRNAs were directly annotated in mammary gland development and used to construct regulatory networks based on GO annotation and the KEGG pathway. The expression levels of seven known miRNAs and three novel miRNAs were examined using quantitative real-time PCR. The results showed that miRNAs might play important roles in early and late lactation during dairy goat mammary gland development, which will be helpful to obtain a better understanding of the genetic control of mammary gland lactation and development.
Winters, L; Winters, T; Gorup, D; Mitrečić, D; Curlin, M; Križ, J; Gajović, S
2013-05-15
Toll-like receptor 2 (TLR2) is involved in innate immunity in the brain and in the cascade of events after ischemic stroke. The aim of this study was to get an insight into the expression of genes related to TLR2 signaling pathway and associated with inflammation and apoptosis in the later stages of brain response after ischemic injury. Middle cerebral artery occlusion was performed on both wild-type and TLR2(-/-) mice followed by real-time PCR to measure the relative expression of selected genes. In TLR2(-/-) mice expression of genes involved in proinflammatory response was decreased after cerebral ischemia. Tnf was the most prominent cytokine active in the late phase of recovery. Contrary to proinflammatory genes, the expression of Casp8, as a hallmark of apoptosis, was increased in TLR2(-/-) mice, in particular in the late phase of recovery. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Bombyx mori nucleopolyhedrovirus orf25 encodes a 30kDa late protein in the infection cycle.
Wang, Haiyan; Chen, Keping; Guo, Zhongjian; Yao, Qin
2008-02-01
Bombyx mori nucleopolyhedrovirus (BmNPV) orf25 gene was characterized for the first time. The coding sequence of Bm25 was amplified and subcloned into the prokaryotic expression vector pGEX-4T-2 to produce glutathione S-transferase-tagged fusion protein in the BL21 (DE3) cells. The GST-Bm25 fusion protein was expressed efficiently after induction with IPTG. The purified fusion protein was used to immunize New Zealand white rabbits to prepare polyclonal antibody. Temporal expression analysis revealed a 30-kDa protein, which was detected beginning 24 hours post-infection using a polyclonal antibody against GST-Bm25 fusion protein. The transcript of Bm25 was detected by RT-PCR at 18-72 h p.i. In conclusion, the available data suggest that Bm25 encodes a 30kDa protein expressed in the late stage of infection cycle.
Expression of Msx genes in regenerating and developing limbs of axolotl.
Koshiba, K; Kuroiwa, A; Yamamoto, H; Tamura, K; Ide, H
1998-12-15
Msx genes, homeobox-containing genes, have been isolated as homologues of the Drosophila msh gene and are thought to play important roles in the development of chick or mouse limb buds. We isolated two Msx genes, Msx1 and Msx2, from regenerating blastemas of axolotl limbs and examined their expression patterns using Northern blot and whole mount in situ hybridization during regeneration and development. Northern blot analysis revealed that the expression level of both Msx genes increased during limb regeneration. The Msx2 expression level increased in the blastema at the early bud stage, and Msx1 expression level increased at the late bud stage. Whole mount in situ hybridization revealed that Msx2 was expressed in the distal mesenchyme and Msx1 in the entire mesenchyme of the blastema at the late bud stage. In the developing limb bud, Msx1 was expressed in the entire mesenchyme, while Msx2 was expressed in the distal and peripheral mesenchyme. The expression patterns of Msx genes in the blastemas and limb buds of the axolotl were different from those reported for chick or mouse limb buds. These expression patterns of axolotl Msx genes are discussed in relation to the blastema or limb bud morphology and their possible roles in limb patterning.
[INTERACT: a model of evaluation and intervention for children who are "late talkers"].
Bonifacio, Serena; Stefani, Loredana Hvastja; Zocconi, Elisabetta
2005-01-01
According to criteria applied in literature toddlers were identified as late talkers if they had less than 50-word expressive vocabulary and no word combinations at 24 months of age. The intervention programmes that use the parents as the primary agents of intervention and use child-centred techniques maximise the quality of parental communication during the emerging language period of the child. INTERACT is an early highly individualised parent and child-centered clinical intervention based on the social-pragmatic theorical approach. It is developed for 24-30 months old children with emerging language. The aims of this study are: to evaluate the gains of the child's expressive language skills and the use of multiword utterances and the changes of the maternal/parental communicative style. Six male children described as late talkers and their mothers participated for six months to INTERACT program. At initial intervention children's average age was 27 months and the average of number words producted was 26. All the mothers show high levels of directiveness. At the end of intervention the expressive vocabulary of late talkers increase in number of different words reaching an average of 407 words and an average linguistic age of 31 months, the gain is fourteen months in six months. The mothers show significant changes in their communicative style, the directiveness and the asynchronous/devaluing behaviours decrease.
Contemporaneous Social Environment and the Architecture of Late-Life Gene Expression Profiles.
Levine, Morgan E; Crimmins, Eileen M; Weir, David R; Cole, Steve W
2017-09-01
Environmental or social challenges can stimulate a cascade of coordinated physiological changes in stress response systems. Unfortunately, chronic activation of these adaptations under conditions such as low socioeconomic status (SES) can have negative consequences for long-term health. While there is substantial evidence tying low SES to increased disease risk and reduced life expectancy, the underlying biology remains poorly understood. Using pilot data on 120 older adults from the Health and Retirement Study (United States, 2002-2010), we examined the associations between SES and gene expression levels in adulthood, with particular focus on a gene expression program known as the conserved transcriptional response to adversity. We also used a bioinformatics-based approach to assess the activity of specific gene regulation pathways involved in inflammation, antiviral responses, and stress-related neuroendocrine signaling. We found that low SES was related to increased expression of conserved transcriptional response to adversity genes and distinct patterns of proinflammatory, antiviral, and stress signaling (e.g., sympathetic nervous system and hypothalamic-pituitary-adrenal axis) transcription factor activation. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Development of a Questionnaire on Academic Hardiness for Late Elementary School Children
ERIC Educational Resources Information Center
Kamtsios, Spiridon; Karagiannopoulou, Evangelia
2013-01-01
The purpose of the research was to develop a questionnaire to measure dimensions of academic hardiness in late elementary school children. Questionnaires were distributed to 1474 children. After a set of exploratory factor analyses in studies 1 and 2, the confirmatory factor analysis results provided support for the 9-factor solution which…
ERIC Educational Resources Information Center
Mayer, Birgit; Muris, Peter; Meesters, Cor; Zimmermann-van Beuningen, Ritine
2009-01-01
This study explored correlations between risk factors and eating behavior problems in late adolescent, non-clinical females (N = 301). Participants completed questionnaires for assessing eating problems, the closely associated factors of Body Mass Index (BMI) and body dissatisfaction, and a number of other risk variables that are thought to be…
Schuster, Martin; Greenberg, E Peter
2007-08-22
Quorum-sensing regulation of gene expression in Pseudomonas aeruginosa is complex. Two interconnected acyl-homoserine lactone (acyl-HSL) signal-receptor pairs, 3-oxo-dodecanoyl-HSL-LasR and butanoyl-HSL-RhlR, regulate more than 300 genes. The induction of most of the genes is delayed during growth of P. aeruginosa in complex medium, cannot be advanced by addition of exogenous signal, and requires additional regulatory components. Many of these late genes can be induced by addition of signals early by using specific media conditions. While several factors super-regulate the quorum receptors, others may co-regulate target promoters or may affect expression posttranscriptionally. To better understand the contributions of super-regulation and co-regulation to quorum-sensing gene expression, and to better understand the general structure of the quorum sensing network, we ectopically expressed the two receptors (in the presence of their cognate signals) and another component that affects quorum sensing, the stationary phase sigma factor RpoS, early in growth. We determined the effect on target gene expression by microarray and real-time PCR analysis. Our results show that many target genes (e.g. lasB and hcnABC) are directly responsive to receptor protein levels. Most genes (e.g. lasA, lecA, and phnAB), however, are not significantly affected, although at least some of these genes are directly regulated by quorum sensing. The majority of promoters advanced by RhlR appeared to be regulated directly, which allowed us to build a RhlR consensus sequence. The direct responsiveness of many quorum sensing target genes to receptor protein levels early in growth confirms the role of super-regulation in quorum sensing gene expression. The observation that the induction of most target genes is not affected by signal or receptor protein levels indicates that either target promoters are co-regulated by other transcription factors, or that expression is controlled posttranscriptionally. This architecture permits the integration of multiple signaling pathways resulting in quorum responses that require a "quorum" but are otherwise highly adaptable and receptive to environmental conditions.
