Sample records for late seed development

  1. Critical phases in the seed development of common juniper (Juniperus communis).

    PubMed

    Gruwez, R; Leroux, O; De Frenne, P; Tack, W; Viane, R; Verheyen, K

    2013-01-01

    Common juniper (Juniperus communis L.) populations in northwest European lowlands are currently declining in size and number. An important cause of this decline is a lack of natural regeneration. Low seed viability seems to be one of the main bottlenecks in this process. Previous research revealed a negative relation between seed viability and both temperature and nitrogen deposition. Additionally, the seeds of common juniper have a variable ripening time, which possibly influences seed viability. However, the underlying mechanisms remain unresolved. In order to elucidate this puzzle, it is important to understand in which phases of seed production the main defects are situated, together with the influence of ripening time. In this study, we compared seed viability of populations with and without successful recruitment. We examined three seed phases: (i) gamete development; (ii) fertilisation and early-embryo development; and (iii) late-embryo development. After the first two phases, we found no difference in the percentage viable seeds between populations with or without recruitment. After late-embryo development, populations without recruitment showed a significantly lower percentage of viable seeds. These results suggest that late-embryo development is a bottleneck in seed development. However, the complex interaction between seed viability and ripening time suggest that the causes should be in the second seed phase, as the accelerated development of male and female gametophytes may disturb the male-female synchrony for successful mating. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars.

    PubMed

    Liu, Yang; Fang, Jun; Xu, Fan; Chu, Jinfang; Yan, Cunyu; Schläppi, Michael R; Wang, Youping; Chu, Chengcai

    2014-06-20

    Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. Copyright © 2014. Published by Elsevier Ltd.

  3. Alterations of resting state networks and structural connectivity in relation to the prefrontal and anterior cingulate cortices in late prematurity.

    PubMed

    Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-01-07

    Late preterm birth is increasingly recognized as a risk factor for cognitive and social deficits. The prefrontal cortex is particularly vulnerable to injury in late prematurity because of its protracted development and extensive cortical connections. Our study examined children born late preterm without access to advanced postnatal care to assess structural and functional connectivity related to the prefrontal cortex. Thirty-eight preadolescents [19 born late preterm (34-36 /7 weeks gestational age) and 19 at term] were recruited from a developing community in Brazil. Participants underwent neuropsychological testing. Individuals underwent three-dimensional T1-weighted, diffusion-weighted, and resting state functional MRI. Probabilistic tractography and functional connectivity analyses were carried out using unilateral seeds combining the medial prefrontal cortex and the anterior cingulate cortex. Late preterm children showed increased functional connectivity within regions of the default mode, salience, and central-executive networks from both right and left frontal cortex seeds. Decreased functional connectivity was observed within the right parahippocampal region from left frontal seeding. Probabilistic tractography showed a pattern of decreased streamlines in frontal white matter pathways and the corpus callosum, but also increased streamlines in the left orbitofrontal white matter and the right frontal white matter when seeded from the right. Late preterm children and term control children scored similarly on neuropsychological testing. Prefrontal cortical connectivity is altered in late prematurity, with hyperconnectivity observed in key resting state networks in the absence of neuropsychological deficits. Abnormal structural connectivity indicated by probabilistic tractography suggests subtle changes in white matter development, implying disruption of normal maturation during the late gestational period.

  4. Abscisic Acid Regulates Early Seed Development in Arabidopsis by ABI5-Mediated Transcription of SHORT HYPOCOTYL UNDER BLUE1[C][W][OPEN

    PubMed Central

    Cheng, Zhi Juan; Zhao, Xiang Yu; Shao, Xing Xing; Wang, Fei; Zhou, Chao; Liu, Ying Gao; Zhang, Yan; Zhang, Xian Sheng

    2014-01-01

    Seed development includes an early stage of endosperm proliferation and a late stage of embryo growth at the expense of the endosperm in Arabidopsis thaliana. Abscisic acid (ABA) has known functions during late seed development, but its roles in early seed development remain elusive. In this study, we report that ABA-deficient mutants produced seeds with increased size, mass, and embryo cell number but delayed endosperm cellularization. ABSCISIC ACID DEFICIENT2 (ABA2) encodes a unique short-chain dehydrogenase/reductase that functions in ABA biosynthesis, and its expression pattern overlaps that of SHORT HYPOCOTYL UNDER BLUE1 (SHB1) during seed development. SHB1 RNA accumulation was significantly upregulated in the aba2-1 mutant and was downregulated by the application of exogenous ABA. Furthermore, RNA accumulation of the basic/region leucine zipper transcription factor ABSCISIC ACID-INSENSITIVE5 (ABI5), involved in ABA signaling, was decreased in aba2-1. Consistent with this, seed size was also increased in abi5. We further show that ABI5 directly binds to two discrete regions in the SHB1 promoter. Our results suggest that ABA negatively regulates SHB1 expression, at least in part, through the action of its downstream signaling component ABI5. Our findings provide insights into the molecular mechanisms by which ABA regulates early seed development. PMID:24619610

  5. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.

    PubMed

    Redekar, Neelam R; Biyashev, Ruslan M; Jensen, Roderick V; Helm, Richard F; Grabau, Elizabeth A; Maroof, M A Saghai

    2015-12-18

    Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes. RNA sequencing data of lpa and normal PA soybean lines from five seed-developmental stages (total of 30 libraries) were used for differential expression and functional enrichment analyses. A total of 4235 differentially expressed genes, including 512-transcription factor genes were identified. Eighteen biological processes such as apoptosis, glucan metabolism, cellular transport, photosynthesis and 9 transcription factor families including WRKY, CAMTA3 and SNF2 were enriched during seed development. Genes associated with apoptosis, glucan metabolism, and cellular transport showed enhanced expression in early stages of lpa seed development, while those associated with photosynthesis showed decreased expression in late developmental stages. The results suggest that lpa-causing mutations play a role in inducing and suppressing plant defense responses during early and late stages of seed development, respectively. This study provides a global perspective of transcriptomal changes during soybean seed development in an lpa mutant. The mutants are characterized by earlier expression of genes associated with cell wall biosynthesis and a decrease in photosynthetic genes in late stages. The biological processes and transcription factors identified in this study are signatures of lpa-causing mutations.

  6. Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development

    PubMed Central

    Liu, Na; Zhang, Guwen; Xu, Shengchun; Mao, Weihua; Hu, Qizan; Gong, Yaming

    2015-01-01

    Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding. PMID:26635856

  7. Altered Structural and Functional Connectivity in Late Preterm Preadolescence: An Anatomic Seed-Based Study of Resting State Networks Related to the Posteromedial and Lateral Parietal Cortex.

    PubMed

    Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-01-01

    Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.

  8. Altered Structural and Functional Connectivity in Late Preterm Preadolescence: An Anatomic Seed-Based Study of Resting State Networks Related to the Posteromedial and Lateral Parietal Cortex

    PubMed Central

    Degnan, Andrew J.; Wisnowski, Jessica L.; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M.; Corby, Patricia; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Objective Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Methods Thirty-eight preadolescents (ages 9–13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Results Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Conclusion Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing. PMID:26098888

  9. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.

    PubMed

    Liu, Hui; Wang, Cuiping; Komatsu, Setsuko; He, Mingxia; Liu, Gongshe; Shen, Shihua

    2013-10-08

    To characterize the metabolic signatures of lipid accumulation in Jatropha curcas seeds, comparative proteomic technique was employed to profile protein changes during the seed development. Temporal changes in comparative proteome were examined using gels-based proteomic technique at six developmental stages for lipid accumulation. And 104 differentially expressed proteins were identified by MALDI-TOF/TOF tandem mass spectrometry. These protein species were classified into 10 functional categories, and the results demonstrated that protein species related to energy and metabolism were notably accumulated and involved in the carbon flux to lipid accumulation that occurs primarily from early to late stage in seed development. Glycolysis and oxidative pentose phosphate pathways were the major pathways of producing carbon flux, and the glucose-6-phosphate and triose-phosphate are the major carbon source for fatty acid synthesis. Lipid analysis revealed that fatty acid accumulation initiated 25days after flowering at the late stage of seed development of J. curcas. Furthermore, C16:0 was initially synthesized as the precursor for the elongation to C18:1 and C18:2 in the developing seeds of J. curcas. Together, the metabolic signatures on protein changes in seed development provide profound knowledge and perspective insights into understanding lipid network in J. curcas. Due to the abundant oil content in seeds, Jatropha curcas seeds are being considered as the ideal materials for biodiesel. Although several studies had carried out the transcriptomic project to study the genes expression profiles in seed development of J. curcas, these ESTs hadn't been confirmed by qRT-PCR. Yet, the seed development of J. curcas had been described for a pool of developing seeds instead of being characterized systematically. Moreover, cellular metabolic events are also controlled by protein-protein interactions, posttranslational protein modifications, and enzymatic activities which cannot be described by transcriptional profiling approaches alone. In this study, within the overall objective of profiling differential protein abundance in developing J. curcas seeds, we provide a setting of physiological data with dynamic proteomic and qRT-PCR analysis to characterize the metabolic pathways and the relationship between mRNA and protein patterns from early stage to seed filling during the seed development of J. curcas. The construction of J. curcas seed development proteome profiles will significantly increase our understanding of the process of seed development and provide a foundation to examine the dynamic changes of the metabolic network during seed development process and certainly suggest some clues to improve the lipid content of J. curcas seeds. © 2013. Published by Elsevier B.V. All rights reserved.

  10. Seed sojourn and fast viability loss constrain seedling production of a prominent riparian protection plant Salix variegata Franch

    PubMed Central

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Shi, Shaohua; Niu, Hangang; Lin, Feng; Zhang, Yeyi

    2016-01-01

    Salix variegata Franch, a prominent plant applied in riparian shelter vegetation in Three Gorges reservoir region of China, produces many seeds every year but generates only a few or no seedlings. Whether the low seedling production of S. variegata is caused by seed sterility or by rapid loss of seed viability remains unknown. We investigated the sojourn time of mature seeds in capsules produced in early, mid, and late reproductive season and the germinability of mature seeds fresh or stored after different period of time. The sojourn time of seeds in capsules was 2.89, 3.95, and 4.72 days in early, mid, and late reproductive season, respectively. The maximal germination percentage of non-stored fresh seeds produced in early, mid, and late reproductive season was 93.33%, 78.67%, and 40%, respectively, which indicates mature seeds were not sterile. The longest viability-retaining time of seeds produced in early, mid, and late reproductive season was only 8, 16, 16 days, respectively, indicating that mature seeds of S. variegata lost viability very rapidly. Mature seeds possessed good viability, but their rapid viability loss caused the low seedling production and hampered the population growth of S. variegata in the riparian area of Three Gorges reservoir region. PMID:27881868

  11. Seed sojourn and fast viability loss constrain seedling production of a prominent riparian protection plant Salix variegata Franch.

    PubMed

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Shi, Shaohua; Niu, Hangang; Lin, Feng; Zhang, Yeyi

    2016-11-24

    Salix variegata Franch, a prominent plant applied in riparian shelter vegetation in Three Gorges reservoir region of China, produces many seeds every year but generates only a few or no seedlings. Whether the low seedling production of S. variegata is caused by seed sterility or by rapid loss of seed viability remains unknown. We investigated the sojourn time of mature seeds in capsules produced in early, mid, and late reproductive season and the germinability of mature seeds fresh or stored after different period of time. The sojourn time of seeds in capsules was 2.89, 3.95, and 4.72 days in early, mid, and late reproductive season, respectively. The maximal germination percentage of non-stored fresh seeds produced in early, mid, and late reproductive season was 93.33%, 78.67%, and 40%, respectively, which indicates mature seeds were not sterile. The longest viability-retaining time of seeds produced in early, mid, and late reproductive season was only 8, 16, 16 days, respectively, indicating that mature seeds of S. variegata lost viability very rapidly. Mature seeds possessed good viability, but their rapid viability loss caused the low seedling production and hampered the population growth of S. variegata in the riparian area of Three Gorges reservoir region.

