Science.gov

Sample records for late quaternary marine

  1. Elevated Marine Deposits in Bermuda Record a Late Quaternary Megatsunami

    NASA Astrophysics Data System (ADS)

    McMurtry, G. M.; Tappin, D. R.; Sedwick, P. N.; Wilkinson, I. P.; Fietzke, J.; Sellwood, B. W.

    2006-12-01

    Deposits of coral-bearing, marine shell conglomerate exposed at elevations higher than 20 m above present- day mean sea level (MSL) in Bermuda and the Bahamas have previously been interpreted as relict intertidal deposits formed during marine isotope stage (MIS) 11, ca. 360-420 ka before present. On the strength of this evidence, a sea level highstand more than 20 m higher than present-day MSL was inferred for the MIS 11 interglacial, despite a lack of clear supporting evidence in the oxygen-isotope records of deep-sea sediment cores. We have critically re-examined the elevated marine deposits in Bermuda, and find their geological setting, sedimentary relations, and microfaunal assemblages to be inconsistent with intertidal deposition over an extended period. Rather, these deposits, which comprise a graded and poorly sorted mixture of reef, lagoon and shoreline sediments, appear to have been carried tens of meters inside karst caves, presumably by large waves, at some time earlier than ca. 310-360 ka before present (MIS 9-11). Unlike earlier work, e.g. Hearty (1997) who found evidence for large waves impacting the Bahamas but could not distinguish between the competing mechanisms of a large storm or a tsunami, we have clear evidence that points to a tsunami as source, and by analysis of the deposit microfaunal diversity, an indication of the direction of the past waves, in this case from the east-southeast. We hypothesize that these deposits are the result of a large tsunami during the mid-Pleistocene, in which Bermuda was impacted by a wave set that carried sediments from the surrounding reef platform and nearshore waters over the eolianite atoll. Likely causes for such a megatsunami are the flank collapse of an Atlantic island volcano, such as the roughly synchronous Julan or Orotava submarine landslides in the Canary Islands, or a giant submarine landslide on the Atlantic continental margin.

  2. Late Quaternary climate variability in the Sahel: inferences from marine dust records offshore Senegal

    NASA Astrophysics Data System (ADS)

    Stuut, J. W.; Meyer, I.; Fischer, H.; Mollenhauer, G.; Mulitza, S.; Pittauerova, D.; Zabel, M.; Schulz, M.

    2008-12-01

    Societies and ecosystems in northern Africa are strongly affected by the availability of water. As a consequence, long-term absence of rainfall has very dear effects on the ecosystems, as was dramatically shown in the 70'ies and 80'ies of the 20th century. Recent high-resolution reconstructions of Sahel palaeoclimate allow for new insights into these drastic climate variations and to disentangle the effects of the different components of the climate system on African climate change. In this study we extend the instrumental record of climate variability using marine sediment cores that were retrieved off the coast of Senegal, northwest Africa. The sediment records contain continuous high-resolution records of dust sedimentation ranging from about 4,000 to about 57,000 years. A 210Pb age model for the youngest sediments allows for a matching of the proxy rainfall record with instrumental precipitation data. Specifically, variations in the grain-size distributions of the terrigenous sediment fraction, deconvolved with an end-member modelling algorithm (Weltje, 1997) are used to reconstruct rainfall variability on land throughout the late Quaternary.

  3. Late Quaternary marine records from High Arctic Canada: problems, solutions, and multiproxy perspectives

    NASA Astrophysics Data System (ADS)

    Pienkowski, Anna; Furze, Mark; England, John; MacLean, Brian; von Prause, Markus; Blasco, Steve

    2013-04-01

    The Canadian Arctic Archipelago (= CAA) constitutes a significant geographic region within the Arctic Ocean Basin, influencing its oceanography, biology, ecology, and climate. Yet comparatively little is known about the long-term (post-Late Wisconsinan) environmental history of the marine channels of this region (the "Northwest Passage" = NWP). New marine data emerging from the central CAA extending back to regional deglaciation highlight the potential of multiproxy approaches in high-latitude settings. Five long (piston and trigger-weight) cores in an east-west transect through the NWP, investigated for sedimentological characteristics, microfossils (dinocysts, non-pollen palynomorphs, benthic and planktonic foraminifera, ostracods), and stable isotope ratios, show a dynamic late Quaternary environmental history. Our data suggest grounded glacial ice, rapid deglaciation, and a characteristic progression from ice-proximal to ice-distal conditions. Despite chronological complexities (scarcity of dateable materials, Portlandia Effect), age model extrapolations place deglaciation at ~11.0-10.3 cal ka BP (location dependent). Noticeable biological activity is marked by the appearance of planktonic foraminifera (Neogloboquadrina pachyderma) at ~10.0 cal ka BP. This signals the penetration of (Atlantic-derived) Arctic Intermediate Water (AIW) into the central NWP following deglaciation, likely facilitated by higher sea-levels permitting increased flow across inter-channel sills. Subsequent (~9.0-7.0 cal ka BP) ameliorated conditions (open-water season greater than present) marked by substantial diversification and abundance across all microfossil groups may correspond to a previously postulated "Holocene Thermal Optimum". After ~7.0 cal ka BP increased sea-ice and modern microfossil assemblages imply conditions similar to modern, likely due to the exclusion of AIW due to glacioisostatic shallowing combined with climate cooling. Remaining micropalaeontological challenges

  4. Coastal Marine Terraces Define Late Quaternary Fault Activity and Deformation Within Northern East Bay Hills, San Francisco Bay Region

    NASA Astrophysics Data System (ADS)

    Kelson, K. I.

    2004-12-01

    Detailed mapping of uplifted marine platforms bordering the Carquinez Strait between Benicia and Pinole, California, provides data on the pattern and rate of late Quaternary deformation across the northern East Bay Hills. Field mapping, interpretation of early 20th-century topographic data, analysis of aerial photography, and compilation of onshore borehole data show the presence of remnants of three platforms, with back-edge elevations of about 4 m, 12 m, and 18 m. Based on U-series dates (Helley et al., 1993) and comparison of platform elevations to published sea-level curves, the 12-m-high and 18-m-high platforms correlate with substage 5e (ca. 120 ka) and stage 9 (ca. 330 ka) sea-level high stands, respectively. West of the Southhampton fault, longitudinal profiles of platform back-edges suggest that the East Bay Hills between Pinole and Vallejo have undergone block uplift at a rate of 0.05 +/- 0.01 m/ka without substantial tilting or warping. With uncertainty of <3 m, the 120 ka and 330 ka platforms are at the same elevations across the NW-striking Franklin fault. This west-vergent reverse fault previously was interpreted to have had late Pleistocene activity and to accommodate crustal shortening in the East Bay Hills. Our data indicate an absence of vertical displacement across the Franklin fault within at least the past 120ka and perhaps 330ka. In contrast, the stage 5e and 9 have up-on-the-east vertical displacement and gentle westward tilting across the N-striking Southhampton fault, with a late Pleistocene vertical slip rate of >0.02 m/ka. The northerly strike and prominent geomorphic expression of this potentially active fault differs from the Franklin fault. Our mapping of the Southhampton fault suggests that it accommodates dextral shear in the East Bay Hills, and is one of several left-stepping, en echelon N-striking faults (collectively, the "Contra Costa shear zone", CCSZ) in the East Bay Hills. Faults within this zone coincide with geomorphic

  5. Physical data of soil profiles formed on late Quaternary marine terraces near Santa Cruz, California

    USGS Publications Warehouse

    Munster, Jennie; Harden, Jennifer W.

    2002-01-01

    The marine terraces in and around Santa Cruz, California, represent a set of well-preserved terraces formed as a product of geology, sea level, and climate. A marine terrace begins as a wave cut platform. Eustatic sea level changes, seacliff erosion, and tectonic uplift work together to generate marine terraces. "When a wave-cut platform is raised (due to tectonic activity) above sea level and cliffed by wave action it becomes a marine terrace" (Bradley, 1957, p. 424). During glacial periods, eustatic sea level is estimated to have dropped by 150 meters (Fairbanks, 1989). Cliff retreat measured from aerial photographs between 1930 and 1980 vary from 0.0 to 0.2 m yr–1 (Best and Griggs, 1991). Estimates of uplift rates along the Santa Cruz coastline vary from 0.10 to 0.48 m kyr–1 (Bradley and Griggs, 1976; Weber and others, 1999). Uplift mechanisms include coseismic uplift associated both with a reverse component of slip on the steeply SW dipping Loma Prieta fault in the restraining bend of the San Andreas Fault and a small component of reverse slip on the steeply SE dipping San Gregorio fault (Anderson and Menking 1994). Previous work studying physical properties on these terraces include Pinney and others (in press) and Aniku (1986) and Bowman and Estrada (1980). Sedimentary deposits of the marine terraces are a mixture of terrestrial and marine sediments but generally consist of a sheet of marine deposits overlying the old platform and a wedge of nonmarine deposits banked against the old sea cliff (Bradley, 1957). Bedrock underlying the terraces in the Santa Cruz area is generally either Santa Margarita Sandstone or Santa Cruz Mudstone. The Santa Margarita Sandstone represents an upper Miocene, transgressive, tidally dominated marine-shelf deposit with crossbedded sets of sand and gravel and horizontally stratified and bioturbated invertebrate-fossils beds (Phillips, 1990). The siliceous Santa Cruz Mudstone, of late Miocene age, conformably overlies the Santa

  6. Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104-1

    NASA Astrophysics Data System (ADS)

    Behling, Hermann; W. Arz, Helge; Pätzold, Jürgen; Wefer, Gerold

    2000-06-01

    Late Quaternary paleoenvironments from northeastern (NE) Brazil have been studied by pollen analysis of marine sediment. The studied core GeoB 3104-1 (3°40' S, 37°43' W, 767 m b.s.l.) from the upper continental slope off NE Brazil is 517 cm long and >42,000 14C yr BP old. Chronological control was obtained by 12 radiocarbon (AMS) dates from individuals of the foraminiferal species Globigerinoides sacculifer. Modern pollen analogs were received from 15 river, lake and forest soil surface samples from NE Brazil. Marine pollen dates indicate the predominance of semi-arid caatinga vegetation in NE Brazil during the recorded period between >42,000 and 8500 14C yr BP. The increased fluvial input of terrigenous material, with high concentrations of pollen and specially fern spores, into the marine deposits, about 40,000, 33,000 and 24,000 14C yr BP and between 15,500 and 11,800 14C yr BP, indicate short-term periods of strong rainfall on the NE Brazilian continent. The expansion of mountain, floodplain and gallery forests characterize the interval between 15,500 and 11,800 14C yr BP as the wettest recorded period in NE Brazil, which allowed floristic exchanges between Atlantic rain forest and Amazonian rain forest, and vice versa. The paleodata from core GeoB 3104-1 confirm the, in general, dry pre-Last Glacial Maximum (LGM) and LGM conditions and the change to wet Lateglacial environments in tropical South America. The annual movement of the intertropical convergence zone over NE Brazil, the strong influence of the Antarctic cold fronts and changes of the high-pressure cell over the southern Atlantic, may explain the very wet Lateglacial period in NE Brazil. The documented NE Brazilian short-term signals correlate with the documented Dansgaard-Oeschger cycles and Heinrich events from the northern Hemisphere and suggest strong teleconnections.

  7. Reevaluation of the temperature/ice volume proportionality of the O-18 records of Late Quaternary marine carbonates

    SciTech Connect

    Aharon, P.

    1985-01-01

    Documentation of O-18 variations imprinted on Late Quaternary marine carbonates leads to the inference that temporal and spatial redistribution of O-18/O-16 isotopes occurred episodically between the ocean and the expanded polar ice caps. If O-18 data of deep sea benthic foraminifera are simple recorders of ocean chemistry changes, then the ice volumes they reflect must agree with the paleosea levels from raised corals reefs. Discrepancies between the O-18 and sea level events were previously ascribed to inherent deficiencies in either one (or both) of the ice volume records. Here the author presents an objective test to evaluate the glacio-eustatic assumption of sea levels on the one hand, and the temperature constancy assumption of the tropical surface waters and of the deep ocean on the other. The analysis entails paired O-18/sea levels in the context of raised coral reefs in new Guinea and paired O-18/O-18 from coral reefs and benthic foraminifera representing interstadial culmination events during isotope stages 5 and 3. The results indicate that the ice volume effect accounts fully for the observed O-18 changes in tropical surface waters during isotope stage 5 but only for 40% during isotope stage 3. The O-18 records of the deep ocean overestimate the ice volumes by 0.5 per thousand during all stages except the interglacials.

  8. Nearshore morphology and late Quaternary geologic framework of the northern Monterey Bay Marine Sanctuary, California

    USGS Publications Warehouse

    Anima, R.J.; Eittreim, S.L.; Edwards, B.D.; Stevenson, A.J.

    2002-01-01

    A combination of side-scanning sonar and high-resolution seismic reflection data image seafloor bedrock exposures and erosional features across the nearshore shelf. Sediment-filled troughs incise the inner shelf rock exposures and tie directly to modern coastal streams. The resulting bedrock geometry can be related to its resistance to erosion. Comparison of the depth of the transgressive erosional surface to recently developed sea level curves suggests a period of slow sea level rise during the early stages of post-interglacial marine transgression. The slow rise of sea level suggests an erosional episode that limited the preservation of buried paleo-channels beyond 70 m water depth. Seafloor features suggest that localized faulting in the area may have influenced the morphology of bedrock exposures and the coastline. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Developing a robust tephrochronological framework for Late Quaternary marine records in the Southern Adriatic Sea: new data from core station SA03-11

    NASA Astrophysics Data System (ADS)

    Matthews, I. P.; Trincardi, F.; Lowe, J. J.; Bourne, A. J.; MacLeod, A.; Abbott, P. M.; Andersen, N.; Asioli, A.; Blockley, S. P. E.; Lane, C. S.; Oh, Y. A.; Satow, C. S.; Staff, R. A.; Wulf, S.

    2015-06-01

    Tephra layers are assuming an increasingly important role in the dating and correlation of Late Quaternary marine sequences. Here we demonstrate their potential by reporting a new study of the sediment sequence of marine core SA03-11, recovered from the Southern Adriatic Sea, which spans the last c. 39 ka. A total of 28 discrete tephra layers are reported from this sequence, 10 of which are visible in the core and a further 18 are non-visible cryptotephra layers. These have been analysed using more than 1400 WDS-EPMA measurements of glass chemistry and results have been compared with published chemical measurements obtained from relevant proximal and distal sites which preserve eruptive material dating to within the same time interval. The data show that a high proportion of the layers originate from the Campi Flegrei volcanic field but more distinctive layers are sourced from Vesuvius, the Aeolian Islands and Vulcano, and these provide key marker horizons. The results show that the sequence extends in time to the Campanian Ignimbrite at the base, that a number of the layers have robust age estimates that permit a better constrained age-depth model to be constructed for the sequence, and that the potential exists for importing terrestrially-based age estimates into marine contexts, thereby circumventing problems of incorporating reservoir uncertainties associated with marine radiocarbon dates. The WDS-EPMA dataset generated here also provides important new data that constrain key Late Quaternary tephra layers in the central Mediterranean region.

  10. Late Quaternary change in the North American (Mexican) Monsoon: variability in terrestrial and marine records and possible mechanisms

    NASA Astrophysics Data System (ADS)

    Metcalfe, S. E.; Barron, J. A.; Roy, P.; Davies, S.

    2013-05-01

    The Late Quaternary history of the North American (or Mexican) monsoon (NAM) remains poorly understood, with continuing debates about the relative importance of insolation forcing, the role of the Laurentide Ice Sheet (LIS), the expression of warm (D-O) and cold (H) events in the North Atlantic and the influence of the Pacific. To date, more information has been available from the southern and northern margins of the NAM region than from its tropical and subtropical core. This is significant because to the south of the NAM region, the direct effect of ITCZ location is likely to be stronger and any potential influence of the LIS weaker, and to the north, there is an important change in present day precipitation seasonality (from summer to winter), an opposite response to forcings such as ENSO/PDO and AMO and probably a stronger influence of the LIS. As a result, the interpretation of speleothem records from New Mexico (e.g. Asmerom et al., 2010) and Arizona (e.g. Wagner et al., 2010), in the southwestern USA and marine records such as Cariaco (Peterson and Haug, 2006) and lake records such as Peten Iztá (Hodell et al., 2008) may not be applicable to the tropical NAM core. Here we present results from two lacustrine sequences in Mexico (Sayula 20oN; Babicora 29oN) and a marine core record from the central part of the Gulf of California (27oN) all extending back at least through MIS3 (ca. 60 kyr BP). Although lacking the chronological precision of the speleothem sequences, these multiproxy records preserve evidence of centennial and millennial scale variability. MIS3 is marked by generally wetter conditions in the lake basins and warmer SSTs in the marine record, particularly during D/O events, which can be attributed to a stronger monsoon as well northward displacement of the ITCZ. This contrasts with the standard interpretation of the speleothem sequences where D/O events are dry. In contrast, H events are usually drier/cooler (weaker NAM, reduced summer

  11. Dark layers of the late Quaternary Japan Sea: Marine records of the East Asian summer monsoon fluctuation

    NASA Astrophysics Data System (ADS)

    Ikehara, K.; Usami, K.

    2009-12-01

    The late Quaternary sediments of the Japan Sea is characterized by the alternation of dark and light colored layers. Temporal occurrence of the dark layers has similar pattern with the Dansgaard-Oeschger cycle in the Greenland ice cores. It is considered that the dark layers were formed under the high primary productivity conditions related to enhanced inflow of nutrient-rich East China Sea surface water. We analyzed the sediment color with 0.2 mm intervals of a core collected from the central Japan Sea, and planktonic/benthic foraminiferal assemblages of another core from the southern Japan Sea. The results indicate the clear difference between the dark layers of MIS5 and of MIS 3-4. Higher productivity was expected for the former period but due to the relatively higher ventilation (lateral supply) of dissolved oxygen during the period, the dark layer formation occurred under the delicate balance between the oxygen consumption and supply. On the other hand, during MIS3-4, dark layer had sharp base and finely laminated, and low oxygen tolerant benthic foraminifera was dominant in the dark layer. This suggests that the dark layer formation was mainly controlled by not degradation at the sediment surface but the development of low-oxygen bottom water. The difference of the mechanism of dark layer formation was controlled by the global eustatic sea level changes and the East Asian summer monsoon fluctuation related to the mid-latitude insolation.

  12. Late Quaternary history of southern Chesapeake Bay

    SciTech Connect

    Colman, S.M.; Hobbs, C.H. III; Halka, J.P.

    1985-01-01

    More than 700 km of high-resolution, seismic-reflection profiles and sidescan-sonar images provide new information about the late Quaternary history of southern Chesapeake Bay. Sidescan-sonar images show that, excluding the nearshore zone, most of the bay bottom has a monotonously smooth surface, except that sand waves, ripples, and other bedforms occur in local areas affected by tidal currents. Seismic-reflection data show that the Quaternary stratigraphy of the southern part of the Bay is related primarily to the last cycle of sea-level change. The Quaternary section overlies an erosion surface cut deeply into gently seaward-dipping marine beds of Neogene age. Fluvial paleochannels, related to the last major low sea-level stand, are characterized by as much as 55 m of incision and by thin, irregular, terrace and channel-bottom deposits. Marine and estuarine deposits related to the Holocene transgression partially or fully bury the fluvial valleys and overlie the interfluves. A prominent feature of the Bay-mouth area is a wedge of sediment that has prograded into the Bay from the inner shelf. The common assumption--that the Chesapeake Bay is the drowned valley of the Pleistocene Susquehanna River--is only partially valid for the southern part of the Bay. The Bay mouth area, in general, is relatively young. The axial channel of the Bay is a modern tidal channel that is actively eroding Tertiary deposits and migrating toward the south and west; it is unrelated to older fluvial channels. Also, the positions of the modern axial channel and the last two fluvial paleochannels indicate long-term southward migration of the Bay mouth.

  13. Episodic intraplate deformation of stable continental margins: evidence from Late Neogene and Quaternary marine terraces, Cape Liptrap, Southeastern Australia

    NASA Astrophysics Data System (ADS)

    Gardner, Thomas; Webb, John; Pezzia, Claudia; Amborn, Terri; Tunnell, Robert; Flanagan, Sarah; Merritts, Dorothy; Marshall, Jeffrey; Fabel, Derek; Cupper, Matthew L.

    2009-01-01

    The Waratah Fault is a northeast trending, high angle, reverse fault in the Late Paleozoic Lachlan Fold Belt at Cape Liptrap on the Southeastern Australian Coast. It is susceptible to reactivation in the modern intraplate stress field in Southeast Australia and exhibits Late Pliocene to Late Pleistocene reactivation. Radiocarbon, optically stimulated luminescence (OSL), and cosmogenic radionuclide (CRN) dating of marine terraces on Cape Liptrap are used to constrain rates of displacement across the reactivated Waratah Fault. Six marine terraces, numbered Qt 6-Tt 1 (youngest to oldest), are well developed at Cape Liptrap with altitudes ranging from ˜1.5 m to ˜170 m amsl, respectively. On the lowest terrace, Qt 6, barnacles in wave-cut notches ˜1.5 m amsl, yielded a radiocarbon age of 6090-5880 Cal BP, and reflect the local mid-Holocene sea level highstand. Qt 5 yielded four OSL ages from scattered locations around the cape ranging from ˜80 ka to ˜130 ka. It formed during the Last Interglacial sea level highstand (MIS 5e) at ˜125 ka. Inner edge elevations (approximate paleo high tide line) for Qt 5 occur at distinctly different elevations on opposite sides of the Waratah Fault. Offsets of the inner edges across the fault range from 1.3 m to 5.1 m with displacement rates ranging from 0.01 mm/a to 0.04 mm/a. The most extensive terrace, Tt 4, yielded four Early Pleistocene cosmogenic radionuclide (CRN) ages: two apparent burial ages of 0.858 Ma ± 0.16 Ma and 1.25 Ma ± 0.265 Ma, and two apparent exposure ages of 1.071 Ma ± 0.071 Ma ( 10Be) and 0.798 Ma ± 0.066 Ma ( 26Al). Allowing for muonic production effects from insufficient burial depths, the depth corrected CRN burial ages are 1.8 Ma ± 0.56 Ma and 2.52 Ma ± 0.88 Ma, or Late Pliocene. A Late Pliocene age is our preferred age. Offsets of Tt 4 across the Waratah Fault range from a minimum of ˜20 m for terrace surface treads to a maximum of ˜70 m for terrace bedrock straths. Calculated displacement rates

  14. Paleosol architecture of a late Quaternary basin-margin sequence and its implications for high-resolution, non-marine sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Amorosi, Alessandro; Bruno, Luigi; Rossi, Veronica; Severi, Paolo; Hajdas, Irka

    2014-01-01

    Paleosol stratigraphy, a technique commonly applied in basin-margin settings to depict cyclic alluvial architecture on time scales of 10-100 ky, can be consistent with regional accommodation trends at even higher temporal resolution (1-10 ky), having strong implications for the sequence stratigraphy of late Quaternary, non-marine deposits. Three closely-spaced late Pleistocene paleosols (P1-P3), dating back approximately to 42-39, 35-31, and 29-26 cal kyr BP, respectively, form prominent stratigraphic markers across a lithologically homogeneous interfluve succession in the subsurface of Bologna, close to the Apenninic foothills. These paleosols are weakly developed (Inceptisols) and can be tracked continuously for 6 km across the triangle-shaped interchannel zone between two gravel/sand-filled channel systems (Reno and Savena rivers). In particular, the thickest paleosol (P3) is a distinctive stiff horizon that can be traced into laterally extensive, erosional-based fluvial bodies. We infer the correlation between (P3) soil development (and channel downcutting) and the final stage of the stepwise Late Pleistocene sea-level fall that culminated at the marine isotope stage 3/2 transition around 29 cal kyr BP (low accommodation systems tract). A fourth laterally extensive Inceptisol, encompassing the Pleistocene-Holocene boundary (PH), represents the major phase of soil development since the Last Glacial Maximum and is inferred to be related to channel entrenchment at the onset of the Younger Dryas. With the exception of the Iron Age-Roman paleosol, which reflects a predominantly anthropogenic control, the Holocene paleosols are laterally discontinuous and invariably more immature (Entisols) than their Pleistocene counterparts. This trend of decreasing paleosol development (and correlatability) upsection is interpreted to reflect increasing (transgressive-equivalent) accommodation during sea-level rise, thus confirming the possible extension of models used to

  15. Late Quaternary continental and marine sediments of northeastern Buenos Aires province (Argentina): Fossil content and paleoenvironmental interpretation

    NASA Astrophysics Data System (ADS)

    Fucks, Enrique; Aguirre, Marina; Deschamps, Cecilia M.

    2005-10-01

    Abundant invertebrate and vertebrate fossil remains that exhibit excellent preservation and were collected from deposits of both continental and marine origins at Pilar (Buenos Aires, Argentina) add paleoenvironmental data from the northeastern Buenos Aires province area linked to sea-level oscillations and climate variability since approximately 120 ka BP (marine oxygen isotope stage [MOIS] 5e). Two new fossiliferous localities discovered in the Luján River Valley allow for detailed geological studies and new dating of molluscan shells and bones. The studies suggest salinity changes during the Last Interglacial (8 m above m.s.l., min. 14C>40 ka) and the mid-Holocene transgression (5 m above m.s.l., 7-3 14C ka BP) compared with the modern pattern along the adjacent littoral (Río de la Plata). The marine sequences represent the innermost boundary of the sea-level transgression in that area and contain a biogenic record (bivalves, gastropods, forams, ostracods) that indicates marginal marine environments (higher salinity than at present). Vertebrates and molluscs from the continental sequence suggest a freshwater habitat in which remains of marine fish must be allochthonous, probably incorporated by postmortem fluvial transport to the final depositional environment.

  16. Age modelling of late Quaternary marine sequences in the Adriatic: Towards improved precision and accuracy using volcanic event stratigraphy

    NASA Astrophysics Data System (ADS)

    Lowe, J. J.; Blockley, S.; Trincardi, F.; Asioli, A.; Cattaneo, A.; Matthews, I. P.; Pollard, M.; Wulf, S.

    2007-02-01

    The first part of this paper presents a review of the problems that constrain the reliability of radiocarbon-based age models with particular focus on those used to underpin marine records. The reasons why radiocarbon data-sets need to be much more comprehensive than has been the norm hitherto, and why age models should be based on calibrated data only, are outlined. The complexity of the probability structure of calibrated radiocarbon data and the advantages of a Bayesian statistical approach for constructing calibrated age models are illustrated. The second part of the paper tests the potential for reducing the uncertainties that constrain radiocarbon-based age models using tephrostratigraphy. Fine (distal) ash layers of Holocene age preserved in Adriatic prodelta sediments are analysed geochemically and compared to tephras preserved in the Lago Grande di Monticchio site in southern Italy. The Monticchio tephras have been dated both by radiocarbon and varve chronology. The importance of basing such comparisons on standardised geochemical and robust statistical procedures is stressed. In this instance, both the Adriatic and Monticchio geochemical measurements are based on wavelength dispersive spectrometry, while discriminant function analysis is employed for statistical comparisons. Using this approach, the ages of some of the Adriatic marine ash layers could be estimated in Monticchio varve years, circumventing some of the uncertainty of radiocarbon-based age models introduced by marine reservoir effects. Fine (distal) ash layers are more widespread and better preserved in Mediterranean marine sequences than realised hitherto and may offer much wider potential for refining the dating and correlation of Mediterranean marine sequences as well as marine-land correlations.

  17. (Model) Peatlands in late Quaternary interglacials

    NASA Astrophysics Data System (ADS)

    Kleinen, Thomas; Brovkin, Victor

    2016-04-01

    Peatlands have accumulated a substantial amount of carbon, roughly 600 PgC, during the Holocene. Prior to the Holocene, there is relatively little direct evidence of peatlands, though coal deposits bear witness to a long history of peat-forming ecosystems going back to the Carboniferous. We therefore need to rely on models to investigate peatlands in times prior to the Holocene. We have developed a dynamical model of wetland extent and peat accumulation, integrated in the coupled climate carbon cycle model of intermediate complexity CLIMBER2-LPJ, in order to mechanistically model interglacial carbon cycle dynamics. This model consists of the climate model of intermediate complexity CLIMBER2 and the dynamic global vegetation model LPJ, which we have extended with modules to determine peatland extent and carbon accumulation. The model compares reasonably well to Holocene peat data. We have used this model to investigate the dynamics of atmospheric CO2 in the Holocene and two other late Quaternary interglacials, namely the Eemian, which is interesting due to its warmth, and Marine Isotope Stage 11 (MIS11), which is the longest interglacial during the last 500ka. We will also present model results of peatland extent and carbon accumulation for these interglacials. We will discuss model shortcomings and knowledge gaps currently preventing an application of the model to full glacial-interglacial cycles.

  18. Refining the Late Quaternary Paleomagnetic Secular Variation record in the Mediterranean Region as a Chronologic Tool for Marine Geology Investigations

    NASA Astrophysics Data System (ADS)

    Iorio, M.; Liddicoat, J. C.; Budillon, F.; Incoronato, A.; Coe, R.; Insinga, D.; Lubritto, C.; Cassata, W. S.; Tiano, P.; Petruccione, E.

    2011-12-01

    Together, piston cores C1067, C1201 and C1202 from the continental shelf and slope in the Salerno Gulf and Cilento offshore in the Eastern Tyrrhenian Sea record long-term change (Paleomagnetic Secular Variation - PSV) of Earth's magnetic field during the last approximately 115,000 years. Each core contains the last 24,000 years except for the interval from about 20,000 to 11,000 years that is absent in C1067 and C1202 because of erosion on the continental slope. The PSV for the Eastern Tyrrhenian Sea is correlated to curves of global relative paleomagnetic field intensity in other marine cores (Stoner et al., 2002) and dated lacustrine records of PSV for western Europe (Thouveny et al., 1990) and Great Britain (Turner and Thompson, 1981). Tephrochronolgy and radiometric dates (C14 and Ar/Ar) also are used for assigning an age to the record. Along with an improved record of PSV for the Mediterranean region, the PSV in the Salerno Gulf and Cilento offshore piston cores has application for placing time constraints on the marine geology and stratigraphy on the continental shelf and slope. The result is that catastrophic events such as large-scale submarine slumps, volcanic eruptions, turbidite deposition, and abrupt changes in sedimentation rate are dated. The changes in sedimentation rate seem to be linked to global rapid sea-level pulses and climate events that induced concurrent reduction and/or abundance in the sediment supply from the adjacent coastal margin.

  19. Marine record of late quaternary glacial-interglacial fluctuations in the Ross Sea and evidence for rapid, episodic sea level change due to marine ice sheet collapse

    NASA Technical Reports Server (NTRS)

    Anderson, John B.

    1991-01-01

    Some of the questions to be addressed by SeaRISE include: (1) what was the configuration of the West Antarctic ice sheet during the last glacial maximum; (2) What is its configuration during a glacial minimum; and (3) has it, or any marine ice sheet, undergone episodic rapid mass wasting. These questions are addressed in terms of what is known about the history of the marine ice sheet, specifically in Ross Sea, and what further studies are required to resolve these problems. A second question concerns the extent to which disintegration of marine ice sheets may result in rises in sea level that are episodic in nature and extremely rapid, as suggested by several glaciologists. Evidence that rapid, episodic sea level changes have occurred during the Holocene is also reviewed.

  20. Late Quaternary climate change shapes island biodiversity.

    PubMed

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-07

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics.

  1. Late Quaternary mammalian zoogeography of eastern Washington

    NASA Astrophysics Data System (ADS)

    Lyman, R. Lee; Livingston, Stephanie D.

    1983-11-01

    The late Quaternary mammalian zoogeographic history of eastern Washington as revealed by archaeological and paleontological research conforms to a set of past environmental conditions inferred from botanical data. During the relatively cool and moist late Pleistocene and early Holocene, Cervus cf. elaphus, Ovis canadensis, Vulpes vulpes, Martes americana, Alopex lagopus, and perhaps Rangifer sp., taxa with ecological preferences for mesic steppe habitats, were present in the now xeric Columbia Basin. As the climate became progressively warmer and drier during the late Pleistocene and early Holocene, Antilocapra americana, Onychomys leucogaster, Spermophilus townsendii, and Neotoma cinerea, taxa with ecological preferences for xeric steppe habitats, appear in the Columbia Basin. Bison sp. and Taxidea taxus may have been present in eastern Washington for the last 20,000 yr. Middle and late Holocene records for Oreamnos americanus, Spermophilus columbianus, S. townsendii, Lagurus curtatus, and Urocyon cinereoargenteus in central eastern Washington suggest fluctuations in the ranges of these taxa that conform to a middle Holocene period of less effective precipitation and a ca. 3500-yr-old period of more effective precipitation before essentially modern environmental conditions prevailed.

  2. Late Quaternary paleolimnology of Walker Lake, Nevada

    USGS Publications Warehouse

    Platt, Bradbury J.; Forester, R.M.; Thompson, R.S.

    1989-01-01

    Diatoms, crustaceans, and pollen from sediment cores, in conjunction with dated shoreline tufas provide evidence for lake level and environmental fluctuations of Walker Lake in the late Quaternary. Large and rapid changes of lake chemistry and level apparently resulted from variations in the course and discharge of the Walker River. Paleolimnological evidence suggests that the basin contained a relatively deep and slightly saline to freshwater lake before ca. 30 000 years B.P. During the subsequent drawdown, the Walker River apparently shifted its course and flowed northward into the Carson Sink. As a result, Walker Lake shallowed and became saline. During the full glacial, cooler climates with more effective moisture supported a shallow brine lake in the basin even without the Walker River. As glacial climates waned after 15 000 years ago, Walker Lake became a playa. The Walker River returned to its basin 4700 years ago, filling it with fresh water in a few decades. Thereafter, salinity and depth increased as evaporation concentrated inflowing water, until by 3000 years ago Walker Lake was nearly 90 m deep, according to dated shoreline tufas. Lake levels fluctuated throughout this interval in response to variations in Sierra Nevada precipitation and local evaporation. A drought in the Sierras between 2400 and 2000 years ago reduced Walker Lake to a shallow, brine lake. Climate-controlled refilling of the lake beginning 2000 years ago required about one millennium to bring Walker lake near its historic level. Through time, lake basins in the complex Lake Lahontan system, fill and desiccate in response to climatic, tectonic and geomorphic events. Detailed, multidisciplinary paleolimnologic records from related subbasins are required to separate these processes before lake level history can be reliably used to interpret paleoclimatology. ?? 1989 Kluwer Academic Publishers.

  3. Late Quaternary land-sea correlations, northern Labrador, Canada

    SciTech Connect

    Clark, P.; Josenhans, H.

    1985-01-01

    Late Quaternary glacial and postglacial units in the Torngat Mountains, northern Labrador, are correlated with units identified on the adjacent continental shelf. The late Wisconsinan Laurentide Ice Sheet drained through major valleys of the Torngat Mountains as outlet glaciers, depositing the Saglek Moraines. These are of regional extent and have been mapped from Saglek Fiord north to Noodleook Fiord. A C-14 date of 18,210 +/- 1900 BP on total organic matter (TOM) from lake sediment dammed by a segment of the Saglek Moraines is interpreted as a maximum date for deposition of the Saglek Moraine system because of possible contamination. Glacial sediments comprising the Saglek Moraines are correlated with upper till mapped in troughs and saddles on the continental shelf. Outlet glaciers depositing a late Wisconsinan unit flowed through Labrador fiords and onto the shelf at low basal shear stresses, particularly on the shelf where, although grounded, they were hydrostatically buoyed up and moved principally by sliding. A glaciomarine unit conformably overlies late Wisconsinan till on the shelf and on the land. This unit is a gravelly clayey silt, contains abundant foraminifera, and has up to 60% limestone in the pebble fraction. C-14 dates suggest deposition of this unit began ca. 10,000 BP on the shelf and 9000 BP on the land, an ended by 8000 BP. Limestone pebbles in this unit suggest a source in part from sediment-laden icebergs and pack-ice from the north. Marine deposition from ca. 8000-0 BP is characterize by basinal sedimentation.

  4. Late Quaternary geology of the Lower Central Plain, Thailand

    NASA Astrophysics Data System (ADS)

    Sinsakul, Sin

    2000-08-01

    The Lower Central Plain or Chao Phraya Plain, located in the upper Gulf of Thailand, has an average elevation of 2 m above the present mean sea level. It is a fault bounded basin developed in the Plio-Pleistocene epoch. Consequently, the basin has been filled with Quaternary sediment reaching a thickness of almost 2000 m, of which only the upper 300 m is known. The Pleistocene deposits of the Lower Central Plain represent a complex interplay of alluvial, fluvial and deltaic environments of the Chao Phraya River and its tributaries. The upper sequence of sand and stiff clay with iron-oxide concretions on the surface was deposited in a fluviatile environment subjected to a regressive period in the late Pleistocene. The term "Chao Phraya delta" is used to define the landform where the Chao Phraya River interacted with marine processes as the sea level changed during the Holocene transgression. These strata indicated that the Holocene sea reached its maximum height of 4 m above the present mean sea level around 6000 years B.P.; from then on sea level fluctuated until it reached its present level around 1500 years B.P. This complex sea level history has caused the progradation of tidal flat, and tide-dominated delta deposits, consisting of soft marine clay, that covered the Lower Central Plain to an average depth of 15 m in the Bangkok area. The soft marine clay or Bangkok clay is the most important unit in the stratigraphic sequence in terms of land subsidence in the Lower Central Plain. Evidence of coastal erosion is also considerable in the low tidal flat area on the west bank of the Chao Phraya River mouth and adjacent coast.

  5. Reply to Discussion: a critique of Possible waterways between the Marmara Sea and the Black Sea in the late Quaternary: evidence from ostracod and foraminifer assemblages in lakes İznik and Sapanca, Turkey, Geo-Marine Letters, 2011

    NASA Astrophysics Data System (ADS)

    Nazik, Atike; Meriç, Engin; Avşar, Niyazi

    2012-06-01

    In their discussion of our 2011 paper dealing with possible waterways between the Marmara Sea and the Black Sea in the "late" Quaternary, based on data from ostracod and foraminifer assemblages in lakes İznik and Sapanca, Turkey, Yaltırak et al. (Geo-Mar Lett 32:267-274, 2012) essentially reject the idea of any links whatsoever, be they between the Marmara Sea and the lakes İznik and Sapanca, or further to the Black Sea via the valley of the Sakarya River. The evidence they provide in support of their view, however, is essentially circumstantial, in part conjectural, and also inconclusive considering the findings in favour of linkage between the Marmara Sea and the lakes at the very least, while the proposed connection with the Sakarya River valley remains speculative because of the lack of unambiguous data. On the other hand, Yaltırak et al. (Geo-Mar Lett 32:267-274, 2012) do raise valid points of concern which deserve careful future investigation, the most important being the possibility of sample contamination from dumped marine sediment used for construction purposes along some parts of the shore of Lake İznik. We agree that a concerted multidisciplinary effort is required to address the many unresolved issues in connection with the potential waterways proposed by us and others before us.

  6. Ice Age Earth: Late Quaternary geology and climate

    SciTech Connect

    Dawson, A.G.

    1992-01-01

    This book is a concise and readable account of the most important geologic records of the late Quaternary. It provides a synopsis of the major environmental changes that took place from approximately 13,000 to 7,000 years ago, highlighting the complexity and rapidity of past climate changes and the environmental responses they produced. The text is well illustrated, though some figures are rough and need more explanation. Also needed is a critical appraisal of the geochronology which places the paleoenvironmental records into the temporal domain. However, as a whole the book reaches its objective of summarizing the most important scientific findings about the nature of the late Quaternary climate changes.

  7. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary

    SciTech Connect

    Beget, J.E.; Stone, D.B.; Hawkins, D.B. )

    1990-01-01

    Visual matches and statistical tests suggest correlations between marine isotope curves, retrodictive solar insolation at lat 65{degree}N, and magnetic susceptibility profiles through late Quaternary age Alaskan loess sections. The susceptibility changes largely appear to reflect variability in magnetite content due to climatically controlled changes in wind intensity and competence. Magnetic susceptibility profiles through massive loess can provide stratigraphic context for intercalated paleosols and tephras. A prominent paleosol correlated with marine isotope stage 5 occurs several metres above the Old Crow ash in loess sections, indicating that this important tephra is older than suggested by thermoluminescence dates, and may have been deposited ca. 215 {plus minus}25 ka.

  8. Late Quaternary stratigraphic charcoal records from Madagascar

    NASA Astrophysics Data System (ADS)

    Burney, David A.

    1987-09-01

    The classic view regarding the cause of the extinction of at least 17 species of large mammals, birds, and reptiles in Madagascar during the late Holocene implicates human use of fire to modify the environment. However, analysis of the charcoal stratigraphy of three sediment cores from Madagascar shows that late Pleistocene and early- to mid-Holocene sediments deposited prior to human settlement often contain more charcoal than postsettlement and modern sediments. This observation, which is confirmed by independent measurements from direct assay and palynological counting techniques, suggests that widely held but previously untested beliefs concerning the importance of anthropogenic fires in late Holocene environmental changes and megafaunal extinctions of Madagascar may be based on an overly simplified version of actual prehistoric conditions. Moderate to low charcoal values characterized only the late Holocene millennia immediately prior to the presumed time of arrival of the first settlers. Human settlement is probably indicated in the stratigraphy by the sharp rise in charcoal content observed beginning ca. 1500 yr B.P. Fire appears to be a significant natural component of prehuman environments in Madagascar, but some factor, probably climate, has modulated the extent of natural burning.

  9. Late Quaternary history of the Atacama Desert

    USGS Publications Warehouse

    Latorre, Claudio; Betancourt, Julio L.; Rech, Jason A.; Quade, Jay; Holmgren, Camille; Placzek, Christa; Maldonado, Antonio; Vuille, Mathias; Rylander, Kate A.; Smith, Mike; Hesse, Paul

    2005-01-01

    Of the major subtropical deserts found in the Southern Hemisphere, the Atacama Desert is the driest. Throughout the Quaternary, the most pervasive climatic influence on the desert has been millennial-scale changes in the frequency and seasonality of the scant rainfall, and associated shifts in plant and animal distributions with elevation along the eastern margin of the desert. Over the past six years, we have mapped modern vegetation gradients and developed a number of palaeoenvironmental records, including vegetation histories from fossil rodent middens, groundwater levels from wetland (spring) deposits, and lake levels from shoreline evidence, along a 1200-kilometre transect (16–26°S) in the Atacama Desert. A strength of this palaeoclimate transect has been the ability to apply the same methodologies across broad elevational, latitudinal, climatic, vegetation and hydrological gradients. We are using this transect to reconstruct the histories of key components of the South American tropical (summer) and extratropical (winter) rainfall belts, precisely at those elevations where average annual rainfall wanes to zero. The focus has been on the transition from sparse, shrubby vegetation (known as the prepuna) into absolute desert, an expansive hyperarid terrain that extends from just above the coastal fog zone (approximately 800 metres) to more than 3500 metres in the most arid sectors in the southern Atacama.

  10. Late Quaternary rates of stream incision in Northeast Peloponnese, Greece

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Papanastassiou, Dimitrios; Gaki-Papanastassiou, Kalliopi; Ferentinou, Maria; Chalkias, Christos

    2016-09-01

    This study focuses on defining rates of fluvial incision for the last 580±5 kyr along valley systems of eight streams that drain the eastern part of the northern Peloponnese. The streams are developed on the uplifted block of the offshore-running Xylokastro normal fault, one of the main faults bounding the southern edge of the Gulf of Corinth half-graben, and have incised a set of ten uplifted marine terraces having an amphitheatric shape. These terraces range in age from 60±5 kyr to 580±5 kyr and have been mapped in detail and correlated with late Pleistocene oxygen-isotope stages of high sea-level stands by previous studies. The terraces were used in this paper as reference surfaces in order to define fluvial incision rates at the lower reaches of the studied streams. To evaluate incision rates, thirty-three topographic valley cross-sections were drawn using fieldwork measurements as well as using a highly accurate (2×2 cell size) Digital Elevation Model (DEM) at specific locations where streams cut down the inner edges of the marine terraces. For each cross-section the ratio of valley floor width to valley height (Vf) and long-term mean stream incision rates were estimated for the last 580±5 kyr, while rock uplift rates were estimated for the last 330±5 kyr. The geomorphic evolution of the valleys on the uplifted block of the Xylokastro fault has been mainly driven by the lithology of the bedrock, sea level fluctuations during the late Quaternary, and incision of the channels due to the tectonic uplift. Stream incision rates range from 0.10±0.1 mm/yr for the last 123±7 kyr to 1.14±0.1 mm/yr for the last 310±5 kyr and are gradually greater from east to west depending on the distance from the trace of the fault. Downcutting rates are comparable with the rock uplift rates, which range from 0.4±0.02 mm/yr to 1.49±0.12 mm/yr, over the last 330±5 kyr.

  11. Late Quaternary transgressive large dunes on the sediment-starved Adriatic shelf

    USGS Publications Warehouse

    Correggiari, A.; Field, M.E.; Trincardi, F.

    1996-01-01

    The Adriatic epicontinental basin is a low-gradient shelf where the late-Quaternary transgressive systems tract (TST) is composed of thin parasequences of backbarrier, shoreface and offshore deposits. The facies and internal architecture of the late-Quaternary TST in the Adriatic epicontinental basin changed consistently from early transgression to late transgression reflecting: (1) fluctuations in the balance between sediment supply and accommodation increase, and (2) a progressive intensification of the oceanographic regime, driven by the transgressive widening of the basin to as much as seven times its lowstand extent. One of the consequences of this trend is that high-energy marine bedforms such as sand ridges and sand waves characterize only areas that were flooded close to the end of the late-Quaternary sea-level rise, when the wind fetch was maximum and bigger waves and stronger storm currents could form. We studied the morphology, sediment composition and sequence-stratigraphical setting of a field of asymmetric bedforms (typically 3 m high and 600 m in wavelength) in 20-24 m water depth offshore the Venice Lagoon in the sediment-starved North Adriatic shelf. The sand that forms these large dunes derived from a drowned transgressive coastal deposit reworked by marine processes. Early cementation took place over most of the dune crests limiting their activity and preventing their destruction. Both the formation and deactivation of this field of sand dunes occurred over a short time interval close to the turn-around point that separates the late-Quaternary sea-level rise and the following highstand and reflect rapid changes in the oceanographic regime of the basin.

  12. Ecological impacts of the late Quaternary megaherbivore extinctions.

    PubMed

    Gill, Jacquelyn L

    2014-03-01

    As a result of the late Quaternary megafaunal extinctions (50,000-10,000 before present (BP)), most continents today are depauperate of megaherbivores. These extinctions were time-transgressive, size- and taxonomically selective, and were caused by climate change, human hunting, or both. The surviving megaherbivores often act as ecological keystones, which was likely true in the past. In spite of this and extensive research on the causes of the Late Quaternary Extinctions, the long-term ecological consequences of the loss of the Pleistocene megafauna remained unknown until recently, due to difficulties in linking changes in flora and fauna in paleorecords. The quantification of Sporormiella and other dung fungi have recently allowed for explicit tests of the ecological consequences of megafaunal extirpations in the fossil pollen record. In this paper, I review the impacts of the loss of keystone megaherbivores on vegetation in several paleorecords. A growing number of studies support the hypothesis that the loss of the Pleistocene megafauna resulted in cascading effects on plant community composition, vegetation structure and ecosystem function, including increased fire activity, novel communities and shifts in biomes. Holocene biota thus exist outside the broader evolutionary context of the Cenozoic, and the Late Quaternary Extinctions represent a regime shift for surviving plant and animal species.

  13. Late Quaternary environments in Ruby Valley, Nevada

    USGS Publications Warehouse

    Thompson, R.S.

    1992-01-01

    Palynological data from sediment cores from the Ruby Marshes provide a record of environmental and climatic changes over the last 40,000 yr. The modern marsh waters are fresh, but no deeper than ???3 m. A shallow saline lake occupied this basin during the middle Wisconsin, followed by fresh and perhaps deep waters by 18,000 to 15,000 yr B.P. No sediments were recovered for the period between 15,000 and 11,000 yr B.P., possibly due to lake desiccation. By 10,800 yr B.P. a fresh-water lake was again present, and deeper-than-modern conditions lasted until 6800 yr B.P. The middle Holocene was characterized by very shallow water, and perhaps complete desiccation. The marsh system deepened after 4700 yr B.P., and fresh-water conditions persisted until modern times. Vegetation changes in Ruby Valley were more gradual than those seen in the paleolimno-logical record. Sagebrush steppe was more widespread than at present through the late Pleistocene and early Holocene, giving way somewhat to expanded shadscale vegetation between 8500 and 6800 yr B.P. Shadscale steppe contracted by 4000 yr B.P., but had greater than modern coverage until 1000 to 500 yr ago. Pinyon-juniper woodland was established in the southern Ruby Mountains by 4700 yr B.P. ?? 1992.

  14. Late-quaternary vegetational dynamics and community stability reconsidered

    NASA Astrophysics Data System (ADS)

    Delcourt, Paul A.; Delcourt, Hazel R.

    1983-03-01

    Defining the spatial and temporal limits of vegetational processes such as migration and invasion of established communities is a prerequisite to evaluating the degree of stability in plant communities through the late Quaternary. The interpretation of changes in boundaries of major vegetation types over the past 20,000 yr offers a complementary view to that provided by migration maps for particular plant taxa. North of approximately 43°N in eastern North America, continual vegetational disequilibrium has resulted from climatic change, soil development, and species migrations during postglacial times. Between 33° and 39°N, stable full-glacial vegetation was replaced by a relatively unstable vegetation during late-glacial climatic amelioration; stable interglacial vegetation developed there after about 9000 yr B.P. Late-Quaternary vegetation has been in dynamic equilibrium, with a relatively constant flora, south of 33°N on upland interfluves along the northern Gulf Coastal Plain, peninsular Florida, and west-central Mexico.

  15. Late quaternary environments, Denali National Park and Preserve, Alaska

    USGS Publications Warehouse

    Elias, S.A.; Short, S.K.; Waythomas, C.F.

    1996-01-01

    Late Quaternary pollen, plant macrofossils, and insect fossils were studied from sites along three rivers in the foothills north of the Alaska Range in Denali National Park and Preserve. The aim was to carry out a reconaissance of late Quaternary organic sediments in the region, emphasizing the mid-Wisconsin, or Boutellier interstadial interval. Samples of probable early- to mid-Boutellier age (ca. 60 000 to 40 000 B.P.) from Unit 2 at the Toklat High Bluffs site indicate open boreal woodland with dense alder shrub vegetation. Organic Unit 1 at the Foraker River Slump site indicates open taiga with shrubs of probable Boutellier age. Fossil evidence from the youngest horizon in this unit indicates graminoid tundra environments, marking the transition from interstadial to late Wisconsin glacial environments. Early Holocene samples from the Foraker exposures suggest birch shrub tundra; coniferous forest apparently became established only alter 6500 B.P. Local variations in forest composition at the Foraker and Sushana sites were probably the result of disturbances, such as fire.

  16. Late Quaternary glaciation of the Upper Soca River Region (Southern Julian Alps, NW Slovenia)

    USGS Publications Warehouse

    Bavec, Milos; Tulaczyk, Slawek M.; Mahan, Shannon; Stock, Gregory M.

    2004-01-01

    Extent of Late Quaternary glaciers in the Upper Soc??a River Region (Southern Julian Alps, SE Europe) has been analyzed using a combination of geological mapping, glaciological modeling, and sediment dating (radiocarbon, U/Th series and Infrared Stimulated Luminescence-IRSL). Field investigations focused mainly on relatively well preserved Quaternary sequences in the Bovec Basin, an intramontane basin located SW of the Mediterranean/Black Sea divide and surrounded by mountain peaks reaching from approximately 2100 up to 2587 m a.s.l. Within the Basin we recognized two Late Quaternary sedimentary assemblages, which consist of the same facies association of diamictons, laminated lacustrine deposits and sorted fluvial sediments. Radiocarbon dating of the upper part of the lake sediments sequence (between 12790??85 and 5885??60 14C years b.p.) indicates that the younger sedimentary assemblage was deposited during the last glacial maximum and through early Holocene (Marine Isotope Stage 21, MIS 2-1). Sediment ages obtained for the older assemblage with U/Th and IRSL techniques (between 154.74??22.88 and 129.93??7.90 ka b.p. for selected samples) have large errors but both methods yield results consistent with deposition during the penultimate glacial-interglacial transition (MIS 6-5). Based on analyses of field data combined with glaciological modeling, we argue that both sediment complexes formed due to high sediment productivity spurred by paraglacial conditions with glaciers present in the uplands around the Bovec Basin but not extending down to the basin floor. Our study shows that the extent and intensity of direct glacial sedimentation by Late Quaternary glaciers in the region was previously significantly overestimated. ?? 2004 Elsevier B.V. All rights reserved.

  17. Late Quaternary terrestrial vertebrate coprolites from New Zealand

    NASA Astrophysics Data System (ADS)

    Wood, Jamie R.; Wilmshurst, Janet M.

    2014-08-01

    Over the past decade, concerted efforts to find and study Late Quaternary terrestrial vertebrate coprolites in New Zealand have revealed new insights into the diets and ecologies of New Zealand's prehistoric birds. Here, we provide a broader review of the coprolites found in natural (non-archaeological) Late Quaternary deposits from New Zealand. We summarise the morphological diversity of the coprolites, and discuss the taphonomy of the sites in which they are found. Since the 1870s more than 2000 coprolites have been discovered from 30 localities, all restricted to the South Island. The distribution of coprolite localities appears to reflect the presence of geological and climatic factors that enhance the potential for coprolite preservation; coprolites require dry conditions for preservation, and have been found on the ground surface within drafting cave entrances and at shallow (<300 mm) depths beneath rock overhangs with a northerly aspect. We classify the coprolites into eleven morphotypes, each of which may represent a range of different bird and/or reptile species. A review of genetically identified specimens shows that coprolites of different bird species overlap in size and morphology, reinforcing the need for identifications to be based on ancient DNA analysis.

  18. Late Neogene marine Ostracoda from Tjornes, Iceland

    USGS Publications Warehouse

    Cronin, T. M.

    1991-01-01

    On the western side of the Tjornes Peninsula in northern Iceland exposures of fossiliferous marine sediments, basalts, and glacial tills record the climatic history of this region of the North Atlantic Ocean. Seventy-five marine ostracode species were recovered from the Pliocene Tjornes sediments and Quaternary sediments known as the Breidavik beds. New species Bensonocythere eirikssoni, Robertsonites williamsi, Hemicythere rekaensis, Thaerocythere mayburyae, Thaerocythere whatleyi, Leptocythere tjornesensis, Tetracytherura bardarsoni, and Cytheromorpha einarssoni are described. -from Author

  19. Late Quaternary climate and landscape changes in Southern Africa based on integrative analyses of geoarchives

    NASA Astrophysics Data System (ADS)

    Huerkamp, K.; Voelkel, J.; Heine, K.; Bens, O.; Winkelbauer, J.

    2009-12-01

    Although it is clear that large, rapid temperature changes have occurred during the last glacial-interglacial cycle and the Holocene in Southern Africa, we have only limited, and often imprecise, knowledge of how the major moisture-bearing atmospheric circulation systems have reacted to these changes. Using slope deposits, soils and sediments as palaeoclimatic geoarchives we will overcome these constraints. The role of many geoarchives in the reconstruction of the Quaternary climate in Southern Africa remains controversial, since the palaeoclimate data are based on evidence from marine cores, lake sediments, speleothems and spring sinter, fluvial sediments, aeolian sands and dust, colluvium, and coastal sediments. To elucidate climate controls on Quaternary landscape evolution and to use these data for palaeoclimatic reconstructions, slope deposits, soils and sediments have been investigated. The project will employ state-of-the-art geoscience methodology to interpret the record of precipitation changes of the Late Quaternary, including the shifting of the summer and winter rain belts, the chronology of catastrophic floods, the wind intensity and direction, and the role climatic factors may have played for prehistoric cultures. High resolution Late Quaternary records are provided by analysing the interstratification of slope deposits and soils with fluvial, lacustrine and aeolian sediment sequences. Earlier research has shown that aeolian and fluvial processes were active at the same time in the southwestern Kalahari during the LGM, documented by sequences of alternate bedding of aeolian, colluvial and fluvial sediments. The interfingering of slope deposits with fluvial flood sediments (slackwater deposits) in Namib Desert valleys document extreme precipitation events in the upper highland catchments and rains at the same time in the desert itself.

  20. Global warming: Perspectives from the Late Quaternary paleomammal record

    SciTech Connect

    Graham, R.W. )

    1993-03-01

    Global warming at the end of the Pleistocene caused significant environmental changes that directly and indirectly effected biotic communities. The biotic response to this global warming event can provide insights into the processes that might be anticipated for future climatic changes. The megafauna extinction may have been the most dramatic alteration of mammalian communities at the end of the Pleistocene. Late Quaternary warming also altered regional diversity patterns for some small mammal guilds without extinction. Reductions in body size for both small and large mammal species were also consequences of these environmental fluctuations. Geographic shifts in the distributions of individual mammal species resulted in changes in species composition of mammalian communities. The individualistic response of biota to environmental fluctuations define some boundary conditions for modeling communities. Understanding these boundary conditions is mandatory in planning for the preservation of biodiversity in the future. Finally, it is essential to determine how global warming will alter seasonal patterns because it is apparent from the paleobiological record that not all Quaternary warming events have been the same.

  1. Late Quaternary sediment fluxes from tropical watersheds [review article

    NASA Astrophysics Data System (ADS)

    Thomas, Michael F.

    2003-11-01

    Inherited saprolite stores and continued weathering in Quaternary time juxtapose abundant clay and fresh rock in tropical landscapes. This influences sediment fluxes and affects the interpretation of sediment sequences derived from tropical watersheds. Detrital kaolinites derive from inherited saprolite sources as well as from soil clays and appear in delta and ocean sediments. These sediments appear to correspond with sub-Milankovitch, millennial-scale cycles of climate change, but may also record century-scale episodes of rapid warming (Dansgaard-Oeschger events). Destabilisation of sediment sources and increased sediment fluxes in the Late Quaternary followed millennia of climatic deterioration (cooling/aridity) and vegetation change and led to altered patterns of sedimentation during the Last Glacial Maximum (LGM). Sediment yield from slopes increased 10× around the LGM, when rainfall was reduced by 30-60% and led to fan building and braided channels. Rainfall increased 40-80% from the LGM to the Early Holocene maximum and this led to channel cutting and major sediment fluxes to delta and ocean sinks. Vegetation recovery lagged the rapid warming by several millennia and was interrupted by (Younger Dryas) YD aridity, influencing slope and stream behaviour. Holocene sedimentation has been by both vertical and lateral accretion, increasing floodplain sediment stores.

  2. Asynchronous extinction of late Quaternary sloths on continents and islands.

    PubMed

    Steadman, David W; Martin, Paul S; MacPhee, Ross D E; Jull, A J T; McDonald, H Gregory; Woods, Charles A; Iturralde-Vinent, Manuel; Hodgins, Gregory W L

    2005-08-16

    Whatever the cause, it is extraordinary that dozens of genera of large mammals became extinct during the late Quaternary throughout the Western Hemisphere, including 90% of the genera of the xenarthran suborder Phyllophaga (sloths). Radiocarbon dates directly on dung, bones, or other tissue of extinct sloths place their "last appearance" datum at approximately 11,000 radiocarbon years before present (yr BP) or slightly less in North America, approximately 10,500 yr BP in South America, and approximately 4,400 yr BP on West Indian islands. This asynchronous situation is not compatible with glacial-interglacial climate change forcing these extinctions, especially given the great elevational, latitudinal, and longitudinal variation of the sloth-bearing continental sites. Instead, the chronology of last appearance of extinct sloths, whether on continents or islands, more closely tracks the first arrival of people.

  3. Asynchronous extinction of late Quaternary sloths on continents and islands

    PubMed Central

    Steadman, David W.; Martin, Paul S.; MacPhee, Ross D. E.; Jull, A. J. T.; McDonald, H. Gregory; Woods, Charles A.; Iturralde-Vinent, Manuel; Hodgins, Gregory W. L.

    2005-01-01

    Whatever the cause, it is extraordinary that dozens of genera of large mammals became extinct during the late Quaternary throughout the Western Hemisphere, including 90% of the genera of the xenarthran suborder Phyllophaga (sloths). Radiocarbon dates directly on dung, bones, or other tissue of extinct sloths place their “last appearance” datum at ≈11,000 radiocarbon years before present (yr BP) or slightly less in North America, ≈10,500 yr BP in South America, and ≈4,400 yr BP on West Indian islands. This asynchronous situation is not compatible with glacial–interglacial climate change forcing these extinctions, especially given the great elevational, latitudinal, and longitudinal variation of the sloth-bearing continental sites. Instead, the chronology of last appearance of extinct sloths, whether on continents or islands, more closely tracks the first arrival of people. PMID:16085711

  4. Late Quaternary geomorphology and soils in Crater Flat, Yucca mountain area, southern Nevada

    SciTech Connect

    Peterson, F.F.; Bell, J.W.; Ramelli, A.R.; Dorn, R.I.; Ku, T.L.

    1995-04-01

    Crater Flat is an alluvium-filled structural basin on the west side of Yucca Mountain, Nevada, which is under consideration for a high-level nuclear waste repository. North-trending, late Quaternary faults offset alluvium in Crater Flat both along the canyons of the western flanks of Yucca Mountain and out on the piedmont slope. We believe the initial lack of young offsets at Yucca Mountain was in part due to unrecognized late Quaternary stratigraphy. We hypothesize that alluviation in the Yucca Mountain region was more active during the late Quaternary than previously thought. Several techniques were tried to test this hypothesis. Results are compared with previous soils and surface-exposure dating studies, and correlated to stratigraphy of other late Quaternary units in the southern Nevada, Death Valley, and Mojave Desert areas, and provide new stratigraphic data relevant to understanding climatic-alluvial processes in the Basin and Range Province during the late Quaternary. 76 refs., 7 figs., 6 tabs.

  5. Late Quaternary sea-level changes of the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Lokier, Stephen W.; Bateman, Mark D.; Larkin, Nigel R.; Rye, Philip; Stewart, John R.

    2015-07-01

    Late Quaternary reflooding of the Persian Gulf climaxed with the mid-Holocene highstand previously variously dated between 6 and 3.4 ka. Examination of the stratigraphic and paleoenvironmental context of a mid-Holocene whale beaching allows us to accurately constrain the timing of the transgressive, highstand and regressive phases of the mid- to late Holocene sea-level highstand in the Persian Gulf. Mid-Holocene transgression of the Gulf surpassed today's sea level by 7100-6890 cal yr BP, attaining a highstand of > 1 m above current sea level shortly after 5290-4570 cal yr BP before falling back to current levels by 1440-1170 cal yr BP. The cetacean beached into an intertidal hardground pond during the transgressive phase (5300-4960 cal yr BP) with continued transgression interring the skeleton in shallow-subtidal sediments. Subsequent relative sea-level fall produced a forced regression with consequent progradation of the coastal system. These new ages refine previously reported timings for the mid- to late Holocene sea-level highstand published for other regions. By so doing, they allow us to constrain the timing of this correlatable global eustatic event more accurately.

  6. Effects of late quaternary climate change on Palearctic shrews.

    PubMed

    Prost, Stefan; Klietmann, Johannes; van Kolfschoten, Thijs; Guralnick, Robert P; Waltari, Eric; Vrieling, Klaas; Stiller, Mathias; Nagel, Doris; Rabeder, Gernot; Hofreiter, Michael; Sommer, Robert S

    2013-06-01

    The Late Quaternary was a time of rapid climatic oscillations and drastic environmental changes. In general, species can respond to such changes by behavioral accommodation, distributional shifts, ecophenotypic modifications (nongenetic), evolution (genetic) or ultimately face local extinction. How those responses manifested in the past is essential for properly predicting future ones especially as the current warm phase is further intensified by rising levels of atmospheric carbon dioxide. Here, we use ancient DNA (aDNA) and morphological features in combination with ecological niche modeling (ENM) to investigate genetic and nongenetic responses of Central European Palearctic shrews to past climatic change. We show that a giant form of shrew, previously described as an extinct Pleistocene Sorex species, represents a large ecomorph of the common shrew (Sorex araneus), which was replaced by populations from a different gene-pool and with different morphology after the Pleistocene Holocene transition. We also report the presence of the cold-adapted tundra shrew (S. tundrensis) in Central Europe. This species is currently restricted to Siberia and was hitherto unknown as an element of the Pleistocene fauna of Europe. Finally, we show that there is no clear correlation between climatic oscillations within the last 50 000 years and body size in shrews and conclude that a special nonanalogous situation with regard to biodiversity and food supply in the Late Glacial may have caused the observed large body size.

  7. Late Quaternary slip on the Santa Cruz Island fault, California

    USGS Publications Warehouse

    Pinter, N.; Lueddecke, S.B.; Keller, E.A.; Simmons, K.R.

    1998-01-01

    The style, timing, and pattern of slip on the Santa Cruz Island fault were investigated by trenching the fault and by analysis of offset late Quaternary landforms. A trench excavated across the fault at Christi Beach, on the western coast of the island, exposed deformation of latest Pleistocene to Holocene sediments and pre-Quaternary rocks, recording repeated large-magnitude rupture events. The most recent earthquake at this site occurred ca. 5 ka. Coastal terraces preserved on western Santa Cruz Island have been dated using the uranium-series technique and by extrapolation using terrace elevations and the eustatic record. Offset of terraces and other landforms indicates that the Santa Cruz Island fault is predominantly left lateral, having a horizontal slip rate of not more than 1.1 mm/yr and probably about 0.8 mm/yr. The fault also has a smaller reverse component, slipping at a rate of between 0.1 and 0.2 mm/yr. Combined with measurements of slip per event, this information suggests a long-term average recurrence interval of at least 2.7 k.y. and probably 4-5 k.y., and average earthquake magnitudes of Mw 7.2-7.5. Sense of slip, recurrence interval, and earthquake magnitudes calculated here for the Santa Cruz Island fault are very similar to recent results for other faults along the southern margin of the western Transverse Range, including the Malibu Coast fault, the Santa Monica fault, the Hollywood fault, and the Raymond fault, supporting the contention that these faults constitute a continuous and linked fault system, which is characterized by large but relatively infrequent earthquakes.

  8. Late Quaternary carbonate deposition at the bottom of the world

    NASA Astrophysics Data System (ADS)

    Frank, Tracy D.; James, Noel P.; Bone, Yvonne; Malcolm, Isabelle; Bobak, Lindsey E.

    2014-05-01

    Carbonate sediments on polar shelves hold great potential for improving understanding of climate and oceanography in regions of the globe that are particularly sensitive to global change. Such deposits have, however, not received much attention from sedimentologists and thus remain poorly understood. This study investigates the distribution, composition, diagenesis, and stratigraphic context of Late Quaternary calcareous sediments recovered in 15 piston cores from the Ross Sea shelf, Antarctica. Results are used to develop a depositional model for carbonate deposition on glaciated, polar shelves. The utility of the deposits as analogs for the ancient record is explored. In the Ross Sea, carbonate-rich lithofacies, consisting of poorly sorted skeletal sand and gravel, are concentrated in the west and along the outer reaches of the continental shelf and upper slope. Analysis of fossil assemblages shows that deposits were produced by numerous low-diversity benthic communities dominated locally by stylasterine hydrocorals, barnacles, or bryozoans. Radiocarbon dating indicates that carbonate sedimentation was episodic, corresponding to times of reduced siliciclastic deposition. Most accumulation occurred during a time of glacial expansion in the lead-up to the Last Glacial Maximum. A more recent interval of carbonate accumulation postdates the early Holocene sea level rise and the establishment of the modern grounding line for the Ross Ice Shelf. When carbonate factories were inactive, fossil debris was subjected to infestation by bioeroders, dissolution, fragmentation, and physical reworking. This study reveals the episodic nature of carbonate deposition in polar settings and a reciprocal relationship with processes that deliver and redistribute siliciclastic debris. Carbonate production is most active during colder periods of the glacial-interglacial cycle, a potential new sedimentological paradigm for polar carbonate systems. Low accumulation rates and long residence

  9. Late Quaternary paleoceanography of the Eurasian Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Holtz, T. R.; Stein, R.; Spielhagen, R.; Fütterer, D.; Wollenburg, J.

    1995-04-01

    We reconstructed late Quaternary deep (3000-4100 m) and intermediate depth (1000-2500 m) paleoceanographic history of the Eurasian Basin, Arctic Ocean from ostracode assemblages in cores from the Lomonosov Ridge, Gakkel Ridge, Yermak Plateau, Morris Jesup Rise, and Amundsen and Makarov Basins obtained during the 1991 Polarstern cruise. Modern assemblages on ridges and plateaus between 1000 and 1500 m are characterized by abundant, relatively species-rich benthic ostracode assemblages, in part, reflecting the influence of high organic productivity and inflowing Atlantic water. In contrast, deep Arctic Eurasian basin assemblages have low abundance and low diversity and are dominated by Krithe and Cytheropteron reflecting faunal exchange with the Greenland Sea via the Fram Strait. Major faunal changes occurred in the Arctic during the last glacial/interglacial transition and the Holocene. Low-abundance, low-diversity assemblages from the Lomonosov and Gakkel Ridges in the Eurasian Basin from the last glacial period have modern analogs in cold, low-salinity, low-nutrient Greenland Sea deep water; glacial assemblages from the deep Nansen and Amundsen Basins have modern analogs in the deep Canada Basin. During Termination 1 at intermediate depths, diversity and abundance increased coincident with increased biogenic sediment, reflecting increased organic productivity, reduced sea-ice, and enhanced inflowing North Atlantic water. During deglaciation deep Nansen Basin assemblages were similar to those living today in the deep Greenland Sea, perhaps reflecting deepwater exchange via the Fram Strait. In the central Arctic, early Holocene faunas indicate weaker North Atlantic water inflow at middepths immediately following Termination 1, about 8500-7000 year B.P., followed by a period of strong Canada Basin water overflow across the Lomonosov Ridge into the Morris Jesup Rise area and central Arctic Ocean. Modern perennial sea-ice cover evolved over the last 4000-5000 years

  10. Sr-isotopic variation in the Quaternary: The record from glacial and interglacial marine terraces

    SciTech Connect

    Ludwig, K.R.; Muhs, D.R.; Simmons, K.R.; Szabo, B.J.; Moore, J.G. )

    1990-05-01

    The authors report high-precision Sr isotope of aragonitic fossils from Pleistocene marine terraces, which formed during both glacial and interglacial periods, to (1) constrain the marine Sr-isotope trend for the late Quaternary, and (2) test the long-term marine Sr-isotope trend for reversals related to glacial-interglacial transitions. Analyses of multiple samples of mollusks from each of 15 interglacial terraces on San Nicolas Island, San Clemente Island, and the Palos Verdes Hills (California) define a marine Sr-isotope trend (assigning terrace ages based on an assumption of constant long-term uplift rates calculated from the height of dated 120-Ka terraces) that is generally similar to the trend defined by the data of recent workers for DSDP samples. Data for three U-series dated interglacial terraces on the East Coast of the US plot close to the California trend, as do data for 14 coral samples of 0-750 Ka age (dated by mass-spectrometric {sup 234}U/{sup 238}U) from submerged, glacial-stage reefs off Hawaii. As a whole, their data indicate an approximately linear increase of approximately 0.05 % in {sup 87}Sr/{sup 86}Sr over the last 800 k.y., confirm the presence of a subtle ({approximately}0.01 %) reversal between approximately 900 and 600 Ka, and resolve a previously unrecognized reversal of approximately 0.02{per thousand} between approximately 1,400 and 1,200 Ka. In addition, the lack of obvious fine structure in samples younger than 800 ka indicates that the amplitude of any short-period oscillations (<100 ky.) in the marine {sup 87}Sr/{sup 86}Sr trend for the Late Quaternary is probably less than approximately 0.02{per thousand}.

  11. Ecostratigraphic datums and sequence stratigraphy: Application to the marine Quaternary

    SciTech Connect

    Martin, R.E. ); Neff, E. ); Johnson, G.W. ); Krantz, D. )

    1991-03-01

    The marine Quaternary is characterized by few evolutionary appearances and extinctions of planktonic foraminifera. Because climatic fluctuations are a fundamental characteristic of Pleistocene, however, better stratigraphic resolution of the marine Quaternary can be gained by the establishment of biozones based on climatically controlled foraminiferal assemblages. Utilizing relative abundances of the warm-water Globorotalia menardii complex and temperature-water G. inflata, supplemented by left- and right-coiling varieties of G. truncatulinoides, the authors have subdivided the prezone-W Pleistocene of the tropical Atlantic (Core V16-205), Caribbean Sea (DSDP Core 502B), and northeast Gulf of Mexico (ODP Core 625B, Eureka Core E67-135) into 17 subzones, each with an average duration of {approximately}100,000 yrs. The subzones appear to reflect water mass shifts and disjunct species distributions resulting from expansion and contraction of northern hemisphere ice sheets. Hence, subzonal boundaries should also reflect change in eustatic sea level and sequence boundaries. Indeed, graphic correlation of the subzones, along with biostratigraphic markers and paleomagnetic and oxygen isotope datums, reveals changes in sediment accumulation rate (especially on the continental slope) and missing section, as well as intervals of deformation (core breaks) that affect the occurrence of subzonal boundaries and biostratigraphic markers.

  12. Late Quaternary in a South Atlantic estuarine system: Stratigraphic and paleontologic indicators of coastal evolution

    NASA Astrophysics Data System (ADS)

    Aliotta, Salvador; Ginsberg, Silvia S.; Spagnuolo, Jorge O.; Farinati, Ester; Giagante, Darío; Vecchi, Laura G.

    2013-08-01

    The decisive influence of Late Quaternary sea level changes on the geological evolution of the coastal plain and adjacent continental shelf around the world has long been recognized. Coastal environments evolve actively during transgressive-regressive cycles whose development depends on sea level and sediment supply variations. The interaction of these variables was key to the current morphological and sedimentological configuration of coastal regions. Particularly, the estuarine system of Bahía Blanca (Argentina) presents various types of deposits and marine fossil accumulations, such as paleochannels in the subbottom, sand-shell ridges and extensive layers with fossils in life position. These features are important geological indicators, because its analysis allows us to define different paleoenvironmental conditions that prevailed during the coastal evolutionary process.

  13. Late Quaternary environments, vegetation and agriculture in northern New Zealand

    NASA Astrophysics Data System (ADS)

    Horrocks, M.; Nichol, S. L.; Augustinus, P. C.; Barber, I. G.

    2007-03-01

    A sedimentological and plant microfossil history of the Late Quaternary is preserved in two sediment cores from early Polynesian ditch systems on southern Aupouri Peninsula. The study places human activities into a geomorphological and ecological context and allows comparison of natural and anthropogenic effects on two different geological settings: a floodplain and a relatively closed peat swamp. The data fill part of the current gap in the environmental record from northern New Zealand, namely MIS 3 (57k-26k yr BP). There is evidence for an increase in fire frequency in the region after 40k 14C yr BP, suggesting a shift to drier (and cooler) conditions. Pollen records show that conifer-hardwood forest dominated by podocarps (especially Dacrydium) prevailed prior to Polynesian arrival and deforestation within the last millennium, with Fuscopsora insignificant throughout. Both cores show sections with gaps in deposition or preservation, possible flood-stripping of peat during the pre-Holocene and mechanical disturbance by early Polynesians. The identification of prehistoric starch grains and other microremains of introduced Colocasia esculenta (taro) in both cores supports indirect evidence that the ditch systems of far northern New Zealand were used for the extensive cultivation of this crop. Copyright

  14. Patterns of late Quaternary shelf-margin sedimentation, southwest Louisiana

    SciTech Connect

    Suter, J.R.; Berryhill, H.L.

    1986-09-01

    Late Quaternary extension of the continental shelf in the northern Gulf of Mexico has been largely accomplished by deposition at the shelf margin during sea level lowstands. The distribution and geometry of facies suggest that delta progradation during sea level fall and lowstand is a principal process for shelf accretion. Along the shelf margin of southwest Louisiana, sets of deltaic deposits corresponding to the last two lowstands of sea level have been mapped from high-resolution seismic profiles. Individual deltas extend farther than 5000 m/sup 2/ and are more than 160 m thick. Diapirism has had a controlling effect on sedimentation patterns of the shelf-margin deltas throughout their depositional histories. Shelf-margin deltas have also been the loci for the transfer of large volumes of sediment from the shelf to the upper slope by mass transport, with buried submarine troughs formed by retrogressive shelf-edge failure in association with major streams acting as conduits for sediment movement. In southwest Louisiana, mass transport deposits follow depressions formed by salt diapirism rather than creating broad aprons on the slope.

  15. Possible Late Quaternary faulting in the Benton Hills, southeastern Missouri

    SciTech Connect

    Palmer, J.R.; Hoffman, D. . Dept. of Natural Resources)

    1993-03-01

    Geologic mapping in the 1930's by Dan Stewart and Lyle McManamy identified numerous faults in the Thebes Gap area of the Benton Hills, including two post-late Quaternary faults (max. of 10 m displacement) along the southeastern escarpment. Recent geologic mapping (Richard Harrison, pers. comm.) suggests dextral strike-slip displacement on most of these faults; some deformation post-dates the Pliocene-Pleistocene Mounds gravel. Small historical earthquake epicenters have been recorded in the Benton Hills area. Review of these data and analysis of the geologic and structural relationships to small- and large-scale drainage and alluvial features suggest tectonic control of the southeastern escarpment of the Benton Hills. The authors propose the coincidence of geologic structures and landforms resembles tectonically active alluvial basin margins, with the Benton Hills southeastern margin representing a fault block uplift escarpment. Future seismic reflection, drilling and trenching studies are planned to determine if the escarpment is fault controlled and of recent origin.

  16. Reconnaissance study of late quaternary faulting along cerro GoDen fault zone, western Puerto Rico

    USGS Publications Warehouse

    Mann, P.; Prentice, C.S.; Hippolyte, J.-C.; Grindlay, N.R.; Abrams, L.J.; Lao-Davila, D.