Falconi, Dominic; Aubin, Jane E
2007-08-01
LIF arrests osteogenesis in fetal rat calvaria cells in a differentiation stage-specific manner. Differential display identified HAS2 as a LIF-induced gene and its product, HA, modulated osteoblast differentiation similarly to LIF. Our data suggest that LIF arrests osteoblast differentiation by altering HA content of the extracellular matrix. Leukemia inhibitory factor (LIF) elicits both anabolic and catabolic effects on bone. We previously showed in the fetal rat calvaria (RC) cell system that LIF inhibits osteoblast differentiation at the late osteoprogenitor/early osteoblast stage. To uncover potential molecular mediators of this inhibitory activity, we used a positive-negative genome-wide differential display screen to identify LIF-induced changes in the developing osteoblast transcriptome. Although LIF signaling is active throughout the RC cell proliferation-differentiation sequence, only a relatively small number of genes, in several different functional clusters, are modulated by LIF specifically during the LIF-sensitive inhibitory time window. Based on their known and predicted functions, most of the LIF-regulated genes identified are plausible candidates to be involved in the LIF-induced arrest of osteoprogenitor differentiation. To test this hypothesis, we further analyzed the function of one of the genes identified, hyaluronan synthase 2 (HAS2), in the LIF-induced inhibition. Synthesis of hyaluronan (HA), the product of HAS enzymatic activity, was stimulated by LIF and mimicked the HAS2 expression profile, with highest expression in early/proliferative and late/maturing cultures and lowest levels in intermediate/late osteoprogenitor-early osteoblast cultures. Exogenously added high molecular weight HA, the product of HAS2, dose-dependently inhibited osteoblast differentiation, with pulse-treatment effective in the same differentiation stage-specific inhibitory window as seen with LIF. In addition, however, pulse treatment with HA in early cultures slightly increased bone nodule formation. Treatment with hyaluronidase, on the other hand, stimulated bone nodule formation in early cultures but caused a small dose-dependent inhibition of osteoblast differentiation in the LIF- and HA-sensitive late time window. Together the data suggest that osteoblast differentiation is acutely sensitive to HA levels and that LIF inhibits osteoblast development at least in part by stimulating high molecular weight HA synthesis through HAS2.
Zhao, Cui; Zhang, Chen; Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei
2016-01-01
A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01). The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01). The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle.
Wielaard, Ilse; Hoyer, Mathijs; Rhebergen, Didi; Stek, Max L; Comijs, Hannie C
2018-03-01
Childhood abuse makes people vulnerable to developing depression, even in late life. Psychosocial factors that are common in late life, such as loneliness or lack of a partner, may explain this association. Our aim was to investigate whether the association between childhood abuse and depression in older adults can be explained by psychosocial factors. Cross-sectional data were derived from the Netherlands Study of Depression in Older Persons (aged 60-93), including 132 without lifetime depression, 242 persons with an early-onset depression (<60 years), and 125 with a late-onset (≥60 years) depression. Childhood abuse (yes/no) and a frequency-based childhood abuse index were included. Multinomial regression and multivariable mediation analyses were used to examine the association between childhood abuse and the onset of depression, and the influence of loneliness, social network, and partner status. Multinomial regression analyses showed a significant association between childhood abuse and the childhood abuse index with early- and late-onset depression. Multivariable mediation analyses showed that the association between childhood abuse and early-onset depression was partly mediated by social network size and loneliness. This was particularly present for emotional neglect and psychological abuse, but not for physical and sexual abuse. No psychosocial mediators were found for the association between childhood abuse and late-onset depression. A smaller social network and feelings of loneliness mediate the association between childhood abuse and early-onset depression in older adults. Our findings show the importance of detecting childhood abuse as well as the age at depression onset and mapping of relevant psychosocial factors in the treatment of late-life depression. Copyright © 2018 John Wiley & Sons, Ltd.
Pragmatic Functions in Late Talkers: A 1-Year Follow-Up Study
ERIC Educational Resources Information Center
MacRoy-Higgins, Michelle; Kliment, Sarah
2017-01-01
This study analyzed spontaneous language samples of three-year-olds with a history of expressive language delay (late talkers) and age-matched controls using Dore's Conversational Acts analysis (1978) and Mean Length of Utterance (MLU; Brown, 1973). Differences were observed between groups in utterances classified as organizational device and…
Kcnh1 Voltage-gated Potassium Channels Are Essential for Early Zebrafish Development*
Stengel, Rayk; Rivera-Milla, Eric; Sahoo, Nirakar; Ebert, Christina; Bollig, Frank; Heinemann, Stefan H.; Schönherr, Roland; Englert, Christoph
2012-01-01
The Kcnh1 gene encodes a voltage-gated potassium channel highly expressed in neurons and involved in tumor cell proliferation, yet its physiological roles remain unclear. We have used the zebrafish as a model to analyze Kcnh1 function in vitro and in vivo. We found that the kcnh1 gene is duplicated in teleost fish (i.e. kcnh1a and kcnh1b) and that both genes are maternally expressed during early development. In adult zebrafish, kcnh1a and kcnh1b have distinct expression patterns but share expression in brain and testis. Heterologous expression of both genes in Xenopus oocytes revealed a strong conservation of characteristic functional properties between human and fish channels, including a unique sensitivity to intracellular Ca2+/calmodulin and modulation of voltage-dependent gating by extracellular Mg2+. Using a morpholino antisense approach, we demonstrate a strong kcnh1 loss-of-function phenotype in developing zebrafish, characterized by growth retardation, delayed hindbrain formation, and embryonic lethality. This late phenotype was preceded by transcriptional up-regulation of known cell-cycle inhibitors (p21, p27, cdh2) and down-regulation of pro-proliferative factors, including cyclin D1, at 70% epiboly. These results reveal an unanticipated basic activity of kcnh1 that is crucial for early embryonic development and patterning. PMID:22927438
Neigh, Gretchen N.; Nemeth, Christina L; Kelly, Sean D.; Hardy, Emily E.; Bourke, Chase; Stowe, Zachary N.; Owens, Michael J.