  12. Osmotic measurements in whole megagametophytes and embryos of loblolly pine (Pinus taeda) during seed development.

    PubMed

    Pullman, Gerald S; Johnson, Shannon

    2009-06-01

    Water potential (Psi) and osmotic potential (Psis) were measured weekly through the sequence of seed development in megagametophytes of loblolly pine (Pinus taeda L.). A Wescor 5500XRS vapor pressure osmometer, modified with a cycle hold switch, was used to measure Psi for whole megagametophytes containing embryos. The Psi measurements for megagametophytes with embryos removed were also attempted but readings were distorted due to cell lysates from the cut surfaces. Six seasonal sets of megagametophyte Psi profiles were generated. Megagametophytes from most of the trees examined showed a consistent Psi pattern: low measurements of -1.0 to -0.75 MPa during early embryo development in late June to early July when embryo Stages 1-2 occur; an increase for one to several weeks to levels of -0.5 to -0.75 MPa, beginning at Stages 3-5 when apical dome formation occurs; followed by a steady drop from -0.85 to -1.7 to -2.0 MPa from Stage 6 onward from late August until just before cone seed release. The Psis was measured for supernatant from centrifuged frozen-thawed megagametophyte tissue (embryos removed). Megagametophyte Psis profiles were similar for seeds analyzed from two trees and resembled Psi observations starting low, rising around Stages 4-7 and then undergoing a major reduction indicating a strong solute accumulation beginning at Stages 7-9.1. Somatic embryos stop growth prematurely in vitro at Stages 8-9.1. The major change in the accumulation of megagametophyte solutes at Stages 8-9.1 correlates with the halt in somatic embryo maturation and suggests that identifying, quantifying and using the major natural soluble compounds that accumulate during mid- to late-stage seed development may be important to improve conifer somatic embryo maturation.

  13. Maturation of Sweetgum and American Sycamore Seeds

    Treesearch

    F. T. Bonner

    1972-01-01

    Over three consecutive years in central Mississippi, sweetgum (Liquidambar styraciflua L.) and sycamore (Platanus occidentalis L.) fruits had nearly reached full-size by late June. Sweetgum seeds were physiologically mature by mid-August, but dry weight increased until late September. As sweetgum seeds matured, the crude fat level rose to 27 percent of seed dry weight...

  14. Dynamic DNA methylation reconfiguration during seed development and germination.

    PubMed

    Kawakatsu, Taiji; Nery, Joseph R; Castanon, Rosa; Ecker, Joseph R

    2017-09-15

    Unlike animals, plants can pause their life cycle as dormant seeds. In both plants and animals, DNA methylation is involved in the regulation of gene expression and genome integrity. In animals, reprogramming erases and re-establishes DNA methylation during development. However, knowledge of reprogramming or reconfiguration in plants has been limited to pollen and the central cell. To better understand epigenetic reconfiguration in the embryo, which forms the plant body, we compared time-series methylomes of dry and germinating seeds to publicly available seed development methylomes. Time-series whole genome bisulfite sequencing reveals extensive gain of CHH methylation during seed development and drastic loss of CHH methylation during germination. These dynamic changes in methylation mainly occur within transposable elements. Active DNA methylation during seed development depends on both RNA-directed DNA methylation and heterochromatin formation pathways, whereas global demethylation during germination occurs in a passive manner. However, an active DNA demethylation pathway is initiated during late seed development. This study provides new insights into dynamic DNA methylation reprogramming events during seed development and germination and suggests possible mechanisms of regulation. The observed sequential methylation/demethylation cycle suggests an important role of DNA methylation in seed dormancy.

  15. Wheat seed weight and quality differ temporally in sensitivity to warm or cool conditions during seed development and maturation

    PubMed Central

    Nasehzadeh, M

    2017-01-01

    Abstract Background and aims Short periods of extreme temperature may affect wheat (Triticum aestivum) seed weight, but also quality. Temporal sensitivity to extreme temperature during seed development and maturation was investigated. Methods Plants of ‘Tybalt’ grown at ambient temperature were moved to growth cabinets at 29/20°C or 34/20°C (2010), or 15/10°C or 34/20°C (2011), for successive 7-d periods from 7 DAA (days after anthesis) onwards, and also 7–65 DAA in 2011. Seed samples were harvested serially and moisture content, weight, ability to germinate, subsequent longevity in air-dry storage and bread-making quality were determined. Key Results High temperature (34/20°C) reduced final seed weight, with greatest temporal sensitivity at 7–14 or 14–21 DAA. Several aspects of bread-making quality were also most sensitive to high temperature then, but whereas protein quality decreased protein and sulphur concentrations improved. Early exposure to high temperature provided earlier development of ability to germinate and tolerate desiccation, but had little effect on maximum germination capacity. All treatments at 15/10°C resulted in ability to germinate declining between 58 and 65 DAA. Early exposure to high temperature hastened improvement in seed storage longevity, but the subsequent decline in late maturation preceded that in the control. Long (7–65 DAA) exposure to 15/10°C disrupted the development of seed longevity, with no improvement after seed filling ended. Longevity improved during maturation drying in other treatments. Early (7–14 DAA) exposure to high temperature reduced and low temperature increased subsequent longevity at harvest maturity, whereas late (35 or 42–49 DAA) exposure to high temperature increased and low temperature reduced it. Conclusions Temporal sensitivity to extreme temperature was detected. It varied considerably amongst the contrasting seed variables investigated. Subsequent seed longevity at harvest maturity responded negatively to temperature early in development, but positively later in development and throughout maturation. PMID:28637252

  16. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.

    PubMed

    Kanai, Masatake; Mano, Shoji; Kondo, Maki; Hayashi, Makoto; Nishimura, Mikio

    2016-05-01

    Regulation of oil biosynthesis in plant seeds has been extensively studied, and biotechnological approaches have been designed to increase seed oil content. Oil and protein synthesis is negatively correlated in seeds, but the mechanisms controlling interactions between these two pathways are unknown. Here, we identify the molecular mechanism controlling oil and protein content in seeds. We utilized transgenic Arabidopsis thaliana plants overexpressing WRINKLED1 (WRI1), a master transcription factor regulating seed oil biosynthesis, and knockout mutants of major seed storage proteins. Oil and protein biosynthesis in wild-type plants was sequentially activated during early and late seed development, respectively. The negative correlation between oil and protein contents in seeds arises from competition between the pathways. Extension of WRI1 expression during mid-phase of seed development significantly enhanced seed oil content. This study demonstrates that temporal activation of genes involved in oil or storage protein biosynthesis determines the oil/protein ratio in Arabidopsis seeds. These results provide novel insights into potential breeding strategies to generate crops with high oil contents in seeds. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Mixed pollen load and late-acting self-incompatibility flexibility in Adenocalymma peregrinum (Miers) L.G. Lohmann (Bignonieae: Bignoniaceae).

    PubMed

    Duarte, M O; Mendes-Rodrigues, C; Alves, M F; Oliveira, P E; Sampaio, D S

    2017-03-01

    Mixed cross and self-pollen load on the stigma (mixed pollination) of species with late-acting self-incompatibility system (LSI) can lead to self-fertilized seed production. This "cryptic self-fertility" may allow selfed seedling development in species otherwise largely self-sterile. Our aims were to check if mixed pollinations would lead to fruit set in LSI Adenocalymma peregrinum, and test for evidence of early-acting inbreeding depression in putative selfed seeds from mixed pollinations. Experimental pollinations were carried out in a natural population. Fruit and seed set from self-, cross and mixed pollinations were analysed. Further germination tests were carried out for the seeds obtained from treatments. Our results confirm self-incompatibility, and fruit set from cross-pollinations was three-fold that from mixed pollinations. This low fruit set in mixed pollinations is most likely due to a greater number of self- than cross-fertilized ovules, which promotes LSI action and pistil abortion. Likewise, higher percentage of empty seeds in surviving fruits from mixed pollinations compared with cross-pollinations is probably due to ovule discounting caused by self-fertilization. Moreover, germinability of seeds with developed embryos was lower in fruits from mixed than from cross-pollinations, and the non-viable seeds from mixed pollinations showed one-third of the mass of those from cross-pollinations. The great number of empty seeds, lower germinability, lower mass of non-viable seeds, and higher variation in seed mass distribution in mixed pollinations, strongly suggests early-acing inbreeding depression in putative selfed seeds. In this sense, LSI and inbreeding depression acting together probably constrain self-fertilized seedling establishment in A. peregrinum. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. ABI5 Is a Regulator of Seed Maturation and Longevity in Legumes

    PubMed Central

    Zinsmeister, Julia; Lalanne, David; Terrasson, Emmanuel; Chatelain, Emilie; Vandecasteele, Céline; Vu, Benoit Ly; Gutbrod, Katharina; Dörmann, Peter; Bendahmane, Abdelhafid

    2016-01-01

    The preservation of our genetic resources and production of high-quality seeds depends on their ability to remain viable and vigorous during storage. In a quantitative trait locus analysis on seed longevity in Medicago truncatula, we identified the bZIP transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5). Characterization of Mt-abi5 insertion mutant seeds revealed that both the acquisition of longevity and dormancy were severely impaired. Using transcriptomes of developing Mt-abi5 seeds, we created a gene coexpression network and revealed ABI5 as a regulator of gene modules with functions related to raffinose family oligosaccharide (RFO) metabolism, late embryogenesis abundant (LEA) proteins, and photosynthesis-associated nuclear genes (PhANGs). Lower RFO contents in Mt-abi5 seeds were linked to the regulation of SEED IMBIBITION PROTEIN1. Proteomic analysis confirmed that a set of LEA polypeptides was reduced in mature Mt-abi5 seeds, whereas the absence of repression of PhANG in mature Mt-abi5 seeds was accompanied by chlorophyll and carotenoid retention. This resulted in a stress response in Mt-abi5 seeds, evident from an increase in α-tocopherol and upregulation of genes related to programmed cell death and protein folding. Characterization of abi5 mutants in a second legume species, pea (Pisum sativum), confirmed a role for ABI5 in the regulation of longevity, seed degreening, and RFO accumulation, identifying ABI5 as a prominent regulator of late seed maturation in legumes. PMID:27956585

  19. Seed population dynamics on abandoned slopes in the hill and gully Loess Plateau region of China

    NASA Astrophysics Data System (ADS)

    Yu, Weijie; Jiao, Juying

    2017-04-01

    Recovery of natural vegetation is an effective but slow approach to control the soil erosion in the Chinese hill and gully Loess Plateau region. As seed stage is particularly vulnerable to environmental conditions, characteristics of seed population should be needed to study for determining whether the recovery of natural vegetation is limited during this stage on the abandoned slopes in this region. The study was performed on three abandoned slopes in a watershed with an area of 8.27 km2in the Shaanxi province of China. The differences in soil seed banks were investigated in two different points in time, late March2011 and early April 2013. Main factors of seed population dynamics, such as seed yield of dominant species, seed inputs by seed rain as well as seed outputs through seed loss by overland flow and seedling emergence, were monitored from late March 2011 to early April 2013. In this study, seed rain densities of the main later successional species, i.e., Lespedeza davurica, Stipa bungeana and Artemisia gmelinii accounted for 51.5-71.6% of their own seed yields. The soil seed bank density in early April 2013 was larger than that in late March 2011. The density of seed inputs by seed rain was 10186 seeds•m-2, and the total seed bank, including seed rain and seeds present in the soil seed bank in late March 2011, reached a density of 15018 seeds•m-2 during the study period. Seed densities of loss due to overland flow and seedling emergence were 79 seeds•m-2 from 20 species and 938 seedlings•m-2 that belonged to 38 species during a study period, and the seed output through them accounted for 0.5% and 6.3% of the total seed bank, respectively. The study concluded that overland flow could not result in large numbers of seeds loss and seeds were accumulating in the soil seed bank due to seed rain, and vegetation succession might be limited by curbed spatial seed dispersal and seedling establishment.

  20. Phenology, dichogamy, and floral synchronization in a northern red oak (Quercus Rubra L.) seed orchard

    USDA-ARS?s Scientific Manuscript database

    We developed a novel scoring system to assess spring phenology in a northern red oak clonal seed orchard. The system was used to score between 304 and 364 ramets for three reproductive seasons and place clones into early, middle, and late phenology groups. While the absolute number of clones in ea...

  1. Insect Seed Predators in Erythrina falcata (Fabaceae): Identification of Predatory Species and Ecological Consequences of Asynchronous Flowering.