    2005-01-01

    The Cerro GoDen fault zone is associated with a curvilinear, continuous, and prominent topographic lineament in western Puerto Rico. The fault varies in strike from northwest to west. In its westernmost section, the fault is ???500 m south of an abrupt, curvilinear mountain front separating the 270- to 361-m-high La CaDena De San Francisco range from the Rio A??asco alluvial valley. The Quaternary fault of the A??asco Valley is in alignment with the bedrock fault mapped by D. McIntyre (1971) in the Central La Plata quadrangle sheet east of A??asco Valley. Previous workers have postulated that the Cerro GoDen fault zone continues southeast from the A??asco Valley and merges with the Great Southern Puerto Rico fault zone of south-central Puerto Rico. West of the A??asco Valley, the fault continues offshore into the Mona Passage (Caribbean Sea) where it is characterized by offsets of seafloor sediments estimated to be of late Quaternary age. Using both 1:18,500 scale air photographs taken in 1936 and 1:40,000 scale photographs taken by the U.S. Department of Agriculture in 1986, we iDentified geomorphic features suggestive of Quaternary fault movement in the A??asco Valley, including aligned and Deflected drainages, apparently offset terrace risers, and mountain-facing scarps. Many of these features suggest right-lateral displacement. Mapping of Paleogene bedrock units in the uplifted La CaDena range adjacent to the Cerro GoDen fault zone reveals the main tectonic events that have culminated in late Quaternary normal-oblique displacement across the Cerro GoDen fault. Cretaceous to Eocene rocks of the La CaDena range exhibit large folds with wavelengths of several kms. The orientation of folds and analysis of fault striations within the folds indicate that the folds formed by northeast-southwest shorTening in present-day geographic coordinates. The age of Deformation is well constrained as late Eocene-early Oligocene by an angular unconformity separating folDed, Deep-marine

  17. Slope Deposits and (Paleo)Soils as Geoarchives to Reconstruct Late Quaternary Environments of Southern Africa

    NASA Astrophysics Data System (ADS)

    Huerkamp, K.; Voelkel, J.; Heine, K.; Bens, O.

    2009-04-01

    Although it is clear that large, rapid temperature changes have occurred during the last glacial-interglacial cycle and the Holocene in southern Africa, we have only limited, and often imprecise, knowledge of how the major moisture-bearing atmospheric circulation systems have reacted to these changes. Using slope deposits and soils as palaeoclimatic geoarchives we will overcome these constraints. The role of many geoarchives in the reconstruction of the Quaternary climate in southern Africa remains controversial, since the paleoclimate data are based on evidence from marine cores, lake sediments, speleothems and spring sinter, fluvial sediments, aeolian sands and dust, colluvium, and coastal sediments. To elucidate climate controls on Quaternary landscape evolution and to use these data for palaeoclimatic reconstructions, thus far slope deposits and soils have been investigated. Climatic controls on these cycles are incompletely known. The availability of results from earlier fieldwork, micromorphology, Optical Stimulated Luminescence (OSL), 14C dating and stable carbon isotope analysis will permit a thorough assessment of slope deposits and soils in terms of their palaeoenvironmental potential. The knowledge of suitable areas and sites in different climatic zones of southern Africa where slope deposits and soils have already been found document the late Quaternary climatic history and even climatic anomalies (e.g. Younger Dryas period at Eksteenfontein, 8.2 ka event at Tsumkwe, 4 ka event in the Auob valley, Little Ice Age in the Namib Desert). The findings will show the late Quaternary history of precipitation fluctuations, of the shifting of the ITCZ (and the ABF - Agulhas-Benguela Front), of wind intensities and directions, and of extreme precipitation events. The project will employ state-of-the-art geoscience methodology to interpret the record of precipitation changes of the late Quaternary, including the shifting of the summer and winter rain belts, the

  18. A model of late quaternary landscape development in the Delaware Valley, New Jersey and Pennsylvania

    USGS Publications Warehouse

    Ridge, J.C.; Evenson, E.B.; Sevon, W.D.

    1992-01-01

    In the Delaware Valley of New Jersey and eastern Pennsylvania the late Quaternary history of colluviation, fluvial adjustment, and soil formation is based on the ages of pre-Wisconsinan soils and glacial deposits which are indicated by feld relationships and inferred from mid-latitude climate changes indicated by marine oxygen-isotope records. The area is divided into four terranes characterized by sandstone, gneiss, slate and carbonate rocks. Since the last pre-Wisconsinan glaciation (> 130 ka, inferred to be late Illinoian), each terrane responded differently to chemical and mechanical weathering. During the Sangamon interglacial stage (??? 130-75 ka) in situ weathering is inferred to have occurred at rates greater than transportation of material which resulted in the formation of deep, highly weathered soil and saprolite, and dissolution of carbonate rocks. Cold climatic conditions during the Wisconsinan, on the other hand, induced erosion of the landscape at rates faster than soil development. Upland erosion during the Wisconsinan removed pre-Wisconsinan soil and glacial sediment and bedrock to produce muddy to blocky colluvium, gre??zes lite??es, and alluvial fans on footslopes. Fluvial gravel and overlying colluvium in the Delaware Valley, both buried by late Wisconsinan outwash, are inferred to represent episodes of early and middle Wisconsinan (??? 75-25 ka) upland erosion and river aggradiation followed by river degradation and colluvium deposition. Early-middle Wisconsinan colluvium is more voluminous than later colluvium despite colder, possibly permafrost conditions during the late Wisconsinan ??? 25-10 ka). Extensive colluviation during the early and middle Wisconsinan resulted from a longer (50 kyr), generally cold interval of erosion with a greater availability of easily eroded pre-Wisconsinan surficial materials on uplands than during the late Wisconsinan. After recession of late Wisconsinan ice from its terminal position, soil formation and

  19. Late quaternary geologic framework, north-central Gulf of Mexico

    USGS Publications Warehouse

    Kindinger, Jack G.; Penland, Shea; Williams, S. Jeffress; Brooks, Gregg R.; Suter, John R.; McBride, Randolph A.

    1991-01-01

    The geologic framework of the north-central Gulf of Mexico shelf is composed of multiple, stacked, delta systems. Shelf and nearshore sedimentary facies were deposited by deltaic progradation, followed by shoreface erosion and submergence. A variety of sedimentary facies has been identified, including prodelta, delta fringe, distributary, lagoonal, barrier island, and shelf sand sheet. This study is based on the interpretation and the synthesis of > 6,700 km of high-resolution seismic profiles, 75 grab samples, and 77 vibracores. The nearshore morphology, shallow stratigraphy, and sediment distribution of the eastern Louisiana shelf are the products of transgressive sedimentary processes reworking the abandoned St. Bernard delta complex. Relatively recent Mississippi delta lobe consists primarily of fine sand, silt, and clay. In the southern portion of the St. Bernard delta complex, asymmetrical sand ridges (>5 m relief) have formed as the result of marine reworking of distributary mouth-bar sands. Silty sediments from the modern Mississippi Birdsfoot delta onlap the St. Bernard delta complex along the southern edge. The distal margin of the St. Bernard complex is distinct and has a sharp contact on the north near the Mississippi Sound barrier island coastline and a late Wisconsinan delta to the south. The Chandeleur Islands and the barrier islands of Mississippi Sound have been formed by a combination of Holocene and Pleistocene fluvial processes, shoreface erosion, and ravinement of the exposed shelf. Sediments underlying the relatively thin Holocene sediment cover are relict fluvial sands, deposited during the late Wisconsinan lowstand. Subsequent relative sea-level rise allowed marine processes to rework and redistribute sediments that formed the nearshore fine-grained facies and the shelf sand sheet.

  20. Late Quaternary denudation, Death and Panamint Valleys, eastern California

    USGS Publications Warehouse

    Jayko, A.S.

    2005-01-01

    Late Quaternary denudation rates are constrained from alluvial fans and tributary watersheds in central Death and Panamint Valleys. Preliminary results suggest that the denudation rate is in part a function of the mean watershed elevation. Rainfall increases semi-logarithmically with higher elevation to about 2500 m where it becomes limited by the regional average maximum moisture content of the air mass. The fan volumes show a power-law relation to the watershed areas. The fan volumes ranged from about 250,000 to 4000 km3 and the watershed areas range from about 60,000 to 2000 km2. The upper limit of the denudation rates estimated from small Death Valley fans restricted to the east side of the basin along the Black Mountain frontal scarp range between about 0.03 to 0.18 mm/yr. The maximum is made by assuming most of the clastic accumulation in these fans followed the last highstand of Lake Manly around 24,000 yr which is the least conservative condition. The upper limit of the denudation rates from the Panamint fans range from 0.04 to 0.20 mm/yr assuming the accumulation mainly postdates OIS-4 ???60,000 yr or OIS-2 ???20,000 yr based on the presence or absence of inset shorelines from the last glacial-pluvial maximum. The greater denudation rate associated with the higher mean watershed elevations can mainly be attributed to the greater rainfall at higher elevation. Denudation rates are about a third or less of the Neogene dip-slip rates reported from nearby active faults consistent with relief increasing during dryer periods. ?? 2005 Elsevier B.V. All rights reserved.

  1. Late Quaternary sackungen in the highest mountains of the Carpathians

    NASA Astrophysics Data System (ADS)

    Pánek, Tomáš; Mentlík, Pavel; Engel, Zbyněk; Braucher, Règis; Zondervan, Albert

    2017-03-01

    Sackungen represents a common mode of deep-seated rock-slope failures in alpine landscapes, but proof of their temporal and causal relationship to extrinsic factors such as climatic changes, glacier retreat or seismic activity remains elusive. Based on the terrestrial cosmogenic nuclide (TCN) dating of 18 sackung scarps supported by one radiocarbon-dated scarp, we reconstructed the post-glacial chronology of sackungen in the Tatra Mts. (central Europe, Slovakia and Poland), the highest part of the Carpathians. The obtained ages (∼15.7-4.3 ka) indicate that sackungen post-date the regional LGM and some of them originated soon after the glacier withdrawal from adjacent valleys. Furthermore, systematic decrease of scarp ages with their increasing altitude suggests a direct link between sackung origin and post-LGM glacier thinning. However, substantial lag (>5 ka) of some sackungen in respect to glacier retreat implies complex relationships between sackung onset and deglaciation where retreat of glaciers acted predominantly as a preparatory, not a triggering factor during the genesis of these slope deformations. They originated either as a consequence of stress relaxation within the rock mass lasting several ka or alternatively could be triggered by climatic processes or seismicity. Indeed, a significant part of sackung activity took place during predominantly warmer and more humid periods, with some dates coinciding with the Bølling-Allerød chronozone, but especially with the onset of the Holocene and the Holocene Climatic Optimum. Earthquake triggering is less probable, as the Tatra Mts. lack significant modern and historic seismic activity and there is no geomorphic evidence of fault offsets on the Late Quaternary landforms. In concert with other recent studies, we propose that large rock slope failures in high mountains seldom react immediately to glacier withdrawal, but could display temporal delay lasting up to several millennia.

  2. Late Quaternary Productivity Records from Coccolith Sr/Ca

    NASA Astrophysics Data System (ADS)

    Stoll, H. M.; Burke, A.; Mejia Ramirez, L. M.; Shimizu, N.; Ziveri, P. P. I.

    2014-12-01

    The Sr/Ca of coccoliths has been proposed as an indicator of productivity on the basis of correlation with export production in sediment traps and across upwelling productivity gradients, although the mechanism responsable for this relationship is not clear. For diverse oceanographic settings in the Late Quaternary, we compare coccolith Sr/Ca productivity records with those of other productivity indicators and proxies for mechanisms of productivity forcing. For the Somalia Basin in the Arabian Sea, coccolith Sr/Ca shows a large variation coherent with precessional forcing of wind strength as a mechanism for productivity regulation. During the glacial, the Sr/Ca peak is decoupled from productivity indicators based on organic C accumulation rate. For the Northern Bay of Bengal, coccolith Sr/Ca, Ba/Ti, and relative abundance of G. bulloides, all suggest greater productivity during the interglacial periods, consisted with Nd isotopic evidence for greater riverine nutrient inputs. In the Andaman Sea, coccolith Sr/Ca is highest during precessional maxima in the summer monsoon, consistent with proxies for chemical weathering in the Irawaddy rivershed. In the Eastern Mediterranean, coccolith Sr/Ca is on average low, and peaks during the E. Holocene interval characterized by deposition of sapropel S1. The peak in Sr/Ca however is comparable to the level maintained throughout the Holocene in the Western Mediterranean, where no sapropel occurs, implicating deepwater oxygen levels as a significant contributor to sapropel formation. Finally, on the Agulhas Bank, minima in coccolith Sr/Ca occur during obliquity minima which are periods of anomalous equatorward deposition of IRD in the Southern Ocean. Northward explansion of the westerly wind field during these cold intervals, block upwelling on the Agulhas Bank and result in low productivity.

  3. Late Quaternary Advance and Retreat of an East Antarctic Ice Shelf System: Insights from Sedimentary Beryllium-10 Concentrations

    NASA Astrophysics Data System (ADS)

    Guitard, M. E.; Shevenell, A.; Domack, E. W.; Rosenheim, B. E.; Yokoyama, Y.

    2014-12-01

    Observed retreat of Antarctica's marine-based glaciers and the presence of warm (~2°C) modified Circumpolar Deep Water on Antarctica's continental shelves imply ocean temperatures may influence Antarctic cryosphere stability. A paucity of information regarding Late Quaternary East Antarctic cryosphere-ocean interactions makes assessing the variability, timing, and style of deglacial retreat difficult. Marine sediments from Prydz Bay, East Antarctica contain hemipelagic siliceous mud and ooze units (SMO) alternating with glacial marine sediments. The record suggests Late Quaternary variability of local outlet glacier systems, including the Lambert Glacier/Amery Ice Shelf system that drains 15% of the East Antarctic Ice Sheet. We present a refined radiocarbon chronology and beryllium-10 (10Be) record of Late Quaternary depositional history in Prydz Channel, seaward of the Amery Ice Shelf system, which provides insight into the timing and variability of this important outlet glacier system. We focus on three piston cores (NBP01-01, JPC 34, 35, 36; 750 m water depth) that contain alternating SMO and granulated units uninterrupted by glacial till; the record preserves a succession of glacial marine deposits that pre-date the Last Glacial Maximum. We utilize the ramped pyrolysis preparatory method to improve the bulk organic carbon 14C-based chronology for Prydz Channel. To determine if the SMO intervals reflect open water conditions or sub-ice shelf advection, we measured sedimentary 10Be concentrations. Because ice cover affects 10Be pathways through the water column, sedimentary concentrations should provide information on past depositional environments in Prydz Channel. In Prydz Channel sediments, 10Be concentrations are generally higher in SMO units and lower in glacial units, suggesting Late Quaternary fluctuations in the Amery Ice Shelf. Improved chronologic constraints indicate that these fluctuations occurred on millennial timescales during the Last Glacial

  4. Vegetation ecotone dynamics in Southwest Alaska during the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Brubaker, Linda B.; Anderson, Patricia M.; Hu, Feng Sheng

    2001-01-01

    To examine Late Quaternary vegetation change across the modern vegetation gradient from continuous boreal forest (central Alaska) to Betula shrub tundra (Bristol Bay region), pollen records from Idavain and Snipe Lakes are described and compared to those of four other sites in southwest Alaska. Major features of the vegetation history at Idavain Lake include herb-dominated tundra (ca 14-12 ka BP), mixed herb/ Betula shrub tundra (ca 12-8 ka BP), and Alnus/Betula shrub tundra (8 ka BP to present). The Snipe Lake record reveals a brief period of herb tundra (>12 ka BP), Betula shrub tundra (ca 12-8.5 ka BP), and Picea forest mixed with Alnus/Betula shrub tundra (ca 8 ka BP to present). Comparisons with other pollen records indicate that southwest Alaska has been the location of major vegetation ecotones throughout the last 12 ka years. Northern areas have consistently been dominated by larger growth forms (shrubs or trees) than have southern areas. During the Betula period (12-8 ka BP), a dense Betula shrubland occupied central Alaska, changing to a mixed low- Betula shrub and herb tundra in the south. In the Alnus/Picea period (8 ka BP to present), Picea and Betula trees were more common to the north; Alnus and Betula shrubs more abundant to the south. Vegetation dynamics have been complex at individual sites and across the region. Each site shows both long- and short-term shifts in major taxa, but the magnitude of these changes varies across the transect. In addition, some pollen changes appear to be synchronous among sites (within the constraints of existing chronologies), whereas others are strikingly time transgressive across the region. Similar vegetation dynamics at all sites are: (1) long-term decreases in herb taxa during the Betula period, (2) short-term oscillations between Betula shrubs and herbs during the Betula period, and (3) major increase in Alnus shrubs ca 8 ka BP. Significant differences among sites include: (1) major expansion of Populus trees in

  5. A rock-magnetic record from Lake Baikal, Siberia: Evidence for Late Quaternary climate change

    USGS Publications Warehouse

    Peck, J.A.; King, J.W.; Colman, Steven M.; Kravchinsky, V.A.

    1994-01-01

    Rock-magnetic measurements of sediment cores from the Academician Ridge region of Lake Baikal, Siberia show variations related to Late Quaternary climate change. Based upon the well-dated last glacial-interglacial transition, variations in magnetic concentration and mineralogy are related to glacial-interglacial cycles using a conceptual model. Interglacial intervals are characterized by low magnetic concentrations and a composition that is dominated by low coercivity minerals. Glacial intervals are characterized by high magnetic concentrations and increased amounts of high coercivity minerals. The variation in magnetic concentration is consistent with dilution by diatom opal during the more productive interglacial periods. We also infer an increased contribution of eolian sediment during the colder, windier, and more arid glacial conditions when extensive loess deposits were formed throughout Europe and Asia. Eolian transport is inferred to deliver increased amounts of high coercivity minerals as staining on eolian grains during the glacial intervals. Variations in magnetic concentration and mineralogy of Lake Baikal sediment correlate to the SPECMAP marine oxygen-isotope record. The high degree of correlation between Baikal magnetic concentration/mineralogy and the SPECMAP oxygen-isotope record indicates that Lake Baikal sediment preserves a history of climate change in central Asia for the last 250 ka. This correlation provides a method of estimating the age of sediment beyond the range of the radiocarbon method. Future work must include providing better age control and additional climate proxy data, thereby strengthening the correlation of continental and marine climate records. ?? 1994.

  6. Late quaternary evolution of the Orinoco Delta, Venezuela

    USGS Publications Warehouse

    Warne, A.G.; Guevara, E.H.; Aslan, A.

    2002-01-01

    The modern Orinoco Delta is the latest of a series of stacked deltas that have infilled the Eastern Venezuelan Basin (EVB) since the Oligocene. During the late Pleistocene sea-level lowstand (20,000 to 16,000 yrs BP), bedrock control points at the position of the present delta apex prevented the river channel from incising as deeply as many other major river systems. Shallow seismic data indicate that the late Pleistocene Orinoco incised into the present continental shelf, where it formed a braided-river complex that transported sediment to a series of shelf-edge deltas. As sea level rose from 16,000 to 9,500 yrs BP, the Orinoco shoreline shifted rapidly landward, causing shallow-marine waves and currents to form a widespread transgressive sand unit. Decelerating sea-level rise and a warmer, wetter climate during the early Holocene (9,500 to 6,000 yrs BP) induced delta development within the relatively quiet-water environment of the EVB embayment. Sea level approached its present stand in the middle Holocene (6,000 to 3,000 yrs BP), and the Orinoco coast prograded, broadening the delta plain and infilling the EVB embayment. Significant quantities of Amazon sediment began to be transported to the Orinoco coast by littoral currents. Continued progradation in the late Holocene caused the constriction at Boca de Serpientes to alter nearshore and shelf hydrodynamics and subdivide the submarine delta into two distinct areas: the Atlantic shelf and the Gulf of Paria. The increased influence of littoral currents along the coast promoted mudcape development. Because most of the water and sediment were transported across the delta plain through the Rio Grande distributary in the southern delta, much of the central and northwestern delta plain became sediment starved, promoting widespread accumulation of peat deposits. Human impacts on the delta are mostly associated with the Volca??n Dam on Can??o Manamo. However, human activities have had relatively little effect on the

  7. Late Quaternary Megafaunal Extinctions in Northern Eurasia: Latest Results

    NASA Astrophysics Data System (ADS)

    Stuart, Anthony

    2010-05-01

    Anthony J. Stuart1 & Adrian M. Lister2 1 Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK. Email: tony.s@megafauna.org.uk 2 Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. Email: a.lister@nhm.ac.uk. The global extinction of many spectacular species of megafauna (large terrestrial mammals, together with a few large reptiles and birds) within the last c. 50,000 years (Late Quaternary) has been attributed on the one hand to ‘overkill' by human hunters and on the other to environmental change. However, in spite of more than half a century of active interest and research the issue remains unresolved, largely because there are insufficient dated records of megafaunal species for most parts of the world. Northern Eurasia is an especially fruitful region in which to research megafaunal extinctions as it has a wealth of megafaunal material and crucially most extinctions occurred well within the range of radiocarbon dating. Our approach, in a series of projects over the last decade funded by the UK Natural Environment Research Council (NERC), involves amassing radiocarbon dates made directly on megafaunal material from across the entire region: a) by submitting a substantial number of samples (so far c. 500 dates) for AMS dating at Oxford (ORAU); b) obtaining AMS dates from colleagues working on aDNA projects; and c) carefully screening (‘auditing') dates from the literature. The dates (calibrated using OxCal) are plotted as time-sliced maps and as chronological/geographical charts. In our previous work we targeted a range of extinct species from Northern Eurasia: woolly mammoth, woolly rhinoceros, giant deer, cave bear (in collaboration with Martina Pacher), cave lion, and spotted hyaena (which survives today only in Sub-Saharan Africa). By this means we have established a reliable chronology for these extinctions which we are able to compare with the climatic, vegetational and

  8. Micropaleontologic record of late Pliocene and Quaternary paleoenvironments in the northern Albemarle Embayment, North Carolina, U.S.A.

    USGS Publications Warehouse

    Culver, S.J.; Farrell, K.M.; Mallinson, D.J.; Horton, B.P.; Willard, D.A.; Thieler, E.R.; Riggs, S.R.; Snyder, S.W.; Wehmiller, J. F.; Bernhardt, C.E.; Hillier, C.

    2008-01-01

    Micropaleontological data provide a strong actualistic basis for detailed interpretations of Quaternary paleoenvironmental change. The 90??m-thick Quaternary record of the Albemarle Embayment in the mid-Atlantic coastal plain of the USA provides an excellent opportunity to use such an approach in a region where the details of Quaternary environmental change are poorly known. The foraminiferal record in nine cores from the northern Outer Banks, east of Albemarle Sound, North Carolina, indicates the deposition of subhorizontal, mostly open-marine early to late Pleistocene units unconformably upon a basement of late Pliocene reduced-oxygen, fine-grained, shelf-basin deposits. Pollen data record several warm-cool fluctuations within the early to mid-Pleistocene deposits. Diatom data indicate that some fresh and brackish-water units occur within the generally open-marine Pleistocene succession. A channel cut by the paleo-Roanoke River during the last glacial sea-level lowstand occurs in the northern part of the study area. Pollen indicates that the basal fluvial valley fill accumulated in cooler than modern climate conditions in the latest Pleistocene. Overlying silts and muds accumulated under cool climatic, estuarine conditions according to diatom and pollen data. Radiocarbon ages from the estuarine deposits indicate that the bulk of these sediments accumulated during the latest Pleistocene. The estuarine channel-fill deposits are overlain by Holocene open-marine sands deposited as the rising sea transgressed into the estuary approximately 8.5 to 9.0??kyr BP. Within the barrier island drill cores of this study, fully marine sedimentation occurred throughout the Holocene. However, immediately west of the present barrier island, mid- to late Holocene estuarine deposits underlie the modern Albemarle Sound. The islands that currently form a continuous barrier across the mouth of Albemarle Sound have a complex history of Holocene construction and destruction and large

  9. Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets.

    PubMed

    Vance, Derek; Teagle, Damon A H; Foster, Gavin L

    2009-03-26

    Rivers are the dominant source of many elements and isotopes to the ocean. But this input from the continents is not balanced by the loss of the elements and isotopes through hydrothermal and sedimentary exchange with the oceanic crust, or by temporal changes in the marine inventory for elements that are demonstrably not in steady state. To resolve the problem of the observed imbalance in marine geochemical budgets, attention has been focused on uncertainties in the hydrothermal and sedimentary fluxes. In recent Earth history, temporally dynamic chemical weathering fluxes from the continents are an inevitable consequence of periodic glaciations. Chemical weathering rates on modern Earth are likely to remain far from equilibrium owing to the physical production of finely ground material at glacial terminations that acts as a fertile substrate for chemical weathering. Here we explore the implications of temporal changes in the riverine chemical weathering flux for oceanic geochemical budgets. We contend that the riverine flux obtained from observations of modern rivers is broadly accurate, but not representative of timescales appropriate for elements with oceanic residence longer than Quaternary glacial-interglacial cycles. We suggest that the pulse of rapid chemical weathering initiated at the last deglaciation has not yet decayed away and that weathering rates remain about two to three times the average for an entire late Quaternary glacial cycle. Taking into account the effect of the suggested non-steady-state process on the silicate weathering flux helps to reconcile the modelled marine strontium isotope budget with available data. Overall, we conclude that consideration of the temporal variability in riverine fluxes largely ameliorates long-standing problems with chemical and isotopic mass balances in the ocean.

  10. Seismic stratigraphy and late Quaternary shelf history, south-central Monterey Bay, California

    USGS Publications Warehouse

    Chin, J.L.; Clifton, H.E.; Mullins, H.T.

    1988-01-01

    The south-central Monterey Bay shelf is a high-energy, wave-dominated, tectonically active coastal region on the central California continental margin. A prominent feature of this shelf is a sediment lobe off the mouth of the Salinas River that has surface expression. High-resolution seismic-reflection profiles reveal that an angular unconformity (Quaternary?) underlies the entire shelf and separates undeformed strata above it from deformed strata below it. The Salinas River lobe is a convex bulge on the shelf covering an area of approximately 72 km2 in water depths from 10 to 90 m. It reaches a maximum thickness of 35 m about 2.5 km seaward of the river mouth and thins in all directions away from this point. Adjacent shelf areas are characterized by only a thin (2 to 5 m thick) and uniform veneer of sediment. Acoustic stratigraphy of the lobe is complex and is characterized by at least three unconformity-bounded depositional sequences. Acoustically, these sequences are relatively well bedded. Acoustic foresets occur within the intermediate sequence and dip seaward at 0.7?? to 2.0??. Comparison with sedimentary sequences in uplifted onshore Pleistocene marine-terrace deposits of the Monterey Bay area, which were presumably formed in a similar setting under similar processes, suggests that a general interpretation can be formulated for seismic stratigraphic patterns. Depositional sequences are interpreted to represent shallowing-upwards progradational sequences of marine to nonmarine coastal deposits formed during interglacial highstands and/or during early stages of falling sea level. Acoustic foresets within the intermediate sequence are evidence of seaward progradation. Acoustic unconformities that separate depositional sequences are interpreted as having formed largely by shoreface planation and may be the only record of the intervening transgressions. The internal stratigraphy of the Salinas River lobe thus suggests that at least several late Quaternary

  11. Stratigraphical and palynological appraisal of the Late Quaternary mangrove deposits of the west coast of India

    NASA Astrophysics Data System (ADS)

    Kumaran, K. P. N.; Nair, K. M.; Shindikar, Mahesh; Limaye, Ruta B.; Padmalal, D.

    2005-11-01

    The organic deposits derived from the mangrove swamps form reliable stratigraphic markers within the Late Quaternary sequence of Kerala-Konkan Basin. Three generations of such deposits have been identified. The older one is dated to around 43,000-40,000 14C yr B.P., with a few dates beyond the range of radiocarbon. The younger ones date from the Middle Holocene to latest Pleistocene (10,760-4540 14C yr B.P.) and the Late Holocene (<4000 14C yr B.P.). Pollen analyses confirm that the deposits are mostly derived from the mangrove vegetation. Peat accumulation during the period 40,000-28,000 14C yr B.P. can be correlated with the excess rainfall, 40-100% greater than modern values, of the Asian summer monsoon. The low occurrence of mangrove between 22,000 and 18,000 14C yr B.P. can be attributed to the prevailing aridity and/or reduced precipitation associated worldwide with Last Glacial Maximum, because exposure surfaces and ferruginous layers are commonly found in intervals representing this period. The high rainfall of 11,000-4000 14C yr B.P. is found to be the most significant as the mangrove reached an optimum growth around 11,000 14C yr B.P. but with periods of punctuated weaker monsoons. From the present and previous studies, it has been observed that after about 5000 or 4000 14C yr B.P., the monsoons became gradually reduced leading to drying up of many of the marginal marine mangrove ecosystems. A case study of Hadi profile provided an insight to the relevance of magnetic susceptibility (χ) to record the ecological shift in Late Holocene.

  12. Late Quaternary tectonics in the inner Northern Apennines (Siena Basin, southern Tuscany, Italy) and their seismotectonic implication

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Capezzuoli, Enrico; Martini, Ivan; Picozzi, Matteo; Sandrelli, Fabio

    2014-05-01

    Defining the most recent Quaternary tectonics represents a challenging task for neotectonic, palaeoseismological and seismotectonic studies. This paper focuses on an integrated approach to reconstructing the latest Quaternary deformation affecting the northern part of the Siena Basin (inner Northern Apennines, i.e., southern Tuscany, Italy) near the town of Siena, and to discuss the seismological implications. Field work and structural and stratigraphic analyses, coupled with the interpretation of reflection seismic lines, have been combined to define the geometry, kinematics and age of mesoscopic to map-scale faults which have affected the mainly Quaternary continental and Pliocene marine deposits. The resulting dataset describes a tectonic setting characterized by coeval SW- and NW-trending transtensional and normal faults, respectively, dissecting alluvial sediments younger than 23.9 ± 0.23 ka. Seismic interpretation sheds light on the geometrical setting of the faults at deeper levels, down to 1-2 km, and provides support for the presence of a wide brittle shear zone defined by conjugated fault segments, locally giving rise to an asymmetrical negative flower-like structure. Faults and their damage zones have controlled (and still control) the discharge of gas vents (mainly CO2 and H2S) and hydrothermal circulation (which deposits travertine) since at least 23.216 ± 0.124 ka. The resulting complete data set provides support for our description of the Neogene-Quaternary tectonics which were active until the late Quaternary, providing additional information about the seismotectonic framework of an area characterized by low seismicity and generally low-magnitude earthquakes (M < 4), but having experienced significant seismic events over the last few centuries.

  13. Late Quaternary molluscan assemblages from the coastal area of Bahía Bustamante (Patagonia, Argentina): Paleoecology and paleoenvironments

    NASA Astrophysics Data System (ADS)

    Aguirre, Marina L.; Sirch, Yamila Negro; Richiano, Sebastián

    2005-10-01

    Variations in the composition, distribution, and diversity of molluscan assemblages from Patagonian marine terraces (MT) formed during the late Quaternary sea-level highstands and neotectonic events—between the late Pleistocene, mid-Holocene, and present—are discussed. Molluscs and associated macrofauna (balanids, brachiopods, polychaetes, bryozoans) from nine fossiliferous localities and three modern sites suggest paleoecological, paleobiogeographical, and paleoenvironmental implications for paleoclimatic interpretations of the coastal area of Bahia Bustamante-Caleta Malaspina (˜44.9 and 45.3°S) since marine oxygen isotope stage (MOIS) 7. Crepidula protea, Buccinanops paytensis, and Brachidontes rodriguezi are first recorded for the late Pleistocene MTIV (MOIS5-7); Nacella (Patinigera) deaurata, Epitonium magellanicum, B. paytensis, Aequipecten tehuelchus, and Clausinella gayi are recorded for the mid-Holocene MTVI (MOIS1) in the area. These molluscs currently live in the SW Atlantic, but Venericardia procera represents a northward migration and Tegula atra a faunal extinction in response to climate change. Overall, they indicate hard substrates, shallow waters, and truly marine conditions, similar to the modern littoral. With respect to temperature, the qualitative, quantitative, morphological, and distributional variations suggest slightly higher SST during the mid-Holocene (MTVI, MOIS1, hypsithermal), colder for MTV (MOIS5c?, 5a?), and warmer or similar for MTIV (MOIS5e, 7?).

  14. A chronology of alluvial fan response to Late Quaternary sea level and climate change, Crete

    NASA Astrophysics Data System (ADS)

    Pope, Richard J. J.; Candy, Ian; Skourtsos, Emmanuel

    2016-09-01

    To better understand how fluvial systems respond to late Quaternary climatic forcing OSL and U-series dating was applied to stratigraphically significant sedimentary units within a small (<6.5 km2) alluvial fan system (the Sphakia fan) in southwest Crete. The resultant chronology (comprising 32 OSL and U-series ages) makes Sphakia fan one of the best dated systems in the Mediterranean and suggests that Cretan fans responded to climate in two ways. First, during the transitions between Marine Isotope Stage (MIS) 5a/4 and MIS 2/1 Sphakia fan was characterised by significant entrenchment and distal shift in the zone of deposition. It is proposed that the phases of entrenchment were driven by sea level induced base level fall during MIS 5a/4 and landscape stabilisation during the onset of the current interglacial (MIS 2/1). Second, with the exception of these two entrenchment episodes fan alluviation occurred across the entire last interglacial/glacial cycle in all climatic settings i.e. interglacials, interstadials and stadials. It is likely that the topographic setting of the catchment supplying sediment to Sphakia fan maintained high sediment transfer rates during most climatic settings enabling fan aggradation to occur except during major climatic driven transitions i.e. major sea level fall and postglacial vegetation development.

  15. Tropical Rain Forest and Climate Dynamics of the Atlantic Lowland, Southern Brazil, during the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Behling, Hermann; Negrelle, Raquel R. B.

    2001-11-01

    Palynological analysis of a core from the Atlantic rain forest region in Brazil provides unprecedented insight into late Quaternary vegetational and climate dynamics within this southern tropical lowland. The 576-cm-long sediment core is from a former beach-ridge "valley," located 3 km inland from the Atlantic Ocean. Radio-carbon dates suggest that sediment deposition began prior to 35,000 14C yr B.P. Between ca. 37,500 and ca. 27,500 14C yr B.P. and during the last glacial maximum (LGM; ca. 27,500 to ca. 14,500 14C yr B.P.), the coastal rain forest was replaced by grassland and patches of cold-adapted forest. Tropical trees, such as Alchornea, Moraceae/Urticaceae, and Arecaceae, were almost completely absent during the LGM. Furthermore, their distributions were shifted at least 750 km further north, suggesting a cooling between 3°C and 7°C and a strengthening of Antarctic cold fronts during full-glacial times. A depauperate tropical rain forest developed as part of a successional sequence after ca. 12,300 14C yr B.P. There is no evidence that Araucaria trees occurred in the Atlantic lowland during glacial times. The rain forest was disturbed by marine incursions during the early Holocene period until ca. 6100 14C yr B.P., as indicated by the presence of microforaminifera. A closed Atlantic rain forest then developed at the study site.

  16. Response of surface water masses and circulation to Late Quaternary climate change east of New Zealand

    NASA Astrophysics Data System (ADS)

    Weaver, Philip P. E.; Carter, Lionel; Neil, Helen L.

    1998-02-01

    A series of cores from east of New Zealand have been examined to determine the paleoceanographic history of the late Quaternary in the SW Pacific using planktonic foraminiferal data. Distinct shifts of species can be seen between glacial and interglacial times especially south of Chatham Rise east of South Island. Foraminiferal fragmentation ratios and benthic/planktonic foraminiferal ratios both show increased dissolution during glacials, especially isotope stage 2 to the south of Chatham Rise. The present-day Subtropical Convergence appears to be tied to the Chatham Rise at 44°S, but during glacial times this rise separated cold water to the south from much warmer water to the north, with an associated strong thermal gradient across the rise. We estimate that this gradient could have presented as much as an 8°C temperature change across 4° of latitude during the maximum of the last ice age. There is only weak evidence of the Younger Dryas cool event, but there is a clear climatic optimum between 8 and 6.4 ka with temperatures 1°-2°C higher than the present day. The marine changes compare well with vegetational changes on both South and North Island.

  17. Sequence stratigraphy and composition of late quaternary shelf-margin deltas, Northern Gulf of Mexico

    SciTech Connect

    Morton, R.A.; Suter, J.R.

    1996-04-01

    High-resolution seismic profiles and foundation borings from the northwestern Gulf of Mexico record the physical attributes and depositional histories of several late Quaternary sequences that were deposited by wave-modified, river-dominated shelf-margin deltas during successive periods of lowered sea level. Each progressively younger deltaic sequence is thinner and exhibits a systematic decrease in the abundance and concentration of sand, which is attributed to a shift in the axes of trunk streams and greater structural influence through time. Our study shows that (1) contemporaneous structural deformation controlled the thickness of each sequence, the oblique directions of delta progradation, the axes of major fluvial channels, and the geometries of delta lobes at the shelf margin; (2) sedimentation was rapid in response to rapid eustatic fluctuations and structural influence; (3) boundaries of these high-frequency sequences are the correlative conformities of updip fluvial incision and coincide with downlap surfaces at the shelf margin; (4) the downlap surfaces are not true surfaces, but zones of parallel reflections that become progressively higher and younger in the direction of progradation; (5) the downlap zones are composed of marine muds that do not contain the high concentrations of shell debris expected in condensed sections; (6) possible paleosols capping the two oldest sequences are regressive surfaces of subaerial exposure that were preserved during transgressions; and (7) no incised valleys or submarine canyons breach the paleoshelf margin, even though incised drainages were present updip and sea level curves indicate several periods of rapid fall.

  18. Late Quaternary terrigenous sedimentary records from the Alpha Ridge, central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Wang, R.; Sun, Y.; Xiao, W.; Li, Q.

    2013-12-01

    Terrigenous components in three sediment cores from the Alpha Ridge, central Arctic Ocean, have been investigated to reconstruct late Quaternary variations in sedimentation, ice-rafted detritus (IRD) provenance, and related climate changes. Established by a combination of variations in Ca and Mn content, color cycles, >63 μm fractions, foraminiferal abundance, AMS14C dating and regional lithological correlation, the core stratigraphy extends back to estimated Marine Isotope Stage 13. IRD (>154 μm and 250 μm), fine sand fraction, mean and median grain sizes increased and decreased during the glacial/deglacial/stadial and interglacial/interstadial periods, respectively, providing evidence of rafting ice transport and IRD unloading to the Alpha Ridge seafloor. The IRD events with high Ca content during the glacial/deglacial/stadial periods point to the source from the Canadian Arctic Archipelago with vast carbonate rock outcrops, and they can be used as reliable stratigraphic markers due to their wide occurrence, likely indicating the collapses of ice sheets, possibly in response to abrupt climate changes. Clay and silt fractions occur consistently at high proportions except for high IRD intervals, suggesting a relatively stable supply of fine-grained sediment. This indicates that glacial-interglacial environmental changes had insignificant influence on the fine-grained sediment input from primarily sea ice transport over the central Arctic Ocean.

  19. Late quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    SciTech Connect

    Brogan, G.E.; Kellogg, K.S.; Terhune, C.L.; Slemmons, D.B.

    1991-12-31

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest- trending pull-apart basin.

  20. Deep-sea ostracode species diversity: Response to late Quaternary climate change

    USGS Publications Warehouse

    Cronin, T. M.; DeMartino, D.M.; Dwyer, G.S.; Rodriguez-Lazaro, J.

    1999-01-01

    Late Quaternary ostracode assemblages from the North Atlantic Ocean were studied to establish the effect of climatic changes of the past 210,000 yr (marine oxygen isotope stages 7-1) on deep-sea benthic biodiversity and faunal composition. Two-hundred and twenty five samples from the Chain 82-24 Core 4PC (41??43'N, 32??51'W, 3427 m water depth) on the western Mid-Atlantic Ridge revealed high amplitude fluctuations in ostracode abundance and diversity coincident with orbital and suborbital scale climate oscillations measured by several paleoceanographic proxy records. During the past 210,000 yr, ostracode biodiversity as measured by species number (S) and the Shannon-Weaver index, H(S), oscillated from H(S) = 0.4 during glacial periods (marine isotope stages 6, 5d, 5b, 4, and 2) to H(S) = 1.1 during interglacial and interstadial periods (stages 7, 5e, 5c, 5a, 3 and 1). A total of 23 diversity peaks could be recognized. Eleven of these signify major periods of high diversity [H(S) > 0.8, S = 10-21] occurring every 15-20 ka. Twelve were minor peaks which may represent millennial-scale diversity oscillations. The composition of ostracode assemblages varies with Krithe-dominated assemblages characterizing glacial intervals, and Argilloecia-Cytheropteron characterizing deglacials, and trachyleberid genera (Poseidonamicus, Echinocythereis, Henryhowella, Oxycythereis) abundant during interglacials. Diversity and faunal composition changes can be matched to independent deep-sea paleoceanographic tracers such as benthic foraminiferal carbon isotopes, Krithe trace elements (Mg/Ca ratios), and to North Atlantic region climate records such as Greenland ice cores. When interpreted in light of ostracode species' ecology, these faunal and diversity patterns provide evidence that deep-sea benthic ecosystems experience significant reorganization in response to climate changes over orbital to millennial timescales.

  1. Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska)

    NASA Astrophysics Data System (ADS)

    Schirrmeister, Lutz; Meyer, Hanno; Andreev, Andrei; Wetterich, Sebastian; Kienast, Frank; Bobrov, Anatoly; Fuchs, Margret; Sierralta, Melanie; Herzschuh, Ulrike

    2016-09-01

    Perennially-frozen deposits are considered as excellent paleoenvironmental archives similar to lacustrine, deep marine, and glacier records because of the long-term and good preservation of fossil records under stable permafrost conditions. A permafrost tunnel in the Vault Creek Valley (Chatanika River Valley, near Fairbanks) exposes a sequence of frozen deposits and ground ice that provides a comprehensive set of proxies to reconstruct the late Quaternary environmental history of Interior Alaska. The multi-proxy approach includes different dating techniques (radiocarbon-accelerator mass spectrometry [AMS 14C], optically stimulated luminescence [OSL], thorium/uranium radioisotope disequilibria [230Th/U]), as well as methods of sedimentology, paleoecology, hydrochemistry, and stable isotope geochemistry of ground ice. The studied sequence consists of 36-m-thick late Quaternary deposits above schistose bedrock. Main portions of the sequence accumulated during the early and middle Wisconsin periods. The lowermost unit A consists of about 9-m-thick ice-bonded fluvial gravels with sand and peat lenses. A late Sangamon (MIS 5a) age of unit A is assumed. Spruce forest with birch, larch, and some shrubby alder dominated the vegetation. High presence of Sphagnum spores and Cyperaceae pollen points to mires in the Vault Creek Valley. The overlying unit B consists of 10-m-thick alternating fluvial gravels, loess-like silt, and sand layers, penetrated by small ice wedges. OSL dates support a stadial early Wisconsin (MIS 4) age of unit B. Pollen and plant macrofossil data point to spruce forests with some birch interspersed with wetlands around the site. The following unit C is composed of 15-m-thick ice-rich loess-like and organic-rich silt with fossil bones and large ice wedges. Unit C formed during the interstadial mid-Wisconsin (MIS 3) and stadial late Wisconsin (MIS 2) as indicated by radiocarbon ages. Post-depositional slope processes significantly deformed both, ground

  2. The influence of climate on species distribution over time and space during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Carotenuto, F.; Di Febbraro, M.; Melchionna, M.; Castiglione, S.; Saggese, F.; Serio, C.; Mondanaro, A.; Passaro, F.; Loy, A.; Raia, P.

    2016-10-01

    Understanding the effect of climate on the composition of communities and its change over time and space is one of the major aims in ecology and paleoecology. Herein, we tackled on this issue by studying late Quaternary large mammal paleocommunities of Eurasia. The late Quaternary was a period of strong environmental instability, especially characterized by the occurrence of the last glacial maximum (LGM). We used community phylogenetics and joint species distribution models in order to understand the factors determining paleocommunity composition in the late Quaternary. Our results support the existence of strong climatic selection operating on the LGM fauna, both through the disappearance of warm-adapted species such as Elephas antiquus, Hippopothamus amphibious, and Stephanorhinus hemitoechus, and by setting the stage for the existence of a community characterized by cold-adapted large mammals. Patterns of abundance in the fossil record, co-occurrence between species pairs, and the extent of climatic forcing on faunal composition, differ between paleocommunities, but not between extinct and extant species, which is consistent with the idea that climate change, rather than the presence of humans, exerted a major effect on the survival of the late Quaternary megafauna.

  3. Late Quaternary seismic stratigraphy and structure of the western insular shelf margin of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Hanzlik, M.; Mann, P.; Abrams, L.; Grindlay, N.

    2005-12-01

    725 km of high-resolution seismic data were collected over the insular shelf of western Puerto Rico to better understand its late Quaternary depositional and structural history. Due to low tectonic uplift rates of onshore areas in this region, well dated late Quaternary sediments and corals have only been identified in a few scattered onland localities around Puerto Rico. Seismic data from the Rio Anasco delta area of western Puerto Rico reveals four main units with characteristic stratal reflection terminations that total about 25 m in thickness. Because of a lack of well information, age estimates of these late Quaternary units are based on correlations with sea level curves derived from dated coral samples from Puerto Rico, St. Croix, and Antigua. Units include: Unit 1 - a gently folded and faulted basal section correlated to the Oliogene-early Pliocene? carbonate shelf of Puerto Rico; deeper penetration, industry MCS lines show that these rocks are deformed in a broad EW-trenching arch; Unit 2 - chaotic channel fill deposits in incisions related to the lowstand equivalent of the Rio Anasco likely formed during the Last Glacial Maximum about 25-15 ka; Unit 3 - roughly stratified deposits onlapping the top of Unit 2; these are interpreted as an estuarine facies deposited during Holocene sea level transgression; Unit 4 - highly stratified deposits related to progradation of the Anasco delta during sea level rise. The base of unit 4 is a downlap surface interpreted as a maximum flooding surface likely formed about 6 ka. East-northeast-striking faults are observed breaking the younger late Quaternary units in three separate zones off the west coast of Puerto Rico. Onland continuations of these faults have not been identified likely due to cultural overprint of natural scarps on late Quaternary floodplains.

  4. Late Quaternary stratigraphy of the eastern Gulf of Maine

    SciTech Connect

    Bacchus, T.S. . Oceanography Dept.); Belknap, D.F. . Geology Dept.)

    1993-03-01

    Five distinct seismic facies describe the glacial, glacial-marine and postglacial sediments in the eastern Gulf of Maine. Regional cross-sections clearly document differences in the glacial-marine and postglacial stratigraphy between basins south of Truxton Swell, and Jordan basin to its north. Till occurs throughout the region as a thin veneer within basins, but thickens significantly over the ridges and swells separating basins. The ubiquitous presence of till suggests grounded ice occupied this area some time in the recent past. Ice-proximal glacial-marine (PGM) facies sediments of varying thickness mantle the entire area, occurring as a draped unit over pre-existing topography. Transitional glacial-marine (TGM) facies also occur as a draped unit, but they show onlap onto basin margins. Sediments of the TGM facies are restricted to areas south of Truxton Swell. Ice-distal glacial-marine (DGM) facies sediments also mantle the entire area, but they occur primarily as a ponded, infilling unit. The nature and distribution of these glacial-marine facies within the eastern Gulf of Maine documents changes in the environment of deposition during deglaciation. In the authors model PGM facies sediments are considered to represent settling through the water column of coarse material from the base of an ice shelf. TGM facies sediments indicate retreat of this ice margin coupled with calving of large icebergs with significant amounts of coarse debris, DGM facies sediments indicate further retreat of the ice margin and a lessening of the influence of icebergs. Stepwise ice-margin retreat from south to north through a series of grounding lines and associated pinning points is evident by these time transgressive sedimentary facies that can be correlated across the region.

  5. Behavior of Late Quaternary and historical faults in the western Basin and Range province

    SciTech Connect

    Bell, J.W. . Nevada Bureau of Mines and Geology)

    1993-04-01

    Quaternary stratigraphic relations and exploratory trenching in zones of historical surface faulting in the western Basin and Range Province suggest that faults with historical surface ruptures have similar, and in some cases lower, long-term (late Quaternary) and short-term (Holocene) slip rates than other adjacent and regional non-historical Quaternary faults. In the 1954 Dixie Valley earthquake (M6.8) zone, the range-front and piedmont faults collectively record a late Quaternary (200 ka) slip rate on the order of 0.2 mm/yr and a Holocene (7--12 ka) slip rate of 0.5--0.8 mm/yr. The principal segment of the 1932 Cedar Mountain earthquake (M7.2) zone has an estimated latest Quaternary (25--35 ka) slip rate of 0.2--0.7 mm/yr and a Holocene (6--13 ka) slip rate of 0.3--0.7 mm/yr. The 1954 Rainbow Mountain earthquakes (M6.6 and M6.8) and 1954 Fairview Peak earthquake (M7.1) zones have late Quaternary slip rates that are lower (< 0.1 mm/yr), and although there are adjacent Holocene faults, neither zone shows surficial evidence of a previous Holocene event as do the first two zones. The 13 ka Lahontan shoreline at Rainbow Mountain is displaced only by the 1954 faulting, and the main segment of the Fairview Peak zone is overlain by a late Pleistocene (60--120 ka) alluvial fan which is offset by only the 1954 event. An important observation its that the central Nevada seismic belt is not unique based on slip rates. The greatest slip rates in the central and western Nevada region are associated with the Sierra Nevada frontal fault zone and the northern Walker Lane (Pyramid Lake) fault zone where Holocene slip rates are [>=] 1 mm/yr. Based on a comparison of Holocene and late Quaternary rates, many, but not all, historical and non-historical zones show evidence of temporal clustering.

  6. Late Quaternary environments and biogeography in the Great Basin

    NASA Astrophysics Data System (ADS)

    Thompson, R. S.; Mead, J. I.

    1982-01-01

    Plant and animal remains found in packrat ( Neotoma spp.) middens and cave fill from the eastern and southern Great Basin region reveal the presence of subalpine conifers and boreal mammals at relatively low elevations during the Late Wisconsin. Limber pine ( Pinus flexilis) and bristlecone pine ( P. longaeva) were important in the late Pleistocene plant communities throughout this region. Spruce ( Picea cf. engelmannii) and common juniper ( Juniperus communis) were present in some of the more northerly localities, and Douglas fir ( Pseudotsuga menziesii) and white fir ( Abies concolor) were present in southern and eastern localities. Single needle pinyon pine ( Pinus monophylla), common across this region today, was apparently not present north of the Sheep Range of southern Nevada during the Late Wisconsin. Pikas ( Ochotona cf. princeps), small boreal mammals present in only a few Great Basin mountain ranges today, were common throughout the region. Heather voles ( Phenacomys cf. intermedius) have been found in two cave fill deposits in Nevada, though they are unknown in the Great Basin today. Limber and bristlecone pines are generally restricted to rocky substrates in modern subalpine habitats in the Great Basin, and this may also have been the case when these plants grew at lower elevations during the Late Wisconsin. Subalpine conifers were present on the rock outcrops sampled by the packrat middens, but shrub communities, perhaps dominated by sagebrush ( Artemisia spp.), may have been present on alluvial valley-bottom substrates. Forested habitats would thus have been isolated habitat islands, as they are today. Boreal small mammals, including pikas and heather voles, were able to colonize the Great Basin mountain ranges during the late Pleistocene. We suggest that these mammals were able to survive in the intervening valley-bottoms under a cool-summer climatic regime, and that continuous forest or woodland corridors were not necessary for migration.

  7. Mapping the late Quaternary evolution of the lower Mississippi Valley

    NASA Astrophysics Data System (ADS)

    Haugerud, R. A.; Simon, K. M.; James, T. S.

    2013-12-01

    The lower Mississippi Valley (LMV) extends from Cape Girardeau to Natchez and from Little Rock to Memphis. Extensive Quaternary terraces within the LMV have been considered to reflect downstream changes in base level (global sea level) and (or) upstream changes in water and sediment input because of glaciation. We suggest that the first-order control on terrace development was glacial-isostatic adjustment (GIA). Observed variation in heights of Quaternary alluvial surfaces at Memphis is 50 m (Rittenour et al., 2007). GIA modeling by Clark et al. (1994) predicted vertical displacement of as much as 130 m at Memphis over the last 18,000 years. ICE-5G models predict smaller displacement and reinforce the viability of GIA as the primary cause of LMV aggradation and incision. Existing analyses of LMV terraces are built on geomorphic maps by Saucier and colleagues (1974, 1994; Autin et al., 1991) that were interpreted from aerial photographs and inch-to-the-mile contour maps. Geomorphic mapping from high-resolution DEMs is more accurate, more rapid, and more reproducible than mapping from aerial photography and intermediate-resolution contours. Working from lidar DEMs (1-5 m XY resolution) and the 10 m National Elevation Dataset (NED) DEM largely derived from 1:24,000 scale contours, Haugerud is mapping the geomorphology of the LMV at ~1:500,000 scale. Goals are to explore the GIA-terrace hypothesis and improve the geomorphic and stratigraphic context for studies of New Madrid seismicity. Mapping leads to several observations: 1. The Holocene floodplain of the Mississippi River onlaps older surfaces. The river appears to be filling a hole created by collapse of the Laurentide forebulge. Continued filling of this accommodation space will, barring human intervention, enable the river to abandon its course through Thebes Gap in favor of a lower-elevation route through Oran Gap. 2. Within Holocene meander belts, younger levee crests are higher than older levee crests. The

  8. Late quaternary plant zonation and climate in southeastern Utah

    SciTech Connect

    Betancourt, J.L.

    1984-01-31

    Plant macrofossils from packrat middens in two southeastern Utah caves outline development of modern plant zonation from the late Wisconsin. Allen Canyon Cave (2195 m) and Fishmouth Cave (1585 m) are located along a continuous gradient of outcropping Navajo Sandstone that extends from the Abajo Mountains south to the San Juan River. By holding the site constant, changes in the floral composition for a plot of less than one hectare can be observed, even if sporadically, over tens of millennia. At Allen Canyon Cave, Engelmann spruce-alpine fir forest was replaced by the present vegetation consisting of pinyon-juniper woodland on exposed ridgetops and cliffside stands of Douglas fir, ponderosa pine, and aspen. Xerophytic woodland plants such as pinyon, plains prickly pear, and narrowleaf yucca arrived sometime in the middle Holocene between 7200 and 3400 B.P. At Fishmouth Cave, Utah juniper in Holocene middens replaced blue spruce, limber pine, Douglas fir, and dwarf and Rocky Mountain junipers in late Wisconsin samples. Quantitative climatic estimates are derived for the late Wisconsin by applying vertical gradients for temperature and precipitation to the amount of vegetation depression. The Fishmouth Cave sequence indicates a minimum lowering of 850 m for blue spruce, limber pine, and dwarf juniper. A depression of at least 700 m for Engelmann spruce and alpine fir is suggested for the Allen Canyon locality. Use of conservatively low gradients for stations below 2080 m yields a 3-4 C cooling from present mean annual temperature and 35 to 60% more rainfall than today. Steeper gradients associated with more mountainous terrain suggest a 5 C lowering in temperature and up to 120% increase over modern precipitation. 81 references, 6 figures, 10 tables.

  9. Late quaternary vegetation development in south-central Illinois

    USGS Publications Warehouse

    Gruger, E.

    1972-01-01

    Pollen and macrofossil evidence for the nature of the vegetation during glacial and interglacial periods in the regions south of the Wisconsinan ice margin is still very scarce. Modern opinions concerning these problems are therefore predominantly derived from geological evidence only or are extrapolated from pollen studies of late Wisconsinan deposits. Now for the first time pollen and macrofossil analyses are available from south-central Illinois covering the Holocene, the entire Wisconsinan, and most probably also Sangamonian and late Illinoian time. The cores studied came from three lakes, which originated as kettle holes in glacial drift of Illinoian age near Vandalia, Fayette County. The Wisconsinan ice sheet approached the sites from the the north to within about 60 km distance only. One of the profiles (Pittsburg Basin) probably reaches back to the late Illinoian (zone 1), which was characterized by forests with much Picea. Zone 2, most likely of Sangamonian age, represents a period of species-rich deciduous forests, which must have been similar to the ones that thrive today south and southeast of the prairie peninsula. During the entire Wisconsinan (14C dates ranging from 38,000 to 21,000 BP) thermophilous deciduous trees like Quercus, Carya, and Ulmus occurred in the region, although temporarily accompanied by tree genera with a more northerly modern distribution, such as Picea, which entered and then left south-central Illinois during the Woodfordian. Thus it is evident that arctic climatic conditions did not prevail in the lowlands of south-central Illinois (about 38??30??? lat) during the Wisconsinan, even at the time of the maximum glaciation, the Woodfordian. The Wisconsinan was, however, not a period of continuous forest. The pollen assemblages of zone 3 (Altonian) indicate prairie with stands of trees, and in zone 4 the relatively abundant Artemisia pollen indicates the existence of open vegetation and stands of deciduous trees, Picea, and Pinus

  10. Biotic response to late Quaternary rapid climate switches in Santa Barbara Basin: Ecological and evolutionary implications

    SciTech Connect

    Cannariato, K.G.; Kennett, J.P.; Behl, R.J.

    1999-01-01

    Benthic foraminiferal assemblages from Santa Barbara Basin exhibit major faunal and ecological switches associated with late Quaternary millennial- to decadal-scale global climate oscillations. Repeated turnovers of entire faunas occurred rapidly (<40--400 yr) without extinction or speciation in conjunction with Dansgaard-Oeschger shifts in thermohaline circulation, ventilation, and climate, confirming evolutionary model predictions of Roy et al. Consistent faunal successions of dysoxic taxa during successive interstadials reflect the extreme sensitivity and adaptation of the benthic ecosystem to the rapid environmental changes that marked the late Quaternary and possibly other transitional intervals in the history of the Earth`s ocean-atmosphere-cryosphere system. These data support the hypothesis that broad segments of the biosphere are well adapted to rapid climate change.

  11. Late quaternary oceanographic conditions in the Western Bering Sea

    NASA Astrophysics Data System (ADS)

    Ovsepyan, E. A.; Ivanova, E. V.; Max, L.; Riethdorf, J.-R.; Nürnberg, D.; Tiedemann, R.

    2013-03-01

    The benthic and planktonic foraminiferal assemblages and the distribution of coarse grain-size factions were studied in the upper 4.5 m of the Core SO201-2-85KL (57°30.30' N, 170°24.79' E, water depth 968 m) retrieved from the Shirshov Ridge. This part of the core covers 7.5 to 50 kyr BP. The glacial period is established to be characterized by low surface water productivity, the wide distribution of sea ice and/or icebergs in this area, and a high oxygen concentration in the bottom layer. Enhanced productivity is inferred from the maximum abundance of planktonic foraminifers at the very beginning of the deglaciation. The late Bølling-Allerød interstadial and the early Holocene were marked by the further two-phase increase in the surface productivity and the weakened ventilation of the bottom water.

  12. Foraminiferal biostratigraphy of the shelf edge: a key to late Quaternary paleoenvironments

    USGS Publications Warehouse

    Poag, C. Wylie; Sidner, B.R.

    1976-01-01

    Foraminiferal assemblages in eight piston cores from West Flower Garden Bank at the edge of the Texas continental shelf contain a nearly complete record of late Quaternary paleoclimatic and geologic events. The faunas are divisible into three distinct successive biofacies on the basis of both planktonic and benthic foraminifers: the basal Inflata Facies accumulated in cool shallow waters during late Pleistocene glaciation; the middle Crassaformis Facies represents a deepening sea that had warming surface waters; the upper Cultrata Facies is characteristic of the Holocene outer-shelf environment. Sea level was at -73 m and -53 m at the end of deposition of the Inflata and Crassaformis Facies, respectively. The biostratigraphic events at West Flower Garden Bank can be accurately correlated with those recorded in the middle and inner shelf and in deep-sea cores. The sequence of late Quaternary sea level and paleotemperature changes in the northern Gulf of Mexico can thereby be reconstructed. Eventually, this knowledge can be integrated with similar data from the shelf edge in other parts of the world to help bridge the gap between the known Quaternary record of the deep sea and that of the continents. ?? 1976.

  13. Tectonic control on the Late Quaternary hydrography of the Upper Tiber Basin (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Benvenuti, Marco; Bonini, Marco; Moroni, Adriana

    2016-09-01

    We examine the intramontane Upper Tiber Basin in the Northern Apennines (central Italy), where sub-orthogonal fault systems forced river deviation and the abandonment of alluvial fans since the late Middle Pleistocene. Archaeological material, spanning the Middle Palaeolithic-Iron Age, was collected mostly from the surface of the Late Quaternary alluvial landforms and related deposits (MUP and HOL units). This information contributed to the partial dating of seven major stages of drainage development. Normal faults parallel and transverse to the basin trend were active at different times and conditioned the valley pattern of the Middle (MUP1-2)-Late (MUP3) Pleistocene Tiber, Singerna, Sovara and Tignana rivers, which still flow today into the basin. The MUP1 and the MUP3 fans were beheaded by the displacement of their feeder valleys along the basin-transverse Carmine and Montedoglio faults. In some cases, the former feeder rivers underwent stream piracy but their courses mostly deviated in response of the topographic gradient created by faulting, as well as through the incision of new valleys that exploited the lithological contrast along the fault lines. The MUP3 Tignana fan was abandoned mostly due to the activity of the basin-parallel, dip-slip Sansepolcro fault. Subsidence driven by the basin-parallel Anghiari and Sansepolcro fault systems also provided the accommodation space for the MUP3 and HOl1-2 Afra fans between Late Pleistocene and early-mid Holocene. This study exemplifies the interplay between longitudinal and transverse fault systems, and the Late Quaternary hydrographic evolution of an extensional basin settled in the axial zone of an active fold-and-thrust belt. Although the faulting has interacted with the forcing exerted by the Late Quaternary climate fluctuations on the basin drainage systems, the tectonic rates are sufficiently high to represent the prime controller on base-level change and drainage routing patterns.

  14. Soil-landscape development and late Quaternary environmental change in coastal Estremadura, Portugal

    NASA Astrophysics Data System (ADS)

    Daniels, Michael; Haws, Jonathan; Benedetti, Michael; Bicho, Nuno

    2015-04-01

    This poster integrates soil-landscape analysis with archaeological survey and paleoenvironmental reconstruction. Soils in surface and buried contexts in Estremadura, Portugal, provide evidence of landscape stability and instability, relative age relationships between landforms, and general paleoenvironmental conditions during the late Quaternary. These factors provide insight into the distribution and condition of Paleolithic archaeological sites and help understand the record of human settlement in the region. Late Pleistocene and Holocene dunes extend inland approximately 10 km from coastal source regions. Surface soils in Holocene dunes under maritime pine (Pinus pinaster) forest exhibit A, E, C/Bh and A, C horizon sequences and classify as Quartzipsamments. Surface soils in late Pleistocene dunes exhibit A, E, Bh, Bhs, Bs horizon sequences and classify as Haplorthods. Both Pleistocene and Holocene dunes commonly bury a heavily weathered soil formed in calcareous sandstone. The boundary between underlying buried soils and overlying surface soils is characterized by a lag deposit of medium to coarse, moderately-rounded gravels, underlain immediately by subsurface Bt and Bss horizons. The lag deposit and absence of buried A horizons both indicate intense and/or prolonged surface erosion prior to burial by late Quaternary dunes. Soil-geomorphic relationships therefore suggest at least two distinct episodes of dune emplacement and subsequent landscape stability following an extensive episode late Pleistocene landscape instability and soil erosion. A conceptual model of soil-landscape evolution through the late Quaternary and Holocene results from the integration of soil profile data, proxy paleoenvironmental data, and the partial record of human settled as revealed in the archaeological record.

  15. Stable isotopes in collagen and Late Quaternary carnivore palaeoecology

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé

    2010-05-01

    Several taxa of large carnivores co-occurred during the late Pleistocene in the steppe-tundra ecosystem, such as wolf Canis lupus, cave lion Panthera leo spelaea, cave hyaena Crocuta crocuta spelaea, brown bear Ursus arctos and cave bear Ursus spelaeus and Ursus ingressus. This abundance of taxa belonging to the same guild raises questions about niche partitioning, especially in terms of dietary specialization and prey selection. Observations of the dietary ecology of the extant relatives of these late Pleistocene carnivores does not provide unambiguous answers as these populations live under very different environmental conditions where other potential prey species are present, but it appears that most of these modern large carnivores are relatively flexible in their prey selection. Palaeontological investigations dealing with faunal associations and activity marks on fossil bones also have their limitations, such as taphonomic biases (palimpsests rather than biological associations) and do not allow the quantification of consumption of various preys. In contrast, carbon and nitrogen isotopic signatures of bone collagen depend directly on those of the average diet. Since different potential prey species occurring in the steppe-tundra exhibit consistent isotopic differences for these chemical elements, it is possible to relate the carbon and nitrogen isotopic signatures measured in fossil carnivores with the preferential consumption of some prey species. Some amount of quantification can be provided using modified versions of mixing models developed for modern ecosystems. In addition, this isotopic approach is individual-based and it is therefore possible to investigate intra- and inter-population differences in prey selection, as well as possible chronological trends and differences linked to genetic differences by combining isotopic and ancient DNA studies on the same material. The isotopic approach has already shown that among the tested large carnivores, cave

  16. Origin of the late quaternary dune fields of northeastern Colorado

    USGS Publications Warehouse

    Muhs, D.R.; Stafford, T.W.; Cowherd, S.D.; Mahan, S.A.; Kihl, R.; Maat, P.B.; Bush, C.A.; Nehring, J.

    1996-01-01

    Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape of northeastern Colorado and adjacent parts of southwestern Nebraska in four geographically distinct dune fields. Stratigraphic and soil-geomorphic relations and accelerator radiocarbon dating indicate that at least three episodes of eolian sand movement occurred between 27 ka and 11 ka, possibly between 11 ka and 4 ka, and within the past 1.5 ka. Thus, eolian sand deposition took place under both glacial and interglacial climatic conditions. In the youngest episodes of eolian sand movement, Holocene parabolic dunes partially buried Pleistocene sand sheet deposits. Late Holocene sands in the Fort Morgan and Wray dune fields, to the south of the South Platte River, have trace element ratios that are indistinguishable from modern South Platte River sands, but different from Ogallala Formation bedrock, which has previously been cited as the main source of dune sand on the Great Plains. Sands in the Greeley dune field, to the north of the South Platte River, have trace element concentrations that indicate a probable Laramie Formation source. Measurements of parabolic dunes indicate paleowinds from the northwest in all dune fields, in good agreement with resultant drift directions calculated for nearby weather stations. Thus, paleowinds were probably not significantly different from present-day winds, and are consistent with a South Platte River source for the Fort Morgan and Wray dune fields, and a Laramie Formation source for the Greeley dune field. Sand accumulated downwind of the South Platte River to form the Fort Morgan dune field. In addition, sand was also transported farther downwind over the upland formed by the calcrete caprock of the Ogallala Formation, and deposited in die lee of the upland on the southeast side. Because of high wind energy, the upland itself served as a zone of sand transport, but little or no sand accumulation took place on this surface. These

  17. Late Neogene and Quaternary evolution of the northern Albemarle Embayment (mid-Atlantic continental margin, USA)

    USGS Publications Warehouse

    Mallinson, D.; Riggs, S.; Thieler, E.R.; Culver, S.; Farrell, K.; Foster, D.S.; Corbett, D.R.; Horton, B.; Wehmiller, J. F.

    2005-01-01

    Seismic surveys in the eastern Albemarle Sound, adjacent tributaries and the inner continental shelf define the regional geologic framework and provide insight into the sedimentary evolution of the northern North Carolina coastal system. Litho- and chronostratigraphic data are derived from eight drill sites on the Outer Banks barrier islands, and the Mobil #1 well in eastern Albemarle Sound. Within the study area, parallel-bedded, gently dipping Miocene beds occur at 95 to > 160 m below sea level (m bsl), and are overlain by a southward-thickening Pliocene unit characterized by steeply inclined, southward-prograding beds. The lower Pliocene unit consists of three seismic sequences. The 55-60 m thick Quaternary section unconformably overlies the Pliocene unit, and consists of 18 seismic sequences exhibiting numerous incised channel-fill facies. Shallow stratigraphy (< 40 m bsl) is dominated by complex fill patterns within the incised paleo-Roanoke River valley. Radiocarbon and amino-acid racemization (AAR) ages indicate that the valley-fill is latest Pleistocene to Holocene in age. At least six distinct valley-fill units are identified in the seismic data. Cores in the valley-fill contain a 3-6 m thick basal fluvial channel deposit that is overlain by a 15 m thick unit of interlaminated muds and sands of brackish water origin that exhibit increasing marine influence upwards. Organic materials within the interlaminated deposits have ages of 13-11 cal. ka. The interlaminated deposits within the valley are overlain by several units that comprise shallow marine sediments (bay-mouth and shoreface environments) that consist of silty, fine- to medium-grained sands containing open neritic foraminifera, suggesting that this area lacked a fronting barrier island system and was an open embayment from ???10 ka to ???4.5 ka. Seismic data show that initial infilling of the paleo-Roanoke River valley occurred from the north and west during the late Pleistocene and early Holocene

  18. Accretion of the south Florida platform, late Quaternary development

    SciTech Connect

    Holmes, C.W.

    1985-02-01

    Stratigraphic information from high-resolution seismic data obtained across the southwest Florida platform indicates that the modern shelf is a constructional platform with Pliocene(.)-Pleistocene and Holocene sediments resting on an eroded karstic Miocene platform. The Miocene surface dips away from the coastline with significant breaks in slope occurring at the center of the shelf and at the shelf edge. At the southwest corner of the platform, this surface crops out to form a terrace. This terrace lies along the west-facing continental slope of the Florida shelf and is progressively buried to the south by younger deposits - reefs and sediment - so that it has no surface expression in the Florida Straits. A paired reef complex rests on the thickest post-Miocene sediments that mark the edge of the modern shelf. The deepest reef forms a well-developed escarpment with its crest buried by approximately 15 m (50 ft) of sediment. The shallower reef is a low swale over most of its extent but developed into a large reef-spit complex (Howell Hook) in the central part of the study area. Within the Pliocene-Pleistocene and Holocene sediments, two stratigraphic units can be delineated: (1) a lower progradational unit of Pliocene-Pleistocene(.) age that can be traced under the shelf-edge reef and continuously onlaps the Miocene(.) surface, and (2) an upper unit of late Pleistocene-Holocene age which is composed of reef and pelagic sediment. 14 figures.

  19. Late Quaternary environmental change in the Bonneville basin, western USA

    USGS Publications Warehouse

    Madsen, D.B.; Rhode, D.; Grayson, D.K.; Broughton, J.M.; Livingston, S.D.; Hunt, J.; Quade, Jay; Schmitt, D.N.; Shaver, M. W.

    2001-01-01

    Excavation and analyses of small animal remains from stratified raptor deposits spanning the last 11.5 ka, together with collection and analysis of over 60 dated fossil woodrat midden samples spanning the last 50 ka, provide a detailed record of changing climate in the eastern Great Basin during the late Pleistocene and Holocene. Sagebrush steppe dominated the northern Bonneville basin during the Full Glacial, suggesting that conditions were cold and relatively dry, in contrast to the southern basin, which was also cold but moister. Limber pine woodlands dominated ???13-11.5 ka, indicating increased dryness and summer temperatures ???6-7??C cooler than present. This drying trend accelerated after ???11.5 ka causing Lake Bonneville to drop rapidly, eliminating 11 species of fish from the lake. From ???11.5-8.2 ka xerophytic sagebrush and shadscale scrub replaced more mesophilic shrubs in a step-wise fashion. A variety of small mammals and plants indicate the early Holocene was ???3??C cooler and moister than at present, not warmer as suggested by a number of climatic models. The diversity of plants and animals changed dramatically after 8.2 ka as many species disappeared from the record. Some of the upland species returned after ???4 ka and Great Salt Lake became fresh enough at ???3.4 and ???1.2 ka to support populations of Utah chub. ?? 2001 Elsevier Science B.V.

  20. Late Quaternary sedimentary features of Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Smoot, J.P.

    2009-01-01

    Bear Lake sediments were predominantly aragonite for most of the Holocene, reflecting a hydrologically closed lake fed by groundwater and small streams. During the late Pleistocene, the Bear River flowed into Bear Lake and the lake waters spilled back into the Bear River drainage. At that time, sediment deposition was dominated by siliciclastic sediment and calcite. Lake-level fluctuation during the Holocene and late Pleistocene produced three types of aragonite deposits in the central lake area that are differentiated primarily by grain size, sorting, and diatom assemblage. Lake-margin deposits during this period consisted of sandy deposits including well-developed shoreface deposits on margins adjacent to relatively steep gradient lake floors and thin, graded shell gravel on margins adjacent to very low gradient lake-floor areas. Throughout the period of aragonite deposition, episodic drops in lake level resulted in erosion of shallow-water deposits, which were redeposited into the deeper lake. These sediment-focusing episodes are recognized by mixing of different mineralogies and crystal habits and mixing of a range of diatom fauna into poorly sorted mud layers. Lake-level drops are also indicated by erosional gaps in the shallow-water records and the occurrence of shoreline deposits in areas now covered by as much as 30 m of water. Calcite precipitation occurred for a short interval of time during the Holocene in response to an influx of Bear River water ca. 8 ka. The Pleistocene sedimentary record of Bear Lake until ca. 18 ka is dominated by siliciclastic glacial fl our derived from glaciers in the Uinta Mountains. The Bear Lake deep-water siliciclastic deposits are thoroughly bioturbated, whereas shallow-water deposits transitional to deltas in the northern part of the basin are upward-coarsening sequences of laminated mud, silt, and sand. A major drop in lake level occurred ca. 18 ka, resulting in subaerial exposure of the lake floor in areas now covered by

  1. Late Quaternary paleosols and climate change in southern New Mexico

    SciTech Connect

    Monger, H.C. . Agronomy Dept.); Cole, D.R. ); Gish, J.W. )

    1992-01-01

    A climate change toward more arid conditions in the southwest US has been postulated for a period around 7 ka. In southern NM, deposition of the youngest generation of alluvial fans surrounding arid mountains began around 7 ka based on radiocarbon dates of charcoal. The deposition of these fans has been interpreted as evidence for aridity because plant cover would have declined, thus making the landscape more susceptible to erosion and sedimentation. Isotopes of pedogenic calcite and pollen content in well-preserved paleosols associated with alluvial fans provide additional evidence for testing the aridity hypothesis. Buried paleosols, ranging from 23,070 [+-] 190 to 9,070 [+-] 70 yr BP, contain pedogenic calcite that is isotopically heavier in carbon than calcite in soils younger than 7 ka. The buried paleosols have a mean delta C-13 values of [minus]2.2 [+-] 0.8 [per thousand] (PDP). In contrast, soils younger than 7 ka have a man delta C-13 value of [minus]7.8 [+-] 1.3 [per thousand]. The higher delta C-13 values in buried paleosols may reflect the presence of abundant C[sub 4] grasses, similar to the present vegetation in the southern High Plains, which would have curtailed erosion. Pollen analysis reveals that buried paleosols contain more grass pollen than soils younger than 7 ka, which contain high proportions of desertscrub pollen taxa. delta O-18 values of pedogenic calcite are similar for the buried paleosols ([minus]5.2 [+-] 0.3 [per thousand] PDB) and soils younger than 7 ka ([minus]5.1 [+-] 0.6 [per thousand]). These values indicate a relatively constant mean annual temperature of approximately 14C, which prevailed throughout late Pleistocene and Holocene time.

  2. Late Quaternary activity along the Ferrara thrust inferred from stratigraphic architecture and geophysical surveys

    NASA Astrophysics Data System (ADS)

    Stefani, Marco; Bignardi, Samuel; Caputo, Riccardo; Minarelli, Luca; Abu-Zeid, Nasser; Santarato, Giovanni

    2010-05-01

    Since Late Miocene, the Emilia-Romagna portion of the Po Plain-Adriatic foredeep basin was progressively affected by compressional deformation, due to the northward propagation of the Apennines fold-and-thrust belt. The major tectonic structures within the basin have been recognised and are relatively well known, thanks to the widespread, even if outdated, seismic survey, performed after WW II, for hydrocarbon exploration. More recently, a large amount of surface and shallow-subsurface information has been provided by the CARG geological mapping project. The region therefore provides a valuable opportunity to discuss the genetic relationship between tectonic deformation, eustatic-paleoclimatic fluctuations, and depositional architecture. The activity of blind thrusts and fault-propagation folds induced repeated angular unconformities and impressive lateral variations in the Pliocene-Quaternary stratigraphy, causing thickness changes, from a few metres, close to the Apennines piedmont line, to more than 9 km, in fast subsiding depocenters (e.g. Lido di Savio). In the Ferrara region, the post-Miocene succession ranges from about 4 km, west of Sant'Agostino, to less than 200 m, on the Casaglia anticline, where Late Quaternary fluvial strata rest on Miocene marine marls, with an angular unconformity relationship. In this sector of the Po Plain, the tip-line of the northernmost thrust has been reconstructed north of the Po River (Occhiobello) and is associated with the growth of a large fold (Ferrara-Casaglia anticline), cross-cut by a complex splay of minor backthrusts and reverse faults. The thrust-anticline structure hosts an energy producing geothermal field, whose hydrogeological behaviour is largely influenced by the fracture pattern. The Apennines frontal thrust probably provided the seismic source for the earthquakes that severely damaged Ferrara, during the 1570 a.D. fall season, as documented by the structural damage still visible in many historic buildings (e

  3. Reconstructing late Quaternary deep-water masses in the eastern Arctic Ocean using benthonic Ostracoda

    USGS Publications Warehouse

    Jones, R. Ll; Whatley, R.C.; Cronin, T. M.; Dowsett, H.J.

    1999-01-01

    The distribution of Ostracoda in three long cores from the deep eastern Arctic Ocean was studied to determine the palaeoceanographical history of the Eurasian Basin during the late Quaternary. The samples for this study were obtained from the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau during the Arctic 91 expedition. Ostracoda previously studied in coretops at the same sites as the present study have shown that individual species have a strong association with different water masses and bathymetry. Throughout the late Quaternary, cores exhibit ostracod-rich layers separated by barren intervals. On the basis of biostratigraphical, isotopic and palaeomagnetic data the fossiliferous levels are interpreted as representing interglacial stages. The twenty most significant species were selected for subsequent quantitative investigation using Cluster and Factor analyses, in order to determine similarity and variance between the assemblages. An additional statistical method employing Modern Analogues and the Squared Chord Distance dissimilarity coefficient was utilized to compare the present late Quaternary fossil samples with a modern Arctic database. The results reveal a major faunal division within the Arctic Ocean Deep Water (AODW). Highly abundant and diverse assemblages within the cores were found to group and have good analogues with the Recent bathyal depth (1000-2500 m) upper AODW assemblages. Conversely, assemblages with low abundance and diversity correlate well with abyssal depth (> 3000 m) lower AODW assemblages. The palaeoceanographical history is complicated by the influence of adjacent water masses such as Canada Basin Deep Water (CBDW), Greenland Sea Deep Water (GSDW) and most importantly, Arctic Intermediate Water (AIW), which all had an influence on the ostracod assemblages during the late Quaternary. An enhanced flow of warm saline AIW into the Eurasian Basin results in species-rich upper AODW assemblages having good analogues down to 2750 m

  4. Late Quaternary palaeoenvironmental change in the Australian drylands

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Kathryn E.; Cohen, Timothy J.; Hesse, Paul P.; Jansen, John; Nanson, Gerald C.; May, Jan-Hendrik; Barrows, Timothy T.; Haberlah, David; Hilgers, Alexandra; Kelly, Tegan; Larsen, Joshua; Lomax, Johanna; Treble, Pauline

    2013-08-01

    -Holocene was, however, generally characterised by moderately humid conditions, demonstrated by lake level rise, source-bordering dune activity, and speleothem growth, persisting at different times across the continent. Increasingly arid conditions developed into the late Holocene, particularly in the central arid zone.