2016-01-01
Prenatal stress has been linked to deficits in neurological function including deficient social behavior, alterations in learning and memory, impaired stress regulation, and susceptibility to adult disease. In addition, prenatal environment is known to alter cardiovascular health; however, limited information is available regarding the cerebrovascular consequences of prenatal stress exposure. Vascular disturbances late in life may lead to cerebral hypoperfusion which is linked to a variety of neurodegenerative and psychiatric diseases. The known impact of cerebrovascular compromise on neuronal function and behavior highlights the importance of characterizing the impact of stress on not just neurons and glia, but also cerebrovasculature. Von Willebrand factor has previously been shown to be impacted by prenatal stress and is predictive of cerebrovascular health. Here we assess the impact of prenatal stress on von Willebrand factor and related angiogenic factors. Furthermore, we assess the potential protective effects of concurrent anti-depressant treatment during in utero stress exposure on the assessed cerebrovascular endpoints. Prenatal stress augmented expression of von Willebrand factor which was prevented by concurrent in utero escitalopram treatment. The functional implications of this increase in von Willebrand factor remain elusive, but the presented data demonstrate that although prenatal stress did not independently impact total vascularization, exposure to chronic stress in adulthood decreased blood vessel length. In addition, the current study demonstrates that production of reactive oxygen species in the hippocampus is decreased by prenatal exposure to escitalopram. Collectively, these findings demonstrate that the prenatal experience can cause complex changes in adult cerebral vascular structure and function. PMID:27422674
2014-01-01
Background The Arabidopsis thaliana LEC2 gene encodes a B3 domain transcription factor, which plays critical roles during both zygotic and somatic embryogenesis. LEC2 exerts significant impacts on determining embryogenic potential and various metabolic processes through a complicated genetic regulatory network. Results An ortholog of the Arabidopsis Leafy Cotyledon 2 gene (AtLEC2) was characterized in Theobroma cacao (TcLEC2). TcLEC2 encodes a B3 domain transcription factor preferentially expressed during early and late zygotic embryo development. The expression of TcLEC2 was higher in dedifferentiated cells competent for somatic embryogenesis (embryogenic calli), compared to non-embryogenic calli. Transient overexpression of TcLEC2 in immature zygotic embryos resulted in changes in gene expression profiles and fatty acid composition. Ectopic expression of TcLEC2 in cacao leaves changed the expression levels of several seed related genes. The overexpression of TcLEC2 in cacao explants greatly increased the frequency of regeneration of stably transformed somatic embryos. TcLEC2 overexpressing cotyledon explants exhibited a very high level of embryogenic competency and when cultured on hormone free medium, exhibited an iterative embryogenic chain-reaction. Conclusions Our study revealed essential roles of TcLEC2 during both zygotic and somatic embryo development. Collectively, our evidence supports the conclusion that TcLEC2 is a functional ortholog of AtLEC2 and that it is involved in similar genetic regulatory networks during cacao somatic embryogenesis. To our knowledge, this is the first detailed report of the functional analysis of a LEC2 ortholog in a species other then Arabidopsis. TcLEC2 could potentially be used as a biomarker for the improvement of the SE process and screen for elite varieties in cacao germplasm. PMID:24758406
Multiple interactions amongst floral homeotic MADS box proteins.
Davies, B; Egea-Cortines, M; de Andrade Silva, E; Saedler, H; Sommer, H
1996-01-01
Most known floral homeotic genes belong to the MADS box family and their products act in combination to specify floral organ identity by an unknown mechanism. We have used a yeast two-hybrid system to investigate the network of interactions between the Antirrhinum organ identity gene products. Selective heterodimerization is observed between MADS box factors. Exclusive interactions are detected between two factors, DEFICIENS (DEF) and GLOBOSA (GLO), previously known to heterodimerize and control development of petals and stamens. In contrast, a third factor, PLENA (PLE), which is required for reproductive organ development, can interact with the products of MADS box genes expressed at early, intermediate and late stages. We also demonstrate that heterodimerization of DEF and GLO requires the K box, a domain not found in non-plant MADS box factors, indicating that the plant MADS box factors may have different criteria for interaction. The association of PLENA and the temporally intermediate MADS box factors suggests that part of their function in mediating between the meristem and organ identity genes is accomplished through direct interaction. These data reveal an unexpectedly complex network of interactions between the factors controlling flower development and have implications for the determination of organ identity. Images PMID:8861961
The common transcriptional subnetworks of the grape berry skin in the late stages of ripening.
Ghan, Ryan; Petereit, Juli; Tillett, Richard L; Schlauch, Karen A; Toubiana, David; Fait, Aaron; Cramer, Grant R
2017-05-30
Wine grapes are important economically in many countries around the world. Defining the optimum time for grape harvest is a major challenge to the grower and winemaker. Berry skins are an important source of flavor, color and other quality traits in the ripening stage. Senescent-like processes such as chloroplast disorganization and cell death characterize the late ripening stage. To better understand the molecular and physiological processes involved in the late stages of berry ripening, RNA-seq analysis of the skins of seven wine grape cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon Blanc and Semillon) was performed. RNA-seq analysis identified approximately 2000 common differentially expressed genes for all seven cultivars across four different berry sugar levels (20 to 26 °Brix). Network analyses, both a posteriori (standard) and a priori (gene co-expression network analysis), were used to elucidate transcriptional subnetworks and hub genes associated with traits in the berry skins of the late stages of berry ripening. These independent approaches revealed genes involved in photosynthesis, catabolism, and nucleotide metabolism. The transcript abundance of most photosynthetic genes declined with increasing sugar levels in the berries. The transcript abundance of other processes increased such as nucleic acid metabolism, chromosome organization and lipid catabolism. Weighted gene co-expression network analysis (WGCNA) identified 64 gene modules that were organized into 12 subnetworks of three modules or more and six higher order gene subnetworks. Some gene subnetworks were highly correlated with sugar levels and some subnetworks were highly enriched in the chloroplast and nucleus. The petal R package was utilized independently to construct a true small-world and scale-free complex gene co-expression network model. A subnetwork of 216 genes with the highest connectivity was elucidated, consistent with the module results from WGCNA. Hub genes in these subnetworks were identified including numerous members of the core circadian clock, RNA splicing, proteolysis and chromosome organization. An integrated model was constructed linking light sensing with alternative splicing, chromosome remodeling and the circadian clock. A common set of differentially expressed genes and gene subnetworks from seven different cultivars were examined in the skin of the late stages of grapevine berry ripening. A densely connected gene subnetwork was elucidated involving a complex interaction of berry senescent processes (autophagy), catabolism, the circadian clock, RNA splicing, proteolysis and epigenetic regulation. Hypotheses were induced from these data sets involving sugar accumulation, light, autophagy, epigenetic regulation, and fruit development. This work provides a better understanding of berry development and the transcriptional processes involved in the late stages of ripening.