    PubMed

    Pereira, C M; Moura, M O; Da-Silva, P R

    2014-06-01

    Seed predation by insects exerts negative effects on plant reproduction by limiting the supply of seeds and preventing germination. Seed predators of the family Fabaceae are usually generalists, which increases the rate of predation. One strategy to minimize seed predation, developed by plants from temperate regions, is "escape in time," i.e., flowering before or after the peak of predation. For tropical species, few studies have investigated the strategies used by plants to minimize seed predation. Here, using Erythrina falcata, a tropical species of Fabaceae, we test three main hypotheses: (i) escape in time is a mechanism used by E. falcata to minimize seed predation, (ii) the predators of E. falcata seeds are generalists, and (iii) the biometric variables of the pods can influence seed predation. In order to test these hypotheses, we determined the flowering time of E. falcata, rate of seed predation, the predators insects, and biometric variables of the pods. The analyzed trees were grouped into three classes: "early," "peak," and "late" flowering. The average seed predation rates on trees in the early and late classes were 65% and 50%, respectively, and in the peak class, 80%; thus, our first hypothesis can be accepted. Three species of Lepidoptera and two of Coleoptera were found preying on E. falcata seeds. These species were observed to be generalist predators; thus, our second hypothesis can be accepted. The biometric variables of the pods cannot influence seed predation rate. The ecological consequences of asynchronous flowering on plants and insects are discussed.

  2. Phenology, dichogamy, and floral synchronization in a northern red oak (Quercus rubra) seed orchard

    Treesearch

    Lisa W. Alexander; Keith E. Woeste

    2016-01-01

    We developed a novel scoring system to assess spring phenology in a northern red oak (Quercus rubra L.) clonal seed orchard. The system was used to score from 304 to 364 ramets for three reproductive seasons and to place clones into early, intermediate, and late phenology classes. Although the absolute number of clones in each phenological class...

  3. Immunolocalization of carbonic anhydrase and phosphoenolpyruvate carboxylase in developing seeds of Medicago sativa.

    PubMed

    Aivalakis, Georgios; Dimou, Maria; Flemetakis, Emmanouil; Plati, Fotini; Katinakis, Panagiotis; Drossopoulos, J B

    2004-03-01

    To investigate the role of carbonic anhydrase (CA; EC 4.2.1.1) and phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) during Medicago sativa seed development, the distribution of both proteins was examined using an immunohistological approach. Both enzymes are co-localized in most ovular and embryonic tissues. In early stages of seed development, both proteins were abundant in embryo and integuments, while at subsequent stages both proteins are accumulated in endosperm, nucellus and integuments. At late stages of seed development when both endosperm and nucellus are degraded, significant accumulation of both proteins was observed in the embryo proper. Chlorophyll was found to accumulate in embryos after the heart stage and reached a maximum at mature stage. It is suggested that CA and PEPC play a role in respiratory carbon dioxide refixation while generating malate to support amino acid and/or fatty acids biosynthesis.

  4. The Role of Late-Acting Self-Incompatibility and Early-Acting Inbreeding Depression in Governing Female Fertility in Monkshood, Aconitum kusnezoffii

    PubMed Central

    Hao, Yi-Qi; Zhao, Xin-Feng; She, Deng-Ying; Xu, Bing; Zhang, Da-Yong; Liao, Wan-Jin

    2012-01-01

    Reduced seed yields following self-pollination have repeatedly been observed, but the underlying mechanisms remain elusive when self-pollen tubes can readily grow into ovaries, because pre-, post-zygotic late-acting self-incompatibility (LSI), or early-acting inbreeding depression (ID) can induce self-sterility. The main objective of this study was to differentiate these processes in Aconitum kusnezoffii, a plant lacking stigmatic or stylar inhibition of self-pollination. We performed a hand-pollination experiment in a natural population of A. kusnezoffii, compared seed set among five pollination treatments, and evaluated the distribution of seed size and seed set. Embryonic development suggested fertilization following self-pollination. A partial pre-zygotic LSI was suggested to account for the reduced seed set by two lines of evidence. The seed set of chase-pollination treatment significantly exceeded that of self-pollination treatment, and the proportion of unfertilized ovules was the highest following self-pollination. Meanwhile, early-acting ID, rather than post-zygotic LSI, was suggested by the findings that the size of aborted selfed seeds varied continuously and widely; and the selfed seed set both exhibited a continuous distribution and positively correlated with the crossed seed set. These results indicated that the embryos were aborted at different stages due to the expression of many deleterious alleles throughout the genome during seed maturation. No signature of post-zygotic LSI was found. Both partial pre-zygotic LSI and early-acting ID contribute to the reduction in selfed seed set in A. kusnezoffii, with pre-zygotic LSI rejecting part of the self-pollen and early-acting ID aborting part of the self-fertilized seeds. PMID:23056570

  5. Effects of germination time on seed morph ratio in a seed-dimorphic species and possible ecological significance

    PubMed Central

    Yang, Fan; Baskin, Jerry M.; Baskin, Carol C.; Yang, Xuejun; Cao, Dechang; Huang, Zhenying

    2015-01-01

    Background and Aims Diaspores of heteromorphic species may germinate at different times due to distinct dormancy-breaking and germination requirements, and this difference can influence life history traits. The primary aim of this study was to determine the effect of germination time of the two seed morphs of Suaeda corniculata subsp. mongolica on life history traits of the offspring. Methods Germinated brown and black seeds were sown on the 20th of each month from April to September in a simulated but near-natural habitat of the species. Phenological and vegetative traits of the maternal plants, and number, size and germination percentage of the offspring were determined. Key Results Germinated seeds sown late in the year produced smaller plants that had a higher proportion of non-dormant brown than dormant black seeds, and these brown seeds were larger than those produced by germinated seeds sown early in the year. The length of the seedling stage for brown seeds was shorter than that for black seeds, and the root/shoot ratio and reproductive allocation of plants from brown seeds were more variable than they were for plants from black seeds. Late-germinating brown seeds produced larger plants than late-germinating black seeds. Conclusions Altering the proportion of the two seed types in response to germination timing can help alleviate the adverse effects of delayed germination. The flexible strategy of a species, such as S. corniculata, that produces different proportions of dimorphic seeds in response to variation in germination timing may favour the maintenance and regeneration of the population in its unpredictable environment. PMID:25395107

  6. Cellular composition and expression of potential stem cell markers in mammary tissue of cows consuming endophyte-infected fescue seed during the dry period and early lactation

    USDA-ARS?s Scientific Manuscript database

    We evaluated the impact of consuming endophyte-infected fescue during late pregnancy on parameters of mammary development in Holstein cows. Cows (N = 16) were fed 10% of their ration as tall fescue seed that was free from (CON) or infected with endophyte (INF) from 90d before expected calving until ...

  7. Novel Insights into the Influence of Seed Sarcotesta Photosynthesis on Accumulation of Seed Dry Matter and Oil Content in Torreya grandis cv. “Merrillii”

    PubMed Central

    Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng

    2018-01-01

    Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592

  8. Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques.

    PubMed

    King, S. P.; Lunn, J. E.; Furbank, R. T.

    1997-05-01

    Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning.

  9. Adenylate and Nicotinamide Nucleotides in Developing Soybean Seeds During Seed-Fill 1

    PubMed Central

    Quebedeaux, Bruno

    1981-01-01

    Profiles of adenylate and nicotinamide nucleotides in soybean seeds were determined during seed-fill. The ATP content per seed increased during the early seed-filling stages to a level of 10 to 12 micrograms per seed. Seed ATP decreased after 40 days of development and reached its lowest level of less than 1 microgram at maturity. The ATP:ADP ratios were relatively constant at all seed development stages. Sharp increases in AMP levels during the late seed-fill stages were paralleled with a disappearance of ATP and ADP pools resulting in a reduced seed energy charge. Energy charge varied from the highest value of 0.78 at mid-seed-fill to less than 0.10 at maturity. Of the oxidized (NAD, NADP) and reduced (NADH, NADPH) nicotinamide nucleotide forms, NAD was the most abundant. Levels as high as 17.5 micrograms per seed were observed during the mid-seed-filling stages. NADP was found almost exclusively in the reduced form with a NADP: NADPH ratio of less than 0.35, whereas the reverse was noted for NAD which was found mainly in the oxidized form with a NAD:NADH ratio in the range of 5 to 25. NADP was detected in low concentrations compared to the other adenylate and nicotinamide nucleotides. The nicotinamide redox charge defined as (NADH + NADPH)/(NAD + NADH) + (NADP + NADPH) was calculated to express the state of the energy balance between the oxidized and reduced nicotinamide nucleotide forms. The nicotinamide redox charge varied between 0.15 and 0.30 during seed development and was significantly lower than that found for the adenylate energy charge. PMID:16661875

  10. First-year establishment, biomass and seed production of early vs. late seral natives in two medusahead (Taeniatherum caput-meducae) invaded soils

    Treesearch

    Shauna M. Uselman; Keirith A. Snyder; Elizabeth A. Leger; Sara E. Duke

    2014-01-01

    Re-seeding efforts to restore or rehabilitate Great Basin rangelands invaded by exotic annual grasses are expensive and have generally achieved limited success. There is a need to identify new strategies to improve restoration outcomes. We tested the performance of a native early seral seed mix (annual forbs, early seral grasses and shrubs) with that of a native late...

  11. Development and recovery from winter embolism in silver birch: seasonal patterns and relationships with the phenological cycle in oceanic Scotland.

    PubMed

    Strati, Sara; Patiño, Sandra; Slidders, Caley; Cundall, Edward P; Mencuccini, Maurizio

    2003-07-01

    Silver birch (Betula pendula Roth) is increasingly used in the United Kingdom for reforestation. However, recent evidence indicates that, under some circumstances, planted birch can suffer serious and repeated mortality of the apical leaders and branches, with consequent loss of apical dominance and the formation of a contorted stem. Plants from 37 seed sources of silver birch from Scotland and northern England planted at two sites were compared for several characteristics related to hydraulic architecture, vulnerability to freeze-thaw cycle induced embolism and spring recovery from winter embolism during the period 2000-2002. Phenological rhythms were also monitored in late winter-early spring to document relationships between phenology and water relations parameters. Significant differences were found across seed sources in stage of bud flushing for four dates in spring. Early flushing seed sources differed by about 1 to 2 weeks from late-flushing seed sources across the two sites. Wintertime xylem embolism in stems reached a peak of about 50 to 70% loss of xylem hydraulic conductivity, depending on the size and position of the sample shoots in the canopy. Small apical shoots were significantly more embolized than large basal shoots. Development of winter embolism was coupled to the occurrence of frost events. As percent loss of hydraulic conductivity increased during the winter, wood relative water content declined. Embolism reversal occurred rapidly in spring at the time of development of positive root pressure. No significant differences in the degree of winter embolism in 2001 were found among the three seed sources examined. The investigation was expanded in the winter-spring of 2002 to include 10 seed sources across both sites. Significant differences were found in degree of winter embolism across sites, dates and seed sources. For each date, there was a significant relationship between flushing scores and wood relative water contents across the two sites and all seed sources, suggesting that differences in time of flushing across sites and seed sources were likely caused by differences in the time of occurrence of root pressure, a necessary precondition to flushing.