  5. Late Quaternary palaeoenvironmental reconstruction from Lake Ohrid using stable isotopes

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Leng, Melanie J.; Francke, Alexander; Vogel, Hendrik; Zanchetta, Giovanni; Wagner, Bernd

    2016-04-01

    Lake Ohrid is a large, deep lake located on the Balkan Peninsula at the border between Macedonia and Albania, and is considered the oldest extant lake in Europe. An International Continental scientific Drilling Program (ICDP) deep drilling campaign was carried out in 2013 as part of the interdisciplinary Scientific Collaboration On Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. Over 1500 m of sediment were recovered from six coring locations at the main target site in the central basin, where the maximum drill depth reached 569 m below the lake floor. Initial results indicate continuous lacustrine conditions over the past >1.2 Ma (Wagner et al., 2014). Here, we present oxygen and carbon isotope data (δ18O and δ13C) from carbonate from the upper 248 m of the SCOPSCO succession, which covers the last 640 ka, spanning marine isotope stages 15-1, according to an age model based on tephra and orbital tuning (Francke et al., 2015). Modern monitoring data show Lake Ohrid to be an evaporative system, where variations in δ18O of endogenic carbonate are primarily a function of changes in water balance, and δ13C largely reflects fluctuations in the amount of soil-derived CO2 and organic matter recycling. Our results indicate a trend from wetter to drier conditions through the Holocene, which is consistent with regional and hemispheric processes related to changes in insolation and progressive aridification. Over the last 640 ka, relatively stable climate conditions are inferred before ca. 450 ka, a transition to a wetter climate between ca. 400-250 ka, and a trend to drier climate after ca. 250 ka. Higher frequency, multi-millennial-scale oscillations observed during warm stages are most likely associated with regional climate change as a function of orbital forcing. This record is one of the most extensive and highly-resolved continental isotope records available, and emphasises the potential of Lake Ohrid as a valuable archive of long-term palaeoclimate and

  6. Timing of glacier fluctuations and trigger mechanisms in eastern Qinghai-Tibetan Plateau during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Ou, XianJiao; Lai, ZhongPing; Zhou, ShangZhe; Zeng, LanHua

    2014-05-01

    It is highly debated whether glacial advances on the Qinghai-Tibetan Plateau (QTP) occurred as a response to temperature cooling, or whether they were forced by an increase in moisture brought by the intensive Indian summer monsoon. We here report a case study investigating this issue. Multiple moraine series in the Yingpu Valley, Queer Shan ranges of the Hengduan Mountains, and eastern QTP, provide an excellent archive for examining the timing and trigger mechanism of glacier fluctuations. Twenty-seven optically stimulated luminescence (OSL) samples of glacial sediments were collected from this valley. The quartz OSL ages show that the moraine series of Y-1, I, M and O were formed during the Late Holocene, Late Glacial, the global Last Glacial Maximum (LGM) and Marine Oxygen Isotope Stage (MIS) 3 (likely mid-MIS-3). The youngest Y-2 moraines probably formed during the Little Ice Age (LIA). The oldest H moraines formed before MIS-3. We found that glacial advances during the late Quaternary at the Yingpu Valley responded to cold stages or cold events rather than episodes of enhanced summer monsoon and moisture. As a result, glaciers in the monsoonal Hengduan Mountains were mainly triggered by changes in temperature. Millennial time scale temperature oscillations might have caused the multiple glacial advances.

  7. Late Quaternary paleo-lake fluctuations in westernmost Tibet

    NASA Astrophysics Data System (ADS)

    Amidon, W. H.; Blard, P.; Avouac, J.; Schneider, T.

    2008-12-01

    paleo-precipitation from west to east across the study area. The exact age and potential synchronicity of the high stands is not established, but existing geochronology suggests they occurred either during a post-LGM recovery period (~16-14 kyr) or during the mid-Holocene optimum (~7-5.5 kyr). If the mapped high stands were synchronous and the west to east trend remains robust, it would suggest that the dominant moisture source was from enhanced westerlies and northwesterlies during the late glacial period and mid-Holocene optimum as predicted by some climate simulations [e.g. Bush et al., 2002]. Future work will include refining our water balance model to use an evaporation parameterization best suited for very cold climates and field work to determine the ages of shorelines and assess the synchronicity of the mapped high stands.

  8. Late Quaternary relative sea level in Southern California and Monterey Bay

    NASA Astrophysics Data System (ADS)

    Reynolds, Laura C.; Simms, Alexander R.

    2015-10-01

    Few records of late Quaternary relative sea level (RSL) are available for the Pacific coast of North America south of San Francisco Bay, a region where RSL data would be particularly useful for constraining vertical rates of tectonic motion. This paper provides the first regional, uplift-corrected late Quaternary RSL history for southern California derived from a compilation of 132 previously published and unpublished radiocarbon ages from nearshore, estuarine, and freshwater deposits in sediment cores from coastal southern California. We also provide a local, uplift-corrected RSL history for Monterey Bay, central California, generated from 48 radiocarbon ages from Elkhorn Slough and surrounding environments. Our resulting compilations show rapid sea-level rise from 15 ka which begins to decelerate to present mean sea level (PMSL) between 6 and 8 ka. Late Holocene (<4 ka) sea-level rise averaged 0.8 ± 0.3 mm a-1 in southern California and 1.3 ± 0.19 mm a-1 along Monterey Bay in central California. Both rates of late Holocene RSL rise calculated are lower than recent RSL rates from southern California (˜1.61 ± 0.34 to 2.4 ± 1.04 mm a-1) and Monterey Bay (1.49 ± 0.95 mm a-1), derived from uplift-corrected, 20th century tide gauge data. This new RSL data fills geographical gaps in relative sea-level histories, as well as provides important datums for local tectonic processes.

  9. Sr-Isotope record of Quaternary marine terraces on the California coast and off Hawaii

    USGS Publications Warehouse

    Ludwig, K. R.; Muhs, D.R.; Simmons, K.R.; Moore, J.G.

    1992-01-01

    Strontium-isotopic ratios of dated corals have been obtained from submerged reefs formed during Quaternary glacial periods off the Hawaiian islands. These data, combined with data from deep-sea sediments, tightly constrain the secular variation of marine 87Sr 86Sr for the past 800,000 yr. Although long-term trends are apparent, no significant (>0.02???), rapid (<100,000 yr) excursions in 87Sr 86Sr were resolved nor did we observe any samples with 87Sr 86Sr greater than that of modern seawater. Strontium in mollusks from elevated marine terraces formed during interglacial periods on the southern California coast show resolvable and consistent variations in 87Sr 86Sr which, when compared to the trend of Quaternary marine 87Sr 86Sr, can be used to infer uplift rates and define approximate ages for the higher terraces. The Sr-isotope age estimates indicate that uplift rates vary among crustal blocks and were not necessarily constant with time. No contrast in Sr-isotopic ratios between similar-age Hawaiian and California fossils was observed, confirming that any change in marine 87Sr 86Sr from glacial to interglacial periods must be small. A realistic appraisal of the potential of Sr-isotope stratigraphy for chronometric applications in the Quaternary suggests that the technique will be limited to relatively coarse distinctions in age. ?? 1992.

  10. Optical dating of late Quaternary deposits preserved beneath the eastern English Channel

    NASA Astrophysics Data System (ADS)

    Mellett, C. L.; Mauz, B.; Hodgson, D. M.; Plater, A. J.; Lang, A.

    2012-04-01

    A stratigraphic model detailing the sequence and nature of processes responsible for sculpting the shallow continental shelf in the eastern English Channel has been developed through the interpretation of high resolution sub-bottom seismic records. The seafloor is an erosional unconformity and large sediment bodies are limited to palaeovalley infills and offshore extensions of present day coastal environments. In simplistic terms the stratigraphic model proposes fluvial incision and deposition during sea-level lowstand with periglacial processes operating on the sub-aerially exposed shelf under cold climate conditions. Subsequent sea-level rise triggers reworking of existing deposits and infilling of the palaeovalleys with shallow marine and coastal deposits that migrate in step with sea-level rise. The frequency and magnitude of sea-level changes during the late Quaternary lends to significant reworking of sediments during each glacial/interglacial cycle and remnants of previous cycles are rarely preserved. This study uses OSL dating to test the validity of the proposed stratigraphic model. Samples for OSL dating were taken from vibrocores tied to known seismic stratigraphic units representing fluvial, coastal and colluvial depositional environments. The single-aliquot-regenerative dose protocol was applied to 1 mm aliquots of fine quartz sand and individual aliquots were rejected following the criteria proposed by Wintle and Murray (2006). All samples exhibited low sensitivity and poor recycling ratios necessitating the rejection of up to 75% of all aliquots measured. A total of 40 to 60 aliquots were accepted per sample. For all samples regardless of depositional environment, normal equivalent dose (De) distributions were observed with overdispersion values typically <25% and weighted skewness values of ~0.2 advocating the application of the Central Age Model (CAM) to estimate Des. The OSL chronology places periglacial reworking of existing estuarine deposits at

  11. Is late Quaternary climate change governed by self-sustained oscillations in atmospheric CO2?

    NASA Astrophysics Data System (ADS)

    Wallmann, Klaus

    2014-05-01

    A simple earth system model is developed to simulate global carbon and phosphorus cycling over the late Quaternary. It is focused on the geological cycling of C and P via continental weathering, volcanic and metamorphic degassing, hydrothermal processes and burial at the seabed. A simple ocean model is embedded in this geological model where the global ocean is represented by surface water, thermocline and deep water boxes. Concentrations of dissolved phosphorus, dissolved inorganic carbon, and total alkalinity are calculated for each box. The partial pressure of CO2 in the atmosphere (pCO2A) is determined by exchange processes with the surface ocean and the continents. It serves as key prognostic model variable and is assumed to govern surface temperatures and global sea-level. The model is formulated as autonomous system, in which the governing equations have no explicit time-dependence. For certain parameter values, the model does not converge towards a steady-state but develops stable self-sustained oscillations. These free oscillations feature pCO2A minima and maxima consistent with the ice-core record when vertical mixing in the ocean is allowed to vary in response to pCO2A-controlled temperature change. A stable 100-kyr cycle with a rapid transition from glacial to interglacial conditions is obtained when additional non-linear equations are applied to calculate deep ocean mixing, iron fertilization and the depth of organic matter degradation as function of pCO2A-controlled surface temperature. The δ13C value of carbon in the ocean/atmosphere system calculated in these model runs is consistent with the benthic δ13C record. However, the simulated 13C depletion in the glacial ocean is not driven by the decline in terrestrial carbon stocks but by sea-level change controlling the rates of organic carbon burial and weathering at continental margins. The pCO2A- and δ13C oscillations develop without any form of external Milankovitch forcing. They are induced and

  12. Late Quaternary Sea-Ice Variability at the North Icelandic Shelf (Sub-Arctic): Reconstruction from Biomarkers

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Zhao, M.; Jiang, H.; Eiriksson, J.; Guo, Z.

    2015-12-01

    Sea ice, prevailing in the polar region and characterized by distinct seasonal and interannual variability, plays a pivotal role in Earth's climate system (Thomas and Dieckmann, 2010). In order to understand processes controlling the recent dramatic reduction in Arctic sea-ice cover, it is essential to determine temporal changes in sea-ice occurrence and its natural variability in the past. The North Icelandic shelf, bordering a marginal area of the Arctic Ocean, is located at the present-day boundary between the cold polar currents and warm Atlantic water masses, very sensitive to the changes in sea-ice cover, ice sheet and oceanic circulation patterns (Knudsen and Eiriksson, 2002). All these processes have been recorded in the marine shelf-sediment cores. We determined the concentrations of sea-ice diatom-derived biomarker "IP25" (monoene highly-branched isoprenoid with 25 carbon atom; Belt et al., 2007), phytoplankton-derived biomarkers (brassicasterol and dinosterol) and terrigenous biomarkers (campesterol and ß-sitosterol) in a sediment core from the North Icelandic shelf to reconstruct the Late Quaternary sea-ice conditions and related surface-water processes. The sea-ice cover reached its maximum during the cold period (i.e., Last Glacial Maximum and Younger dryas), while an open ocean environment existed during less severe periods (e.g. Bølling-Allerød and 8.2 ka event) in the study area. The biomarker records from this sediment core give insights into the variability in sea ice and circulation patterns as well as primary productivity in the Arctic marginal area during the Late Quaternary. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Org. Geochem. 38, 16-27. Knudsen, K.L. and Eiriksson, J., 2002. Application of tephrochronology to the timing and correlation of palaeoceanographic events recorded in Holocene and Late Glacial shelf sediments off North Iceland

  13. Global late Quaternary megafauna extinctions linked to humans, not climate change.

    PubMed

    Sandom, Christopher; Faurby, Søren; Sandel, Brody; Svenning, Jens-Christian

    2014-07-22

    The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132,000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial-interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary.

  14. Global late Quaternary megafauna extinctions linked to humans, not climate change

    PubMed Central

    Sandom, Christopher; Faurby, Søren; Sandel, Brody; Svenning, Jens-Christian

    2014-01-01

    The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132 000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial–interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary. PMID:24898370

  15. Seismic expression of Late Quaternary Banda submarine canyon and fan offshore northern Baja California

    SciTech Connect

    Legg, M.R.

    1987-05-01

    High-resolution seismic reflection profiles obtained throughout the inner California continental borderland offshore northwestern Baja California, Mexico, show the presence of numerous modern submarine canyons and associated fans. One set of these, the Banda submarine canyon/fan, is of relatively recent origin, as demonstrated by onlap of the basal fan sediments against an acoustically transparent, presumably hemipelagic deposit. Late Quaternary sedimentation rates inferred from isotopically dated piston core samples place the age of the postulated hemipelagic unit at approximately 650,000 years ago. The Banda submarine canyon heads within the Bahia Todos Santo and passes through a narrow gorge between Punta Banda and Islas Todos Santos. It is proposed that this submarine canyon and fan system formed entirely during late Quaternary time, following the breach of the Punta Banda ridge during a late Pleistocene high sea level stand. The presence of an ancient, buried channel exiting to the north out of Bahia Todos Santos probably marks the head of an earlier submarine canyon which acted as the conduit of clastic sediments from Valle Maneadero to the deep borderland basins. The now active Banda submarine canyon pirated the supply of terrigenous clastics from this older canyon. The active Agua Blanca fault zone cuts across the head of Banda submarine canyon, suggesting that tectonic movements may have played a role in the development of the Banda submarine canyon and fan system.

  16. Late Quaternary Surface Rupture Along the Seattle Fault Zone Near Bellevue, Washington

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.

    2002-12-01

    Fault strands in the eastern part of the Seattle fault zone (SFZ) ruptured the ground surface at least two times in late Quaternary time. Previous paleoseismic evidence for late Holocene surface faulting along the SFZ focused on north-dipping thrust faults between Seattle and Bremerton. In contrast, several exposures along the SFZ east of Seattle show surface rupture on south-dipping thrust faults. At Factoria, about 12 km east of Seattle, a ravine crossing the fault zone exposes proglacial lake sediments thrust over younger outwash to the north. Locally, this fault may account for a south side up topographic scarp. At Vasa Park on the west shore of Lake Sammamish about 16 km east of Seattle, recent excavations at two sites (RipRap and Blackberry) exposed a W to NNW-striking fault zone. At the RipRap site, NNW-striking subvertical dip-slip faults form a contact between glacial till and Miocene bedrock, and appear to accommodate bedding-plane slip in the steeply dipping till. The vertical faults merge upward with or are truncated by SW-dipping thrust faults in the overlying bedrock. A radiocarbon age on charcoal immediately overlying bedrock-derived colluvium suggests that the last event occurred between ~16,000 and ~4500 years BP. At the Blackberry trench about 200 m east of the RipRap site, Miocene volcanic mudstone and Quaternary glacial deposits are thrust northward over late Quaternary glacial deposits and a Holocene forest soil. Stratigraphic relationships suggest at least 3 m of horizontal motion and 2m of vertical motion during the last earthquake. A radiocarbon age on charcoal at the top of the buried soil indicates that the last event postdates 11550+/-40 years BP. Pending radiocarbon analyses will help refine the age of the last event. Thrusts cut by a Pleistocene (?) stream channel eroded into the hanging wall suggest at least one earlier episode of faulting.

  17. Thermoluminescence and new 14C age estimates for late quaternary loesses in southwestern Nebraska

    USGS Publications Warehouse

    Maat, P.B.; Johnson, W.C.

    1996-01-01

    Loess of late Quaternary age mantles most of Nebraska south of the Platte River Valley. At least five late Quaternary loesses are recognized: from oldest to youngest, one or more undifferentiated pre-lllinoian loesses, the Loveland Loess, the Gilman Canyon Loess, which exhibits a well developed soil and rests unconformably on the Sangamon soil, the Peoria Loess capped by the Brady soil, and the Bignell Loess, which is distributed discontinuously. Previous research shows that the Loveland Loess is Illinoian. the Gilman Canyon Loess and Peoria Loess are Wisconsin, and the Bignell Loess is Holocene. We present here the first thermoluminescence (TL) age estimates and new C ages for these late Quaternary loesses at two key sections in southwestern Nebraska, the Eustis ash pit and the Bignell Hill road cut. TL age estimates from all samples collected from Eustis ash pit and Bignell Hill were internally consistent. TL and C age estimates from these two sections generally agree and support previous age determinations. The TL age estimate on Loveland Loess indicates deposition at 163 ka. TL and radiocarbon age estimates indicate that Oilman Canyon Loess, believed to be deposited during the Farmdale interstade, first began to accumulate at about 40 ka: the lower part of the Gilman Canyon Loess is 36 ka at Eustis and the middle of the unit is 30 ka at Bignell Hill. The lower and upper parts of the Peoria Loess give age estimates of 24 ka and 17 ka, respectively. TL age estimates for deposition of the Bignell Loess are 9 ka near the base, in agreement with radiocarbon age estimates, and 6 ka immediately below the modern soil, substantiating its Holocene age. Comparisons of TL age estimates with ??18O and insolation curves which show loess deposition during interglacial and interstadial as well as glacial periods, indicate that loess deposition on the Great Plains can occur under a variety of climatic conditions.

  18. Fluvial responses to late Quaternary climate change in the Shiyang River drainage system, western China

    NASA Astrophysics Data System (ADS)

    Gao, Hongshan; Li, Zongmeng; Pan, Baotian; Liu, Fenliang; Liu, Xiaopeng

    2016-04-01

    As a drainage system located in arid western China, the Shiyang River, combined with considerable fluvial strata and landform information, provides an environmental context within which to investigate fluvial responses to late Quaternary climate change. Sedimentological analysis and optically stimulated luminescence (OSL) dating enabled us to reconstruct the processes and fluvial styles of three sedimentary sequences of the Shagou and Hongshui rivers in the Shiyang drainage system. Our results present a variety of river behaviors during the late Quaternary in these areas. In the upstream Shiyang River, Zhangjiadazhuang (ZJDZ) profile of the Shagou was dominated by aggradation and a meandering channel pattern at 10.6-4.2 ka, while a noticeable channel incision occurred at ~ 4.2 ka followed by lateral channel migration. In the downstream Shiyang River, Datugou (DTG) profile of the Hongshui was an aggrading meandering river from 39.7 to 7.2 ka while channel incision occurred at 7.2 ka. Another downstream profile, Wudunwan (WDW) of the Hongshui was also characterized by aggradation from 22.4 to 4.8 ka; however, its channel pattern shifted from braided to meandering at ~ 13 ka. A discernable downcutting event occurred at ~ 4.8 ka, followed by three channel aggradation and incision episodes prior to 1.8 ka. The last 1.8 ka has been characterized by modern channel and floodplain development. The fluvial processes and styles investigated have a close correlation with late Quaternary climate change in the Shiyang River drainage. During cold phases, the WDW reach was dominated by aggradation with a braided channel pattern. During warm phases, the rivers that we investigated were also characterized by aggradation but with meandering channel patterns. Channel incision events and changes of fluvial style occurred mainly during climate transitions.

  19. Human Dispersals Along the African Rift Valley in the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2014-12-01

    Climate- and tectonic-driven environmental dynamics of the East African Rift System (EARS) during the Quaternary played an important role in the demographic history of early Homo sapiens, including expansions of modern humans across and out of Africa. Human forager population size, geographic range, and behaviors such as hunting strategies and residential mobility likely varied in response to changes in the local and regional environment. Throughout the Quaternary, floral and faunal change was linked at least in part to variations in moisture availability, temperature, and atmospheric CO2, which in addition to uplift and faulting, contributed to the expansion and contraction of a number of large lakes that served as biogeographic barriers to many taxa. This is particularly clear for the Lake Victoria basin, where biogeographic, geological, and paleontological evidence documents repeated expansion and contraction of the ranges of species in response to lake level and vegetation change. Across much of eastern Africa, the topography of the rift facilitated north-south dispersals, the timing of which may have depended in part on the expansion and contraction of the equatorial forest belt. Dispersal potential likely increased during the more arid periods of the late Quaternary, when the roles of lakes and forests as dispersal barriers was reduced and the extent of low net primary productivity dry grasslands increased, the latter requiring large home ranges for human foragers, conditions suitable for range expansions within H. sapiens.

  20. Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Kuzmina, Svetlana; Andreev, Andrei A.; Kienast, Frank; Meyer, Hanno; Schirrmeister, Lutz; Kuznetsova, Tatyana; Sierralta, Melanie

    2008-08-01

    Late Quaternary palaeoenvironments of the Siberian Arctic were reconstructed by combining data from several fossil bioindicators (pollen, plant macro-fossils, ostracods, insects, and mammal bones) with sedimentological and cryolithological data from permafrost deposits. The record mirrors the environmental history of Beringia and covers glacial/interglacial and stadial/interstadial climate variations with a focus on the Middle Weichselian interstadial (50-32 kyr BP). The late Pleistocene to Holocene sequence on Kurungnakh Island reflects the development of periglacial landscapes under changing sedimentation regimes which were meandering fluvial during the Early Weichselian, colluvial or proluvial on gently inclined plaines during the Middle and Late Weichselian, and thermokarst-affected during the Holocene. Palaeoecological records indicate the existence of tundra-steppe vegetation under cold continental climate conditions during the Middle Weichselian interstadial. Due to sedimentation gaps in the sequence between 32 and 17 kyr BP and 17 and 8 kyr BP, the Late Weichselian stadial is incompletely represented in the studied outcrops. Nevertheless, by several palaeoecological indications arctic tundra-steppe vegetation under extremely cold-arid conditions prevailed during the late Pleistocene. The tundra-steppe disappeared completely due to lasting paludification during the Holocene. Initially subarctic shrub tundra formed, which later retreated in course of the late Holocene cooling.

  1. Late Tertiary and Quaternary geology of the Tecopa basin, southeastern California

    SciTech Connect

    Hillhouse, J.W.

    1987-12-31

    Stratigraphic units in the Tecopa basin, located in southeastern California, provide a framework for interpreting Quaternary climatic change and tectonism along the present Amargosa River. During the late Pliocene and early Pleistocene, a climate that was appreciably wetter than today`s sustained a moderately deep lake in the Tecopa basin. Deposits associated with Lake Tecopa consists of lacustrine mudstone, conglomerate, volcanic ash, and shoreline accumulations of tufa. Age control within the lake deposits is provided by air-fall tephra that are correlated with two ash falls from the Yellowstone caldera and one from the Long Valley caldera. Lake Tecopa occupied a closed basin during the latter part, if not all, of its 2.5-million-year history. Sometime after 0.5 m.y. ago, the lake developed an outlet across Tertiary fanglomerates of the China Ranch Beds leading to the development of a deep canyon at the south end of the basin and establishing a hydrologic link between the northern Amargosa basins and Death Valley. After a period of rapid erosion, the remaining lake beds were covered by alluvial fans that coalesced to form a pediment in the central part of the basin. Holocene deposits consist of unconsolidated sand and gravel in the Amargosa River bed and its deeply incised tributaries, a small playa near Tecopa, alluvial fans without pavements, and small sand dunes. The pavement-capped fan remnants and the Holocene deposits are not faulted or tilted significantly, although basins to the west, such as Death Valley, were tectonically active during the Quaternary. Subsidence of the western basins strongly influenced late Quaternary rates of deposition and erosion in the Tecopa basin.

  2. Morphology and stratigraphy of the late Quaternary lower Brazos valley: Implications for paleo-climate, discharge and sediment delivery

    NASA Astrophysics Data System (ADS)

    Sylvia, Dennis A.; Galloway, William E.

    2006-08-01

    A shallow coring and geophysical logging program has recorded the sedimentary fill of the Brazos River valley in the Texas Gulf Coastal Plain. Thermoluminescence dates together with new and recalibrated published radiocarbon dates show the valley fill to include extensive, sandy, buried falling stage and lowstand Oxygen Isotope Stage (OIS) 3 and 2 deposits. These alluvial deposits are punctuated by numerous paleosoil horizons that record alternating periods of cutting, bypass and accumulation. Maximum valley incision and two periods of terrace formation preceded marine lowstand conditions, suggesting significant discordance between preserved fluvial and classical marine system tracts. The latest Pleistocene incision and fill history appears related to cycles of increased discharge and incision, followed by system equilibration and terrace formation. Analysis of the Brazos River incised valley and its contained paleochannels indicates that latest Pleistocene mean annual discharge was as much as four times greater than that of today. This magnitude of discharge in the Brazos would require a two-fold increase in precipitation across the drainage basin. Such an increase is comparable to the present day measured positive El Niño winter precipitation anomaly across the region. Paleochannel geometries and the stratigraphic and sedimentologic data from this investigation support the hypothesis that periods of high-amplitude, El Niño-like climatic perturbations characterized the late Quaternary climate of the south-central and southwestern U.S. This period of high discharge coincides, at least in part, with late OIS 3 progradation of the Brazos delta to the shelf margin, OIS 3 and 2 valley incision across the Texas shelf, and concomitant sand bypass to intraslope basins beyond the shelf edge.

  3. Geochemical evidence for the origin of late Quaternary loess in central Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.

    2006-01-01

    Loess is extensive in central Alaska, but there are uncertainties about its source and the direction of paleo-winds that deposited it. Both northerly and southerly winds have been inferred. The most likely sources of loess are the Tanana River (south), the Nenana River (southeast), and the Yukon River (north). Late Quaternary loess in central Alaska has immobile trace-element compositions (Cr/Sc, Th/Ta, Th/ Sc, Th/U, Eu/Eu*, GdN/YbN) that indicate derivation mostly from the Tanana River. However, other ratios (As/Sb, Zr/Hf, LaN/YbN) and quantitative modeling indicate that the Yukon River was also a source. During the last glacial period, there may have been a longer residence time of the Siberian and Canadian high-pressure cells, along with a strengthened Aleutian low-pressure cell. This would have generated regional-scale northeasterly winds and explains derivation of loess from the Yukon River. However, superim-posed upon this synoptic-scale circulation, there may have been strong, southerly katabatic winds from expanded glaciers on the northern flank of the Alaska Range. These winds could have provided eolian silt from the Tanana River. Yukon River and Tanana River sediments are highly calcareous, whereas Fairbanks-area loess is not. This suggests that carbonate leaching in loess kept ahead of sedimentation and that late Quaternary loess in central Alaska was deposited relatively slowly. ?? 2006 NRC Canada.

  4. Eolian sediment responses to late Quaternary climate changes: Temporal and spatial patterns in the Sahara

    USGS Publications Warehouse

    Swezey, C.

    2001-01-01

    This paper presents a compilation of eolian-based records of late Quaternary climate changes in the Sahara. Although the data are relatively sparse, when viewed as a whole, they reveal a general pattern of widespread eolian sediment mobilization prior to 11,000 cal. years BP, eolian sediment stabilization from 11,000 to 5000 cal. years BP, and a return to widespread eolian sediment mobilization after 5000 cal. years BP. Furthermore, an eolian-based record from southern Tunisia reveals the existence of millennial-scale changes in eolian sediment behavior. These millennial-scale variations provide examples of eolian sediment responses to climate changes at a scale intermediate between seasonal and orbital ('Milankovitch') changes, and they are also coincident with abrupt atmospheric and oceanic changes. The general synchroneity of the eolian stratigraphic records and their coincidence with various oceanic and atmospheric changes suggest that global forcing mechanisms have influenced late Quaternary eolian sediment behavior in the Sahara. ?? 2001 Elsevier Science B.V.

  5. Estimates of late Quaternary mode and intermediate water silicic acid concentration in the Pacific Southern Ocean

    NASA Astrophysics Data System (ADS)

    Rousseau, Jonathon; Ellwood, Michael J.; Bostock, Helen; Neil, Helen

    2016-04-01

    The Southern Ocean plays a critical role in the exchange of carbon between the ocean and atmosphere over glacial-interglacial timescales. Hypotheses used to explain late Quaternary variations in atmospheric carbon dioxide (CO2) implicate changes in the nutrient dynamics and circulation of the Southern Ocean. Here we present silicon isotope (δ30Si) records of late Quaternary sponges and diatoms from the NZ-sector of the Southern Ocean. Analysis of our sponge δ30Si records strongly suggests that the silicic acid concentration at mode and intermediate depths was higher during the LGM and the deglacial period compared to the present day. Our diatom δ30Si record suggests biological productivity near of the Polar Front was greater during the deglacial period, but not significantly different during the LGM compared to the present day. Taking our dataset in context with other regional paleoceanographic records, we interpret the predicted elevation in LGM and deglacial silicic acid concentration to reflect a shoaling of water masses during the LGM and 'leakage' of excess Southern Ocean dissolved silicon during the deglacial period.

  6. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records

    PubMed Central

    Storey, Michael; Roberts, Richard G.; Saidin, Mokhtar

    2012-01-01

    The Toba supereruption in Sumatra, ∼74 thousand years (ka) ago, was the largest terrestrial volcanic event of the Quaternary. Ash and sulfate aerosols were deposited in both hemispheres, forming a time-marker horizon that can be used to synchronize late Quaternary records globally. A precise numerical age for this event has proved elusive, with dating uncertainties larger than the millennial-scale climate cycles that characterized this period. We report an astronomically calibrated 40Ar/39Ar age of 73.88 ± 0.32 ka (1σ, full external errors) for sanidine crystals extracted from Toba deposits in the Lenggong Valley, Malaysia, 350 km from the eruption source and 6 km from an archaeological site with stone artifacts buried by ash. If these artifacts were made by Homo sapiens, as has been suggested, then our age indicates that modern humans had reached Southeast Asia by ∼74 ka ago. Our 40Ar/39Ar age is an order-of-magnitude more precise than previous estimates, resolving the timing of the eruption to the middle of the cold interval between Dansgaard–Oeschger events 20 and 19, when a peak in sulfate concentration occurred as registered by Greenland ice cores. This peak is followed by a ∼10 °C drop in the Greenland surface temperature over ∼150 y, revealing the possible climatic impact of the eruption. Our 40Ar/39Ar age also provides a high-precision calibration point for other ice, marine, and terrestrial archives containing Toba sulfates and ash, facilitating their global synchronization at unprecedented resolution for a critical period in Earth and human history beyond the range of 14C dating. PMID:23112159

  7. Late-Quaternary exhumation rates constrained by OSL thermochronometry at the Franz Josef Glacier, New Zealand

    NASA Astrophysics Data System (ADS)

    Duverger, Arnaud; King, Georgina; Valla, Pierre; Cox, Simon; Herman, Frederic

    2016-04-01

    The Southern Alps of New Zealand are often cited as the primary example of a mountain range that has reached exhumation and topographic steady state, especially on the West Coast where exhumation rates reach up to about 10 mm/yr. However, cyclic climatic changes, throughout the Quaternary period have meant that the Alps cycled between being completely glaciated and ice free. The impact that such glacial cycles may have had on the spatial variability of erosion rates remains poorly constrained. Here we use Optically Stimulated Luminescence (OSL) as a very low temperature thermochronometer to constrain rock cooling histories at 10-100 kyr timescales on samples collected near the Franz Josef glacier. OSL-thermochronometry is based on the amount of electrons accumulated in the lattice defects of natural minerals such as quartz or feldspar, due to the competing effects of charge trapping due to the natural radioactivity within the rock and charge detrapping due to thermal loss during rock exhumation towards the surface. We collected 9 samples along the Waiho valley (crossing the Alpine Fault) and the Franz Josef glacier to quantify late-Quaternary exhumation rates and their potential spatial variations. Bedrock samples have been crushed to extract the light-safe rock interiors which have then been processed to isolate potassium-rich feldspars (K-feldspars). We used the Infra-Red Stimulated Luminescence at 50°C (IRSL50) protocol, including the measurement of the natural IRSL50 trapped charge population and the laboratory characterization of sample-specific thermal and athermal kinetic parameters. Once measured, the luminescence signal can be inverted into cooling histories. We also explored the potential of the recently developed multi-OSL-thermochronometer (King et al., accepted) to better constrain the cooling path. Our first OSL measurements show that samples are not in saturation and thus contain useful thermochronometric information over the last ~100 kyr. Inverse

  8. Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin

    NASA Astrophysics Data System (ADS)

    Blöthe, Jan H.; Munack, Henry; Korup, Oliver; Fülling, Alexander; Garzanti, Eduardo; Resentini, Alberto; Kubik, Peter W.

    2014-06-01

    The Indus, one of Earth's major rivers, drains large parts of the NW Himalaya and the Transhimalayan ranges that form part of the western Tibetan Plateau margin. In the western Himalayan syntaxis, where local topographic relief exceeds 7 km, the Indus has incised a steep bedrock gorge at rates of several mm yr-1. Upstream, however, the upper Indus and its tributaries alternate between bedrock gorges and broad alluvial flats flanked by the Ladakh and Zanskar ranges. We review the late Quaternary valley history in this region with a focus on the confluence of the Indus and Zanskar Rivers, where vast alluvial terrace staircases and lake sediments record major episodes of aggradation and incision. New absolute dating of high-level fluvial terrace remnants using cosmogenic 10Be, optically and infrared stimulated luminescence (OSL, IRSL) indicates at least two phases of late Quaternary valley infilling. These phases commenced before ˜200 ka and ˜50-20 ka, judging from terrace treads stranded >150 m and ˜30-40 m above modern river levels, respectively. Numerous stacks of lacustrine sediments that straddle the Indus River >200 km between the city of Leh and the confluence with the Shyok River share a distinct horizontal alignment. Constraints from IRSL samples of lacustrine sequences from the Leh-Spituk area reveal a protracted lake phase from >177 ka to 72 ka, locally accumulating >50-m thick deposits. In the absence of tectonic faulting, major lithological differences, and stream capture, we attribute the formation of this and other large lakes in the region to natural damming by large landslides, glaciers, and alluvial fans. The overall patchy landform age constraints from earlier studies can be reconciled by postulating a major deglacial control on sediment flux, valley infilling, and subsequent incision that has been modulated locally by backwater effects of natural damming. While comparison with Pleistocene monsoon proxies reveals no obvious correlation, a late

  9. Late Quaternary distribution dynamics and phylogeography of the red deer ( Cervus elaphus) in Europe

    NASA Astrophysics Data System (ADS)

    Sommer, R. S.; Zachos, F. E.; Street, M.; Jöris, O.; Skog, A.; Benecke, N.

    2008-04-01

    Here we present spatial-temporal patterns for European late Quaternary red deer (Cervus elaphus), based on radiocarbon-supported evidence derived mainly from archaeological sites. This is followed by an overview of the recent phylogeography of this species using haplogroup studies of recent molecular data. The implications of the synthesis of palaeontological and genetic data are discussed and we propose that present day European red deer haplogroup distributions are best explained against the history of late Quaternary population contractions into and expansions from glacial refugia. Around 800 records of Cervus elaphus were assigned to the period covering the later part of the Last Glacial and the Early to Middle Holocene. Red deer becomes increasingly visible in faunal assemblages dated to late OIS-3 (<40.0 ka 14C BP). The species persisted throughout the LGM on the Iberian Peninsula, in adjacent regions of South-Western France (Gascony, Dordogne, Languedoc), on the Italian Peninsula, in the Balkans and Greece, and east of the Carpathians in Moldavia. We suggest that genetic exchange between the populations of the Balkans and the East of the Carpathians remained uninterrupted during the LGM. The expansion of red deer from its southern refugia into Central and Northern Europe begins rapidly at 12,500 14C BP. The expansion of red deer coincides with the sudden rise in temperature at the onset of Greenland Interstadial 1e and the dispersion of open birch woodland into the northern half of Europe. Radiocarbon supported records show a more or less universal distribution of Cervus elaphus across Europe following the Pleistocene/Holocene climatic change at 10.0 ka 14C BP for the first time. Molecular data and fossil record combined provide a clearer temporal and spatial pattern for the Lateglacial recolonisation process of the northern part of Europe.

  10. Late Pliocene and Quaternary Eurasian locust infestations in the Canary Archipelago

    USGS Publications Warehouse

    Meco, J.; Muhs, D.R.; Fontugne, M.; Ramos, A.J.; Lomoschitz, A.; Patterson, D.

    2011-01-01

    The Canary Archipelago has long been a sensitive location to record climate changes of the past. Interbedded with its basalt lavas are marine deposits from the principal Pleistocene interglacials, as well as aeolian sands with intercalated palaeosols. The palaeosols contain African dust and innumerable relict egg pods of a temperate-region locust (cf. Dociostaurus maroccanusThunberg 1815). New ecological and stratigraphical information reveals the geological history of locust plagues (or infestations) and their palaeoclimatic significance. Here, we show that the first arrival of the plagues to the Canary Islands from Africa took place near the end of the Pliocene, ca. 3Ma, and reappeared with immense strength during the middle Late Pleistocene preceding MIS (marine isotope stage) 11 (ca. 420ka), MIS 5.5 (ca. 125ka) and probably during other warm interglacials of the late Middle Pleistocene and the Late Pleistocene. During the Early Holocene, locust plagues may have coincided with a brief cool period in the current interglacial. Climatically, locust plagues on the Canaries are a link in the chain of full-glacial arid-cold climate (calcareous dunes), early interglacial arid-sub-humid climate (African dust inputs and locust plagues), peak interglacial warm-humid climate (marine deposits with Senegalese fauna), transitional arid-temperate climate (pedogenic calcretes), and again full-glacial arid-cold climate (calcareous dunes) oscillations. During the principal interglacials of the Pleistocene, the Canary Islands recorded the migrations of warm Senegalese marine faunas to the north, crossing latitudes in the Euro-African Atlantic. However, this northward marine faunal migration was preceded in the terrestrial realm by interglacial infestations of locusts. ??? Locust plagues, Canary Islands, Late Pliocene, Pleistocene, Holocene, palaeoclimatology. ?? 2010 The Authors, Lethaia ?? 2010 The Lethaia Foundation.

  11. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.

    2007-12-01

    As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the

  12. Late Quaternary sea-ice history of northern Fram Strait/Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Kremer, Anne; Stein, Rüdiger; Fahl, Kirsten; Matthießen, Jens; Forwick, Matthias; O'Regan, Matt

    2016-04-01

    One of the main characteristics of the Arctic Ocean is its seasonal to perennial sea-ice cover. Variations of sea-ice conditions affect the Earth's albedo, primary production, rate of deep-water etc.. During the last decades, a drastic decrease in sea ice has been recorded, and the causes of which, i.e., natural vs. anthropogenic forcings, and their relevance within the global climate system, are subject of intense scientific and societal debate. In this context, records of past sea-ice conditions going beyond instrumental records are of major significance. These records may help to better understand the processes controlling natural sea-ice variability and to improve models for forecasts of future climatic conditions. During RV Polarstern Cruise PS92 in summer 2015, a 860 cm long sediment core (PS92/039-2) was recovered from the eastern flank of Yermak Plateau north of the Svalbard archipelago (Peeken, 2015). Based on a preliminary age model, this sediment core probably represents the time interval from MIS 6 to MIS 1. This core, located close to the modern summer ice edge, has been selected for reconstruction of past Arctic sea-ice variability based on specific biomarkers. In this context, we have determined the ice-algae-derived sea-ice proxy IP25 (Belt et al., 2007), in combination with other biomarkers indicative for open-water conditions (cf., Müller et al., 2009, 2011). Furthermore, organic carbon fluxes were differentiated using specific biomarkers indicative for marine primary production (brassicasterol, dinosterol) and terrigenous input (campesterol, β-sitosterol). In this poster, preliminary results of our organic-geochemical and sedimentological investigations are presented. Distinct fluctuations of these biomarkers indicate several major, partly abrupt changes in sea-ice cover in the Yermak Plateau area during the late Quaternary. These changes are probably linked to changes in the inflow of Atlantic Water along the western coastline of Svalbard into

  13. Relationship between Antarctic sea ice and southwest African climate during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend W.; Crosta, Xavier; van der Borg, Klaas; Schneider, Ralph

    2004-10-01

    Here we compare late Quaternary southwest African climate records from the west coast of southern Africa (published winter rainfall and trade wind intensity records from a core off the coast of Namibia) to records of Antarctic sea-ice extent. This comparison reveals coherent changes between Antarctic sea-ice extent and the southwest African winter rain region since 45 k.y. B.P., with enhanced winter rainfall and trade-wind vigor during periods of increased sea-ice presence. We propose an oceanic and atmospheric coupling between Antarctic sea ice and the winter rainfall zone of southwest Africa that may lead to increased desertification in the region if global warming persists.

  14. Mapped plant macrofossil and pollen records of late Quaternary vegetation change in eastern North America

    SciTech Connect

    Jackson, S.T.; Overpeck, J.T.; Webb, T. III ||

    1995-06-01

    We compiled a plant macrofossil database for 12 eastern North American tree and shrub taxa (Picea sp., P. glauca, P. mariana, Larix laricina, Abies balsamea, Tsuga canadensis, Pinus strobus, P. banksiana, P. resinosa, Betula papyrifera, B. alleghaniensis, B. Series Humiles) at 264 late Quaternary sites. Presence/absence maps for these taxa at 18,000, 15,000, 12,000, 9000, 6000, 3000, and 0 {sup 14}C yr B.P. show changes in geographic ranges of these species in response to climatic change. Comparison of the macrofossil maps with isopoll maps for corresponding taxa corroborates inferences from the pollen data, and reveals species-level patterns not apparent in the pollen maps.

  15. Climate change not to blame for late Quaternary megafauna extinctions in Australia.

    PubMed

    Saltré, Frédérik; Rodríguez-Rey, Marta; Brook, Barry W; Johnson, Christopher N; Turney, Chris S M; Alroy, John; Cooper, Alan; Beeton, Nicholas; Bird, Michael I; Fordham, Damien A; Gillespie, Richard; Herrando-Pérez, Salvador; Jacobs, Zenobia; Miller, Gifford H; Nogués-Bravo, David; Prideaux, Gavin J; Roberts, Richard G; Bradshaw, Corey J A

    2016-01-29

    Late Quaternary megafauna extinctions impoverished mammalian diversity worldwide. The causes of these extinctions in Australia are most controversial but essential to resolve, because this continent-wide event presaged similar losses that occurred thousands of years later on other continents. Here we apply a rigorous metadata analysis and new ensemble-hindcasting approach to 659 Australian megafauna fossil ages. When coupled with analysis of several high-resolution climate records, we show that megafaunal extinctions were broadly synchronous among genera and independent of climate aridity and variability in Australia over the last 120,000 years. Our results reject climate change as the primary driver of megafauna extinctions in the world's most controversial context, and instead estimate that the megafauna disappeared Australia-wide ∼13,500 years after human arrival, with shorter periods of coexistence in some regions. This is the first comprehensive approach to incorporate uncertainty in fossil ages, extinction timing and climatology, to quantify mechanisms of prehistorical extinctions.

  16. Late Quaternary environments and prehistoric occupation in the lower White Nile valley, central Sudan

    NASA Astrophysics Data System (ADS)

    Williams, Martin A. J.; Usai, Donatella; Salvatori, Sandro; Williams, Frances M.; Zerboni, Andrea; Maritan, Lara; Linseele, Veerle

    2015-12-01

    Despite the major contributions provided over fifty years ago by A.J. Arkell and J.D. Tothill to our understanding of late Quaternary environments and prehistoric occupation near the confluence of the Blue and White Nile in central Sudan, three key questions have remained unresolved since then. (a) Was the decline in Nile flood levels from early Holocene times onwards caused by a reduction in Nile discharge, or by channel incision, or both? (b) Was the regional climate wetter during times of high Nile floods and drier during times of low Nile floods? (c) Given the high degree of disturbance of Mesolithic and later prehistoric sites, is it possible to identify primary-context, stratified and undisturbed occupation? Drawing upon dated evidence from three sites to the east of and three to the west of the lower White Nile, we provide a qualified answer to the first question and documented affirmative answers to the second and third questions.

  17. A protocol for subsampling Late Quaternary coprolites for multi-proxy analysis

    NASA Astrophysics Data System (ADS)

    Wood, Jamie R.; Wilmshurst, Janet M.

    2016-04-01

    The study of Late Quaternary coprolites can provide unique insights into various aspects of the biology and ecology of extinct species and prehistoric humans. Coprolite studies are becoming increasingly multi-disciplinary, allowing a greater amount of information to be obtained from individual specimens. Subsampling is a critical part of multi-proxy coprolite analysis, yet no standardised subsampling protocols exist, and details of subsampling methods have rarely been reported in published studies. Here, we outline a procedure for the subsampling of coprolites for multi-proxy analysis. The method is designed to minimise the risk of sample contamination for sensitive analyses (e.g. ancient DNA, palynology), thereby maximising the robustness of interpretations made from the results. We also stress the need for voucher samples to be retained to ensure the repeatability of results and allow for further analytical methods to be applied to specimens in the future.

  18. Simulation experiments with late quaternary carbon storage in mid-latitude forest communities

    SciTech Connect

    Solomon, A.M.; Tharp, M.L.

    1984-01-01

    The assumption was tested that forest biomass in communities on the modern landscape is equivalent to that in similar communities on the late-Quaternary landscape. Forest carbon storage dynamics during the past 16,000 years were derived from a mathematical model of forest processes and individual tree species behavior. Modern pollen and climate data sets provided pollen-climate transfer functions to generate model driving variables from fossil pollen records. Climate variables were estimated from fossil pollen stratigraphies in Tennessee, Ohio, and Michigan. Only simulated early postglacial warming produced the large carbon gains one would expect in mixed deciduous-coniferous forests from unglaciated regions. The simulated mid-Holocene warming generated little carbon storage response by temperate deciduous forests and large carbon gains in northern hardwood-conifer forests, unlike the linear relationship expected when equivalence is assumed between modern and prehistoric forests. Late-glacial, mid-latitude forests may have contained more biomass than would be expected from equivalent forests on the modern landscape. Simulations of alternate hypotheses to explain the enhanced late-glacial cannot distinguish effects of reduced seasonal temperature extremes from effects of changing species' temperature tolerances. 84 references, 5 figures, 2 tables.

  19. The late Quaternary decline and extinction of palms on oceanic Pacific islands

    NASA Astrophysics Data System (ADS)

    Prebble, M.; Dowe, J. L.

    2008-12-01

    Late Quaternary palaeoecological records of palm decline, extirpation and extinction are explored from the oceanic islands of the Pacific Ocean. Despite the severe reduction of faunal diversity coincidental with human colonisation of these previously uninhabited oceanic islands, relatively few plant extinctions have been recorded. At low taxonomic levels, recent faunal extinctions on oceanic islands are concentrated in larger bodied representatives of certain genera and families. Fossil and historic records of plant extinction show a similar trend with high representation of the palm family, Arecaceae. Late Holocene decline of palm pollen types is demonstrated from most islands where there are palaeoecological records including the Cook Islands, Fiji, French Polynesia, the Hawaiian Islands, the Juan Fernandez Islands and Rapanui. A strong correspondence between human impact and palm decline is measured from palynological proxies including increased concentrations of charcoal particles and pollen from cultivated plants and invasive weeds. Late Holocene extinctions or extirpations are recorded across all five of the Arecaceae subfamilies of the oceanic Pacific islands. These are most common for the genus Pritchardia but also many sedis fossil palm types were recorded representing groups lacking diagnostic morphological characters.

  20. Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Hudspith, V.; Higuera, P. E.; Duffy, P. A.; Kelly, R.; Oswald, W. W.; Hu, F. S.

    2015-07-01

    Anthropogenic climate change has altered many ecosystem processes in the Arctic tundra and may have resulted in unprecedented fire activity. Evaluating the significance of recent fires requires knowledge from the paleofire record because observational data in the Arctic span only several decades, much shorter than the natural fire rotation in Arctic tundra regions. Here we report results of charcoal analysis on lake sediments from four Alaskan lakes to infer the broad spatial and temporal patterns of tundra-fire occurrence over the past 35 000 years. Background charcoal accumulation rates are low in all records (range is 0-0.05 pieces cm-2 yr-1), suggesting minimal biomass burning across our study areas. Charcoal peak analysis reveals that the mean fire-return interval (FRI; years between consecutive fire events) ranged from ca. 1650 to 6050 years at our sites, and that the most recent fire events occurred from ca. 880 to 7030 years ago, except for the CE 2007 Anaktuvuk River Fire. These mean FRI estimates are longer than the fire rotation periods estimated for the past 63 years in the areas surrounding three of the four study lakes. This result suggests that the frequency of tundra burning was higher over the recent past compared to the late Quaternary in some tundra regions. However, the ranges of FRI estimates from our paleofire records overlap with the expected values based on fire-rotation-period estimates from the observational fire data, and the differences are statistically insignificant. Together with previous tundra-fire reconstructions, these data suggest that the rate of tundra burning was spatially variable and that fires were extremely rare in our study areas throughout the late Quaternary. Given the rarity of tundra burning over multiple millennia in our study areas and the pronounced effects of fire on tundra ecosystem processes such as carbon cycling, dramatic tundra ecosystem changes are expected if anthropogenic climate change leads to more

  1. Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Hudspith, V.; Higuera, P. E.; Duffy, P. A.; Kelly, R.; Oswald, W. W.; Hu, F. S.

    2015-02-01

    Anthropogenic climate change has altered many ecosystem processes in the Arctic tundra and may have resulted in unprecedented fire activity. Evaluating the significance of recent fires requires knowledge from the paleo-fire record because observational data in the Arctic span only several decades, much shorter than the natural fire rotation in Arctic tundra regions. Here we report results of charcoal analysis on lake sediments from four Alaskan lakes to infer the broad spatial and temporal patterns of tundra fire occurrence over the past 35 000 years. Background charcoal accumulation rates are low in all records (range = 0-0.05 pieces cm-2 year-1), suggesting minimal biomass burning across our study areas. Charcoal peak analysis reveals that the mean fire return interval (FRI; years between consecutive fire events) ranged from 1648 to 6045 years at our sites, and that the most recent fire events occurred from 882 to 7031 years ago, except for the CE 2007 Anaktuvuk River Fire. These mean FRI estimates are longer than the fire rotation periods estimated for the past 63 years in the areas surrounding three of the four study lakes. This result suggests that the frequency of tundra burning was higher over the recent past compared to the late Quaternary in some tundra regions. However, the ranges of FRI estimates from our paleo-fire records overlap with the expected values based on fire-rotation-period estimates from the observational fire data, and thus quantitative differences are not significant. Together with previous tundra-fire reconstructions, these data suggest that the rate of tundra burning was spatially variable and that fires were extremely rare in our study areas throughout the late Quaternary. Given the rarity of tundra burning over multiple millennia in our study areas and the pronounced effects of fire on tundra ecosystem processes such as carbon cycling, dramatic tundra ecosystem changes are expected if anthropogenic climate change leads to more frequent

  2. The NORWEGIAN-GREENLAND Sea Continental Margins: Morphology and Late Quaternary Sedimentary Processes and Environment

    NASA Astrophysics Data System (ADS)

    Vorren, Tore O.; Laberg, Jan Sverre; Blaume, Frank; Dowdeswell, Julian A.; Kenyon, Neil H.; Mienert, Jürgen; Rumohr, Jan; Werner, Friedrich

    The continental margins surrounding the Norwegian-Greenland Sea are to a large degree shaped by processes during the late Quaternary. The paper gives an overview of the morphology and the processes responsible for the formation of three main groups of morphological features: slides, trough mouth fans and channels. Several large late Quaternary slides have been identified on the eastern Norwegian-Greenland Sea continental margin. The origin of the slides may be due to high sedimentation rates leading to a build-up of excess pore water pressure, perhaps with additional pressure caused by gas bubbles. Triggering might have been prompted by earthquakes or by decomposition of gas hydrates. Trough mouth fans (TMF) are fans at the mouths of transverse troughs on presently or formerly glaciated continental shelves. In the Norwegian-Greenland Sea, seven TMFs have been identified varying in area from 2700 km 2 to 215 000 km 2. The Trough Mouth Fans are depocentres of sediments which have accumulated in front of ice streams draining the large Northwest European ice sheets. The sediments deposited at the shelf break/upper slope by the ice stream were remobilized and transported downslope, mostly as debris flows. The Trough Mouth Fans hold the potential for giving information about the various ice streams feeding them with regard to velocity and ice discharge. Two large deep-sea channel systems have been observed along the Norwegian continental margin, the Lofoten Basin Channel and the Inbis Channel. Along the East Greenland margin, several channel systems have been identified. The deep-sea channels may have been formed by dense water originating from cooling, sea-ice formation and brine rejection close to the glacier margin or they may originate from small slides on the upper slope transforming into debris flows and turbidity currents.

  3. Stable isotopes reflect the ecological stability of two high-elevation mammals from the late Quaternary of Colorado

    NASA Astrophysics Data System (ADS)

    McLean, Bryan S.; Emslie, Steven D.

    2012-05-01

    The vertebrate fossil record of Cement Creek Cave, Colorado, spans from > 45,000 yr ago to the present and represents the richest stratified series of high-elevation (> 2900 m) mammal remains known from the late Quaternary of North America. Stable carbon and oxygen isotope analyses of tooth enamel were used to assess potential ecological responses of two species found commonly throughout the cave, Yellow-bellied marmots (Marmota flaviventris) and Bushy-tailed woodrats (Neotoma cinerea), to late Quaternary climate and environmental changes of the Southern Rocky Mountains. Results indicate that despite such perturbations, the dietary ecologies of both species were maintained across this period. Neither taxon shifted to consuming C4 taxa or different C3 functional groups; similarly, no significant shifts in surface water use were detected. Variations in enamel δ13C were observed, however, that represent the physiological responses of high-elevation plants to changing levels of late Quaternary atmospheric CO2. While our findings extend both the geographic and elevational record of this plant CO2 response, they simultaneously highlight the ecological stability of high-elevation M. flaviventris and N. cinerea during climate changes of late Quaternary magnitude.

  4. Dinoflagellate cysts as indicators of millennial scale climatic and oceanographic variability in Guaymas Basin, Gulf of California (Mexico) during the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Price, Andrea M.; Mertens, Kenneth N.; Pospelova, *Vera; Pedersen, Thomas F.; Ganeshram, Raja S.

    2015-04-01

    A high-resolution record of organic-walled dinoflagellate cyst production in Guaymas Basin, Gulf of California (Mexico) reveals a complex paleoceanographic history over the last ~40 ka. Guaymas Basin is an excellent location to perform high resolution studies of changes in Late Quaternary climate and paleo-productivity because it is characterized by high primary productivity, high sedimentation rates, and low oxygen bottom waters. These factors contribute to the deposition and preservation of laminated sediments throughout large portions of core MD02-2515. This is one of the first studies in the Northeast Pacific to document dinoflagellate cyst production at a centennial to millennial scale throughout the Late Quaternary. Based on the cyst assemblages three major dinoflagellate cyst zones were established, and roughly correspond to Marine Isotope Stages 1 to 3. The most dominant dinoflagellate cyst taxa found throughout the core were Brigantedinium spp. and Operculodinium centrocarpum. Dansgaard-Oeschger event 8 is observed in the dinoflagellate cyst record, and is characterized by an increase in warm water taxa such as Spiniferites pachydermus. Other intervals of interest are the Younger Dryas where cooler sea-surface conditions are not recorded, and the Holocene which is characterized by the consistent presence of warm water species Stelladinium reidii, Tuberculodinidum vancampoae, Bitectatodinium spongium and an increase in Quinquecuspis concreta. Changes in cyst assemblages, concentrations and species diversity, along with geochemical data reflect major orbital to millennial-scale climatic and oceanographic changes. Keywords: Dansgaard-Oeschger events; dinoflagellate cyst; Gulf of California; late Quaternary climate change; upwelling; Younger Dryas.

  5. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells

    USGS Publications Warehouse

    Pigati, Jeff S.; McGeehin, John P.; Muhs, Daniel R.; Bettis, E. Arthur

    2013-01-01

    Constraining the ages and mass accumulation rates of late Quaternary loess deposits is often difficult because of the paucity of organic material typically available for 14C dating and the inherent limitations of luminescence techniques. Radiocarbon dating of small terrestrial gastropod shells may provide an alternative to these methods as fossil shells are common in loess and contain ∼12% carbon by weight. Terrestrial gastropod assemblages in loess have been used extensively to reconstruct past environmental conditions but have been largely ignored for dating purposes. Here, we present the results of a multi-faceted approach to understanding the potential for using small terrestrial gastropod shells to date loess deposits in North America. First, we compare highly resolved 14C ages of well-preserved wood and gastropod shells (Succineidae) recovered from a Holocene loess section in Alaska. Radiocarbon ages derived from the shells are nearly identical to wood and plant macrofossil ages throughout the section, which suggests that the shells behaved as closed systems with respect to carbon for at least the last 10 ka (thousands of calibrated 14C years before present). Second, we apply 14C dating of gastropod shells to late Pleistocene loess deposits in the Great Plains using stratigraphy and independent chronologies for comparison. The new shell ages require less interpretation than humic acid radiocarbon ages that are commonly used in loess studies, provide additional stratigraphic coverage to previous dating efforts, and are in correct stratigraphic order more often than their luminescence counterparts. Third, we show that Succineidae shells recovered from historic loess in the Matanuska River Valley, Alaska captured the 20th century 14C bomb spike, which suggests that the shells can be used to date late Holocene and historic-aged loess. Finally, results from Nebraska and western Iowa suggest that, similar to other materials, shell ages approaching ∼40 ka should

  6. Late Quaternary Paleohydrology of the Madre de Dios River, southwestern Amazon Basin, Peru

    NASA Astrophysics Data System (ADS)

    Rigsby, Catherine A.; Hemric, Erin M.; Baker, Paul A.

    2009-12-01

    Late Quaternary climatic and hydrologic variability triggered changes in fluvial deposition and erosion along the course of the Madre de Dios River, Peru, the largest tributary basin of the Madeira basin, itself the largest tributary basin of the Amazon. Three laterally extensive, Quaternary-age, terrace tracts are present within the Madre de Dios basin. Analysis of sedimentary facies, present in the modern cut banks and terraced sequences, along with radiocarbon dates on fossil wood and leaf material preserved in the terraced strata, allow reconstruction of the Late Quaternary depositional history of the sedimentary sequences, including determination of the approximate timing of aggradation and downcutting episodes and its relationship to the timing of past climate change in this portion of the Amazon basin and beyond. The Quaternary sediments underlying the terraces most often recorded deposition in a coarse-grained meandering fluvial system. The T3 terrace, the highest terrace, is underlain by the Miocene (?) Ipururi Formation, which is unconformably overlain by the late Miocene-Pleistocene (?) (> 48,000 cal yrs BP) Madre de Dios Formation, a multistory coarse-sandy to gravelly channel and point bar complex. The latter was downcut before 29,850 ± 100 cal yrs BP. This downcut landscape was infilled by meandering fluvial strata characterized by gravelly channel deposits in a sequence dominated by floodplain and lateral accretion deposits. These strata were in turn downcut to form the T2 terrace before 11,970 ± 100 cal yrs BP. A third episode of aggradation resulted in the deposition of a sand-dominated meandering channel complex that infilled the T2 valley and was subsequently downcut after 3780 ± 50 cal yrs BP. This most recent terrace is infilled by the modern fluvial sediment, which has been actively aggrading since at least 870 ± 50 cal yrs BP. Importantly, the Madre de Dios fluvial system actively aggraded between 30,000 and 25,000 cal yrs BP, (and likely

  7. Environmental Magnetic Signature Of Late Quaternary Climate and Paleoceanography in the Bering Sea

    NASA Astrophysics Data System (ADS)

    Platzman, E. S.; Lund, S.; Kirby, M. E.

    2014-12-01

    High latitude drilling during IODP expedition 323 in the Bering Sea provides a unique opportunity to study in detail the evolution of Quaternary paleoceanography, climate and glacial history of the Bering Sea gateway to the Arctic Ocean. Our study focuses on a 400 ky interval of Quaternary marine sediments cored along the Bering Slope. Samples for magnetic analysis were obtained from sites U1339, U1343, U1344, U1345, at depths of 1008-3484 m. Sediments in these cores are a mixture of siliclastic material, derived primarily from terrigeneous sources, and biogenic material. Detailed measurements of the variation in bulk magnetic properties including natural remanent magnetization (NRM), susceptibility, ARM, and IRM, have been used to monitor changes in concentration, composition and grainsize of the magnetic components. In addition, sediment grain size analysis was preformed on biogenic free aliquots at selected intervals. Our results indicate that the dramatic bimodal magnetic intensity signal that alternates between a strong and weak NRM and magnetic susceptibility is associated with relatively course and fine grain sizes repectively. This is the opposite to the pattern estimated by our initial IODP Ex. 323 reports. Current models propose that, as has been observed in the North Atlantic, high intensities are likely to be related to high contributions of terrigenous and glaciomarine sediments deposited during glacial periods and low intensities are likely to occur during interglacials when continental sediments become trapped on the on the shelf. Contrary to this hypothesis, however, we find compelling evidence for a substantial increase in terrigenous input during the interglacial periods and what appears to be a predominantly pelagic signal during the glacial periods. Comparison of our data with other proxy data including oxygen isotopes, NGR, GRA allows us to investigate the possible causal links between these changes and the environmental history of the North

  8. Late Quaternary landscape evolution in the Great Karoo, South Africa: Processes and drivers.

    NASA Astrophysics Data System (ADS)

    Oldknow, Chris; Hooke, Janet; Lang, Andreas

    2016-04-01

    The Great Karoo spans the north-central part of South Africa at a major climatic boundary. The characteristics, sequences, spatial patterns and drivers of river response to Late Quaternary climate changes in this region remain unclear due to the fragmentary alluvial/colluvial stratigraphic record and the lack of dated palaeoclimatic archives. Dendritic gully networks incised into deep deposits (up to 6 m) of colluvium and alluvium in the upper Sundays River catchment expose a legacy of "cut and fill" features. In 1st order tributaries, these are predominantly discontinuous palaeochannels and flood-outs with localised palaeosols, whereas in 2nd & 3rd order tributaries there are: 1) incised palaeo-geomorphic surfaces, 2) semi-continuous inset terrace sequences, 3) buried palaeo-gully topography. Using a combination of field mapping, logging of sediment outcrops, soil micromorphological and grain size analysis, mineral magnetic measurements and radiometric dating (OSL & 14C), we derive a stratigraphic evolution model which demonstrates a) the number of phases of incision, aggradation and pedogenesis, b) the spatial and temporal extent of each phase and c) the drivers of alluviation and associated feedbacks. Our reconstruction of regional valley alluviation indicates four distinct terrace units of contrasting depositional age. The base of the succession reflects slow aggradation under periglacial conditions associated with the Last Glacial Maximum. Subsequent channel entrenchment, causing terrace abandonment (T1) occurred in the deglacial period when vegetation and rainfall were in anti-phase. Re-instatement of connectivity with deep upland colluvial stores resulted in the injection of a pulse of sediment to valley floors, triggering compartmentalised backfilling (aggradation of T2) which propagated upstream as far as the second order drainage lines. This backfilling restructured the local hydrology, which, in concert with enhanced summer-rainfall, contributed to a

  9. Late Quaternary dietary shifts of the Cape grysbok ( Raphicerus melanotis) in southern Africa

    NASA Astrophysics Data System (ADS)

    Faith, J. Tyler

    2011-01-01

    The Cape grysbok is endemic to southern Africa's Cape Floral Region where it selectively browses various species of dicotyledonous vegetation. Fossil evidence indicates that the grysbok persisted under glacial and interglacial conditions throughout the late Quaternary and inhabited a range of environments. This study employs mesowear analysis to reconstruct grysbok diets over time and in response to changing environments at Nelson Bay Cave, Die Kelders Cave 1, Klasies River Mouth, and Swartklip 1. Results indicate that the amount of grasses (monocots) versus leafy vegetation (dicots) included in the diet fluctuated over time and largely in agreement with changes in faunal community structure. The case for dietary flexibility is particularly clear at Nelson Bay Cave, where there is a significant trend from mixed feeding towards increased browsing from the late Pleistocene (~ 18,500 14C yr BP) through the Holocene. Dietary shifts at Nelson Bay Cave are consistent with the hypothesis that declining grassland productivity is responsible for the terminal Pleistocene extinction of several large ungulates in southern Africa. Furthermore, the short-term dietary shifts demonstrated here (100s to 1000s of years) provide an important caution against relying on taxonomic uniformitarianism when reconstructing the dietary preferences of fossil ungulates, both extant and extinct.

  10. The calculation of climatic indices for Late Quaternary faunal assemblages from South African sites

    NASA Astrophysics Data System (ADS)

    Thackeray, Francis

    2013-04-01

    The relative abundance of rodents and insectivores from several Late Quaternary sites in South Africa have been studied using multivariate analysis (notably factor analysis). The highest loadings on the first factor (F1) are obtained for taxa that are today found in warm subtropical environments, contrasting with taxa which have low F1 loadings and which are today distributed in more southerly latitudes and at high altitudes. The latter taxa with low loadings on F1 are able to tolerate cold conditions (and are relatively common in Terminal Pleistocene assemblages associated with Oxygen Isotope Stage 2). A summary statistic based on F1 (SSF1) is calculated and interpreted as a temperature index. The dated temperature indices for Boomplaas cave correlate well (r=0.95) with dated deuterium isotope ratios for a Vostok core in Antarctica. Similarly, a moisture index (SSF3) is calculated from factor analysis of the relative abundances of the same faunal assemblages. The results are assessed in terms of a non-linear pattern of variability in temperature and moisture indices calculated from pollen as well as mammalian microfauna. The changes in climate are likely to have influenced the distribution and abundance of human populations in the Late Pleistocene in southern Africa.

  11. Dynamics of Mediterranean late Quaternary fluvial activity: An example from the River Ebro (north Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Soria-Jáuregui, Ángel; González-Amuchástegui, María José; Mauz, Barbara; Lang, Andreas

    2016-09-01

    Late Pleistocene and Holocene fluvial evolution of the upper River Ebro (Miranda basin, north Spain) is analysed using geomorphological, sedimentological, and optical dating techniques. Maximum regional crustal uplift of 0.98 m/ka approximately helped preserve a suite of terraces in the Miranda basin: 5 river terraces (T1-5) were identified and their formation attributed to MIS 6 (T1), MIS 5d (T2), MIS 4 (T3), MIS 2 (T4), MIS 1 (T5). Alluvium deposited in terraces T1, T2, T3, and T4 is well-sorted, clast-supported gravels; whereas the T5 deposit is exclusively composed of silt. Gravels were deposited during cold and dry periods when reduced vegetation cover on hillslopes increased sediment supply to the trunk river. Silt was deposited in overbank settings under warmer and wetter climate conditions when vegetation cover stabilised hillslopes and restricted sediment supply. It also resulted in lower peak discharge and reduced flow velocities over vegetated floodplains. The chronological sequence of terraces indicates that incision occurred during climatic transitions. We conclude that the upper River Ebro responded to fluctuations in sediment supply and discharge controlled by late Quaternary climate cycles.

  12. Late Quaternary evolution of channel and lobe complexes of Monterey Fan

    USGS Publications Warehouse

    Fildani, A.; Normark, W.R.

    2004-01-01

    The modern Monterey submarine fan, one of the largest deep-water deposits off the western US, is composed of two major turbidite systems: the Neogene Lower Turbidite System (LTS) and the late Quaternary Upper Turbidite System (UTS). The areally extensive LTS is a distal deposit with low-relief, poorly defined channels, overbank, and lower-fan elements. The younger UTS comprises almost half of the total fan volume and was initiated in the late Pleistocene from canyons in the Monterey Bay area. Rapidly prograding high-relief, channel-levee complexes dominated deposition early in the UTS with periodic avulsion events. In the last few 100 ka, much of the sediment bypassed the northern fan as a result of allocyclic controls, and deposition is simultaneously occurring on a sandy lobe with low-relief channels and on an adjacent detached muddier lobe built from reconfinement of overbank flow from the northern high-relief channels. During the relatively short-lived UTS deposition, at least seven different channel types and two lobe types were formed. This study provides a significant reinterpretation of the depositional history of Monterey Fan by incorporating all available unpublished geophysical data. ?? 2004 Elsevier B.V. All rights reserved.

  13. Synthesis of Late Cretaceous-Quaternary tectonic, sedimentary and magmatic processes and basin formation related to episodic subduction-collision in the easternmost Mediterranean region

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Kinnaird, Timothy; McCay, Gillian; Palamakumbura, Romesh; Taslı, Kemal

    2015-04-01

    Mesozoic oceanic crust of the easternmost Mediterranean has experienced northwards subduction during Late Cretaceous-Cenozoic, either continuously or discontinuously based on kinematic evidence. Much of the existing information on sedimentation within the easternmost Mediterranean oceanic basin comes from the non-emplaced continental margins of the Levant and North Africa. In addition, sedimentary basins related to plate convergence are recorded along the northern margin of the Southern Neotethyan ocean, mainly in the Kyrenia Range of northern Cyprus and its extension into the Misis Mountains of southern Turkey, coupled with the adjacent submerged areas. In a setting of only incipient continental collision such as the easternmost Mediterranean the sedimentary basins would be expected to remain entirely submarine. In contrast, the Kyrenia Range has been strongly uplifted and subaerially exposed during Late Pliocene-Quaternary time. This allows the recognition of a number of discrete phases of sedimentary basin formation: 1. Late Cretaceous (Campanian-Maastrichtian): silicic volcanism to create a subaqueous volcaniclastic apron; 2. Maastrichtian-Paleocene: pelagic carbonate deposition interspersed with proximal gravity flows and within-plate type alkaline volcanics; 3. Early Eocene: large-scale sedimentary melange (olistostrome) emplacement; 4. Late Eocene-Late Miocene: terrigenous gravity-flow deposition in a deep-water fault dissected 'fore arc' setting. Initial, Late Eocene non-marine coarse clastic alluvial fan deposition was succeeded by Oligocene-Miocene deep-marine siliciclastic gravity flow deposits, fining and shallowing upwards during the Late Miocene; 5. Messinian: localised precipitation of evaporites in small fault-controlled basins; 6. Pliocene: shallow-marine siliciclastic-carbonate deposition in a shelf-depth, overall regressive setting; 7. Latest Pliocene to mid-Pleistocene: gravitational accumulation of coarse talus along a strongly uplifting

  14. Late Quaternary alluviation and offset along the eastern Big Pine fault, southern California

    USGS Publications Warehouse

    DeLong, S.B.; Minor, S.A.; Arnold, L.J.

    2007-01-01

    Determining late Quaternary offset rates on specific faults within active mountain belts is not only a key component of seismic hazard analysis, but sheds light on regional tectonic development over geologic timescales. Here we report an estimate of dip-slip rate on the eastern Big Pine oblique-reverse fault in the upper Cuyama Valley within the western Transverse Ranges of southern California, and its relation to local landscape development. Optically stimulated luminescence (OSL) dating of sandy beds within coarse-grained alluvial deposits indicates that deposition of alluvium shed from the Pine Mountain massif occurred near the southern margin of the Cuyama structural basin at the elevation of the Cuyama River between 25 and 14??ka. This alluvial deposit has been offset ??? 10??m vertically by the eastern Big Pine fault, providing a latest Quaternary dip-slip rate estimate of ??? 0.9??m/ky based on a 50?? fault dip. Incision of the adjacent Cuyama River has exposed a section of older Cuyama River sediments beneath the Pine Mountain alluvium that accumulated between 45 and 30??ka on the down-thrown footwall block of the eastern Big Pine fault. Corroborative evidence for Holocene reverse-slip on the eastern Big Pine fault is ??? 1??m of incised bedrock that is characteristically exposed beneath 2-3.5??ka fill terraces in tributaries south of the fault. The eastern Big Pine fault in the Cuyama Valley area has no confirmed record of historic rupture; however, based on our results, we suggest the likelihood of multiple reverse-slip rupture events since 14??ka. ?? 2007 Elsevier B.V. All rights reserved.

  15. Late Neogene marine incursions and the ancestral Gulf of California

    USGS Publications Warehouse

    McDougall, K.

    2008-01-01

    The late Neogene section in the Salton Trough, California, and along the lower Colorado River in Arizona is composed of marine units bracketed by nonmarine units. Microfossils from the marine deposits indicate that a marine incursion inundated the Salton Trough during the late Miocene. Water depths increased rapidly in the Miocene and eventually flooded the region now occupied by the Colorado River as far north as Parker, Arizona. Marine conditions were restricted in the Pliocene as the Colorado River filled the Salton Trough with sediments and the Gulf of California assumed its present configuration. Microfossils from the early part of this incursion include a diverse assemblage of benthic foraminifers (Amphistegina gibbosa, Uvigerina peregrina, Cassidulina delicata, and Bolivina interjuncta), planktic foraminifers (Globigerinoides obliquus, G. extremus, and Globigerina nepenthes), and calcareous nannoplankton (Discoaster brouweri, Discoaster aff. Discoaster surculus, Sphenolithus abies, and S. neoabies), whereas microfossils in the final phase contain a less diverse assemblage of benthic foraminifers that are diagnostic of marginal shallow-marine conditions (Ammonia, Elphidium, Bolivina, Cibicides, and Quinqueloculina). Evidence of an earlier middle Miocene marine incursion comes from reworked microfossils found near Split Mountain Gorge in the Fish Creek Gypsum (Sphenolithus moriformis) and near San Gorgonio Pass (Cyclicargolithus floridanus and Sphenolithus heteromorphus and planktic foraminifers). The middle Miocene incursion may also be represented by the older marine sedimentary rocks encountered in the subsurface near Yuma, Arizona, where rare middle Miocene planktic foraminifers are found. ?? 2008 The Geological Society of America.

  16. Late Quaternary stratigraphy and geochronology of the western Killpecker Dunes, Wyoming, USA

    USGS Publications Warehouse

    Mayer, J.H.; Mahan, S.A.

    2004-01-01

    New stratigraphic and geochronologic data from the Killpecker Dunes in southwestern Wyoming facilitate a more precise understanding of the dune field's history. Prior investigations suggested that evidence for late Pleistocene eolian activity in the dune field was lacking. However, luminescence ages from eolian sand of ???15,000 yr, as well as Folsom (12,950-11,950 cal yr B.P.) and Agate Basin (12,600-10,700 cal yr) artifacts overlying eolian sand, indicate the dune field existed at least during the latest Pleistocene, with initial eolian sedimentation probably occurring under a dry periglacial climate. The period between ???13,000 and 8900 cal yr B.P. was characterized by relatively slow eolian sedimentation concomitant with soil formation. Erosion occurred between ???8182 and 6600 cal yr B.P. on the upwind region of the dune field, followed by relative stability and soil formation between ???5900 and 2700 cal yr B.P. The first of at least two latest Holocene episodes of eolian sedimentation occurred between ???2000 and 1500 yr, followed by a brief (???500 yr) episode of soil formation; a second episode of sedimentation, occurring by at least ???700 yr, may coincide with a hypothesized Medieval warm period. Recent stabilization of the western Killpecker Dunes likely occurred during the Little Ice Age (???350-100 yr B.P.). The eolian chronology of the western Killpecker Dunes correlates reasonably well with those of other major dune fields in the Wyoming Basin, suggesting that dune field reactivation resulted primarily due to departures toward aridity during the late Quaternary. Similar to dune fields on the central Great Plains, dune fields in the Wyoming Basin have been active under a periglacial climate during the late Pleistocene, as well as under near-modern conditions during the latest Holocene. ?? 2003 University of Washington. All rights reserved.

  17. Late Quaternary Glaciation and Postglacial Stratigraphy of the Northern Pacific Margin of Canada

    NASA Astrophysics Data System (ADS)

    Barrie, J. Vaughn; Conway, Kim W.

    1999-03-01

    Areas of southeastern Alaska and the Queen Charlotte Islands of the northwestern Pacific coast of North America were considered to be ice free during the late Wisconsinan glaciation and glacial refugia existed. However, a glacier extended from mainland North America to the shelfbreak in Dixon Entrance separating Alaska and the Queen Charlotte Islands. Glacial retreat to the east began sometime after 15,000 to 16,000 14C yr B.P. and ice had completely left Dixon Entrance by 13,500 to 13,000 14C yr B.P. A rapid sea-level regression occurred soon after deglaciation began, due to isostatic rebound, with relative sea level falling to approximately 150 m below present in central Dixon Entrance, decreasing the size of the inlet by about 30 percent by 12,400 14C yr B.P. The late Quaternary glacial and postglacial stratigraphic sequence is more than 100 m thick overlying older Pleistocene sediments and Tertiary bedrock. A late Wisconsinan diamicton is overlain by glaciomarine muds formed between approximately 14,400 and 13,000 14C yr B.P. Contemporaneous with the deposition of the glaciomarine muds an extensive outwash deposit formed off the northern coast of the Queen Charlotte Islands to a present depth of 150 m. During the sea-level lowstand and subsequent transgression, a reworked sand unit was deposited over much of the seafloor to depths greater than 450 m. The unit is exposed at the seafloor over much of the region, suggesting that seabed hydrodynamic energy levels were high after 13,000 14C yr B.P. and remain so today.

  18. Lake sediments documented late Quaternary humid pulses in the Gobi Desert of southern Mongolia: Vegetation, hydrologic and paleoglaciation inferences

    NASA Astrophysics Data System (ADS)

    Yu, Kaifeng; Lehmkuhl, Frank; Schlütz, Frank; Diekmann, Bernhard; Mischke, Steffen; Grunert, Jörg; Murad, Waheed; Nottebaum, Veit; Stauch, Georg

    2016-04-01

    Considerable efforts have been devoted to decipher the late Quaternary moisture and thermal history of the arid central Asia. However, an array of paramount aspects has inhibited our complete understanding of the broad pattern and underlying mechanisms: (i) Biased or even contradictory conclusions may be achieved due to the interpretations of different proxies. (ii) Most of the works poured attention into Holocene period, only few records can extend back to earlier marine isotope stages. (iii) Substantial spatial heterogeneity is noteworthy in the area. Exceeding amounts of studies were carried out in Lake Baikal catchments, northern and western Mongolia, while only two works were hitherto conducted in southern Mongolia. (iv) It remains elusive with respect to how and to what extent have East Asian Summer Monsoon and Westerlies affected the thermal and moisture signals in this spectacular arid region. To address this set of issues, two parallel cores (ONW I, 6.00 m; ONW II, 13.36 m) were retrieved from Orog Nuur, Gobi Desert of southern Mongolia. An array of multidisciplinary investigations involving geomorphologic mapping, radiocarbon dating, geochemical and biotic studies (i.e., palynological and ostracod valve analyses) provide a comprehensive data set for inferences of hydrological perturbations, vegetation development and phases of glacier expansions over the last ~50 ka. Orog Nuur catchment depicted a broadly vulnerable ecosystem that was dominated by Artemisia steppe community in the late Pleistocene, and Chenopodiaceae desert steppe in the Holocene. In addition, the Termination I is ideally documented in a complete suite of geochemical, palynological, and ostracod signatures. In general, the thermal and moisture history in the Gobi Desert were as follows: (i) MIS3 had a relatively warm temperature and sufficient moisture supply in particular between ~40 ka and ~26 ka; (ii) The MIS2 was subject to cold temperature and moisture deficit, which was interrupted

  19. Late Quaternary environmental change in the African sector of Southern Hemisphere mid-latitudes: trends and teleconnections. (Invited)

    NASA Astrophysics Data System (ADS)

    Chase, B. M.