Mattsson, Elisabet; Funkquist, Eva-Lotta; Wickström, Maria; Nyqvist, Kerstin H; Volgsten, Helena
2015-04-01
to compare the influence of supplementary artificial milk feeds on breast feeding and certain clinical parameters among healthy late preterm infants given regular supplementary artificial milk feeds versus being exclusively breast fed from birth. a comparative study using quantitative methods. Data were collected via a parental diary and medical records. parents of 77 late preterm infants (34 5/7-36 6/7 weeks), whose mothers intended to breast feed, completed a diary during the infants׳ hospital stay. infants who received regular supplementary artificial milk feeds experienced a longer delay before initiation of breast feeding, were breast fed less frequently and had longer hospital stays than infants exclusively breast fed from birth. Exclusively breast-fed infants had a greater weight loss than infants with regular artificial milk supplementation. A majority of the mothers (65%) with an infant prescribed artificial milk never expressed their milk and among the mothers who used a breast-pump, milk expression commenced late (10-84 hours after birth). At discharge, all infants were breast fed to some extent, 43% were exclusively breast fed. clinical practice and routines influence the initiation of breast feeding among late preterm infants and may act as barriers to the mothers׳ establishment of exclusive breast feeding. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Kun; Li, Yu-Jiao; Guo, Yanyan; Zheng, Kai-Yin; Yang, Qi; Yang, Le; Wang, Xin-Shang; Song, Qian; Chen, Tao; Zhuo, Min; Zhao, Ming-Gao
2017-12-01
Fragile X syndrome is an inheritable form of intellectual disability caused by loss of fragile X mental retardation protein (FMRP, encoded by the FMR1 gene). Absence of FMRP caused overexpression of progranulin (PGRN, encoded by GRN), a putative tumour necrosis factor receptor ligand. In the present study, we found that progranulin mRNA and protein were upregulated in the medial prefrontal cortex of Fmr1 knock-out mice. In Fmr1 knock-out mice, elevated progranulin caused insufficient dendritic spine pruning and late-phase long-term potentiation in the medial prefrontal cortex of Fmr1 knock-out mice. Partial progranulin knock-down restored spine morphology and reversed behavioural deficits, including impaired fear memory, hyperactivity, and motor inflexibility in Fmr1 knock-out mice. Progranulin increased levels of phosphorylated glutamate ionotropic receptor GluA1 and nuclear factor kappa B in cultured wild-type neurons. Tumour necrosis factor receptor 2 antibody perfusion blocked the effects of progranulin on GluA1 phosphorylation; this result indicates that tumour necrosis factor receptor 2 is required for progranulin-mediated GluA1 phosphorylation and late-phase long-term potentiation expression. However, high basal level of progranulin in Fmr1 knock-out mice prevented further facilitation of synaptic plasticity by exogenous progranulin. Partial downregulation of progranulin or tumour necrosis factor receptor 2/nuclear factor kappa B signalling restored synaptic plasticity and memory deficits in Fmr1 knock-out mice. These findings suggest that elevated PGRN is linked to cognitive deficits of fragile X syndrome, and the progranulin/tumour necrosis factor receptor 2 signalling pathway may be a putative therapeutic target for improving cognitive deficits in fragile X syndrome. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha
2011-01-01
A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous. PMID:21653190
Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha
2011-08-01
A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous.
Masilamani, Madhan; Narayanan, Sriram; Prieto, Martha; Borrego, Francisco; Coligan, John E
2008-06-01
The CD94/NKG2A inhibitory receptor, expressed by natural killer and T cells, is constantly exposed to its HLA-E ligand expressed by surrounding cells. Ligand exposure often induces receptor downregulation. For CD94/NKG2A, this could potentiate activation receptor(s) induced responses to normal bystander cells. We investigated CD94/NKG2A endocytosis and found that it occurs by an amiloride-sensitive, Rac1-dependent macropinocytic-like process; however, it does not require clathrin, dynamin, ADP ribosylation factor-6, phosphoinositide-3 kinase or the actin cytoskeleton. Once endocytosed, CD94/NKG2A traffics to early endosomal antigen 1(+), Rab5(+) early endosomes. It does appear in Rab4(+) early/sorting endosome, but, in the time period examined, fails to reach Rab11(+) recycling or Rab7(+) late endosomes or lysosome-associated membrane protein-1(+) lysosomes. These results indicate that CD94/NKG2A utilizes a previously undescribed endocytic mechanism coupled with an abbreviated trafficking pattern, perhaps to insure surface expression.
Mechanisms leading to increased risk of preterm birth in growth-restricted guinea pig pregnancies.
Palliser, Hannah K; Kelleher, Meredith A; Welsh, Toni N; Zakar, Tamas; Hirst, Jonathan J
2014-02-01
Intrauterine growth restriction (IUGR) is a risk factor for preterm labor; however, the mechanisms of the relationship remain unknown. Prostaglandin (PG), key stimulants of labor, availability is regulated by the synthetic enzymes, prostaglandin endoperoxidases 1 and 2 (PTGS1 and 2), and the metabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (HPGD). We hypothesized that IUGR increases susceptibility to preterm labor due to the changing balance of synthetic and metabolizing enzymes and hence greater PG availability. We have tested this hypothesis using a surgically induced IUGR model in guinea pigs, which results in significantly shorter gestation. Myometrium, amnion, chorion, and placentas were collected from sham operated or IUGR pregnancies, and PTGS1 and HPGD protein expression were quantified throughout late gestation (>62 days) and labor. The PTGS1 expression was significantly upregulated in the myometrium of IUGR animals, and chorionic HPGD expression was markedly decreased (P < .01 and P < .001, respectively). These findings suggest a shift in the balance of PG production over metabolism in IUGR pregnancies leads to a greater susceptibility to preterm birth.
Richard, Erin Morris; Thiyagarajan, Thirumagal; Bunni, Marlene A.; Basher, Fahmin; Roddy, Patrick O.; Siskind, Leah J.; Nietert, Paul J.; Nowling, Tamara K.
2013-01-01
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1 +/+ or Fli1 +/- T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1 +/- lupus T cells compared to animals receiving Fli1 +/+ lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1 +/- T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1 +/+ T cells. Moreover, the Fli1 +/- T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1 +/+ T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus. PMID:24040398
Richard, Erin Morris; Thiyagarajan, Thirumagal; Bunni, Marlene A; Basher, Fahmin; Roddy, Patrick O; Siskind, Leah J; Nietert, Paul J; Nowling, Tamara K
2013-01-01
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1(+/+) or Fli1(+/-) T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1(+/-) lupus T cells compared to animals receiving Fli1(+/+) lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1(+/-) T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1(+/+) T cells. Moreover, the Fli1(+/-) T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1(+/+) T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus.
Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Machado, Sergio A; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S
2015-07-01
Tumor-associated neoangiogenesis (TAN) is an early event in ovarian cancer (OVCA) development. Increased expression of vascular endothelial growth factor receptor 2 (VEGFR2) by TAN vessels presents a potential target for early detection by ultrasound imaging. The goal of this study was to examine the suitability of VEGFR2-targeted ultrasound contrast agents in detecting spontaneous OVCA in laying hens. Effects of VEGFR2-targeted contrast agents in enhancing the intensity of ultrasound imaging from spontaneous ovarian tumors in hens were examined in a cross-sectional study. Enhancement in the intensity of ultrasound imaging was determined before and after injection of VEGFR2-targeted contrast agents. All ultrasound images were digitally stored and analyzed off-line. Following scanning, ovarian tissues were collected and processed for histology and detection of VEGFR2-expressing microvessels. Enhancement in visualization of ovarian morphology was detected by gray-scale imaging following injection of VEGFR2-targeted contrast agents. Compared with pre-contrast, contrast imaging enhanced the intensities of ultrasound imaging significantly (p < 0.0001) irrespective of the pathological status of ovaries. In contrast to normal hens, the intensity of ultrasound imaging was significantly (p < 0.0001) higher in hens with early stage OVCA and increased further in hens with late stage OVCA. Higher intensities of ultrasound imaging in hens with OVCA were positively correlated with increased (p < 0.0001) frequencies of VEGFR2-expressing microvessels. The results of this study suggest that VEGFR2-targeted contrast agents enhance the visualization of spontaneous ovarian tumors in hens at early and late stages of OVCA. The laying hen may be a suitable model to test new imaging agents and develop targeted therapeutics. © The Author(s) 2014.
STAT5 Activation in the Dermal Papilla Is Important for Hair Follicle Growth Phase Induction.
Legrand, Julien M D; Roy, Edwige; Ellis, Jonathan J; Francois, Mathias; Brooks, Andrew J; Khosrotehrani, Kiarash
2016-09-01
Hair follicles are skin appendages that undergo periods of growth (anagen), regression (catagen), and rest (telogen) regulated by their mesenchymal component, the dermal papilla (DP). On the basis of the reports of its specific expression in the DP, we investigated signal transducer and activator of transcription (STAT5) activation during hair development and cycling. STAT5 activation in the DP began in late catagen, reaching a peak in early anagen before disappearing for the rest of the cycle. This was confirmed by the expression profile of suppressor of cytokine signaling 2, a STAT5 target in the DP. This pattern of expression starts after the first postnatal hair cycle. Quantification of hair cycling using the Flash canonical Wnt signaling in vivo bioluminescence reporter found that conditional knockout of STAT5A/B in the DP targeted through Cre-recombinase under the control of the Sox18 promoter resulted in delayed anagen entry compared with control. Microarray analysis of STAT5 deletion versus control revealed key changes in tumor necrosis factor-α, Wnt, and fibroblast growth factor ligands, known for their role in inducing anagen entry. We conclude that STAT5 activation acts as a mesenchymal switch to trigger natural anagen entry in postdevelopmental hair follicle cycling. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis
Prieto-Dapena, Pilar; Almoguera, Concepción; Personat, José-María; Merchan, Francisco
2017-01-01
Abstract HSFA9 is a seed-specific transcription factor that in sunflower (Helianthus annuus) is involved in desiccation tolerance and longevity. Here we show that the constitutive overexpression of HSFA9 in tobacco (Nicotiana tabacum) seedlings attenuated hypocotyl growth under darkness and accelerated the initial photosynthetic development. Plants overexpressing HSFA9 increased accumulation of carotenoids, chlorophyllide, and chlorophyll, and displayed earlier unfolding of the cotyledons. HSFA9 enhanced phytochrome-dependent light responses, as shown by an intensified hypocotyl length reduction after treatments with continuous far-red or red light. This observation indicated the involvement of at least two phytochromes: PHYA and PHYB. Reduced hypocotyl length under darkness did not depend on phytochrome photo-activation; this was inferred from the lack of effect observed using far-red light pulses applied before the dark treatment. HSFA9 increased the expression of genes that activate photomorphogenesis, including PHYA, PHYB, and HY5. HSFA9 might directly upregulate PHYA and indirectly affect PHYB transcription, as suggested by transient expression assays. Converse effects on gene expression, greening, and cotyledon unfolding were observed using a dominant-negative form of HSFA9, which was overexpressed under a seed-specific promoter. This work uncovers a novel transcriptional link, through HSFA9, between seed maturation and early photomorphogenesis. In all, our data suggest that HSFA9 enhances photomorphogenesis via early transcriptional effects that start in seeds under darkness. PMID:28207924
BPI-fold (BPIF) containing/plunc protein expression in human fetal major and minor salivary glands.
Alves, Daniel Berretta Moreira; Bingle, Lynne; Bingle, Colin David; Lourenço, Silvia Vanessa; Silva, Andréia Aparecida; Pereira, Débora Lima; Vargas, Pablo Agustin
2017-01-16
The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function.