  12. Differential proteomics reveals the hallmarks of seed development in common bean (Phaseolus vulgaris L.).

    PubMed

    Parreira, J R; Bouraada, J; Fitzpatrick, M A; Silvestre, S; Bernardes da Silva, A; Marques da Silva, J; Almeida, A M; Fevereiro, P; Altelaar, A F M; Araújo, S S

    2016-06-30

    Common bean (Phaseolus vulgaris L.) is one of the most consumed staple foods worldwide. Little is known about the molecular mechanisms controlling seed development. This study aims to comprehensively describe proteome dynamics during seed development of common bean. A high-throughput gel-free proteomics approach (LC-MS/MS) was conducted on seeds at 10, 20, 30 and 40days after anthesis, spanning from late embryogenesis until desiccation. Of the 418 differentially accumulated proteins identified, 255 were characterized, most belonging to protein metabolism. An accumulation of proteins belonging to the MapMan functional categories of "protein", "glycolysis", "TCA", "DNA", "RNA", "cell" and "stress" were found at early seed development stages, reflecting an extensive metabolic activity. In the mid stages, accumulation of storage, signaling, starch synthesis and cell wall-related proteins stood out. In the later stages, an increase in proteins related to redox, protein degradation/modification/folding and nucleic acid metabolisms reflect that seed desiccation-resistance mechanisms were activated. Our study unveils new clues to understand the regulation of seed development mediated by post-translational modifications and maintenance of genome integrity. This knowledge enhances the understanding on seed development molecular mechanisms that may be used in the design and selection of common bean seeds with desired quality traits. Common bean (P. vulgaris) is an important source of proteins and carbohydrates worldwide. Despite the agronomic and economic importance of this pulse, knowledge on common bean seed development is limited. Herein, a gel-free high throughput methodology was used to describe the proteome changes during P. vulgaris seed development. Data obtained will enhance the knowledge on the molecular mechanisms controlling this grain legume seed development and may be used in the design and selection of common bean seeds with desired quality traits. Results may be extrapolated to other pulses. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Seeding big sagebrush successfully on Intermountain rangelands

    Treesearch

    Susan E. Meyer; Thomas W. Warren

    2015-01-01

    Big sagebrush can be seeded successfully on climatically suitable sites in the Great Basin using the proper seeding guidelines. These guidelines include using sufficient quantities of high-quality seed of the correct subspecies and ecotype, seeding in late fall to mid-winter, making sure that the seed is not planted too deeply, and seeding into an environment...

  14. Improved Resistance to Controlled Deterioration in Transgenic Seeds1[W][OA

    PubMed Central

    Prieto-Dapena, Pilar; Castaño, Raúl; Almoguera, Concepción; Jordano, Juan

    2006-01-01

    We show that seed-specific overexpression of the sunflower (Helianthus annuus) HaHSFA9 heat stress transcription factor (HSF) in tobacco (Nicotiana tabacum) enhances the accumulation of heat shock proteins (HSPs). Among these proteins were HSP101 and a subset of the small HSPs, including proteins that accumulate only during embryogenesis in the absence of thermal stress. Levels of late embryogenesis abundant proteins or seed oligosaccharides, however, were not affected. In the transgenic seeds, a high basal thermotolerance persisted during the early hours of imbibition. Transgenic seeds also showed significantly improved resistance to controlled deterioration in a stable and transgene-dependent manner. Furthermore, overexpression of HaHSFA9 did not have detrimental effects on plant growth or development, including seed morphology and total seed yield. Our results agree with previous work tentatively associating HSP gene expression with phenotypes important for seed longevity. These findings might have implications for improving seed longevity in economically important crops. PMID:16998084

  15. Effect of Seed Position on Parental Plant on Proportion of Seeds Produced with Nondeep and Intermediate Physiological Dormancy

    PubMed Central

    Lu, Juan J.; Tan, Dun Y.; Baskin, Carol C.; Baskin, Jerry M.

    2017-01-01

    The position in which seeds develop on the parental plant can have an effect on dormancy-break and germination. We tested the hypothesis that the proportion of seeds with intermediate physiological dormancy (PD) produced in the proximal position on a raceme of Isatis violascens plants is higher than that produced in the distal position, and further that this difference is related to temperature during seed development. Plants were watered at 3-day intervals, and silicles and seeds from the proximal (early) and distal (late) positions of racemes on the same plants were collected separately and tested for germination. After 0 and 6 months dry storage at room temperature (afterripening), silicles and seeds were cold stratified for 0–16 weeks and tested for germination. Mean daily maximum and minimum temperatures during development/maturation of the two groups of seeds did not differ. A higher proportion of seeds with the intermediate level than with the nondeep level of PD was produced by silicles in the proximal position than by those in the distal position, while the proportion of seeds with nondeep PD was higher in the distal than in the proximal position of the raceme. The differences were not due only to seed mass. Since temperature and soil moisture conditions were the same during development of the seeds in the raceme, differences in proportion of seeds with intermediate and nondeep PD are attributed to position on parental plant. The ecological consequence of this phenomenon is that it ensures diversity in dormancy-breaking and germination characteristics within a seed cohort, a probable bet-hedging strategy. This is the first demonstration of position effects on level of PD in the offspring. PMID:28232842

  16. Short-term soil responses to late-seeded cover crops in a semi-arid environment

    USDA-ARS?s Scientific Manuscript database

    Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...

  17. Protocol for Large-Scale Collection, Processing, and Storage of Seeds of Two Mesohaline Submerged Aquatic Plant Species

    DTIC Science & Technology

    2006-08-01

    and the regulation of the timing of initial seedling growth. The evolution of flowering plants extended the potential for regu- lating growth and...improved the efficiency of gamete transfer via pollination (Willis and Figure 1. A one-gram plant sample of R. maritima seeds Report Documentation...uniformity of plant growth and development is contrary to the goals of ecological restoration where the objective is the successful establishment of

  18. The earliest seeds

    USGS Publications Warehouse

    Gillespie, W.H.; Rothwell, G.W.; Scheckler, S.E.

    1981-01-01

    Lagenostomalean-type seeds in bifurcating cupule systems have been discovered in the late Devonian Hampshire Formation of Randolph County, West Virginia, USA (Fig. 1). The associated megaflora, plants from coal balls, and vertebrate and invertebrate faunas demonstrate that the material is Famennian; the microflora indicates a more specific Fa2c age. Consequently, these seeds predate Archaeosperma arnoldii1 from the Fa2d of northeastern Pennsylvania, the oldest previously reported seed. By applying precision fracture, transfer, de??gagement, and thin-section techniques to selected cupules from the more than 100 specimens on hand, we have determined the three-dimensional morphology and histology of the seeds (Fig. 2a-h, k) and cupule systems. A comparison with known late Devonian to early Carboniferous seeds reveals that ours are more primitively organized than all except Genomosperma2,3. ?? 1981 Nature Publishing Group.

  19. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; McClure, G.; Musgrave, M. E.

    2000-01-01

    Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  20. Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques.

    PubMed Central

    King, S. P.; Lunn, J. E.; Furbank, R. T.

    1997-01-01

    Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning. PMID:12223695

  1. [Allelopathic effects of extracts from tuberous roots of Aconitum carmichaeli on three pasture grasses].

    PubMed

    Jiao, Yu-jie; Wang, Ya-qi; Yuan, Ling

    2015-11-01

    The tuberous roots of Aconitum carmichaeli are largely used in traditional Chinese medicine and widely grown in Jiangyou, Sichuan, China. During the growth process, this medicinal plant releases a large amount of allelochemicals into soil, which retard the growth and development of near and late crops. Therefore, a pure culture experiment was thus carried out by seed soaking to study the allelopathic effects of extracts from tuberous roots of A. carmichaeli (ETR) on the seed germination and young seedling growth of Lolium perenne, Trifolium repens, and Medicago sativa, the late pasture grasses after cultivation of A. carmichaeli. The results showed that three pasture grasses varied significantly in seed germination and young seedling growth in response to ETR concentrations. Seed germination of M. sativa was stimulated by low ERT concentration (0.01 x g(-1)), while all of pasture grass seeds germinated poorly in solution with 1.00 g x L(-1). Seed soaking with 1.00 g x L(-1) also inhibited significantly the growth of pasture young seedlings, with M. sativa showing the highest seedling height reduction of 42.05% in seeding height, followed by T. repens (40.21%) and L. perenne with about 11%. Cultivation of L. perenne could thus be beneficial to increase whole land productivity in A. carmichaeli-pasture grass cropping systems. In addition, hydrolysis of protein, starch, and inositol phosphates was blocked and free amino acids, soluble sugars and phosphorus were decreased in seeds by seed soaking with ETR, which could be one of the reason for the inhibition of seed germination. There was a significant reduction in root vigor, nitrate reductase, and chlorophyll after the seed treatment with ETR, indicating the suppression of nutrient uptake, nitrate assimilation, and photosynthesis by allelopathic chemicals in ETR, which could lead to the slow growth rate of pasture grass seedlings.

  2. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos.

    PubMed

    Smolikova, Galina; Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej; Medvedev, Sergei

    2017-09-16

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN ( SGR ) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  3. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos

    PubMed Central

    Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej

    2017-01-01

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds. PMID:28926960

  4. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 Is Essential for Thermoinhibition of Lettuce Seed Germination but Not for Seed Development or Stress Tolerance[C][W

    PubMed Central

    Huo, Heqiang; Dahal, Peetambar; Kunusoth, Keshavulu; McCallum, Claire M.; Bradford, Kent J.

    2013-01-01

    Thermoinhibition, or failure of seeds to germinate at warm temperatures, is common in lettuce (Lactuca sativa) cultivars. Using a recombinant inbred line population developed from a lettuce cultivar (Salinas) and thermotolerant Lactuca serriola accession UC96US23 (UC), we previously mapped a quantitative trait locus associated with thermoinhibition of germination to a genomic region containing a gene encoding a key regulated enzyme in abscisic acid (ABA) biosynthesis, 9-cis-EPOXYCAROTENOID DIOXYGENASE4 (NCED4). NCED4 from either Salinas or UC complements seeds of the Arabidopsis thaliana nced6-1 nced9-1 double mutant by restoring germination thermosensitivity, indicating that both NCED4 genes encode functional proteins. Transgenic expression of Salinas NCED4 in UC seeds resulted in thermoinhibition, whereas silencing of NCED4 in Salinas seeds led to loss of thermoinhibition. Mutations in NCED4 also alleviated thermoinhibition. NCED4 expression was elevated during late seed development but was not required for seed maturation. Heat but not water stress elevated NCED4 expression in leaves, while NCED2 and NCED3 exhibited the opposite responses. Silencing of NCED4 altered the expression of genes involved in ABA, gibberellin, and ethylene biosynthesis and signaling pathways. Together, these data demonstrate that NCED4 expression is required for thermoinhibition of lettuce seeds and that it may play additional roles in plant responses to elevated temperature. PMID:23503626

  5. [Study on the growth, development and artificial propagation of Hypericum ascyron].

    PubMed

    Chen, Yu-mei; Zhang, Ke-qin; Song, Bai-jun; Zhao, Gui-ying; Wang, Zhen-hui; Wang, Li-mei; Chang, Wei-yi; Cong, Li-xin

    2011-06-01

    To explore the morphological changes, growth conditions and artificial propagation of Hypericum ascyron. The morphological changes were observed and recorded in the scene, the height and diameter of the plants were measured; the growth Verhaulst model was set up with the SPSS 17.0 software; the sexual reproduction and asexual reproduction were carried out in artificial cultivation. Hypericum ascyron started germinating in late April each year, branching in late May, flowering in late June, the period of full bearing was in early August, seeds were mature in early October. The Verhaulst models of the increase in the height (H), the quantity of leaf pairs (L) and the branching (B) were, H = 127.109/(1 + 23.744 x e(-0.062t)), L = 23.343/(1 + 11.303 x e(-0.062t)), B = 22.037/(1 + 73.068 x e(-0.068t)). The survival rate of whole graft and segmentation plant were 100% and 67.2% respectively on asexual reproduction; on the sexual reproduction, the seed germination rate was 15.2%, the survival rate of transplant seedlings was 36%. The period of growth and development of Hypericum ascyron is from April to October and it can be carried out artificial propagation.

  6. Passifloraceae seeds from the late Eocene of Colombia.

    PubMed

    Martínez, Camila

    2017-12-01

    The plant fossil record for the neotropics is still sparse and temporally discontinuous. The location and description of new fossil material are fundamental for understanding evolutionary and biogeographic patterns of lineages. A new fossil record of Passifloraceae from the late Eocene of Colombia is described in this study. Plant fossils were collected from a new locality from the Eocene Esmeraldas Formation. Eighteen fossil seeds were selected, described, and compared with fossil and extant angiosperm seeds based on the literature and herbarium collections. Taxonomic affinities of the fossil seeds within Passifloraceae s.l. were evaluated by comparing morphological characters of the seeds in a phylogenetic context. Stratigraphic information associated with the fossil locality was used to interpret the environment and taphonomic processes associated with fossil deposition. A new seed fossil genus and species, Passifloroidesperma sogamosense gen. and sp. nov., is described and associated with the subfamily Passifloroideae based on the presence of a foveolate seed surface, ruminate endosperm, and a seed coat with prismatic palisade cells. The depositional environment of the locality is described as a floodplain associated with river channels. A detailed review of the Passifloraceae fossil record indicates that P. sogamosense is the oldest confirmed record of Passifloraceae. Its late Eocene age provides a minimum age that can be used as a calibration point for the crown Passifloroideae node in future dating analyses that together with its neotropical geographic location can shed light on the origin and diversification of the subfamily. © 2017 Botanical Society of America.