    2013-12-01

    At the northern boundary of the Southern Hemisphere westerly wind belt, and the northern limit of the related frontal systems, SW African environments are particularly sensitive to variations in mid-latitude oceanic and atmospheric circulation systems. It has long been postulated that during relatively cold periods of the late Quaternary, SW Africa - if not much of southern Africa - has experienced an increase in the precipitation linked to phenomena related to an equatorward shift/expansion of the westerly storm track (for review see Chase and Meadows, 2007, Earth-Science Reviews). However, a reliable chain of evidence to support this hypothesis has been elusive, and studies from both the data and modelling communities have yet to resolve the debate. This paper will present the state-of the-art in our understanding of how environments in SW Africa have changed during the course of the last glacial-interglacial cycle. New evidence from both the marine and terrestrial realms, particularly in the form of high resolution stable isotope and pollen records obtained from fossilised rock hyrax middens (Chase et al., 2012, Quaternary Science Reviews; www.hyrax.univ-montp2.fr), is providing a detailed, and coherent, but complex picture of climate dynamics and forcing mechanisms along the northern boundary of westerly influence. While records from the continental interior remain rare, and thus the degree to which an expansion of the westerlies may have influenced southern Africa as a whole remains to be adequately resolved, sites from the SW continental margin do appear to indicate that shifts of the oceanic Subtropical Front and westerly storm track strongly affect the amount of precipitation the region receives. The dynamics of this system, however, do not operate in isolation, and conditions north of the Subtropical Front are very sensitive to variations in the position and intensity of the South Atlantic Anticyclone, which appears to be most responsive to changes in

  20. Chronology of late Quaternary glaciation and landform evolution in the upper Dhauliganga valley, (Trans Himalaya), Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Bisht, Pinkey; Ali, S. Nawaz; Shukla, Anil D.; Negi, Sunil; Sundriyal, Y. P.; Yadava, M. G.; Juyal, Navin

    2015-12-01

    Detailed field mapping of glacial and paraglacial landforms supported by optical and radiocarbon dating is used to reconstruct the history of late Quaternary glaciation and landform evolution in the Trans Himalayan region of the upper Dhauliganga valley. The study identifies four events of glaciations with decreasing magnitude which are termed as Purvi Kamet Stage -Ia (PKS-Ia), PKS-Ib, PKS-II, PKS-III and PKS-IV respectively. The oldest PKS-Ia and Ib are assigned the Marine Isotopic Stgae-3 (MIS-3), the PKS-II to the Last Glacial Maximum (MIS-2), PKS-III dated to 7.9 ± 0.7 ka, and the PKS-IV is dated to 3.4 ± 0.3 ka and 1.9 ± 0.2 ka respectively. The largest valley glaciations viz. the (PKS-Ia) occurred during the strengthened summer monsoon corresponding to the MIS-3, following this, the recessional moraines (PKS-Ib) represent the gradual decline in summer monsoon towards the later part of MIS-3. The valley responded to the global Last Glacial Maximum (LGM), which is represented by the PKS-II moraine implying the influence of strengthened mid-latitude westerlies during the LGM. The post-LGM deglaciation was associated with the onset of summer monsoon and is represented by the deposition of four distinct outwash gravel terraces. The early Holocene PKS-III glaciation occurred around 7.9 ± 0.7 ka and broadly coincides with the early Holocene cooling event (8.2 ka). This was followed by the deposition of stratified scree deposits and the alluvial fan (between 5.5 ka and 3 ka) during the mid to late Holocene aridity. This was followed by marginal re-advancement of the valley glacier (viz. PKS-IV) during the late Holocene cool and moist climate. Although glaciers respond to a combination of temperature and precipitation changes, however during the Holocene it seems that temperature played a major role in driving the glaciation.

  1. Late Quaternary development of the Croatan Beach Ridge Complex, Bogue Sound, Bogue Banks, NC, USA and implications for coastal evolution

    NASA Astrophysics Data System (ADS)

    Lazar, Kelly B.; Mallinson, David J.; Culver, Stephen J.

    2016-06-01

    Foraminiferal, sedimentological, geophysical, and geochronologic data were utilized to elucidate the late Quaternary geologic development of the Croatan Beach Ridge Complex (CBRC), Bogue Sound, and Bogue Banks, North Carolina, USA. The CBRC is a relict beach ridge feature located on the mainland. It is separated from the modern barrier island, Bogue Banks, by Bogue Sound. Seventeen cores along shore-normal and shore-parallel transects provided material for sedimentologic and foraminiferal analysis and resulted in the recognition of seven depositional facies representing a variety of coastal depositional environments. Chronologic and depositional facies data suggest the CBRC was initiated during MIS 5a and rapid southward progradation produced a cape structure. Eolian reactivation of the upper sand of the CBRC occurred during the last glacial maximum (∼18 ka). The age of flood tide delta deposits in Bogue Sound suggests that the Holocene barrier island, Bogue Banks, had formed by ∼6 ka. Shoreface ravinement resulted in a shoreface landward of the present shoreline by ∼3.5 ka. Seaward and westward spit progradation of Bogue Banks began ∼1.7 ka and continued to ∼1.3 ka. Normal marine salinity conditions were present in Bogue Sound ∼1.1 ka, suggesting removal of at least the narrowest parts of the barrier island, coeval with a previously documented segmentation of the southern Outer Banks barrier islands. Previous work has linked this segmentation to climate warming and increased tropical storm activity during the Medieval Climate Anomaly. This study illustrates the complex response of this coastal system to Pleistocene and Holocene sea-level and climate change over two major sea-level cycles. In particular, the regional geomorphology during MIS5a and the Holocene sea-level highstand differ significantly and this, in large part, was controlled by the antecedent geologic framework, resulted in the contrasting more localized coastal geomorphic response.

  2. Grain Size Variability and Sea Ice in Middle to Late Quaternary Sediments along the Lomonosov Ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gyllencreutz, R.; O'Regan, M.; Lowemark, L. A.; Jakobsson, M.

    2014-12-01

    The main transport mechanisms for coarse grained sediments to the central Arctic Ocean are entrainment in sea ice and ice bergs. However, grain size distributions in the fine fraction have not been studied in sufficient detail to understand different transport and sedimentation patterns. Here we present analysis of fine fraction grain size spectrums in middle and late Quaternary sediments recovered from a suite of cores collected from the Lomonosov Ridge in the central Arctic Ocean that span a large range of water depths (>3000 to <1000 m). The grain size data are plotted in 3D, resembling a topographic map, which greatly facilitates interpretation. Glacial periods are characterized as distinct coarsening events with larger variability, down to the marine isotope stage 6/7 boundary. Below this level, glacial and interglacial periods are marked by more distinct changes in the silt and clay fractions. Throughout the record, the coarser intervals are distinct in all studied grain sizes, i.e. when the >63 um increases, clay and silt also show coarsening, which has been described previously, but is more clearly visible in our 3D-visualization of the particle size distributions. This supports previous studies showing that this pattern is consistent with grain size distributions in modern sea-ice. The results strengthen the evidence that a large portion of the silt in the central Arctic Ocean is transported by sea ice. Similar results are found in stratigraphically aligned intervals from cores recovered from widely differing water depths, possibly providing a means to differentiate influences of sea ice rafting from current controlled sorting.

  3. Late quaternary sea level changes of Gabes coastal plain and shelf: Identification of the MIS 5c and MIS 5a onshore highstands, southern Mediterranean

    NASA Astrophysics Data System (ADS)

    Gzam, Maher; Mejdoub, Noureddine El; Jedoui, Younes

    2016-02-01

    The continental shelf of the Gulf of Gabes is outlined, during the MIS 5c and MIS 5a onshore highstands, by the genesis of forced regressive beach ridges situated respectively at -19 m b.s.l/100 ka and -8 m b.s.l/80 ka. This area, considered as a stable domain since at least the last 130 ka (Bouaziz et al. 2003), is a particular zone for the reconstruction of the late quaternary sea-level changes in the region. Shuttle Radar Topography Mission (SRTM) data and field observations are highlighted to deduce interaction between hydrodynamic factors and antecedent topography. Variations in geomorphology were attributed to geological inheritance. Petrography and sedimentary facies of the submerged coastal ridges reveal that the palaeocoastal morphology was more agitated than today and the fluvial discharges are consistent. Actual morphologic trend deduced from different environment coasts (sandy coasts, sea cliffs and tidal flat) is marked by accumulation of marine sands and progradation.

  4. A fractal analysis of quaternary, Cenozoic-Mesozoic, and Late Pennsylvanian sea level changes

    NASA Technical Reports Server (NTRS)

    Hsui, Albert T.; Rust, Kelly A.; Klein, George D.

    1993-01-01

    Sea level changes are related to both climatic variations and tectonic movements. The fractal dimensions of several sea level curves were compared to a modern climatic fractal dimension of 1.26 established for annual precipitation records. A similar fractal dimension (1.22) based on delta(O-18/O-16) in deep-sea sediments has been suggested to characterize climatic change during the past 2 m.y. Our analysis indicates that sea level changes over the past 150,000 to 250,000 years also exhibit comparable fractal dimensions. Sea level changes for periods longer than about 30 m.y. are found to produce fractal dimensions closer to unity and Missourian (Late Pennsylvanian) sea level changes yield a fractal dimension of 1.41. The fact that these sea level curves all possess fractal dimensions less than 1.5 indicates that sea level changes exhibit nonperiodic, long-run persistence. The different fractal dimensions calculated for the various time periods could be the result of a characteristic overprinting of the sediment recored by prevailing processes during deposition. For example, during the Quaternary, glacio-eustatic sea level changes correlate well with the present climatic signature. During the Missourian, however, mechanisms such as plate reorganization may have dominated, resulting in a significantly different fractal dimension.

  5. Two late quaternary pollen records from the upper Kolyma region, Soviet Northeast: A preliminary report

    SciTech Connect

    Anderson, P.M.; Brubaker, L.; Andreev, A.A.; Chernenky, B.I.; Federova, I.N.

    1992-03-01

    Pollen records from Sosednee and Elikchan Lakes provide the first continuous late Quaternary vegetation history for the upper Kolyma drainage of the Soviet Northeast. Full-glacial spectra at these sites are similar to those from Eastern Beringia, with high percentages of grass, sedge, and wormwood pollen indicative of herb tundra. In the Elikchan area at approximately 12,500 B.P., herb tundra was replaced by a stone pine-larch forest, perhaps similar to forests in the modern region. In contrast, the herb tundra near Sosednee Lake was succeeded by a birch-alder shrub tundra followed by a larch woodland. Stone pine increased in the region after larch and prior to 8600 B.P. A Holocene decline in stone pine, which is evident at Elikchan Lake, is less marked or absent at Sosednee Lake. The differences in these pollen records is somewhat surprising given the proximity of the two sites. Such differences indicate that numerous well-dated sites will be needed to describe the vegetation and climate histories of Western Beringia.

  6. Climate change not to blame for late Quaternary megafauna extinctions in Australia

    PubMed Central

    Saltré, Frédérik; Rodríguez-Rey, Marta; Brook, Barry W.; Johnson, Christopher N; Turney, Chris S. M.; Alroy, John; Cooper, Alan; Beeton, Nicholas; Bird, Michael I.; Fordham, Damien A.; Gillespie, Richard; Herrando-Pérez, Salvador; Jacobs, Zenobia; Miller, Gifford H.; Nogués-Bravo, David; Prideaux, Gavin J.; Roberts, Richard G.; Bradshaw, Corey J. A.

    2016-01-01

    Late Quaternary megafauna extinctions impoverished mammalian diversity worldwide. The causes of these extinctions in Australia are most controversial but essential to resolve, because this continent-wide event presaged similar losses that occurred thousands of years later on other continents. Here we apply a rigorous metadata analysis and new ensemble-hindcasting approach to 659 Australian megafauna fossil ages. When coupled with analysis of several high-resolution climate records, we show that megafaunal extinctions were broadly synchronous among genera and independent of climate aridity and variability in Australia over the last 120,000 years. Our results reject climate change as the primary driver of megafauna extinctions in the world's most controversial context, and instead estimate that the megafauna disappeared Australia-wide ∼13,500 years after human arrival, with shorter periods of coexistence in some regions. This is the first comprehensive approach to incorporate uncertainty in fossil ages, extinction timing and climatology, to quantify mechanisms of prehistorical extinctions. PMID:26821754

  7. Late Quaternary vegetation dynamics in a biodiversity hotspot, the Uluguru Mountains of Tanzania

    NASA Astrophysics Data System (ADS)

    Finch, Jemma; Leng, Melanie J.; Marchant, Rob

    2009-07-01

    Late Quaternary vegetation history and environmental changes in a biodiverse tropical ecosystem are inferred from pollen, charcoal and carbon isotope evidence derived from a ˜ 48,000-yr sedimentary record from the Uluguru Mountains, a component of the Eastern Arc Mountains of Kenya and Tanzania. Results indicate that Eastern Arc forest composition has remained relatively stable during the past ˜ 48,000 yr. Long-term environmental stability of the Eastern Arc forests has been proposed as a mechanism for the accumulation and persistence of species during glacial periods, thus resulting in the diverse forests observed today. The pollen and isotope data presented here indicate some marked changes in abundance but no significant loss in moist forest taxa through the last glacial maximum, thereby providing support for the long-term environmental stability of the Eastern Arc. Anthropogenic activities, including burning and forest clearance, were found to play a moderate role in shaping the mosaic of forest patches and high-altitude grasslands that characterise the site today; however, this influence was tempered by the inaccessibility of the mountain.

  8. Species-specific responses of Late Quaternary megafauna to climate and humans.

    PubMed

    Lorenzen, Eline D; Nogués-Bravo, David; Orlando, Ludovic; Weinstock, Jaco; Binladen, Jonas; Marske, Katharine A; Ugan, Andrew; Borregaard, Michael K; Gilbert, M Thomas P; Nielsen, Rasmus; Ho, Simon Y W; Goebel, Ted; Graf, Kelly E; Byers, David; Stenderup, Jesper T; Rasmussen, Morten; Campos, Paula F; Leonard, Jennifer A; Koepfli, Klaus-Peter; Froese, Duane; Zazula, Grant; Stafford, Thomas W; Aaris-Sørensen, Kim; Batra, Persaram; Haywood, Alan M; Singarayer, Joy S; Valdes, Paul J; Boeskorov, Gennady; Burns, James A; Davydov, Sergey P; Haile, James; Jenkins, Dennis L; Kosintsev, Pavel; Kuznetsova, Tatyana; Lai, Xulong; Martin, Larry D; McDonald, H Gregory; Mol, Dick; Meldgaard, Morten; Munch, Kasper; Stephan, Elisabeth; Sablin, Mikhail; Sommer, Robert S; Sipko, Taras; Scott, Eric; Suchard, Marc A; Tikhonov, Alexei; Willerslev, Rane; Wayne, Robert K; Cooper, Alan; Hofreiter, Michael; Sher, Andrei; Shapiro, Beth; Rahbek, Carsten; Willerslev, Eske

    2011-11-02

    Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.

  9. Late Quaternary strata and carbon burial records in the Yellow River delta, China

    NASA Astrophysics Data System (ADS)

    Zhao, Guangming; Ye, Siyuan; Li, Guangxue; Ding, Xigui; Yuan, Hongming

    2015-06-01

    Sediment carbon sequestration plays an essential role in mitigating atmospheric CO2 increases and the subsequently global greenhouse effect. To clarify the late Quaternary strata and carbon burial records in Yellow River delta (YRD), detailed analysis of benthic foraminifera, total carbon (TC), organic carbon (Corg), sedimentary characteristics and moisture contents of sediments, was performed on core ZK3, 30.3 m in length and obtained from YRD in 2007. Eight depositional units (designated U1-U8 in ascending order) were identified. A comprehensive analysis method of historical geography and sedimentary geology was used to determine the precise depositional ages of the modern Yellow River delta (MYRD), from which pre-MYRD ages were deduced. The results indicates that the maximum burial rates of TC, inorganic carbon (IC) and Corg occurred in the delta front (U5), and the minimum in the shallow sea (U3). Remarkable high sedimentation rates in the MYRD are responsible for burial efficiency of carbon, with an average rate of Corg burial reaching 2087±251 g (m2 yr)-1, and that of IC reaching 13741±808 g (m2 yr)-1, which are much higher than those of other regions with high contents of Corg. Therefore, YRD has a significant burial efficiency for carbon sequestration.

  10. Eolian additions to late Quaternary alpine soils, Indian Peaks Wilderness Area, Colorado Front Range

    USGS Publications Warehouse

    Muhs, D.R.; Benedict, J.B.

    2006-01-01

    Surface horizons of many alpine soils on Quaternary deposits in high-mountain settings are enriched in silt. The origin of these particles has been debated, particularly in the Rocky Mountain region of North America. The most common explanations are frost shattering of coarser particles and eolian additions from distant sources. We studied soil A horizons on alpine moraines of late-glacial (Satanta Peak) age in the Colorado Front Range. Surface horizons of soils on these moraines are enriched in silt and have a particle size distribution that resembles loess and dust deposits found elsewhere. The compositions of sand and silt fractions of the soils were compared to possible local source rocks, using immobile trace elements Ti, Nb, Zr, Ce, and Y. The sand fractions of soils have a wide range of trace element ratios, similar to the range of values in the local biotite gneiss bedrock. In contrast, silt fractions have narrower ranges of trace element ratios that do not overlap the range of these ratios in biotite gneiss. The particle size and geochemical results support an interpretation that silts in these soils are derived from airborne dust. Eolian silts were most likely derived from distant sources, such as the semiarid North Park and Middle Park basins to the west. We hypothesize that much of the eolian influx to soils of the Front Range occurred during an early to mid-Holocene warm period, when sediment availability in semiarid source basins was at a maximum.

  11. Species-specific responses of Late Quaternary megafauna to climate and humans

    PubMed Central

    Lorenzen, Eline D.; Nogués-Bravo, David; Orlando, Ludovic; Weinstock, Jaco; Binladen, Jonas; Marske, Katharine A.; Ugan, Andrew; Borregaard, Michael K.; Gilbert, M. Thomas P.; Nielsen, Rasmus; Ho, Simon Y. W.; Goebel, Ted; Graf, Kelly E.; Byers, David; Stenderup, Jesper T.; Rasmussen, Morten; Campos, Paula F.; Leonard, Jennifer A.; Koepfli, Klaus-Peter; Froese, Duane; Zazula, Grant; Stafford, Thomas W.; Aaris-Sørensen, Kim; Batra, Persaram; Haywood, Alan M.; Singarayer, Joy S.; Valdes, Paul J.; Boeskorov, Gennady; Burns, James A.; Davydov, Sergey P.; Haile, James; Jenkins, Dennis L.; Kosintsev, Pavel; Kuznetsova, Tatyana; Lai, Xulong; Martin, Larry D.; McDonald, H. Gregory; Mol, Dick; Meldgaard, Morten; Munch, Kasper; Stephan, Elisabeth; Sablin, Mikhail; Sommer, Robert S.; Sipko, Taras; Scott, Eric; Suchard, Marc A.; Tikhonov, Alexei; Willerslev, Rane; Wayne, Robert K.; Cooper, Alan; Hofreiter, Michael; Sher, Andrei; Shapiro, Beth; Rahbek, Carsten; Willerslev, Eske

    2014-01-01

    Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary remain contentious. We use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, underscoring the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change. PMID:22048313

  12. Vertical tectonics in northern Escanaba Trough as recorded by thick late Quaternary turbidites

    USGS Publications Warehouse

    Normark, W.R.; Serra, F.

    2001-01-01

    Escanaba Trough, the southernmost segment of the Gorda Ridge, is filled by as much as 500 m of late Quaternary turbidite and hemipelagic sediment. Coring at Deep Sea Drilling Project Site 35 and Ocean Drilling Program (ODP) Sites 1037 and 1038 together with 4.5-kHz deep-tow and 3.5-kHz surface-ship seismic reflection profiles enable a distinct pattern of reflections to be mapped throughout Escanaba Trough in the upper part of this sediment fill. The uppermost 80 m of turbidite sediment, which includes at least 11 turbidity current events, were deposited in 3200 m. The turbidity currents were trapped upon entering Escanaba Trough, resulting in all of the sediment in suspension in the flows being deposited. The thickness of the turbidite layers reflects both the flow thickness and the vertical grain concentration within the flow that deposited the layer. Variations in the turbidite thickness with respect to water depth can be used to estimate the degree of relative vertical movement within the floor of Escanaba Trough. In the area of hydrothermal activity near ODP Site 1038, uplift of as much as 140 m has occurred over the past 8 kyr. Copyright 2001 by the American Geophysical Union.

  13. RESEARCH PAPERS : A magnetic investigation of a Late Quaternary loess/palaeosol record in Siberia

    NASA Astrophysics Data System (ADS)

    Chlachula, J.; Evans, M. E.; Rutter, N. W.

    1998-01-01

    A Late Quaternary loess/palaeosol sequence at Kurtak in the Yenisey River valley, southern Siberia, has been studied magnetically. The 34 m section (340 samples) exhibits variations in magnetic susceptibility which can be correlated with oxygen isotope stages 1-7. A detailed sampling of stage 5 (a further 209 samples) permits the identification of substages 5a-e. The susceptibility variations themselves are in the opposite sense to that found in the classic sections of the Chinese Loess Plateau, but are in agreement with the `wind-intensity' model which has been put forward to explain similar findings in loess sequences in Alaska. Published results for the susceptibility of magnetite imply volume fractions of ~0.2 per cent in glacial stages 2 and 4, dropping to ~0.05 per cent in stages 1, 3 and 5. These fluctuations match the aeolian flux variations observed in core V21-146 from the north Pacific. Even though the warmer intervals are characterized by lower susceptibilities, the observed frequency dependence of susceptibility indicates that new magnetic material is produced as a result of pedogenesis during interglacial and interstadial times.

  14. Shifting sources and transport paths for the late Quaternary Escanaba Trough sediment fill (northeast Pacific)

    USGS Publications Warehouse

    Zuffa, G.G.; De Rosa, R.; Normark, W.R.

    1997-01-01

    Escanaba Trough, which forms the southernmost part of the axial valley of the actively spreading Gorda Ridge, is filled with several hundred meters of sediment of presumed late Quaternary age. Surficial sediment samples from gravity cores, deeper samples (as much as 390 m) from Site 35 of the Deep Sea Drilling Program (Leg 5), and the acoustic character of the sediment fill observed on seismic-reflection profiles indicate that much of the sediment fill is of turbidite origin. Gross composition and heavy- mineral analyses of sand samples show that two distinct petrofacies comprise the sediment fill. The lower part of the fill was derived primarily from the Klamath River source of northern California while the younger fill, including the surficial sand beds, are from the Columbia River drainage much farther north. The Escanaba Trough sediment provides an opportunity to evaluate concepts for paleogeographic and paleotectonic reconstructions that are based on facies analysis and compositional and textural data for the volcanic components because both intrabasinal and extrabasinal sources are present as well as coeval (neovolcanic) and non coeval (paleovolcanic) sourcre This study of a modern basin shows, that although the sediment sources could be identified, it was useful to have some knowledge of the sediment pathway(s), the effects of diagenesis, and the possible effects of sediment sorting as a result of long transport distances from the source area for some components. Application of these same techniques to ancient deposits without benefit of the additional parameters will face limitations.

  15. Episodic Late Quaternary slopewash deposition as recorded in colluvial aprons, Southeastern Wyoming

    NASA Astrophysics Data System (ADS)

    Hanson, Paul R.; Mason, Joseph A.; Goble, Ronald J.

    2004-09-01

    Colluvial aprons found along fluvial terraces of the Laramie River and Sybille Creek in southeastern Wyoming are interpreted as late Quaternary slopewash deposits. Each apron studied contained multiple buried soils, interpreted to indicate that slopewash activity was episodic and short-lived, and was followed by relatively long periods of landscape stability and soil development. Apron deposits were described and subsequently correlated based on their internal stratigraphy and their relative degree of soil development. Optical dating was used to chronologically constrain periods of slopewash deposition, and based on 17 optical ages taken from five aprons, aggradation occurred at ˜65-56, 16.0, 12.9, 11.8, 8.1, 7.3, 5.0, and 1.7 ka. Several of these events correspond with climatic transitions such as the termination of Heinrich Event 1, the onset and termination of the Younger Dryas, and the 8.2 ka event, suggesting that apron aggradation was driven by changes in climatic regime. Although either increased aridity or a change in precipitation regime could result in increased erosion of terrace scarps, apron aggradation events do not correlate with regional records of aridity. Instead, periods of increased precipitation intensity and/or frequency that occur during climatic transitions most likely drive apron aggradation events.

  16. Modern and late Quaternary clay mineral distribution in the area of the SE Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Hamann, Yvonne; Ehrmann, Werner; Schmiedl, Gerhard; Kuhnt, Tanja

    2009-05-01

    The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.

  17. Differential effects of temperature change and human impact on European Late Quaternary mammalian extinctions.

    PubMed

    Varela, Sara; Lima-Ribeiro, Matheus Souza; Diniz-Filho, José Alexandre Felizola; Storch, David

    2015-04-01

    Species that inhabited Europe during the Late Quaternary were impacted by temperature changes and early humans, resulting in the disappearance of half of the European large mammals. However, quantifying the relative importance that each factor had in the extinction risk of species has been challenging, mostly due to the spatio-temporal biases of fossil records, which complicate the calibration of realistic and accurate ecological niche modeling. Here, we overcome this problem by using ecotypes, and not real species, to run our models. We created 40 ecotypes with different temperature requirements (mean temperature from -20 °C to 25 °C and temperature range from 10 °C to 40 °C) and used them to quantify the effect of climate change and human impact. Our results show that cold-adapted ecotypes would have been highly affected by past temperature changes in Europe, whereas temperate and warm-adapted ecotypes would have been positively affected by temperature change. Human impact affected all ecotypes negatively, and temperate ecotypes suffered the greatest impacts. Based on these results, the extinction of cold-adapted species like Mammuthus primigenius may be related to temperature change, while the extinction of temperate species, like Crocuta crocuta, may be related to human impact. Our results suggest that temperature change and human impact affected different ecotypes in distinct ways, and that the interaction of both impacts may have shaped species extinctions in Europe.

  18. A Mid-Late Quaternary loess-paleosol record in Simmons Farm in southern Illinois, USA

    USGS Publications Warehouse

    Wang, Hongfang; Lundstrom, C.C.; Zhang, Z.; Grimley, D.A.; Balsam, W.L.

    2009-01-01

    In unglaciated areas of the Mississippi Valley region, the typical full loess-paleosol succession contains the Modern Soil developed in Peoria Silt, weakly developed Farmdale Geosol developed in Roxana Silt, Sangamon Geosol developed in Loveland Silt, and Yarmouth Geosol developed in Crowley's Ridge Silt. Although a fifth loess called the Marianna Silt is reported at one area, the paleosol that separates the Crowley Ridge and Marianna Silts is not well defined. Previous thermoluminescence (TL) and optical stimulated luminescence (OSL) age chronology has suggested multiple phases of Sangamon Geosol developed in Loveland Silt, but clear morphological evidence of polygenetic Sangamon Geosol profiles have not been found. Recently, a thick loess-paleosol sequence has been studied in the middle Mississippi Valley in unglaciated southern Illinois, USA. Soil morphology and analytical results revealed five loesses and associated paleosol units. Two Sangamon Bt horizons were found separated by a thick ACtk horizon, interpreted to indicate two phases of Sangamon Geosol development. This well-preserved loess-paleosol succession provides one of the most complete mid-late Quaternary loess records in the middle Mississippi Valley to date, and is important for studying the stratigraphic framework and paleoclimate and environment changes. ?? 2008 Elsevier Ltd. All rights reserved.

  19. Late quaternary history and uranium isotopic compositions of ground water discharge deposits, Crater Flat, Nevada

    USGS Publications Warehouse

    Paces, James B.; Taylor, Emily M.; Bush, Charles

    1993-01-01

    Three carbonate-rich spring deposits are present near the southern end of Crater Flat, NV, approximately 18 km southwest of the potential high-level waste repository at Yucca Mountain. We have analyzed five samples of carbonate-rich material from two of the deposits for U and Th isotopic compositions. Resulting U-series disequilibrium ages indicate that springs were active at 18 ?? 1, 30 ?? 3, 45 ?? 4 and >70 ka. These ages are consistent with a crude internal stratigraphy at one site. Identical ages for two samples at two separate sites suggest that springs were contemporaneous, at least in part, and were most likely part of the same hydrodynamic system. In addition, initial U isotopic compositions range from 2.8 to 3.8 and strongly suggest that ground water from the regional Tertiary-volcanic aquifer provided the source for these hydrogenic deposits. This interpretation, along with water level data from near-by wells suggest that the water table rose approximately 80 to 115 m above present levels during the late Quaternary and may have fluctuated repeatedly. Current data are insufficient to allow reconstruction of a detailed depositional history, however geochronological data are in good agreement with other paleoclimatic proxy records preserved throughout the region. Since these deposits are down gradient from the potential repository site, the possibility of higher ground water levels in the future dramatically shortens both vertical and lateral ground water pathways and reduces travel times of transported radionuclides to potential discharge sites.

  20. Late Quaternary tectonic landforms and fluvial aggradation in the Saryu River valley: Central Kumaun Himalaya

    NASA Astrophysics Data System (ADS)

    Kothyari, Girish Ch.; Luirei, Khayingshing

    2016-09-01

    The present study has been carried out with special emphasis on the aggradational landforms to explain the spatial and temporal variability in phases of aggradation/incision in response to tectonic activity during the late Quaternary in the Saryu River valley in central Kumaun Himalaya. The valley has preserved cut-and-fill terraces with thick alluvial cover, debris flow terraces, and bedrock strath terraces that provide signatures of tectonic activity and climate. Morphostratigraphy of the terraces reveals that the oldest landforms preserved south of the Main Central Thrust, the fluvial modified debris flow terraces, were developed between 30 and 45 ka. The major phase of valley fill is dated between 14 and 22 ka. The youngest phase of aggradation is dated at early and mid-Holocene (9-3 ka). Following this, several phases of accelerated incision/erosion owing to an increase in uplift rate occurred, as evident from the strath terraces. Seven major phases of bedrock incision/uplift have been estimated during 44 ka (3.34 mm/year), 35 ka (1.84 mm/year), 15 ka (0.91 mm/year), 14 ka (0.83 mm/year), 9 ka (1.75 mm/year), 7 ka (5.38 mm/year), and around 3 ka (4.4 mm/year) from the strath terraces near major thrusts. We postulate that between 9 and 3 ka the terrain witnessed relatively enhanced surface uplift (2-5 mm/year).

  1. Did climatic seasonality control late Quaternary artiodactyl densities in western North America?

    NASA Astrophysics Data System (ADS)

    Broughton, Jack M.; Byers, David A.; Bryson, Reid A.; Eckerle, William; Madsen, David B.

    2008-10-01

    We develop and test a hypothesis here that the seasonality of temperature and precipitation played a major role in determining the population densities of artiodactyls (e.g., Ovis canadensis, Odocoileus hemionus, and Antilocapra americana) across the terminal Pleistocene and Holocene of western North America. For much of this region, general circulation climate models and a range of paleoclimatic data suggest that seasonal extremes in temperature peaked during the terminal Pleistocene and early Holocene and that early and middle Holocene precipitation followed a winter-wet, summer-dry pattern—conditions known to depress artiodactyl densities. These trends are mirrored in a northern Bonneville Basin macrophysical climate simulation model from which we derive terminal Pleistocene and Holocene climatic values and three indices of climatic seasonality: (1) intra-annual temperature range, (2) summer precipitation intensity, and (3) winter precipitation intensity. These indices are arrayed against three detailed late Quaternary artiodactyl abundance records in the Bonneville Basin: a unique paleontological record of fecal pellet densities, and archaeological records of artiodactyl skeletal elements and large game hunting tools. Each of these artiodactyl abundance records shows significant correlations with the model-derived seasonality indices and suggests that artiodactyls occurred in low densities from the terminal Pleistocene through the middle Holocene—substantial increases occurred during equable, summer-wet periods of the late Holocene. Archaeological vertebrate records from across western North America show very similar temporal patterns in artiodactyl abundances suggesting that the trend and its climate-based causes may be a very general one. These conclusions have far-reaching implications not only for our understanding of ancient human hunting and land use patterns, but for the future management of artiodactyls under scenarios of global warming that also

  2. Late Quaternary eolian and alluvial response to paleoclimate, Canyonlands, southeastern Utah

    USGS Publications Warehouse

    Reheis, M.C.; Reynolds, R.L.; Goldstein, H.; Roberts, H.M.; Yount, J.C.; Axford, Y.; Cummings, L.S.; Shearin, N.

    2005-01-01

    In upland areas of Canyonlands National Park, Utah, thin deposits and paleosols show late Quaternary episodes of eolian sedimentation, pedogenesis, and climate change. Interpretation of the stratigraphy and optically stimulated luminescence ages of eolian and nearby alluvial deposits, their pollen, and intercalated paleosols yields the following history: (1) Eolian deposition at ca. 46 ka, followed by several episodes of alluviation from some time before ca. 40 ka until after 16 ka (calibrated). (2) Eolian deposition from ca. 17 ka to 12 ka, interrupted by periods of pedogenesis, coinciding with late Pleistocene alluviation as local climate became warmer and wetter. (3) A wetter period from 12 to 8.5 ka corresponding to the peak of summer monsoon influence, during which soils formed relatively quickly by infiltration of eolian silt and clay, and trees and grasses were more abundant. (4) A drier period between ca. 8.5 and 6 ka during which sheetwash deposits accumulated and more desertlike vegetation was dominant; some dunes were reactivated at ca. 8 ka. (5) Episodic eolian and fluvial deposition during a wetter, cooler period that began at ca. 6 ka and ended by ca. 3-2 ka, followed by a shift to drier modern conditions; localized mobilization of dune sand has persisted to the present. These interpretations are similar to those of studies at the Chaco dune field, New Mexico, and the Tusayan dune field, Arizona, and are consistent with paleoclimate interpretations of pollen and packrat middens in the region. A period of rapid deposition and infiltration of eolian dust derived from distant igneous source terranes occurred between ca. 12 and 8 ka. Before ca. 17 ka, and apparently back to at least 45 ka, paleosols contain little or no such infiltrated dust. After ca. 8 ka, either the supply of dust was reduced or the more arid climate inhibited translocation of dust into the soils. ?? 2005 Geological Society of America.

  3. Human impact on late Quaternary landscapes in the Central Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    Hirsch, F.; Raab, T. A.

    2011-12-01

    Like the Alps in Central Europe the Pyrenees in Southeast Europe are well known for their glacial history. Within the scope of the ongoing research project Post-LGM pedogenesis and geomorphodynamics in the Aragonese Pyrenees, Spain, funded by the Deutsche Forschungsgemeinschaft (DFG), we are studying the landscapes in the Gallego valley and the Aragon valley formed during the late Quaternary period. The aim of this research is to describe and characterize the soil development since the retreat of the valley glaciers from the LGM-moraines which are supposed to have an age of up to 60 ka yrs. To these purposes soil profiles are excavated in sediments and landforms of different ages (LGM to Holocene) and different genesis (glacigenic, glacifluvial, fluvial, gravitational). The soil profiles are arranged as catenas and provide insight into the pedo-stratigraphy of moraines, fluvial terraces, glacis and alluvial fans. Our preliminary results show that besides geogenic process past human land use must be considered as a main trigger of landscape development during the late Holocene. Truncated soil profiles in the backslopes and the correlate sediments of soil erosion burying soil horizons in the footslopes clearly indicate one or even more periods of re-shaping the landforms after deglaciation. Considerable amounts of small charcoal and tile fragments in the translocated sediments hint to an anthropogenic agent. The disturbance in the soil profiles and sediments is visible in the field and by micromorphology. Although 14C and OSL datings on the base of the correlate sediments of soil erosion indicate at least one phase of erosion and redeposition at the end of the 17th century, the onset of afresh pedogenic processes in the correlate sediments of soil erosion indicate young soil formation.

  4. Submarine slides during relative sea level rise: three late-Quaternary examples from the Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Trincardi, F.; Asioli, A.; Canu, M.; Cattaneo, A.; Correggiari, A.

    2003-04-01

    Sea level lowering is commonly invoked as an important predisposing factor or potential trigger for sediment failure of unconsolidated sediment deposited during previous highstand conditions on continental shelves and slopes. However, studies from Quaternary continental margins increasingly document sediment failure during times of relative sea level rise and hint to a more complex relation between changing sea level and mass wasting. Three extensive mass-failure deposits originated during the late-Quaternary sea level rise on the eastern Tyrrhenian margin and Strait of Sicily. The deposits that failed had markedly different architectures: offshore Cape Licosa, a shelf-margin lowstand wedge failed along its basal downlap surface; in Paola slope basin and in Gela Basin, extensive failure on the upper slope involved a few-m-thick mud drape and older consolidated units. Regardless of their geometric differences, all three failures occurred close to melt-water pulses (mwp1A, 1B), based on the timing of the onset of the post-slide drapes. This evidence suggests that rapid drowning of unconsolidated sediment resulted in increased water load, and enhanced pore pressure played a role in favouring failure. This view is consistent with the evidence that, in all three areas, failure coincides also with a marked change in sedimentation style. Such change reflects a substantial landward shift of sediment entry points and decrease in sediment accumulation rates, both consistent with the draped stile of post-failure deposition. We speculate that failure occurred in response to the following combination of predisposing factors and triggers: 1) during the Last Glacial Maximum, rapid deposition on the upper slope resulted in the formation of potentially unstable sediment sections resting on well defined basal surfaces; 2) when sea level rise reached peak rates (mwp1A or mwp1B), hydrostatic load increased the pore pressure within the recently-deposited sediments; 3) this increase of

  5. Profiling of late Trias-early Quaternary surface in the Eskisehir basin using microtremors

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Pekkan, Emrah; Özel, Oğuz

    2015-04-01

    Earthquakes in our country and in the world cause damage and collapse of engineering structures due to several reasons. Settlement areas are under the effect of strong and long-duration seismic vibrations due to resonance and focusing effects. In this study, we propose the first approximation for thickness of Quaternary sediment and late Trias topography for the Eskisehir basin in microtremor methods. The 3-D basin structures and site resonance frequencies in the Eskişehir Basin were investigated by geophysical measurements based on the 318 single station and 9 array sites microtremor methods situated on soft soil sediments and rock units within the study area. The microtremor data collection, processing, and interpretation of the H/V curves were carried out following the recommendations and guidelines of the SESAME consortium (Site EffectS assesment using AMbient Excitation) The signals recorded were analysed for horizontal to the vertical (H/V) spectral ratio using GEOPSY software. The H/V ratios were calculated for the frequency range 0.2 to 20 Hz, using 60 s as a time window length and removing time windows contaminated by transients. Almost of the HVSR curves on the alluvium deposits have a low-frequency peak at 0.6-0.8 Hz and a second peak at 4-10 Hz. We used the Spatial Autocorrelation (SPAC) method in Eskisehir Basin using broadband seismometers distributed in triangular arrays. We derive a power-law relationship that correlates the fundamental site resonance frequencies with the sedimentary cover thickness obtained from the seismic reflection data, borehole data and shear wave velocity data in the study area. We use this relationship to estimate bedrock depth and thickness of alluvial deposits in the Eskisehir basin. Our estimation of maximum basin depths is 650 m for the Muttalip. The thickness of quaternary sediment is 25 m for Eskisehir alluvium. The estimated thickness is used to plot digital elevation model and cross profiles correlating with

  6. Calibrating Late Quaternary terrestrial climate signals: radiometrically dated pollen evidence from the southern Sierra Nevada, USA

    USGS Publications Warehouse

    Litwin, Ronald J.; Smoot, Joseph P.; Durika, Nancy J.; Smith, George I.

    1999-01-01

    We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes - one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ~90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.

  7. Late Quaternary accretion and decline of syngenetic ice-rich permafrost

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Strauss, Jens; Fuchs, Margret C.; Schirrmeister, Lutz

    2016-04-01

    The region of perennially frozen ground constitutes one quarter of the northern hemisphere landmass. Negative annual mean air temperatures and ground freezing periods exceeding ground thaw periods are the prerequisites for downward freezing of loose deposits and bedrock in non-glaciated regions. Hence, permafrost distribution and thickness on Earth are closely related to late Quaternary climate variations and ecosystem modifications. Generally, glacial stages are expected to promote permafrost accretion and ground ice formation in accumulating sediments, whereas interglacial stages lead to intense permafrost thaw and ground-ice melt. Deep freezing synchronous with ongoing sedimentation is termed as syngenetic while epigenetic freezing occurs in pre-existing deposits. Typical landforms of syngenetic permafrost are ice-wedge polygons of past tundra environments. Ice-rich silty and/or peaty deposits intersected by large ice wedges (up to several decameters in height and meters in with) build-up unique Ice Complex (IC) strata, which are aligned to mid- and late Pleistocene stadial and interstadial stages. The most prominent example for such formations is the Yedoma IC of MIS 3 interstadial age. Increasing air and ground temperatures during warm stages disturbed the thermal equilibrium at the upper permafrost boundary and subsequently led to permafrost thaw, ground-ice melt and surface subsidence. Typical permafrost degradation processes are thermokarst and thermo-erosion that result in large lake-filled basins (up to kilometers in diameter) and valley structures, respectively. The modern periglacial surface in Alaskan and East Siberian lowlands preserves Yedoma IC remnants in uplands and hills next to widely-distributed thermokarst basins since lateglacial and Holocene warming affected up to 70% of the original IC distribution on an area of more than 1,000,000 km2. The overarching climate-driven pattern of cold-stage IC permafrost accretion and warm-stage IC permafrost

  8. Late Quaternary vegetation history of Rough Canyon, south-central New Mexico, USA

    USGS Publications Warehouse

    Betancourt, J.L.; Aasen, Rylander K.; Penalba, C.; McVickar, J.L.

    2001-01-01

    South-central New Mexico, USA, at the junction of the Rocky Mountains, High Plains and Chihuahuan Desert, is one of the better known regions in the late Quaternary of North America. Plant macrofossils and pollen from a packrat midden series in Rough Canyon, New Mexico allows refinement of plant distributions and paleoclimates in this transitional area since full glacial times. From 17000 to 12000 14C yr BP, Pinus edulis-Juniperus scopulorum woodlands dominated limestone substrates between 1800 and 1490 m, with Pseudotsuga menziesii and other mixed-conifer species restricted to shady, north-facing slopes. Juniperus deppeana, the dominant juniper today above 2000 m in southern New Mexico, is conspicuously absent from glacial middens and must have been displaced south of the US-Mexico border. The minimum climatic conditions for P. edulis-J. scopulorum woodlands are ca 20% wetter and 3.5-5??C cooler (July mean maximum temperatures) than the modern climate at Rough Canyon. Holocene warming/drying may have started as early as 12000 14C yr BP with the extirpation of J. scopulorum from Rough Canyon, and was completed by at least 10540 14C yr BP. The record for arrivals of some desert species is confounded by traces of pollen and macrofossils in some of the glacial middens, which could signify either earliest occurrence or temporal mixing (contamination) of assemblages. AMS 14C dating can discriminate between early arrival and contamination in midden macrofossils but not in pollen. AMS dates show that Choisya dumosa, presently near its northern (cold) limits at Rough Canyon, endured late glacial winters, possibly as clonal populations. Some Larrea tridentata leaves and pollen occur in middens dominated by conifers and oaks no longer at the site; an AMS date of 3205 14C yr BP on Larrea leaves from one midden indicates contamination. Evidence for some macrofossil contamination, however, does not rule out the possibility that pollen of desert elements (e.g. Larrea, Prosopis

  9. Fluvio-deltaic progradation in forced regressive deglacial succession: lessons from the Lake Saint-Jean (Québec, Canada, late Quaternary)

    NASA Astrophysics Data System (ADS)

    Nutz, Alexis; Ghienne, Jean-François; Schuster, Mathieu; Roquin, Claude; Dietrich, Pierre; Bouchette, Frédéric; Cousineau, Pierre A.

    2015-04-01

    Deltas simultaneously respond to modifications in water discharge, sediment supply and base-level change. As a consequence, they provide accurate archive for deciphering environmental change through times. In this contribution, a Late Quaternary deglacial sequence is documented from Lake Saint-Jean basin (Québec, Canada) where sediments have recorded the Laurentide ice sheet (LIS) retreat accompanied by the invasion of marine waters (Laflamme Gulf) from ca. 12.9 cal. ky BP. Subsequently, fluvio-deltaic and then coastal prograding wedges emplaced following the base level fall induced by the glacio-isostatic rebound. The related succession, representing a transition from glacial to post-glacial periods within a previously glaciated area, was investigated through recent geological mapping, preserved landforms, facies analysis, and new optical stimulated luminescence (OSL) and radiocarbon (14C) dates. Three basin-scale geological sections are presented focusing on the architectures and facies of fluvio-deltaic progradations emplaced from 12.9 cal. ka BP to present-day in Lake Saint-Jean. Overlying the bedrock, isolated ice-contact fan deposits are capped by glacimarine muds. Above, fluvio-deltaic and coastal prograding systems were deposited following four major evolutions through time: (i) deltaic systems progressively increased in width, (ii) coastal influence on sedimentation increased, (iii) hydrographic drainage systems became more organised, and (iv) delta graded from steep (Gilbert delta) to low-angle foresets (mouth-bar delta). These evolutions in fluvio-deltaic systems are attributed to the modifications in water discharge, sediment supply and rate of base level fall driven by the deglaciation. The presented succession is considered as representative of the sedimentological signature of fluvial progradations in forced regressive deglacial sequences. Derived from the Lake Saint-Jean basin, this study provides new elements for the recognition and interpretation

  10. Late-Quaternary glaciation and postglacial emergence, southern Eureka Sound, high-Arctic Canada

    NASA Astrophysics Data System (ADS)

    O Cofaigh, Colm Seamus

    Eureka Sound is the inter-island channel separating Ellesmere and Axel Heiberg islands, High Arctic Canada. This thesis reconstructs the glacial and sea level history of southern Eureka Sound through surficial geological mapping, studies of glacial sedimentology and geomorphology, surveying of raised marine shorelines, radiocarbon dating of marine shells and driftwood and surface exposure dating of erratics and bedrock. Granite dispersal trains, shelly till and ice-moulded bedrock record westerly-flow of warm-based, regional ice into Eureka Sound from a source on southeastern Ellesmere Island during the late Wisconsinan. Regional ice was coalescent with local ice domes over Raanes and northern Svendsen peninsulas. Marine limit (dating <=9.2 ka BP; <=9.9 ka cal BP) is inset into the dispersal trains and records early Holocene deglaciation of regional ice. Collectively these data indicate an extensive ice-cover in southern Eureka Sound during the Last Glacial Maximum. Ice-divides were located along the highlands of central Ellesmere and Axel Heiberg islands, from which ice converged on Eureka Sound, and subsequently flowed north and south along the channel. Deglaciation was characterised by a two-step retreat pattern, likely triggered by eustatic sea level rise and abrupt early Holocene warming. Initial break-up and radial retreat of ice in Eureka Sound and the larger fiords, preceded terrestrial stabilisation along coastlines and inner fiords. Location of deglacial depocentres was predominantly controlled by fiord bathymetry. Regionally, two-step deglaciation is reflected by prominent contrasts in glacial geomorphology between the inner and outer parts of many fiords. Glacial sedimentological and geomorphological evidence indicates spatial variation in basal thermal regime between retreating trunk glaciers. Holocene emergence of up to 150 m asl along southern Eureka Sound is recorded by raised marine deltas, beaches and washing limits. Emergence curves exhibit

  11. Coral reef complexes at an atypical windward platform margin: Late Quaternary, southeast Florida

    USGS Publications Warehouse

    Lidz, B.H.

    2004-01-01

    Major coral reef complexes rim many modern and ancient carbonate platforms. Their role in margin evolution is not fully understood, particularly when they border a margin atypical of the classic model. Classic windward margins are steeply inclined. The windward margin of southeast Florida is distinct with a very low-gradient slope and a shelf edge ringed with 30-m-high Quaternary outlier reefs on a shallow upper-slope terrace. A newly developed synthesis of temporally well-constrained geologic events is used with surface and subsurface seismic-reflection contours to construct morphogenetic models of four discontinuous reef-complex sequences. The models show uneven subsurface topography, upward and landward buildups, and a previously unreported, rapid, Holocene progradation. The terms backstepped reef-complex margin, backfilled prograded margin, and coalesced reef-complex margin are proposed for sections exhibiting suitable signatures in the stratigraphic record. The models have significant implications for interpretation of ancient analogues. The Florida record chronicles four kinds of geologic events. (1) Thirteen transgressions high enough for marine deposition occurred between ca. 325 ka and the present. Six gave rise to stratigraphically successive coral reef complexes between ca. 185 and ca. 77.8 ka. The seventh reef ecosystem is Holocene. (2) Two primary coral reef architectures built the outer shelf and margin, producing respective ridge-and-swale and reef-and-trough geometries of very different scales. (3) Massive outlier reefs developed on an upper-slope terrace between ca. 106.5 and ca. 80 ka and are inferred to contain corals that would date to highstands at ca. 140 and 125 ka. (4) Sea level remained below elevation of the shelf between ca. 77.8 and ca. 9.6 ka. ?? 2004 Geological Society of America.

  12. Evolution of the polar oceans: the late Quaternary palaeoceanography of the Northwest Passage

    NASA Astrophysics Data System (ADS)

    Pienkowski, Anna; Furze, Mark; England, John; MacLean, Brian; Bennett, Robbie; Blasco, Steve; McNeely, Morgan

    2014-05-01

    The marine channels of the Canadian Arctic Archipelago, collectively known as the "Northwest Passage" (= NWP), cover some 1.1 million km2 on the North American continental shelf and constitute one of two primary pathways for water and heat exchange between the Arctic and Atlantic oceans. Modern circulation is characterized by a net southeastward flow from the Arctic Ocean through Parry Channel (the main W-E axis of the NWP) towards Baffin Bay, with Arctic Ocean Surface Water primarily occupying the NWP channels. Data from recent and ongoing marine work* highlight a dynamic oceanographic environment since the last glaciation. A suite of five sediment records (piston and trigger weight cores) taken in a transect through Parry Channel provide important information on the long-term (deglacial to postglacial) environmental and oceanographic evolution of the region. The cores were studied by a multiproxy approach encompassing sedimentology, micropalaeontology, biogeochemistry, constrained by a chronological framework of 58 AMS radiocarbon dates. Our data suggest grounded glacial ice in the channels of the Canadian Arctic Archipelago, rapid deglaciation, and a characteristic progression from ice-proximal to ice-distal conditions. Age model extrapolations place deglaciation at ~13.0-10.3 cal ka BP (location dependent). Noticeable biological activity is marked by the appearance of planktonic foraminifera (Neogloboquadrina pachyderma) at ~11.0 cal ka BP - an important signal given the absence of these organisms in the modern NWP. This likely marks the penetration of Atlantic-derived water (Arctic Intermediate Water) into the central NWP following deglaciation, likely facilitated by higher deglacial sea-levels permitting increased flow across inter-channel sills. Though the route of this Atlantic-derived water is currently being resolved, it may have penetrated from Baffin Bay in the East into the NWP, contrary to the modern circulation. Subsequent (~9.7-7.0 cal ka BP

  13. Interpreting the response of a dryland river system to Late Quaternary climate change

    NASA Astrophysics Data System (ADS)

    Candy, I.; Black, S.; Sellwood, B. W.

    2004-12-01

    A U-series calcrete chronology has been constructed for three Late Quaternary terrace units, termed the D1, D2 and D3 terraces in age descending order, from the Rio Aguas river system of the Sorbas basin, southeast Spain. The D1 terrace formed between 30,300±4400 year BP and 12,140±360 year BP, correlating well with the Last Glacial Maximum when rates of sediment supply would have increased greatly, because of higher rates of weathering, reduced vegetation cover and weak soil development. The D2 terrace formed between 12,800±1100 year BP and 9,600±530 year BP, correlating well with the Younger Dryas event. The D3 terrace could only be poorly constrained to the early Holocene and no unequivocal cause could be assigned to this period of aggradation. The sedimentology and geomorphology of the D2 terrace suggests, however, that the aggradation of this unit was a response to diapirism/karstic processes occurring within the underlying Messinian gypsum strata and the subsequent damming of the Aguas system. Therefore, despite its coincident occurrence with the Younger Dryas, aggradation of the D2 terrace is unrelated to climate change. The style of this response, controlled predominantly by the characteristics of the underlying bedrock, makes correlating the terrace record of the Aguas with other systems in the Mediterranean unreliable. This study, therefore, highlights the problems of correlating fluvial sequences in regions of variable tectonics, climatic history and bedrock geology and emphasises the need to properly understand the main controls on individual fluvial systems before any attempt is made to correlate their depositional histories.

  14. Mineral magnetic characteristics of the late Quaternary coastal red sands of Bheemuni, East Coast (India)

    NASA Astrophysics Data System (ADS)

    Srivastava, Priyeshu; Sangode, S. J.; Parmar, Nikita; Meshram, D. C.; Jadhav, Priyanka; Singhvi, A. K.

    2016-11-01

    The voluminous red sand deposits of Bheemuni in the east coast of India provide record of coastal land-sea interaction during the late Quaternary climatic and eustatic oscillations. Limited information on the origin and depositional environments of these red sands and their chronology is available. We studied two inland to coast cross profiles from Bheemuni red sand deposits using mineral magnetism, color characteristics and Citrate-bicarbonate-dithionite (CBD) extractable pedogenic iron oxides over 23 horizons along with optically stimulated luminescence (OSL) chronology at 6 horizons. The oldest exposed bed had an optical age of 48.9 ± 1.7 ka. Differential ages between the two parallel sections (SOS = 48.9 ± 1.7 to 12.1 ± 0.3 ka and IMD = 29.3 ± 3.5 ka) suggest laterally shifting fluvial sedimentation. Both the profiles show significant amount of antiferromagnetic oxide (hematite) along with ferrimagnetic (magnetite/maghemite) mineral composition. The granulometric (/domain-) sensitive parameters (χFD, χARM, SIRM/χLF and χARM/χLF) indicate variable concentration of superparamagnetic (SP) and single domain (SD) particles between the two profiles. The higher frequency dependent and pedogenic magnetic susceptibilities (χFD and χpedo) in the younger (IMD) profile suggest enhanced pedogenesis under a warm-wet climate post 29.3 ka and also during Holocene. A combination of hard isothermal remanent magnetization (HIRM) and redness rating (RR) index indicates distinct but variable concentration of a) crystalline and b) poorly crystalline (pigmentary) hematites in both the profiles. We consider that the former (#a) is derived from hinterland red soils and possibly due to post-depositional diagenesis, and the latter (#b) precipitated from the dissolved iron under fluvial regime imparting the unique red coloration to Bheemuni sands. Partial to complete alteration of ferromagnesian minerals due to pedogenesis in hinterlands under warm-wet climate was therefore the

  15. Setting the Time Frame - Investigating Culture-Environment Interactions in the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Klasen, N.; Just, J.; Rethemeyer, J.

    2015-12-01

    We present a status update of luminescence age estimates of sediments from Ethiopia and the Iberian Peninsula that are related to human occupation and are currently being investigated in the interdisciplinary Collaborative Research Center "Our way to Europe - Culture-Environment Interaction and Human Mobility in the Late Quaternary" (CRC806). The aim of the project is to investigate the dispersal of anatomically modern humans from Africa to Europe, and a robust chronology is essential. In the CRC806, dating is provided by luminescence, palaeomagnetic and radiocarbon techniques. A key site of the CRC806 is Chew Bahir in Ethiopia. This lake basin is located in the source area of the emergence of anatomically modern humans. Radiocarbon, luminescence and palaeomagnetic dating have been used to develop an age-depth model for drill core sediments that date back to 115 ka over 42 m depth. The model is independent of palaeoclimatic proxy interpretation. On the Iberian Peninsula cave deposits have been dated with luminescence techniques and compared to radiocarbon ages wherever applicable. Recently, existing radiocarbon chronologies on the Iberian Peninsula have been revised in light of methodological developments. Robust luminescence dating is therefore especially important in this region, where the stratigraphy is difficult to constrain. We aim to improve the precision of luminescence age estimates by comparing different measurement techniques for equivalent dose and dose-rate determinations, and by using Bayesian statistics to develop age-depth models. Combining different chronological techniques has enabled the development of accurate and precise chronologies, which will allow a better understanding of the emergence of modern humans.

  16. Holarctic phylogeography of the root vole (Microtus oeconomus): implications for late Quaternary biogeography of high latitudes.

    PubMed

    Brunhoff, C; Galbreath, K E; Fedorov, V B; Cook, J A; Jaarola, M

    2003-04-01

    A species-wide phylogeographical study of the root vole (Microtus oeconomus) was performed using the whole 1140 base pair mitochondrial (mt) cytochrome b gene. We examined 83 specimens from 52 localities resulting in 65 unique haplotypes. Our results demonstrate that the root vole is divided into four main mtDNA phylogenetic lineages that seem to have largely allopatric distributions. Net divergence estimates (2.0-3.5%) between phylogroups, as well as relatively high nucleotide diversity estimates within phylogroups, indicate that the distinct phylogeographical structure was initiated by historical events that predated the latest glaciation. European root voles are divided into a Northern and a Central mtDNA phylogroup. The mtDNA data in concert with fossil records imply that root voles remained north of the classical refugial areas in southern Europe during the last glacial period. The currently fragmented populations in central Europe belong to a single mtDNA phylogroup. The Central Asian and the North European lineages are separated by the Ural Mountains, a phylogeographical split also found in collared lemmings (Dicrostonyx) and the common vole (M. arvalis). The Beringian lineage occurs from eastern Russia through Alaska to northwestern Canada. This distribution is congruent with the traditional boundaries of the Beringian refugium and with phylogeographical work on other organisms. In conclusion, similarities between the phylogeographical patterns in the root vole and other rodents, such as Arctic and subarctic lemmings, as well as more temperate vole species, indicate that late Quaternary geological and climatic events played a strong role in structuring northern biotic communities.

  17. Seismic cycles recorded in late Quaternary calcite veins: Geochronological, geochemical and microstructural evidence

    NASA Astrophysics Data System (ADS)

    Uysal, I. Tonguç; Feng, Yue-xing; Zhao, Jian-xin; Bolhar, Robert; Işik, Veysel; Baublys, Kim A.; Yago, Anya; Golding, Suzanne D.

    2011-02-01

    Southwest Turkey is seismically active as a result of the Hellenic subduction process in the Eastern Mediterranean. We conducted high-resolution micro-sampling, high-precision U-series dating and microchemical analysis on an extensional vein system in a tectonically active but non-hydrothermal area. U/Th age data and microscopic observations provide evidence of repeated fracturing of a previously sealed crack system followed by a new increment of veining. Repeated injection of veinlets suggests that the vein system was formed by the crack-seal mechanism. Four major U/Th age groups for the emplacement of the vein system fall between 23.9 ± 0.2 ka and 23.2 ± 0.4 ka, 21.7 ± 0.4 ka and 19.2 ± 0.2 ka, 17.3 ± 0.1 ka and 16.2 ± 0.3 ka, and at 11.8 ± 0.2 ka. Stable and Sr isotope geochemistry of the calcite vein samples indicates that surface water interacting with the soil cover was the major component of the groundwater system from which the extensional veins precipitated. Trace element and O isotope data of the vein system are interpreted to reflect carbonate precipitation associated with seismic cycles involving fluids with different trace element compositions and CO 2 contents. Initial carbonate precipitation during a single seismic cycle occurred from CO 2-dominated fluids that were degassed from the original CO 2-water mixture. This was followed consecutively by carbonate precipitation from the remaining water, which was relatively impure with higher trace element contents. Millimetre to submillimetre-scale U-series dating in conjunction with geochemistry of carbonate veins related to active tectonism offers an innovative means of constraining the absolute timing of late Quaternary seismic and inter-seismic events.

  18. Late quaternary temperature record from buried soils of the North American Great Plains

    USGS Publications Warehouse

    Nordt, L.; Von Fischer, J.; Tieszen, L.

    2007-01-01

    We present the first comprehensive late Quaternary record of North American Great Plains temperature by assessing the behavior of the stable isotopic composition (??13C) of buried soils. After examining the relationship between the ??13C of topsoil organic matter and July temperature from 61 native prairies within a latitudinal range of 46??-38??N, we applied the resulting regression equation to 64 published ??13C values from buried soils of the same region to construct a temperature curve for the past 12 k.y. Estimated temperatures from 12 to 10 ka (1 k.y. = 1000 14C yr B.P.) fluctuated with a periodicity of ???1 k.y. with two cool excursions between -4.5 and -3.5 ??C and two warmer excursions between -1 and 0 ??C, relative to modern. Early Holocene temperatures from ca. 10-7.5 ka were -1.0 to -2.0 ??C before rising to +1.0 ??C in the middle Holocene between 6.0 and 4.5 ka. After a cool interlude from 4.2 to 2.6 ka, when temperatures dropped to slightly below modern, another warm interval ensued from 2.6 to 1 ka as temperatures increased to ???+0.5 ??C. A final decline in temperature to below modern occurred beginning ca. 0.5 ka. Cooler than present temperatures in the Great Plains indicate telecommunications with cool-water episodes in the Gulf of Mexico and North Atlantic potentially governed by a combination of glacial meltwater pulses and low solar irradiance. ?? 2007 Geological Society of America.

  19. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean

    USGS Publications Warehouse

    Polyak, L.; Bischof, J.; Ortiz, J.D.; Darby, D.A.; Channell, J.E.T.; Xuan, C.; Kaufman, D.S.; Lovlie, R.; Schneider, D.A.; Eberl, D.D.; Adler, R.E.; Council, E.A.

    2009-01-01

    Sediment cores from the western Arctic Ocean obtained on the 2005 HOTRAX and some earlier expeditions have been analyzed to develop a stratigraphic correlation from the Alaskan Chukchi margin to the Northwind and Mendeleev-Alpha ridges. The correlation was primarily based on terrigenous sediment composition that is not affected by diagenetic processes as strongly as the biogenic component, and paleomagnetic inclination records. Chronostratigraphic control was provided by 14C dating and amino-acid racemization ages, as well as correlation to earlier established Arctic Ocean stratigraphies. Distribution of sedimentary units across the western Arctic indicates that sedimentation rates decrease from tens of centimeters per kyr on the Alaskan margin to a few centimeters on the southern ends of Northwind and Mendeleev ridges and just a few millimeters on the ridges in the interior of the Amerasia basin. This sedimentation pattern suggests that Late Quaternary sediment transport and deposition, except for turbidites at the basin bottom, were generally controlled by ice concentration (and thus melt-out rate) and transportation distance from sources, with local variances related to subsurface currents. In the long term, most sediment was probably delivered to the core sites by icebergs during glacial periods, with a significant contribution from sea ice. During glacial maxima very fine-grained sediment was deposited with sedimentation rates greatly reduced away from the margins to a hiatus of several kyr duration as shown for the Last Glacial Maximum. This sedimentary environment was possibly related to a very solid ice cover and reduced melt-out over a large part of the western Arctic Ocean.

  20. Erosion and deposition on the eastern margin of the Bermuda Rise in the late Quaternary

    NASA Astrophysics Data System (ADS)

    McCave, I. N.; Hollister, C. D.; Laine, E. P.; Lonsdale, P. F.; Richardson, M. J.

    1982-05-01

    A near-bottom survey has been made on the Eastward Scarp (32°50'N, 57°30'W) of the Bermuda Rise, which rises 1150 m above the 5500-m deep Sohm Abyssal Plain in the western North Atlantic. The survey reveals evidence of erosion and deposition at present and in the late Quaternary by the deeper levels of the westward flowing Gulf Stream Return Flow. Four distinct regions of increasing bed gradient show increasing sediment smoothing and scour in the transition from plateau to abyssal plain. Bedforms observed are current crescents, crag and tail, triangular ripples, elongate mounds, transverse mud ripples, lineations, and furrows ranging from 10 to 1 m or less in depth, decreasing generally with bed gradient. Measured near-bottom current speeds are up to 20 cm s -1. Temperature structure on the lower, steep, slopes suggests that detachment of bottom mixed layers may occur there. Extensive net erosion appears to be confined to the lower steep slopes of the scarp. Reflection profiles (4 kHz) show that there has been erosion in areas thinly draped with recent sediments and in areas that show development of small scarps. The distribution of subsurface acoustic characteristics of the region corresponds broadly to the areas characterized by bed gradient and distinct sedimentation conditions. Subsurface hyperbolae, possibly caused by buried furrows, show furrow persistence through several tens of metres of deposition. Erosion occurs up to the top of the scarp during episodes of presumed stronger currents, which may correspond with intensified circulation during glacials.

  1. Waxing and Waning of Forests: Late Quaternary Biogeography of Lake Malawi, Southeast Africa

    NASA Astrophysics Data System (ADS)

    Ivory, S.; Lézine, A. M.; Vincens, A.; Cohen, A. S.

    2014-12-01

    African ecosystems are at great risk due to climate and land-use change. Despite the status of several of these regions as biodiversity hotspots, long-standing ideas about African ecology and biogeography have been unable to be tested until now due to lack of sufficiently long records. Here, we present the first long, continuous terrestrial record of vegetation from Lake Malawi, East Africa which goes back to the early Late Quaternary, permitting us to investigate changes in physiognomy and forest composition over many transitions. In this record, we observe eight phases of forest expansion and collapse. Although diversity is much greater during forest phases, composition varies little from phase to phase. Very high abundances of afromontane taxa suggest frequent widespread colonization of the lowlands by modern high elevation trees. Although there are clear successional stages within each forest such that turnover is great within a single phase, among forest samples between phases, there is little dissimilarity. Each forest phase is interrupted by rapid decline of arboreal taxa and expansion of semi-arid grasslands or woodlands whose composition varies greatly from phase to phase. The variable composition of the more open phases, all occurring during arid periods, is likely dynamically linked to thresholds in regional hydrology associated with lake level and moisture recycling within the watershed. This vegetation is unlike any found at Malawi today, with assemblages suggesting strong Somali-Masai affinities. Furthermore, nearly all semi-arid assemblages contain small abundances of forest taxa typically growing in areas with wetter edaphic conditions, suggesting that moist lowland gallery forests were present but restricted to waterways during exceptionally arid times. The waxing and waning of forests throughout this interval has important implications for early human biogeography across Africa as well as disturbance regimes that are crucial for the maintenance of

  2. Late Quaternary lacustrine paleoenvironments in the Cuenca de México

    NASA Astrophysics Data System (ADS)

    Bradbury, J. P.

    A late Quaternary paleolimnological history from the Mexican highlands has been obtained by diatom analysis of short cores and stratigraphic sections of lake and marsh sediments from the Cuenca de México, the large, endorheic, graben basin that holds Mexico City. The records, dated by radiocarbon and tephrochronologic methods, extend back to about 30 ka BP and document the presence of extensive, saline lakes in the basin until 25 ka BP. Thereafter, lake levels fell and marginal sites became shallow and fresh under the influence of surficial drainage and (especially) spring discharge. A shallow, saline lake existed 18 ka BP in Texcoco, the central and lowest basin in the system, reflecting moderately increased effective moisture at that time. By 16 ka BP, Lake Texcoco had become so shallow that diatoms were no longer preserved. However, marginal sites nourished by spring flow recorded changes in the local hydrologic balance resulting from increased infiltration at higher elevations. These changes appear to coincide with glacial advances between about 14 and 10 ka BP on the volcanic mountains surrounding the basin. Dry climates with reduced infiltration characterized the early Holocene, but by 5 ka BP a modest increase in precipitation established the modern climatic regime. These lacustrine records offer important insights for evaluating the paleoenvironmental history of the Cuenca de México based on other evidence. They confirm glaciological, stratigraphic and palynologic data that suggest dry climates and the absence of large pluvial lakes in the Cuenca de México during and after the full glacial, but document climates of significantly increased precipitation at least 10 ka prior to 18 ka BP.

  3. Late Quaternary seismic stratigraphic framework and paleolimnology of Walker Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Friday, M.; Scholz, C. A.; Junium, C. K.

    2014-12-01

    Lake deposits can be used to assess past hydrological and atmospheric conditions and aid in understanding regional climate of the western Basin and Range. Walker Lake, Nevada has a maximum water depth of ~35 m and is situated in a half-graben basin that formed during late Cenozoic transtension, in the Walker Lane tectonic belt. Small-scale climatic variations are preserved in the sediments of this hydrologically closed lake basin. Ten Kullenberg sediment cores (~2 to ~10 m in length), and ~300 km of CHIRP seismic reflection data were collected in Walker Lake to assess late-Quaternary stratigraphic framework and paleoclimate history. Core 4A is one of the longest cores acquired (9.19 m) and contains the oldest recovered sediments. Analyses of total inorganic carbon, total organic carbon, carbon and nitrogen abundances, and carbon stable isotopes from core 4A yield a valuable multi-proxy paleoclimate record. This record documents changes in effective moisture in the eastern Sierra Nevada and western Basin and Range. Sediments range from laminated to massive mud with three tephra deposits 0.5 - 4 cm thick. Total percentage of calcium carbonate, ranging from 3 to 35%, shows oscillations we interpret to be millennial forcings. The average C/N ratio of core 4A is 7.71 (2.5 - 11.3 range), and the stable carbon isotope measurements range from -21.0 to -25.3‰, and average -23.8‰. At ~3.7 m depth a basin-wide angular unconformity is observed in the seismic data and is also reflected in the geochemical data. An estimated age of this surface, 2000-2500 ka, is consistent with previous interpretations of partial diversion of the Walker River into the Carson sink. A δ13Corganic excursion, -25 to -20.8‰, occurs at the depth of the unconformity. We interpret this to be a result of enhanced deposition of aquatic organic matter during the Walker Lake drawdown. From 3.7 to 7.5 m depth, the carbon and nitrogen abundances and isotopes are surprisingly consistent down core and may

  4. Climatic, geomorphic, and archaeological implications of a late Quaternary alluvial chronology for the lower Salt River, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Huckleberry, Gary; Onken, Jill; Graves, William M.; Wegener, Robert

    2013-03-01

    Recent archaeological excavations along the lower Salt River, Arizona resulted in the unexpected discovery of buried late Pleistocene soils and cultural features dating 5800-7100 cal YBP (Early Archaic), the latter representing the earliest evidence of human activity in the lower Salt River floodplain thus far identified. Because the lower Salt River floodplain has been heavily impacted by recent agriculture and urbanization and contains few stratigraphic exposures, our understanding of the river's geological history is limited. Here we present a late Quaternary alluvial chronology for a segment of the lower Salt River based on 19 accelerator mass spectrometry 14C and four optically stimulated luminescence ages obtained during two previous geoarchaeological investigations. Deposits are organized into allostratigraphic units and reveal a buried late Pleistocene terrace inset into middle-to-late Pleistocene terrace deposits. Holocene terrace fill deposits unconformably cap the late Pleistocene terrace tread in the site area, and the lower portion of this fill contains the Early Archaic archaeological features. Channel entrenchment and widening ~ 900 cal YBP eroded much of the older terrace deposits, leaving only a remnant of fill containing the buried latest Pleistocene and middle-to-late Holocene deposits preserved in the site area. Subsequent overbank deposition and channel filling associated with a braided channel system resulted in the burial of the site by a thin layer of flood sediments. Our study confirms that the lower Salt River is a complex mosaic of late Quaternary alluvium formed through vertical and lateral accretion, with isolated patches of buried soils preserved through channel avulsion. Although channel avulsion is linked to changes in sediment load and discharge and may have climatic linkages, intrinsic geomorphic and local base level controls limit direct correlations of lower Salt River stratigraphy to other large rivers in the North American

  5. First High-Resolution Record of Late Quaternary Environmental Changes in the Amundsen Sea, West Antarctica, Revealed by Multi-proxy Analysis of Drift Sediments

    NASA Astrophysics Data System (ADS)

    Horrocks, J.; Ó Cofaigh, C.; Lloyd, J. M.; Hillenbrand, C. D.; Kuhn, G.; Smith, J.; Ehrmann, W. U.; Esper, O.

    2015-12-01

    The Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) is experiencing rapid mass loss and there is a pressing need to place the contemporary ice-sheet changes into a longer term context. The continental rise in this region is characterised by large sediment mounds that are shaped by westward flowing bottom currents and that resemble contouritic drifts existing offshore from the Antarctic Peninsula. Similar to the Antarctic Peninsula drifts, marine sediment cores from the poorly studied sediment mounds in the Amundsen Sea have the potential to provide reliable records of dynamical ice-sheet behaviour in West Antarctica and palaeoceanographic changes in the Southern Ocean during the Late Quaternary that can be reconstructed from their terrestrial, biogenic and authigenic components. Here we use multi-proxy data from three sediment cores recovered from two of the Amundsen Sea mounds to present the first high-resolution study of environmental changes on this part of the West Antarctic continental margin over the glacial-interglacial cycles of the Late Quaternary. Age constraints for the records are derived from biostratigraphy, AMS 14C dates and lithostratigraphy. We focus on the investigation of processes for drift formation, thereby using grain size and sortable silt data to reconstruct changes in bottom current speed and to identify episodes of current winnowing. Data on geochemical and mineralogical sediment composition and physical properties are used to infer both changes in terrigenous sediment supply in response to the advance and retreat of the WAIS across the Amundsen Sea shelf and changes in biological productivity that are mainly controlled by the duration of annual sea-ice coverage. We compare our data sets from the Amundsen Sea mounds to those from the well-studied Antarctic Peninsula drifts, thereby highlighting similarities and discrepancies in depositional processes and climatically-driven environmental changes.

  6. Geochemical proxies for weathering and provenance of Late Quaternary alluvial core-sediments from NW India

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Amir, Mohd; Paul, Debajyoti; Sinha, Rajiv

    2014-05-01

    The Indo-Gangetic alluvial plains are formed by sediment deposition in the foreland basin as a result of upliftment and subsequent erosion of the Himalaya. Earlier study (Sinha et al., 2013) has shown the subsurface existence of buried channel bodies beneath the Ghaggar plains in NW Indo-Gangetic plains. The mapped sand bodies follow trace of a paleochannel that begins at the mountain front near the exit of river Sutlej and extends to the northern margin of the Thar desert, suggesting existence of a large Himalayan-sourced river (Singh et al., 2011) in the past. The buried sand bodies hold potential records of erosion history over the Himalaya that could be used to assess climate-controlled erosion over the Himalaya. Geochemical variations in the sediments from two (~45m long) cores drilled below the trace of the paleochannel (upstream) near Sirhind, Punjab and two cores (GS-10 & 11) from downstream near Kalibangan, Rajasthan, are used in this study to understand the erosional pattern over the Himalaya during Late Quaternary. Down-core variations in chemical index of alteration (CIA=51-79) along with K2O/Na2O and Al2O3/(CaO+Na2O) ratios are consistent with the trends of SW summer monsoonal fluctuations during the Glacial-Interglacial periods indicating climate controlled weathering at the source; higher values during Interglacial and lower during Glacial periods with maximum value during the Holocene. Sr-Nd isotopic compositions of drill-cores sediments, 87Sr/86Sr (0.7314-0.7946), ɛNd (-23.2 to -14) are within the range of silicate rocks from the Higher and Lesser Himalaya. Significant down-core variations in 87Sr/86Sr and ɛNd are observed that reflect the mixing of varying proportions of the Higher and Lesser Himalayan sediments, the two dominant sources to the core sites. Sediments deposited during MIS-2 and MIS-4, cold and dry Glacial periods, show high 87Sr/86Sr and low ɛNd suggesting an enhanced contribution from the Lesser Himalayan rocks that are

  7. Late Quaternary environmental change along the temperate-tropical interface in southern Africa. (Invited)

    NASA Astrophysics Data System (ADS)

    Chase, B. M.