Minkwitz, Susann; Schmock, Aysha; Kurtoglu, Alper; Tsitsilonis, Serafeim; Manegold, Sebastian; Klatte-Schulz, Franka
2017-01-01
A balance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) is required to maintain tendon homeostasis. Variation in this balance over time might impact on the success of tendon healing. This study aimed to analyze structural changes and the expression profile of MMPs and TIMPs in human Achilles tendons at different time-points after rupture. Biopsies from 37 patients with acute Achilles tendon rupture were taken at surgery and grouped according to time after rupture: early (2–4 days), middle (5–6 days), and late (≥7 days), and intact Achilles tendons served as control. The histological score increased from the early to the late time-point after rupture, indicating the progression towards a more degenerative status. In comparison to intact tendons, qRT-PCR analysis revealed a significantly increased expression of MMP-1, -2, -13, TIMP-1, COL1A1, and COL3A1 in ruptured tendons, whereas TIMP-3 decreased. Comparing the changes over time post rupture, the expression of MMP-9, -13, and COL1A1 significantly increased, whereas MMP-3 and -10 expression decreased. TIMP expression was not significantly altered over time. MMP staining by immunohistochemistry was positive in the ruptured tendons exemplarily analyzed from early and late time-points. The study demonstrates a pivotal contribution of all investigated MMPs and TIMP-1, but a minor role of TIMP-2, -3, and -4, in the early human tendon healing process. PMID:29053586
Dutertre, Martin; Vagner, Stéphan
2017-10-27
Upon DNA damage, cells trigger an early DNA-damage response (DDR) involving DNA repair and cell cycle checkpoints, and late responses involving gene expression regulation that determine cell fate. Screens for genes involved in the DDR have found many RNA-binding proteins (RBPs), while screens for novel RBPs have identified DDR proteins. An increasing number of RBPs are involved in early and/or late DDR. We propose to call this new class of actors of the DDR, which contain an RNA-binding activity, DNA-damage response RNA-binding proteins (DDRBPs). We then discuss how DDRBPs contribute not only to gene expression regulation in the late DDR but also to early DDR signaling, DNA repair, and chromatin modifications at DNA-damage sites through interactions with both long and short noncoding RNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Baer, Rebecca J; Altman, Molly R; Oltman, Scott P; Ryckman, Kelli K; Chambers, Christina D; Rand, Larry; Jelliffe-Pawlowski, Laura L
2018-04-22
Examine factors influencing late (> sixth month of gestation) entry into prenatal care by race/ethnicity and insurance payer. The study population was drawn from singleton live births in California from 2007 to 2012 in the birth cohort file maintained by the California Office of Statewide Health Planning and Development, which includes linked birth certificate and mother and infant hospital discharge records. The sample was restricted to infants delivered between 20 and 44 weeks gestation. Logistic regression was used to calculate relative risks (RR) and 95% confidence intervals (CI) for factors influencing late entry into prenatal care. Maternal age, education, smoking, drug or alcohol abuse/dependence, mental illness, participation in the Women, Infants and Children's program and rural residence were evaluated for women entering prenatal care > sixth month of gestation compared with women entering < fourth month. Backwards stepwise logistic regression was used to create final multivariable models of risk and protective factors for late prenatal care entry for each race or ethnicity and insurance payer. The sample included 2,963,888 women. The percent of women with late entry into prenatal care was consistently higher among women with public versus private insurance. Less than 1% of white non-Hispanic and Asian women with private insurance entered prenatal care late versus more than 4% of white non-Hispanic and black women with public insurance. After stratifying by race or ethnicity and insurance status, women less than 18 years of age were more likely to enter prenatal care late, with young Asian women with private insurance at the highest risk (15.6%; adjusted RR 7.4, 95%CI 5.3-10.5). Among all women with private insurance, > 12-year education or age >34 years at term reduced the likelihood of late prenatal care entry (adjusted RRs 0.5-0.7). Drugs and alcohol abuse/dependence and residing in a rural county were associated with increased risk of late prenatal care across all subgroups (adjusted RRs 1.3-3.8). Participation in the Women, Infants, and Children's program was associated with decreased risk of late prenatal care for women with public insurance (adjusted RRs 0.6-0.7), but increased risk for women with private insurance (adjusted RRs 1.4-2.1). The percent of women with late entry into prenatal care was consistently higher among women with public insurance. Younger women, women with <12-year education, those who used drugs or alcohol or resided in rural counties were more likely to enter prenatal care late, with Asian women <18 years at especially high risk. Participation in the Women, Infants, and Children's program and maternal age >34 years at delivery increased the likelihood of late prenatal care for some subgroups of women and decreased the likelihood for others. These findings can inform institutional factors influencing late prenatal care, especially among lower income women, and may assist efforts aimed at encouraging earlier entry into prenatal care. Optimal prenatal care includes initiation before the 14th week of gestation. Beginning care in the first trimester provides an opportunity for sonographic pregnancy dating or confirmation with best accuracy, which can later prove critical for management of preterm labor, maternal or fetal complications, or prolonged pregnancy. In order to improve maternal and infant health by increasing the number of women seeking prenatal care in the first trimester, it is important to examine the drivers for late entry. Here, we examine factors influencing late (> sixth month of gestation) entry into prenatal care by race/ethnicity and insurance payer. We found the percent of women with late entry into prenatal care was consistently higher among women with public insurance. Younger women, women with <12-year education, those who used drugs or alcohol or resided in rural counties were more likely to enter prenatal care late, with Asian women <18 years at especially high risk. These findings can inform institutional factors influencing late prenatal care, especially among lower income women, and may assist efforts aimed at encouraging earlier entry into prenatal care.
Viana, Andres G; Gratz, Kim L; Bierman, Karen L
2013-01-01
Temperamental vulnerabilities (e.g., behavioral inhibition, anxiety sensitivity) and cognitive biases (e.g., interpretive and judgment biases) may exacerbate feelings of stress and anxiety, particularly among late adolescents during the early years of college. The goal of the present study was to apply person-centered analyses to explore possible heterogeneity in the patterns of these four risk factors in late adolescence, and to examine associations with several anxiety outcomes (i.e., worry, anxiety symptoms, and trait anxiety). Cluster analyses in a college sample of 855 late adolescents revealed a Low-Risk group, along with four reliable clusters with distinct profiles of risk factors and anxiety outcomes (Inhibited, Sensitive, Cognitively-Biased, and Multi-Risk). Of the risk profiles, Multi-Risk youth experienced the highest levels of anxiety outcomes, whereas Inhibited youth experienced the lowest levels of anxiety outcomes. Sensitive and Cognitively-Biased youth experienced comparable levels of anxiety-related outcomes, despite different constellations of risk factors. Implications for interventions and future research are discussed.
Li, Xiaoze; Johansson, Cecilia; Glahder, Jacob; Mossberg, Ann-Kristin; Schwartz, Stefan
2013-01-01
Human papillomavirus type 16 (HPV-16) 5′-splice site SD3632 is used exclusively to produce late L1 mRNAs. We identified a 34-nt splicing inhibitory element located immediately upstream of HPV-16 late 5′-splice site SD3632. Two AUAGUA motifs located in these 34 nt inhibited SD3632. Two nucleotide substitutions in each of the HPV-16 specific AUAGUA motifs alleviated splicing inhibition and induced late L1 mRNA production from episomal forms of the HPV-16 genome in primary human keratinocytes. The AUAGUA motifs bind specifically not only to the heterogeneous nuclear RNP (hnRNP) D family of RNA-binding proteins including hnRNP D/AUF, hnRNP DL and hnRNP AB but also to hnRNP A2/B1. Knock-down of these proteins induced HPV-16 late L1 mRNA expression, and overexpression of hnRNP A2/B1, hnRNP AB, hnRNP DL and the two hnRNP D isoforms hnRNP D37 and hnRNP D40 further suppressed L1 mRNA expression. This inhibition may allow HPV-16 to hide from the immune system and establish long-term persistent infections with enhanced risk at progressing to cancer. There is an inverse correlation between expression of hnRNP D proteins and hnRNP A2/B1 and HPV-16 L1 production in the cervical epithelium, as well as in cervical cancer, supporting the conclusion that hnRNP D proteins and A2/B1 inhibit HPV-16 L1 mRNA production. PMID:24013563
Effects of pioglitazone mediated activation of PPAR-γ on CIDEC and obesity related changes in mice.