  7. Abscisic acid and osmoticum prevent germination of developing alfalfa embryos, but only osmoticum maintains the synthesis of developmental proteins.

    PubMed

    Xu, N; Coulter, K M; Derek Bewley, J

    1990-10-01

    Developing seeds of alfalfa (Medicago sativa L.) acquire the ability to germinate during the latter stages of development, the maturation drying phase. Isolated embryos placed on Murashige and Skoog medium germinate well during early and late development, but poorly during mid-development; however, when placed on water they germinate well only during the latter stage of development. Germination of isolated embryos is very slow and poor when they are incubated in the presence of surrounding seed structures (the endosperm or seed coat) taken from the mid-development stages. This inhibitory effect is also achieved by incubating embryos in 10(-5) M abscisic acid (ABA). Endogenous ABA attains a high level during mid-development, especially in the endosperm. Seeds developing in pods treated with fluridone (1-methyl-3-phenyl-5[3-(trifluoromethyl)-phenyl]-4(1H)-pyridinone) contain low levels of ABA during mid-development, and the endosperm and seed coat only weakly inhibit the germination of isolated embryos. However, intact seeds from fluridone-treated pods do not germinate viviparously, which is indicative that ABA alone is not responsible for maintaining seeds in a developing state. Application of osmoticum (e.g. 0.35 M sucrose) to isolated developing embryos prevents their germination. Also, in the developing seed in situ the osmotic potential is high. Thus internal levels of osmoticum may play a role in preventing germination of the embryo and maintaining development. Abscisic acid and osmoticum impart distinctly different metabolic responses on developing embryos, as demonstrated by their protein-synthetic capacity. Only in the presence of osmoticum do embryos synthesize proteins which are distinctly recognizable as those synthesized by developing embryos in situ, i.e. when inside the pod. Abscisic acid induces the synthesis of a few unique proteins, but these arise even in mature embryos treated with ABA. Thus while both osmoticum and ABA prevent precocious germination, their effects on the synthetic capacity of the developing embryo are quite distinct. Since seeds with low endogenous ABA do not germinate, osmotic regulation may be the more important of these two factors in controlling seed development.

  8. Interacting effects of genetic variation for seed dormancy and flowering time on phenology, life history, and fitness of experimental Arabidopsis thaliana populations over multiple generations in the field.

    PubMed

    Taylor, Mark A; Cooper, Martha D; Sellamuthu, Reena; Braun, Peter; Migneault, Andrew; Browning, Alyssa; Perry, Emily; Schmitt, Johanna

    2017-10-01

    Major alleles for seed dormancy and flowering time are well studied, and can interact to influence seasonal timing and fitness within generations. However, little is known about how this interaction controls phenology, life history, and population fitness across multiple generations in natural seasonal environments. To examine how seed dormancy and flowering time shape annual plant life cycles over multiple generations, we established naturally dispersing populations of recombinant inbred lines of Arabidopsis thaliana segregating early and late alleles for seed dormancy and flowering time in a field experiment. We recorded seasonal phenology and fitness of each genotype over 2 yr and several generations. Strong seed dormancy suppressed mid-summer germination in both early- and late-flowering genetic backgrounds. Strong dormancy and late-flowering genotypes were both necessary to confer a winter annual life history; other genotypes were rapid-cycling. Strong dormancy increased within-season fecundity in an early-flowering background, but decreased it in a late-flowering background. However, there were no detectable differences among genotypes in population growth rates. Seasonal phenology, life history, and cohort fitness over multiple generations depend strongly upon interacting genetic variation for dormancy and flowering. However, similar population growth rates across generations suggest that different life cycle genotypes can coexist in natural populations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Embryology of Cardiopteris (Cardiopteridaceae, Aquifoliales), with emphasis on unusual ovule and seed development.

    PubMed

    Tobe, Hiroshi

    2016-09-01

    Cardiopteris (Cardiopteridaceae), a twining herb of two or three species distributed from Southeast Asia to Northern Australia, requires an embryological study for better understanding of its reproductive features. The present study of C. quinqueloba showed that the ovule and seed development involves a number of unusual structures, most of which are unknown elsewhere in angiosperms. The ovule pendant from the apical placenta is straight (not orthotropous), ategmic, and tenuinucellate, developing a monosporic seven-celled/eight-nucleate female gametophyte with an egg apparatus on the funicular side. Fertilization occurs by a pollen tube entering from the funicular side, resulting in a zygote on the funicular side. The endosperm is formed by the cell on the funicular side in the two endosperm cell stage. While retaining a (pro)embryo/endosperm as it is, the raphe (differentiating late in pre-fertilization stages) elongates toward the antiraphal side during post-fertilization stages, resulting in an anatropous seed. The two-cell-layered nucellar epidermis (belatedly forming by periclinal divisions), along with the raphe, envelops the embryo/endosperm entirely as the seed coat. The possibility was discussed that the arrested integument development triggers a series of the subsequent unusual structures of ovule and seed development. The fertilization mode in Cardiopteris underpins the hypothesis that the Polygonum‒type female gametophyte comprises two four-celled archegonia.

  10. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds.

    PubMed

    Verdier, Jerome; Lalanne, David; Pelletier, Sandra; Torres-Jerez, Ivone; Righetti, Karima; Bandyopadhyay, Kaustav; Leprince, Olivier; Chatelain, Emilie; Vu, Benoit Ly; Gouzy, Jerome; Gamas, Pascal; Udvardi, Michael K; Buitink, Julia

    2013-10-01

    In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of seed filling to final maturation drying during the last 3 weeks of seed development in Medicago truncatula. The network revealed distinct coexpression modules related to the acquisition of DT, longevity, and pod abscission. The acquisition of DT and dormancy module was associated with abiotic stress response genes, including late embryogenesis abundant (LEA) genes. The longevity module was enriched in genes involved in RNA processing and translation. Concomitantly, LEA polypeptides accumulated, displaying an 18-d delayed accumulation compared with transcripts. During maturation, gulose and stachyose levels increased and correlated with longevity. A seed-specific network identified known and putative transcriptional regulators of DT, including ABSCISIC ACID-INSENSITIVE3 (MtABI3), MtABI4, MtABI5, and APETALA2/ ETHYLENE RESPONSE ELEMENT BINDING PROTEIN (AtAP2/EREBP) transcription factor as major hubs. These transcriptional activators were highly connected to LEA genes. Longevity genes were highly connected to two MtAP2/EREBP and two basic leucine zipper transcription factors. A heat shock factor was found at the transition of DT and longevity modules, connecting to both gene sets. Gain- and loss-of-function approaches of MtABI3 confirmed 80% of its predicted targets, thereby experimentally validating the network. This study captures the coordinated regulation of seed maturation and identifies distinct regulatory networks underlying the preparation for the dry and quiescent states.

  11. A Regulatory Network-Based Approach Dissects Late Maturation Processes Related to the Acquisition of Desiccation Tolerance and Longevity of Medicago truncatula Seeds1[C][W][OPEN

    PubMed Central

    Verdier, Jerome; Lalanne, David; Pelletier, Sandra; Torres-Jerez, Ivone; Righetti, Karima; Bandyopadhyay, Kaustav; Leprince, Olivier; Chatelain, Emilie; Vu, Benoit Ly; Gouzy, Jerome; Gamas, Pascal; Udvardi, Michael K.; Buitink, Julia

    2013-01-01

    In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of seed filling to final maturation drying during the last 3 weeks of seed development in Medicago truncatula. The network revealed distinct coexpression modules related to the acquisition of DT, longevity, and pod abscission. The acquisition of DT and dormancy module was associated with abiotic stress response genes, including late embryogenesis abundant (LEA) genes. The longevity module was enriched in genes involved in RNA processing and translation. Concomitantly, LEA polypeptides accumulated, displaying an 18-d delayed accumulation compared with transcripts. During maturation, gulose and stachyose levels increased and correlated with longevity. A seed-specific network identified known and putative transcriptional regulators of DT, including ABSCISIC ACID-INSENSITIVE3 (MtABI3), MtABI4, MtABI5, and APETALA2/ ETHYLENE RESPONSE ELEMENT BINDING PROTEIN (AtAP2/EREBP) transcription factor as major hubs. These transcriptional activators were highly connected to LEA genes. Longevity genes were highly connected to two MtAP2/EREBP and two basic leucine zipper transcription factors. A heat shock factor was found at the transition of DT and longevity modules, connecting to both gene sets. Gain- and loss-of-function approaches of MtABI3 confirmed 80% of its predicted targets, thereby experimentally validating the network. This study captures the coordinated regulation of seed maturation and identifies distinct regulatory networks underlying the preparation for the dry and quiescent states. PMID:23929721

  12. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    PubMed Central

    Wu, Xiaolin; Gong, Fangping; Yang, Le; Hu, Xiuli; Tai, Fuju; Wang, Wei

    2014-01-01

    ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation. PMID:25653661

  13. Selection for low dormancy in annual ryegrass (Lolium rigidum) seeds results in high constitutive expression of a glucose-responsive α-amylase isoform

    PubMed Central

    Goggin, Danica E.; Powles, Stephen B.

    2012-01-01

    Background and Aims α-Amylase in grass caryopses (seeds) is usually expressed upon commencement of germination and is rarely seen in dry, mature seeds. A heat-stable α-amylase activity was unexpectedly selected for expression in dry annual ryegrass (Lolium rigidum) seeds during targeted selection for low primary dormancy. The aim of this study was to characterize this constitutive activity biochemically and determine if its presence conferred insensitivity to the germination inhibitors abscisic acid and benzoxazolinone. Methods α-Amylase activity in developing, mature and germinating seeds from the selected (low-dormancy) and a field-collected (dormant) population was characterized by native activity PAGE. The response of seed germination and α-amylase activity to abscisic acid and benzoxazolinone was assessed. Using an alginate affinity matrix, α-amylase was purified from dry and germinating seeds for analysis of its enzymatic properties. Key Results The constitutive α-amylase activity appeared late during seed development and was mainly localized in the aleurone; in germinating seeds, this activity was responsive to both glucose and gibberellin. It migrated differently on native PAGE compared with the major activities in germinating seeds of the dormant population, but the enzymatic properties of α-amylase purified from the low-dormancy and dormant seeds were largely indistinguishable. Seed imbibition on benzoxazolinone had little effect on the low-dormancy seeds but greatly inhibited germination and α-amylase activity in the dormant population. Conclusions The constitutive α-amylase activity in annual ryegrass seeds selected for low dormancy is electrophoretically different from that in germinating seeds and its presence confers insensitivity to benzoxazolinone. The concurrent selection of low dormancy and constitutive α-amylase activity may help to enhance seedling establishment under competitive conditions. PMID:23002268

  14. Ectopic expression of GA 2-oxidase 6 from rapeseed (Brassica napus L.) causes dwarfism, late flowering and enhanced chlorophyll accumulation in Arabidopsis thaliana.

    PubMed

    Yan, Jindong; Liao, Xiaoying; He, Reqing; Zhong, Ming; Feng, Panpan; Li, Xinmei; Tang, Dongying; Liu, Xuanming; Zhao, Xiaoying

    2017-02-01

    Gibberellins (GAs) are endogenous hormones that play an important role in higher plant growth and development. GA2-oxidase (GA2ox) promotes catabolism and inactivation of bioactive GAs or their precursors. In this study, we identified the GA2-oxidase gene, BnGA2ox6, and found it to be highly expressed in the silique and flower. Overexpression of BnGA2ox6 in Arabidopsis resulted in GA-deficiency symptoms, including inhibited elongation of the hypocotyl and stem, delayed seed germination, and late flowering. BnGA2ox6 overexpression reduced silique growth, but had no effect on seed development. Additionally, BnGA2ox6 overexpression enhanced chlorophyll b and total chlorophyll accumulation, and downregulated mRNA expression levels of the CHL1 and RCCR genes, which are involved in the chlorophyll degradation. These findings suggest that BnGA2ox6 regulates plant hight, silique development, flowering and chlorophyll accumulation in transgenic Arabidopsis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Identification of desiccation tolerance transcripts potentially involved in rape (Brassica napus L.) seeds development and germination.