    2013-12-01

    As a relatively low-relief landscape stretching from the equator to the mid-latitudes, the African sector of the Southern Hemisphere provides an excellent opportunity to study long-term interactions between tropical, subtropical and temperate climate systems. This potential, however, has remained largely unrealised as funding has generally been focussed on the large lakes of Eastern Africa and the analysis of marine cores from the continental margin. The result is a spatially and temporally disjunct regional dataset, and the dominance of broad conceptual models to contextualise the limited available data and explain palaeoenvironmental dynamics. The dominant hypotheses to explain long-term climate change in southern Africa are: 1) changes in temperate systems result from expansions and contractions of Antarctic sea-ice that vary with trends in polar/global temperatures; 2) tropical change is primarily a function of shifts in the mean position of the Intertropical Convergence Zone (ITCZ) as a result of orbitally-induced changes in direct insolation forcing, and/or as a response to Northern Hemisphere cooling. In both cases, some evidence exists to support these hypotheses, but the proxies and interpretations are not unambiguous, and in some cases the interpretations of the data have been primarily developed to conform to the dominant conceptual paradigm. This paper will discuss the interplay between temperate and tropical systems in southern Africa, and the implications for hemispheric and global climate dynamics. New data, particularly high-resolution records from fossilised rock hyrax middens (Chase et al., 2012, Quaternary Science Reviews; www.hyrax.univ-montp2.fr), is providing a robust framework into which lower resolution or more poorly understood proxies can better understood. Findings from a subcontinental-scale initiative funded by the European Research Council so far indicate that shifts of the Subtropical Front and the westerly storm tracks did bring

  8. Coastal tectonics on the eastern margin of the Pacific Rim: Late Quaternary sea-level history and uplift rates, Channel Islands National Park, California, USA

    USGS Publications Warehouse

    Muhs, Daniel R.; Simmons, Kathleen R.; Schumann, R. Randall; Groves, Lindsey T.; DeVogel, Stephen B.; Minor, Scott A.; Laurel, Deanna

    2014-01-01

    The Pacific Rim is a region where tectonic processes play a significant role in coastal landscape evolution. Coastal California, on the eastern margin of the Pacific Rm, is very active tectonically and geomorphic expressions of this include uplifted marine terraces. There have been, however, conflicting estimates of the rate of late Quaternary uplift of marine terraces in coastal California, particularly for the orthern Channel Islands. In the present study, the terraces on San Miguel Island and Santa Rosa Island were mapped and new age estimates were generated using uranium-series dating of fossil corals and amino acid geochronology of fossil mollusks. Results indicate that the 2nd terrace on both islands is ~120 ka and the 1st terrace on Santa Rosa Island is ~80 ka. These ages correspond to two global high-sea stands of the Last Interglacial complex, marine isotope stages (MIS) 5.5 and 51, respectively. The age estimates indicate that San Miguel Island and Santa Rosa Island have been tectonically uplifted at rates of 0.12e0.20 m/ka in the late Quaternary, similar to uplift rates inferred from previous studies on neighboring San Cruz Island. The newly estimated uplift rates for the northern Channel Islands are, however, an order of magnitude lower than a recent study that generated uplift rates from an offshore terrace dating to the Last Glacial period. The differences between the estimated uplift rates in the present study and the offshore study are explained by the magnitude of glacial isostatic adjustment (GIA) effects that were not known at the time of the earlier study. Set in the larger context of northeastern Pacific Rim tectonics, Channel Islands uplift rates are higher than those coastal localities on the margin of the East Pacific Rise spreading center, but slightly lower than those of most localities adjacent to the Cascadia subduction zone. The uplift rates reported here for the northern Channel Islands are similar to those reported for most other

  9. Coastal tectonics on the eastern margin of the Pacific Rim: late Quaternary sea-level history and uplift rates, Channel Islands National Park, California, USA

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Simmons, Kathleen R.; Schumann, R. Randall; Groves, Lindsey T.; DeVogel, Stephen B.; Minor, Scott A.; Laurel, DeAnna

    2014-12-01

    The Pacific Rim is a region where tectonic processes play a significant role in coastal landscape evolution. Coastal California, on the eastern margin of the Pacific Rim, is very active tectonically and geomorphic expressions of this include uplifted marine terraces. There have been, however, conflicting estimates of the rate of late Quaternary uplift of marine terraces in coastal California, particularly for the northern Channel Islands. In the present study, the terraces on San Miguel Island and Santa Rosa Island were mapped and new age estimates were generated using uranium-series dating of fossil corals and amino acid geochronology of fossil mollusks. Results indicate that the 2nd terrace on both islands is ˜120 ka and the 1st terrace on Santa Rosa Island is ˜80 ka. These ages correspond to two global high-sea stands of the Last Interglacial complex, marine isotope stages (MIS) 5.5 and 5.1, respectively. The age estimates indicate that San Miguel Island and Santa Rosa Island have been tectonically uplifted at rates of 0.12-0.20 m/ka in the late Quaternary, similar to uplift rates inferred from previous studies on neighboring Santa Cruz Island. The newly estimated uplift rates for the northern Channel Islands are, however, an order of magnitude lower than a recent study that generated uplift rates from an offshore terrace dating to the Last Glacial period. The differences between the estimated uplift rates in the present study and the offshore study are explained by the magnitude of glacial isostatic adjustment (GIA) effects that were not known at the time of the earlier study. Set in the larger context of northeastern Pacific Rim tectonics, Channel Islands uplift rates are higher than those coastal localities on the margin of the East Pacific Rise spreading center, but slightly lower than those of most localities adjacent to the Cascadia subduction zone. The uplift rates reported here for the northern Channel Islands are similar to those reported for most

  10. Late-Quaternary Speleothem Records from the Balkan Peninsula - Potential, Objectives and First Results

    NASA Astrophysics Data System (ADS)

    John, I.; McCoy, W. D.; Markovic, S.; Endlicher, W.

    2010-12-01

    Mid-latitude speleothems often contain detailed, high-resolution records of local and regional interglacial climate changes. Many speleothem records of Holocene (MIS 1) and Eemian (MIS 5e) climate evolution have been investigated, but there is very little work being done in the Balkan region, despite the fact that the area is very rich in limestone caves with speleothems. Situated at the interface between temperate-continental and Mediterranean climates, present-day climate on the Balkan Peninsula is determined by two major upper-level jet streams, the polarfront jet (PFJ) and the subtropical jet (STJ). On a seasonal scale, both features exert varying influence and determine frontogenesis processes, cyclonic activity and precipitation. On decadal to millennial time-scales, changes and fluctuations in the position and permanency of these atmospheric circulation features influence the isotope signature in rainfall and ultimately in cave drip waters and related speleothems. We are investigating speleothems from Serbia, Montenegro and Bosnia-Herzegovina to study Late Quaternary climatic changes and to learn how both synoptic-scale systems were linked during the Holocene and previous interglacial periods. By example of a stalagmite collected in Vernjikica Cave, Serbia (Carpatho-Balkans), the project's potential to address important aspects of paleoclimatic research in the Mediterranean realm is discussed. The first studied, fine-laminated calcite stalagmite is about 50 cm tall and extends conically from the base to the top, presenting at least two visible growth discontinuities. Four preliminary uranium-series ages (234U/230Th) constrain the general period of growth to MIS 5d to MIS 5b. Preliminary results suggest that the stable oxygen isotope profile obtained from the axial zone largely reflects the unaltered isotopic composition of the cave drip water. The observed shifts in the isotope records display long-term changing climate conditions from temperate warm and

  11. Late Quaternary sea-level history and the antiquity of mammoths (Mammuthus exilis and Mammuthus columbi), Channel Islands National Park, California, USA

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Simmons, Kathleen R.; Groves, Lindsey T.; McGeehin, John P.; Randall Schumann, R.; Agenbroad, Larry D.

    2015-05-01

    Fossils of Columbian mammoths (Mammuthus columbi) and pygmy mammoths (Mammuthus exilis) have been reported from Channel Islands National Park, California. Most date to the last glacial period (Marine Isotope Stage [MIS] 2), but a tusk of M. exilis (or immature M. columbi) was found in the lowest marine terrace of Santa Rosa Island. Uranium-series dating of corals yielded ages from 83.8 ± 0.6 ka to 78.6 ± 0.5 ka, correlating the terrace with MIS 5.1, a time of relatively high sea level. Mammoths likely immigrated to the islands by swimming during the glacial periods MIS 6 ( 150 ka) or MIS 8 ( 250 ka), when sea level was low and the island-mainland distance was minimal, as during MIS 2. Earliest mammoth immigration to the islands likely occurred late enough in the Quaternary that uplift of the islands and the mainland decreased the swimming distance to a range that could be accomplished by mammoths. Results challenge the hypothesis that climate change, vegetation change, and decreased land area from sea-level rise were the causes of mammoth extinction at the Pleistocene/Holocene boundary on the Channel Islands. Pre-MIS 2 mammoth populations would have experienced similar or even more dramatic changes at the MIS 6/5.5 transition.

  12. Late Quaternary sea-level history and the antiquity of mammoths (Mammuthus exilis and Mammuthus columbi), Channel Islands NationalPark, California, USA

    USGS Publications Warehouse

    Muhs, Daniel R.; Simmons, Kathleen R.; Groves, Lindsey T.; McGeehin, John P.; Schumann, R. Randall; Agenbroad, Larry D.

    2015-01-01

    Fossils of Columbian mammoths (Mammuthus columbi) and pygmy mammoths (Mammuthus exilis) have been reported from Channel Islands National Park, California. Most date to the last glacial period (Marine Isotope Stage [MIS] 2), but a tusk of M. exilis (or immature M. columbi) was found in the lowest marine terrace of Santa Rosa Island. Uranium-series dating of corals yielded ages from 83.8 ± 0.6 ka to 78.6 ± 0.5 ka, correlating the terrace with MIS 5.1, a time of relatively high sea level. Mammoths likely immigrated to the islands by swimming during the glacial periods MIS 6 (~ 150 ka) or MIS 8 (~ 250 ka), when sea level was low and the island–mainland distance was minimal, as during MIS 2. Earliest mammoth immigration to the islands likely occurred late enough in the Quaternary that uplift of the islands and the mainland decreased the swimming distance to a range that could be accomplished by mammoths. Results challenge the hypothesis that climate change, vegetation change, and decreased land area from sea-level rise were the causes of mammoth extinction at the Pleistocene/Holocene boundary on the Channel Islands. Pre-MIS 2 mammoth populations would have experienced similar or even more dramatic changes at the MIS 6/5.5 transition.

  13. Characterization and Timing of Siliciclastic Sediment Fluxes to Continental Slopes of the Coral Sea During the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Francis, J. M.; Dickens, G. R.; Page, M. C.

    2003-12-01

    The continental margins of southern Papua New Guinea and northeastern Australia together form the world's largest extant tropical mixed siliciclastic-carbonate depositional system where both rivers and shallow marine organisms supply large amounts of sediment to the shelf. The flux and composition of sediment shed from these margins to surrounding slopes and basins changes dramatically over the late Quaternary. This is to be expected given mixed sediment sources and large amplitude variations in sea-level and climate during this time. Importantly, though, the observed accumulation of the siliciclastic material on slopes deviates significantly from generic sequence stratigraphic models. Recent studies on the northeast Australian margin clearly show greatly increased fluxes coincident with late transgression ca. 12-7 ka rather than lowstand ca. 25-18 ka (Dunbar and Dickens, Sed. Geology, in press; Page et al., Geology, in press). In this study we examine the mineralogy and grain size of the siliciclastic fraction down a series of well-dated cores along the slope of the northeastern Australian margin to further characterize this phenomenon. Sediment samples were taken at ~10 cm intervals down drill cores (collected on ODP Leg 133) and piston cores. Each sample was reacted with weak acetic acid to digest the carbonate component. The remaining siliciclastic component was analyzed for mineralogy using an XRD and for grain size using a Laser Particle Size Analyzer. Preliminary results from ODP Site 820 show that the siliciclastic component deposited during early transgression is dominated by silt but that, from ca. 10 ka until present, the sand percent of this component increased. These results may support either of two end-member models to explain elevated siliciclastic accumulation during late transgression. In the first model, margin physiography controlled siliciclastic accumulation, whereby sediment was stored behind an exposed barrier reef during lowstand, and

  14. Origin, age, and paleoclimatic setting of the Late Quaternary deposits in Wadi Feiran, Sinai Peninsula: Geomorphologic, geochronologic, and isotopic constraints

    NASA Astrophysics Data System (ADS)

    Farag, A. Z. A.; Sultan, M.; Forman, S. L.; Krishnamurthy, R. V.

    2015-12-01

    There is considerable debate on the origin, age, and paleoclimatic setting of Late Quaternary deposits within the basement complex of the Sinai Peninsula. Our research in Wadi Feiran focused on documenting the sedimentology, stratigraphy, geochemistry and chronology of Late Quaternary deposits in the Feiran (lat. 28.706 N; long. 33.665; elevation: 715 to 772 m a.m.s.l) and Tarfa (lat. 28.692 N; long. 33.933 E; elevation: 1160 to 1244 m a.m.s.l) oases. Sequence stratigraphy, analysis of remote sensed images, and groundwater levels in these two areas indicate that the investigated deposits are structurally-controlled as they are found in areas with anomalously elevated groundwater levels and upstream from shear zone/wadi intersections. Sediments are largely arenaceous upstream and transition downstream to marly successions. We infer that these sediments were not deposited in lake settings because of the absence of shorelines and associated littoral, sublittoral and deeper water facies, and the presence of rhizoliths, secondary calcite veins and gastropods, all of which suggest deposition in a spring or wetland environment. A short hydrologic residence time and/or deposition in an open water system is supported by the lack of correlation (R = 0.08) between δ18O and δ13C values in carbonate deposits. Our findings are consistent with deposition of sediments by alluvial, fluvial and paludal processes under variable hydrologic conditions and higher water table conditions. Quartz extracts from these sediments yielded optically stimulated luminescence ages between ca. 27 and 11 ka and place these wetter conditions during the last glacial period and extend the "greening" of North Africa further eastward. Our findings are consistent with models which identify the wet periods in the Late Quaternary in the Sinai Peninsula and in North Africa as being glacial periods.

  15. Radiocarbon dates and late-Quaternary stratigraphy from Mamontova Gora, unglaciated central Yakutia, Siberia, U.S.S.R.

    USGS Publications Warehouse

    Pewe, T.L.; Journaux, A.; Stuckenrath, R.

    1977-01-01

    A fine exposure of perennially frozen ice-rich silt and associated flora and vertebrate fauna of late-Quaternary age exists at Mamontova Gora along the Aldan River in central Yakutia, Siberia, U.S.S.R. The silt deposit caps a 50-m-high terrace and consists of three units. An upper layer 1-2 m thick overlies a 10-15-m-thick brownish to black silt layer. The lower silt layer is greenish to gray and about 15 m thick. All the silt is well sorted with 60% of the particles falling between 0.005 and 0.5 mm in diameter and is generally chemically and mineralogically homogeneous. The middle unit contains may extinct vertebrate mammal remains and ice wedges. The lower unit contains little vegetation and no ice wedges. The silt is widespread and exists as a loamy blanket on terraces at various elevations on both sides of the lower Aldan River. The origin of the silt blanket of late-Quaternary age in central Yakutia has long been controversial. Various hypotheses have been suggested, including lacustrine and alluvial, as well as frost-action origins. It is sometimes referred to as loess-like loam. Pe??we?? believes the silt at Mamontova Gora is loess, some of which has been retransported very short distances by water. The silt probably was blown from wide, braided, unvegetated flood plains of rivers draining nearby glaciers. The silt deposits are late Quaternary in age and probably associated with the Maximum glaciation (Samarov) and Sartan and Syryan glaciations of Wisconsinan age. On the basis of biostratigraphy, 10 radiocarbon dates, and their relation to the nearby glacial record, it is felt that the upper unit at Mamontova Gora is Holocene and the middle unit is Wisconsinan. The youngest date available from the middle unit at this particular location is 26,000 years. Dates greater than 56,000 years were obtained in the lower part of the middle unit. The lower unit is definitely beyond the range of radiocarbon dating and probably is older than the last interglacial. The

  16. Re-assessment of the mid to late Quaternary glacial and environmental history of the Boco Plain, western Tasmania.

    NASA Astrophysics Data System (ADS)

    Augustinus, Paul; Fink, David; Fletcher, Michael-Shawn; Thomas, Ian

    2017-03-01

    The glacial geomorphology and drill core-based stratigraphy of the Boco Plain, western Tasmania, reveal a complex sequence of Quaternary glacial and non-glacial episodes. The upper part of the southern Boco Plain stratigraphy was previously dated by 14C and U-series on interbedded organics of MIS 1 to MIS 5 affinity. U-series dating of ferricretes associated with glacial diamictons from Boco Plain cores suggested that there were glacial advances broadly correlative with MIS 6, 8 and ≥10. However, terrestrial cosmogenic nuclide (10Be and 26Al) exposure ages for the moraine sequence preserved on the wider Boco Plain area indicate that moraines previously attributed to MIS 6 and 8 advances were deposited during MIS 10 or earlier cold stages. There is no evidence for MIS 2, 4 or 6 affinity glacial advances onto the Boco Plain with ice of this age restricted to the West Coast Range. New palynological records from the Boco Plain core 6690 confirmed the late Quaternary ages of the upper part of the sequence, whilst extinct palynomorphs indicate a pre-Quaternary age for the glacial diamictons at the base of core Boco 4 and 10. Consequently, the mid-Pleistocene glacial sequence preserved in the Boco Plain is significantly older than previously envisaged, with the post MIS 10 to 12 geomorphology of the plain dominated by fluvial deltaic, swamp peat and lacustrine environments.

  17. Synchronous Late Quaternary slip rate variability on two strands of the San Jacinto fault, California

    NASA Astrophysics Data System (ADS)

    Le, K. N.; Oskin, M.

    2007-12-01

    We present new results that show slip rates varied synchronously by a factor of two over the past 35 kyr along two parallel strands of the San Jacinto fault. Our results combine high-resolution LiDAR digital topography, field mapping and 10Be exposure-age dating from two of the most active strands of the southern San Jacinto fault: the Clark fault (CLF) and Coyote Creek fault (CCF). These faults form numerous NW-striking scarps that offset three generations of Quaternary alluvial fan surfaces, Q2b, Q3a, and Q3b. We dated alluvial fans along both the CCF and CLF using 10Be sampling methods adapted for available material and degradation of the surface. For younger surfaces with well-preserved bar and swale morphology, we used a new sampling method where 12 to 20 chips from quartz-bearing boulders lodged within a bar were amalgamated into a single sample. For older surfaces we either sampled individual meter-sized boulders or collected samples from a 2 m-deep depth profile. Surface ages are consistent between CCF and CLF sites: 40 ± 12 ka and 31 ± 6 ka for Q2b, 7.1 ± 1.6 ka and 4.6 ± 1.6 ka for Q3a, respectively. Samples from Q3b near the CLF yielded ages of 1.0 ± 0.2 ka and 2.1 ± 0.3 ka. CCF samples have not yet been corrected 10Be inheritance, thus we use the CLF ages to calculate preliminary slip rates. Late Pleistocene to present rates are CLF: 2.2 ± 0.5 mm/yr, CCF: 3.4 ± 0.9 mm/yr, and 5.6 ± 1.4 mm/yr combined. Mid-Holocene to present rates are CLF: 4.1 ± 1.5 mm/yr, CCF: 6.7 ± 2.8 mm/yr, and 10.9 ± 4.3 mm/yr combined. Latest Holocene CLF slip rate exceeds 3 mm/yr. The combined Late Pleistocene to present slip rate for the southern San Jacinto fault is less than one third the rate deduced from the onset of faulting ca. 1 Ma. Mid-Holocene to present slip rates for both the CLF and CCF are about double their ca. 35 kyr rates, but are less than the 16 - 20 mm/yr geodetic loading rates and the >16 mm/yr slip rate since 1 ka at Hog Lake. We conclude that (1

  18. Late quaternary depositional systems and sea level change-Santa Monica and San Pedro Basins, California continental borderland

    SciTech Connect

    Nardin, T.R.

    1983-07-01

    A suite of seismic reflection data that provides different degrees of resolution and penetration was used to map the depositional systems that have developed in Santa Monica and San Pedro basins during the late Quaternary. Submarine fan growth, particularly at the mouths of Hueneme and Redondo Canyons, has been the dominant mode of basin filling. Mass movement processes, ranging from creep to large-scale catastrophic slumping, have been important locally. In general, large-scale fan growth fits Normark's model in which the suprafan is the primary locus of coarse sediment deposition. Smaller scale morphologic and depositional patterns on the Hueneme and Redondo fans (e.g., distributary channels and coarse sediment concentrations basinward of the inner suprafan) suggest that a significant amount of coarse sediment presently bypasses the suprafans, however. Long-distance coarse sediment transport was particularly pronounced during late Wisconsinan lowstand of sea level and resulted in progradation of lower mid-fan and lower fan deposits.

  19. Idiosyncratic responses of evergreen broad-leaved forest constituents in China to the late Quaternary climate changes

    PubMed Central

    Fan, Dengmei; Hu, Wan; Li, Bo; Morris, Ashley B.; Zheng, Min; Soltis, Douglas E.; Soltis, Pamela S.; Zhang, Zhiyong

    2016-01-01

    Subtropical evergreen broad-leaved forest (EBLF) is one of the most important vegetation types in China. Inferences from palaeo-biome reconstruction (PBR) and phylogeography regarding range shift history of EBLF during the late Quaternary are controversial and should be reconciled. We compared phylogeographic patterns of three EBLF constituents in China, Castanopsis tibetana, Machilus thunbergii and Schima superba. Contrary to a chorus of previous phylogeographic studies and the results of species distribution modelling (SDM) of this study (in situ survival during the LGM), the three species displayed three different phylogeographic patterns that conform to either an in situ survival model or an expansion-contraction model. These results are partially congruent with the inference of PBR that EBLF was absent to the north of 24° N at the LGM. This study suggests that the constituents of EBLF could have responded idiosyncratically to climate changes during the Late Quaternary. The community assemblages of EBLF could have been changing over time, resulting in no palaeo-analogs to modern-day EBLF, which may be the main reason responsible for the failure of PBR to detect the occurrence of EBLF north of 24° N at the LGM. PMID:27534981

  20. Determinants of loss of mammal species during the Late Quaternary 'megafauna' extinctions: life history and ecology, but not body size.

    PubMed Central

    Johnson, C N

    2002-01-01

    Extinctions of megafauna species during the Late Quaternary dramatically reduced the global diversity of mammals. There is intense debate over the causes of these extinctions, especially regarding the extent to which humans were involved. Most previous analyses of this question have focused on chronologies of extinction and on the archaeological evidence for human-megafauna interaction. Here, I take an alternative approach: comparison of the biological traits of extinct species with those of survivors. I use this to demonstrate two general features of the selectivity of Late Quaternary mammal extinctions in Australia, Eurasia, the Americas and Madagascar. First, large size was not directly related to risk of extinction; rather, species with slow reproductive rates were at high risk regardless of their body size. This finding rejects the 'blitzkrieg' model of overkill, in which extinctions were completed during brief intervals of selective hunting of large-bodied prey. Second, species that survived despite having low reproductive rates typically occurred in closed habitats and many were arboreal or nocturnal. Such traits would have reduced their exposure to direct interaction with people. Therefore, although this analysis rejects blitzkrieg as a general scenario for the mammal megafauna extinctions, it is consistent with extinctions being due to interaction with human populations. PMID:12427315

  1. Coupling Genetic and Species Distribution Models to Examine the Response of the Hainan Partridge (Arborophila ardens) to Late Quaternary Climate

    PubMed Central

    Chang, Jiang; Chen, De; Ye, Xinping; Li, Shouhsien; Liang, Wei; Zhang, Zhengwang; Li, Ming

    2012-01-01

    Understanding the historical dynamics of animal species is critical for accurate prediction of their response to climate changes. During the late Quaternary period, Southeast Asia had a larger land area than today due to lower sea levels, and its terrestrial landscape was covered by extensive forests and savanna. To date, however, the distribution fluctuation of vegetation and its impacts on genetic structure and demographic history of local animals during the Last Glacial Maximum (LGM) are still disputed. In addition, the responses of animal species on Hainan Island, located in northern Southeast Asia, to climate changes during the LGM are poorly understood. Here, we combined phylogeographic analysis, paleoclimatic evidence, and species distribution models to examine the response of the flightless Hainan Partridge (Arborophila ardens) to climate change. We concluded that A. ardens survived through LGM climate changes, and its current distribution on Hainan Island was its in situ refuge. Range model results indicated that A. ardens once covered a much larger area than its current distribution. Demographic history described a relatively stable pattern during and following the LGM. In addition, weak population genetic structure suggests a role in promoting gene flow between populations with climate-induced elevation shifts. Human activities must be considered in conservation planning due to their impact on fragmented habitats. These first combined data for Hainan Partridge demonstrate the value of paired genetic and SDMs study. More related works that might deepen our understanding of the responses of the species in Southeast Asia to late Quaternary Climate are needed. PMID:23185599

  2. Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Bookhagen, Bodo; Thiede, Rasmus C.; Strecker, Manfred R.

    2005-02-01

    The intensity of the Asian summer-monsoon circulation varies over decadal to millennial time scales and is reflected in changes in surface processes, terrestrial environments, and marine sediment records. However, the mechanisms of long-lived (2 5 k.y.) intensified monsoon phases, the related changes in precipitation distribution, and their effect on landscape evolution and sedimentation rates are not yet well understood. The arid high-elevation sectors of the orogen correspond to a climatically sensitive zone that currently receives rain only during abnormal (i.e., strengthened) monsoon seasons. Analogous to present-day rainfall anomalies, enhanced precipitation during an intensified monsoon phase is expected to have penetrated far into these geomorphic threshold regions where hillslopes are close to the angle of failure. We associate landslide triggering during intensified monsoon phases with enhanced precipitation, discharge, and sediment flux leading to an increase in pore-water pressure, lateral scouring of rivers, and oversteepening of hillslopes, eventually resulting in failure of slopes and exceptionally large mass movements. Here we use lacustrine deposits related to spatially and temporally clustered large landslides (>0.5 km3) in the Sutlej Valley region of the northwest Himalaya to calculate sedimentation rates and to infer rainfall patterns during late Pleistocene (29 24 ka) and Holocene (10 4 ka) intensified monsoon phases. Compared to present-day sediment-flux measurements, a fivefold increase in sediment-transport rates recorded by sediments in landslide-dammed lakes characterized these episodes of high climatic variability. These changes thus emphasize the pronounced imprint of millennial-scale climate change on surface processes and landscape evolution.

  3. Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~ 21°S)

    NASA Astrophysics Data System (ADS)

    Gayo, Eugenia M.; Latorre, Claudio; Jordan, Teresa E.; Nester, Peter L.; Estay, Sergio A.; Ojeda, Karla F.; Santoro, Calogero M.

    2012-07-01

    The hyperarid core of the Atacama Desert possesses important reserves of "fossil" or ancient groundwater, yet the extent and timing of past hydrologic change during the late Quaternary is largely unknown. In situ and/or short-distance transported leaf-litter deposits abound along relict fluvial terraces inserted within four dry and unvegetated valleys that drain into the endorheic basin of Pampa del Tamarugal (PDT, 21°S, 900-1000 m), one of the largest and economically important aquifers in northern Chile. Our exceptional archive offers the opportunity to evaluate the response of low-elevation desert ecological and hydrological systems to late Quaternary climate variability. Three repeated expansions of riparian/wetland ecosystems, and perennial rivers occurred along the southernmost PDT basin between 17.6-14.2 ka, 12.1-11.4 ka and from 1.01-0.71 ka. Both early and late archaic archaeological artefact are present in clear association with our fossil riparian/wetland assemblages, which suggests that these palaeoenvironmental changes facilitated past human occupations in the hyperarid core of the Atacama Desert. Using modern analogues, we estimate that these ecological and hydrological changes were triggered by a threefold increase in rainfall along the headwaters of what are presently inactive canyons. Comparisons with other regional palaeoclimatic records from the central Andes indicate that these changes were synchronous with the widespread pluvial stages now termed the Central Andean Pluvial Event (CAPE— 17.5-14.2 ka and 13.8-9.7 ka). In addition, we summarize new evidence for perennial runoff, riparian ecosystems and a major human settlement during the latest Holocene. Our findings clearly show that local hydrological changes in the PDT were coupled with precipitation variability in the adjacent eastern highlands during the late Quaternary. The long-term dynamics of low-elevation desert ecological and hydrological systems are likely driven by changes in

  4. Stratigraphic and sedimentologic response to Late Quaternary climate change and glacio-eustasy, Colorado River, Gulf Coastal Plain of Texas

    SciTech Connect

    Blum, M.D. . Dept. of Geology)

    1992-01-01

    This paper summarizes results of investigations of the Colorado River, Gulf Coastal Plain of Texas, which provides a detailed record of fluvial response to late Quaternary climatic change and glacio-eustatic sea level rise. Four allostratigraphic units of late Pleistocene through modern age are differentiated in the bedrock-confined lower Colorado valley on the Inner Coastal Plain. Here up to 10 meters of late Pleistocene sediments underlie a terrace at 17--20 meters above the present-day channel. Two distinct allostratigraphic units underlie an extensive Holocene terrace at 12--14 meters above the present-day channel. Allostratigraphic units and bounding disconformities correlate with climatic changes that have been identified from paleobiological data, and represent stratigraphic response to changes in the relationship between discharge and sediment supply. In addition, changes in sedimentary facies through time represents a response to changes in climate coupled with a protracted degradation of upland soil mantles. This degradation of soils altered the rate at which precipitation inputs were transferred to stream channels as runoff, which led to increases in the peakedness of flood hydrographs and changes in the relative importance of channel versus floodplain depositional environments. Increased flood stages during the late Holocene promoted the increasing importance of floodplain construction by vertical accretion, and late Holocene to modern allostratigraphic units contain thick vertical accretion facies. These same allostratigraphic units and component facies persist downvalley to the Outer Coastal Plain, but stratigraphic architecture changes as a result of the last glacio-eustatic cycle. Here late Holocene and modern sediments onlap and bury late Pleistocene and early to middle Holocene stratigraphic units that were emplaced during the last sea level lowstand and the transgression that followed.

  5. Late Quaternary hydrology in North Africa and the Near East (Hans Oeschger Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Gasse, Françoise

    2010-05-01

    from Arabia(9) and inferred from lake archives and nearshore marine cores for the Sahara coincide with Marine Isotopic Stages 9, 7, 5.5 and 5.3. Stable isotope and vegetation data indicate that there, precipitation is of tropical origin as a result of an intensified monsoon and a northward migration of the Intertropical Convergence zone. These regional patterns are discussed in the light of general climatic models: roles of orbital forcing, extent/decrease of the northern ice sheet and marine ice, atmospheric content in greenhouse gases, large-scale atmospheric and oceanic circulation and related latitudinal shifts of major climatic belts. At a shorter time-scale, several abrupt changes can also be related to climatic events in high northern latitudes. Pronounced dry spells in the Lisan basin are correlated with Heinrich events(5). The Younger Dryas (YD) and the 8.2 ka events often coincide with arid intervals. During the Holocene, the best-resolved records suggest close relationships between solar activity, northern high-latitude temperature and rainfall intensity. The rapid Mid-Late Holocene aridification leading to modern climates affected both the temperate and subtropical domains. Its mechanisms have been intensively debated. To-date, the best explanations derive from a transient simulation of the North Africa aridification using a general circulation ocean-atmosphere-terrestrial ecosystem model(10); it suggests that the vegetation collapse in southern Sahara is driven by a gradual monsoonal climate response to orbital forcing, increased climate variability and precipitation threshold, rather than a positive vegetation feedback as previously suggested. Long and short-term hydrological changes have obviously induced adjustments or migrations of human societies. For exemple, in the Levant, the YD drought placed the sedentary hunter-gatherers Natufians under severe stress that they circumvented by two strategies : (i) people were forced to switch from a passive

  6. Climate warming and humans played different roles in triggering Late Quaternary extinctions in east and west Eurasia.

    PubMed

    Wan, Xinru; Zhang, Zhibin

    2017-03-29

    Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal-spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus Mammuthus), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming.

  7. Exceptionally well preserved late Quaternary plant and vertebrate fossils from a blue hole on Abaco, The Bahamas

    PubMed Central

    Steadman, David W.; Franz, Richard; Morgan, Gary S.; Albury, Nancy A.; Kakuk, Brian; Broad, Kenneth; Franz, Shelley E.; Tinker, Keith; Pateman, Michael P.; Lott, Terry A.; Jarzen, David M.; Dilcher, David L.

    2007-01-01

    We report Quaternary vertebrate and plant fossils from Sawmill Sink, a “blue hole” (a water-filled sinkhole) on Great Abaco Island, The Bahamas. The fossils are well preserved because of deposition in anoxic salt water. Vertebrate fossils from peat on the talus cone are radiocarbon-dated from ≈4,200 to 1,000 cal BP (Late Holocene). The peat produced skeletons of two extinct species (tortoise Chelonoidis undescribed sp. and Caracara Caracara creightoni) and two extant species no longer in The Bahamas (Cuban crocodile, Crocodylus rhombifer; and Cooper's or Gundlach's Hawk, Accipiter cooperii or Accipiter gundlachii). A different, inorganic bone deposit on a limestone ledge in Sawmill Sink is a Late Pleistocene owl roost that features lizards (one species), snakes (three species), birds (25 species), and bats (four species). The owl roost fauna includes Rallus undescribed sp. (extinct; the first Bahamian flightless rail) and four other locally extinct species of birds (Cooper's/Gundlach's Hawk, A. cooperii/gundlachii; flicker Colaptes sp.; Cave Swallow, Petrochelidon fulva; and Eastern Meadowlark, Sturnella magna) and mammals (Bahamian hutia, Geocapromys ingrahami; and a bat, Myotis sp.). The exquisitely preserved fossils from Sawmill Sink suggest a grassy pineland as the dominant plant community on Abaco in the Late Pleistocene, with a heavier component of coppice (tropical dry evergreen forest) in the Late Holocene. Important in its own right, this information also will help biologists and government planners to develop conservation programs in The Bahamas that consider long-term ecological and cultural processes. PMID:18077421

  8. The modern diatom spectra of Madagascar and diatom-inferred Late Quaternary climatic changes in northeastern and central Madagascar

    SciTech Connect

    Reyes, N.E.

    1993-01-01

    A study was conducted to classify diatoms in modern sediment surface samples in freshwater sites into assemblages and to assess the historical changes in lake level changes and climatic conditions in Madagascar during the Late Quaternary. Analysis of taxonomic percentages of diatoms in recently deposited sediments from various sites shows that diatom communities in these sites can be grouped by means of cluster analysis into distinct assemblages, some of which show similarities to groupings found in East Africa. pH and conductivity appear to be important factors correlating with differences in diatom communities in these study sites. Trends in diatom assemblages in a sediment core taken from Lake Alaotra, supplemented by those in sediments of the paleolake Ampasambazimba, suggest that the late Pleistocene in northeastern Madagascar was arid, though aridity was probably not as constant or as severe as in many areas of eastern and northern Africa; the Holocene was a period of moderate but variable conditions, marked by a distinct dry episode ca 5000 yr B.P. and a drying trend toward the late Holocene. Changes in diatom assemblages in a sediment core from Lake Kavitaha in central Madagascar suggest changes in the surrounding environment during at least two periods in the late Holocene. These coincide with increases in charcoal influx and, around 700 yr B.P., with the intensification of agricultural activity in the area.

  9. Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata Née.

    PubMed

    Gugger, Paul F; Ikegami, Makihiko; Sork, Victoria L

    2013-07-01

    Phylogeography and ecological niche models (ENMs) suggest that late Quaternary glacial cycles have played a prominent role in shaping present population genetic structure and diversity, but have not applied quantitative methods to dissect the relative contribution of past and present climate vs. other forces. We integrate multilocus phylogeography, climate-based ENMs and multivariate statistical approaches to infer the effects of late Quaternary climate change on contemporary genetic variation of valley oak (Quercus lobata Née). ENMs indicated that valley oak maintained a stable distribution with local migration from the last interglacial period (~120 ka) to the Last Glacial Maximum (~21 ka, LGM) to the present compared with large-scale range shifts for an eastern North American white oak (Quercus alba L.). Coast Range and Sierra Nevada foothill populations diverged in the late Pleistocene before the LGM [104 ka (28-1622)] and have occupied somewhat distinct climate niches, according to ENMs and coalescent analyses of divergence time. In accordance with neutral expectations for stable populations, nuclear microsatellite diversity positively correlated with niche stability from the LGM to present. Most strikingly, nuclear and chloroplast microsatellite variation significantly correlated with LGM climate, even after controlling for associations with geographic location and present climate using partial redundancy analyses. Variance partitioning showed that LGM climate uniquely explains a similar proportion of genetic variance as present climate (16% vs. 11-18%), and together, past and present climate explains more than geography (19%). Climate can influence local expansion-contraction dynamics, flowering phenology and thus gene flow, and/or impose selective pressures. These results highlight the lingering effect of past climate on genetic variation in species with stable distributions.

  10. Evolution and flooding history of the Sacramento River over the late Quaternary illustrated on pristine floodplains near Chico, California

    NASA Astrophysics Data System (ADS)

    Will, M.; Aalto, R. E.; Singer, M. B.; Fuchs, M.

    2009-12-01

    Different river systems are often seen to respond individually to climate and environmental forcing during the late Quaternary, with a large number of prior studies investigating the unique history of various European rivers. In order to broaden our understanding of climate-induced late Quaternary morpho-dynamic change within a wider range of fluvial environments, more studies are needed from regions that differ substantially from Europe. The Sacramento River downstream of the city of Chico, California, features three different types of surface (palaeo) channel systems - meandering, braiding and anastomosing. This provides an excellent study region to investigate controls on channel and floodplain development by external (and internal) forcing over the Quaternary. This and the fact that two of these palaeochannel systems play a major role in flood and sediment conveyance make this area attractive for research on flooding and river/floodplain development. Furthermore, the climate and sea level forcing over the Quaternary are substantially different here from most European study areas, providing valuable new perspective. We present results from our investigation of a near-pristine fluvial environment along the largest river in California - the Llano Seco reach of the Sacramento River, between Chico and the downstream wetlands of Butte Sink. The Llano Seco Ranch has a unique ownership history that makes it the only remaining significant undisturbed floodplain along the Sacramento River, featuring more than 20,000 acres of superb habitat nourished by a natural geomorphic system. Despite its importance to science and society and the prior recognition of beautifully preserved Quaternary and Holocene channel systems, fluvial features in this area have not been rigorously dated. Furthermore, there have been no detailed studies of deep stratigraphic profiles afforded by the extensive, well preserved deposits of fluvial sediments and floodplain soils. Our research

  11. Variations in Late Quaternary behavior along and among range-front faults of the Sierra Nevada, California

    SciTech Connect

    Clark, M.M. ); Gillespie, A.R. . Geological Sciences)

    1993-04-01

    Late Quaternary slip rates of the 11 or so recognized active range-front faults of the Sierra Nevada from Owens Lake northwestward to Carson Valley show enough variation with time and location that a proper understanding of slip behavior of these faults may require slip histories at many places for each. Late Quaternary traces of these normal faults vary in length from 13 to 45 km. Most faults trend more northerly than the [approximately]MW trend of the range front. The faults are separated by < 5 to > 20 km of apparently unfaulted terrain; many have echelon overlap. None of the faults has a significant component of strike slip, including those of Owens Valley. The largest late Quaternary slip rates (> 2 mm/yr) occur on the Hilton Creek fault at Long Valley and 20 km to the north on the Mono Lake fault. Slip rates > 1 mm/yr occur on at least one fault north of Mono Lake and in Round Valley, south of Long Valley. Farther south (Owens Valley) range-front faults have slip rates < 1 mm/yr and have notably discontinuous traces. Displacements of moraines across the Hilton Creek fault at 4 sites are compatible with slip rates that increase northward from the south end of the fault, but stay constant through time at a site. The slip rates are 0.1 to 0.4 mm/yr near the south end; 0.1 to 0.8 mm/yr at Hilton Lakes, 3 km to the northwest; 1.4 to 3 mm/yr at McGee Creek, 9 km farther northwest; and 1.1 to 2 mm/yr at Tobacco Flat, 5 km farther northwest in Long Valley and > 15 km from the north end of the fault. At McGee Creek, slip rate since 10--15 ka is 1.3--2.5 mm/yr; since 13--20 ka, 1.4--2.6 mm/yr; since 25--40 ka, 1.4--4.2 mm/yr, and since 65--140 ka, 1.1--3.5 mm/yr. The apparently uniform rate through time at McGee Creek (and also at Hilton Lakes and Tobacco Flat, but for fewer periods; the south end site is for only one period) is interesting, but not yet convincing, mainly because of uncertain dates.

  12. Late Quaternary sediment deposition of core MA01 in the Mendeleev Ridge, the western Arctic Ocean: Preliminary results

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyu; Kim, Sunghan; Khim, Boo-Keun; Xiao, Wenshen; Wang, Rujian

    2014-05-01

    Late Quaternary deep marine sediments in the Arctic Ocean are characterized by brown layers intercalated with yellowish to olive gray layers (Poore et al., 1999; Polyak et al., 2004). Previous studies reported that the brown and gray layers were deposited during interglacial (or interstadial) and glacial (or stadial) periods, respectively. A 5.5-m long gravity core MA01 was obtained from the Mendeleev Ridge in the western Arctic Ocean by R/V Xue Long during scientific cruise CHINARE-V. Age (~450 ka) of core MA01 was tentatively estimated by correlation of brown layers with an adjacent core HLY0503-8JPC (Adler et al., 2009). A total of 22 brown layers characterized by low L* and b*, high Mn concentration, and abundant foraminifera were identified. Corresponding gray layers are characterized by high L* and b*, low Mn concentration, and few foraminiferal tests. Foraminifera abundance peaks are not well correlated to CaCO3 peaks which occurred with the coarse-grained (>0.063 mm) fractions (i.e., IRD) both in brown and gray layers. IRDs are transported presumably by sea ice for the deposition of brown layers and by iceberg for the deposition of gray layers (Polyak et al., 2004). A strong correlation coefficient (r2=0.89) between TOC content and C/N ratio indicates that the major source of organic matter is terrestrial. The good correlations of CaCO3 content to TOC (r2=0.56) and C/N ratio (r2=0.69) imply that IRDs contain detrital CaCO3 which mainly originated from the Canadian Arctic Archipelago. In addition, high kaolinite/chlorite (K/C) ratios mostly correspond to CaCO3 peaks, which suggests that the fine-grained particles in the Mendeleev Ridge are transported from the north coast Alaska and Canada where Mesozoic and Cenozoic strata are widely distributed. Thus, the Beaufort Gyre, the predominant surface current in the western Arctic Ocean, played an important role in the sediment delivery to the Mendeleev Ridge. It is worthy of note that the TOC and CaCO3 peaks are

  13. Late Quaternary stratigraphy, sedimentology, and geochemistry of an underfilled lake basin in the Puna (north-west Argentina)

    USGS Publications Warehouse

    McGlue, Michael M.; Cohen, Andrew S.; Ellis, Geoffrey S.; Kowler, Andrew L.

    2013-01-01

    Depositional models of ancient lakes in thin-skinned retroarc foreland basins rarely benefit from appropriate Quaternary analogues. To address this, we present new stratigraphic, sedimentological and geochemical analyses of four radiocarbon-dated sediment cores from the Pozuelos Basin (PB; northwest Argentina) that capture the evolution of this low-accommodation Puna basin over the past ca. 43 cal kyr. Strata from the PB are interpreted as accumulations of a highly variable, underfilled lake system represented by lake-plain/littoral, profundal, palustrine, saline lake and playa facies associations. The vertical stacking of facies is asymmetric, with transgressive and thin organic-rich highstand deposits underlying thicker, organic-poor regressive deposits. The major controls on depositional architecture and basin palaeogeography are tectonics and climate. Accommodation space was derived from piggyback basin-forming flexural subsidence and Miocene-Quaternary normal faulting associated with incorporation of the basin into the Andean hinterland. Sediment and water supply was modulated by variability in the South American summer monsoon, and perennial lake deposits correlate in time with several well-known late Pleistocene wet periods on the Altiplano/Puna plateau. Our results shed new light on lake expansion–contraction dynamics in the PB in particular and provide a deeper understanding of Puna basin lakes in general.

  14. Permafrost sequences on Kurungnakh Island, Lena Delta (NE Siberia, Russia) as key site of the late Quaternary environmental history of West Beringia

    NASA Astrophysics Data System (ADS)

    Wetterich, S.; Kuzmina, S.; Andreev, A. A.; Kienast, F.; Meyer, H.; Schirrmeister, L.; Kuznetsova, T.; Sierralta, M.

    2009-04-01

    Late Quaternary permafrost sequences are widely distributed in the arctic lowlands of Siberia. Because the existence of permafrost has been sensitive to climate changes during the Quaternary past, such frozen deposits are regarded as an archive of palaeoenvironmental dynamics. Late Quaternary palaeoenvironments of the Siberian Arctic were reconstructed by combining data from several fossil bioindicators (pollen, plant macro-fossils, ostracods, insects, and mammal bones) with sedimentological and cryolithological data from permafrost deposits. The late Pleistocene to Holocene sequence on Kurungnakh Island (Lena Delta, NE Siberia) reflects the environmental history of West Beringia and covers glacial/interglacial and stadial/interstadial climate variations with a focus on the Middle Weichselian interstadial (50-32 kyr BP). The record mirrors the development of periglacial landscapes under changing sedimentation regimes which were meandering fluvial during the Early Weichselian, colluvial or proluvial on gently inclined plaines during the Middle and Late Weichselian, and thermokarst-affected during the Holocene. Palaeoecological records indicate the existence of tundra-steppe vegetation under cold continental climate conditions during the Middle Weichselian interstadial. Due to sedimentation gaps in the sequence between 32 and 17 kyr BP and 17 and 8 kyr BP, the Late Weichselian stadial is incompletely represented in the studied outcrops. Nevertheless, by several palaeoecological indications arctic tundra-steppe vegetation under extremely cold-arid conditions prevailed during the late Pleistocene. The tundra-steppe disappeared completely due to lasting paludification during the Holocene. Initially subarctic shrub tundra formed, which later retreated in course of the late Holocene cooling.

  15. From mud and grains to curves and concepts: Late Quaternary climatic history from Chew Bahir, southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Foerster, V. E.; Junginger, A.; Asrat, A.; Lamb, H. F.; Gebru, T.; Wennrich, V.; Weber, M. E.; Rethemeyer, J.; Nowaczyk, N.; Frank, U.; Brown, M. C.; Trauth, M. H.; Schaebitz, F.

    2012-12-01

    Chew Bahir, a tectonically bound basin between the Main Ethiopian Rift and the Omo -Turkana basin, responded sensitively to past climatic fluctuations. Now a saline mudflat, its sediments contain an extensive archive of climatic and environmental history within the source region of anatomically modern humans. Here we present new Late Quaternary paleoclimatic data from six cores (9-18 m long) retrieved in a NW-SE transect across the basin. Multiproxy analysis, including geochemical, geophysical, biological, paleomagnetic and sedimentological analyses, combined with six AMS radiocarbon dates, has been applied to the cores. This reveals that Chew Bahir recorded climatic events at centennial to millennial resolution, including Dansgaard-Oeschger cycles and Heinrich events. The data correlate with both high-latitude and tropical climatic records. Chew Bahir therefore represents a key site from which to understand the timing and mechanisms of local, regional and global climatic events.

  16. The ``Problem of the quaternary'' and the taxonomic rank of the late cenozoic in the international stratigraphic scale

    NASA Astrophysics Data System (ADS)

    Zubakov, V. A.

    2011-02-01

    An international scientific conflict has arisen around the International Stratigraphic Scale, the main document that regulates the rules of reading of geological records and, hence, concerns all Earth sciences. The matter of debate is the geological time scale of 2004, developed by the International Commission on Stratigraphy, where the Quaternary system was abandoned. This ICS decision triggered a protest among Quaternary geologists, members of INQUA, and became the subject of much controversy. This article provides a comprehensive analysis of the Quaternary problem and proposes a reasonable scientific solution that may be appropriate for both parties. The subject of Late Cenozoic geology is discussed: glaciations, human evolution, and recent deposits. In contrast to Charles Lyell's definition of the Plio-Pleistocene according to the percentage of modern mollusk species, it is defined here as a blanket formation, which is correlative to the topography and consists of mapped stratogens hosting fossils of modern biogeocenoses. Features of the description of the Plio-Pleistocene in terms of gravitational orbital tuning are considered. Four paleogeographic phases of modern environment evolution are recognized and ranked as stages: (1) The Messinian evolutionary explosion involved the appearance of many biogeocenoses and the bipedal walking of our extinct ancestors armed with sticks. It was a consequence of the Early Greenland (7.6 Ma BP) and Patagonian (6.7 Ma BP) hyperglaciations. (2) The Zanclean age is marked by climatic and hydrological but not evolutionary boundaries. (3) The appearance of the Villafranchian animal assemblage and Australopithecus, who used stones as weapon: 4.0-3.6 Ma BP. Orogeny and isolation of the Arctic Ocean changed the global climate dramatically. (4) The sexual revolution became the third evolutionary jump: the appearance of the first woman, "Eve", and the genus Homo with her: 1.9 Ma BP. According to the current view, the Plio

  17. Late Quaternary high resolution sequence stratigraphy of an active rift, the Sperchios Basin, Greece: An analogue for subtle stratigraphic plays

    SciTech Connect

    Eliet, P.P. ); Gawthorpe, R.L. )

    1996-01-01

    The Sperchios Basin is an active asymmetric graben, bounded to the south by a major border fault system with major fault segments typically 20-30 km long. The basin is dominated by a major axial fluvio-deltaic system which enters the partially enclosed Maliakos Gulf to the east. Lateral sourced depositional systems within the basin comprise hanging-wall and footwall-derived alluvial fans and a narrow coastal plain along the footwall scarp bordering the Maliakos Gulf. High resolution seismic data from the Maliakos Gulf reveals three late Quaternary progradational parasequences sourced from axial and lateral depositional systems, with a regional late-Pleistocene transgressive surface dated at circa. 10 ka BP within the Maliakos Gulf. Differential subsidence of the late Pleistocene transgressive surface indicates marked variation in subsidence from 2.4 m ka[sup -1] at fault segment centers to 0.8 m ka[sup -1] at segment boundaries. The geometry and internal variability of each parasequence is controlled by the interplay of the local accommodation development and fluctuations in sediment supply and climatic conditions. The Sperchios Rift provides a modem analogue for subtle stratigraphic plays within ancient extensional basins. The study of controls on sediment source and transport patterns within active rifts has refined our appreciation of the controls on potential reservoir distribution and geometries.

  18. Late Quaternary high resolution sequence stratigraphy of an active rift, the Sperchios Basin, Greece: An analogue for subtle stratigraphic plays

    SciTech Connect

    Eliet, P.P.; Gawthorpe, R.L.

    1996-12-31

    The Sperchios Basin is an active asymmetric graben, bounded to the south by a major border fault system with major fault segments typically 20-30 km long. The basin is dominated by a major axial fluvio-deltaic system which enters the partially enclosed Maliakos Gulf to the east. Lateral sourced depositional systems within the basin comprise hanging-wall and footwall-derived alluvial fans and a narrow coastal plain along the footwall scarp bordering the Maliakos Gulf. High resolution seismic data from the Maliakos Gulf reveals three late Quaternary progradational parasequences sourced from axial and lateral depositional systems, with a regional late-Pleistocene transgressive surface dated at circa. 10 ka BP within the Maliakos Gulf. Differential subsidence of the late Pleistocene transgressive surface indicates marked variation in subsidence from 2.4 m ka{sup -1} at fault segment centers to 0.8 m ka{sup -1} at segment boundaries. The geometry and internal variability of each parasequence is controlled by the interplay of the local accommodation development and fluctuations in sediment supply and climatic conditions. The Sperchios Rift provides a modem analogue for subtle stratigraphic plays within ancient extensional basins. The study of controls on sediment source and transport patterns within active rifts has refined our appreciation of the controls on potential reservoir distribution and geometries.

  19. Pre-Wisconsinan mammals from Jamaica and models of late Quaternary extinction in the greater Antilles

    NASA Astrophysics Data System (ADS)

    MacPhee, R. D. E.; Ford, Derek C.; McFarlane, Donald A.

    1989-01-01

    The vertebrate fauna recovered from indurated conglomerates at Wallingford Roadside Cave (central Jamaica) is shown to be in excess of 100,000 yr old according to uranium series and electron spin resonance dating. The Wallingford local fauna is therefore pre-Wisconsinan in age, and Roadside Cave is now the oldest radiometrically dated locality in the West Indies containing identifiable species of land mammals. In the absence of a good radiometric record for Quaternary paleontological sites in the Caribbean, there is no satisfactory basis for determining whether most extinct Antillean mammals died out in a "blitzkrieg"-like event immediately following initial human colonization in the mid-Holocene. Fossils of Clidomys (Heptaxodontidae, Caviomorpha), the giant Wallingford rodent, have never been found in situ in sediments of demonstrably Holocene age, and its extinction may antedate the middle Holocene. This is also a possibility for the primate Xenothrix mcgregori, although its remains have been found in loose cave earth. A major, climate-driven bout of terrestrial vertebrate extinction at about 14,000-12,000 yr B.P. has been hypothesized for the West Indies by G. Pregill and S. L. Olson ( Annual Review of Ecology and Systematics12, 75-98, 1981), but at present there is nothing to connect the disappearance of Clidomys with this event either. Quaternary extinctions in the Caribbean may prove to be of critical significance for evaluating the reality of New World blitzkrieg, but not until an effort is mounted to constrain them rigorously using modern radiometric approaches.

  20. Late Quaternary stratigraphy and depositional history of the Long Island Sound basin

    USGS Publications Warehouse

    Lewis, Ralph S.; Stone, Janet R.

    1991-01-01

    Where quiet waters prevail, marine mud generally less than 15 m thick blankets the older deposits of the Basin. Elsewhere, especially in eastern LIS, tidal currents are actively reworking and transporting glacial and postglacial deposits.

  1. Influence of late Quaternary climatic changes on geomorphic and pedogenic processes on a desert piedmont, Eastern Mojave Desert, California

    USGS Publications Warehouse

    Wells, S.G.; McFadden, L.D.; Dohrenwend, J.C.

    1987-01-01

    Radiocarbon dating of late Quaternary deposits and shorelines of Lake Mojave and cation-ratio numerical age dating of stone pavements (Dorn, 1984) on the adjacent Soda Mountains piedmont provide age constraints for alluvial and eolian deposits. These deposits are associated with climatically controlled stands of Lake Mojave during the past 15,000 yr. Six alluvial fan units and three eolian stratigraphic units were assigned ages based on field relations with dated shorelines and piedmont surfaces, as well as on soil-geomorphic data. All but one of these stratigraphic units were deposited in response to time-transgressive climatic changes beginning approximately 10,000 yr ago. Increased eolian flux rates occurred in response to the lowering of Lake Mojave and a consequent increase in fine-sediment availability. Increased rates of deposition of eolian fines and associated salts influenced pedogenesis, stone-pavement development, and runoff-infiltration relations by (1) enhancing mechanical weathering of fan surfaces and hillslopes and (2) forming clay- and silt-rich surface horizons which decrease infiltration. Changes in alluvial-fan source areas from hillslopes to piedmonts during the Holocene reflect runoff reduction on hillslopes caused by colluvial mantle development and runoff enhancement on piedmonts caused by the development of less-permeable soils. Inferred increased in early to middle Holocene monsoonal activity resulted in high-magnitude paleo-sheetflood events on older fan pavements; this runoff triggered piedmont dissection which, in turn, caused increased sediment availability along channel walls. Thus, runoff-infiltration changes during the late Quaternary have occurred in response to eolian deposition of fines, pedogenesis, increased sheetflood activity in the Holocene, and vegetational changes which are related to many complicated linkages among climatic change, lake fluctuations, and eolian, hillslope, and alluvial-fan processes. ?? 1987.

  2. Persistent Atlantic cold-water spells into the Mediterranean caused abrupt aridities in the late Quaternary Levant

    NASA Astrophysics Data System (ADS)

    Stein, M.; Bartov, Y.; Enzel, Y.; Goldstein, S. L.; Torfstein, A.; Waldmann, N.

    2007-12-01

    The late Quaternary Levant paleohydrology and paleoclimate were recorded in the sedimentary and level history of lakes that occupied the tectonic depressions along the Dead Sea rift. The region was characterized by cold - wet climate conditions during glacials and warm-dry conditions during interglacials. This pattern was punctuated by abrupt arid events (< 200 y) that are correlated with intrusions of cold Atlantic-water into the east Mediterranean. Important examples are the abrupt falls of Lake Lisan during the Heinrich events, the catastrophic falls of Lake Lisan at the 14 and 11th millennium BP that were linked to "melt water pulses" MWP1-A and B. The Allerod fall marked the severest catastrophic aridity that prevailed in the late Quaternary Levant where the intruding cold waters enhanced the post-glacial warming - aridification trend. Subsequently, during the YD, the North Atlantic-cooling imposed a strong deviation from the post-Glacial warming-aridification trend of the Levant leading to enhanced-rain precipitation (return to the "glacial mode"). Bartov et al. (2003) proposed that the intruding cold water stopped the cyclonic uptake of vapor from the Mediterranean to the atmosphere, shutting the Levant rains. It seems that the YD cooling was associated with atmospheric changes, probably stronger effects of the Polar fronts and Westerlies that brought more rains to the Levant. Similar effects of cold seawater intrusions on the regional climate can be detected throughout the Holocene causing possibly the significant aridities of ca. 8.1, 3.5 and possibly the Medieval warming. The rapidity of the response of the regional hydrological systems to the global climate changes and the sensitivity of past human cultures to these changes (e.g. the collapse of the Natufian culture during the Allerod aridity) are certainly important lessons and alarming signals for our human society.

  3. Lidar-Based Mapping of Late Quaternary Faulting Along the Grizzly Valley Fault, Walker Lane Seismic Belt, California

    NASA Astrophysics Data System (ADS)

    Hitchcock, C. S.; Hoirup, D. F.; Barry, G.; Pearce, J.; Glick, F.

    2012-12-01

    The Grizzly Valley fault (GVF) is located within the northern Walker Lane, a zone of right-lateral shear between the Sierra Nevada and the Basin and Range in Plumas County. The GVF extends southeasterly from near Mt. Ingalls along the eastern side of Lake Davis. It may partially connect with the Hot Creek fault within Sierra Valley and extend south to Loyalton with an overall approximate length of 50 km. Comparison of high-resolution topography developed from LiDAR data with published bedrock geologic mapping documents the presence of geomorphic features that provide information on fault activity of the GVF. Field mapping verified tectonically deformed and offset late Quaternary surfaces identified on bare-earth LiDAR imagery across the GVF within glacial deposits on the eastern margin of Lake Davis, and alluvial deposits in Sierra Valley. Along the GVF, conspicuous geomorphic and hydrologic features include scarps in alluvial surfaces, elongated depressions aligned with adjacent linear escarpments, truncated bedrock spurs, closed depressions, linear swales, right-lateral deflections of creeks and river courses, and shutter ridges, as well as springs and linear seeps consistent with right-lateral strike-slip faulting. The discontinuous nature of observed fault traces combined with the apparent down-to-the-west offset of alluvial surfaces at the southern and northern ends of the eastern margin of Lake Davis are consistent with a broad bend or step over in the fault. Scarp profiles of apparently faulted surfaces extracted from LiDAR data document vertical offsets of up to 14 m. Our study suggest that the GVF is an oblique, right-lateral fault that has been active in the late Quaternary. This study complements on-going investigations by DWR to assess the impact of seismic hazards on State Water Project infrastructure.

  4. Late Quaternary dynamics of a South African floodplain wetland and the implications for assessing recent human impacts

    NASA Astrophysics Data System (ADS)

    Tooth, S.; Rodnight, H.; McCarthy, T. S.; Duller, G. A. T.; Grundling, A. T.

    2009-05-01

    Knowledge of the long-term geomorphological dynamics of wetlands is limited, so currently there is an inadequate scientific basis for assessing anthropogenically induced changes and for developing conservation, remediation, and/or sustainable management guidelines for these fragile ecosystems. Along the upper Klip River, eastern South Africa, geomorphological and sedimentological investigations, geochronology, and remote sensing have been used to establish the late Quaternary dynamics of some internationally important floodplain wetlands, thus providing a reference condition against which to assess the extent of recent human impacts. Optically stimulated luminescence dating reveals that the wetlands have developed over at least the last 30 ky as a result of slow meander migration (< 0.2 m y - 1 ), irregular cutoff events, and infrequent avulsions (approximately one every 3-6 ky) that have occurred autogenically as a natural part of meander-belt development. Following European settlement in the Klip valley (late nineteenth century), however, modifications to local flora and fauna, as well as the initiation of local wetland drainage schemes, have had major impacts. In particular, proliferation of exotic willows and associated debris jams, and the artificial excavation of a 1.2-km-long channel section across the wetlands have initiated an ongoing avulsion that is characterised by failure (gradual abandonment) of the main channel and rapid incision of a headcutting channel. Compared to the pre-settlement condition, little change in lateral migration activity has occurred, but this avulsion provides a clear example of anthropogenically accelerated change, occurring only ~ 1 ky after the last natural avulsion and in a part of the wetlands where avulsions have not occurred previously. Subsequent human interventions have included installing weirs in an attempt to control the resulting erosion and promote reflooding, but ongoing maintenance has been required. In areas that

  5. Clay minerals as proxies of the late Quaternary East Asian monsoon evolution in the South China Sea revisited

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, X.; He, Z.; Colin, C.; Zhao, Y.

    2012-12-01

    Clay minerals have a significant role in sedimentation and paleoenvironment studies of the South China Sea. Many previous studies showed that the time series variation in late Quaternary clay mineral assemblages presents mostly glacial-interglacial cyclicity, and they were interpreted chemical weathering closely related to contemporaneous climatic changes of source areas. It is quite debatable whether clay minerals can directly indicate the East Asian monsoon evolution. To answer this question, we investigated sediment cores collected in various locations in the South China Sea during the MARCO POLO cruise in 2005, MD05-2904 (2066 m water depth, abbreviated w.d.) and MD05-2905 (1198 m w.d.) in the north, MD05-2901 (1254 m w.d.) and MD05-2899 (2393 m w.d.) in the west, and MD05-2895 (1982 m w.d.) in the south. Our results show that provenance supply and current transport directly control the clay mineralogical compositions in core and surface sediments, with various expression forms in different locations. In the north, the clay mineral assemblage indicates a relationship between surface current transport (for smectite) under the significant influence of the Kuroshio intrusion and deep water transport (for illite and chlorite). In the west, the East Asian monsoons forced surface currents and different clay-composition provenances affect the glacial-interglacial cyclicity of clay mineral variations. In the south, land-sea distribution variations controlled by the sea level change determine the sources of clay minerals. Our new studies suggest that the late Quaternary clay minerals in the South China Sea do not bear contemporaneous paleoclimatic features, and their implication for proxies of the East Asian monsoon evolution is realized through both the provenance supply and current transport processes.

  6. Erosion and deposition on the Pajarito Plateau, New Mexico, and implications for geomorphic responses to late Quaternary climatic changes

    SciTech Connect

    Reneau, S.L.; McDonald, E.V.; Gardner, J.N.; Longmire, P.A.; Kolbe, T.R.; Carney, J.S.; Watt, P.M.

    1996-04-01

    The Pajarito Plateau of northern New Mexico contains a rich and diverse record of late Quaternary landscape changes in a variety of geomorphic settings that include gently-sloping mesa tops, steep canyon walls, and canyon bottoms. A broad range of investigations during the past decade, motivated by environmental and seismic hazard concerns, have resulted in examination of the characteristics, stratigraphy, and age of sediments and soils at numerous locations throughout the Plateau. Geochronologic control is provided by >140 radiocarbon dates supplemented by soil characterization and tephrochronology. In this paper we first summarize some of the results of recent and ongoing work on late Quaternary deposits on the Pajarito Plateau, illustrating both the complexity of the geomorphic record and some common elements that have been observed in multiple locations. We then use these observations, in combination with other work in the Southwest, to make some inferences about the local geomorphic response to regional climatic changes. Because the geomorphic and paleoclimatic records are fragmentary, and because the relations between large scale climate changes and local variations in precipitation, vegetation, and geomorphic processes are not fully understood, many uncertainties exist concerning the response of the local landscape to past climatic fluctuations. In addition, variations in local landscape sensitivity related to prior erosional history and spatial variations in vegetation, and the localized nature of many storms, probably contribute to the complexity of the geomorphic record. Nevertheless, the work discussed in this paper suggests a strong relation between regional climatic changes and local geomorphic history, and provides a framework for considering relations between modem processes, the record of past landscape changes, and future erosion and deposition on the Plateau and in surrounding areas.

  7. Late Quaternary coseismic uplift events on the Huon Peninsula, Papua New Guinea, deduced from coral terrace data

    NASA Astrophysics Data System (ADS)

    Ota, Yoko; Chappell, John

    1996-03-01

    Up to six regressive terraces occur on the Holocene raised reef tract and up to 15 occur on late Pleistocene raised reef tracts along 40 km of coastline at Huon Peninsula, Papua New Guinea. We suggest that the regressive terraces represent repeated episodic uplift caused by great earthquakes. Ages of Holocene coseismic uplift events are established by radiocarbon dating; the late Pleistocene events are bracketed by U series ages of the raised reef tracts on which they occur. The mean recurrence interval of great earthquakes that caused the uplift events is 970 to 1165 years in the Holocene and probably the same in the late Pleistocene; the interval ranged from about 200 to 1900 years. The uplift rate increases parallel to the coast from northwest to southeast, and the amplitude of coseismic uplifts generally increases similarly, although some events produced uplift with little shore-parallel tilting. The mean amplitude of coseismic uplifts throughout the study area is ˜3 m in for both Holocene and late Pleistocene sequences. Large, late Quaternary landslides are numerous, and some probably were triggered by the great earthquakes that caused coseismic uplift. There appears to be no continuum between historical large earthquakes at Huon Peninsula of magnitudes >7 that produced no or only minor uplift, and the great earthquakes represented by meter-scale coseismic uplifts and very large landslides. Two tectonic subregions are recognized, which were uplifted together by some Holocene events but not by others. There is no surface trace of Holocene faulting between the subregions, and a buried fault is thought to separate them.

  8. Late Quaternary Deformation Along the Wairarapa Fault, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Schermer, E. R.; Little, T. A.

    2006-12-01

    The Wairarapa fault, one of the largest active faults in the hanging wall of the Hikurangi subduction margin, New Zealand, averaged 16m dextral slip during the M >8.1 1855 earthquake. Previous workers inferred that uplift of 2.7m at the coast, observed by a surveyor in 1855, occurred on the southern continuation of the Wairarapa fault, the Wharekauhau (WH) thrust. New mapping, stratigraphic, and paloseismologic results from the WH thrust suggest the pattern of surface rupture in 1855 and earlier earthquakes was significantly different than previously inferred, requiring a more complex model for seismic hazard and tectonic evolution of the region. Detailed mapping indicates that the coastal segment of the WH thrust did not rupture the surface in 1855. The thrust, a major range-bounding fault, emplaces Mesozoic graywacke over ~80-100 ka last- interglacial marine, and lacustrine rocks, and in part coeval to younger alluvial gravels. Fault activity is indicated by facies and thickness changes. This older sequence is tilted and overlapped unconformably by a silt layer and much less deformed alluvial fan gravels that range in age from >22ka to <9 ka. These younger gravels were deposited in a valley incised across the fault scarp, in-filled this topography, and show no evidence of syn-depositional deformation. New 14C ages record a period of fault inactivity from 14 - 9 ka (calib yrs BP). The abandoned, overlapping fan surface is slightly deformed across the fault (15 m of folding- related throw). We infer that the thrust has propagated eastward in the subsurface, uplifting the abandoned WH fault, an inference that is supported by the pattern of Holocene incision. The only recent faulting consists of subvertical en echelon segments that have undergone minor dip-slip and dextral slip. A trench excavated across the fault scarp in late Holocene gravels suggests that the only fault along the trace of the WH thrust that broke within 3 m of the surface in 1855 was a minor

  9. Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Chauhan, Teena; Noormets, Riko; Rasmussen, Tine L.

    2016-04-01

    Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2-1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.

  10. Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet

    NASA Technical Reports Server (NTRS)

    Peltzer, Gilles; Tapponnier, Paul; Armijo, Rolando

    1989-01-01

    Images taken by the earth observation satellite SPOT of the Quaternary morphology at 18 sites on the 2000-kilometer-long Altyn Tagh fault at the north edge of Tibet demonstrate that it is outstandingly active. Long-term, left-lateral strike-slip offsets of stream channels, alluvial terrace edges, and glacial moraines along the fault cluster between 100 and 400 meters. The high elevation of the sites, mostly above 4000 meters in the periglacial zone, suggests that most offsets resulted from slip on the fault since the beginning of the Holocene. These data imply that slip rates are 2 to 3 centimeters per year along much of the fault length and support the hypothesis that the continuing penetration of India into Asia forces Tibet rapidly toward the east.

  11. Magnitude of late quaternary left-lateral displacements along the north edge of tibet.

    PubMed

    Peltzer, G; Tapponnier, P; Armijo, R

    1989-12-08

    Images taken by the earth observation satellite SPOT of the Quaternary morphology at 18 sites on the 2000-kilometer-long Altyn Tagh fault at the north edge of Tibet demonstrate that it is outstandingly active. Long-term, left-lateral strike-slip offsets of stream channels, alluvial terrace edges, and glacial moraines along the fault cluster between 100 and 400 meters. The high elevation of the sites, mostly above 4000 meters in the periglacial zone, suggests that most offsets resulted from slip on the fault since the beginning of the Holocene. These data imply that slip rates are 2 to 3 centimeters per year along much of the fault length and support the hypothesis that the continuing penetration of India into Asia forces Tibet rapidly toward the east.

  12. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands.

    PubMed

    Lyons, S Kathleen; Miller, Joshua H; Fraser, Danielle; Smith, Felisa A; Boyer, Alison; Lindsey, Emily; Mychajliw, Alexis M

    2016-06-01

    Understanding extinction drivers in a human-dominated world is necessary to preserve biodiversity. We provide an overview of Quaternary extinctions and compare mammalian extinction events on continents and islands after human arrival in system-specific prehistoric and historic contexts. We highlight the role of body size and life-history traits in these extinctions. We find a significant size-bias except for extinctions on small islands in historic times. Using phylogenetic regression and classification trees, we find that while life-history traits are poor predictors of historic extinctions, those associated with difficulty in responding quickly to perturbations, such as small litter size, are good predictors of prehistoric extinctions. Our results are consistent with the idea that prehistoric and historic extinctions form a single continuing event with the same likely primary driver, humans, but the diversity of impacts and affected faunas is much greater in historic extinctions.

  13. Morphology of late Quaternary submarine landslides along the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Twichell, D.C.; Chaytor, J.D.; ten Brink, U.S.; Buczkowski, B.

    2009-01-01

    The nearly complete coverage of the U.S. Atlantic continental slope and rise by multibeam bathymetry and backscatter imagery provides an opportunity to reevaluate the distribution of submarine landslides along the margin and reassess the controls on their formation. Landslides can be divided into two categories based on their source areas: those sourced in submarine canyons and those sourced on the open continental slope and rise. Landslide distribution is in part controlled by the Quaternary history of the margin. They cover 33% of the continental slope and rise of the glacially influenced New England margin, 16% of the sea floor offshore of the fluvially dominated Middle Atlantic margin, and 13% of the sea floor south of Cape Hatteras. The headwall scarps of open-slope sourced landslides occur mostly on the lower slope and upper rise while they occur mostly on the upper slope in the canyon-sourced ones. The deposits from both landslide categories are generally thin (mostly 20-40??m thick) and comprised primarily of Quaternary material, but the volumes of the open-slope sourced landslide deposits can be larger (1-392??km3) than the canyon-sourced ones (1-10??km3). The largest failures are located seaward of shelf-edge deltas along the southern New England margin and near salt domes that breach the sea floor south of Cape Hatteras. The spatial distribution of landslides indicates that earthquakes associated with rebound of the glaciated part of the margin or earthquakes associated with salt domes were probably the primary triggering mechanism although other processes may have pre-conditioned sediments for failure. The largest failures and those that have the potential to generate the largest tsunamis are the open-slope sourced landslides.

  14. Processes of late Quaternary turbidity current flow and deposition on the Var deep sea fan, northwest Mediterranean sea

    SciTech Connect

    Piper, D. ); Savoye, B. )

    1993-09-01

    Late Quaternary sedimentation patterns on the Var deep-sea fan are known from high-resolution seismic boomer profiles (vertical resolution < 1 m), piston cores, SAR side-scan sonargraphs, and submersible dives. Foram biostratigraphy and radiocarbon dating provide chronologic control that is seismically correlated across the fan. Regional erosional events correspond to the isotopic state 2 and 6 glacial maxima. A widespread surface sand layer was deposited from the 1979 turbidity current, which broke two submarine cables. Numerical modeling constrains its character. A small slide on the upper prodelta developed into an accelerating turbidity current, which eroded sand from the Var canyon. The current was 30 m thick in the upper valley, expanding downflow to >120 m, where it spilled over the eastern Var sedimentary ridge at a velocity of 2.5 ms[sup [minus]1]. Other Holocene turbidity currents (with a 103-yr recurrence interval) were muddier and thicker, but also deposited sand on middle fan-valley levees and are inferred to have had a similar slide-related origin. Late Pleistocene turbidity currents deposited on the high Var sedimentary ridge. The presence of sediment waves and the cross-flow slope inferred from levee asymmetry indicate that some flow were hundreds of meters thick, with velocities of 0.35 ms[sup [minus]1]. Estimated times for deposition of thick levee mud beds are many days or weeks. Late Pleistocene flows therefore are interpreted to result from hyperpycnal flow of glacial outwash in the Var River. Variation in late Pleistocene-Holocene turbidite sedimentation thus is controlled more by changes in sediment supply than by sea level.

  15. Changes in Late Cretaceous-Quaternary Caribbean plate motion directions inferred from paleostress measurements from striated fault planes

    NASA Astrophysics Data System (ADS)

    Batbayar, K.; Mann, P.; Hippolyte, J.

    2013-12-01

    We compiled paleostress analyses from previous research works collected at 591 localities of striated fault planes in rocks ranging in age from Late Cretaceous to Quaternary in the circum-Caribbean and Mexico. The purpose of the study is to quantify a progressive clockwise rotation of the Caribbean plate during its Late Cretaceous to recent subduction of the Proto-Caribbean seaway. Paleostress analysis is based on the assumption that slickenside lineations indicate both the direction and sense of maximum resolved shear stress on that fault plane. We have plotted directions of maximum horizontal stress onto plate tectonic reconstructions of the circum-Caribbean plate boundaries and infer that these directions are proxies for paleo-plate motion directions of the Caribbean plate. Plotting these stress directions onto reconstructions provided a better visualization of the relation of stress directions to blocks at their time of Late Cretaceous to recent deformation. Older, more deformed rocks of Late Cretaceous to Eocene ages yield a greater scatter in derived paleostress directions as these rocks have steeper dips, more pervasive faulting, and were likely affected by large rotations as known from previous paleomagnetic studies of Caribbean plate margins. Despite more scatter in measurements from older rock units, four major events that affected the Caribbean plate and the Great Arc of the Caribbean (GAC) are recognizable from changing orientations of stress directions: 1) Late Cretaceous collision of the GAC with southern Mexico and Colombia is consistent with NE directions of maximum compression in rocks of this age range in southern Mexico and EW directions in Colombia as the GAC approached the Proto-Caribbean seaway; 2) Paleocene-Eocene collision of the GAC with the Bahamas platform in Cuba and Hispaniola and with the South American plate in Venezuela is consistent with CW rotations of stress directions in rocks of these ages in the northern Caribbean and CCW

  16. Within-taxon morphological diversity in late-Quaternary Neotoma as a paleoenvironmental indicator, Bonneville Basin, Northwestern Utah, USA

    NASA Astrophysics Data System (ADS)

    Lyman, R. Lee; O'Brien, Michael J.

    2005-05-01

    Ecological data indicate that as the amount of precipitation in an arid areas increases, so too does mammalian taxonomic richness. This correspondence has been found in two late-Quaternary mammalian faunas from Utah, one from Homestead Cave in the Bonneville Basin. We use the remains of two species of woodrat ( Neotoma cinerea and Neotoma lepida) from Homestead Cave to test the hypothesis that as the amount of precipitation in an arid area increases, so too does morphological diversity within individual mammalian taxa. Morphological diversity is measured as corrected coefficients of variation and as richness of size classes of mandibular alveolar lengths. Coefficients of variation for N. cinerea are few and coincide with moisture history if temporally successive small samples are lumped together. More abundant coefficients of variation for N. lepida coincide only loosely with moisture history, likely because such coefficients measure dispersion but not necessarily other aspects of variation. Richness of size classes of N. lepida is high during the early and late Holocene when moisture was high, and lowest during the middle Holocene when climate was most arid.

  17. Ochotona(Lagomorpha) from Late Quaternary Cave Deposits in Eastern North America

    NASA Astrophysics Data System (ADS)

    Mead, Jim I.; Grady, Frederick

    1996-01-01

    Pikas ( Ochtona)—small gnawing mammals, related to rabbits—range today throughout parts of the Northern Hemisphere, but had a wider distribution during the Pleistocene. Nine caves from northeastern North America (a region not occupied by pikas today) have Pleistocene deposits containing remains of Ochotona.We examine 526 fossil specimens (ranging in age from approximately 850,000 to 8670 yr B.P.) from five of these caves. Two morphological forms of Ochotonalived in northeastern North America during the late Pleistocene—a large species (probably O. whartoni) and a small species (probably O. princeps). Ochotonaof glacial age are not necessarily indicative of talus slopes and mesic communities. O. princeps-like of the Irvingtonian of West Virginia were living with an amphibian-reptilian assemblage found in the area today, implying winters not much, if at all, colder than at present. Late glacial and postglacial change in climate south of the ice sheets in effect would have isolated Ochotonain eastern North America, where they were unable to retreat to the west or north. Whereas western pika had the option of moving up in elevation, into boreal islands, eastern forms became restricted to ever-diminishing habitats, culminating in extinction and extirpation. Radiocarbon ages imply that Ochotonalived in eastern North America during the late Pleistocene (late Rancholabrean) and into the earliest Holocene. We describe the youngest remains of Ochotonain eastern North America and the youngest for the extinct large form, O. whartoni.

  18. Late quaternary temporal and event classifications, Great Lakes region, North America

    USGS Publications Warehouse

    Johnson, W.H.; Hansel, A.K.; Bettis, E. Arthur; Karrow, P.F.; Larson, G.J.; Lowell, T.V.; Schneider, Allan F.

    1997-01-01

    Several temporal and event classifications are used for the Quaternary glacial and interglacial record in the Great Lakes region of North America. Although based on contrasting principles, the classifications, as practiced, are similar to one another in most respects and they differ little from the classification proposed by Chamberlin a century ago. All are based on stratigraphic units having time-transgressive boundaries; thus the associated time spans and events are diachronous. Where application of geochronologic classification based on isochronous boundaries is not practical or useful, we advocate the use of diachronic principles to establish local and regional temporal and event classifications. Diachronic and event classifications based on such principles are proposed herein for the Great Lakes region. Well-established names, including Wisconsin, Sangamon, and Illinois, are used at the episode (or glaciation/interglaciation) rank without significant redefinition. The Hudson Episode (Interglaciation) is introduced for postglacial time, the current interglacial interval. The Wisconsin Episode is divided into the Ontario, Elgin, and Michigan Subepisodes in the eastern and northern parts of the Great Lakes region and into the Athens and Michigan Subepisodes in the southern and western parts of the Great Lakes region. ?? 1997 University of Washington.

  19. Rapid mantle-driven uplift along the Angolan margin in the late Quaternary

    NASA Astrophysics Data System (ADS)

    Walker, R. T.; Telfer, M.; Kahle, R. L.; Dee, M. W.; Kahle, B.; Schwenninger, J.-L.; Sloan, R. A.; Watts, A. B.

    2016-12-01

    Mantle flow can cause the Earth's surface to uplift and subside, but the rates and durations of these motions are, in general, poorly resolved due to the difficulties in making measurements of relatively small vertical movements (hundreds of metres) over sufficiently large distances (about 1,000 km). Here we examine the effect of mantle upwelling through a study of Quaternary uplift along the coast of Angola. Using both optically stimulated luminescence on sediment grains, and radiocarbon dating of fossil shells, we date a 25 m coastal terrace at about 45 thousand years old, when sea level was about 75 m lower than today, indicating a rapid uplift rate of 1.8-2.6 mm yr-1 that is an order of magnitude higher than previously obtained rates averaged over longer time periods. Automated extraction and correlation of coastal terrace remnants from digital topography uncovers a symmetrical uplift with diameter of more than 1,000 km. The wavelength and relatively short timescale of the uplift suggest that it is associated with a mantle process, possibly convective upwelling, and that the topography may be modulated by rapid short-lived pulses of mantle-derived uplift. Our study shows that stable continental regions far from the effects of glacial rebound may experience rapid vertical displacements of several millimetres per year.

  20. A new contribution to the Late Quaternary tephrostratigraphy of the Mediterranean: Aegean Sea core LC21

    NASA Astrophysics Data System (ADS)

    Satow, C.; Tomlinson, E. L.; Grant, K. M.; Albert, P. G.; Smith, V. C.; Manning, C. J.; Ottolini, L.; Wulf, S.; Rohling, E. J.; Lowe, J. J.; Blockley, S. P. E.; Menzies, M. A.