Shamsi, Bilal Haider; Ma, Chaofeng; Naqvi, Saima; Xiao, Yanfeng
2014-01-01
Obesity is a metabolic disorder that can lead to high blood pressure, increased blood cholesterol and triglycerides, insulin resistance, and diabetes mellitus. The aim was to study the effects of pioglitazone mediated sensitization of peroxisome proliferator-activated receptor gamma (PPAR-γ) on the relationship of Cell death-inducing DFFA-like effector C (CIDEC) with obesity related changes in mice. Sixty C57B/L6 mice weighing 10-12g at 3 weeks of age were randomly divided into 3 groups. Mice in Group 1 were fed on normal diet (ND) while Group 2 mice were given high fat diet (HFD), and Group 3 mice were given high fat diet and treated with Pioglitazone (HFD+P). Body weight, length and level of blood sugar were measured weekly. Quantitative real-time PCR, fluorescence microscopy, and ELISA were performed to analyze the expression of CIDEC and PPAR-γ in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Body weight and length of mice increased gradually with time in all groups. Blood sugar in HFD mice started to increase significantly from the mid of late phase of obesity while pioglitazone attenuated blood sugar level in HFD+P mice. The mRNA expressions and protein levels of PPAR-γ and CIDEC genes started to increase in HFD mice as compared to ND mice and decreased gradually during the late phase of obesity in VAT. Pioglitazone enhanced the expression of PPAR-γ and CIDEC genes in HFD+P mice even during the late phase of obesity. It is insinuated that VAT is associated with late phase obesity CIDEC decrease and insulin resistance, while pioglitazone enhances CIDEC through activation of PPAR-γ, increases its expression, and decreases lipolysis, hence preventing an increase of blood sugar in mice exposed to HFD.
Kumar, Dilip; Kirti, Pulugurtha Bharadwaja
2015-01-01
Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic. The objective of this study is to investigate the molecular responses of the wild peanut challenged with the late leaf spot pathogen using cDNA-AFLP and 2D proteomic study. A total of 233 reliable, differentially expressed genes were identified in Arachis diogoi. About one third of the TDFs exhibit no significant similarity with the known sequences in the data bases. Expressed sequence tag data showed that the characterized genes are involved in conferring resistance in the wild peanut to the pathogen challenge. Several genes for proteins involved in cell wall strengthening, hypersensitive cell death and resistance related proteins have been identified. Genes identified for other proteins appear to function in metabolism, signal transduction and defence. Nineteen TDFs based on the homology analysis of genes associated with defence, signal transduction and metabolism were further validated by quantitative real time PCR (qRT-PCR) analyses in resistant wild species in comparison with a susceptible peanut genotype in time course experiments. The proteins corresponding to six TDFs were differentially expressed at protein level also. Differentially expressed TDFs and proteins in wild peanut indicate its defence mechanism upon pathogen challenge and provide initial breakthrough of genes possibly involved in recognition events and early signalling responses to combat the pathogen through subsequent development of resistivity. This is the first attempt to elucidate the molecular basis of the response of the resistant genotype to the late leaf spot pathogen, and its defence mechanism. PMID:25646800
Zhou, Jun; Liao, Yuan; Zeng, Yahua; Xie, Haitao; Fu, Chengxiao; Li, Neng
2017-09-01
The aim of this study is to explore the effect of timing of initiation of pulsed electromagnetic field (PEMF) therapy on bone mass, microarchitecture, and biomechanical properties, and to investigate receptor activator of NF-kB (RANK) expression in ovariectomized (OVX) rats. Sixty female Sprague-Dawley rats were randomly divided into two equal batches of three groups each (10 rats in each group). The first batch comprised of sham-operated (Sham-0 group), ovariectomized (OVX-0 group), and ovariectomized plus treated with PEMF starting from the day of OVX (Early PEMF group). The second batch comprised of sham-operated (Sham-12 group), ovariectomized (OVX-12 group), and ovariectomized plus treated with PEMF starting 12 weeks after OVX (Late PEMF group). Rats (whole body) in the early and late PEMF groups were exposed to PEMF (3.8 mT peak, 8 Hz pulse burst repetition rate). After 12 weeks of PEMF therapy, Early PEMF prevented OVX-induced deterioration in bone mineral density (BMD) and mechanical properties in lumbar vertebral body and femur, and deterioration in bone microarchitecture in lumbar vertebral body and proximal tibia. Late PEMF intervention only inhibited deterioration of BMD, bone microarchitecture, and mechanical properties in lumbar vertebral body. Both early and late PEMF therapy suppressed RANK protein expression in OVX rats without a concomitant effect on RANK mRNA expression. These results demonstrate that timing of initiation of PEMF therapy plays an important role in achieving optimal beneficial effects. The specific PEMF parameters may exert these favorable biological responses, at least partially, via inhibition of protein expression of RANK. Bioelectromagnetics. 38:456-465, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Interleukin-6 is an essential determinant of on-time parturition in the mouse.
Robertson, Sarah A; Christiaens, Inge; Dorian, Camilla L; Zaragoza, Dean B; Care, Alison S; Banks, Anke M; Olson, David M
2010-08-01
IL-6 abundance in amniotic fluid and uterine tissues increases in late gestation or with infection-associated preterm labor. A role in regulation of labor onset is suggested by observations that IL-6 increases expression of genes controlling prostaglandin synthesis and signaling in isolated uterine cells, but whether IL-6 is essential for normal parturition is unknown. To evaluate the physiological role of IL-6 in parturition in mice, we investigated the effect of Il6 null mutation on the timing of parturition and expression of genes associated with uterine activation. Il6 null mutant mice delivered 24 h later than wild-type mice, although circulating progesterone fell similarly in both genotypes during the prepartal period. Il6 null mutant mice were also refractory to low doses of lipopolysaccharide sufficient to induce preterm delivery in wild-type mice. The characteristic late-gestation elevation in uterine expression of Oxtr mRNA encoding oxytocin receptor, and peripartal increases in Ptgfr and Ptgs2 mRNAs regulating prostaglandin synthesis and signaling were delayed by 24 h in Il6 null mutant mice. Conversely, Ptger4 mRNA encoding the prostaglandin E receptor-4 was abnormally elevated in late-gestation in Il6 null mutant mice. Administration of recombinant IL-6 from d 11.5 postcoitum until term restored the normal timing of delivery and normalized Ptger4 mRNA expression in late gestation. We conclude that IL-6 has a key role in controlling the progression of events culminating in parturition and that it acts downstream of luteolysis in the uterus to regulate genes involved in the prostaglandin-mediated uterine activation cascade.
Bertke, Andrea S; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P; Krause, Philip R
2009-10-01
Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5' ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA.
Bertke, Andrea S.; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P.; Krause, Philip R.