    PubMed

    Lang, Sirui; Liu, Xiaoxia; Ma, Gang; Lan, QinYing; Wang, Xiaofeng

    2014-10-01

    To investigate regulatory processes and protective mechanisms leading to desiccation tolerance (DT) in seeds, cDNA amplified fragment length polymorphism (cDNA-AFLP) in conjunction with 128 primer combinations was used to detect differential gene expression in rape seeds in response to DT during seed development and germination. We obtained approximately 8000 transcript-derived fragments (TDFs), of which 394 TDFs with differential expression patterns ("sustained expression", "up-regulated", "couple with seed DT", and "down-regulated") were excised from gels and re-amplified by polymerase chain reaction (PCR). After sequencing and comparison with the National Center for Biotechnology Information database, 176 TDFs presented significant similarity with known genes that could be classified into the following categories: metabolism and energy, stress resistance and defense, storage, signal transduction, and other functional categories. Using semiquantitative reverse-transcription PCR and real-time PCR approaches, the significance of the differences was further confirmed in fresh seeds and dehydrated seeds. The genes that encode superoxide dismutase, peroxiredoxin, caleosin, oleosin S3, steroleosin, late embryogenesis abundant protein, glutathione reductase, β-glucosidase, S23 transcriptional repressor, and some heat-shock proteins could be associated with DT. The results of this study will aid in the identification of candidate genes for future experiments that seek to understand seed DT. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. A successful direct seeding of sugar pine.

    Treesearch

    William I. Stein

    1957-01-01

    In southwestern Oregon, the first pilot-scale direct seeding of sugar pine produced a well-stocked stand of seedlings on a 45-acre tract. Control of seed-eating rodents was accomplished by spot-baiting with 1080-treated wheat before seeding, by spot-baiting with thallium sulfate-treated wheat in late December, and by broadcast-baiting with 1080-treated wheat in early...

  17. Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1.

    PubMed

    Manfre, Alicia J; LaHatte, Gabrielle A; Climer, Cynthia R; Marcotte, William R

    2009-02-01

    The end of orthodox seed development is typified by a developmentally regulated period of dehydration leading to the loss of bulk water from the entire structure. When dehydration occurs, the cytoplasm condenses and intracellular components become more crowded, providing an environment amenable to numerous undesirable interactions that can lead to protein aggregation, denaturation and organelle-cell membrane fusion. Acquisition of desiccation tolerance, or the ability to withstand these very low water potentials and consequent molecular crowding, has been correlated with the accumulation of various protective compounds including proteins and sugars. Among these are the late embryogenesis abundant (LEA) proteins, a diverse class of highly abundant, heat-stable proteins that accumulate late in embryo maturation coincident with the acquisition of desiccation tolerance. Previous work led us to hypothesize that the protein ATEM6, one of the two Arabidopsis thaliana group 1 LEA proteins, is involved in regulating the rate at which water is lost from the maturing embryo; homozygous atem6-1 mutants display premature dehydration of seeds at the distal end of the silique. Here we demonstrate that rehydrated, mature seeds from atem6-1 mutant plants lose more water during subsequent air drying than wild-type seeds, consistent with a role for ATEM6 protein in water binding/loss during embryo maturation. In addition, and possibly as a result of premature dehydration, mutant seeds along the entire length of the silique acquire desiccation tolerance earlier than their wild-type counterparts. We further demonstrate precocious, and perhaps elevated, expression of the other A. thaliana group 1 LEA protein, ATEM1, that may compensate for loss or ATEM6 expression. However, this observation could also be consistent with acceleration of the entire normal maturation program in atem6-1 mutant embryos. Interestingly, ATEM6 protein does not appear to be required in mature seeds for viability or efficient germination.

  18. 7 CFR 906.13 - Variety or varieties.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Navel oranges; (b) Early and Midseason oranges, except Navel oranges; (c) Valencia and similar late type oranges; (d) White seeded grapefruit; (e) White seedless grapefruit; (f) Pink and red seeded grapefruit...

  19. 7 CFR 906.13 - Variety or varieties.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Navel oranges; (b) Early and Midseason oranges, except Navel oranges; (c) Valencia and similar late type oranges; (d) White seeded grapefruit; (e) White seedless grapefruit; (f) Pink and red seeded grapefruit...

  20. 7 CFR 906.13 - Variety or varieties.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Navel oranges; (b) Early and Midseason oranges, except Navel oranges; (c) Valencia and similar late type oranges; (d) white seeded grapefruit; (e) white seedless grapefruit; (f) pink and red seeded grapefruit...

  1. 7 CFR 906.13 - Variety or varieties.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Navel oranges; (b) Early and Midseason oranges, except Navel oranges; (c) Valencia and similar late type oranges; (d) white seeded grapefruit; (e) white seedless grapefruit; (f) pink and red seeded grapefruit...

  2. The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat.

    PubMed

    Rangan, Parimalan; Furtado, Agnelo; Henry, Robert J

    2017-10-11

    Wheat is one of the three major cereals that have been domesticated to feed human populations. The composition of the wheat grain determines the functional properties of wheat including milling efficiency, bread making, and nutritional value. Transcriptome analysis of the developing wheat grain provides key insights into the molecular basis for grain development and quality. The transcriptome of 35 genotypes was analysed by RNA-Seq at two development stages (14 and 30 days-post-anthesis, dpa) corresponding to the mid stage of development (stage Z75) and the almost mature seed (stage Z85). At 14dpa, most of the transcripts were associated with the synthesis of the major seed components including storage proteins and starch. At 30dpa, a diverse range of genes were expressed at low levels with a predominance of genes associated with seed defence and stress tolerance. RNA-Seq analysis of changes in expression between 14dpa and 30dpa stages revealed 26,477 transcripts that were significantly differentially expressed at a FDR corrected p-value cut-off at ≤0.01. Functional annotation and gene ontology mapping was performed and KEGG pathway mapping allowed grouping based upon biochemical linkages. This analysis demonstrated that photosynthesis associated with the pericarp was very active at 14dpa but had ceased by 30dpa. Recently reported genes for flour yield in milling and bread quality were found to influence wheat quality largely due to expression patterns at the earlier seed development stage. This study serves as a resource providing an overview of gene expression during wheat grain development at the early (14dpa) and late (30dpa) grain filling stages for use in studies of grain quality and nutritional value and in understanding seed biology.

  3. Reduced availability of large seeds constrains Atlantic forest regeneration

    NASA Astrophysics Data System (ADS)

    Costa, Janaina B. P.; Melo, Felipe P. L.; Santos, Bráulio A.; Tabarelli, Marcelo

    2012-02-01

    Secondary forests are expanding in defaunated fragmented tropical landscapes, but their resilience potential remains poorly understood. In this study we used a chronosequence of advancing (19-62-yr old) Atlantic forest regeneration following slash-and-burn agriculture to infer successional shifts in seed rain in terms of seed density, species richness, taxonomic and functional composition, and local spatial distribution. After monitoring seed rain during 12 months in 60 1-m2 seed traps, we recorded over 400,000 seeds belonging to 180 morphospecies. From early to late-successional stage, seed rain decreased in density, increased in per capita species richness, gradually changed in species composition, and became less aggregated spatially. Regardless the age of forest stand, vertebrate-dispersed seeds accounted for 67-75% of all species recorded. Large-seeded species typical of old-growth forests, on the other hand, accounted for only 5-8% of the species recorded in the seed rain, a proportion around five times smaller than that reported for the old-growth forests of the same study site (31%). Our results suggest that the secondary forests considered, which are embedded in one of the largest (3500 ha) and best preserved remnant of the severely fragmented Atlantic forest of Northeast Brazil, may fail attaining older successional stages due to the reduced availability of large-seeded late-successional species. This regeneration constraint may be even stronger in smaller, more isolated forest remnants of the region, potentially reducing their ability to provide ecosystem services.

  4. Structure of the Developing Pea Seed Coat and the Post‐phloem Transport Pathway of Nutrients

    PubMed Central

    VAN DONGEN, JOOST T.; AMMERLAAN, ANKIE M. H.; WOUTERLOOD, MADELEINE; VAN AELST, ADRIAAN C.; BORSTLAP, ADRIANUS C.

    2003-01-01

    An important function of the seed coat is to deliver nutrients to the embryo. To relate this function to anatomical characteristics, the developing seed coat of pea (Pisum sativum L.) was examined by light‐ and cryo‐scanning electron microscopy (cryo‐SEM) from the late pre‐storage phase until the end of seed filling. During this time the apparently undifferentiated seed coat tissues evolve into the epidermal macrosclereids, the hypodermal hourglass cells, chlorenchyma, ground parenchyma and branched parenchyma. Using the fluorescent symplast tracer 8‐hydroxypyrene‐1,3,6‐trisulfonic acid, it could be demonstrated that solutes imported by the phloem move into the chlorenchyma and ground parenchyma, but not into the branched parenchyma. From a comparison with literature data of common bean (Phaseolus vulgaris L.) and broad bean (Vicia faba L.), it is concluded that in the three species different parenchyma layers, but not the branched parenchyma, may be involved in the post‐phloem symplasmic transport of nutrients in the seed coat. In pea, the branched parenchyma dies during the storage phase, and its cell wall remnants then form the boundary layer between the living seed coat parenchyma cells and the cotyledons. Using cryo‐SEM, clear images were obtained of this boundary layer which showed that many intracellular spaces in the seed coat parenchyma are filled with an aqueous solution. This is suggested to facilitate the diffusion of nutrients from the site of unloading towards the cotyledons. PMID:12714370

  5. Identification of seedling vigor-associated quantitative trait loci in temperate japonica rice

    USDA-ARS?s Scientific Manuscript database

    A quantitative trait loci (QTL) analysis of seedling vigor traits was conducted under dry-seeded conditions using 176 recombinant inbred lines developed from a cross of two California temperate japonica rice varieties M-203 and M-206. Height at early seedling (HES) and late seedling (HLS) stage, gro...

  6. Non-serotinous woody plants behave as aerial seed bank species when a late-summer wildfire coincides with a mast year.

    PubMed

    Pounden, Edith; Greene, David F; Michaletz, Sean T

    2014-10-01

    Trees which lack obvious fire-adaptive traits such as serotinous seed-bearing structures or vegetative resprouting are assumed to be at a dramatic disadvantage in recolonization via sexual recruitment after fire, because seed dispersal is invariably quite constrained. We propose an alternative strategy in masting tree species with woody cones or cone-like structures: that the large clusters of woody tissue in a mast year will sufficiently impede heat transfer that a small fraction of seeds can survive the flaming front passage; in a mast year, this small fraction would be a very large absolute number.In Kootenay National Park in British Columbia, we examined regeneration by Engelmann spruce (Picea engelmannii), a non-serotinous conifer, after two fires, both of which coincided with mast years. Coupling models of seed survivorship within cones and seed maturation schedule to a spatially realistic recruitment model, we show that (1) the spatial pattern of seedlings on a 630 m transect from the forest edge into the burn was best explained if there was in situ seed dissemination by burnt trees; (2) in areas several hundred meters from any living trees, recruitment density was well correlated with local prefire cone density; and (3) spruce was responding exactly like its serotinous codominant, lodgepole pine (Pinus contorta).We conclude that non-serotinous species can indeed behave like aerial seed bank species in mast years if the fire takes place late in the seed maturation period. Using the example of the circumpolar boreal forest, while the joint probability of a mast year and a late-season fire will make this type of event rare (we estimate P = 0.1), nonetheless, it would permit a species lacking obvious fire-adapted traits to occasionally establish a widespread and abundant cohort on a large part of the landscape.