    2015-06-01

    Tephra layers preserved in marine sediments can contribute to the reconstruction of volcanic histories and potentially act as stratigraphic isochrons to link together environmental records. Recent developments in the detection of volcanic ash (tephra) at levels where none is macroscopically visible (so-called 'crypto-tephra') have greatly enhanced the potential of tephrostratigraphy for synchronising environmental and archaeological records by expanding the areas over which tephras are found. In this paper, crypto-tephra extraction techniques allow the recovery of 8 non-visible tephra layers to add to the 9 visible layers in a marine sediment core (LC21) from the SE Aegean Sea to form the longest, single core record of volcanic activity in the Aegean Sea. Using a novel, shard-specific methodology, sources of the tephra shards are identified on the basis of their major and trace element single-shard geochemistry, by comparison with geochemical data from proximal Mediterranean volcanic stratigraphies. The results indicate that the tephra layers are derived from 14 or 15 separate eruptions in the last ca 161 ka BP: 9 from Santorini; 2 or 3 from Kos, Yali, or Nisyros; 2 from the Campanian province; and one from Pantelleria. The attributions of these tephra layers indicate that 1) inter-Plinian eruptions from Santorini may have produced regionally significant tephra deposits, 2) marine tephrostratigraphies can provide unique and invaluable data to eruptive histories for island volcanoes, and 3) tephra from both Pantelleria and Campania may be used to correlate marine records from the Aegean Sea to those from the Tyrrhenian, Adriatic and Ionian Seas.

  1. Mt. Chambers Creek alluvial fan - a recorder for Late Quaternary flow regime changes along the eastern Flinders Ranges (South Australia)

    NASA Astrophysics Data System (ADS)

    May, Jan-Hendrik; Larsen, Joshua; Cohen, Timothy; Nanson, Gerald

    2010-05-01

    Climate is a primary control on Late Quaternary alluvial fan evolution and past hydrological changes should be sensitively recorded in alluvial fan stratigraphy. The Flinders Ranges (S Australia) are situated between tropical and extra-tropical (e.g. westerlies) elements of the atmospheric circulation. Numerous alluvial fans constitute the transition between the Flinders Ranges and the large salt lake system of Lake Frome to the east. Along the arid eastern margin of the Flinders Ranges, geomorphology and stratigraphy were investigated at Mt. Chambers Creek alluvial fan (31°S). The fan is connected to a ~380 km2 catchment via the Mt. Chambers gorge, which has incised into the uplifted range front. Upstream of the gorge, manifold exposures along valley fills provide evidence for a generally fining-upward sequence of fluvial gravels and (eolian?) silts, which are topped by thick layers of tufa that have subsequently incised. Downstream of the apex, the alluvial fan surface is characterized by relatively low slopes (~0.5° - 1.5°) and a complex pattern of desert pavements, overlain by several inactive feeder channels and/or floodouts. The modern channel drains into an active floodout approximately 13 km downstream of the fan apex, showing that significant quantities of coarse-grained sediment load do not currently reach the baselevel at Lake Frome. Mt. Chambers Creek has incised several meters into the fan body, exposing extensive outcrops of alluvial fan sediments and paleosols. Generally, the fan stratigraphy can be divided into six different units, each of them bounded by laterally continuous and mostly carbonaceous paleosol horizons. The lowermost four units are dominated by matrix- and clast supported gravels, indicating high-energy events such as hyperconcentrated and debris flows. Along the distal fan, the thickness of these units and grain size generally decreases, locally exposing a sequence of well-developed and buried desert pavements. In combination

  2. Fossil insect evidence for late Quaternary climatic change in the Big Bend region, Chihuahuan Desert, Texas

    NASA Astrophysics Data System (ADS)

    Elias, Scott A.; Van Devender, Thomas R.

    1990-09-01

    A series of 50 packrat midden assemblages from the Big Bend region of the Chihuahuan Desert, ranging in age from >36,000 yr B.P. to recent, yielded abundant, diverse arthropod faunas. The mesic nature of regional Wisconsin age climates is substantiated by the fauna from 30,000-12,000 yr B.P., especially during the middle Wisconsin (30,000-20,000 yr B.P.). Late Wisconsin faunas contained grassland species which are confined today to cooler, moister regions. Following 12,000 yr B.P., most of these temperate species were replaced either by desert species or by more cosmopolitan taxa, marking the climatic shift from late Wisconsin to postglacial time. Insects indicative of more severe aridity are first recorded at about 6000 yr B.P., but some temperate species persisted until about 2500 yr B.P. After this, only desert dwellers are recorded.

  3. Late quaternary paleoseismology of the southern Steens fault zone, northern Nevada

    USGS Publications Warehouse

    Personius, S.F.; Crone, A.J.; Machette, M.N.; Mahan, S.A.; Kyung, J.B.; Cisneros, H.; Lidke, D.J.

    2007-01-01

    The 192-km-long Steens fault zone is the most prominent normal fault system in the northern Basin and Range province of western North America. We use trench mapping and radiometric dating to estimate displacements and timing of the last three surface-rupturing earthquakes (E1-E3) on the southern part of the fault south of Denio, Nevada. Coseismic displacements range from 1.1 to 2.2 ?? 0.5 m, and radiometric ages indicate earthquake times of 11.5 ?? 2.0 ka (E3), 6.1 ?? 0.5 ka (E2), and 4.6 ?? 1.0 ka (E1). These data yield recurrence intervals of 5.4 ?? 2.1 k.y. between E3 and E2, 1.5 ?? 1.1 k.y. between E2 and E1, and an elapsed time of 4.6 ?? 1.0 k.y. since E1. The recurrence data yield variable interval slip rates (between 0.2 ?? 0.22 and 1.5 ?? 2.3 mm/yr), but slip rates averaged over the past ???18 k.y. (0.24 ?? 0.06 mm/year) are similar to long-term (8.5-12.5 Ma) slip rates (0.2 ?? 0.1 mm /yr) measured a few kilometers to the north. We infer from the lack of significant topographic relief across the fault in Bog Hot Valley that the fault zone is propagating southward and may now be connected with a fault at the northwestern end of the Pine Forest Range. Displacements documented in the trench and a rupture length of 37 km indicate a history of three latest Quaternary earthquakes with magnitudes of M 6.6-7.1 on the southern part of the Steens fault zone.

  4. Late Quaternary fluctuations of biogenic component fluxes on the continental slope of the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Ceccaroni, L.; Frank, M.; Frignani, M.; Langone, L.; Ravaioli, M.; Mangini, A.

    1998-11-01

    A sediment core, collected from the western part of the continental slope of the Ross Sea at 2380 m water depth, records events of the last two climatic cycles (250 kyr). A 230Th ex-based chronology was obtained and boundaries of the isotope stages were set assuming that biological productivity was enhanced during periods of less ice cover. Then, 230Th ex0, organic carbon, biogenic silica and biogenic Ba distributions were compared to the glacial-interglacial stage boundaries and corresponding ages of the δ 18O record of Martinson et al. [Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Jr., Shackleton, N.J, 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research, 27: 1-29]. Sediment accumulation rates ranged between 1.2 cm kyr -1 in the isotope stage 6 and 3.8 cm kyr -1 during the Holocene. Variations in the concentrations and fluxes of organic carbon, biogenic Ba, biogenic silica and Mn gave information on palaeoclimate changes. Processes of sediment redistribution in the Ross Sea margin were enlightened from a comparison of the measured and expected fluxes of 230Th ex. Calculation of the focusing-corrected accumulation rates of biogenic Ba enabled us to evaluate the export palaeoproductivity. Corrected accumulation rates of biogenic components and calculated palaeoproductivities were low, compared to the Antarctic Polar Front in the Atlantic sector, throughout the last two climatic cycles. Glacial-interglacial changes of sea ice cover and ventilation of the Ross Sea were probably major causes of variations in biogenic particle flux and distribution of redox-sensitive elements within the sediment column.

  5. Late Quaternary landscape development at the margin of the Pomeranian phase (MIS 2) near Lake Wygonin (Northern Poland)

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Schneider, Anna; Nicolay, Alexander; Błaszkiewicz, Mirosław; Kordowski, Jarosław; Noryskiewicz, Agnieszka M.; Tyszkowski, Sebastian; Raab, Alexandra; Raab, Thomas

    2015-04-01

    In Central Europe, Late Quaternary landscapes experienced multiple phases of geomorphologic activity. In this study,we used a combined geomorphological, pedological, sedimentological and palynological approach to characterize landscape development after the Last Glacial Maximum (LGM) near Lake Wygonin in Northern Poland. The pedostratigraphical findings from soil pits and drillings were extrapolated using ground-penetrating radar (GPR) and electric resistivity tomography (ERT). During the Pomeranian phase, glacial and fluvioglacial processes dominated the landscape near Lake Wygonin. At the end of the glacial period, periglacial processes became relevant and caused the formation of ventifacts and coversands containing coated sand grains. At approximately 15,290-14,800 cal yr BP, a small pond formed in a kettle hole (profile BWI2). The lacustrine sediments lack eolian sand components and therefore indicate the decline of eolian processes during that time. The increase of Juniperus and rock-rose (Helianthemum) in the pollen diagram is a prominent marker of the Younger Dryas. At the end of the Younger Dryas, a partial reshaping of the landscape is indicated by abundant charcoal fragments in disturbed lake sediments. No geomorphologic activity since the beginning of the Holocene is documented in the terrestrial and wetland archives. The anthropogenic impact is reflected in the pollen diagram by the occurrence of rye pollen grains (Cerealia type, Secale cereale) and translocated soil sediments dated to 1560-1410 cal yr BP, proving agricultural use of the immediate vicinity. With the onset of land use, gully incision and the accumulation of colluvial fans reshaped the landscape locally. Since 540-460 cal yr BP, further gully incision in the steep forest tracks has been associated with the intensification of forestry. Outside of the gully catchments, the weakly podzolized Rubic Brunic Arenosols show no features of Holocene soil erosion. Reprinted from CATENA, Volume 124

  6. Debates in the late Quaternary of central southern Africa: climate change, environmental variability or just plain poor data?

    NASA Astrophysics Data System (ADS)

    Thomas, D. S.; Burrough, S. L.

    2012-12-01

    Quaternary palaeoclimatic/environmental analyses in dryland regions are well-known for the limited range of proxy data sets available, resulting in debates about achieving robust reconstructions (e.g. Butzer 1984, Thomas 1986, Maslin and Christiansen 2007). In some regions, e.g. central southern Africa, this has resulted in reliance on geoproxies: the analysis and dating of depositional landforms and associated sediments. Despite significant advances in geoproxy interpretation and chronometric control, their efficacy remains contentious, not least because of apparent temporal contradictions in reconstructions of past drier and past more humid conditions. Consequently their use has been eschewed in favour of spatially extensive extrapolations from higher-resolution, but geographically-distant, data sets (e.g. Chase and Meadows 2008); an approach not without its own limitations (e.g. Gasse et al. 2008, Thomas and Burrough 2012, Thomas et al. 2012), given the variability in modern terrestrial conditions in dryland regions today. It is therefore highly appropriate to revisit the debates of Butzer (1984) and Thomas (1986) regarding data quality and data extrapolation, but to add in the very relevant characteristic of temporal and spatial environmental variability. Environmental and climatic variability at a range of temporal and spatial scales are significant traits of drylands in southern Africa and worldwide, impacting on ecosystem and geomorphic processes, and human behaviour. It can be hypothesised that while environmental variability has been an important trait of Late Quaternary environments and climate in southern Africa. It has rarely been considered as a viable environmental 'state' when proxy records are analysed and integrated, particularly in the case of spatially extensive geoproxies and in contexts where palaeoenvironment and palaeoclimate are used interchangeably. We present examples where debates over the nature of past changes and quality of datasets

  7. Detrital fission-track-compositional signature of an orogenic chain-hinterland basin system: The case of the late Neogene Quaternary Valdelsa basin (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Balestrieri, M. L.; Benvenuti, M.; Tangocci, F.

    2013-05-01

    Detrital thermochronological data collected in syn-tectonic basin deposits are a promising tool for deciphering time and processes of the evolution of orogenic belts. Our study deals with the Valdelsa basin, one of the wider basins of central Tuscany, Italy. The Valdelsa basin is located at the rear of the Northern Apennines, a collisional orogen whose late Neogene Quaternary development is alternatively attributed to extensional and compressional regimes. These contrasting interpretations mostly rely on different reconstructions of the tectono-sedimentary evolution of several basins formed at the rear of the chain since the late Tortonian. Here, we explore the detrital thermochronological-compositional signature of tectonic and surface processes during the Valdelsa basin development. For this aim, detrital apatite fission-track analysis of 21 sand samples from the latest Messinian Gelasian fluvial to shallow marine basin deposits, has been accompanied by a clast composition analysis of 7 representative outcrops of the conglomerate facies. The grain-age distributions of the sediment samples are generally characterized by two distinct components, one younger peak (P1) varying between 5.5 ± 2.8 and 9.5 ± 1.0 Ma and one older peak (P2) varying from 15.0 ± 8.0 to 41.0 ± 10 Ma. By comparison with some bedrock ages obtained from the E-NE basin shoulder, we attributed the P2 peak to the Ligurian Units and the P1 peak to the Macigno Formation (Tuscan Units). These units are arranged one upon the other in the complex nappe pile forming the Northern Apennines orogen. While the gravel composition indicates a predominant feeding from the Ligurian units all along the sedimentary succession with a subordinate occurrence of Macigno pebbles slightly increasing upsection, the P1 peak is present even in the oldest collected sandy sediments. The early P1 occurrence reveals that the Macigno was exposed in the E-NE basin shoulder since at least the latest Messinian-early Zanclean

  8. Sources and burial of organic carbon in the middle Okinawa Trough during late Quaternary paleoenvironmental change

    NASA Astrophysics Data System (ADS)

    Shao, Hebin; Yang, Shouye; Cai, Feng; Li, Chao; Liang, Jie; Li, Qing; Hyun, Sangmin; Kao, Shuh-Ji; Dou, Yanguang; Hu, Bangqi; Dong, Gang; Wang, Feng

    2016-12-01

    The sediments from a piston core ECS12A recovered from the middle Okinawa Trough in the East China Sea were measured for total organic carbon (TOC), total nitrogen (TN), and other biogenic elements to provide constraints on the sources and burial rates of depositional organic matter (OM) and on the changes in primary productivity since 19 ka. The last glacial sediments (ca. 17-19 ka) are characterized by low contents of biogenic elements and well-developed turbidite layers, suggesting low primary productivity but a high component of terrigenous sediment. With rising sea level and enhanced monsoons during the deglacial period, the proportion of marine OM gradually increased. The least negative δ13Corg values and the smallest grain size of sediments deposited ca. 10-14.5 ka indicate high primary productivity and a sedimentary environment dominated by the marine component. The source and burial rates of OM in the Holocene sediments (ca. 5.4-10 ka) were largely controlled by the intensification of the Kuroshio Current, which caused a slight decrease in primary productivity, but strengthened the oceanic circulation in the East China Sea. Overall, the source-to-sink process of OM in the Okinawa Trough is governed by complex interactions between sea level, climate and ocean circulation.

  9. Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice

    NASA Astrophysics Data System (ADS)

    Bronk Ramsey, Christopher; Albert, Paul G.; Blockley, Simon P. E.; Hardiman, Mark; Housley, Rupert A.; Lane, Christine S.; Lee, Sharen; Matthews, Ian P.; Smith, Victoria C.; Lowe, John J.

    2015-06-01

    The research project 'Response of Humans to Abrupt Environmental Transitions' (RESET) used tephra layers to tie together and synchronise the chronologies of stratigraphic records at archaeological and environmental sites. With the increasing importance of tephra as chronological markers in sedimentary sequences, both in this project and more generally, comes a requirement to have good estimates for the absolute age of these volcanic horizons. This paper summarises the chronology of the key tephra in the RESET tephra lattice in the time range 10-60 ka BP, from the existing literature, from papers produced as part of the RESET project, and reanalysis conducted for this paper. The paper outlines the chronological approach taken to the dating of tephra within the RESET project, and the basis for further work, as part of the INTIMATE (INTegrating Ice core MArine and TErrestrial records) initiative. For each of the tephra layers in the lattice, the existing literature is discussed and, where relevant date estimates updated using the latest radiocarbon calibration curves (IntCal13 and Marine13) and methods. Maps show the approximate extent of tephra finds, giving a visual indication of the coverage of the lattice in different time-periods.

  10. Morphology, acoustic characteristics, and Late Quaternary growth of conception Fan, Santa Barbara basin, California

    SciTech Connect

    Kraemer, S.M.C.

    1986-04-01

    A radial borderland-basin fan in the western half of the Santa Barbara basin, the Conception Fan, shows characteristics of a debris slope. More than 3000 mi of closely spaced (3.5 kHz) high-resolution profiles, 270 gravity cores, and 8 borings were used to map channel and fan morphology, and channel, levee, and lobe acoustic facies. Two major unconformities are recognized on the seismic profiles. The upper unconformity represents the 10-k.y.B.P. horizon. The lower unconformity is the erosional surface of the late Wisconsinan lowstand of sea level, 18-26 k.y.B.P. Eustasy and tectonism produced two pulses of deposition, each from a different point source, during the Flandrian transgression. Prior to the late Pleistocene, the Conception Fan was fed by one major canyon/channel system, above the western part of the fan. During the late Pleistocene, two small submarine canyons were cut into the slope 7 mi east. Four major channels, smaller than the western channel system, were incised into the fan surface, indicating the eustatic decrease in sediment input. The fault-controlled western canyon (Sacate) fed all but the eastern channel. Faulting and slumping on the slope cut the eastern canyon (Gaviota) and formed the eastern channel. Numerous slope gullies influenced eastern canyon and channel development. Holocene currents rounding Point Conception have winnowed fine sediments in the western channel region, resulting in hummocky topography and the scoured appearance of the channel. Hemipelagic deposition dominates the lower-middle and lower fan of the eastern part of the fan. The western part of the fan seems to be receiving slope-like deposits over the relict fan surface.

  11. Vegetation and climate variability in tropical and subtropical South America during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Behling, H.

    2013-05-01

    Detailed palynological studies from different ecosystems in tropical and subtropical South America reflect interesting vegetation and climate dynamics, in particular during glacial and late glacial times. Records from ecosystems such as the Amazon rainforest, savanna, Caatinga, Atlantic rainforest, Araucaria forest and grasslands provide interesting insight of past climate variability. The influence of events such as Dansgaard-Oeschger, Heinnrich stadials, changes in the thermohaline circulation (THC) will be discussed. In particular the Younger Dryas (YD) period shows at different places distinct vegetational changes, revealing unexpected past climatic conditions.

  12. Late Quaternary Offset of Alluvial Fan Surfaces along the Central Sierra Madre Fault, Southern California

    NASA Astrophysics Data System (ADS)

    Hanson, A.; Burgette, R. J.; Scharer, K. M.; Midttun, N. C.

    2015-12-01

    The Sierra Madre fault (SMF) is an east-west trending reverse fault system along the southern flank of the San Gabriel Mountains near Los Angeles, California. The ~140 km long SMF is separated into four segments, we focus on the multi-stranded, ~60 km long Central Sierra Madre fault (CSMF; W118.3-W117.7) as it lacks a well-characterized long-term geologic slip rate. We combine 1-m lidar DEM with geologic and geomorphic mapping to correlate alluvial fan surfaces along strike and across the fault strands in order to derive fault slip rates that cross the CSMF. We have refined mapping on two sets of terraces described by Crook et al. (1987) and references therein: a flight of Q3 surfaces (after nomenclature of Crook et al., 1987; McFadden, 1982) in Arroyo Seco with distinct terraces ~30 m, ~40 m, ~50 m, and ~55 m above the modern stream and in Pickens Canyon divided a Q3 and Q2 surface, with heights that are ~35 m and ~25 m above the modern stream respectively. Relative degree of clast weathering and soil development is consistent with geomorphic relationships; for example, hues of 7.5 YR to 10 YR are typical of Q3, while hues of 10 YR to 2.5 Y are typical of Q2. A scarp in the Q3 surface at Arroyo Seco has a vertical offset of ~16 m and a scarp in the Q3 at Pickens Canyon has a vertical offset of ~14 m, while the Q2 surface is not faulted. Our Quaternary dating strategy is focused on dating suites of terraces offset along CSMF scarps in order to provide broader stratigraphic context for the cosmogenic radionuclide and luminescence dating. We will present (pending) cosmogenic radionuclide depth profiles from the Q3 surfaces. A better-constrained slip rate for the CSMF will improve earthquake hazard assessment for the Los Angeles area and help clarify the tectonic role of the SMF in the broader plate boundary system. Additionally, the fan chronology will provide information about the timing of alluvial fan aggradation and incision in the western Transverse Ranges.

  13. Changes of the deep circulation and erosional inputs in the Labrador Sea over the late Quaternary

    NASA Astrophysics Data System (ADS)

    Filippova, A.; Frank, M.; Kienast, M.; Hillarie-Marcel, C.

    2013-12-01

    The formation of Labrador Sea Water has been one of the main contributors to the Atlantic thermohaline circulation influences the strength of NADW formation. In addition, the Labrador Sea has received weathering inputs of highly variable strength and sources. A high resolution downcore record recovered from south of Greenland (core MD99-2227) together with surface sediment samples from western part of Labrador Sea provides detailed information on deep sea and surface water circulation and through the Latest Quaternary. Radiogenic Nd, Pb and Hf isotopes are used as proxies for changes in water mass mixing and weathering inputs. Nd isotope data produced by leaching early sedimentary ferromanganese coatings reflect seawater compositions and show a pronounced trend towards less radiogenic values from the LGM to 12 kyr and then became less radiogenic again through the Holocene, which was most likely either linked to enhanced erosional input in the course of the retreat of the Laurentide Ice sheet or indicates enhanced contributions of a highly unradiogenic water mass such as Labrador Sea Water or diminished contributions of radiogenic Denmark Strait Overflow water. A major change in isotopic composition at 12 kyr towards more radiogenic isotope compositions is also observed in the leached 208,207,206Pb/204Pb data. Most notably, there was a pronounced change in the Pb isotope compositions at 8 kyr as well, which is not reflected by Nd or Hf isotope data and which reflects a major change in source provenance of the weathering inputs, most likely linked to the 8.2 kyr event, during which glacially dammed lakes Agassiz and Ojibway rapidly drained into the North Atlantic. This interpretation will be compared to the evidence from the radiogenic isotope evolution of the detrital fraction and of the clays. In contrast, with time leached Hf isotope data appear to be too radiogenic for Labrador Seawater but also show a marked unradiogenic peak at 12 kyr pointing to a strong

  14. Detrital cave sediments record Late Quaternary hydrologic and climatic variability in northwestern Florida, USA

    NASA Astrophysics Data System (ADS)

    Winkler, Tyler S.; van Hengstum, Peter J.; Horgan, Meghan C.; Donnelly, Jeffrey P.; Reibenspies, Joseph H.

    2016-04-01

    of enhanced limestone dissolution and cave formation (speleogenesis) during lower paleo water levels. Further work is still required to (a) determine whether precipitation of the ferromanganese deposits is inorganically or biologically mediated, (b) temporally constrain the emplacement history of the primary sedimentary styles, and (c) determine the full geographic extent of these sedimentary signals. However, these preliminary observations suggest that sedimentation in the inland underwater caves of northwestern Florida is related to Quaternary-scale hydrographic variability in the Apalachicola River drainage basin in response to broader ocean and atmospheric forcing.

  15. Late Quaternary Paleoenvironmental History of the Peru-Chile Current System and Adjacent Continental Chile

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Hebbeln, D.; Kaiser, J.; Mohtadi, M.; Ninnemann, U.

    2004-12-01

    A combined analysis of terrigenous and biogenic compounds in marine sediments from the Chilean continental margin allows detailed reconstructions of the paleoclimatic and paleoceanographic history of this region during the last ca. 120,000 years. Based on several sediment cores recovered during two German cruises and ODP Leg 202 (Site 1233), we found evidence for changes both in continental rainfall, most likely induced by latitudinal shifts of the Southern Westerlies, and marine productivity as well as sea surface temperature and salinity changes within the Peru-Chile Current system on time scales ranging from Milankovitch to centennial-scale. On Milankovitch time-scales, we found strong evidence for precession-controlled shifts of the Southern Westerlies implying for example generally more humid conditions during the LGM and a trend towards more arid climates during the deglaciation culminating in the early Holocene. These shifts are paralleled by paleoceanographic changes indicating generally higher productivity during the LGM mainly caused by increased advection of nutrients from the south through an enhanced Peru-Chile current. North of 33°S, these general productivity patterns are complicated by additional impacts from the tropics resulting in maximum paleoproductivity during the deglaciation and prior to the LGM. On shorter time-scales, extremely high resolution sediment cores from the southern Chilean margin provide evidence of significant short-term Holocene climate variability with bands of variability centred at ca. 900 and 1500 years, periodicities also well known from Northern Hemisphere records. Recently drilled ODP Site 1233 allowed to prolong these records into the last glacial. The available data show millennial-scale SST changes that closely follow the temperature pattern known from Antarctic ice-cores. Including other records from the Southern Hemisphere mid-latitudes, our data suggest a quasi-hemisphere-wide response that is consistent with the

  16. A late Quaternary multiple paleovalley system from the Adriatic coastal plain (Biferno River, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Amorosi, Alessandro; Bracone, Vito; Campo, Bruno; D'Amico, Carmine; Rossi, Veronica; Rosskopf, Carmen M.

    2016-02-01

    A buried paleovalley system, up to 2 km wide and exceeding 50 m in relief, made up of multiple cross-cutting depressions incised into the Lower Pleistocene bedrock, is reported from the central Adriatic coastal plain at the mouth of Biferno River. Through a multi-proxy approach that included geomorphological, stratigraphic, sedimentological and paleontological (benthic foraminifers, ostracods and molluscs) investigations, the facies architecture of distinct, superposed valley fills is reconstructed and their relative chronology established along a transverse profile with extremely high data density (average borehole spacing 75 m). Regional tectonic uplift appears as the major controlling factor of initial (Middle Pleistocene) river down-cutting and paleovalley formation. In contrast, glacio-eustatic fluctuations drove fluvial-system response over the last 120 ky, when valley incision was primarily induced by the last glacial base-level lowering and climatic forcing. A fragmented record of coastal and shallow-marine deposits is available for the lower paleovalley fill, which is penetrated by a limited borehole dataset. Multiple erosion phases probably related to the post-MIS 5e sea-level fall are reconstructed from the upper paleovalley fill, where a buried fluvial terrace succession is identified a few tens of meters below the ground surface. The flat surfaces of two buried fluvial terraces suggest longer-term, stepped relative sea-level fall, and are correlated with fluvial incisions that took place possibly at the MIS 5/4 transition and at the MIS 3/2 transition, respectively. A laterally extensive gravel body developed on the valley floor during the Last Glacial Maximum. During the ensuing latest Pleistocene-early Holocene sea-level rise the Biferno paleovalley was transformed into an estuary. Upstream from the maximum shoreline ingression, the vertical succession of well-drained floodplain, poorly-drained floodplain, and swamp deposits evidences increasing

  17. Age estimates and uplift rates for late Pleistocene marine terraces: Southern Oregon portion of the Cascadia forearc

    SciTech Connect

    Muhs, D.R.; Whelan, J.F. ); Kelsey, H.M.; McInelly, G.W. ); Miller, G.H. ); Kennedy, G.L. )

    1990-05-10

    Interest in the Cascadia subduction zone has increased because recent investigations have suggested that slip along plates at certain types of convergent margins is characteristically accompanied by large earthquakes. In addition, other investigations have suggested that convergent margins can be broadly classified by the magnitude of their uplift rates. The authors generated new uranium series, amino acid, and stable isotope data for southern Oregon marine terrace fossils. These data, along with terrace elevations and two alternative estimates of sea level at the time of terrace formation, allow one to determine terrace ages and uplift rates. Uranium series analysis of fossil coral yields an age of 83 {plus minus} 5 ka for the Whisky Run terrace at Coquille Point in Bandon, Oregon. A combination of amino acid and oxygen isotope data suggest ages of about 80 and 105 ka for the lowest two terraces at Cape Blanco. These ages indicate uplift rates of 0.45-1.05 and 0.81-1.49 m/kyr for Coquille Point and Cape Blanco, respectively. In order to assess the utility of the southern Oregon uplift rates for predicting the behavior of the Cascadia subduction zone, the authors compared late Quaternary uplift rates derived from terrace data from subduction zones around the world. On the basis of this comparison the southern Oregon rates of vertical deformation are not usually high or low. Furthermore, late Quaternary uplift rates show little relationship to the type of convergent margin. In the case of the southern Oregon coast, variability in uplift rate probably reflects local structures in the overriding plate, and the rate of uplift cannot be used as a simple index of the potential for great earthquakes along the southern Cascadia subduction zone.

  18. Late Quaternary paleoclimate of western Alaska inferred from fossil chironomids and its relation to vegetation histories

    USGS Publications Warehouse

    Kurek, Joshua; Cwynar, Les C.; Ager, Thomas A.; Abbott, Mark B.; Edwards, Mary E.

    2009-01-01

    Fossil Chironomidae assemblages (with a few Chaoboridae and Ceratopogonidae) from Zagoskin and Burial Lakes in western Alaska provide quantitative reconstructions of mean July air temperatures for periods of the late-middle Wisconsin (~39,000-34,000 cal yr B.P.) to the present. Inferred temperatures are compared with previously analyzed pollen data from each site summarized here by indirect ordination. Paleotemperature trends reveal substantial differences in the timing of climatic warming following the late Wisconsin at each site, although chronological uncertainty exists. Zagoskin Lake shows early warming beginning at about 21,000 cal yr B.P., whereas warming at Burial Lake begins ~4000 years later. Summer climates during the last glacial maximum (LGM) were on average ~3.5C° below the modern temperatures at each site. Major shifts in vegetation occurred from ~19,000 to 10,000 cal yr B.P. at Zagoskin Lake and from ~17,000 to 10,000 cal yr B.P. at Burial Lake. Vegetation shifts followed climatic warming, when temperatures neared modern values. Both sites provide evidence of an early postglacial thermal maximum at ~12,300 cal yr B.P. These chironomid records, combined with other insect-based climatic reconstructions from Beringia, indicate that during the LGM: (1) greater continentality likely influenced regions adjacent to the Bering Land Bridge and (2) summer climates were, at times, not dominated by severe cold.

  19. Late Quaternary climate history of the Horton Plains, central Sri Lanka

    NASA Astrophysics Data System (ADS)

    Premathilake, Rathnasiri; Risberg, Jan

    2003-06-01

    A 6 m long core was retrieved from a mire at ca 2200 m a.s.l. in the Horton Plains National Park, central Sri Lanka. The material collected consists of a mixture of organic matter and clastic particles, which have been subject to bio-, litho- and chronostratigraphic analyses. The pollen spectra suggest semi-arid conditions and a relatively species-poor plant community from >24,000 until 18,500 cal yr BP associated with a weaker South West Monsoon (SWM). During the late Pleistocene, the climate was fluctuating between relatively dry and humid conditions as the result of changes in the monsoonal regime. The onset of the moonson caused a semi-humid climate resulting in an expansion of the Upper Montane Rain Forest (UMRF). The strengthening of the SWM was interrupted by two relatively dry climatic events, each lasting ca 2000 years. The early Holocene was characterised by a per-humid event followed by a hyper-humid event, both influenced by a further strengthening of the SWM due to the orbitally induced maximum increment of summer insolation. The middle Holocene was marked by a trend towards semi-arid climatic conditions. During the late Holocene, the SWM rains strengthened again.

  20. Late Quaternary Climate and Vegetation of the Sudanian Zone of Northeast Nigeria

    NASA Astrophysics Data System (ADS)

    Salzmann, Ulrich; Hoelzmann, Philipp; Morczinek, Irena

    2002-07-01

    The Lake Tilla crater lake in northeastern Nigeria (10°23'N, 12°08'E) provides a ca. 17,000 14C yr multiproxy record of the environmental history of a Sudanian savanna in West Africa. Evaluation of pollen, diatoms, and sedimentary geochemistry from cores suggests that dry climatic conditions prevailed throughout the late Pleistocene. Before the onset of the Holocene, the slow rise in lake levels was interrupted by a distinct dry event between ca. 10,900 and 10,500 14C yr B.P., which may coincide with the Younger Dryas episode. The onset of the Holocene is marked by an abrupt increase in lake levels and a subsequent spread of Guinean and Sudanian tree taxa into the open grass savanna that predominated throughout the Late Pleistocene. The dominance of the mountain olive Olea hochstetteri suggests cool climatic conditions prior to ca. 8600 14C yr B.P. The early to mid-Holocene humid period culminated between ca. 8500 and 7000 14C yr B.P. with the establishment of a dense Guinean savanna during high lake levels. Frequent fires were important in promoting the open character of the vegetation. The palynological and palaeolimnological data demonstrate that the humid period terminated after ca. 7000 14C yr B.P. in a gradual decline of the precipitation/evaporation ratio and was not interrupted by abrupt climatic events. The aridification trend intensified after ca. 3800 14C yr B.P. and continued until the present.

  1. Late Tertiary and Quaternary landscape development in the western Grand Canyon and western Arizona strip

    SciTech Connect

    Billingsley, G.H. ); Wenrich, K.J. . Federal Center); Blackerby, B. )

    1993-04-01

    New geologic mapping of the western Grand Canyon and the Arizona Strip region, northwest Arizona, reveals young fault scarps on all faults, horsts, and graben structures. Tectonic activity here was previously thought to be at least Miocene age and older. New K-Ar age data for basalt flows in this region provide a basis for determining the age of surficial deposits in relation to elevated structural landforms. The basalts range in age from middle Miocene to late Pleistocene (17 Ma to 0.14 Ma). The Miocene basalts are found in the western Grand Canyon area and are progressively younger in a northeast direction onto the Shivwits and Uinkaret Plateaus, a distance of about 100 km. The older basalts are generally petrographically and chemically distinct from younger basalts. Those younger than one million years have less olivine and are chemically more iron- and titanium-rich suggesting they are from less primitive magmas. Basalt flows in this region older than 1 million years, are cut by faults showing equal displacement of the underlying strata and the flows. Basalt flows younger than 1 million years show offsets as much as 12 to 100 m, less than two-thirds the offset of underlying strata, implying that most tectonic activity occurred within the last 1 to 2 million years. Late Pliocene and Pleistocene faulting has extensively modified the landscape by elevated parts of the terrain resulting in young surficial deposits in lowland areas and rejuvenation of drainages in upthrown fault blocks.

  2. Origin of late Quaternary dune fields on the Southern High Plains of Texas and New Mexico

    USGS Publications Warehouse

    Muhs, D.R.; Holliday, V.T.

    2001-01-01

    Mostly stabilized late Holocene eolian sands on the Southern High Plains of the United States were studied to determine their origins and to assess whether present dune stability depends more strongly on sediment supply, sediment availability, or transport limitations. Geomorphic, sedimentological, and geochemical trends indicate that late Holocene dunes formed under westerly paleowinds, broadly similar to those of today. Mineralogical and geochemical data indicate that the most likely source for the sands is not the Pecos River valley, but the Pleistocene Blackwater Draw Formation, an older, extensive eolian deposit in the region. These observations suggest that new sand is supplied whenever vegetation cover is diminished to the extent that the Blackwater Draw Formation can be eroded, in agreement with modern observations of wind erosion in the region. We conclude, therefore, that Southern High Plains dunes are stabilized primarily due to a vegetation cover. The dunes are thus sediment-availability limited. This conclusion is consistent with the observation that, in the warmest, driest part of the region (where vegetation cover is minimal), dunes are currently active over a large area. Geochemical data indicate that Southern High Plains dunes are the most mineralogically mature (quartz rich) sands yet studied in the Great Plains, which suggests a long history of eolian activity, either in the dune fields or during deposition of the Blackwater Draw Formation.

  3. Paleoclimatic significance of Late Quaternary eolian deposition on the Piedmont and High Plains, Central United States

    NASA Astrophysics Data System (ADS)

    Forman, Steven L.; Oglesby, Robert; Markgraf, Vera; Stafford, Thomas

    1995-06-01

    Presently stabilized dune systems on the piedmont of eastern Colorado and adjacent High Plains have been repeatedly re-activated during the past 20,000 years. Radiocarbon and thermoluminescence age estimates indicate eolian activity late in the last glacial cycle ca. 20,000-12,000 yr B.P. and subsequent episodes of dune reactivation at ca. 6000, 4500 and 1000 yr B.P. Pollen analysis from aggraded buried soil A horizons show a shift from grasses and shrubs to goosefoot, a disturbance indicator. The association of maximum goosefoot levels with the coarsest part of the buried A horizon immediately prior to burial by eolian sand indicates a substantial reduction in grass and dominance of shrubs with onset of eolian activity. The vegetation change and eolian depositional sequence indicates a reduction in plant coverage with regional drought, possibly augmented by bison grazing and surface heating effects. We infer an increase in summer monsoonal precipitation between 13,000 and 9000 yr B.P. reflecting a heightened land-to-sea temperature gradient associated with rising summer solar-insolation values and a meltwater cooled Gulf of Mexico. Dune reactivation in the middle and late Holocene appears to be independent of summer insolation values, but rather reflects a small (< 10°) easterly shift of the Bermuda High and western ridge aloft, difficult parameters to link to a cause and to resolve with climate models.

  4. Late Quaternary evolution of channel and lobe complexes of Monterey Fan

    USGS Publications Warehouse

    Fildani, Andrea; Normark, William R.

    2004-01-01

    The modern Monterey submarine fan, one of the largest deep-water deposits off the western US, is composed of two major turbidite systems: the Neogene Lower Turbidite System (LTS) and the late Quarternary Upper Turbidite System (UTS). The areally extensive LTS is a distal deposit with low-relief, poorly defined channels, overbank, and lower-fan elements. The younger UTS comprises almost half of the total fan volume and was initiated in the late Pleistocene from canyons in the Monterey Bay area. Rapidly prograding high-relief, channel-levee complexes dominated deposition early in the UTS with periodic avulsion events. In the last few 100 ka, much of the sediment bypassed the northern fan as a result of allocyclic controls, and deposition is simultaneously occuring on a sandy lobe with low-relief channels and on an adjacent detached muddier lobe built from reconfinement of overbank flow from the northern high-relief channels. During the relatively short-lived UTS deposition, at least seven different channel types and two lobe types were formed. This study provides a significant reinterpretation of the depositional history of Monterey Fan by incorporating all available unpublished geophysical data.

  5. Late quaternary regional geoarchaeology of Southeast Alaska Karst: A progress report

    USGS Publications Warehouse

    Dixon, E.J.; Heaton, T.H.; Fifield, T.E.; Hamilton, T.D.; Putnam, D.E.; Grady, F.

    1997-01-01

    Karst systems, sea caves, and rock shelters within the coastal temperate rain forest of Alaska's Alexander Archipelago preserve important records of regional archaeology, sea level history, glacial and climatic history, and vertebrate paleontology. Two 14C AMS dates on human bone discovered in a remote cave (49-PET-408) on Prince of Wales Island document the oldest reliably dated human in Alaska to ca. 9800 B.P. A series of 14C AMS dates from cave deposits span the past 40,000 years and provide the first evidence of Pleistocene faunas from the northwest coast of North America. Other discoveries include sea caves and marine beach deposits elevated above modern sea level, extensive solution caves, and mammalian remains of species previously undocumented within the region. Records of human activity, including cave art, artifacts, and habitation sites may provide new insights into the early human colonization of the Americas. ??1997 John Wiley & Sons, Inc.

  6. Alluvial evidence for major climate and flow regime changes during the middle and late Quaternary in eastern central Australia

    NASA Astrophysics Data System (ADS)

    Nanson, Gerald C.; Price, David M.; Jones, Brian G.; Maroulis, Jerry C.; Coleman, Maria; Bowman, Hugo; Cohen, Timothy J.; Pietsch, Timothy J.; Larsen, Joshua R.

    2008-10-01

    As a low-gradient arid region spanning the tropics to the temperate zone, the Lake Eyre basin has undergone gentle late Cenozoic crustal warping leading to substantial alluvial deposition, thereby forming repositories of evidence for palaeoclimatic and palaeohydrological changes from the Late Tertiary to the Holocene. Auger holes and bank exposures at five locations along the lower 500 km of Cooper Creek, a major contributor to Lake Eyre in the eastern part of the basin, yielded 85 luminescence dates (TL and OSL) that, combined wit a further 142 luminescence dates from northeastern Australia, have established a chronology of multiple episodes of enhanced flow regime from about 750 ka to the Holocene. Mean bankfull discharges on Cooper Creek upstream of the Innamincka Dome at 250-230 ka or oxygen isotope stages (OIS) 7-6 are estimated to have been 5 to 7 times larger than those of today, however, substantially less reworking has occurred during and after OIS 5 than before. Lower Cooper Creek appears to have similarly declined. In the Tirari Desert adjacent to Lake Eyre there is evidence of widespread alluvial activity, perhaps during but certainly before the Middle Pleistocene, yet the river became laterally restricted in OIS 7 to 5. While the Quaternary has been characterised by a dramatically oscillating wet-dry climate, since oxygen isotope stage OIS 7 or 6 there has been a general decline in the magnitude of the episodes of wetness to which the eastern part of central Australia has periodically returned. During the last full glacial cycle, Cooper Creek's periods of greatest runoff and sand transport were not during the last interglacial maximum of OIS 5e (132-122 ka) but later in OIS 5 when sea levels and global temperatures were substantially below those of 5e or today. Fluvial activity returned in OIS 4 and 3, but not to the extent of mid and late OIS 5; strongly seasonal but still powerful flows transported sand and fed source-bordering dunes in OIS 5 and 3

  7. Climate-Induced Dynamics of Periglacial Landscapes in NE Siberia: The Western Edge of Beringia During the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Grosse, G.; Schirrmeister, L.; Siegert, C.; Meyer, H.; Andreev, A. A.; Kunitsky, V. V.; Derevyagin, A. Y.; Hubberten, H.

    2006-12-01

    Periglacial landscape dynamics have direct impacts on energy and matter cycles as well as ecosystems in large parts of the Arctic. Over the last decade, modern processes and past environments of periglacial landscapes in the Laptev Sea coastal lowlands were intensively studied within Russian and joint German- Russian research projects. A variety of palaeo-environmental records exists now for assessing the Late Quaternary dynamics of permafrost-dominated landscapes of this westernmost edge of Beringia. The main focus of this presentation is on the spatial and temporal dimensions of regional landscape changes in the Laptev Sea region induced by climatic change, especially by Holocene climate warming. For this purpose, we combine a variety of palaeo-environmental studies with remote sensing, terrain modelling, and GIS-based analyses of the modern landscape composition. We assess the landscape dynamics at the study site level and then draw conclusions for the whole region. Due to the low global sea level during the Late Weichselian cold stage, the Laptev Sea lowlands extended far on the shelf forming part of the unique continental environment of Western Beringia. The special periglacial environmental conditions of this period are recorded in frozen sediment sequences with palaeo-proxies ranging from lithology, ground ice, plant and animal fossils, to geomorphology. The Late Weichselian depositional environment there was characterized by ice-rich permafrost deposits (so-called Yedoma or Ice Complex formation) with up to 75 wt% absolute ice content. The Yedoma accumulated in lowland plains with polygonal tundra surrounding bedrock hills and mountain ridges. Additionally, the tundra plains were segmented by large river systems depositing fluvial sandy sediments. Major environmental changes affecting hydrology, geocryology, accumulation, and ecosystems in the region took place during the climate warming at the Late-Glacial Holocene transition. Within a short period in the

  8. Paleogeography, glacially induced crustal displacement, and Late Quaternary coastlines on the continental shelf of British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Hetherington, Renée; Barrie, J. Vaughn; Reid, Robert G. B.; MacLeod, Roger; Smith, Dan J.

    2004-02-01

    Subsequent to the Last Glacial Maximum (LGM), complex isostatic adjustments resulted from deglaciation, eustatic sea level change, tectonic faulting, and a relatively thin, flexible lithosphere in the Queen Charlotte Islands (QCI) region. A geostatistical interpolation model charts the sequence of evolving landscapes and displays temporal changes in the magnitudes and extent of crustal flexure that accompanied forebulge development on the Late Quaternary northeast Pacific continental shelf between 14.2 and 8.7 ka BP. Wavelength and forebulge amplitude are consistent with thermal modeling implying low upper mantle viscosity and thin elastic lithospheric thickness beneath Queen Charlotte (QC) Sound and Hecate Strait. Glacial ice ˜690 m thick began retreating from Dixon Entrance after 14.5 ka BP ( 14C years ago) and prior to 12.6 ka BP, permitting over 100 m of crustal uplift in northern Hecate Strait. A forebulge persisted in Hecate Strait and QC Sound from 13.2 until after 9.7 ka BP, implying fixed glacial ice on the British Columbia (BC) mainland until ˜10 ka BP. Paleogeographic reconstructions show two emergent ice-free terrains, one extending eastward from the QCI and the other in QC Sound. By ˜11.7 ka BP, a landbridge connected the BC mainland and the QCI.

  9. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America

    PubMed Central

    Barnosky, Anthony D.; Lindsey, Emily L.; Villavicencio, Natalia A.; Bostelmann, Enrique; Hadly, Elizabeth A.; Wanket, James; Marshall, Charles R.

    2016-01-01

    Loss of megafauna, an aspect of defaunation, can precipitate many ecological changes over short time scales. We examine whether megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We compare ecological impacts of late-Quaternary megafauna extinction in five American regions: southwestern Patagonia, the Pampas, northeastern United States, northwestern United States, and Beringia. We find that major ecological state shifts were consistent with expectations of defaunation in North American sites but not in South American ones. The differential responses highlight two factors necessary for defaunation to trigger lasting ecological state shifts discernable in the fossil record: (i) lost megafauna need to have been effective ecosystem engineers, like proboscideans; and (ii) historical contingencies must have provided the ecosystem with plant species likely to respond to megafaunal loss. These findings help in identifying modern ecosystems that are most at risk for disappearing should current pressures on the ecosystems’ large animals continue and highlight the critical role of both individual species ecologies and ecosystem context in predicting the lasting impacts of defaunation currently underway. PMID:26504219

  10. Late Quaternary alluvial stratigraphy of Whitewater Draw, Arizona: Implications for regional correlation of fluvial deposits in the American Southwest

    NASA Astrophysics Data System (ADS)

    Waters, Michael R.

    1985-10-01

    The alluvial history of Whitewater Draw, an arroyo in the Sulphur Springs Valley, southeastern Arizona, is characterized by numerous degradational and aggradational events. Shifts in climate appear to be responsible for the major changes in depositional environments recognized in Whitewater Draw over the past 15 000 yr. However, the degradation and aggradation documented during apparently stable climatic periods were primarily controlled by geomorphic parameters. Comparison between the alluvial records of arroyos in the adjacent upper San Pedro Valley and Whitewater Draw shows that periods of degradation and aggradation were out of phase in number, character, and timing. These differences indicate that the fluvial systems in the Sulphur Springs Valley and the San Pedro Valley responded differently to external climate shifts and that both systems were influenced by local geomorphic parameters. This demonstrates that regional correlation of late Quaternary deposits from one valley to the next should not be attempted without absolute temporal control and that intervalley correlations must take into consideration the complexity of fluvial processes.

  11. Response of surface processes to climatic change in the dunefields and Loess Plateau of North China during the late Quaternary

    USGS Publications Warehouse

    Lu, H.; Mason, J.A.; Stevens, T.; Zhou, Y.; Yi, S.; Miao, X.

    2011-01-01

    This paper draws on recent optically stimulated luminescence (OSL) dating to evaluate the long-held assumption that dust accumulation rates in the Loess Plateau and the extent of active aeolian sand in the dunefields to the north have varied together over time, because both are controlled by the strength of the Asian monsoons and also possibly because the dunefields are proximal loess sources. The results show there is little evidence that high rates of loess accumulation coincided with well-dated episodes of extensive dune activity in the Mu Us, Otindag, and Horqin dunefields, at 11-8ka and 1-0ka. Explanations for the apparent lack of coupling include local variation in the trapping of dust and post-depositional preservation of the loess and dune sediments, in response to varying local environmental conditions. In addition, a substantial portion of the loess may be transported directly from source areas where dust emission has somewhat different climatic and geomorphic controls than aeolian sand activity within the dunefields. The results of this study cast doubt on the use of loess accumulation rate as a palaeoclimatic proxy at millennial timescale. The dunefield and loess stratigraphic records are interpreted as primarily recording changes in effective moisture at a local scale, but the timing of late Quaternary dune activity, along with a variety of other evidence, indicates that moisture changes in many of the drylands of northern China may not be in phase with precipitation in core regions of the Asian monsoons. ?? 2011 John Wiley & Sons, Ltd.

  12. Radiocarbon dating of individual lignin phenols: a new approach for establishing chronology of late quaternary lake sediments.

    PubMed

    Hou, Juzhi; Huang, Yongsong; Brodsky, Corynn; Alexandre, Marcelo R; McNichol, Ann P; King, John W; Hu, Feng Sheng; Shen, Ji

    2010-09-01

    The reliability of chronology is a prerequisite for meaningful paleoclimate reconstructions from sedimentary archives. The conventional approach of radiocarbon dating bulk organic carbon in lake sediments is often hampered by the old carbon effect, i.e., the assimilation of ancient dissolved inorganic carbon (DIC) derived from carbonate bedrocks or other sources. Therefore, radiocarbon dating is ideally performed on organic compounds derived from land plants that use atmospheric CO(2) and rapidly delivered to sediments. We demonstrate that lignin phenols isolated from lake sediments using reversed phase high performance liquid chromatography (HPLC) can serve as effective (14)C dating materials for establishing chronology during the late Quaternary. We developed a procedure to purify lignin phenols, building upon a published method. By isolating lignin from standard wood reference substances, we show that our method yields pure lignin phenols and consistent ages as the consensus ages and that our procedure does not introduce radiocarbon contamination. We further demonstrate that lignin phenol ages are compatible with varve counted and macrofossil dated sediment horizons in Steel Lake and Fayetteville Green Lake. Applying the new method to lake sediment cores from Lake Qinghai demonstrates that lignin phenol ages in Lake Qinghai are consistently younger than bulk total organic carbon (TOC) ages which are contaminated by old carbon effect. We also show that the age offset between lignin and bulk organic carbon differs at different Lake Qinghai sedimentary horizons, suggesting a variable hard water effect at different times and that a uniform age correction throughout the core is inappropriate.

  13. Differences in Late Quaternary primary productivity between the western tropical Pacific and the South China Sea: Evidence from coccoliths

    NASA Astrophysics Data System (ADS)

    Su, Xiang; Liu, Chuanlian; Beaufort, Luc; Barbarin, Nicolas; Jian, Zhimin

    2015-12-01

    Changes in Late Quaternary oceanic primary productivity in the western tropical Pacific were reconstructed using coccolith counts from the improved SYRACO system in piston core MD01-2386 retrieved from the Halmahera Sea near northwest New Guinea. The calculated primary productivity exhibits cycles on obliquity and precession timescales over the last 192 ka. There are marked differences between primary productivity records from the western tropical Pacific and the South China Sea (SCS), with the former being dominated by precession, and the latter showing all three Milankovitch cycles (eccentricity, obliquity and precession). Empirical Orthogonal Function (EOF) analyses reveal two significant EOF modes in the western tropical Pacific and SCS records. EOF-1 accounts for 38% of the total variance and exhibits obvious precessional cycles corresponding to Northern Hemisphere summer insolation, while EOF-2 accounts for 22% of the total variance and exhibits strong 41-kyr periodicity, suggesting different biological responses to hydroclimate changes in the two regions. A more complex hydroclimate regime influenced by the East Asian monsoon and the large contrast in regional topography and circulation during glacial cycles are considered to be the primary drivers of the stronger temporal variability in productivity in the SCS compared to the relatively stable western tropical Pacific.

  14. Late Quaternary environmental and landscape dynamics revealed by a pingo sequence on the northern Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Grosse, Guido; Schirrmeister, Lutz; Andreev, Andrei A.; Bobrov, Anatoly A.; Kienast, Frank; Bigelow, Nancy H.; Edwards, Mary E.

    2012-04-01

    A terrestrial sediment sequence exposed in an eroding pingo provides insights into the late-Quaternary environmental history of the northern Seward Peninsula, Alaska. We have obtained the first radiocarbon-dated evidence for a mid-Wisconsin thermokarst lake, demonstrating that complex landscape dynamics involving cyclic permafrost aggradation and thermokarst lake formation occurred over stadial-interstadial as well as glacial-interglacial time periods. High values of Picea pollen and the presence of Larix pollen in sediments dated to 50-40 ka BP strongly suggest the presence of forest or woodland early in MIS 3; the trees grew within a vegetation matrix dominated by grass and sedge, and there is indirect evidence of grazing animals. Thus the interstadial ecosystem was different in structure and composition from the Holocene or from the preceding Last Interglacial period. An early Holocene warm period is indicated by renewed thermokarst lake formation and a range of fossil taxa. Multiple extralimital plant taxa suggest mean July temperatures above modern values. The local presence of spruce during the early Holocene warm interval is evident from a radiocarbon-dated spruce macrofossil remain and indicates significant range extension far beyond the modern tree line. The first direct evidence of spruce in Northwest Alaska during the early Holocene has implications for the presence of forest refugia in Central Beringia and previously assumed routes and timing of post-glacial forest expansion in Alaska.

  15. Reconstructing transport pathways for late Quaternary dust from eastern Australia using the composition of trace elements of long traveled dusts

    NASA Astrophysics Data System (ADS)

    Petherick, Lynda M.; McGowan, Hamish A.; Kamber, Balz S.

    2009-04-01

    The southeast Australian dust transport corridor is the principal pathway through which continental emissions of dust from central and eastern Australia are carried to the oceans by the prevailing mid-latitude westerly circulation. The analysis of trace elements of aeolian dust, preserved in lake sediment on North Stradbroke Island, southeast Queensland, is used to reconstruct variation in the intensity and position of dust transport to the island over the past 25,000 yrs. Separation of local and long traveled dust content of lake sediments is achieved using a unique, four-element (Ga, Ni, Tl and Sc) separation method. The local and continental chronologies of aeolian deposition developed by this study show markedly different records, and indicate varied responses to climate variability on North Stradbroke Island (local aeolian sediment component) and in eastern and central Australia (long traveled dust component). The provenance of the continental component of the record to sub-geologic catchment scales was accomplished using a ternary mixing model in which the chemical identification of dusts extracted, from the lake sediments, was compared to potential chemical characteristics of surface dust from the source areas using 16 trace elements. The results indicate that the position and intensity of dust transport pathways during the late Quaternary varied considerably in response to changing atmospheric circulation patterns as well as to variations in sediment supply to dust source areas, which include the large anabranching river systems of the Lake Eyre and Murray-Darling Basins.

  16. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America.

    PubMed

    Barnosky, Anthony D; Lindsey, Emily L; Villavicencio, Natalia A; Bostelmann, Enrique; Hadly, Elizabeth A; Wanket, James; Marshall, Charles R

    2016-01-26

    Loss of megafauna, an aspect of defaunation, can precipitate many ecological changes over short time scales. We examine whether megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We compare ecological impacts of late-Quaternary megafauna extinction in five American regions: southwestern Patagonia, the Pampas, northeastern United States, northwestern United States, and Beringia. We find that major ecological state shifts were consistent with expectations of defaunation in North American sites but not in South American ones. The differential responses highlight two factors necessary for defaunation to trigger lasting ecological state shifts discernable in the fossil record: (i) lost megafauna need to have been effective ecosystem engineers, like proboscideans; and (ii) historical contingencies must have provided the ecosystem with plant species likely to respond to megafaunal loss. These findings help in identifying modern ecosystems that are most at risk for disappearing should current pressures on the ecosystems' large animals continue and highlight the critical role of both individual species ecologies and ecosystem context in predicting the lasting impacts of defaunation currently underway.

  17. Late Quaternary Glacial Chronology in the Cordillera de Talamanca, Costa Rica, Investigated Using Cosmogenic Cl-36 Surface Exposure Dating

    NASA Astrophysics Data System (ADS)

    Li, Y.; Potter, R.; Horn, S.; Orvis, K. H.

    2015-12-01

    The role of the tropics in past and future climate change has garnered significant attention in recent decades, but debate still exists over climate linkages between the tropics and the middle and high latitudes. Glaciers in tropical mountains are highly sensitive indicators of climate, and glacial landforms left behind by past glacier fluctuations provide key evidence of paleoclimate trends and their forcing mechanisms. We investigated late Quaternary glacial chronology from two glaciated valleys on the Chirripó massif in the Cordillera de Talamanca, Costa Rica. Previous studies in this highland have constrained the most recent deglaciation to 12.4-9.7 ka cal BP based on radiocarbon dates on basal sediments of glacial lakes within the cirque at the head of the Morrenas Valley. However, no studies have been conducted to constrain the ages of the moraines located down valley. We dated the formation ages of these moraines in the Morrenas and Talari valleys using cosmogenic Cl-36 surface exposure dating. Our results indicate a major glacial event ~21-18 ka, broadly synchronous with the global Last Glacial Maximum (LGM). Glaciers during this period advanced 3.2-3.4 km down valley on both sides of the Chirripó massif. Our ages also suggest periods of glacial retreat or standstills ~18-10 ka before complete deglaciation of this highland ~10 ka. These results provide insight into the timing and extent of glacial events in this tropical highland that is of critical importance for reconstructing regional and global climate patterns.

  18. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America

    NASA Astrophysics Data System (ADS)

    Barnosky, Anthony D.; Lindsey, Emily L.; Villavicencio, Natalia A.; Bostelmann, Enrique; Hadly, Elizabeth A.; Wanket, James; Marshall, Charles R.

    2016-01-01

    Loss of megafauna, an aspect of defaunation, can precipitate many ecological changes over short time scales. We examine whether megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We compare ecological impacts of late-Quaternary megafauna extinction in five American regions: southwestern Patagonia, the Pampas, northeastern United States, northwestern United States, and Beringia. We find that major ecological state shifts were consistent with expectations of defaunation in North American sites but not in South American ones. The differential responses highlight two factors necessary for defaunation to trigger lasting ecological state shifts discernable in the fossil record: (i) lost megafauna need to have been effective ecosystem engineers, like proboscideans; and (ii) historical contingencies must have provided the ecosystem with plant species likely to respond to megafaunal loss. These findings help in identifying modern ecosystems that are most at risk for disappearing should current pressures on the ecosystems' large animals continue and highlight the critical role of both individual species ecologies and ecosystem context in predicting the lasting impacts of defaunation currently underway.

  19. Late Quaternary climatic events and sea-level changes recorded by turbidite activity, Dakar Canyon, NW Africa

    NASA Astrophysics Data System (ADS)

    Pierau, Roberto; Hanebuth, Till J. J.; Krastel, Sebastian; Henrich, Rüdiger

    2010-03-01

    The relationship of sea-level changes and short-term climatic changes with turbidite deposition is poorly documented, although the mechanisms of gravity-driven sediment transport in submarine canyons during sea-level changes have been reported from many regions. This study focuses on the activity of the Dakar Canyon off southern Senegal in response to major glacial/interglacial sea-level shifts and variability in the NW-African continental climate. The sedimentary record from the canyon allows us to determine the timing of turbidite events and, on the basis of XRF-scanning element data, we have identified the climate signal at a sub-millennial time scale from the surrounding hemipelagic sediments. Over the late Quaternary the highest frequency in turbidite activity in the Dakar Canyon is confined to major climatic terminations when remobilisation of sediments from the shelf was triggered by the eustatic sea-level rise. However, episodic turbidite events coincide with the timing of Heinrich events in the North Atlantic. During these times continental climate has changed rapidly, with evidence for higher dust supply over NW Africa which has fed turbidity currents. Increased aridity and enhanced wind strength in the southern Saharan-Sahelian zone may have provided a source for this dust.

  20. Response of bushy-tailed woodrats (Neotoma cinerea) to late Quaternary climatic change in the Colorado Plateau

    USGS Publications Warehouse

    Smith, F.A.; Betancourt, J.L.

    1998-01-01

    Temperature profoundly influences the physiology and life history characteristics of organisms, particularly in terms of body size. Because so many critical parameters scale with body mass, long-term temperature fluctuations can have dramatic impacts. We examined the response of a small mammalian herbivore, the bushy-tailed woodrat (Neotoma cinerea), to temperature change from 20 000 yr BP to present, at five sites within the Colorado Plateau. Our investigations focused on the relationship between temperature, plant composition and abundance, and woodrat size. Body size was estimated by measuring fossil fecal pellets, a technique validated in earlier work. We found significant and highly covariable patterns in body mass over the five locations, suggesting that responses to temperature fluctuations during the late Quaternary have been very similar. Although woodrat mass and the occurrence of several plant species in the fossil record were significantly correlated, in virtually all instances changes in woodrat size preceded changes in vegetational composition. These results may be due to the greater sensitivity of woodrats to temperature, or to the shorter generation times of woodrats as compared to most plants. An alternative hypothesis is that winter temperatures increased before summer ones. Woodrats are highly sensitive to warmer winters, whereas little response would be expected from forest/woodland plants growing at their lower limits. Our work suggests that woodrat size is a precise paleothermometer, yielding information about temperature variation over relatively short-term temporal and regional scales.

  1. Late Quaternary history of the Vakinankaratra volcanic field (central Madagascar): insights from luminescence dating of phreatomagmatic eruption deposits

    NASA Astrophysics Data System (ADS)

    Rufer, Daniel; Preusser, Frank; Schreurs, Guido; Gnos, Edwin; Berger, Alfons

    2014-05-01

    The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe-Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.

  2. Assessment of Late Quaternary strain partitioning in the Afar Triple Junction: Dobe and Hanle grabens, Ethiopia and Djibouti

    NASA Astrophysics Data System (ADS)

    Polun, S. G.; Stockman, M. B.; Hickcox, K.; Horrell, D.; Tesfaye, S.; Gomez, F. G.

    2015-12-01

    As the only subaerial exposure of a ridge - ridge - ridge triple junction, the Afar region of Ethiopia and Djibouti offers a rare opportunity to assess strain partitioning within this type of triple junction. Here, the plate boundaries do not link discretely, but rather the East African rift meets the Red Sea and Gulf of Aden rifts in a zone of diffuse normal faulting characterized by a lack of magmatic activity, referred to as the central Afar. An initial assessment of Late Quaternary strain partitioning is based on faulted landforms in the Dobe - Hanle graben system in Ethiopia and Djibouti. These two extensional basins are connected by an imbricated accommodation zone. Several fault scarps occur within terraces formed during the last highstand of Lake Dobe, around 5 ka - they provide a means of calibrating a numerical model of fault scarp degradation. Additional timing constraints will be provided by pending exposure ages. The spreading rates of both grabens are equivalent, however in Dobe graben, extension is partitioned 2:1 between northern, south dipping faults and the southern, north dipping fault. Extension in Hanle graben is primarily focused on the north dipping Hanle fault. On the north margin of Dobe graben, the boundary fault bifurcates, where the basin-bordering fault displays a significantly higher modeled uplift rate than the more distal fault, suggesting a basinward propagation of faulting. On the southern Dobe fault, surveyed fault scarps have ages ranging from 30 - 5 ka with uplift rates of 0.71, 0.47, and 0.68 mm/yr, suggesting no secular variation in slip rates from the late Plestocene through the Holocene. These rates are converted into horizontal stretching estimates, which are compared with regional strain estimated from velocities of relatively sparse GPS data.

  3. Late Quaternary faulting on the Manas and Hutubi reverse faults in the northern foreland basin of Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Gong, Zhijun; Li, Sheng-Hua; Li, Bo

    2015-08-01

    The Tian Shan Range lies in the actively deforming part of the India-Asia collision zone. In the northern foreland basin of Tian Shan, the strata were intensively deformed by Cenozoic folding and faulting. Slip rate studies along these faults are important for understanding the dynamics of crustal deformation and evaluating the seismic hazards in the region. Two reverse faults (the Manas and Hutubi faults) in the northern foreland basin were investigated. Due to past faulting events along these faults, the terrace treads along the Manas River were ruptured, forming fault scarps several meters in height. Loess deposits were trapped and preserved at the surface ruptures along these scarps. The thickness of the trapped loess is dependent on the size of the ruptures. The minimum and maximum ages of these scarps are constrained by dating the loess preserved at the surface ruptures and the terrace treads, respectively, using the quartz optically stimulated luminescence (OSL) dating technique. Our dating results suggest that the loess trapped at the ruptures was deposited from the early to mid-Holocene at the Hutubi Fault, and from the mid- to late-Holocene at the Manas Fault. The vertical displacements of the faults were evaluated by measuring the topographic profiles across the investigated fault scarps using the differential global position system (DGPS). Our results suggest that, during the late Quaternary in the studied region, the vertical slip rates of the Manas Fault were between ˜ 0.74 mm /yr and ˜ 1.6 mm /yr, while the Hutubi Fault had a much lower vertical slip rate between ˜ 0.34 mm /yr and ˜ 0.40 mm /yr. The tectonic implications of our results are discussed.

  4. Isotopic evidence for the diversity of late Quaternary loess in Nebraska: Glaciogenic and nonglaciogenic sources

    USGS Publications Warehouse

    Aleinikoff, John N.; Muhs, Daniel R.; Bettis, E. Arthur; Johnson, William C.; Fanning, C. Mark; Benton, Rachel

    2008-01-01

    Pb isotope compositions of detrital K-feldspars and U-Pb ages of detrital zircons are used as indicators for determining the sources of Peoria Loess deposited during the last glacial period (late Wisconsin, ca. 25–14 ka) in Nebraska and western Iowa. Our new data indicate that only loess adjacent to the Platte River has Pb isotopic characteristics suggesting derivation from this river. Most Peoria Loess in central Nebraska (up to 20 m thick) is non-glaciogenic, on the basis of Pb isotope ratios in K-feldspars and the presence of 34-Ma detrital zircons. These isotopic characteristics suggest derivation primarily from the Oligocene White River Group in southern South Dakota, western Nebraska, southeastern Wyoming, and northeastern Colorado. The occurrence of 10–25 Ma detrital zircons suggests additional minor contributions of silt from the Oligocene-Miocene Arikaree Group and Miocene Ogallala Group. Isotopic data from detrital K-feldspar and zircon grains from Peoria Loess deposits in eastern Nebraska and western Iowa suggest that the immediate source of this loess was alluvium of the Missouri River. We conclude that this silt probably is of glaciogenic origin, primarily derived from outwash from the western margin of the Laurentide Ice Sheet. Identification of the White River Group as the main provenance of Peoria Loess of central Nebraska and the Missouri River valley as the immediate source of western Iowa Peoria Loess indicates that paleowind directions during the late Wisconsin were primarily from the northwest and west, in agreement with earlier studies of particle size and loess thickness variation. In addition, the results are in agreement with recent simulations of non-glaciogenic dust sources from linked climate-vegetation modeling, suggesting dry, windy, and minimally vegetated areas in parts of the Great Plains during the last glacial period.

  5. The role of tectonics and climate in the late Quaternary evolution of a northern Amazonian River

    NASA Astrophysics Data System (ADS)

    Cremon, Édipo Henrique; Rossetti, Dilce de Fátima; Sawakuchi, André de Oliveira; Cohen, Marcelo Cancela Lisboa

    2016-10-01

    The Amazon basin has most of the largest rivers of the world. However, works focusing the geological evolution of the trunk river or its tributaries have been only partly approached. The Branco River constitutes one of the main northern Amazonian tributaries. A previous work proposed that, before flowing southward into the Negro-Amazon Rivers, the Branco River had a southwest to northeast course into the Caribbean Sea. The present work aimed to establish if the proposed change in the course of this river is supported by morphological and sedimentological data. Other goals were to discuss the factors influencing river development and establish its evolution over time within the chronological framework provided by radiocarbon and optically stimulated luminescence dating. The work considered the entire course of the Branco River downstream of the Precambrian Guiana Shield, where the river presumably did not exist in ancient times. The river valley is incised into fluvial sedimentary units displaying ages between 100 and 250 ky old, which record active and abandoned channels, crevasse splay/levees, and point bars. The sedimentary deposits in the valley include two alluvial plain units as old as 18.7 ky and which intersects a Late Pleistocene residual megafan. These characteristics suggest that a long segment of the Branco River was established only a few thousand years ago. Together with several structural anomalies, these data are consistent with a mega-capture at the middle reach of this river due to tectonic reactivation in the Late Pleistocene. This integrated approach can be applied to other Amazonian tributaries to unravel how and when the Amazonian drainage basin became established.

  6. Great Basin semi-arid woodland dynamics during the late quaternary

    SciTech Connect

    Wigand, P.E.; Hemphill, M.L.; Sharpe, S.E.

    1995-09-01

    Semi-arid woodlands have dominated the middle elevations of Great Basin mountain ranges during the Holocene where subalpine woodlands prevailed during the Pleistocene. Ancient woodrat middens, and in a few cases pollen records indicate in the late Pleistocene and early Holocene woodland history lowered elevation of subalpine woodland species. After a middle Holocene retrenchment at elevations in excess of 500 meters above today, Juniper-dominated semi-arid woodland reached its late Holocene maximum areal extent during the Neoglacial (2 to 4 ka). These records, along with others indicate contracting semi-arid woodland after the Neoglacial about 1.9 ka. Desert shrub community expansion coupled with increased precariousness of wetland areas in the southern Great Basin between 1.9 and 1.5 ka coincide with shrinking wet-lands in the west-central and northern Great Basin. Coincident greater grass abundance in northern Great Basin sagebrush steppe, reaching its maximum between 1.5 and 1.2 ka, corresponds to dramatic increases in bison remains in the archaeological sites of the northern Intermontane West. Pollen and woodrat midden records indicate that this drought ended about 1.5 ka. Succeeding ameliorating conditions resulted in the sudden northward and downward expansion of pinon into areas that had been dominated by juniper during the Neoglacial. Maximum areal extent of pinon dominated semi-arid woodland in west-central Nevada was centered at 1.2 ka. This followed by 100 years the shift in dominance from juniper to pinon in southern Nevada semi-arid woodlands. Great Basin woodlands suffered from renewed severe droughts between .5 to .6 ka. Effectively wetter conditions during the {open_quotes}Little Ice Age{close_quotes} resulted in re-expansion of semi-arid woodland. Activities related to European settlement in the Great Basin have modified prehistoric factors or imposed new ones that are affecting woodland response to climate.

  7. Late Quaternary Stratigraphy, Glacial Limits, and Paleoenvironments of the Marresale Area, Western Yamal Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Forman, Steven L.; Ingólfsson, Ólafur; Gataullin, Valery; Manley, William; Lokrantz, Hanna

    2002-05-01

    Stratigraphic records from coastal cliff sections near the Marresale Station on the Yamal Peninsula, Russia, yield new insight on ice-sheet dynamics and paleoenvironments for northern Eurasia. Field studies identify nine informal stratigraphic units from oldest to youngest (the Marresale formation, Labsuyakha sand, Kara diamicton, Varjakha peat and silt, Oleny sand, Baidarata sand, Betula horizon, Nenets peat, and Chum sand) that show a single glaciation and a varied terrestrial environment during the late Pleistocene. The Kara diamicton reflects regional glaciation and is associated with glaciotectonic deformation from the southwest of the underlying Labsuyakha sand and Marresale formation. Finite radiocarbon and luminescence ages of ca. 35,000 to 45,000 yr from Varjakha peat and silt that immediately overlies Kara diamicton place the glaciation >40,000 yr ago. Eolian and fluvial deposition ensued with concomitant cryogenesis between ca. 35,000 and 12,000 cal yr B.P. associated with the Oleny and the Baidarata sands. There is no geomorphic or stratigraphic evidence of coverage or proximity of the Yamal Peninsula to a Late Weichselian ice sheet. The Nenets peat accumulated over the Baidarata sand during much of the past 10,000 yr, with local additions of the eolian Chum sand starting ca. 1000 yr ago. A prominent Betula horizon at the base of the Nenets peat contains rooted birch trees ca. 10,000 to 9000 cal yr old and indicates a >200-km shift northward of the treeline from the present limits, corresponding to a 2° to 4°C summer warming across northern Eurasia.

  8. Late Quaternary vegetation development and disturbance dynamics from a peatland on Mount Gorongosa, central Mozambique

    NASA Astrophysics Data System (ADS)

    McWethy, David B.; Neumann, Frank H.; Steinbruch, Franziska; Ryan, Casey M.; Valsecchi, Verushka

    2016-04-01

    Few long-term climate and environmental records are available for southeast Africa where millennial scale shifts in the north-south position of the Intertropical Convergence Zone (ITCZ) and changes in Indian Ocean sea surface temperatures interact with local controls (e.g., fire, hydrology) to influence vegetation and ecosystem dynamics. Reconstruction of late-Pleistocene - Holocene environmental change from peat sediments obtained from Mount Gorongosa, central Mozambique, provides insight into vegetation, climate and disturbance interactions over the past c. 27 kyr. During the late Pleistocene, cool and wet climatic conditions supported Podocarpus forest and Ericaceae-heathland until drier conditions led to grassland expansion and a hiatus in peat deposition between c. 22.5 and 7.2 cal kBP. Increased temperatures and fire activity since c. 7.2 cal kBP led to further expansion of grasslands. Continued warming helped maintain grasslands and fostered a diverse mix of Podocarpus forest with a large number of subtropical trees and miombo woodland taxa (especially Brachystegia spp.) until regional land-use associated with the rise of Iron Age activity promoted an increase of disturbance related taxa over the last 1-2 millennia. Recent migration of people onto the Mount Gorongosa massif in the last fifty years are linked to an increase in fire activity that is unprecedented in the 27 kyr record, resulting in shifts in vegetation composition and structure. This long-term record of environmental change from central Mozambique highlights complex interaction between overlapping climatic influences and documents important vegetation transitions linked to millennial scale climatic controls, disturbance processes and more recent land-use change from a region where few records exist.

  9. Late Quaternary MIS 6-8 shoreline features of pluvial Owens Lake, Owens Valley, eastern California

    USGS Publications Warehouse

    Jayko, A.S.; Bacon, S.N.

    2008-01-01

    The chronologic history of pluvial Owens Lake along the eastern Sierra Nevada in Owens Valley, California, has previously been reported for the interval of time from ca. 25 calibrated ka to the present. However, the age, distribution, and paleoclimatic context of higher-elevation shoreline features have not been formally documented. We describe the location and characteristics of wave-formed erosional and depositional features, as well as fluvial strath terraces that grade into an older shoreline of pluvial Owens Lake. These pluvial-lacustrine features are described between the Olancha area to the south and Poverty Hills area to the north, and they appear to be vertically deformed -20 ?? 4 m across the active oblique-dextral Owens Valley fault zone. They occur at elevations from 1176 to 1182 m along the lower flanks of the Inyo Mountains and Coso Range east of the fault zone to as high as -1204 m west of the fault zone. This relict shoreline, referred to as the 1180 m shoreline, lies -20-40 m higher than the previously documented Last Glacial Maximum shoreline at -1160 m, which occupied the valley during marine isotope stage 2 (MIS 2). Crosscutting relations of wave-formed platforms, notches, and sandy beach deposits, as well as strath terraces on lava flows of the Big Pine volcanic field, bracket the age of the 1180 m shoreline to the time interval between ca. 340 ?? 60 ka and ca. 130 ?? 50 ka. This interval includes marine oxygen isotope stages 8-6 (MIS 8-6), corresponding to 260-240 ka and 185-130 ka, respectively. An additional age estimate for this shoreline is provided by a cosmogenic 36Cl model age of ca. 160 ?? 32 ka on reefal tufa at ???1170 m elevation from the southeastern margin of the valley. This 36Cl model age corroborates the constraining ages based on dated lava flows and refines the lake age to the MIS 6 interval. Documentation of this larger pluvial Owens Lake offers insight to the hydrologic balance along the east side of the southern Sierra

  10. Late Quaternary co-seismic sedimentation in the Sea of Marmara's deep basins

    NASA Astrophysics Data System (ADS)

    Beck, Christian; Mercier de Lépinay, Bernard; Schneider, Jean-Luc; Cremer, Michel; Çağatay, Namik; Wendenbaum, Evrard; Boutareaud, Sébastien; Ménot, Guillemette; Schmidt, Sabine; Weber, Olivier; Eris, Kadir; Armijo, Rolando; Meyer, Bertrand; Pondard, Nicolas; Gutscher, Marc-André; Turon, J.-L.; Labeyrie, L.; Cortijo, E.; Gallet, Y.; Bouquerel, Hélène; Gorur, N.; Gervais, A.; Castera, M.-H.; Londeix, L.; de Rességuier, A.; Jaouen, A.; Marmacore Cruise Party

    2007-07-01

    The deep, northern, part of the Sea of Marmara (northwestern Turkey) is composed of several aligned, actively subsiding, basins, which are the direct structural and morphological expression of the North-Anatolian Fault's northern branch. The last 20 kyr of their sedimentary fill (non-marine before 12 kyr BP) have been investigated through giant piston coring onboard R/V MARION-DUFRESNE (MARMACORE Cruise, 2001) and by chirp sub-bottom profiler onboard R/V ATALANTE during MARMARASCARPS Cruise (2002). Especially during the lacustrine stage, the infilling of the deep basins (Tekirdağ, Central, Kumburgaz, and Çinarcic Basins; up to 1250-m depth) was dominated by turbidites (with coarse mixed siliciclastic and bioclastic basal parts), intercalated in "hemipelagic-type" fine-grained calcareous and slightly siliceous clays. Often the turbidites show strong segregation and a sharp boundary between a coarse lower part and a suspended-load upper part. In the Central Basin, 8 m of a unique sedimentary event include a 5 to 8-m thick "homogenite" well imaged on seismic profiles. The latter is interpreted as related to a major - possibly earthquake-triggered - tsunami effect, as described in the Eastern Mediterranean by Kastens and Cita [Kastens K. and Cita M.B., 1981. Tsunami-induced sediment transport in the abyssal Mediterranean Sea. Geological Society of America Bulletin, 92:845-857]. In the marine (Holocene) upper part of the sedimentary fill, repeated to-and-from structures, affecting silt or fine sand, are evidencing seiche-like effects and, thus, earthquake triggering. Detailed correlations between two deep coring sites (at 1250 m and 1200 m) indicate more than 100% over-thickening in the deepest one; this implies specific processes of distribution of terrigenous input by dense currents (high kinetic energy, seiche effects, complex reflections on steep slopes). The peculiar sedimentary fill of the Sea of Marmara's Central Basin is interpreted as a direct consequence of

  11. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa.

    PubMed

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-03-14

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth's climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region.

  12. Aeolianite sedimentation along the northwestern coast of Egypt: Evidence for middle to late quaternary aridity

    NASA Astrophysics Data System (ADS)

    El-Asmar, Hesham M.