2009-01-01
Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5′ ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA. PMID:19641003
Nam, Jeong-Seok; Suchar, Adam M; Kang, Mi-Jin; Stuelten, Christina H; Tang, Binwu; Michalowska, Aleksandra M; Fisher, Larry W; Fedarko, Neal S; Jain, Alka; Pinkas, Jan; Lonning, Scott; Wakefield, Lalage M
2006-06-15
Transforming growth factor betas (TGF-beta) play a dual role in carcinogenesis, functioning as tumor suppressors early in the process, and then switching to act as prometastatic factors in late-stage disease. We have previously shown that high molecular weight TGF-beta antagonists can suppress metastasis without the predicted toxicities. To address the underlying mechanisms, we have used the 4T1 syngeneic mouse model of metastatic breast cancer. Treatment of mice with a monoclonal anti-TGF-beta antibody (1D11) significantly suppressed metastasis of 4T1 cells to the lungs. When metastatic 4T1 cells were recovered from lungs of 1D11-treated and control mice, the most differentially expressed gene was found to be bone sialoprotein (Bsp). Immunostaining confirmed the loss of Bsp protein in 1D11-treated lung metastases, and TGF-beta was shown to regulate and correlate with Bsp expression in vitro. Functionally, knockdown of Bsp in 4T1 cells reduced the ability of TGF-beta to induce local collagen degradation and invasion in vitro, and treatment with recombinant Bsp protected 4T1 cells from complement-mediated lysis. Finally, suppression of Bsp in 4T1 cells reduced metastasis in vivo. We conclude that Bsp is a plausible mediator of at least some of the tumor cell-targeted prometastatic activity of TGF-beta in this model and that Bsp expression in metastases can be successfully suppressed by systemic treatment with anti-TGF-beta antibodies.
Nasipak, Brian; Kelley, Darcy B.
2014-01-01
The developmental programs that contribute to myogenic stem cell proliferation and muscle fiber differentiation control fiber numbers and twitch type. In this study, we describe the use of an experimental model system—androgen-regulated laryngeal muscle of juvenile clawed frogs, Xenopus laevis—to examine the contribution of proliferation by specific populations of myogenic stem cells to expression of the larynx-specific myosin heavy chain isoform, LM. Androgen treatment of juveniles (Stage PM0) resulted in up-regulation of an early (Myf-5) and a late (myogenin) myogenic regulatory factor; the time course of LM up-regulation tracked that of myogenin. Myogenic stem cells stimulated to proliferate by androgen include a population that expresses Pax-7, a marker for the satellite cell myogenic stem cell population. Since androgen can switch muscle fiber types from fast to slow even in denervated larynges, we developed an ex vivo culture system to explore the relation between proliferation and LM expression. Cultured whole larynges maintain sensitivity to androgen, increasing in size and LM expression. Blockade of cell proliferation with cis-platin prevents the switch from slow to fast twitch muscle fibers as assayed by ATPase activity. Blockade of cell proliferation in vivo also resulted in inhibition of LM expression. Thus, both in vivo and ex vivo, inhibition of myogenic stem cell proliferation blocks androgen-induced LM expression and fiber type switching in juveniles. PMID:21954146
Expression of Essential B Cell Development Genes in Horses with Common Variable Immunodeficiency
Tallmadge, R.L.; Such, K.A.; Miller, K.C.; Matychak, M.B.; Felippe, M.J.B.
2012-01-01
Common variable immunodeficiency (CVID) is a heterogeneous disorder of B cell differentiation or function with inadequate antibody production. Our laboratory studies a natural form of CVID in horses characterized by late-onset B cell lymphopenia due to impaired B cell production in the bone marrow. This study was undertaken to assess the status of B cell differentiation in the bone marrow of CVID-affected horses by measuring the expression of genes essential for early B cell commitment and development. Standard RT-PCR revealed that most of the transcription factors and key signaling molecules that directly regulate B cell differentiation in the bone marrow and precede PAX5 are expressed in the affected horses. Yet, the expression of PAX5 and relevant target genes was variable. Quantitative RT-PCR analysis confirmed that the mRNA expression of E2A, PAX5, CD19, and IGHD was significantly reduced in equine CVID patients when compared to healthy horses (p < 0.05). In addition, the PAX5/EBF1 and PAX5/B220 ratios were significantly reduced in CVID patients (p < 0.01). Immunohistochemical analysis confirmed the absence of PAX5-BSAP expression in the bone marrow of affected horses. Our data suggest that B cell development seems to be impaired at the transition between pre-pro-B cells and pro-B cells in equine CVID patients. PMID:22464097
Han, Rongfei; Huang, Guanqun; Wang, Yejun; Xu, Yafei; Hu, Yueming; Jiang, Wenqi; Wang, Tianfu; Xiao, Tian; Zheng, Duo
2016-11-01
Gene expression in metazoans is delicately organized. As genetic information transmits from DNA to RNA and protein, expression noise is inevitably generated. Recent studies begin to unveil the mechanisms of gene expression noise control, but the changes of gene expression precision in pathologic conditions like cancers are unknown. Here we analyzed the transcriptomic data of human breast, liver, lung and colon cancers, and found that the expression noise of more than 74.9% genes was increased in cancer tissues as compared to adjacent normal tissues. This suggested that gene expression precision controlling collapsed during cancer development. A set of 269 genes with noise increased more than 2-fold were identified across different cancer types. These genes were involved in cell adhesion, catalytic and metabolic functions, implying the vulnerability of deregulation of these processes in cancers. We also observed a tendency of increased expression noise in patients with low p53 and immune activity in breast, liver and lung caners but not in colon cancers, which indicated the contributions of p53 signaling and host immune surveillance to gene expression noise in cancers. Moreover, more than 53.7% genes had increased noise in patients with late stage than early stage cancers, suggesting that gene expression precision was associated with cancer outcome. Together, these results provided genomic scale explorations of gene expression noise control in human cancers.
Light-induced vegetative anthocyanin pigmentation in Petunia
Albert, Nick W.; Lewis, David H.; Zhang, Huaibi; Irving, Louis J.; Jameson, Paula E.; Davies, Kevin M.
2009-01-01
The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins and flavonols, as well as the activation of the early and late flavonoid biosynthetic genes required for flavonol and anthocyanin production. Pigmentation in Lc petunia only occurred under conditions which normally induce a modest amount of anthocyanin to accumulate in wild-type Mitchell petunia [Petunia axillaris×(Petunia axillaris×Petunia hybrida cv. ‘Rose of Heaven’)]. Anthocyanin pigmentation in Lc petunia leaves appears to screen underlying photosynthetic tissues, increasing light saturation and light compensation points, without reducing the maximal photosynthetic assimilation rate (Amax). In the Lc petunia system, where the bHLH factor Leaf colour is constitutively expressed, expression of the bHLH (Lc) and WD40 (An11) components of the anthocyanin regulatory system were not limited, suggesting that the high-light-induced anthocyanin pigmentation is regulated by endogenous MYB transcription factors. PMID:19380423
Suk, Hyung; Knipe, David M
2015-06-01
The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatsumi, Akinori; Shoji, Jun-ya; Kikuma, Takashi
2007-10-19
Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in themore » wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function.« less
Induction of Virulence Gene Expression in Staphylococcus aureus by Pulmonary Surfactant
Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi
2014-01-01
We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal. PMID:24452679
Ellestad, Laura E.
2013-01-01
Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5′-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5′-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland. PMID:23161868
Ellestad, Laura E; Porter, Tom E
2013-01-01
Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.