  7. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

    PubMed

    Ma, Xiaoding; Ma, Jian; Zhai, Honghong; Xin, Peiyong; Chu, Jinfang; Qiao, Yongli; Han, Longzhi

    2015-01-01

    CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

  8. Elevated Genetic Diversity in an F2:6 Population of Quinoa (Chenopodium quinoa) Developed through an Inter-ecotype Cross

    PubMed Central

    Benlhabib, Ouafae; Boujartani, Noura; Maughan, Peter J.; Jacobsen, Sven E.; Jellen, Eric N.

    2016-01-01

    Quinoa (Chenopodium quinoa) is a seed crop of the Andean highlands and Araucanian coastal regions of South America that has recently expanded in use and production beyond its native range. This is largely due to its superb nutritional value, consisting of protein that is rich in essential amino acids along with vitamins and minerals. Quinoa also presents a remarkable degree of tolerance to saline conditions, drought, and frost. The present study involved 72 F2:6 recombinant-inbred lines and parents developed through hybridization between highland (0654) and coastal (NL-6) germplasm groups. The purpose was to characterize the quinoa germplasm developed, to assess the discriminating potential of 21 agro-morpho-phenological traits, and to evaluate the extent of genetic variability recovered through selfing. A vast amount of genetic variation was detected among the 72 lines evaluated for quantitative and qualitative traits. Impressive transgressive segregation was measured for seed yield (22.42 g/plant), while plant height and maturity had higher heritabilities (73 and 89%, respectively). Other notable characters segregating in the population included panicle and stem color, panicle form, and resistance to downy mildew. In the Principal Component analysis, the first axis explained 74% of the total variation and was correlated to plant height, panicle size, stem diameter, biomass, mildew reaction, maturation, and seed yield; those traits are relevant discriminatory characters. Yield correlated positively with panicle length and biomass. Unweighted Pair Group Method with Arithmetic Mean-based cluster analysis identified three groups: one consisting of late, mildew-resistant, high-yielding lines; one having semi-late lines with intermediate yield and mildew susceptibility; and a third cluster consisting of early to semi-late accessions with low yield and mildew susceptibility. This study highlighted the extended diversity regenerated among the 72 accessions and helped to identify potentially adapted quinoa genotypes for production in the Moroccan coastal environment. PMID:27582753

  9. Report on 1958 forest tree seed crop in New England

    Treesearch

    A.C. Hart

    1959-01-01

    Forest tree seed crops in 1958 were considerably better than those in 1957, according to observers. However, heavy and medium seed crops of some species were spotty in occurrence. Late spring frosts were probably responsible for poor or failing crops of some species in Vermont, New Hampshire, and northwestern Connecticut. Cone weevils were reported damaging the white...

  10. Repression of CYSTATHIONINE γ-SYNTHASE in Seeds Recruits the S-Methylmethionine Cycle.

    PubMed

    Cohen, Hagai; Hacham, Yael; Panizel, Irina; Rogachev, Ilana; Aharoni, Asaph; Amir, Rachel

    2017-07-01

    S -Methylmethionine (SMM) was suggested previously to participate in the metabolism of methionine (Met) in seeds. To further reveal its roles, we had previously produced transgenic Arabidopsis ( Arabidopsis thaliana ) RNA interference (RNAi) seeds with lower transcript expression of CYSTATHIONINE γ-SYNTHASE ( AtCGS ), Met's main regulatory enzyme. Unexpectedly, these seeds accumulated significantly higher levels of Met compared with control seeds through an as yet unknown mechanism. Here, transcript and metabolic analyses coupled with isotope-labeled [ 13 C]SMM and [ 13 C]Met feeding experiments enabled us to reveal that SMM that was synthesized in rosette leaves of RNAi plants significantly contributed to the accumulation of Met in their seeds at late stages of development. Seed-specific repression of AtCGS in RNAi seeds triggered the induction of genes operating in the SMM cycle of rosette leaves, leading to elevated transport of SMM toward the seeds, where higher reconversion rates of SMM to Met were detected. The metabolic rearrangements in RNAi seeds resulted in an altered sulfur-associated metabolism, such as lower amounts of Cys and glutathione, as well as a differential composition of glucosinolates. Together, the data propose a novel cross talk existing between seeds and rosette leaves along with mutual effects between the Asp family and SMM pathways operating in these tissues. They also shed light on the effects of higher Met levels on seed physiology and behavior. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Cone consumption by southeastern fox squirrels: A potential basis for clonal preferences in a loblolly and slash pine seed orchard

    Treesearch

    Christopher Asaro; Susan C. Loeb; James L. Hanula

    2003-01-01

    Southeastern fox squirrels were observed feeding preferentially on seeds of certain clones of loblolly pine in a central Georgia seed orchard in the early 1990s and, similarly, on slash pine seed in an orchard in central Florida in the late 1990s. In each orchard, the degree of feeding preference and avoidance among selected clones was documented and quantified. We...

  12. A cellulose binding domain protein restores female fertility when expressed in transgenic Bintje potato.

    PubMed

    Jones, Richard W; Perez, Frances G

    2016-03-18

    Expression of a gene encoding the family 1 cellulose binding domain protein CBD1, identified in the cellulosic cell wall of the potato late blight pathogen Phytophthora infestans, was tested in transgenic potato to determine if it had an influence on plant cell walls and resistance to late blight. Multiple regenerants of potato (cv. Bintje) were developed and selected for high expression of CBD 1 transcripts. Tests with detached leaflets showed no evidence of increased or decreased resistance to P. infestans, in comparison with the blight susceptible Bintje controls, however, changes in plant morphology were evident in CBD 1 transgenics. Plant height increases were evident, and most importantly, the ability to produce seed berries from a previously sterile cultivar. Immunolocalization of CBD 1 in seed berries revealed the presence throughout the tissue. While Bintje control plants are male and female sterile, CBD 1 transgenics were female fertile. Crosses made using pollen from the late blight resistant Sarpo Mira and transgenic CBD1 Bintje as the female parent demonstrated the ability to introgress P. infestans targeted resistance genes, as well as genes responsible for color and tuber shape, into Bintje germplasm. A family 1 cellulose-binding domain (CBD 1) encoding gene from the potato late blight pathogen P. infestans was used to develop transgenic Bintje potato plants. Transgenic plants became female fertile, allowing for a previously sterile cultivar to be used in breeding improvement. Selection for the absence of the CBD transgene in progeny should allow for immediate use of a genetically enhanced material. Potential for use in other Solanaceous crops is proposed.

  13. Sleep and meal-time misalignment alters functional connectivity: a pilot resting-state study.

    PubMed

    Yoncheva, Y N; Castellanos, F X; Pizinger, T; Kovtun, K; St-Onge, M-P

    2016-11-01

    Delayed sleep and meal times promote metabolic dysregulation and obesity. Altered coordination of sleeping and eating times may impact food-reward valuation and interoception in the brain, yet the independent and collective contributions of sleep and meal times are unknown. This randomized, in-patient crossover study experimentally manipulates sleep and meal times while preserving sleep duration (7.05±0.44 h for 5 nights). Resting-state functional magnetic resonance imaging scans (2 × 5-minute runs) were obtained for four participants (three males; 25.3±4.6 years), each completing all study phases (normal sleep/normal meal; late sleep/normal meal; normal sleep/late meal; and late sleep/late meal). Normal mealtimes were 1, 5, 11 and 12.5 h after awakening; late mealtimes were 4.5, 8.5, 14.5 and 16 h after awakening. Seed-based resting-state functional connectivity (RSFC) was computed for a priori regions-of-interest (seeds) and contrasted across conditions. Statistically significant (P<0.05, whole-brain corrected) regionally specific effects were found for multiple seeds. The strongest effects were linked to the amygdala: increased RSFC for late versus normal mealtimes (equivalent to skipping breakfast). A main effect of sleep and interaction with meal time were also observed. Preliminary findings support the feasibility of examining the effects of sleep and meal-time misalignment, independent of sleep duration, on RSFC in regions relevant to food reward and interoception.

  14. Report on forest tree seed crop in New England in 1957

    Treesearch

    A. C. Hart

    1958-01-01

    Forest tree seed crops were generally poor in 1957 throughout New England, according to reports by observers. Late spring frosts and below-normal precipitation were probably responsible for poor or failing crops of some species.

  15. Folivory or fruit/seed predation for Mesopithecus, an earliest colobine from the late Miocene of Eurasia?

    PubMed

    Merceron, Gildas; Scott, Jessica; Scott, Robert S; Geraads, Denis; Spassov, Nikolai; Ungar, Peter S

    2009-12-01

    Here we compare dental microwear textures from specimens of the fossil genus Mesopithecus (Cercopithecidae, Colobinae) from the late Miocene of Eastern Europe with dental microwear textures from four extant primate species with known dietary differences. Results indicate that the dental microwear textures of Mesopithecus differ from those of extant leaf eaters Alouatta palliata and Trachypithecus cristatus and instead resemble more closely those of the occasional hard-object feeders Cebus apella and Lophocebus albigena. Microwear texture data presented here in combination with results from previous analyses suggest that Mesopithecus was a widespread, opportunistic feeder that often consumed hard seeds. These data are consistent with the hypothesis that early colobines may have preferred hard seeds to leaves.

  16. Pine seed tree growth and yield on the Crossett Experimental Forest

    Treesearch

    Don C. Bragg

    2010-01-01

    In late 2002, three small tracts of loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine on the Crossett Experimental Forest in Ashley County, AR, were cut using a seed tree method. Immediately after harvest, these cutting units averaged 7.7 stems and 13.8 square feet of pine basal area per acre. By 2006, live seed tree...

  17. Negative correlation between altitudes and oxygen isotope ratios of seeds: exploring its applicability to assess vertical seed dispersal.

    PubMed

    Naoe, Shoji; Tayasu, Ichiro; Masaki, Takashi; Koike, Shinsuke

    2016-10-01

    Vertical seed dispersal, which plays a key role in plant escape and/or expansion under climate change, was recently evaluated for the first time using negative correlation between altitudes and oxygen isotope ratio of seeds. Although this method is innovative, its applicability to other plants is unknown. To explore the applicability of the method, we regressed altitudes on δ 18 O of seeds of five woody species constituting three families in temperate forests in central Japan. Because climatic factors, including temperature and precipitation that influence δ 18 O of plant materials, demonstrate intensive seasonal fluctuation in the temperate zone, we also evaluated the effect of fruiting season of each species on δ 18 O of seeds using generalized linear mixed models (GLMM). Negative correlation between altitudes and δ 18 O of seeds was found in four of five species tested. The slope of regression lines tended to be lower in late-fruiting species. The GLMM analysis revealed that altitudes and date of fruiting peak negatively affected δ 18 O of seeds. These results indicate that the estimation of vertical seed dispersal using δ 18 O of seeds can be applicable for various species, not just confined to specific taxa, by identifying the altitudes of plants that produced seeds. The results also suggest that the regression line between altitudes and δ 18 O of seeds is rather species specific and that vertical seed dispersal in late-fruiting species is estimated at a low resolution due to their small regression slopes. A future study on the identification of environmental factors and plant traits that cause a difference in δ 18 O of seeds, combined with an improvement of analysis, will lead to effective evaluation of vertical seed dispersal in various species and thereby promote our understanding about the mechanism and ecological functions of vertical seed dispersal.

  18. Ribosome profiling reveals changes in translational status of soybean transcripts during immature cotyledon development

    PubMed Central

    Shamimuzzaman, Md.