    Aeolian sediments along the northwestern coast of Egypt are described, analyzed for oxygen and carbon isotopes and dated using radiocarbon, U-Series and amino-acid geochronology. Although deposition of the aeolianites along the northwestern Mediterranean coast of Egypt does not necessarily indicate regressive sea-level events, their development is often associated with arid climatic conditions. The study of the aeolian sediments which constitute part of the coastal calcarenite ridges that are distributed parallel to the presen shoreline, reveals the presence of at least four arid climatic phases following four major humid phases associated with high marine levels. The aeolian phases are characterized by high positive δ18O and δ13C values and are related to aminozones A (Holocene), C (Oxygen Isotope Substage 5a/5c), E (Oxygen Isotope Substage 5e) and G (Oxygen Isotope Stage 9), which are represented by the Coastal ridge, El-Max-Abu Sir ridge and the complex cycles of Gebel Maryut ridge respectively. A positive increasing trend of both δ18O and δ13C values is observed from Gebel Maryut ridge to the Coastal ridge. This indicates a general increasing of aridity with short intermittent moist conditions during which the reddish brown palaeosols were developed with their characteristic low δ18O and δ13C values.

  13. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa

    PubMed Central

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-01-01

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth’s climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region. PMID:28290474

  14. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa

    NASA Astrophysics Data System (ADS)

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-03-01

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth’s climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region.

  15. Identifying the pollen of an extinct spruce species in the Late Quaternary sediments of the Tunica Hills region, south-eastern United States

    USGS Publications Warehouse

    Luke Mander,; Jacklyn Rodriguez,; Pietra G. Mueller,; Jackson, Stephen T.; Surangi W. Punyasena,

    2014-01-01

    Late Quaternary fluvial deposits in the Tunica Hills region of Louisiana and Mississippi are rich in spruce macrofossils of the extinct species Picea critchfieldii, the one recognized plant extinction of the Late Quaternary. However, the morphology of P. critchfieldii pollen is unknown, presenting a barrier to the interpretation of pollen spectra from the last glacial of North America. To address this issue, we undertook a morphometric study of Picea pollen from Tunica Hills. Morphometric data, together with qualitative observations of pollen morphology using Apotome fluorescence microscopy, indicate that Picea pollen from Tunica Hills is morphologically distinct from the pollen of P. glauca, P. mariana and P. rubens. Measurements of grain length, corpus width and corpus height indicate that Picea pollen from Tunica Hills is larger than the pollen of P. mariana and P. rubens, and is slightly larger than P. glauca pollen. We argue that the morphologically distinctive Tunica Hills Picea pollen was probably produced by the extinct spruce species P. critchfieldii. These morphological differences could be used to identify P. critchfieldii in existing and newly collected pollen records, which would refine its paleoecologic and biogeographic history and clarify the nature and timing of its extinction in the Late Quaternary.

  16. Late quaternary slip-rate variations along the Warm Springs Valley fault system, northern Walker Lane, California-Nevada border

    USGS Publications Warehouse

    Gold, Ryan; dePolo, Craig; Briggs, Richard W.; Crone, Anthony

    2013-01-01

    The extent to which faults exhibit temporally varying slip rates has important consequences for models of fault mechanics and probabilistic seismic hazard. Here, we explore the temporal behavior of the dextral‐slip Warm Springs Valley fault system, which is part of a network of closely spaced (10–20 km) faults in the northern Walker Lane (California–Nevada border). We develop a late Quaternary slip record for the fault using Quaternary mapping and high‐resolution topographic data from airborne Light Distance and Ranging (LiDAR). The faulted Fort Sage alluvial fan (40.06° N, 119.99° W) is dextrally displaced 98+42/-43 m, and we estimate the age of the alluvial fan to be 41.4+10.0/-4.8 to 55.7±9.2  ka, based on a terrestrial cosmogenic 10Be depth profile and 36Cl analyses on basalt boulders, respectively. The displacement and age constraints for the fan yield a slip rate of 1.8 +0.8/-0.8 mm/yr to 2.4 +1.2/-1.1 mm/yr (2σ) along the northern Warm Springs Valley fault system for the past 41.4–55.7 ka. In contrast to this longer‐term slip rate, shorelines associated with the Sehoo highstand of Lake Lahontan (~15.8  ka) adjacent to the Fort Sage fan are dextrally faulted at most 3 m, which limits a maximum post‐15.8 ka slip rate to 0.2  mm/yr. These relations indicate that the post‐Lahontan slip rate on the fault is only about one‐tenth the longer‐term (41–56 ka) average slip rate. This apparent slip‐rate variation may be related to co‐dependent interaction with the nearby Honey Lake fault system, which shows evidence of an accelerated period of mid‐Holocene earthquakes.

  17. Paleoseismicity of the Intermountain Seismic Belt from Late Quaternary faulting and parameter scaling of normal faulting earthquakes

    SciTech Connect

    Mason, D.B.; Smith, R.B. . Dept. of Geology and Geophysics)

    1993-04-01

    The eastern Basin-Range, 1,300 km-long Intermountain Seismic Belt (ISB) is reflected by a [approximately]100 km-wide zone of scattered earthquakes that in general do not correlate with the mapped Quaternary faults. Yet this region has experienced two of the largest historic earthquakes in the western US, the M[sub S] = 7.3, Borah Peak, Idaho, and the M[sub S] = 7.5, Hebgen Lake, Montana, events, which occurred in areas that had previously low historical seismicity. These observations indicate the lack of spatial and temporal uniformity between the historical and Holocene seismic record. The authors have studied this problem by first investigating fault-magnitude scaling relationships using a global set of 16 large normal- to oblique-slip earthquakes, then applying the scaling laws to data from a compilation of well studied Late Quaternary faults of the ISB. Several regression models were evaluated but the authors found that magnitudes predicted by displacement alone were consistently 20% larger than those determined from lengths. They suggest that the best estimator is given by: M[sub S] = 0.47 log (d[sub sM]L[sub s]) + 6.1. These results revealed at least 24 large multiple-segment, paleoearthquakes, 6.3 [le] M[sub s] [le] 7.3, that were associated with faults within the dual-branched seismicity belt which surrounds the aseismic Snake River Plain in the central ISB. They believe this unusual bow-wave pattern of seismicity and faulting is related to plume-plate interaction associated with the Yellowstone hotspot with an additional component of concomitant Basin-Range extension. In the southern ISB, the 370 km-long Wasatch fault, Utah, experienced at least 7 multiple-segment paleoearthquakes, 7.1 [le] M[sub s] [le] 7.3, and contrasts with a historic record of seismic quiescence. Intraplate crustal extension is though to be the primary mode of regional strain release for this region of the ISB.

  18. 50,000-year Late Quaternary Biogenic Sedimentation, Sea Surface Temperature, and Land Erosion Records From the Southern Papua New Guinea (IMAGES MD052928)

    NASA Astrophysics Data System (ADS)

    Shiau, L.; Huh, C.; Yamamoto, M.; Liao, Y.; Chen, M.

    2007-12-01

    We present 50,000-year late Quaternary records of carbonate and total organic carbon (TOC), TEX86-SST and Uk'37-SST, and Branched Isoprenoid Tetraether (BIT) from core MD052928 (11°17.26Ś, 148°51.60É, water depth: 2250m) taken from the southeastern Papua New Guinea slope during the PECTEN cruise in 2005. The age model of the core is constructed by AMS-14C dating of planktic foraminifers, benthic foraminifer oxygen isotope stratigraphy, and paleomagnetic intensity. We found that the carbonate and TOC contents showed glacial-interglacial variations. The carbonate contents range between 15%- 50%, with higher contents in the Holocene and lower in MIS (Marine Isotope Stage) 2-3. The carbonate contents also show high frequency oscillations that mimic millennial-scale climate changes during the last deglaciation and MIS 2-3. The carbonate contents correlate well with the BIT index measured from the same core. Low carbonate events coincide with BIT indices that indicate more inputs of terrestrial organic matters, suggesting noticeable changes of soil erosion and terrestrial fluvial input on land nearby. The TOC contents range between 0.2%-0.4%, and show higher contents during MIS 2-3. High TOC contents are associated with BIT indices that reflect higher input of terrestrial organic matters. We have also conducted sea surface temperature (SST) analyses by testing two proxies: glycerol dibiphytanyl glycerol tetraether membrane lipid composition of marine crenarchaeota (TEX86) and alkenone (Uk'37). While both proxies yield similar SST during the LGM (27-28° C), SST in the Holocene derived from TEX86 is 2° C higher than that derived from Uk'37(31° C vs 29° C). Our records suggest that higher input of terrestrial organic matter is coupled to intensified soil erosion during cold periods. Whether our records implicate global climate (Antarctic vs. Arctic) or regional processes (e.g. land precipitation, high mountain glacier expansion) remains to be further investigated.

  19. Stratigraphic evolution of the inner continental shelf in response to late Quaternary relative sea-level change, northwestern Gulf of Maine

    USGS Publications Warehouse

    Barnhardt, W.A.; Belknap, D.F.; Kelley, J.T.

    1997-01-01

    Accumulations of deltaic and littoral sediments on the inner continental shelf of Maine, Gulf of Maine, preserve a record of postglacial sea-level changes and shoreline migrations. The depositional response of coastal environments to a cycle of regression, lowstand, and transgression was examined with seismic-reflection profiles, vibracores, and radiocarbon dates collected from sediments at the mouths of the Kennebec and Penobscot Rivers. Sequence-stratigraphie analysis of these data reveals two distinctly different successions of late Quaternary deposits that represent end members in an evolutionary model for this glaciated coast. Seaward of the Kennebec River, coarsegrained shorelines with foreset beds occur at depths of 20-60 m and outline the lobate margin of the Kennebec River paleodelta, a complex, rock-framed accumulation of glaciomarine and deltaic sediments capped by estuarine and marine deposits. Sand derived from this system today supports large barrier spits and extensive salt marshes. In contrast, the mouth of the Penobscot River is characterized by thick deposits of glaciomarine mud overlain by marine mud of Holocene age, including gas-charged zones that have locally evolved into fields of pockmarks. The distinct lack of sand and gravel seaward of the Penobscot River and its abundance seaward of the Kennebec River probably reflect differences in sediment sources and the physiography of the two watersheds. The contrasting stratigraphie framework of these systems demonstrates the importance of understanding local and regional differences in sediment supply, sea-level change, bedrock structure, and exposure to waves and tides in order to model river-mouth deposition on glaciated coasts. Evolution of shelf deposits was largely controlled by relative sea level, which locally fell from a highstand (+60 to +70 m at 14 ka) contemporary with deglaciation to a lowstand (-55 m at 10.8 ka). The sea-level lowering was accompanied by fluvial incision of older

  20. Late Quaternary stratigraphy and luminescence geochronology of the northeastern Mojave Desert

    USGS Publications Warehouse

    Mahan, S.A.; Miller, D.M.; Menges, C.M.; Yount, J.C.

    2007-01-01

    The chronology of the Holocene and late Pleistocene deposits of the northeastern Mojave Desert have been largely obtained using radiocarbon ages. Our study refines and extends this framework using optically stimulated luminescence (OSL) to date deposits from Valjean Valley, Silurian Lake Playa, Red Pass, and California Valley. Of particular interest are eolian fine silts incorporated in ground-water discharge (GWD) deposits bracketed at 185-140 and 20-50 ka. Alluvial fan deposits proved amenable for OSL by dating both eolian sand lenses and reworked eolian sand in a matrix of gravel that occurs within the fan stratigraphy. Lacustrine sand in spits and bars also yielded acceptable OSL ages. These OSL ages fill gaps in the geochronology of desert deposits, which can provide data relevant to understanding the responses of several depositional systems to regional changes in climate. This study identifies the most promising deposits for future luminescence dating and suggests that for several regions of the Mojave Desert, sediments from previously undated landforms can be more accurately placed within correct geologic map units.

  1. Plant Functional Variability in Response to Late-Quaternary Climate Change Recorded in Ancient Packrat Middens

    NASA Astrophysics Data System (ADS)

    Holmgren, C. A.; Potts, D. L.

    2006-12-01

    Responses of plant functional traits to environmental variability are of enduring interest because they constrain organism performance and ecosystem function. However, most inferences regarding plant functional trait response to climatic variability have been limited to the modern period. To better understand plant functional response to long-term climate variability and how adjustments in leaf morphology may contribute to patterns of species establishment, persistence, or extirpation, we measured specific leaf area (SLA) from macrofossils preserved in ancient packrat middens collected along the Arizona/New Mexico border, USA. Our record spanned more than 32,000 years and included six woodland and Chihuahuan Desert species: Berberis cf. haematocarpa, Juniperus cf. coahuilensis, Juniperus osteosperma, Larrea tridentata, Prosopis glandulosa and Parthenium incanum. We predicted that regional climatic warming and drying since the late Pleistocene would result in intraspecific decreases in SLA. As predicted, SLA was positively correlated with midden age for three of the six species (L. tridentata, J. osteosperma, B. cf. haematocarpa). SLA was also negatively correlated with December (L. tridentata, J. cf. coahuilensis) or June (B. cf. haematocarpa, J. osteosperma) insolation. A unique record of vegetation community dynamics, plant macrofossils preserved in packrat middens also represent a rich and largely untapped source of information on long-term trends in species functional response to environmental change.

  2. Late quaternary vegetation of southern Isla Grande de Chiloñ, Chile

    NASA Astrophysics Data System (ADS)

    Villagran, Carolina

    1988-05-01

    Late-glacial-Holocene forest history of southern Isla Chiloé (latitude 43°10' S) was reconstructed on the basis of pollen analysis in three profiles (Laguna Soledad, Laguna Chaiguata, Puerto Carmen). Prior to 12,500 yr B.P. pollen records are dominated by plant taxa characteristic of open habitats (Zone I). From 12,500 yr B.P. to the present, tree species predominate in the pollen records (Zones II-V). Between 12,500 and 9500 yr B.P. ombrophyllous taxa ( Nothofagus, Podocarpus nubigena. Myrtaceae, Fitzroya/Pilgerodendron, and Drimys) are frequent in all pollen diagrams, suggesting a wetter and colder climate than the present. Between 9000 and 5500 yr B.P. Valdivian forest elements, such as Nothofagus dombeyi type, Weinmannia, and Eucryphia/Caldcluvia, dominate, indicating a period of drier and warmer climate. From 5500 yr B.P. onward, the expansion of mixed North Patagonian-Subantarctic forest elements and the increased frequence of Tepualia suggest increased rainfall and temperatures oscillating around the modern values. The change from open to forest vegetation (ca. 12,500 yr B.P.) probably represents the most pronounced climatic change in the record and can be interpreted as the glacial-postglacial transition in the study area.

  3. Thermoluminescence and excess 226Ra decay dating of late Quaternary fluvial sands, East Alligator River, Australia

    NASA Astrophysics Data System (ADS)

    Murray, Andrew; Wohl, Ellen; East, Jon

    1992-01-01

    Thermoluminescence (TL) dating was applied to seven samples of siliceous fluvial sands from the East Alligator River of Northern Australia, giving ages ranging from modern to 6000 yr B.P. Two methods of estimating the equivalent dose (ED), total bleach and regenerative, were applied to the 90- to 125-μm quartz fraction of the samples in order to determine the reliability and internal consistency of the technique. High-resolution γ and α spectroscopy were used to measure radionuclide contents; these measurements revealed an excess 226Ra activity compared with 230Th. This excess decreased with depth, and was used directly to derive mean sedimentation rates, and thus sediment ages. Both this method and one 14C date confirmed the validity of the TL values, which increased systematically with depth and were consistent with site stratigraphy. TL was of limited use in the dating of these late Holocene deposits because of age uncertainties of 500 to 1600 yr, resulting from a significant residual ED. This residual probably resulted from incomplete bleaching during reworking upstream of the sampling site. For Pleistocene deposits, the residual ED will be less significant because of higher total EDs, and TL dates will be correspondingly more accurate.

  4. Late Quaternary history of the southwestern St. Lawrence Lowlands and adjacent Adirondack Highlands

    SciTech Connect

    Pair, D.L. . Dept. of Geology)

    1993-03-01

    The reconstruction of Late Wisconsinan ice retreat, proglacial lakes, and Champlain Sea history from the northwest Adirondack slope and adjacent St. Lawrence Lowlands is critical to the synthesis of a regional picture of deglacial events in the eastern Great Lakes region. Unfortunately, these same areas are well known for their limited exposures, landforms covered by thick forest, large tracts of land inaccessible to detailed field mapping, and the overall paucity of glacial materials preserved on upland surfaces. Despite these limitations, a model which utilizes multiple and field-truthed evidence has been used to designate areas where ice border deposits indicate a substantial recessional position. It employs the following criteria in this analysis: sedimentology and morphostratigraphy of morainal landform segments and related sediments; orientation and continuity of ice border drainage channels; and the relationship of ice borders and drainage systems to well documented local and regional water bodies which accompanied ice retreat. The results of this approach have provided a unique regional picture of deglaciation. Despite the inherent limitations of working in upland areas to reconstruct glacial events, detailed morphostratigraphic correlations based on multiple lines of evidence can yield important information. The positions of five former ice borders have been reconstructed from the available data. These ice margins correspond closely with those documented previously by others adjoining areas. This type of study, utilizing multiple and field-truthed lines of evidence, constitutes a tangible step towards understanding the nature and history of ice retreat along this portion of the Laurentide Ice Sheet.

  5. Out of America: ancient DNA evidence for a new world origin of late quaternary woolly mammoths.

    PubMed

    Debruyne, Regis; Chu, Genevieve; King, Christine E; Bos, Kirsti; Kuch, Melanie; Schwarz, Carsten; Szpak, Paul; Gröcke, Darren R; Matheus, Paul; Zazula, Grant; Guthrie, Dale; Froese, Duane; Buigues, Bernard; de Marliave, Christian; Flemming, Clare; Poinar, Debi; Fisher, Daniel; Southon, John; Tikhonov, Alexei N; MacPhee, Ross D E; Poinar, Hendrik N

    2008-09-09

    Although the iconic mammoth of the Late Pleistocene, the woolly mammoth (Mammuthus primigenius), has traditionally been regarded as the end point of a single anagenetically evolving lineage, recent paleontological and molecular studies have shown that successive allopatric speciation events must have occurred within Pleistocene Mammuthus in Asia, with subsequent expansion and hybridization between nominal taxa [1, 2]. However, the role of North American mammoth populations in these events has not been adequately explored from an ancient-DNA standpoint. To undertake this task, we analyzed mtDNA from a large data set consisting of mammoth samples from across Holarctica (n = 160) and representing most of radiocarbon time. Our evidence shows that, during the terminal Pleistocene, haplotypes originating in and characteristic of New World populations replaced or succeeded those endemic to Asia and western Beringia. Also, during the Last Glacial Maximum, mammoth populations do not appear to have suffered an overall decline in diversity, despite differing responses on either side of the Bering land bridge. In summary, the "Out-of-America" hypothesis holds that the dispersal of North American woolly mammoths into other parts of Holarctica created major phylogeographic structuring within Mammuthus primigenius populations, shaping the last phase of their evolutionary history before their demise.

  6. Late quaternary environmental changes in the upper Las Vegas valley, Nevada

    NASA Astrophysics Data System (ADS)

    Quade, Jay

    1986-11-01

    Five stratigraphic units and five soils of late Pleistocene to Holocene age crop out in dissected badlands on Corn Creek Flat, 30 km northwest of Las Vegas, Nevada, and at Tule Springs, nearer to Las Vegas. The record is dominantly fluvial but contains evidence of several moister, marsh-forming periods: the oldest (Unit B) dates perhaps to the middle Wisconsin, and the more widespread Unit D falls between 30,000 and 15,000 yr B.P. Unit D therefore correlates with pluvial maximum lacustrine deposits elsewhere in the Great Basin. Standing water was not of sufficient depth or extent during either period to form lake strandlines. Between 14,000 and 7200 yr B.P. (Unit E), standing surface water gradually decreased, a trend also apparent in Great Basin pluvial lake chronologies during the same period. Groundwater carbonate cementation and burrowing by cicadas (Cicadae) accompany the moist-phase units. After 7200 yr B.P., increased wind action, decreased biotic activity, and at least 25 m of water-table lowering accompanied widespread erosion of older fine-grained deposits. Based on pack-rat midden and pollen evidence, this coincides with major vegetation changes in the valley, from sagebrush-dominated steppe to lower Mohave desertscrub.

  7. Increased rates of large-magnitude explosive eruptions in Japan in the late Neogene and Quaternary.

    PubMed

    Mahony, S H; Sparks, R S J; Wallace, L M; Engwell, S L; Scourse, E M; Barnard, N H; Kandlbauer, J; Brown, S K

    2016-07-01

    Tephra layers in marine sediment cores from scientific ocean drilling largely record high-magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera-forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6-4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike-slip-dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc-normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera-forming eruptions.

  8. The lost Adventure Archipelago (Sicilian Channel, Mediterranean Sea): Morpho-bathymetry and Late Quaternary palaeogeographic evolution

    NASA Astrophysics Data System (ADS)

    Civile, Dario; Lodolo, Emanuele; Zecchin, Massimo; Ben-Avraham, Zvi; Baradello, Luca; Accettella, Daniela; Cova, Andrea; Caffau, Mauro

    2015-02-01

    The rise in sea level following the Last Glacial Maximum (LGM) radically altered pre-existing geography, pushing back the former shorelines. The effect of this eustatic change was particularly intense and dramatic in flat lands and shelves, such as the Sicilian Channel. High-resolution bathymetric maps and Chirp seismic profiles analyzed in this study show that the Sicilian Channel, now lying at depths rarely exceeding 150 m, has emerged several times during its geological history. The last emergence was during the Early Holocene, when kilometre-sized islands punctuated the north-western sector of the Sicilian Channel, the Adventure Plateau, forming a broad archipelago. Many of these islands, now located in water ranging in depth from - 10 to - 40 m, are composed of highly deformed Neogene sedimentary rocks (Talbot, Ante-Talbot, Nereo, and Pantelleria Vecchia banks), while others represent submarine Pleistocene volcanic edifices (Galatea, Anfitrite and Tetide banks). Sedimentary cover in all of these banks is virtually absent. High-resolution seismic profiles allowed the identification of post-LGM morphological markers associated with the marine transgression, some of which are characterized by melt water-pulses, as demonstrated by the presence of specific and distinct erosional features. Combining swath bathymetric data with the seismic profiles, we have generated two palaeogeographic maps of the former Adventure Archipelago at two specific time frames: (1) at the end of the Younger Dryas stadial (11,500 yr B.P., corresponding to a former sea level of - 60 m), and (2) at the end of the melt-water pulse 1B (11,200 yr B.P., corresponding to a former sea level of - 42 m). Maps clearly show that in just 300 years the geography of the archipelago has changed dramatically, so much so that some islands have disappeared and some have decreased by more than 80% of their pre-Younger Dryas size.

  9. Increased rates of large‐magnitude explosive eruptions in Japan in the late Neogene and Quaternary

    PubMed Central

    Sparks, R. S. J.; Wallace, L. M.; Engwell, S. L.; Scourse, E. M.; Barnard, N. H.; Kandlbauer, J.; Brown, S. K.

    2016-01-01

    Abstract Tephra layers in marine sediment cores from scientific ocean drilling largely record high‐magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera‐forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6–4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike‐slip‐dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc‐normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera‐forming eruptions. PMID:27656115

  10. Increased rates of large-magnitude explosive eruptions in Japan in the late Neogene and Quaternary

    NASA Astrophysics Data System (ADS)

    Mahony, S. H.; Sparks, R. S. J.; Wallace, L. M.; Engwell, S. L.; Scourse, E. M.; Barnard, N. H.; Kandlbauer, J.; Brown, S. K.

    2016-07-01

    Tephra layers in marine sediment cores from scientific ocean drilling largely record high-magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera-forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ˜8 Ma, 6-4 Ma, and further increase after ˜2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike-slip-dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ˜8 Ma to present period led to (1) increased arc-normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera-forming eruptions.

  11. Multiple ash layers in late Quaternary sediments from the Central Indian Basin

    NASA Astrophysics Data System (ADS)

    Mascarenhas-Pereira, M. B. L.; Nagender Nath, B.; Iyer, S. D.; Borole, D. V.; Parthiban, G.; Jijin, R.; Khedekar, V.

    2016-04-01

    We have investigated three sediment cores collected from water depths > 5000 m along the transect 76°30‧E in close proximity to a fracture zone in the Central Indian Basin (CIB). The cores yielded five volcanic horizons of which four have visual and dispersed shards. Rhyolitic glass shards of bubble wall, platy, angular and blocky types were retrieved from various stratigraphic horizons in the cores. The abundance of glass shards, composition of bulk sediments, and 230Thexcess ages of the host sediments were used to distinguish the volcanic horizons. Of the four volcanic horizons, three are now newly reported and correspond to ages of ~ 85, 107-109 and 142-146 ka while the fourth horizon is of 70-75 ka. By using trace element ratios and Cr and Nb-based normative calculations, cryptotephra has been identified for the first time from the CIB sediment. The cryptotephra forms the fifth ash horizon and is of ~ 34 ka. A comparison with the published data on volcanic tephra in and around the Indian Ocean indicate the shard rich horizon (SRH) of 70-75 ka to resemble the Younger Toba Tuffs (YTT), while the other volcanic horizons that were deposited during different time periods do not correlate with any known marine or terrestrial records. These tephra layers have produced a tephrostratigraphic framework across the tectonically and volcanically complex regions of the CIB. Due to the lack of terrestrial equivalents of these tephra, it is hypothesized that the newly found volcanic horizons may have been derived from submarine volcanic eruptions. Multiple layers of submarine volcaniclastic deposits found at water depths as great as 5300 m reaffirm the growing belief that submarine phreatomagmatic eruptions are much more common in the intraplate region of the Indian Ocean than previously reported.

  12. Late Quaternary eolian dust in surficial deposits of a Colorado Plateau grassland: Controls on distribution and ecologic effects

    USGS Publications Warehouse

    Reynolds, R.L.; Reheis, M.C.; Neff, J.C.; Goldstein, H.; Yount, J.

    2006-01-01

    in these surficial deposits during the late Quaternary are important to modern ecosystem dynamics because some plants today utilize nutrients deposited as long ago as about 12-15 ky and because variations in fine-grained (silt) sediment, including eolian dust, influence soil-moisture capacity.

  13. Late Quaternary vegetation and climate dynamics at the northern limit of the East Asian summer monsoon and its regional and global-scale controls

    NASA Astrophysics Data System (ADS)

    Leipe, Christian; Nakagawa, Takeshi; Gotanda, Katsuya; Müller, Stefanie; Tarasov, Pavel E.

    2015-05-01

    A late Quaternary pollen record from northern Sakhalin Island (51.34°N, 142.14°E, 15 m a.s.l.) spanning the last 43.7 ka was used to reconstruct regional climate dynamics and vegetation distribution by using the modern analogue technique (MAT). The long-term trends of the reconstructed mean annual temperature (TANN) and precipitation (PANN), and total tree cover are generally in line with key palaeoclimate records from the North Atlantic region and the Asian monsoon domain. TANN largely follows the fluctuations in solar summer insolation at 55°N. During Marine Isotope Stage (MIS) 3, TANN and PANN were on average 0.2 °C and 700 mm, respectively, thus very similar to late Holocene/modern conditions. Full glacial climate deterioration (TANN = -3.3 °C, PANN = 550 mm) was relatively weak as suggested by the MAT-inferred average climate parameters and tree cover densities. However, error ranges of the climate reconstructions during this interval are relatively large and the last glacial environments in northern Sakhalin could be much colder and drier than suggested by the weighted average values. An anti-phase relationship between mean temperature of the coldest (MTCO) and warmest (MTWA) month is documented during the last glacial period, i.e. MIS 2 and 3, suggesting more continental climate due to sea levels that were lower than present. Warmest and wettest climate conditions have prevailed since the end of the last glaciation with an optimum (TANN = 1.5 °C, PANN = 800 mm) in the middle Holocene interval (ca 8.7-5.2 cal. ka BP). This lags behind the solar insolation peak during the early Holocene. We propose that this is due to continuous Holocene sea level transgression and regional influence of the Tsushima Warm Current, which reached maximum intensity during the middle Holocene. Several short-term climate oscillations are suggested by our reconstruction results and correspond to Northern Hemisphere Heinrich and Dansgaard-Oeschger events, the B

  14. Shelf-slope sedimentation during the late Quaternary on the southwestern Kuril forearc margin, northern Japan

    NASA Astrophysics Data System (ADS)

    Noda, Atsushi; TuZino, Taqumi

    2010-12-01

    We studied an active forearc margin off eastern Hokkaido, northern Japan, to identify the main influences on stratigraphic development from the last glacial to the present highstand. This paper presents new data on the environment, texture, and sedimentation rates of forearc shelf-slope sediments, based on more than 300 samples of seafloor sediments and densely gridded sub-bottom profiling records. Lowstand sedimentary wedges developed upon the shelf margins in areas with a large sediment supply and without incising canyons. The transgressive and highstand deposits formed on the shelf in extensive, low-gradient, and topographically low areas. The narrow shelf is covered by sandy sediments, where winnowed fines are likely to have escaped to the slope via gravity-driven across-shelf transport or ocean-current-induced along-shelf transport. The slope has a mid-slope mud belt at water depths of 700-1600 m. The sedimentation rates on the slope subsequent to 15 ka (the late transgressive to highstand stage) were just 10-70% of the rates prior to this period. These changes in sedimentation rates are ascribed to spatially variable topography. High sedimentation rates were maintained at topographically low and gently sloping areas even during highstand periods, due to concentrations of nepheloid layers or deposition via sediment gravity flows. On the other hand, low sedimentation rates were recognized on topographic highs of interfluves on the upper slope or on axes of anticlines, where main flows or overspills of turbidity currents decreased as sealevel rose. These results suggest that sedimentologic and stratigraphic variations are tied to variations in the physical configuration of the shelf/slope system being influenced by the local topography in addition to the climatic and oceanographic processes.

  15. The late Quaternary extinction and future resurrection of birds on Pacific islands

    NASA Astrophysics Data System (ADS)

    Steadman, David W.; Martin, Paul S.

    2003-04-01

    People have lived on tropical Pacific islands over the past 30,000 years (Bismarcks, Solomons) or 3000 to 1000 years (the rest of Oceania). Their activities have led to the loss of many thousands of populations and as many as 2000 species of birds that probably otherwise would exist today. This extinction event is documented by avian fossils from archaeological (cultural) and paleontological (noncultural) sites from nearly 70 islands in 19 island groups. Extinction of birds in Oceania rivals the late Pleistocene loss of large mammals in North America as the best substantiated rapid extinction episode in the vertebrate fossil record. Some avian extinctions in Oceania occurred within a century or less after human arrival, while others required millennia or even tens of millennia. Any of these time frames is rapid in an evolutionary or geochronological sense. Inter-island differences in the speed and extent of extinction can be explained by variation in abiotic (A), biotic (B), and cultural (C) factors. Levels of extinction on large, near islands can be comparable to those on small, remote islands when C factors (such as high human population density and introduction of invasive plants and animals) override A factors (such as large land area or little isolation) or B factors (such as rich indigenous floras and faunas). An innovative, proactive conservation strategy is needed not only to prevent further extinctions of birds in Oceania, but also to restart evolution of some of the lineages that have suffered the most loss, such as flightless rails. This strategy should focus on islands with ABC traits that retard rather than enhance extinction.

  16. Late Quaternary sedimentation on the Leidy Creek fan, Nevada-California: Geomorphic responses to climate change

    USGS Publications Warehouse

    Reheis, M.C.; Slate, J.L.; Throckmorton, C.K.; McGeehin, J.P.; Sarna-Wojcicki, A. M.; Dengler, L.

    1996-01-01

    late Holocene.

  17. Late Quaternary floodplain development along the Stung Sen River in the Lower Mekong Basin, Cambodia

    NASA Astrophysics Data System (ADS)

    Nagumo, Naoko; Sugai, Toshihiko; Kubo, Sumiko

    2013-09-01

    The Stung Sen River, the biggest tributary to Lake Tonle Sap in the Lower Mekong Basin in Cambodia, is characterized by large seasonal changes of water discharge under the Asian monsoon climate and seasonal changes in water level that reach at least 7 m and are controlled by the water level of the lake. The Stung Sen River floodplain consists of two geomorphic units: meander belt along the river channel and backmarsh. Coupled observations of outcrops along the river channel and arrays of sediment cores across the floodplain north of Kampong Chheuteal village and Kampong Thom City, c. 150 km and c. 70 km, respectively, reveal that floodplain environmental changes at c. 11 ka were possibly associated with the Holocene onset of the southeast Asian monsoon and probably with the emergence of Lake Tonle Sap. These observations also show that the present backmarsh-meander belt system was established about 5.5 ka along with the unique Mekong-Tonle Sap connection, characterized by a reversal in flow direction during the monsoon season. The meander belt materials are replaced as the river channel shifts on a decadal to centennial timescale. Backmarsh sediments at sites Kampong Chheuteal and Kampong Thom had a constant accumulation rate of about 0.5 mm/y during the Holocene, contrasting with rates of 0.1 mm/y during the late Pleistocene. At around 11 ka, a sand layer was deposited over all of the valley around Kampong Chheuteal, while wetlands enlarged around Kampong Thom, probably because of increased rainfall triggered by an enhancement of the Asian summer monsoon. This 11 ka horizon has since been covered by clayey sediments keeping pace with the accumulation of lacustrine sediments in Lake Tonle Sap.

  18. Late Quaternary Depositional History and Anthropogenic Impacts of Western Long Island Sound, New York

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Cormier, M.; Marchese, P.; Zheng, Y.; Stewart, G.; Acosta, V.; Bowman, A.; Cortes, A.; Leon, L.; Rosa, M.; Semple, D.; Thaker, N.; Vargas, W.; Williams, L.

    2006-12-01

    In June 2006, we surveyed the seafloor of western Long Island Sound with the R/V HUGH SHARP and collected multibeam bathymetry, chirp subbottom profiling, side-scan sonar imagery, and sediment samples (25 gravity cores, 11 multicores, and 10 grabs). In addition, 36 CTD hydrocast stations measured O, pH, alkalinity, trace metals, nutrients, Polonium-210, Lead-210, Thorium-234, organic carbon, and pigments. Continuous weather measurements, and water column properties using both CTD casts and a towed Scanfish were also carried out. Biological sampling included benthic grabs and plankton nets. The National Science Foundation under the "Opportunities to Enhance Diversity in the Geosciences" Program funded this one-week survey. Nine students from underrepresented groups in the geosciences and five P.I.'s participated in the field program. The major scientific objectives were to study the deglaciation of the Laurentide Ice Sheet and Holocene transgression of sea level to document age, sedimentation processes, and climate, and the impact of anthropogenic activities in the sediments, biota, and waters of the estuary. A deep (35 m) and narrow (< 1km) channel incised into bedrock characterizes the East River section of western Long Island Sound. In contrast, thick sedimentary deposits characterize the eastern part of the study area, 20 to 45 km east of New York City. Subbottom penetration reached in some instances 40 m, but is limited to less than 5 m where sediments are gas-charged. Four seismic sequences are imaged in the chirp records that we interpret to span the Last Glacial Maximum to Present: strong irregular erosional surfaces beneath parallel seismic reflectors are interpreted as glacial erosional surface and/or moraines, and as Glacial lake Connecticut sediments ~25 m thick, respectively. A thin veneer (<1 m) of acoustically transparent sediment is interpreted as recent deposits. It overlays a roughly 15 m thick unit interpreted as Holocene transgressive marine

  19. Late Quaternary Climate Forcing of Rapid Sedimentation and Erosion Processes in the NW Himalaya (Invited)

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Scherler, D.; Strecker, M. R.

    2009-12-01

    The intensity of the Asian summer-monsoon circulation varies over decadal to millennial time scales and is reflected in changes in surface processes, terrestrial environments, and marine sediment records. The impact of climatic forcing on the landscape’s response and associated erosion processes varies, depending on magnitude and size of the climatic events, as well as on the tectonic and geomorphologic preconditioning of the landscape. Here, we present new surface-exposure ages combined with previously published data to quantify erosion and process rates and their changes through the time. The NW Himalaya is located at the end of the monsoonal conveyer belt that transports moisture from the Bay of Bengal to the Sutlej Valley and farther west. Along the Himalaya, orographic barriers force out rainfall with peak amounts located consistently at a 3-km-radius relief of ~1 km. The tail and northward end of the rainfall distribution decays rapidly with only little or no moisture reaching the southern Tibetan Plateau. However, during a generally stronger monsoon circulation in the early Holocene called the Intensified Monsoon Phase rainfall reached the today arid regions of the northern Himalaya and southern Tibetan Plateau as documented in numerous terrestrial sediment archives. During this time period in the NW Himalaya, the presently arid, high-elevation areas have been impacted by flooding and heavy landsliding ultimately leading to a significant increase in sediment-flux rates. Some of the sediment material has been derived from glaciers. We show that the transiently-stored sediments in these valleys have been rapidly removed during the early Holocene at the onset of the Intensified Monsoon Phase. The limiting factor for sediment removal and transport on millennial timescales are large bedrock landslides that impounded the river network and formed intramontane basins lasting for several thousands of years. We suggest a feedback process between sediment removal and

  20. Marine reptiles from the Late Cretaceous of northern Patagonia

    NASA Astrophysics Data System (ADS)

    Gasparini, Z.; Casadio, S.; Fernández, M.; Salgado, L.

    2001-04-01

    During the Campanian-Maastrichtian, Patagonia was flooded by the Atlantic and reduced to an archipelago. Several localities of northern Patagonia have yielded marine reptiles. Analysis of several assemblages suggests that the diversity and abundance of pelagic marine reptiles in northern Patagonia was higher by the end of the Cretaceous than previously thought. Several plesiosaurids, including Aristonectes parvidens and the polycotylid Sulcusuchus, and the first remains of mosasaurinae have been found. The Cretaceous marine reptile record from South America is scanty. Nevertheless, materials described here suggest that Tethyan and Weddelian forms converged in northern Patagonia, as seen with invertebrates.

  1. Black Carbon as a marker for paleofires during the Late Quaternary in sedimentary record of Saci lake (PA) -Brazil

    NASA Astrophysics Data System (ADS)

    Martins, G. S.; Cordeiro, R. C.; Turcq, B.; Sifeddine, A.; Rodrigues, R.; Santos, A. B.; Moreira, L.; Guilles, M. C.; Seoane, J. S.

    2012-12-01

    Controversies still exist about the climate in the South American tropical forest over the Late Quaternary. In the present work, we show a sedimentary profile (SACI-1) of 243 cm in Saci Lake, located in the south of Para state. The paleoclimatic reconstruction was made by several geochemical markers, working as indicators of environmental changes in this lake during the Late Quaternary. Seventeen samples along the SACI-1 core were dated, and an age model was construct used a non-Bayesian, 'classical' age-depth models, showing a basal age of 35,500 cal years BP. The lithological description allows identifying six sedimentary units. Unit VI (35,500-29,900 cal yrs BP) and unit V (29,900-16,400 cal yr BP) are characterized by lowest concentrations of TOC, high values of C/N ratio and δ15N, and low values of chlorophyll derivates. These characteristics suggest a predominance of allochthonous organic matter. Unit V, covers the LGM (Last Maximum Glacial), when was observed the lowest values of TOC and moderate values of both BC concentration and flux (at approximately 162 cm), suggesting a dry period with low water level and wildfires in the region. Unit IV (9,100-8,300 cal years BP), presented a transition from a wetter to a drier climate with decreasing values of TOC and biogeochemical changes associated with a sandy sedimentation, indicating a higher intensity of run-off events. The higher values of C/N ratio and incresing δ13C values in this phase, suggest an increase in C4 vascular plants. The unit III (8,300-5,800 cal years BP) is characterized by a dry climate, with the lowest average values of total organic carbon, suggesting low lake levels. Low values of chlorophyll derivatives indicate a low productivity environment and high levels of clay suggest a low hydrodynamic depositional energy environment. The highest concentration of Black Carbon data indicated an increased occurrence of fires related to this dry climate. This phase was characterized by lower C

  2. Subsurface stratigraphy and geochemistry of late Quaternary evaporites, Searles Lake, California, with a section on radiocarbon ages of stratigraphic units

    USGS Publications Warehouse

    Smith, George I.; Stuiver, Minze

    1979-01-01

    Searles Lake is a dry salt pan, about 100 km 2 in area, that lies on the floor of Searles Valley, in the desert of southeast California. Several salt bodies of late Quaternary age lie beneath the surface, mostly composed of sodium and potassium carbonate, sulfate, chloride, and borate minerals. Mud layers separate the salt bodies, which contain interstitial brine that is the source of large quantities of industrial chemicals. The value of annual production from the deposit exceeds $30 million; total production to date exceeds $1 billion. The salts and muds were deposited during Pleistocene and Holocene times by a series of large lakes (200 m maximum depth, 1,000 km 2 maximum area) that fluctuated in size in response to climatic change. Salts were deposited during major dry (interpluvial) episodes, muds during wet (pluvial) episodes that correlate with glacial advances in other parts of North America and the world. Data based on cores from the deposit are used in this paper to establish the stratigraphy of the deposit, the chemical and mineral compositions of successive units, and the total quantities of components contained by them. These parameters are then used to determine the geochemical evolution of the sedimentary layers. The results provide a refined basis for reconstructing the limnology of Searles Lake and the regional climate during late Quaternary time. Six main stratigraphic units were distinguished and informally named earlier on the basis of their dominant composition: Unit Typical thickness 14C age, uncorrected (in meters) (years B.P.) Overburden Mud 7 0 to >3,500 Upper Salt 15 >3,500 to 10,500 Parting Mud 4 10,500 to 24,000 Lower Salt 12 24,000 to 32,500 Bottom Mud 30 32,500 to 130,000 Mixed Layer 200+ > 130,000 (The age of 130,000 years for the Mixed Layer is based on extrapolated sedimentation rates.) The Lower Salt is subdivided into seven salt units (S-l to S-7) and six mud units (M-2 to M-7), the Mixed Layer into six units (A to F). For each

  3. Improved age modelling and high-precision age estimates of late Quaternary tephras, for accurate palaeoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Blockley, Simon P. E.; Bronk Ramsey, C.; Pyle, D. M.

    2008-10-01

    The role of tephrochronology, as a dating and stratigraphic tool, in precise palaeoclimate and environmental reconstruction, has expanded significantly in recent years. The power of tephrochronology rests on the fact that a tephra layer can stratigraphically link records at the resolution of as little as a few years, and that the most precise age for a particular tephra can be imported into any site where it is found. In order to maximise the potential of tephras for this purpose it is necessary to have the most precise and robustly tested age estimate possible available for key tephras. Given the varying number and quality of dates associated with different tephras it is important to be able to build age models to test competing tephra dates. Recent advances in Bayesian age modelling of dates in sequence have radically extended our ability to build such stratigraphic age models. As an example of the potential here we use Bayesian methods, now widely applied, to examine the dating of some key Late Quaternary tephras from Italy. These are: the Agnano Monte Spina Tephra (AMST), the Neapolitan Yellow Tuff (NYT) and the Agnano Pomici Principali (APP), and all of them have multiple estimates of their true age. Further, we use the Bayesian approaches to generate a revised mixed radiocarbon/varve chronology for the important Lateglacial section of the Lago Grande Monticchio record, as a further illustration of what can be achieved by a Bayesian approach. With all three tephras we were able to produce viable model ages for the tephra, validate the proposed 40Ar/ 39Ar age ranges for these tephras, and provide relatively high precision age models. The results of the Bayesian integration of dating and stratigraphic information, suggest that the current best 95% confidence calendar age estimates for the AMST are 4690-4300 cal BP, the NYT 14320-13900 cal BP, and the APP 12380-12140 cal BP.

  4. High precision thorium-230 ages of corals and the timing of sea level fluctuations in the late Quaternary

    SciTech Connect

    Edwards, R.L.

    1988-01-01

    Mass spectrometric techniques for the measurement of {sup 230}Th and {sup 234}U have been developed. These techniques have made it possible to reduce the analytical errors in {sup 230}Th dating of corals using very small samples (10{sup 7} to 10{sup 10} atoms). The time range over which useful data on corals can now be obtained ranges from 15 to 500,000 years. For young corals, this approach may be preferable to {sup 14}C dating. The precision with which the age of a coral can not be determined makes it possible to determine the timing of sea level fluctuations in the late Quaternary. Analyses of a number of corals that grew during the last interglacial period yield ages of 122 to 130 ky. The ages coincide with or slightly postdate the summer solar insolation high at 65{degree}N latitude, which occurred 128 ky ago. This supports the idea that changes in Pleistocene climate can be the result of orbital forcing. Coral ages may allow us to resolve the ages of individual coseismic uplift events and thereby date prehistoric earthquakes. This possibility has been examined at two localities, northwest Santo Island and north Malekula Island, Vanuatu. The {sup 230}Th growth dates of the surfaces of adjacent emerged coral heads, collected from the same elevation on northwest Santo Island, were, within analytical error, identical (A.D. 1866 {plus minus} 4 and A.D. 1864 {plus minus} 4). This indicates that the corals died at the same time and is consistent with the idea that they were killed by coseismic uplift. Similar adjacent coral heads on north Malekula Island yielded {sup 230}Th growth dates of A.D. 1729 {plus minus} 3 and A.D. 1718 {plus minus} 5. The ages are similar but analytically distinguishable. The difference may be due to erosion of the outer, younger, portion of the latter coral head.

  5. Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet

    USGS Publications Warehouse

    Gold, R.D.; Cowgill, E.; Arrowsmith, J.R.; Chen, X.; Sharp, W.D.; Cooper, K.M.; Wang, X.-F.

    2011-01-01

    The active, left-lateral Altyn Tagh fault defines the northwestern margin of the Tibetan Plateau in western China. To clarify late Quaternary temporal and spatial variations in slip rate along the central portion of this fault system (85??-90??E), we have more than doubled the number of dated offset markers along the central Altyn Tagh fault. In particular, we determined offset-age relations for seven left-laterally faulted terrace risers at three sites (Kelutelage, Yukuang, and Keke Qiapu) spanning a 140-km-long fault reach by integrating surficial geologic mapping, topographic surveys (total station and tripod-light detection and ranging [T-LiDAR]), and geochronology (radiocarbon dating of organic samples, 230Th/U dating of pedogenic carbonate coatings on buried clasts, and terrestrial cosmogenic radionuclide exposure age dating applied to quartz-rich gravels). At Kelutelage, which is the westernmost site (37.72??N, 86.67??E), two faulted terrace risers are offset 58 ?? 3 m and 48 ?? 4 m, and formed at 6.2-6.1 ka and 5.9-3.7 ka, respectively. At the Yukuang site (38.00??N, 87.87??E), four faulted terrace risers are offset 92 ?? 12 m, 68 ?? 6 m, 55 ?? 13 m, and 59 ?? 9 m and formed at 24.2-9.5 ka, 6.4-5.0 ka, 5.1-3.9 ka, and 24.2-6.4 ka, respectively. At the easternmost site, Keke Qiapu (38.08??N, 88.12??E), a faulted terrace riser is offset 33 ?? 6 m and has an age of 17.1-2.2 ka. The displacement-age relationships derived from these markers can be satisfied by an approximately uniform slip rate of 8-12 mm/yr. However, additional analysis is required to test how much temporal variability in slip rate is permitted by this data set. ?? 2011 Geological Society of America.

  6. Provenance of the Late Quaternary sediments in the Andaman Sea: Implications for monsoon variability and ocean circulation

    NASA Astrophysics Data System (ADS)

    Awasthi, Neeraj; Ray, Jyotiranjan S.; Singh, Ashutosh K.; Band, Shraddha T.; Rai, Vinai K.

    2014-10-01

    present a geochemical and Sr-Nd isotopic study on a sediment core collected from the Andaman Sea in an attempt to reconstruct the Late Quaternary weathering and erosion patterns in the watersheds of the river systems of Myanmar and understand their controlling factors. Age control is based on nine radiocarbon dates and δ18O stratigraphy. The rate of sedimentation was strongly controlled by fluctuations of the monsoon. We identify three major sediment provenances: (1) the Irrawaddy catchment, (2) the western slopes of the Indo-Burman-Arakan (IBA) mountain ranges and the Andaman Islands, and (3) the catchments of Salween and Sittang and the Bengal shelf, with the first two contributing 30-60% of the material. Enhanced contributions from juvenile sources and corresponding positive shifts of δ18O are observed at seven time periods (11-14, 20-23, 36, 45, 53, 57, and 62 ka) of which five are synchronous with cooling of the northern hemisphere, suggesting a link between the changes in sediment provenances and the shifting of the locus of the summer monsoon, southward from the Himalayas, without substantial reduction in intensity. Our data, and that from other cores in the region suggest that an eastward moving surface current disperses sediments, derived from the Bengal shelf and western margin of Myanmar, from the eastern Bay of Bengal into the western Andaman Sea and that its strength has increased since the LGM. The existence of this current during the LGM implies that the Andaman Sea and the Bay of Bengal were well connected during the last glacial period.

  7. Late Quaternary chronostratigraphic framework of terraces and alluvium along the lower Ohio River, southwestern Indiana and western Kentucky, USA

    USGS Publications Warehouse

    Counts, Ronald C.; Murari, Madhav K.; Owen, Lewis A.; Mahan, Shannon; Greenan, Michele

    2015-01-01

    The lower Ohio River valley is a terraced fluvial landscape that has been profoundly influenced by Quaternary climate change and glaciation. A modern Quaternary chronostratigraphic framework was developed for the lower Ohio River valley using optically stimulated luminescence (OSL) dating and allostratigraphic mapping to gain insights into the nature of fluvial responses to glacial–interglacial/stadial–interstadial transitions and Holocene climate change. River deposits, T0 (youngest) to T7 (oldest), were mapped along a 75 km reach of the lower Ohio River and were dated using 46 OSL and 5 radiocarbon samples. The examination of cores combined with OSL and radiocarbon dating shows that fluvial sediments older than marine oxygen isotope stage (MIS) 2 are present only in the subsurface. Aggradation during MIS 6 (Illinoian glaciation) filled the valley to within ∼7 m of the modern floodplain, and by ∼114 ka (MIS 5e/Sangamon interglacial) the Ohio River had scoured the MIS 6 sediments to ∼22 m below the modern floodplain surface. There were no fluvial sediments in the valley with ages between MIS 5e and the middle of MIS 3. The MIS 3 ages (∼39 ka) and stratigraphic position of T5 deposits suggest the Ohio River aggraded 8–14 m during MIS 4 or MIS 3. Near the end of MIS 3, the Ohio River incised the mid Last Glacial (mid-Wisconsinan) deposits ∼10 m and began aggrading again by ∼30 ka. Aggradation continued into MIS 2, with maximum MIS 2 aggradation occurring before ∼21 ka, which is coincident with the global Last Glacial Maximum (LGM). As the Ohio River adjusted to changing fluxes in sediment load and discharge following the LGM, it formed a sequence of fill-cut terraces in the MIS 2 outwash that get progressively younger with decreasing elevation, ranging in age from ∼21 ka to ∼13 ka. From ∼14 ka to ∼13 ka the Ohio River rapidly incised ∼3 m to form a new terrace, and by ∼12 ka at the onset of the Holocene, the Ohio River

  8. Paleomagnetism and rock magnetism of Quaternary volcanic rocks and Late Paleozoic strata, VC-1 core hole, Valles Caldera, New Mexico, with emphasis on remagnetization of Late Paleozoic strata

    NASA Astrophysics Data System (ADS)

    Geissman, John W.

    1988-06-01

    Paleomagnetic and rock magnetic data obtained from azimuthally unoriented core samples, collected at approximately 1- to 3-m intervals, of Continental Scientific Drilling Program core hole VC-1 have prompted reinterpretations of the Quaternary volcanic stratigraphy intersected by the bore and have aided in evaluating the thermal regime within late Paleozoic strata attending fluid circulation and mineral deposition during and after development of the Toledo and Valles calderas. The results from Quaternary units (Banco Bonito Obsidian: I = +35.4°, a95 = 2.8° (inclination only determinations), n = 33; Battleship Rock Tuff: D = 359.6°, I = +42.4°, a95 = 2.8°, n = 5 site means (surface sites); VC-1 Rhyolite: I = +39.2°, a95 = 12.8°, n = 7; Upper VC-1 Tuff: I = +37.2°, a95 = 10.7°, n = 13; Middle VC-1 Tuff: I = +42.1°, a95 = 2.1°, n = 39; South Mountain Rhyolite: D = 350.9°, I = +49.9°, a95 = 3.4°, n = 10 (one surface site)) are consistent with isotopic age data, indicating that the entire moat volcanic sequence intersected is less than 650 kyr. Monitoring of natural remanent magnetization (NRM) intensity, NRM directions, directions of magnetizations isolated during progressive demagnetization, median destructive forces, and rock magnetization parameters has identified systematic variations within the thick Banco Bonito Obsidian and VC-1 Tuff units. The Permian Abo Formation, Pennsylvanian to earliest Permian Madera Limestone, and Pennsylvanian Sandia Formation typically contain a moderate positive inclination magnetization component (Abo Formation: I = +52.2°, a95 = 7.4°, n = 16; Madera Limestone: I = +58.4°, a95 = 2.8°, n = 105; Sandia Formation: I = +53.9°, a95 = 4.8°, n = 21); when residing in magnetite, it is usually unblocked in the laboratory by 350°C; when carried by hematite it is unblocked by 550°C. A moderate negative inclination (e.g., Madera and Abo strata: D = 173.1°, I = -46.6°, a95 = 5.5°; n = 47 samples; assuming a north seeking

  9. Late Quaternary paleoclimate from the sedimentary facies analysis of nine gravity cores at the Lake Hovsgol in northern Mongolia

    NASA Astrophysics Data System (ADS)

    Cheong, D.; Shin, S.

    2008-12-01

    Twenty gravity cores have been collected from Lake Hovsgol in northern Mongolia. The nine gravity cores were scrutinized to interpret the late Quaternary paleoclimate in terms of sedimentary facies. Sedimentary texture including grain size variation, sedimentary structures, mineral composition, microfossils, bulk color index by spectrophotometer, and age dating by A.M.S radiocarbon are analyzed from the core sediments of the lake bottom. Sedimentary facies of the lake sediments are divided into total 12 facies as 8 Pleistocene facies and 4 Holocene faices. Md Facies was accumulated by high primary productivity at Holocene because of input of much organic nutrient from the surrounding soil. Mld Facies was characterized by black lamination indicating a lake level rise or highstand at early Holocene. Sp Facies was accumulated by plant-rich fine sand and mud at early Holocene, which was accumulated in the coastal swampy environment accompanied with a lake level rise. Sl Facies is alternation of finely laminated fine sand and mud at late Holocene. Mwl Facies is weakly laminated mud at the late deglacial time. Swl Facies was accumulated at the deglacial period. During the period sand was supplied at the early stage and mud was accumulated later reflecting increasing temperature and precipitation. Ml Facies is well laminated sandy mud of the deglacial time. Msl Facies is structureless fine sandy mud at LGM. Sr Facies is also LGM sediment, when the lake level was lower 100 m than that of the present. Sr Facies is sand and mud rhythmite containing lots of sand size particles. Cr Facies is silt and clay rhythmite similar to Sr Facies. Mp Facies is plant-rich fine sand and mud at LGM. Mt Facies is fine sand and mud turbidite accumulated on a steep slope of the lake shore at LGM. The Lake Hovsgol level at LGM was 100m below than the present level and was a small closed lake that stratification was not formed. Coarse sediments were transported with ice sheet, and were

  10. Episodic speleothem deposition in Ireland during the late Quaternary; implications for Greenland ice core chronology and British-Irish Ice Sheet dynamics

    NASA Astrophysics Data System (ADS)

    McDermott, Frank; Fankhauser, Adelheid

    2016-04-01

    In shallow caves, episodes of speleothem deposition during the late Quaternary, constrained by U-series dates, provide unequivocal evidence for periods of climate amelioration (presence of liquid water, elevated soil pCO2). U-series data for speleothems from several cave systems in Ireland (Crag, Ballynamintra and Marble Arch) provide clear evidence for episodic speleothem deposition, ranging in age from Marine Isotope Stage (MIS) 7 to the Last Glacial Termination. Speleothem deposition and non-depositional phases within these caves are particularly sensitive to regional-scale climatic conditions, reflecting Ireland's mid-latitudinal, Atlantic margin location. Currently, the earliest dated speleothems from the region are sparsely preserved and thin MIS 7 and MIS 5 flowstones from Ballynamintra and Crag caves respectively. Relatively short-lived depositional phases also occurred at Crag cave during MIS4 and MIS3 and are coeval with the Greenland Interstadials (GI), supporting the recently modified GICC05 Greenland ice core chronology (Buizert et al., 2015), and new providing evidence for synchronous or nearly-synchronous climate amelioration in the N. hemisphere mid- and high-latitudes during the GI events. On the other hand, there is strong evidence that conditions at Crag cave site during stadials and the Heinrich stadials were not conducive to speleothem deposition. Episodes of non-deposition occur synchronously in several speleothems from Crag cave, providing independent constraints on the timing of Heinrich stadials HS-6 to HS-2. The new data also provide independent new insights into the behaviour of the British Irish Ice Sheet (BIIS) during MIS2. In this regard, the presence of a short depositional pulse at 23.35 ± 0.1 ka at Crag cave coincides precisely with the weak and short-lived GI2.2 event within MIS 2, suggesting a dynamic BIIS margin. Simple conductive thermal models for the propagation of surface air temperatures through the limestone karst

  11. A 200,000-year record of late Quaternary Aeolian sedimentation on the Southern High Plains and nearby Pecos River Valley, USA

    NASA Astrophysics Data System (ADS)

    Rich, J.; Stokes, S.

    2011-03-01

    Presently stabilized Southern High Plains (SHP) dune systems have been repeatedly re-activated during the past 200,000 years, providing an archive of environmental and related climatic change for the late Quaternary. Our data set of 38 optically dated samples from four different localities identifies eolian activity from late-middle Pleistocene to the historic period. Oldest eolian sediments are from the Blackwater Draw Formation and indicate accretion during late-middle to late Pleistocene. Younger sediments dating from the later Pleistocene through the Holocene are found in the Muleshoe, Lea-Yoakum, Mescalero, and Monahans dunes that overlie the Blackwater Draw Formation. Muleshoe dunes accreted during the Late Pleistocene between 31 ± 3 and 27 ± 2 ka, while Holocene deposition transpired 7.5 ± 0.4, 4.0 ± 0.7 ka through 3.6 ± 0.4 ka, and between 1.3 ± 0.2 and 1.1 ± 0.1 ka. A period of dune building for Lea-Yoakum dune sediments occurred during the late Pleistocene (48 ± 5 ka), and the later Holocene (3.6 ± 0.4 ka). Mescalero and Monahans dunes were accreting during the later Pleistocene between 29 ± 3 and 22 ± 2 ka followed by a sequence of eolian sand deposited ca. 15 ka. Holocene eolian sedimentation for the Mescalero and Monahans dunes occurred 7.5 ± 0.8, 5.1 ± 0.5, 4.3 ± 0.4, and 2.0 ± 0.3 ka. Historic eolian deposition is identifiable in the dune chronology with multiple optical age estimates overlapping established drought events recorded ca. 1890, 1910, 1920, and during the 1930's when the North American "Dust Bowl" transpired. These Quaternary eolian deposits mantling the Southern High Plains are an important component of the surficial material of the region and provide a rich archive of past climatic change.

  12. Evaluating the timing of late Quaternary geomorphodynamics and soil formation: a review of geochronological data from northeastern Germany

    NASA Astrophysics Data System (ADS)

    Kappler, Christoph; Kaiser, Knut; Küster, Mathias; Fülling, Alexander; Bens, Oliver; Raab, Thomas

    2016-04-01

    A comprehensive review of late Quaternary terrestrial stratigraphical records from northeastern Germany requires the collection, evaluation and statistical processing of preferably all geochronological data from paleosols and corresponding sediments available so far. Therefore, a database has been established, comprising a multitude of published and unpublished age data. The database regionally covers the entire Weichselian glacial belt ('young morainic' area) and the immediately adjacent Saalian glacial belt ('old morainic' area) of northeastern Germany. The collected ages comprise a time interval of the last c. 50,000 years. More specifically we pursue the following aspects: (1) identification of the spatiotemporal pattern of dated records and their stratigraphical context; (2) dating of certain types of buried paleosols, corresponding sediments and reconstruction of the environmental conditions during soil formation; (3) timing and identification of specific geomorphic processes (triggered by e.g. climate change or land use) which led to burial of former surfaces. We have collected a total of c. 450 radiocarbon datings (AMS, conventional) and c. 400 luminescence datings (OSL, IRSL, TL) from a total of c. 200 sites. Each date is characterised by specific dating attributes (age with standard error, reliability, lab number, dated material) and by further information (e.g. coordinates, stratigraphy, references). Most of the radiocarbon and luminescence data were collected in the 1990s to 2010s. Among the radiocarbon dates charcoal (53 %) and peat (19 %) dominate the dated materials. Holocene ages prevail with a majority within the last 5000 years. Most dated paleosols are developed from peat (Histosols) as well as from glacial and aeolian sands (Arenosols, Podzols). Most luminescence dates come from aeolian (84 %) and colluvial sands (11 %), which are scattered over the whole Lateglacial-Holocene and the Holocene period, respectively. Furthermore, the collected ages

  13. CO2 outburst events in relation to seismicity: Constraints from microscale geochronology, geochemistry of late Quaternary vein carbonates, SW Turkey

    NASA Astrophysics Data System (ADS)

    Ünal-İmer, Ezgi; Uysal, I. Tonguç; Zhao, Jian-Xin; Işık, Veysel; Shulmeister, James; İmer, Ali; Feng, Yue-Xing

    2016-08-01

    calcite veins. Vein calcite formed in fault-induced fractures offers insights into structural features, genetic characterisation of the parental fluids, and late Quaternary degassing of subsurface CO2 accumulations.

  14. Late Quaternary paleomagnetic secular variation, relative paleointensity, and environmental magnetism from Cascade Lake, Brooks Range, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Steen, D. P.; Kaufman, D. S.; Stoner, J. S.; Reilly, B. T.

    2015-12-01

    Two sediment cores from Cascade Lake (68.38°N, 154.60°W), Arctic Alaska were selected for paleomagnetic analysis to compare 14C age control with paleomagnetic secular variation (PSV) and relative paleointensity (RPI) age control derived from field models and other local sedimentary records. Rock magnetic experiments were performed to quantify variability in magnetic properties and to infer sediment sourcing during the late Quaternary. U-channels were studied through AF demagnetization of the natural remanent magnetization, and laboratory-induced magnetizations including anhysteretic remanent magnetization (ARM) acquisition, ARM demagnetization, and isothermal remanent magnetization (IRM). Maximum angular deviation values average <2°, indicating a strong, well-defined characteristic remanent magnetization dominated by a low-coercivity component that increases up core. Average inclinations are within 4° of the expected geocentric axial dipole, and major inclination features can be correlated across the two cores. Correlation of inclination changes with the Burial Lake record, 200 km to the west (Dorfman, 2013, unpub. thesis), indicates that the Cascade Lake sedimentary sequence overlying the basal diamicton likely spans at least 16 ka. Cascade Lake sediments may be suitable for RPI estimation using the ARM or IRM as a normalizer, following a more detailed examination of magnetic properties. A systematic offset between the Cascade Lake 14C chronology and PSV and RPI chronologies wiggle-matched to field models suggests a hard-water effect of ~1000 yr, although we cannot rule out the possibility that at least some of the age offset represents a post-depositional remanent magnetization lock-in effect at Cascade Lake. S-ratios (IRM0.3T/SIRM) and ARM-ratios (ARM/SIRM) show a sharp decrease in low-coercivity material across the transition from clastic sediments to organic-rich sediments, followed by an increase in the concentration of fine-grained magnetic material and

  15. Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Rujian; Xiao, Wenshen; März, Christian; Li, Qianyu

    2013-09-01

    Late Quaternary paleoenvironmental changes in the western Arctic Ocean are revealed by multi-proxy records of core 03M03 from the Chukchi Abyssal Plain (CAP). Proxy parameters include lithology, grain size fractions, and mineralogy and petrology of ice-rafted detritus (IRD), element contents, biogenic components, δ18O, δ13C and Mg/Ca of planktonic foraminifera Neogloboquadrina pachyderma (sin.) (Nps). Seven IRD (> 250 μm) peaks are interpreted as marking detrital input by rafting sea ice or icebergs during MIS 3 interstadials and early MIS 1. High MnO, CaO and MgO contents and high Ca/Al and Mg/Al ratios during MIS 3 and MIS 1 correspond to increases in ice-rafted detrital carbonates and the synchronous declines in siliciclastic elements (e.g., Al2O3, Fe2O3). Therefore, these warmer periods were characterized by a high detrital carbonate input entrained in icebergs from the Canadian Arctic Archipelago coeval with an increased input of Mn through rivers and/or coastal erosion. Relatively stable contents of siliciclastic elements and their ratios in the grayish sediment units are interpreted from turbid surface water plumes or nepheloid flows delivered by meltwater and/or brine rejection from ice-sheet margins at the Arctic Ocean periphery. Relatively stable clay- and silt-sized fractions were attributed mainly to sea ice entrainment over glacial-interglacial cycles. High foraminiferal abundances in the brown units during MIS 3 and 1 are related to enhanced calcareous plankton productivity under more open water conditions and/or the incremental input of Atlantic water masses. Relatively high TOC and opal contents in the grayish units of MIS 3 appear to have accumulated by lateral transport of organic matter from the Chukchi shelf to the deep abyssal plain. Lower contents of biogenic material in the brown units probably result from increased dilution by rapid IRD deposition, and from early diagenetic degradation. Depletions in Nps-δ18O and -δ13C concurrent with

  16. Late Quaternary geomorphic history of a glacial landscape - new sedimentary and chronological data from the Cordillera de Cochabamba (Bolivia)

    NASA Astrophysics Data System (ADS)

    May, J.-H.; Preusser, F.; Zech, R.; Ilgner, J.; Veit, H.

    2009-04-01

    Throughout the Central Andes, glacial landscapes have long been used for the reconstruction of Late Quaternary glaciations and landscape evolution. Much work has focused on the Andes in Peru, Chile and the Bolivian Altiplano, whereas relatively little data has been published on glaciation history in the eastern Andean ranges and slopes. Even less is known with regard to the postglacial evolution of these glacial landscapes. In the Cordillera de Cochabamba (Bolivia), local maximum advances probably peaked around 20-25 ka BP and were followed by significant readvances between ~12-16 ka BP. This generally points to temperature controlled maximum glacial advances along the humid eastern slopes of the Central Andes, which is supported by glacier-climate-modelling studies. However, most studies include only marginal information with regard to the complex geomorphic and sedimentary situation in the Cordillera de Cochabamba. Furthermore, the chronological results are afflicted with several methodological uncertainties inherent to surface exposure dating and call for application of alternative, independent age dating methods. Therefore this study aims at i) documenting and interpreting the complex glacial geomorphology of the Huara Loma valley in the Cordillera de Cochabamba (Bolivia), ii) analyzing the involved units of glacial sediments, and iii) improving the chronological framework by applying optically stimulated luminescence (OSL) and radiocarbon dating (14C). For this purpose, geomorphic mapping was combined with field documentation of sedimentary profiles. The involved sediments were subject to geochemical and mineralogical analysis in order to deduce information on their erosional and weathering histories. In addition, the interpretation of OSL ages from glacial and proglacial sediments integrated several methodological procedures with regard to sample preparation and statistical analysis of the measurements in order to increase the degree of confidence. These

  17. Late Quaternary Sedimentary Records of Core MA01 in the Mendeleev Ridge, the Western Arctic Ocean: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Park, K.; Kim, S.; Khim, B. K.; Wang, R.; Mei, J.; Xiao, W.; Polyak, L. V.

    2014-12-01

    Late Quaternary deep sea sediments in the Arctic Ocean are characterized by brown layers intercalated with yellowish to olive gray layers. It has been known that the brown and gray layers were deposited during interglacial (or interstadial) and glacial (or stadial) periods, respectively. A 5.5-m long gravity core MA01 was obtained from the Mendeleev Ridge in the western Arctic Ocean by R/V Xue Long during scientific cruise CHINARE-V. Age (~1.0 Ma) of core MA01 was tentatively decided by correlation of sediment color cycles, XRF Mn and Ca cycles, and geomagnetic inclinations with core HLY0503-8JPC (Adler et al., 2009) and core HLY0503-06JPC(Cronin et al., 2013) that were also collected from the Mendeleev Ridge area. A total of 23 brown layers are characterized by low L* and b*, high Mn concentration, and abundant foraminifera. In contrast, gray layers are characterized by high L* and b*, low Mn concentration, and few foraminiferal tests. Foraminifera abundance peaks are not well correlated to CaCO3 peaks which are accompanied with the coarse-grained (>63 μm) fractions (i.e., IRD) both in brown and gray layers. A strong positive correlation coefficient (r2=0.89) between TOC content and C/N ratio indicates that the major source of organic matter is terrestrial. The good correlations of CaCO3 content to TOC (r2=0.56) and C/N ratio (r2=0.69) imply that IRDs contain detrital CaCO3 fraction which mainly originated from the Canadian Arctic Archipelago. In addition, high kaolinite/chlorite (K/C) ratios mostly correspond to CaCO3 peaks, also suggesting that the fine-grained particles in the Mendeleev Ridge were transported from the northern coasts of the Alaska and Canada. Thus, the Beaufort Gyre, the predominant surface current in the western Arctic Ocean, has played an important role in the sediment delivery to the Mendeleev Ridge. It is worthy of note that TOC and CaCO3 peaks are obviously distinct in the upper part of core MA01, whereas these peaks are reduced in the

  18. The rio caliente ignimbrite: Analysis of a compound intraplinian ignimbrite from a major late quaternary Mexican eruption

    NASA Astrophysics Data System (ADS)

    Wright, J. V.

    1981-06-01

    The Rio Caliente ignimbrite is a multi-flow unit or compound ignimbrite formed during a major late Quaternary explosive rhyolitic eruption of La Primavera volcano, Mexico. The eruption sequence of the ignimbrite is complex and it occurs between lower and upper plinian air-fall deposits. It is, therefore, an intraplinian ignimbrite. Air-fall layers, pyroclastic surge, mudflow and fluviatile reworked pumice deposits also occur interbedded between ignimbrite flow units. A chaotic near-vent facies of the ignimbrite includes co-ignimbrite lag breccias segregated from proximal pumice flows. The facies locates a central vent but one which could not have been associated with a well defined edifice. Many of the lithics in the exposed lag breccias and near-vent facies of the ignimbrite appear to be fragments of welded Rio Caliente ignimbrite, and indicate considerable vent widening, or migration, during the eruption. Nearer vent the ignimbrite is thickest and composed of the largest number of flow units. Here it is welded and is a simple cooling unit. Evidence suggests that it was only the larger thicker pumice flows that escaped to the outer parts of the sheet. Detailed analysis of four flow units indicates that the pumice flows were generally poorly expanded, less mobile flows which would be produced by collapse of low eruption columns. The analogy of a compound ignimbrite with a compound lava flow is, therefore, good — a compound lava flow forms instead of a simple one when the volumetric discharge rate (or intensity) is low, and in explosive eruptions this predicts lower eruption column heights. A corollary is that the ignimbrite has a high aspect ratio. The complex eruption sequence shows the reinstatement of plinian activity several times during the eruption after column collapse occurred. This, together with erosional breaks and evidence that solidified fragments of already welded ignimbrite were re-ejected, all suggest the eruption lasted a relatively significant

  19. Ramiform aggregates in ash-fall deposits of Late Quaternary rhyolitic eruptions from Acigol Complex, central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Ersoy, Orkun; Şen, Erdal; Atıcı, Gökhan; Aydar, Erkan; Tatar, Ä.°Lkan; Hamdi Ćelik, H.

    2010-05-01

    Direct observations have shown that most fine-grained particles fall from volcanic plumes as aggregates (Gilbert and Lane, 1994). For instance, fine-ash particles up to 50 µm fell mainly as aggregates from Vulcanian explosions and co-pyroclastic flow plumes from dome collapses in the eruption of Soufriére Hills Volcano, Montserrat, during the 1995-1999 period (Bonadonna et al., 2002a). Aggregation is a major influence on tephra fallout and on the characteristics of the associated deposits causing premature fallout of fine particles as responsible for polymodal grain-size distributions (Carey and Sigurdsson, 1982; Brazier et al., 1983; Bonadonna et al., 2002a) and anomalous thicknesses of deposits (Carey and Sigurdsson, 1982; Hildreth and Drake, 1992; Bonadonna et al., 2002b). Careful investigation of different types of ash aggregates is important for interpretation of the origin of pyroclastic deposits which can be critically important in hazard assessments (Brown et al., 2010). Therefore, incorporation of ash aggregates into simulations and numerical modelling for hazard assessments are crucial. However, too little is known about the dynamics of aggregation (Gilbert and Lane, 1994; Bonadonna et al., 2002b) therefore detailed studies on ash aggregates may improve the results of modelling and enable interpretations to be made of atmospheric conditions within past eruption plumes (Gilbert and Lane, 1994). We found a new type aggregate in ash-fall deposits of Late Quaternary rhyolitic explosions from Acigol Complex, Central Anatolia, Turkey. This type of aggregate has not been described previously. They resemble to the cylindrical aggregates which were reported by Scolamacchia et al. (2005) for the first time in the volcanological literature. However, our new type aggregates are in ramiform with branches interconnecting to a main tubular void on the long axis of the aggregates. The main voids have maximum diameter of 1 mm. The branches are tubular voids having

  20. Seismic facies analysis of shallowly buried channels, New Jersey continental shelf: understanding late Quaternary paleoenvironments during the last transgression

    NASA Astrophysics Data System (ADS)

    Nordfjord, S.; Goff, J. A.; Austin, J. A.; Gulick, S. P.; Sommerfield, C.; Alexander, C.; Schock, S.

    2004-12-01

    We are investigating the late Quaternary sedimentary record of the New Jersey mid-outer continental shelf using deep-towed chirp sonar (1-4 kHz and 1-15 kHz) profiles, coupled with lithologic and chronostratigraphic control from long sediment cores collected using the DOSECC AHC-800 drilling system. We have seismically mapped extensive, shallowly buried, dendritic drainage systems. Observed seismic facies distributions suggest the complex nature of channel fills, and synthetic seismograms derived from MST logs enable us to correlate the chirp data to changes in lithology and physical properties of the cored samples, including channel fills, confirming that fine-grained material is transparent seismically, while interbedded sand and mud produce laminated reflections. We suggest that these channels probably formed during shelfal exposure coincident with the last glacial lowstand along this margin. Observed seismic facies superposition within valley fills is in part consistent with a tripartite zonation derived from wave-dominated estuary models. We have mapped four main facies within these dendritic incised valleys: (1) The lower facies, SF1, consists of a high-amplitude chaotic configuration. We interpret this facies as lowstand fluvial fill; (2) Overlying facies SF2 is generally a thin layer (<1-2m) of stratified, high amplitude reflectors in valley axes. This facies is characterized by small wedges along channel flanks, with a generally transparent acoustic response, but occasionally also by internal clinoforms. This facies could have been deposited as transgression began, by backfilling of valleys (bayhead delta? aggradational alluvial deposits?); (3) SF3 is generally transparent; subtle horizontal and parallel reflectors onlap channel flanks. We interpret this facies as representing central basin/bay deposits, a low-energy zones during the transgression, perhaps related to turbidity maxima; (4) SF4 is observed only in the seaward end of the valley. This facies

  1. Large-scale avulsion of the late Quaternary Sutlej river in the NW Indo-Gangetic foreland basin

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Gupta, Sanjeev; Sinha, Rajiv; Carter, Andrew; Thomsen, Kristina J.; Mark, Darren F.; Buylaert, Jan-Pieter; Mason, Philippa J.; Murray, Andrew S.; Jain, Mayank; Paul, Debajyoti

    2015-04-01

    River avulsions are important processes in the spatial evolution of river systems in tectonically active sedimentary basins as they govern large-scale patterns of sediment routing. However, the pattern and timing of avulsions in large river systems are poorly documented and not well understood. Here we document late Quaternary paleo-river channel changes in the Indo-Gangetic basin of northwest India. Using a combination of satellite remote sensing and detailed sediment coring, we analyse the large-scale planform geometry, and detailed sedimentary and stratigraphic nature of a major fluvial sedimentary deposit in the shallow subsurface. This sediment body records aggradation of multiple fluvial channel fills. Satellite remote sensing analysis indicates the trace of the buried channel complex and demonstrates that it exists in region of the Himalayan foreland where no major rivers are currently present. Thus it records the former drainage pathway of a major river, which has since been diverted. We use optically stimulated luminescence dating techniques to develop an age model for the stratigraphic succession and hence constrain the timing of river channel existence and diversion. Provenance analysis based on U-Pb dating of detrital zircons and detrital mica Ar-Ar ages indicate sediment sources in the Higher Himalayan Crystalline and Lesser Himalayan Crystalline Series indicating that this paleo-river channel system formed a major perennial river derived from the main body of the Himalaya. Specifically we are able to fingerprint bedrock sources in the catchment of the present-day Sutlej river indicating that the paleo-fluvial system represents the former course of the Sutlej river prior to a major nodal avulsion to its present day course. Our results indicate that on geologically relatively short time-scales, we observe dramatic along strike shifts in the location of major Himalayan rivers. Our sediment records when combined with high-resolution dating and

  2. Integrating conjugative elements as vectors of antibiotic, mercury, and quaternary ammonium compound resistance in marine aquaculture environments.

    PubMed

    Rodríguez-Blanco, Arturo; Lemos, Manuel L; Osorio, Carlos R

    2012-05-01

    The presence of SXT/R391-related integrating conjugative elements (ICEs) in bacterial strains isolated from fish obtained from marine aquaculture environments in 2001 to 2010 in the northwestern Iberian Peninsula was studied. ICEs were detected in 12 strains taxonomically related to Vibrio scophthalmi (3 strains), Vibrio splendidus (5 strains), Vibrio alginolyticus (1 strain), Shewanella haliotis (1 strain), and Enterovibrio nigricans (2 strains), broadening the known host range able to harbor SXT/R391-like ICEs. Variable DNA regions, which confer element-specific properties to ICEs of this family, were characterized. One of the ICEs encoded antibiotic resistance functions in variable region III, consisting of a tetracycline resistance locus. Interestingly, hot spot 4 included genes providing resistance to rifampin (ICEVspPor2 and ICEValPor1) and quaternary ammonium compounds (QACs) (ICEEniSpa1), and variable region IV included a mercury resistance operon (ICEVspSpa1 and ICEEniSpa1). The S exclusion group was more represented than the R exclusion group, accounting for two-thirds of the total ICEs. Mating experiments allowed ICE mobilization to Escherichia coli strains, showing the corresponding transconjugants' rifampin, mercury, and QAC resistance. These results show the first evidence of ICEs providing rifampin and QAC resistances, suggesting that these mobile genetic elements contribute to the dissemination of antimicrobial, heavy metal, and QAC resistance determinants in aquaculture environments.

  3. A fluvial terrace record of late Quaternary folding rate of the Anjihai anticline in the northern piedmont of Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Li, Sheng-Hua; Li, Bo; Fu, Bihong

    2017-02-01

    Crustal shortening of the Tian Shan Range in northwest China has largely been accommodated by fold-and-thrust belts that mark the northern and southern mountain boundaries, which were formed during the basinward propagation of the deformation front of Tian Shan. Investigating the deformation rates of active folds (anticlines) in the mountain piedmonts within different timescales is important for understanding the mountain building and front propagation processes of the Tian Shan. In this study, we investigate the late Quaternary folding rate of the Anjihai anticline, one of the major anticlines in the northern piedmont of Tian Shan. Our study is based on optically stimulated luminescence (OSL) dating and topographic measurements of folded river terraces. Three well-preserved fluvial terraces across the Anjihai anticline were identified and dated to be 3.6 ± 0.1 ka, 9.0 ± 0.6 ka and 53.3 ± 2.2 ka, respectively. These terrace ages are combined with shortening and uplift of the terraces estimated using an area-conservation method and the terrace height profiles to evaluate the average shortening and uplift rates. Our results show that the minimum shortening rate of the Anjihai anticline is 0.4 mm/a between 53 ka and 9 ka and 1.1 mm/a over the past 9 ka, and the corresponding minimum uplift rates are 0.5 mm/a and 1.4 mm/a, respectively. If a local sedimentation rate of 0.3 mm/a is taken into consideration, the shortening rate is 0.7 mm/a between 53 ka and 9 ka and 1.3 mm/a since 9 ka, and the corresponding uplift rates are 0.8 mm/a and 1.5 mm/a, respectively. These data suggest that the Anjihai anticline has accommodated 20-25% of the total shortening across the whole eastern Tian Shan ( 5 mm/a) in the Holocene. Our results suggest that the Holocene is a relatively tectonically active time interval since the late Pleistocene. The late Quaternary shortening rate of the Anjihai anticline is much higher than its long-term average shortening rate (0.2 mm/a) since its

  4. Reconciling late Quaternary transgressions in the Bohai Sea, China to the global sea level changes, and new linkage of sedimentary records to three astronomical rhythms

    NASA Astrophysics Data System (ADS)

    Yi, Liang

    2013-04-01

    noticeable feature of these coastal sediment variations is the little internal similarity between records compared with high similarity with external forcing indicating that the coastal sediments in the south Bohai Sea integrate different influences from various environmental factors: (1) the grain-size variation represents Asian monsoon intensity which was dominated by both solar insolation (major) and global ice volume (minor) forcing; (2) the magnetic susceptibility indicates river incision processes which were sensitive to orbital tilt with influence from solar insolation; (3) the vegetation coverage responded to global ice volume coupled obliquity changes; and that (4) neither external nor internal factors could dominate the paleoenvironmental evolution on orbital timescales in an independent way, and they are both integrated in a complex pattern. Therefore, combining all of these results, we report those great similarities between regional and global sea-level patterns and the nonlinear interaction and the complex response to driving processes in a coastal evolution. However, all of these studies only used the upper part of cores within marine strata, and the rest containing lacustrine sediment is still in process. Sediment grain size, magnetic susceptibility, color reflectance were finished, and the magnetostratigraphic, environmental magnetism and element analysis are ongoing. More results about high-/low-latitude interaction and relative sea level will be released in three years, and anyone who has interests in cooperation will be welcome (Email: yi.liang82@gmail.com). References Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y., Pillans, B., 1996. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141, 227-236. Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., Wang, X., 2009. Ice Age

  5. Linking glacial melting to Late Quaternary sedimentation in climatically sensitive mountainous catchments of the Mount Chlemos compex, Kalavryta, southern Greece

    NASA Astrophysics Data System (ADS)

    Pope, Richard; Hughes, Philip

    2014-05-01

    Compared to the mountainous areas of northern Greece (e.g. Woodward et al., 2008), the influence of deglaciation cycles on sedimentation in mountainous catchments in southern Greece remains poorly understood due to the poor preservation of small moraines and limited opportunities to date glacial and fluvial sediment dynamics fluvial sediments (Pope, unpublished data). Nevertheless, intriguing new insight into links between glacial cycles and sediment transfer/deposition phases in upland catchments have emerged by applying multiple dating techniques to well-preserved multiple generations of moraines and extensive glacio-fluvial fan systems on Mount Chelmos (2355 m a.s.l.). U-series dating of calcites within proximal fan sediments constrain the earliest phase of glacio-fluvial sedimentation to 490 (±21.0)(ka (MIS 12), while OSL dating of fine sands constrains the deposition of extensive medial glacio-fluvial gravels in (valley we walked down through trees) to between 250.99 (±20.67) and 160.82 (±11.08) ka. By comparison, cosmogenic dating of moraine boulders indicates that three generations of well-preserved moraines in the highest cirque areas date to 31-23 ka, 17-16 ka and 12-11.5 ka. OSL dating also provides ages of 18 and 17 (±11.08) for an extensive glacio-fluvial terrace in a major valley draining the southern flanksof Mount Chelmos. The initial Mount Chelmos geochronology suggests that the earliest and middle phases of glacio-fluvial sedimentation are coincident with the Middle Pleistocene glacial stages stages recorded in the Pindus range (Hughes et al, 2006). These include the Skamnellian (MIS 12) and the Vlasian (MIS 6) Stages as well as other cold stage between these (e.g. MIS 8).Evidence of glacio-fluvial outwash in MIS 8 is interesting since evidence for this in the moraine records has remained elusive although is suggested further north in the Balkans (Hughes et al., 2011). The valley moraines and glacio-fluvial terraces (late MIS 2) post-date the

  6. Disappearance of the last lions and hyenas of Europe in the Late Quaternary - a chain reaction of large mammal prey migration, extinction and human antagonism

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2010-05-01

    In the Eemian to Early/Middle Weichselian (Late Pleistocene), when the Scandinavian and Alpine Glaciers were still small, and northern Germany under mammoth steppe to taiga palaoenvironment conditions, Late Quaternary steppe lions were well distributed in northern to central Germany, whereas generally all over Central Europe bones and rarely articulated skeletons were found less at open air but mainly at cave sites (Diedrich 2007a, 2008a-b, 2009a-b, 2010a-c, k, in review a-b; Diedrich and Rathgeber in review). A similar distribution, but more dense, is reported for the Late Quaternary Ice Age spotted hyenas (Diedrich 2005, 2006, 2007b-c, 2008a, c, 2010f-j, in review c-d, Diedrich and Žák 2006). The last lions of northern Europe were thought to have reached into the final Magdalénan (cf. Musil 1980). This can be not concluded with a restudy of the bone material from the Late Magdalenian (V-VI) Teufelsbrücke stone arch site near Saalfeld (Thuringia, Central Germany) and many other Magdalenian stations (open air and caves) in northern to central Germany (Münsterland Bay, Sauerland Karst, Harz Mountain Karst, Thuringian Karst). None of those sites yield remains of final Upper Pleistocene spotted hyenas or steppe lion bones anymore, nor in the few preserved Late Magdalenian mobile art can those be recognized in those regions. The last lion remains seem to reach into the Aurignacian or possibly into the Early Gravettian (early Late Weichselian) documented especially at the cave bear den, hyena den and overlapping Neandertalian to Modern human camp site Balve Cave (Sauerland Karst, cf. archaeology in Günther 1964) where still a mammoth fauna is documented for that time (Diedrich 2010a). The last and by archaeological layers dated hyena remains were also found in the Balve Cave and are from the Late Middle Palaeolithic cave site reaching a maximum Aurignacian age documenting an overlapping of hyena den and human camp site use (Diedrich 2010a, b). In northern Germany

  7. Late Quaternary changes in bat palaeobiodiversity and palaeobiogeography under climatic and anthropogenic pressure: new insights from Marie-Galante, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Stoetzel, Emmanuelle; Royer, Aurélien; Cochard, David; Lenoble, Arnaud

    2016-07-01

    Data on Lesser Antillean Late Quaternary fossil bat assemblages remains limited, leading to their general exclusion from studies focusing on Caribbean bat palaeobiodiversity and palaeobiogeography. Additionally, the role of climatic versus human pressure driving changes in faunal communities remains poorly understood. Here we describe a fossil bat assemblage from Blanchard Cave on Marie-Galante in the Lesser Antilles, which produced numerous bat remains from a well-dated, stratified context. Our study reveals the occurrence of at least 12 bat species during the Late Pleistocene and Early Holocene on Marie-Galante, whereas only eight species are currently known on the island. Among these 12 species, six are extirpated and one is extinct. Faunal changes within the Blanchard sequence indicate variations in Pleistocene bat species representation in the Lesser Antilles to have been influenced by climatic conditions, with "northern species" (Greater Antilles) favored during glacial conditions and "southern species" (southern Lesser Antilles) during interglacial events. However, few species disappeared at the end of the Late Pleistocene, with most of the extinction/extirpation events occurring during the Holocene. This pattern suggests human activities in the Lesser Antilles to have played a major role in bat turnover during the late Holocene.

  8. Late Paleocene Arctic Ocean shallow-marine temperatures from mollusc stable isotopes

    USGS Publications Warehouse

    Bice, Karen L.; Arthur, Michael A.; Marincovich, Louie

    1996-01-01

    Late Paleocene high-latitude (80°N) Arctic Ocean shallow-marine temperatures are estimated from molluscan δ18O time series. Sampling of individual growth increments of two specimens of the bivalve Camptochlamys alaskensis provides a high-resolution record of shell stable isotope composition. The heavy carbon isotopic values of the specimens support a late Paleocene age for the youngest marine beds of the Prince Creek Formation exposed near Ocean Point, Alaska. The oxygen isotopic composition of regional freshwater runoff is estimated from the mean δ18O value of two freshwater bivalves collected from approximately coeval fluviatile beds. Over a 30 – 34‰ range of salinity, values assumed to represent the tolerance of C. alaskensis, the mean annual shallow-marine temperature recorded by these individuals is between 11° and 22°C. These values could represent maximum estimates of the mean annual temperature because of a possible warm-month bias imposed on the average δ18O value by slowing or cessation of growth in winter months. The amplitude of the molluscan δ18O time series probably records most of the seasonality in shallow-marine temperature. The annual temperature range indicated is approximately 6°C, suggesting very moderate high-latitude marine temperature seasonality during the late Paleocene. On the basis of analogy with modern Chlamys species, C. alaskensis probably inhabited water depths of 30–50 m. The seasonal temperature range derived from δ18O is therefore likely to be damped relative to the full range of annual sea surface temperatures. High-resolution sampling of molluscan shell material across inferred growth bands represents an important proxy record of seasonality of marine and freshwater conditions applicable at any latitude. If applied to other regions and time periods, the approach used here would contribute substantially to the paleoclimate record of seasonality.

  9. High-resolution paleoenvironmental records during the late Quaternary from the marginal seas of East Asia: the intrusion of open-ocean current

    NASA Astrophysics Data System (ADS)

    Kong, G. S.; Kim, S. P.; Choi, H. S.

    2012-04-01

    Four long mud-dominated sediment cores (35m-long YSDP 103, 32m-long SSDP 102, 72m-long SSDP103 and 52m-long SSDP 105) were recovered in the continental shelves of Korea and were examined through the analysis of AMS 14C dating, lithology, organic geochemistry and stable isotopes to reconstruct the paleoenvironmental histories during the late Quaternary. These drill cores acquired from the thick Holocene mud deposits allow us to obtain high-resolution paleoenvironmental records concerning the intrusion of open-ocean warm currents triggered by the last deglacial sea-level rise. Various organic geochemical results (TOC, C/N, C/S, HI, δ13Corg) of core YSDP 103, taken from the southeastern Yellow Sea, showed that terrigenous organic matters were significantly dominant in the southeastern Yellow Sea between 16,600 and 4,300 cal. yr BP probably due to the influence of freshwater derived from an adjacent river and then the dominance of organic matter origin changed to marine type affected by surface primary productivity after 4,300 cal. yr BP. These results may indicate that the marine environment of the southeastern Yellow Sea changed from brackish to a modern-type shelf environment since 4,300 cal. yr BP, implying the intrusion of the open-ocean current. The δ18O values of benthic foraminifer Cibicides lobatulus, however, showed that variation changed from high-amplitude to low-amplitude fluctuations at around 3,500 cal. yr. The time discrepancy of 800 years between organic geochemical proxies and stable isotope proxies is interpreted to reflect that a modern-type shelf environment was not fully developed in the southeastern Yellow Sea until 3,500 cal. yr BP, even though the open-ocean current (Yellow Sea Warm Current) began to flow into the Yellow Sea at 4,300 cal. Yr. BP. The results of core SSDP 102 collected in the Korean Strait reveal that the area experienced 4 stages of environmental change during the last 13,900 cal. yr BP. Occurrence of well-rounded, oxidized

  10. Spotted hyena and steppe lion predation behaviours on cave bears of Europe - ?Late Quaternary cave bear extinction as result of predator stress

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2010-05-01

    Cave bears hibernated in caves all over Eurasia (e.g. Rabeder et al., 2000) including alpine regions using mainly larger caves for this purpose. Late Quaternary spotted hyenas Crocuta crocuta spelaea instead occupied mainly areas close to the cave entrances as their dens (Diedrich and Žák 2006, Diedrich 2010). The largest predator, the steppe lion Panthera leo spelaea was only a sporadic cave dweller (Diedrich 2007b, 2009b). His presence and its remains from caves all over Europe can be recently explained best as result of imported carcasses after killing by their largest antagonists, the Late Quaternary spotted hyenas. In some cases the kill might have happened in the hyena den cave itself during the theft of prey remains by lions (Diedrich 2009a). Another reason of their remains in caves of Europe is the hunting onto the herbivorous cave bears, especially during hibernation times, when megafauna prey was less available in the open environments (Diedrich 2009c). These lion remains from caves of Europe, nearly all of which were from adult animals, provide evidence of active predation by lions onto cave bears even in medium high alpine regions (Diedrich 2009b, in review). Lion skeletons in European cave bear dens were therefore often found amongst originally articulated cave bear skeletons or scattered cave bear remains and even close to their hibernation nests (Diedrich et al. 2009c, in review). Not only lions fed on cave bears documented mainly by the large quantities of chewed, punctured and crushed cave bear long-bones; even damaged skulls reveal that hyenas scavenged primarily on cave bear carcasses which were mainly responsible for the destruction of their carcasses and bones (Diedrich 2005, 2009d). Predation and scavenging on cave bears by the two largest Late Quaternary predators C. c. spelaea and P. l. spelaea explains well the large quantity of fragmented cave bear bones over all European caves in low to medium high mountainous elevations, whereas in

  11. Moderate rates of late Quaternary slip along the northwestern margin of the Basin and Range Province, Surprise Valley fault, northeastern California

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Mahan, Shannon; Lidke, David J.

    2009-01-01

    The 86-km-long Surprise Valley normal fault forms part of the active northwestern margin of the Basin and Range province in northeastern California. We use trench mapping and radiocarbon, luminescence, and tephra dating to estimate displacements and timing of the past five surface-rupturing earthquakes on the central part of the fault near Cedarville. A Bayesian OxCal analysis of timing constraints indicates earthquake times of 18.2 ± 2.6, 10.9 ± 3.2, 8.5 ± 0.5, 5.8 ± 1.5, and 1.2 ± 0.1 ka. These data yield recurrence intervals of 7.3 ± 4.1, 2.5 ± 3.2, 2.7 ± 1.6, and 4.5 ± 1.5 ka and an elapsed time of 1.2 ± 0.1 ka since the latest surface-rupturing earthquake. Our best estimate of latest Quaternary vertical slip rate is 0.6 ?? 0.1 mm/a. This late Quaternary rate is remarkably similar to long-term (8-14 Ma) minimum vertical slip rates (>0.4-0.5 ± 0.3 mm/a) calculated from recently acquired seismic reflection and chronologic and structural data in Surprise Valley and the adjacent Warner Mountains. However, our slip rate yields estimates of extension that are lower than recent campaign GPS determinations by factors of 1.5-4 unless the fault has an unusually shallow (30°-35°) dip as suggested by recently acquired seismic reflection data. Coseismic displacements of 2-4.5 ± 1 m documented in the trench and probable rupture lengths of 53-65 km indicate a history of latest Quaternary earthquakes of M 6.8-7.3 on the central part of the. Surprise Valley fault.

  12. Late Quaternary slip rate of the Owl Lake fault and maximum age of the latest event on the easternmost Garlock fault, S. California

    SciTech Connect

    McGill, S.F. . Dept. of Geological Sciences)

    1993-04-01

    The Owl Lake fault is an active, left-lateral oblique-slip fault in the southwestern Basin and Range province. It intersects the left-lateral Garlock fault in the Quail Mountains and extends about 19 km northeastern toward southern Death Valley. The eastern wall of a channel incised into Late Tertiary or Quaternary fanglomerate north of the fault and into Late Quaternary alluvial fan deposits south of the fault has been offset at least 43 meters left-laterally. This slip estimate is a minimum because of possible erosion of the channel wall upstream from (north of) the fault. If the upstream channel prior to offset was of comparable width to the modern channel, the offset is no more than about 80 m. Organic matter entombed beneath rock varnish on two boulders on the alluvial fan surface into which the channel incised has conventional radiocarbon ages of 29,470 [+-] 270 and 30,820 [+-] 280 years B.P. Abandonment of the fan surface was probably caused by incision of the offset channel, so the channel wall probably has a similar age. This suggests a preliminary left-lateral slip rate of about 1--3 mm/yr for the Owl Lake fault. Fault scarp heights suggest relative uplift of the northwestern side of the fault by at least 1--2 meters and possibly more since deposition of the Late Quaternary fan. At a site in the Avawatz Mountains, within 2 km of the eastern end of the Garlock fault (Leach Lake strand), a terrace riser has been offset 2.7 [+-] 0.6 m left-laterally and 0.2 m south-side-up. This offset probably occurred during the most recent large earthquake on this part of the fault. Organic matter beneath varnish on two cobbles on the upper terrace has conventional radiocarbon ages of 1,583 [+-] 90 and 1,656 [+-] 88 years B.P. This suggests the most recent slip event occurred after a date of A.D. 150--590. This is significantly older than the maximum age (AD 1490) of the most recent slip event on the central Garlock fault in Searles Valley.

  13. Dating of the late Quaternary volcanic events using Uranium-series technique on travertine deposit: A case study in Ihlara, Central Anatolia Volcanic Province

    NASA Astrophysics Data System (ADS)

    Karabacak, Volkan; Tonguç Uysal, İ.; Ünal-İmer, Ezgi

    2016-04-01

    Dating of late Quaternary volcanism is crucial to understanding of the recent mechanism of crustal deformation and future volcanic explosivity risk of the region. However, radiometric dating of volcanic products has been a major challenge because of high methodological error rate. In most cases, there are difficulties on discrimination of the volcanic lava flow relations in the field. Furthermore, there would be unrecorded and unpreserved volcanoclastic layers by depositional and erosional processes. We present a new method that allows precise dating of late Quaternary volcanic events (in the time range of 0-500,000 years before present) using the Uranium-series technique on travertine mass, which is thought to be controlled by the young volcanism. Since the high pressure CO2 in the spring waters are mobilized during crustal strain cycles and the carbonates are precipitated in the fissures act as conduit for hot springs, thus, travertine deposits provide important information about crustal deformation. In this study we studied Ihlara fissure ridge travertines in the Central Anatolia Volcanic Province. This region is surrounded by many eruption centers (i.e. Hasandaǧı, Acıgöl and Göllüdaǧı) known as the late Quaternary and their widespread volcanoclastic products. Recent studies have suggested at least 11 events at around Acıgöl Caldera for the last 180 ka and 2 events at Hasandaǧı Stratovolcano for the last 30 ka. Active travertine masses around Ihlara deposited from hotwaters, which rise up through deep-penetrated fissures in volcanoclastic products of surrounding volcanoes. Analyses of the joint systems indicate that these vein structures are controlled by the crustal deformation due to young volcanism in the vicinity. Thus, the geological history of Ihlara travertine mass is regarded as a record of surrounding young volcanism. We dated 9 samples from 5 ridge-type travertine masses around Ihlara region. The age distribution indicates that the crustal

  14. Provenance of late Oligocene to quaternary sediments of the Ecuadorian Amazonian foreland basin as inferred from major and trace element geochemistry and Nd-Sr isotopic composition

    NASA Astrophysics Data System (ADS)

    Roddaz, Martin; Christophoul, Frédéric; Burgos Zambrano, José David; Soula, Jean-Claude; Baby, Patrice

    2012-08-01

    Oligocene to Quaternary deposits from the Oriente Amazonian foreland basin (Ecuador and Peru) were analyzed for major and trace element geochemistry (46 and 32 samples respectively) and Nd-Sr isotopic systematics (n = 10). Chemical Index of Alteration values lower than those of other Amazonian foreland basin sediments and scattering along the AK join in the A-CN-K diagram indicate that the Oriente foreland basin has been continuously fed by poorly to moderately weathered sediments having an overall Andesitic composition since the Oligocene. Chemical ratios such as Cr/Th and Th/Sc as well as Eu anomaly and Nd-Sr isotopic compositions indicate that most of the analyzed sediments contained a greater proportion of volcanic arc rock material than the other Amazonian foreland basin sediments. When compared with the older sediments The Quaternary sediments are characterized by a greater contribution of the volcanic arc source. The composition of the sediments deposited in the Ecuadorian Amazonian foreland basin is mainly controlled by geodynamic processes. We suspect the Late Pliocene-Pleistocene subduction of the Carnegie ridge to be responsible for the back arc volcanism feeding the Amazonian foreland with more basic materials. Input of young Ecuadorian volcanic rocks may explain the difference in Sr and Nd isotopic ratios of suspended sediments between the Solimoes and the Madeira rivers.

  15. Size variation in Tachyoryctes splendens (East African mole-rat) and its implications for late Quaternary temperature change in equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Faith, J. Tyler; Patterson, David B.; Blegen, Nick; O'Neill, Chris J.; Marean, Curtis W.; Peppe, Daniel J.; Tryon, Christian A.

    2016-05-01

    This study develops a new proxy for Quaternary temperature change in tropical Africa through analysis of size variation in East African mole-rat (Tachyoryctes splendens). In modern mole-rats, mandibular alveolar length is unrelated to annual precipitation, precipitation seasonality, temperature seasonality, or primary productivity. However, it is inversely correlated with mean annual temperature, in agreement with Bergmann's rule. This relationship is observed at temperatures below ∼17.3 °C, but not at higher temperatures. We apply these observations to late Quaternary mole-rats from Wakondo (∼100 ka) and Kisaaka (∼50 ka) in the Lake Victoria region and Enkapune ya Muto (EYM; ∼7.2-3.2 ka) in Kenya's central rift. The Lake Victoria mole-rats are larger than expected for populations from warm climates typical of the area today, implying cooler temperatures in the past. The magnitude of temperature decline needed to drive the size shift is substantial (∼4-6 °C), similar in magnitude to the degree of change between the Last Glacial Maximum and Holocene, but is consistent with regional temperature records and with scenarios linking equatorial African temperature to northern hemisphere summer insolation. Size changes through time at EYM indicate that rising temperatures during the middle Holocene accompanied and potentially contributed to a decline in Lake Naivasha and expansion of grassland vegetation.

  16. Functional diversity of marine ecosystems after the Late Permian mass extinction event

    NASA Astrophysics Data System (ADS)

    Foster, William J.; Twitchett, Richard J.

    2014-03-01

    The Late Permian mass extinction event about 252 million years ago was the most severe biotic crisis of the past 500 million years and occurred during an episode of global warming. The loss of around two-thirds of marine genera is thought to have had substantial ecological effects, but the overall impacts on the functioning of marine ecosystems and the pattern of marine recovery are uncertain. Here we analyse the fossil occurrences of all known benthic marine invertebrate genera from the Permian and Triassic periods, and assign each to a functional group based on their inferred lifestyle. We show that despite the selective extinction of 62-74% of these genera, all but one functional group persisted through the crisis, indicating that there was no significant loss of functional diversity at the global scale. In addition, only one new mode of life originated in the extinction aftermath. We suggest that Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed. Functional diversity was, however, reduced in particular regions and habitats, such as tropical reefs; at these smaller scales, recovery varied spatially and temporally, probably driven by migration of surviving groups. We find that marine ecosystems did not return to their pre-extinction state, and by the Middle Triassic greater functional evenness is recorded, resulting from the radiation of previously subordinate groups such as motile, epifaunal grazers.

  17. Late Tertiary and Quaternary river systems of the eastern Sahara as mapped on shuttle radar and LANDSAT images

    NASA Technical Reports Server (NTRS)

    Mccauley, J. F.; Breed, C. S.; Schaber, G. G.

    1985-01-01

    SIR-A pictures of the Eastern Sahara show segments of what are interpreted as relics of once major Tertiary and Quaternary stream valleys. These previously unmapped features have a dark to very dark radar response and are generally concealed below a thin cover of flat to slightly undulating deposits, mostly of eolian origin. In most of the 150 pits and trenches we have studied to date, unconsolidated surface deposits range from a few centimeters to about a meter thick. The SIR-A system was able to "see through" this loose, dry material, to a depth of about a meter or two.

  18. Late quaternary distribution of the Cycladophora davisiana radiolarian species: Reflection of possible ventilation of the North Pacific intermediate water during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Matul, A. G.; Abelmann, A.; Gersonde, R.; Nürnberg, D.; Tiedemann, R.; Kruglikova, S. B.

    2015-02-01

    A comparison of micropaleontological data on the distribution of the Cycladophora davisiana radiolarian species in the surface sediment layer and the Late Quaternary sediments from the Subarctic Pacific and Far East marginal seas allowed conclusions concerning the possible conditions and occurrence of intermediate waters during the last glacial maximum. We used the modern data on the C. davisiana species, which is a micro-paleontological indicator of the cold oxygen-rich upper intermediate water mass, which is now forming only in the Sea of Okhotsk. The high amount of C. davisiana in sediments of the last glacial maximum may point to the possible formation and expansion of the ventilated intermediate water in the most part of the Subarctic paleo-Pacific: the Bering Sea, the Sea of Okhotsk, within the NW Gyre, and in the Gulf of Alaska.

  19. Paleomagnetic and paleoenvironmental implications of magnetofossil occurrences in late Miocene marine sediments from the Guadalquivir Basin, SW Spain

    PubMed Central

    Larrasoaña, Juan C.; Liu, Qingsong; Hu, Pengxiang; Roberts, Andrew P.; Mata, Pilar; Civis, Jorge; Sierro, Francisco J.; Pérez-Asensio, José N.

    2014-01-01

    Although recent studies have revealed more widespread occurrences of magnetofossils in pre-Quaternary sediments than have been previously reported, their significance for paleomagnetic and paleoenvironmental studies is not fully understood. We present a paleo- and rock-magnetic study of late Miocene marine sediments recovered from the Guadalquivir Basin (SW Spain). Well-defined paleomagnetic directions provide a robust magnetostratigraphic chronology for the two studied sediment cores. Rock magnetic results indicate the dominance of intact magnetosome chains throughout the studied sediments. These results provide a link between the highest-quality paleomagnetic directions and higher magnetofossil abundances. We interpret that bacterial magnetite formed in the surface sediment mixed layer and that these magnetic particles gave rise to a paleomagnetic signal in the same way as detrital grains. They, therefore, carry a magnetization that is essentially identical to a post-depositional remanent magnetization, which we term a bio-depositional remanent magnetization. Some studied polarity reversals record paleomagnetic directions with an apparent 60–70 kyr recording delay. Magnetofossils in these cases are interpreted to carry a biogeochemical remanent magnetization that is locked in at greater depth in the sediment column. A sharp decrease in magnetofossil abundance toward the middle of the studied boreholes coincides broadly with a major rise in sediment accumulation rates near the onset of the Messinian salinity crisis (MSC), an event caused by interruption of the connection between the Mediterranean Sea and the Atlantic Ocean. This correlation appears to have resulted from dilution of magnetofossils by enhanced terrigenous inputs that were driven, in turn, by sedimentary changes triggered in the basin at the onset of the MSC. Our results highlight the importance of magnetofossils as carriers of high-quality paleomagnetic and paleoenvironmental signals even in

  20. Regression-transgression cycles of paleolakes in the Fen River Graben Basin during the mid to late Quaternary and their tectonic implication

    NASA Astrophysics Data System (ADS)

    Chen, Meijun; Hu, Xiaomeng

    2016-12-01

    An investigation into lake terraces and their sedimentary features in the Fen River Graben Basin shows that several paleolake regression-transgression cycles took place during the mid to late Quaternary. The horizontal distribution of the lowest loess/paleosol unit overlying each lake terrace indicates the occurrence of four rapid lake regressions when paleosols S8, S5, S2, and S1 began to develop. The horizontal distribution of the topmost loess/ paleosol unit underlying the lacustrine sediment in each transition zone between two adjacent terraces indicates that following a lake regression, a very slow lake transgression occurred. The durations of three lake transgressions correspond to those of the deposition or development of loess/paleosols L8 to L6, L5 to L3, and L2. It is thereby inferred that regional tectonic movement is likely the primary factor resulting in the cyclical process of paleolake regressions and transgressions. Taking these findings along with published geophysical research results regarding the upper mantle movements underneath the graben basin into account, this paper deduces that a cause and effect relationship may exist between the paleolake regressiontransgression cycles and the tectonic activity in the upper mantle. The occurrence of a rapid lake regression implies that the upwelling of the upper mantle underneath the graben basin may be dominant and resulting in a rapid uplifting of the basin floor. The subsequent slow lake transgression implies that the thinning of the crust and cooling of the warm mantle material underneath the graben basin may become dominant causing the basin floor to subside slowly. Four rapid paleolake regressions indicate that four episodic tectonic movements took place in the graben basin during the mid to late Quaternary.

  1. Subsurface geology of the late Tertiary and Quaternary water-bearing deposits of the southern part of the San Joaquin Valley, California

    USGS Publications Warehouse

    Croft, M.G.

    1972-01-01

    The study area, which includes about 5,000 square miles of the southern part of the San Joaquin Valley, is a broad structural trough of mostly interior drainage. The Sierra Nevada on the east is composed of consolidated igneous and metamorphic rocks of pre-Tertiary age. The surface of these rocks slopes 4?-6? southwestward from the foothills and underlies the valley. The Coast Ranges on the west consist mostly of complexly folded and faulted consolidated marine and nonmarine sedimentary rocks of Jurassic, Cretaceous, and Tertiary age, which dip eastward and overlie the basement complex. Unconsolidated deposits, of late Pliocene to Holocene age, blanket the underlying consolidated rocks in the valley and are the source of most of the fresh ground water. The unconsolidated deposits, the subject of this report, are divided into informal stratigraphic units on the basis of source of sediment, environment of deposition, and texture. Flood-basin, lacustrine, and marsh deposits are fine grained and underlie the valley trough. They range in age from late Pliocene to Holocene. These deposits, consisting of nearly impermeable gypsiferous fine sand, silt, and clay, are more than 3,000 feet thick beneath parts of Tulare Lake bed. In other parts of the trough, flood-basin, lacustrine, and marsh deposits branch into clayey or silty clay tongues designated by the letter symbols A to F. Three of these tongues, the E, C, and A clays, lie beneath large areas of the southern part of the valley. The E clay includes the Corcoran Clay Member of the Tulare Formation, the most extensive hydrologic confining layer in the valley. The E clay underlies about 3,500 square miles of bottom land and western slopes. The beds generally are dark-greenish-gray mostly diatomaceous silty clay of Pleistocene age. Marginally, the unit bifurcates into an upper and a lower stratum that contains thin beds of moderately yellowish-brown silt and sand. The E clay is warped into broad, gentle northwesterly

  2. Molecular signals for late Tertiary/early Quaternary range splits of an Eurasian steppe plant: Clausia aprica (Brassicaceae).

    PubMed

    Franzke, A; Hurka, H; Janssen, D; Neuffer, B; Friesen, N; Markov, M; Mummenhoff, K

    2004-09-01

    Several vegetation belts stretch continuously from Europe to Asia, taiga and steppe being most prominent. Numerous plant species within these belts share a conspicuous distribution area, which is longitudinally contracted or disrupted approximately along longitude 70 degrees E. To date no hypothesis for this intriguing distribution pattern has been put forward. We detected molecular footprints in the contemporary genetic composition in nuclear DNA (ITS1, ITS2) and chloroplast DNA (trnL-trnF spacer region) of the steppe element Clausia aprica (Brassicaceae) providing evidence for a severe longitudinal range split and genetic differentiation east of the Ural Mountains about 1 million years ago caused by Quaternary climatic oscillations. Clausia aprica provides the first phylogeographical analysis on the intraspecific evolution of an Eurasian steppe plant.

  3. Differential insect and mammalian response to Late Quaternary climate change in the Rocky Mountain region of North America

    NASA Astrophysics Data System (ADS)

    Elias, Scott A.

    2015-07-01

    Of the 200 beetle species identified from Rocky Mountain Late Pleistocene insect faunal assemblages, 23% are no longer resident in this region. None of the 200 species is extinct. In contrast to this, only 8% of 73 identified mammal species from Rocky Mountain Late Pleistocene assemblages are no longer resident in the Rockies, and 12 species are now extinct. Since both groups of organisms are highly mobile, it would appear that their responses to the large-scale fluctuations of climate associated with the last 125,000 years have been considerably different. Most strikingly contrasting with the insects, there are no mammals in the Rocky Mountain Late Pleistocene fossil record that are found exclusively today in the Pacific Northwest (PNW) region. The PNW does have a distinctive modern mammalian fauna, but only one of these, Keen's Myotis, has a fossil record outside the PNW region, in the eastern and central United States. No modern PNW vertebrate species have been found in any Rocky Mountain fossil assemblages. Based on these data, it appears that there has been little or no mammalian faunal exchange between the PNW region and the Rocky Mountains during the Late Pleistocene or Holocene. This is in stark contrast to the fossil beetle record, where PNW species are a substantial component in many faunas, right through to the Late Holocene.

  4. Late Quaternary cave bears and brown bears in Europe: implications for distribution, chronology, and extinction based on a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Pacher, Martina

    2010-05-01

    Cave bear remains are one of the most numerous fossils found in European caves. Despite their frequency of occurrence, many aspects of cave bear palaeontology still remain poorly understood. New methodological approaches and ongoing studies led to controversial results and discussion about its taxonomy, palaeoecology, and final extinction. Are we dealing with one single or several species of cave bears? Was cave bear exclusively vegetarian or after all more omnivorous? Did he go extinct before or after the Late Glacial Maximum? Was cave bear restricted to Europe or did he also occur in Asia? Late Pleistocene brown bears, on the other hand, are often rare and little is known about the possible co-occurrence of cave and brown bears during the Late Pleistocene. Based on direct radiocarbon dates the distribution pattern of both, cave and brown bears is reconstructed during the Late Pleistocene in Europe. In addition, the reasons for the achieved pattern will be tested leading to the main question - why did cave bear become extinct while brown bears survived until today? To answer this question palaeobiological data of Late Pleistocene cave and brown bears will be tested against results from isotope analyses, while aDNA data may contribute to the question of distinct local population or even species of bears. The current state of evidence will be presented and on the basis of resulting pattern implications for further multi-disciplinary studies will be discussed.

  5. Late Cretaceous marine transgressions in Ecuador and northern Peru: A refined stratigraphic framework

    NASA Astrophysics Data System (ADS)

    Jaillard, Etienne; Bengtson, Peter; Dhondt, Annie V.

    2005-08-01

    Study of ammonites and bivalves along selected sections on the Andean margin of northern Peru and Ecuador has made it possible to recognize correlatable marine transgressions and propose a refined stratigraphic framework for the Upper Cretaceous of the region. Six maximum flooding events are recognized: latest Turonian-early Coniacian (major event), late Coniacian-early Santonian, early Campanian, mid Campanian-early late Campanian (major event), early Maastrichtian (major event), and terminal early Maastrichtian. Most of these events can be correlated with global eustatic sea level rises, but their relative manifestations indicate that the Andean margin already was being deformed by the late Cretaceous 'Peruvian' tectonic events. The onset of fine-grained clastic sedimentation in the Oriente and East Peruvian basins in the mid Turonian-earliest Coniacian is taken as the first event of the 'Peruvian' phase. The Campanian regional transgression in the Peruvian-Ecuadorian forearc zones concealed the 'Peruvian' deformational event. The latter caused a paleogeographic upheaval, as indicated by the subsequent development of a NNE-trending forearc basin, which extended from Paita in northwestern Peru to northern Ecuador. In the forearc zones, only short-lived transgressions are recorded in the late Campanian and early Maastrichtian as a result of nearly continuous tectonic activity. This activity culminated with a significant tectonic event in the late Maastrichtian that caused a widespread hiatus.

  6. Late Quaternary sediment-accumulation rates within the inner basins of the California Continental Borderland in support of geologic hazard evaluation

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.W.

    2009-01-01

    An evaluation of the geologic hazards of the inner California Borderland requires determination of the timing for faulting and mass-movement episodes during the Holocene. Our effort focused on basin slopes and turbidite systems on the basin floors for the area between Santa Barbara and San Diego, California. Dating condensed sections on slopes adjacent to fault zones provides better control on fault history where high-resolution, seismic-reflection data can be used to correlate sediment between the core site and the fault zones. This study reports and interprets 147 radiocarbon dates from 43 U.S. Geological Survey piston cores as well as 11 dates from Ocean Drilling Program Site 1015 on the floor of Santa Monica Basin. One hundred nineteen dates from 39 of the piston cores have not previously been published. Core locations were selected for hazard evaluation, but despite the nonuniform distribution of sample locations, the dates obtained for the late Quaternary deposits are useful for documenting changes in sediment-accumulation rates during the past 30 ka. Cores from basins receiving substantial sediment from rivers, i.e., Santa Monica Basin and the Gulf of Santa Catalina, show a decrease in sediment supply during the middle Holocene, but during the late Holocene after sea level had reached the current highstand condition, rates then increased partly in response to an increase in El Ni??o-Southern Oscillation events during the past 3.5 ka. ?? 2009 The Geological Society of America.

  7. Inferences about winter temperatures and summer rains from the late Quaternary record of C4 perennial grasses and C3 desert shrubs in the northern Chihuahuan Desert

    NASA Astrophysics Data System (ADS)

    Holmgren, Camille A.; Norris, Jodi; Betancourt, Julio L.

    2007-02-01

    Late Quaternary histories of two North American desert biomes - C4 grasslands and C3 shrublands - are poorly known despite their sensitivity and potential value in reconstructing summer rains and winter temperatures. Plant macrofossil assemblages from packrat midden series in the northern Chihuahuan Desert show that C4 grasses and annuals typical of desert grassland persisted near their present northern limits throughout the last glacial-interglacial cycle. By contrast, key C3 desert shrubs appeared somewhat abruptly after 5000 cal. yr BP. Bioclimatic envelopes for select C4 and C3 species are mapped to interpret the glacial-interglacial persistence of desert grassland and the mid-to-late Holocene expansion of desert shrublands. The envelopes suggest relatively warm Pleistocene temperatures with moist summers allowed for persistence of C4 grasses, whereas winters were probably too cold (or too wet) for C3 desert shrubs. Contrary to climate model results, core processes associated with the North American Monsoon and moisture transport to the northern Chihuahuan Desert remained intact throughout the last glacial-interglacial cycle. Mid-latitude effects, however, truncated midsummer (July-August) moisture transport north of 35° N. The sudden expansion of desert shrublands after 5000 cal. yr BP may be a threshold response to warmer winters associated with increasing boreal winter insolation, and enhanced El Niño-Southern Oscillation variability. Published in 2006 by John Wiley & Sons, Ltd.

  8. Inferences about winter temperatures and summer rains from the late Quaternary record of C4 perennial grasses and C3 desert shrubs in the northern Chihuahuan Desert

    USGS Publications Warehouse

    Holmgren, Camille A.; Norris, Jodi; Betancourt, Julio L.

    2007-01-01

    Late Quaternary histories of two North American desert biomes—C4 grasslands and C3 shrublands—are poorly known despite their sensitivity and potential value in reconstructing summer rains and winter temperatures. Plant macrofossil assemblages from packrat midden series in the northern Chihuahuan Desert show that C4 grasses and annuals typical of desert grassland persisted near their present northern limits throughout the last glacial-interglacial cycle. By contrast, key C3 desert shrubs appeared somewhat abruptly after 5000cal.yrBP. Bioclimatic envelopes for select C4 and C3 species are mapped to interpret the glacial-interglacial persistence of desert grassland and the mid-to-late Holocene expansion of desert shrublands. The envelopes suggest relatively warm Pleistocene temperatures with moist summers allowed for persistence of C4 grasses, whereas winters were probably too cold (or too wet) for C3 desert shrubs. Contrary to climate model results, core processes associated with the North American Monsoon and moisture transport to the northern Chihuahuan Desert remained intact throughout the last glacial-interglacial cycle. Mid-latitude effects, however, truncated midsummer (July-August) moisture transport north of 35° N. The sudden expansion of desert shrublands after 5000cal.yrBP may be a threshold response to warmer winters associated with increasing boreal winter insolation, and enhanced El Niño-Southern Oscillation variability.

  9. Age assessment and implications of late Quaternary periglacial and paraglacial landforms on Muckish Mountain, northwest Ireland, based on Schmidt-hammer exposure-age dating (SHD)

    NASA Astrophysics Data System (ADS)

    Wilson, Peter; Matthews, John A.

    2016-10-01

    Schmidt-hammer exposure-age dating (SHD) was applied to a variety of late Quaternary periglacial and paraglacial landforms composed of coarse rock debris on Muckish Mountain, northwest Ireland. Landform ages were determined using a linear high-precision age-calibration curve, derived from young and old control surfaces of known age on the same rock type. The SHD ages represent maximum estimates of the time elapsed since the boulders stabilised and the landforms became inactive. Most ages are also minimum estimates for the start of landform development because older boulders are buried beneath the sampled surface boulders. Ages and 95% confidence intervals obtained for blockfield, boulder lobes and talus indicate these features were likely active during several of the early Holocene cold events evidenced in Greenland ice cores and North Atlantic sediment records. Activity ceased at different times ~ 9-7 ka BP. These landforms are the first indication of a geomorphological response to early Holocene cooling in the oceanic mountains of Ireland. Late Holocene ages, obtained for rock-slope failure run-out debris and debris cone boulders, overlap with shifts to cooler and/or wetter conditions, including the Little Ice Age. Geomorphological impacts associated with these changes in climate have not previously been recorded in the Irish uplands. The SHD results indicate that previously implied timings for the stabilisation of some accumulations of coarse rock debris on mountain slopes are in need of revision.

  10. Width of late Quaternary deformation of the Enriquillo-Plantain Garden strike-slip fault zone in Haiti and the Jamaica Passage and implications for accumulated stress

    NASA Astrophysics Data System (ADS)

    Mann, P.; Bachhuber, J. L.

    2010-12-01

    The devastating Haiti earthquake of January 12, 2010, is now known to have occurred on multiple rupture planes with most of the seismic energy release along a north-dipping thrust fault located from 0.5 to 15 km north of the main late Quaternary trace of the EPGFZ. Two alternative views of this rupture are that this north-dipping thrust is unrelated to the main trace of the fault - which showed no rupture during the event - or this north-dipping thrust is part of its larger, subsurface “flower zone” of deformation poorly understood because we have no seismic reflection images crossing the EGPFZ in epicentral area of the 2010 earthquake. The significance of distinguishing these two views of fault behavior relates to whether centuries of accumulated stress were not released on the main trace of the EPGFZ (first model) or whether some accumulated stress was released on the low-angle thrust as part of a broad and linked “flower zone” of deformation parallel to the EPGFZ (second model). In this talk we review observations on the width of the EPGFZ deformation to support the latter view that the EPGFZ is in fact a broad zone of deformation commensurate with its tectonic role as a major, active plate boundary fault. Three areas of broad late Quaternary tectonic deformation varying from transpressional to transtensional in structural style are examined using DEM, imagery, surface geologic maps, and aftershock locations. The Cul-de-Sac basin of Haiti is the xx-km-wide, fault bounded alluvial plain upon which the city of Port-au-Prince was constructed in the early 18th century. Merged DEM and geologic map data from the Cul-de-Sac plain show that an en echelon array of large, open folds deforming uplifted and deeply dissected Plio-Pleistocene fans can be traced 3 to 7 km north of the main trace of the EPGFZ. Map studies show that west-northwest-striking, sub-parallel reverse-oblique/strike-slip faults can be mapped transecting the folds at distances of 3 to 5 km north

  11. A stacked Late Quaternary fluvio-periglacial sequence from the Axe valley, southern England with implications for landscape evolution and Palaeolithic archaeology

    NASA Astrophysics Data System (ADS)

    Brown, A. G.; Basell, L. S.; Toms, P. S.

    2015-05-01

    The current model of mid-latitude late Quaternary terrace sequences, is that they are uplift-driven but climatically controlled terrace staircases, relating to both regional-scale crustal and tectonic factors, and palaeohydrological variations forced by quasi-cyclic climatic conditions in the 100 K world (post Mid Pleistocene Transition). This model appears to hold for the majority of the river valleys draining into the English Channel which exhibit 8-15 terrace levels over approximately 60-100 m of altitudinal elevation. However, one valley, the Axe, has only one major morphological terrace and has long-been regarded as anomalous. This paper uses both conventional and novel stratigraphical methods (digital granulometry and terrestrial laser scanning) to show that this terrace is a stacked sedimentary sequence of 20-30 m thickness with a quasi-continuous (i.e. with hiatuses) pulsed, record of fluvial and periglacial sedimentation over at least the last 300-400 K yrs as determined principally by OSL dating of the upper two thirds of the sequence. Since uplift has been regional, there is no evidence of anomalous neotectonics, and climatic history must be comparable to the adjacent catchments (both of which have staircase sequences) a catchment-specific mechanism is required. The Axe is the only valley in North West Europe incised entirely into the near-horizontally bedded chert (crypto-crystalline quartz) and sand-rich Lower Cretaceous rocks creating a buried valley. Mapping of the valley slopes has identified many large landslide scars associated with past and present springs. It is proposed that these are thaw-slump scars and represent large hill-slope failures caused by Vauclausian water pressures and hydraulic fracturing of the chert during rapid permafrost melting. A simple 1D model of this thermokarstic process is used to explore this mechanism, and it is proposed that the resultant anomalously high input of chert and sand into the valley during terminations

  12. Deciphering late Quaternary land snail shell δ18O and δ13C from Franchthi Cave (Argolid, Greece)

    NASA Astrophysics Data System (ADS)

    Colonese, André C.; Zanchetta, Giovanni; Perlès, Catherine; Drysdale, Russell N.; Manganelli, Giuseppe; Baneschi, Ilaria; Dotsika, Elissavet; Valladas, Hélène

    2013-07-01

    This paper investigates the stable isotopic composition from late Pleistocene-Holocene (~ 13 to ~ 10.5 cal ka BP) shells of the land snail Helix figulina, from Franchthi Cave (Greece). It explores the palaeoclimatic and palaeoenvironmental implications of the isotope palaeoecology of archaeological shells at the time of human occupation of the cave. Modern shells from around the cave were also analysed and their isotopic signatures compared with those of the archaeological shells. The carbon isotope composition of modern shells depicts the consumption of C3 vegetation. Shell oxygen isotopic values are consistent with other Mediterranean snail shells from coastal areas. Combining empirical linear regression and an evaporative model, the δ18Os suggest that modern snails in the study area are active during periods of higher relative humidity and lower rainfall δ18O, probably at night. Late glacial and early Holocene δ18Os show lower values compared to modern ones. Early Holocene δ18Os values likely track enhanced moisture and isotopic changes in the precipitation source. By contrast, lower late glacial δ18O could reflect lower temperatures and δ18Op, compared to the present day. Shell carbon isotope values indicate the presence of C3 vegetation as main source of carbon to late glacial and early Holocene snails.

  13. The discovery of late Quaternary basalt on Mount Bambouto: Implications for recent widespread volcanic activity in the southern Cameroon Line

    NASA Astrophysics Data System (ADS)

    Kagou Dongmo, Armand; Nkouathio, David; Pouclet, André; Bardintzeff, Jacques-Marie; Wandji, Pierre; Nono, Alexandre; Guillou, Hervé

    2010-04-01

    At the north-eastern flank of Mount Bambouto, a lateral cone, the Totap volcano, is dated at 0.480 ± 0.014 Ma, which corresponds to the most recent activity of this area. The lava is a basanite similar to the older basanites of Mount Bambouto. Two new datations of the lavas of the substratum are 11.75 ± 0.25 Ma, and 21.12 ± 0.45 Ma. A synthetic revision of the volcanic story of Mount Bambouto is proposed as follows. The first stage, ca. 21 Ma, corresponds to the building of the initial basaltic shield volcano. The second stage, from 18.5 to 15.3 Ma, is marked by the collapse of the caldera linked to the pouring out of ignimbritic rhyolites and trachytes. The third stage, from 15 to 4.5 Ma, renews with basaltic effusive activity, together with post-caldera extrusions of trachytes and phonolites. The 0.5 Ma Totap activity could be a fourth stage. In the recent Quaternary, a number of basaltic activities, similar to that of the Totap volcano, are encountered elsewhere in the Cameroon Line, from Mount Oku to Mount Cameroon. The very long-live activity at Mount Bambouto and the volcanic time-space distribution in the southern Cameroon Line are linked to the working of a hotline.

  14. A Late Pleistocene transgression in Thailand: A marine molluscan fauna from Ban Praksa (Samut Prakan Province)

    NASA Astrophysics Data System (ADS)

    Negri, Mauro Pietro

    2012-01-01

    A Late Pleistocene molluscan fauna sampled at Ban Praksa, near the Chao Phraya River mouth (Lower Central Plain of Bangkok, Thailand) is herein analyzed and paleoecologically characterized, revealing a shallow infralittoral, coarse/hard-bottomed environment. The comparison of the Ban Praksa association with several coeval ones recovered from Phra Pradaeng Formation seems to be evidence of a 10,000 year hiatus between two separate groups of marine faunas, possibly belonging to different interstadial transgressive peaks that occurred during the long-term sea-level regression following the Last Interglacial.

  15. The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska

    NASA Astrophysics Data System (ADS)

    Edwards, Mary; Grosse, Guido; Jones, Benjamin M.; McDowell, Patricia

    2016-07-01

    Thermokarst processes characterize a variety of ice-rich permafrost terrains and often lead to lake formation. The long-term evolution of thermokarst landscapes and the stability and longevity of lakes depend upon climate, vegetation and ground conditions, including the volume of excess ground ice and its distribution. The current lake status of thermokarst-lake landscapes and their future trajectories under climate warming are better understood in the light of their long-term development. We studied the lake-rich southern marginal upland of the Yukon Flats (northern interior Alaska) using dated lake-sediment cores, observations of river-cut exposures, and remotely-sensed data. The region features thick (up to 40 m) Quaternary deposits (mainly loess) that contain massive ground ice. Two of three studied lakes formed 11,000-12,000 cal yr BP through inferred thermokarst processes, and fire may have played a role in initiating thermokarst development. From 9000 cal yr BP, all lakes exhibited steady sedimentation, and pollen stratigraphies are consistent with regional patterns. The current lake expansion rates are low (0 to < 7 cm yr- 1 shoreline retreat) compared with other regions ( 30 cm yr- 1 or more). This thermokarst lake-rich region does not show evidence of extensive landscape lowering by lake drainage, nor of multiple lake generations within a basin. However, LiDAR images reveal linear "corrugations" (> 5 m amplitude), deep thermo-erosional gullies, and features resembling lake drainage channels, suggesting that highly dynamic surface processes have previously shaped the landscape. Evidently, widespread early Holocene permafrost degradation and thermokarst lake initiation were followed by lake longevity and landscape stabilization, the latter possibly related to establishment of dense forest cover. Partial or complete drainage of three lakes in 2013 reveals that there is some contemporary landscape dynamism. Holocene landscape evolution in the study area

  16. Late Quaternary Uplift Rates and Geomorphology of the Santa Fe Springs and West Coyote Folds, Los Angeles Basin, California

    NASA Astrophysics Data System (ADS)

    Sundermann, S. T.; Mueller, K. J.

    2001-12-01

    We mapped Quaternary aquifers with water wells and 5 m DEM's from IFSAR to define rates of folding along the Puente Hills blind thrust system. A cross section across Santa Fe Springs along Carfax Ave suggests 100 and 165 m of uplift of the 330 ka Gage and 650 ka Lynwood aquifers, yielding uplift rates of 0.2 mm/yr between 330-650 ka and 0.27 mm/yr beween 0-330 ka. For a 27° thrust, this yields a slip rate of 0.44 - 0.59 mm/yr. Surface folding is discernable across the Santa Fe Springs segment in the DEM, to a point 4 km west of the San Gabriel River. Aquifers correlated with reflectors in a USGS seismic profile along Carfax suggests lower relief for the Lynwood (85 m) and the Gage (59 m). We suggest the 1 km-long USGS profile images only part of the fold limb and that additional structural relief is accommodated further north, as defined by our subsurface mapping. Correlation of a shallow reflector in the seismic profile with the 15-20 ka Gaspur aquifer suggests Holocene uplift of 1.0 mm/yr. A similar analysis undertaken for the Coyote fold near Trojan Ave. suggests 85 and 229 m of uplift for the Gage and Lynwood, yielding uplift rates of 0.26 mm/yr between 0-330 ka and 0.45 mm/yr between 330-650 ka. Correlation of the Gage with a reflector on another USGS seismic profile along Trojan suggests equivalent uplift (86 m), indicating the profile images the entire width of the Coyote forelimb at this site.

  17. Satellite- and pollen-based quantitative woody cover reconstructions for northern Asia: Verification and application to late-Quaternary pollen data

    NASA Astrophysics Data System (ADS)

    Tarasov, Pavel; Williams, John W.; Andreev, Andrei; Nakagawa, Takeshi; Bezrukova, Elena; Herzschuh, Ulrike; Igarashi, Yaeko; Müller, Stefanie; Werner, Kirstin; Zheng, Zhuo

    2007-12-01

    Accurate reconstruction of late-Quaternary vegetation cover is necessary for better understanding of past vegetation dynamics, the role of vegetation feedbacks in glacial-interglacial climate variations, and for validating vegetation and climate models. In this paper over 1700 surface-pollen spectra from the former Soviet Union, Mongolia, northern China, and northern Japan together with data from the Advanced Very High Resolution Radiometer (AVHRR) were used to calibrate modern-analogue method for quantitatively reconstructing past woody cover from fossil pollen data. The AVHRR-based estimates of woody cover percentages within a 21 × 21 km window around pollen sampling sites were attributed to the respective modern pollen spectra. Reconstructions of modern woody cover using the pollen data and best-modern-analogues (BMA) method matched well to the original AVHRR-based estimates, for both total woody cover ( r2 = 0.77) and its fractions, including broad-leaved ( r2 = 0.66), needle-leaved ( r2 = 0.79), deciduous ( r2 = 0.60) and evergreen ( r2 = 0.76) woody cover. Discrepancies in the pollen-AVHRR cross-validation may be caused by long-distance transport of arboreal pollen, patchy forest distributions, underrepresentation of Larix and Populus in pollen records, and errors in the AVHRR classification. The generally strong correlations encourage application of the modern-analogue approach for reconstructing late-Quaternary variations in vegetation cover from northern Asian fossil pollen records. At the last glacial maximum (LGM: ˜ 21,000 cal yr BP), areas presently occupied by boreal forest were much more open, suggesting a reduction in total woody cover to below 20% at most modern forest sites. Pollen records from northern and central Siberia suggest a rather quick spread of tree and shrub vegetation after 15,000 cal yr BP, presumably in response to increased summer insolation. Woody cover histories are spatially variable in the modern forest-steppe, where tree

  18. Interplay between down-slope and along-slope sedimentary processes during the late Quaternary along the Capo Vaticano margin (southern Tyrrhenian Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Martorelli, Eleonora; Bosman, Alessandro; Casalbore, Daniele; Falcini, Federico

    2016-04-01

    Late Quaternary along-slope and down-slope sedimentary processes and structures in the upper slope-shelf sector of the Calabro-Tyrrhenian continental margin off Capo Vaticano have been investigated using very high-resolution single-channel seismic profiles and multibeam bathymetric data. The results show that a competition among along-slope bottom currents-vs down-slope mass-wasting mostly contributed in shaping the seafloor and controlling deposition of sedimentary units during the Late Quaternary. Along-slope processes mostly formed elongated drifts located on the upper continental slope and outer shelf, between -90 and -300 m. The contourite deposits and associated erosive elements indicate the presence of a northwestward geostrophic flow that can be related to the modified-LIW issued by the Messina Strait. According to the proposed stratigraphic reconstruction it is likely that the activity of bottom-currents off Capo Vaticano was intensified around the LGM period and during the post-glacial sea-level rise, whereas they were less intense during the Holocene. Gravity-driven down-slope processes formed mass-transport deposits and turbidite systems with erosive channels, locally indenting the present-day shelf. Several slide events affected the upper 10-20 m of the stratigraphic record, dismantling considerable volume of contourite sediment. High-resolution seismic profiles indicate that failure processes appear to be dominated by translational sliding with glide plains mainly developed within contourite deposits. The most striking feature is the Capo Vaticano slide complex, which displays a large spatial coverage (area of about 18 km2) and is composed by several intersecting slide scars and overlapping deposits; these characteristics are peculiar for the Tyrrhenian continental margins, where slide events developed in open-slope areas are usually less complex and smaller in size. The presence of high-amplitude reflectors within contourite deposits (representing

  19. The Sand Seas of northern China: Important sinks and sources of global sediment fluxes and their changing roles during different climate conditions of Late Quaternary

    NASA Astrophysics Data System (ADS)

    Yang, X.

    2014-12-01

    Although the occurrence of aeolian sands in sedimentary sequences has been widely used as indicators of desert formation or proxies of desert climate, one should be aware that accumulation of aeolian sands does occur along river channels, in lake shores not necessarily associated with arid environment. Our ongoing geomorphological and paleoenvironmental studies in the deserts of northern China reconfirm that formation of sand seas is dependent on not only erodibility (arising from bare surface due to aridity) and wind power but more importantly sand availability related to sediment cycles under interactions between fluvial, lacustrine and aeolian processes. Here we present our ongoing geomorphological and paleoclimatic research on the Late Quaternary landscape and climatic changes in the Taklamkan Desert of northwestern China, the largest sand sea of China in arid zone, and in the Hunshandake Sandy Land at the east part of the Asian mid-latitude desert belt under semiarid climate. We find out that the occurrence of tall sand dunes in the over 300,000 km2 large Taklamakan Sand Sea is closely related to the sites of intensive fluvial sedimentation and convergence zone of surface winds. In the case of Hunshandake, the dunes (although much smaller) mainly occur along the shorelines of the former lake basins, and sediment sources are generally limited because of open hydrological systems in the south and east portions of this desert. The sedimentological and geomorphological records suggest that the climate has changed between arid and less-arid conditions in both of these deserts during Late Quaternary. Under wetter conditions the Taklamakan acts as an important sink of sediments brought by rivers with headwaters in the Tibetan Plateau and Tianshan, while under more arid conditions it acts as an important global sediment source whose dust is transported not only to East Asia and Pacific but also to Greenland ice via westerlies. The Hunshandake has the same pattern of

  20. Late Quaternary reef growth history of Les Saintes submarine plateau: a key to constrain active faulting kinematics in Guadeloupe (FWI)

    NASA Astrophysics Data System (ADS)

    Leclerc, F.; Feuillet, N.; Deplus, C.; Cabioch, G.; Tapponnier, P.; LeBrun, J.; Bazin, S.; Beauducel, F.; Boudon, G.; Le Friant, A.; De Min, L.; Melezan, D.

    2012-12-01

    The damaging November 21 2004 earthquake (Mw 6.3) occurred on a large normal fault system offshore Les Saintes archipelago in Guadeloupe. To better constrain the seismic hazard related to this fault system, new data were acquired in 2009 and 2010 during the GWADASEIS and BATHYSAINTES cruises. Digital Elevation Models (DEM), with a horizontal resolution of 2.5 m, were calculated with the bathymetric data acquired at shallow depth on Les Saintes insular shelf. Together with seismic reflection profiles, this data makes it possible to identify and map the fault system and to understand its kinematics with respect to the plateau formation. The 15km wide, -45m deep drowned plateau of Les Saintes is composed of four coral terraces, down to 110 m bsl, piled-up on the Upper Pliocene to Quaternary Les Saintes volcanic centres. The shallowest terrace corresponds to a drowned Holocene reef system. Reef typical features, as double barriers, pinnacles, spurs and grooves, are well identified in the bathymetry. Seismic reflection profiles indicate that the Holocene terrace overlays Pleistocene ones. Geophysical data and reef growth modeling tend to show that the reef plateau has formed under subsidence conditions (~0.35 mm/yr) since Ionian ages, recording the main sea level highstands, before being drowned during the last sea level rise, around 11ka BP. The four terraces are crosscut by several NW-SE striking normal faults, which have scarps up to 8m. They offset them, the older, the more, inducing syntectonic sedimentation. The fault system extends from the northern plateau's edge to Les Saintes channel, toward Dominica, constituting the eastern side of Les Saintes graben. In the channel, the Roseau Fault, responsible for the 2004 earthquake, bounds the graben western side. The new data confirms its extent to the north, as the fault offsets the plateau's western cliff by several tens of meter, counter-slope like, dipping under Les Saintes islands and inducing a high seismic

  1. Reconstruction of paleoceanographic changes in the western Arctic Ocean duing the late Quaternary: Results from RV Araon and RV Polarstern

    NASA Astrophysics Data System (ADS)

    Nam, S.; Kim, S.; Schreck, M.; Lee, B.; Niessen, F.; Stein, R. H.; Matthiessen, J. J.; Mackensen, A.

    2013-12-01

    The recent warming Arctic has fundamental effects on various scales as global (albedo, sea level, thermohaline circulation), hemispheric (mid-latitude weather/climate), and local (sedimentary, hydrographic, and cryospheric conditions). The extent and thickness of Arctic sea ice have dramatically reduced due to the amplified response of the Arctic Ocean to rapid global warming. The rapid melting of Arctic sea ice allowed us to enhance the research activities in the western Arctic using ice-breaking research vessels to unravel the present and past climate and oceanographic changes in seasonally ice-free open water conditions. Paleoclimate/paleoceanographic records estimated from the western Arctic sediments are crucial factors to understand the past and present oceanographic and environmental changes and thus it could be used as the base data sets for a reliable prediction of future climate changes on global scales. Within this context, KOPRI recently initiated a new research program (K-Polar) for understanding recent environmental changes and reconstructing glacial history and paleoceanographic changes in the western Arctic using ice-breaker ';R.V. ARAON'. The Pacific sector of the Arctic Ocean is particularly pronounced area with rapid and large extent reduction of the Arctic sea ice and relatively low SSS (comparing to Atlantic sector) due to sea-ice melting along with continental runoff. K-Polar program aims to: acquire shallow seismic data and retrieve long undisturbed sediment cores from the Chukchi Borderland-the Mendeleev Ridge-East Siberian continental margin using the ';R.V. ARAON', and establish a reliable stratigraphy of key sediment cores; then to reconstruct glacial history and high-resolution paleoceanographic changes in the western Arctic during the Quaternary glacial-interglacial cycles based on precise stratigraphic data and climate-driven multiple proxies. In summary, we will introduce current preliminary results estimated from sediment cores taken

  2. The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska

    USGS Publications Warehouse

    Edwards, Mary E.; Grosse, Guido; Jones, Benjamin M.; McDowell, Patricia F.

    2016-01-01

    Thermokarst processes characterize a variety of ice-rich permafrost terrains and often lead to lake formation. The long-term evolution of thermokarst landscapes and the stability and longevity of lakes depend upon climate, vegetation and ground conditions, including the volume of excess ground ice and its distribution. The current lake status of thermokarst-lake landscapes and their future trajectories under climate warming are better understood in the light of their long-term development. We studied the lake-rich southern marginal upland of the Yukon Flats (northern interior Alaska) using dated lake-sediment cores, observations of river-cut exposures, and remotely-sensed data. The region features thick (up to 40 m) Quaternary deposits (mainly loess) that contain massive ground ice. Two of three studied lakes formed ~ 11,000–12,000 cal yr BP through inferred thermokarst processes, and fire may have played a role in initiating thermokarst development. From ~ 9000 cal yr BP, all lakes exhibited steady sedimentation, and pollen stratigraphies are consistent with regional patterns. The current lake expansion rates are low (0 to < 7 cm yr− 1 shoreline retreat) compared with other regions (~ 30 cm yr− 1 or more). This thermokarst lake-rich region does not show evidence of extensive landscape lowering by lake drainage, nor of multiple lake generations within a basin. However, LiDAR images reveal linear “corrugations” (> 5 m amplitude), deep thermo-erosional gullies, and features resembling lake drainage channels, suggesting that highly dynamic surface processes have previously shaped the landscape. Evidently, widespread early Holocene permafrost degradation and thermokarst lake initiation were followed by lake longevity and landscape stabilization, the latter possibly related to establishment of dense forest cover. Partial or complete drainage of three lakes in 2013 reveals that there is some contemporary landscape dynamism. Holocene landscape

  3. Climates during Late Quaternary glacier advances: glacier-climate modeling in the Yingpu Valley, eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Xiangke

    2014-10-01

    The Last Glacial Maximum (LGM) featured a major cooling of Earth's climate, after which the climate evolved in the largest reconfiguration of the past 100 ka. Despite its significance, full understanding of the climate history during and since the LGM is still lacking on the eastern Tibetan Plateau. Recent improvements in understanding glacial extents and chronologies in the Yingpu Valley, eastern Tibetan Plateau present an opportunity to estimate the glacial climatic conditions during and since the LGM. Using a relatively new glacier-climate model, this study reconstructs glacier advances in the Yingpu Valley and quantifies the related climate conditions during the LGM, Lateglacial, and Late Holocene glacial stages. The model results show that the Yingpu Valley contained ice volumes of ˜1.65 km3, 1.03 km3, and 0.29 km3 with equilibrium line altitude (ELA) lowering values of ˜500 m, ˜410 m, and ˜150 m in the three successive glacial stages, respectively. By examining other independent paleoclimatic reconstructions, it is concluded that the temperature decreased by 4.0-5.9 °C, 3.4-3.7 °C, 0.3-0.6 °C with the precipitation amounts being 40-80%, 80-100%, and 100-110% of modern values during the LGM, Lateglacial, and Late Holocene glacial stages, respectively. The climate estimates for the three glacial stages are generally in agreement with other climatic proxy records on the Tibetan Plateau and atmospheric circulation modeling results.

  4. Late Quaternary loess in northeastern Colorado: Part II - Pb isotopic evidence for the variability of loess sources

    USGS Publications Warehouse

    Aleinikoff, J.N.; Muhs, D.R.; Sauer, R.R.; Fanning, C.M.

    1999-01-01

    A new application of the Pb isotopic tracer technique has been used to determine the relative importance of different silt sources for late Wisconsin loess in the central Great Plains of eastern Colorado. Samples of the Peoria Loess collected throughout the study area contain K-feldspar derived from two isotopically and genetically distinct sources: (1) glaciogenic material from Early and Middle Proterozoic crystalline rocks of the Colorado province, and (2) volcaniclastic material from the Tertiary White River Group exposed on the northern Great Plains. Pb isotopic compositions of K-feldspar in loess from two dated vertical sections (at Beecher Island and Last Chance, Colorado) vary systematically, implying climatic control of source availability. We propose a model whereby relatively cold conditions promoted the advance of Front Range valley glaciers discharging relatively little glaciogenic silt, but strong winds caused eolian erosion of White River Group silt due to a decrease in vegetation cover. During warmer periods, valley glaciers receded and discharged abundant glaciogenic silt, while surfaces underlain by the White River Group were stabilized by vegetation. Isotopic data from eastern Colorado loess sections record two warm-cold-warm cycles during late Wisconsin time between about 21 000 and 11 000 radiocarbon yr B.P., similar to results from other studies in the United States and Greenland.

  5. Influence of Late Quaternary depositional environments on the structure of nannofossil assemblages in the Titanic area (northwestern Atlantic)

    NASA Astrophysics Data System (ADS)

    Dmitrenko, O. B.

    2012-02-01

    The nannofosssil assemblages have been analyzed in five cores taken from the Titanic area of the northwestern Atlantic (˜41°-42° N, ˜47°-50° W, water depths >3500 m) during cruises 41 and 43 of the R/V Akademik Mstislav Keldysh in 1998 and 2000. They correlate the host sediments with the upper Pleistocene-Holocene Emiliania huxleyi zone. The changes in the structure of the nannofossil assemblages and the lithological characteristics such as the content of biogenic CaCO3, the abundance of ice-rafted debris, and the grain-size composition were used for the high-resolution stratigraphy of sections with defining marine isotopic stages 1-3 of the last 24 kyr. A characteristic feature of the nannofossil assemblages from this area is their enrichment with the cold-resistant species Coccolthus pelagicus during the warm climatic stages and the lack of allochthonous coccolitophorid remains.

  6. Influence of the Atlantic inflow and Mediterranean outflow currents on late Quaternary sedimentary facies of the Gulf of Cadiz continental margin

    USGS Publications Warehouse

    Nelson, C.H.; Baraza, J.; Maldonado, A.; Rodero, J.; Escutia, C.; Barber, J.H.

    1999-01-01

    The late Quaternary pattern of sedimentary facies on the Spanish Gulf of Cadiz continental shelf results from an interaction between a number of controlling factors that are dominated by the Atlantic inflow currents flowing southeastward across the Cadiz shelf toward the Strait of Gibraltar. An inner shelf shoreface sand facies formed by shoaling waves is modified by the inflow currents to form a belt of sand dunes at 10-20 m that extends deeper and obliquely down paleo-valleys as a result of southward down-valley flow. A mid-shelf Holocene mud facies progrades offshore from river mouth sources, but Atlantic inflow currents cause extensive progradation along shelf toward the southeast. Increased inflow current speeds near the Strait of Gibraltar and the strong Mediterranean outflow currents there result in lack of mud deposition and development of a reworked transgressive sand dune facies across the entire southernmost shelf. At the outer shelf edge and underlying the mid-shelf mud and inner shelf sand facies is a late Pleistocene to Holocene transgressive sand sheet formed by the eustatic shoreline advance. The late Quaternary pattern of contourite deposits on the Spanish Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are oblique to slope contours and the Mediterranean outflow current flowing northwestward parallel to the slope contours and down valleys between the ridges. Coincident with the northwestward decrease in outflow current speeds from the Strait there is the following northwestward gradation of contourite sediment facies: (1) upper slope sand to silt bed facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor

  7. Provenance and accommodation pathways of late Quaternary sediments in the deep-water northern Ionian Basin, southern Italy

    NASA Astrophysics Data System (ADS)

    Perri, Francesco; Critelli, Salvatore; Dominici, Rocco; Muto, Francesco; Tripodi, Vincenzo; Ceramicola, Silvia

    2012-12-01

    The northern Calabria along the southeastern coast of Italy provides a favorable setting in which to study complete transects from continental to deep-marine environments. The present northern Ionian Calabrian Basin is a wedge-top basin within the modern foreland-basin system of southern Italy. The Ionian margin of northern Calabria consists of a moderately developed fluvial systems, the Crati and Neto rivers, and diverse smaller coastal drainages draining both the Calabria continental block (i.e., Sila Massif) and the southern Apennines thrust belt (i.e., Pollino Massif). The main-channel sand of the Crati and Neto rivers is quartzofeldspathic with abundant metamorphic and plutonic lithic fragments (granodiorite, granite, gneiss, phyllite and sedimentary lithic fragments). Sedimentary lithic fragments were derived from Jurassic sedimentary successions of the Longobucco Group. The mud samples contain mostly phyllosilicates, quartz, calcite, feldspars and dolomite. Traces of gypsum are present in some samples. The I-S mixed layers, 10 Å-minerals (illite and micas), chlorite and kaolinite are the most abundant phyllosilicates, whereas smectite and chlorite/smectite mixed layers are in small amounts. The geochemical signatures of the muds reflect a provenance characterized by both felsic and mafic rocks with a significant input from carbonate rocks. Furthermore, the degree of source-area weathering was most probably of low intensity rather than moderately intense because CIA values for the studied mud samples are low. Extrapolation of the mean erosion budget from 1 to 25 Ma suggests that at least 5 to 8 km of crust have been removed from the Calabrian orogenic belt and deposited in the marine basins. The Calabrian microplate played an important role in the dynamic evolution of southern Italian fossil and modern basins, representing the key tectonic element of the entire orogenic belt.

  8. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach.

    PubMed

    Faurby, Søren; Svenning, Jens-Christian

    2015-03-01

    Across large clades, two problems are generally encountered in the estimation of species-level phylogenies: (a) the number of taxa involved is generally so high that computation-intensive approaches cannot readily be utilized and (b) even for clades that have received intense study (e.g., mammals), attention has been centered on relatively few selected species, and most taxa must therefore be positioned on the basis of very limited genetic data. Here, we describe a new heuristic-hierarchical Bayesian approach and use it to construct a species-level phylogeny for all extant and late Quaternary extinct mammals. In this approach, species with large quantities of genetic data are placed nearly freely in the mammalian phylogeny according to these data, whereas the placement of species with lower quantities of data is performed with steadily stricter restrictions for decreasing data quantities. The advantages of the proposed method include (a) an improved ability to incorporate phylogenetic uncertainty in downstream analyses based on the resulting phylogeny, (b) a reduced potential for long-branch attraction or other types of errors that place low-data taxa far from their true position, while maintaining minimal restrictions for better-studied taxa, and (c) likely improved placement of low-data taxa due to the use of closer outgroups.

  9. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    NASA Technical Reports Server (NTRS)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  10. Stable isotopes in yellow-bellied marmot (Marmota flaviventris) fossils reveal environmental stability in the late Quaternary of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Reynard, Linda M.; Meltzer, David J.; Emslie, Steven D.; Tuross, Noreen

    2015-03-01

    High elevation plant and animal communities are considered extremely sensitive to environmental change. We investigated an exceptional fossil record of yellow-bellied marmot (Marmota flaviventris) specimens that was recovered from Cement Creek Cave (elev. 2860 m) and ranged in age from radiocarbon background circa 49.8 cal ka BP to ~ 1 cal ka BP. We coupled isotopic and radiocarbon measurements (δ18O, δD, δ15N, δ13C, and 14C) of bone collagen from individually-AMS dated specimens of marmots to assess ecological responses by this species to environmental change over time in a high elevation basin in the Rocky Mountains of southwestern Colorado, USA. We find little change in all four isotope ratios over time, demonstrating considerable environmental stability during periods when the marmots were present. The stable ecology and the apparent persistence of the small mammal community in the cave fauna throughout the late Quaternary are in marked contrast to the changes that occurred in the large mammal community, including local extirpation and extinction, at the end of the Pleistocene.

  11. Soft sediment deformation structures and their implications for Late Quaternary seismicity on the South Tibetan Detachment System, Central Himalaya (Uttarakhand), India

    NASA Astrophysics Data System (ADS)

    Rana, Naresh; Bhattacharya, Falguni; Basavaiah, N.; Pant, R. K.; Juyal, Navin

    2013-04-01

    The South Tibetan Detachment System (STDS) defines the lithological and tectonic boundary between the Higher Himalayan crystallines and the Tethyan sedimentaries. Earlier studies have suggested that the STDS has been dormant since its inception during the Miocene along with the Main Central Thrust (MCT). However, recent studies indicate that the STDS was active during the Pleistocene-Holocene period. We provide additional support for this more recent activity based on the occurrence of seismically induced Soft Sediment Deformation Structures (SSDS) preserved in relict lake sediments in the Dhauli Ganga, Gori Ganga and Kali Ganga river basins of the Central Himalaya. The relict lakes are located on the hanging wall of the STDS. An optical chronology of the lake sediments brackets the seismically induced SSDS between 20 ka and 11 ka with a major seismic event of magnitude > 6.5 occurring between 17 ka and 13.5 ka. Since MCT and STDS are considered to be the coupled structures, our observation supports the hypothesis that the STDS is providing accommodation space to the strain gradient arising due to the north-south compression in the Himalaya during the late Quaternary.

  12. Late Quaternary climatic vegetational shifts in an ecological transition zone of northern Madagascar: insights from genetic analyses of two endemic rodent species.

    PubMed

    Rakotoarisoa, J-E; Raheriarisena, M; Goodman, S M

    2013-05-01

    The Loky-Manambato region, located in northern Madagascar, is a biotically rich contact zone between different forest biomes. Local current forest cover is composed of both humid and dry formations, which show elevational stratification. A recent phylogeographical study of a regional dry forest rodent, Eliurus carletoni (subfamily Nesomyinae), found genetic evidence of forest contractions between 18 750 and 7500 years BP, which based on extrapolation of the pollen subfossil record, was thought to be associated with an expansion of local humid forests. Herein, we conduct a genetic test of this hypothesis and focused on populations on two neighbouring massifs of forest-dependent rodent species, one associated with low-elevation dry forests (E. carletoni) and the other with higher elevation humid forests (Eliurus tanala). Using mitochondrial markers and a combination of traditional and coalescent-based phylogeographical, historical demographic and population genetic methods, we found evidence of historical connections between populations of E. tanala. Adjacent populations of E. carletoni and E. tanala exhibit opposite historical demographic patterns, and for both, evidence suggests that historical demographic events occurred within the last 25 000 years BP. These findings strongly support the proposed late Quaternary shifts in the floristic composition of the Loky-Manambato region.

  13. Investigation of late Quaternary fault block uplift along the Motagua/Swan Islands fault system: Implications for seismic/tsunami hazard for the Bay of Honduras

    NASA Astrophysics Data System (ADS)

    Cox, Randel Tom; Lumsden, David N.; Gough, Kevin; Lloyd, Roger; Talnagi, Joseph

    2008-09-01

    Uplifted and warped coastal landforms (fossil coral reef and beachrock, wave-cut and beach terraces) on the western part of Roatan Island off the northern Honduran coast record at least two late Holocene earthquakes that we estimate to have had magnitudes of > M7. Uplift has been primarily related to a fault that follows the southern coast of western Roatan, herein termed the "Flowers Bay fault", a subsidiary fault of the Motagua/Swan Islands Fault System which marks the boundary between the North American and Caribbean plates. Using electron spin resonance (ESR) and radiocarbon ages of calcium carbonate samples and a late Quaternary sea level elevation curve that is compatible with Caribbean sea level data, we constrain the ages and long-term uplift rates of the displaced landforms on Roatan caused by the vertical component of slip on the Flowers Bay fault. The fossil reef that is uplifted along the fault grew between 43 and 34 ka, and the beachrock horizon and lowest uplifted terrace along the southern and western coasts developed between 1000 and 1700 AD. We describe evidence of one earthquake that raised the south coast ~ 3 m (as much as 5 m locally) and that post-dates 1700 AD. We interpret this event to be the great earthquake of August 1856 that generated a tsunami which ran as much as 24 km onto the mainland. Another earthquake circa 900 AD produced a similar amount of uplift as the 1856 event and likely generated a similar tsunami. The age and elevation of the fossil reef suggest a long-term uplift rate of 3 mm/year, consistent with a recurrence interval of ~ 1000 years for these large earthquakes.

  14. Late Quaternary depositional history, Holocene sea-level changes, and vertical crustal movement, southern San Francisco Bay, California

    USGS Publications Warehouse

    Atw