    2018-01-01

    To understand translational capacity on a genome-wide scale across three developmental stages of immature soybean seed cotyledons, ribosome profiling was performed in combination with RNA sequencing and cluster analysis. Transcripts representing 216 unique genes demonstrated a higher level of translational activity in at least one stage by exhibiting higher translational efficiencies (TEs) in which there were relatively more ribosome footprint sequence reads mapping to the transcript than were present in the control total RNA sample. The majority of these transcripts were more translationally active at the early stage of seed development and included 12 unique serine or cysteine proteases and 16 2S albumin and low molecular weight cysteine-rich proteins that may serve as substrates for turnover and mobilization early in seed development. It would appear that the serine proteases and 2S albumins play a vital role in the early stages. In contrast, our investigation of profiles of 19 genes encoding high abundance seed storage proteins, such as glycinins, beta-conglycinins, lectin, and Kunitz trypsin inhibitors, showed that they all had similar patterns in which the TE values started at low levels and increased approximately 2 to 6-fold during development. The highest levels of these seed protein transcripts were found at the mid-developmental stage, whereas the highest ribosome footprint levels of only up to 1.6 TE were found at the late developmental stage. These experimental findings suggest that the major seed storage protein coding genes are primarily regulated at the transcriptional level during normal soybean cotyledon development. Finally, our analyses also identified a total of 370 unique gene models that showed very low TE values including over 48 genes encoding ribosomal family proteins and 95 gene models that are related to energy and photosynthetic functions, many of which have homology to the chloroplast genome. Additionally, we showed that genes of the chloroplast were relatively translationally inactive during seed development. PMID:29570733

  19. Differential Accumulation of Sunflower Tetraubiquitin mRNAs during Zygotic Embryogenesis and Developmental Regulation of Their Heat-Shock Response.

    PubMed Central

    Almoguera, C.; Coca, M. A.; Jordano, J.

    1995-01-01

    We have isolated and sequenced Ha UbiS, a cDNA for a dry-seed-stored mRNA that encodes tetraubiquitin. We have observed differential accumulation of tetraubiquitin mRNAs during sunflower (Helianthus annuus L.) zygotic embryogenesis. These mRNAs were up-regulated during late embryogenesis and reached higher prevalence in the dry seed, where they were found to be associated mainly with provascular tissue. UbiS mRNA, as confirmed by Rnase A protection experiments, accumulated also in response to heat shock, but only in leaves and later during postgerminative development. These novel observations demonstrate expression during seed maturation of specific plant polyubiquitin transcripts and developmental regulation of their heat-shock response. Using ubiquitin antibodies we also detected discrete, seed-specific proteins with distinct temporal expression patterns during zygotic embryogenesis. Some of these patterns were concurrent with UbiS mRNA accumulation in seeds. The most abundant ubiquitin-reacting proteins found in mature seeds were small (16-22 kD) and acidic (isoelectric points of 6.1-7.4). Possible functional implications for UbiS expression elicited from these observations are discussed. PMID:12228401

  20. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest.

    PubMed

    Victoriano-Romero, Elizabeth; Valencia-Díaz, Susana; Toledo-Hernández, Víctor Hugo; Flores-Palacios, Alejandro

    2017-01-01

    Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4-5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds.

  1. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest

    PubMed Central

    2017-01-01

    Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4–5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds. PMID:28158320

  2. Environmental Impact Research Program. Doveweeds (Croton supp.) Section 7.4.2, US Army Corps of Engineers Wildlife Resources Management Manual.

    DTIC Science & Technology

    1986-07-01

    inflorescences are formed. The inflorescence is an abbre-9viated terminal raceme with pistillate flowers below staminate flowers. The 3 -IC Figure 1...Distribution and distinguishing characteristics of woolly croton (Croton capitatus): (a) flowering branch, (b) fruit, and (c) seeds 4 ovary is 3- celled ...and the capsule is 3- celled and 3-seeded except for C. monanthogynus, which is 1-seeded. When seeds mature in late fall, they are forcefully ejected

  3. Population structure and genetic diversity in North American Hedysarum boreale Nutt.

    Treesearch

    Bradley S. Bushman; Steven R. Larson; Michael D. Peel; Michael E. Pfrender

    2007-01-01

    Hedysarum boreale Nutt. is a perennial legume native to western North America, with robust foliage in the late spring season. Due to its wide native range, forage value, and N2 fixation, H. boreale is of interest for rangeland revegetation and production. Seed cost is a major obstacle for utilization of H. boreale, primarily due to seed shattering and unreliable seed...

  4. Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks.

    PubMed

    Radchuk, Ruslana; Radchuk, Volodymyr; Götz, Klaus-Peter; Weichert, Heiko; Richter, Andreas; Emery, R J Neil; Weschke, Winfriede; Weber, Hans

    2007-09-01

    Seed maturation responds to endogenous and exogenous signals like nutrient status, energy and hormones. We recently showed that phosphoenolpyruvate carboxylase (PEPC) overexpression in Vicia narbonensis seeds alters seed metabolism and channels carbon into organic acids, resulting in greater seed storage capacity and increased protein content. Thus, these lines represent models with altered sink strength and improved nutrient status. Here we analyse seed developmental and metabolic parameters, and C/N partitioning in these seeds. Transgenic embryos take up more carbon and nitrogen. Changes in dry to FW ratio, seed fill duration and major seed components indicate altered seed development. Array-based gene expression analysis of embryos reveals upregulation of seed metabolism, especially during the transition phase and at late maturation, in terms of protein storage and processing, amino acid metabolism, primary metabolism and transport, energy and mitochondrial activity, transcriptional and translational activity, stress tolerance, photosynthesis, cell proliferation and elongation, signalling and hormone action and regulated protein degradation. Stimulated cell elongation is in accordance with upregulated signalling pathways related to gibberellic acid/brassinosteroids. We discuss that activated organic and amino acid production leads to a wide-range activation of nitrogen metabolism, including the machinery of storage protein synthesis, amino acid synthesis, protein processing and deposition, translational activity and the methylation cycle. We suggest that alpha-ketoglutarate (alpha-KG) and/or oxalacetate provide signals for coordinate upregulation of amino acid biosynthesis. Activation of stress tolerance genes indicates partial overlap between nutrient, stress and abscisic acid (ABA) signals, indicating a common interacting or regulatory mechanism between nutrients, stress and ABA. In conclusion, analysis of PEPC overexpressing seeds identified pathways responsive to metabolic and nutrient control on the transcriptional level and its underlying signalling mechanisms.

  5. Improving vegetation and mowing management in highway corridors : interim report.

    DOT National Transportation Integrated Search

    1978-01-01

    Ky-31 tall fescue was found to be the best adapted cool season perennial grass for use in Virginia. Persistence of fine-leaved, short grasses was poor. Late winter-early spring seeding of perennial legumes was found to be the best season for seeding ...

  6. Improving vegetation and mowing management in highway corridors : final report.

    DOT National Transportation Integrated Search

    1979-01-01

    Ky-31 tall fescue was found to be the best adapted cool season perennial grass for use in Virginia. Persistence of fine-leaved, short grasses was poor. Late winter-early spring seeding of perennial legumes was found to be the best season for seeding ...

  7. Container production and nursery evaluation of native herbaceous plants for landscaping and revegetation of disturbed sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, M.; Farmer, R.E. Jr.

    1983-01-01

    Thirty-two species in the genera Asclepias, Aster, Bidens, Coreopsis, Chrysopsis, Eupatorium, Echinacea, Helenium, Helianthus, Lobelia, Rudbeckia, Solidago, and Vernonia were propagated by seed from wild populations in eastern Tennessee. Seed were collected at dispersal in the fall, preliminary dormancy and germination tests conducted, and seed treated in accordance with test results to obtain greenhouse germinants. Seed were sown in late February on MetroMix in Rootrainers and transplanted to an irrigated nursery in early May. Survival was over 90%, and all but one species flowered and seeded abundantly during the first season. Observations of growth habit, flowering, and seed dispersal weremore » recorded.« less

  8. Depletion of rice as food of waterfowl wintering in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Greer, Danielle M.; Dugger, Bruce D.; Reinecke, Kenneth J.; Petrie, Mark J.

    2009-01-01

    Waterfowl habitat conservation strategies in the Mississippi Alluvial Valley (MAV) and several other wintering areas assume carrying capacity is limited by available food, and increasing food resources is an effective conservation goal. Because existing research on winter food abundance and depletion is insufficient to test this hypothesis, we used harvested rice fields as model foraging habitats to determine if waste rice seed is depleted before spring migration. We sampled rice fields (n = 39 [winter 2000-2001], n = 69 [2001-2002]) to estimate seed mass when waterfowl arrived in late autumn and departed in late winter. We also placed exclosures in subsets of fields in autumn (n = 8 [2000-2001], n = 20 [2001-2002]) and compared seed mass inside and outside exclosures in late winter to estimate rice depletion attributable to waterfowl and other processes. Finally, we used an experiment to determine if the extent of rice depletion differed among fields of varying initial abundance and if the seed mass at which waterfowl ceased foraging or abandoned fields differed from a hypothesized giving-up value of 50 kg/ha. Mean seed mass was greater in late autumn 2000 than 2001 (127.0 vs. 83.9 kg/ha; P = 0.018) but decreased more during winter 2000-2001 than 2001-2002 (91.3 vs. 55.7 kg/ha) and did not differ at the end of winter (35.8 vs. 28.3 kg/ha; P = 0.651). Assuming equal loss to deterioration inside and outside exclosures, we estimated waterfowl consumed 61.3 kg/ha (48.3%) of rice present in late autumn 2000 and 21.1 kg/ha (25.1%) in 2001. When we manipulated late-autumn rice abundance, mean giving-up mass of rice seed was similar among treatments (48.7 kg/ha; P = 0.205) and did not differ from 50 kg/ha (P = 0.726). We integrated results by constructing scenarios in which waterfowl consumed rice at different times in winter, consumption and deterioration were competing risks, and consumption occurred only above 50 kg/ha. Results indicated waterfowl likely consumed available rice soon after fields were flooded and the amount consumed exceeded our empirical estimates but was -48% (winters pooled) of rice initially present. We suggest 1) using 50 kg/ha as a threshold below which profitability limits waterfowl feeding in MAV rice fields; 2) reducing the current estimate (130 kg/ha) of rice consumed in harvested fields to 47.1 kg/ha; and 3) increasing available rice by increasing total area of fields managed, altering management practices (e.g., staggered flooding), and exploring the potential for producing second or ratoon rice crops for waterfowl.

  9. Biological soil crusts: a fundamental organizing agent in global drylands

    NASA Astrophysics Data System (ADS)

    Belnap, J.; Zhang, Y.

    2013-12-01

    Ecosystem function is profoundly affected by plant community composition, which is ultimately determined by factors that govern seed retention. Dryland ecosystems constitute ~35% of terrestrial surfaces, with most soils in these regions covered by biological soil crusts (biocrusts), a community whose autotrophs are dominated by cyanobacteria, lichens, and mosses. Studies at 550 sites revealed that plant community composition was controlled by the interaction among biocrust type, disturbance regime, and external morphology of seeds. In bare soils (due to disturbance), all seed types were present in the seedbank and plant community. As biocrusts became better developed (i.e., the cover of lichens and mosses increased), they more strongly filtered out seeds with appendages. Thus, soils under late successional biocrusts contained seedbanks dominated by smooth seeds and vascular plants growing in late successional biocrusts were dominated by those with smooth seeds. Therefore, the tension between the removal of biocrusts by soil surface disturbance and their recovery creates a shifting mosaic of plant patch types in both space and time. Because changes in vascular plant communities reverberate throughout both below ground and above ground food webs and thus affect multiple trophic levels, we propose that biocrusts are a fundamental organizing agent in drylands worldwide. Future increased demand for resources will intensify land use both temporally and spatially, resulting in an increased rate of biocrust loss across larger areas. As a result, we can expect shifts in the composition and distribution of plant communities, accompanied by concomitant changes in many aspects of dryland ecosystems. Conceptual model of shifting dryland plant mosaics through space and time. Within the large circles, soil surface type changes with time in the same space, going from bare uncrusted soil (B) to cyanobacterial biocrust (C) to lichen/moss (L/M) biocrust. Disturbance (D) drives the cycle back towards U, and recovery (R) drives it towards L/M. Larger disturbances and dispersal of biocrust organisms among the larger circles result in mosaics that shift in space as well. The bar chart shows the proportion of smooth (left side) and rough (right side) seeds under different crust types.

  10. Environmental regulation of dormancy loss in seeds of Lomatium dissectum (Apiaceae)

    PubMed Central

    Scholten, Melissa; Donahue, Jacklyn; Shaw, Nancy L.; Serpe, Marcelo D.

    2009-01-01

    Background and Aims Lomatium dissectum (Apiaceae) is a perennial, herbaceous plant of wide distribution in Western North America. At the time of dispersal, L. dissectum seeds are dormant and have under-developed embryos. The aims of this work were to determine the requirements for dormancy break and germination, to characterize the type of seed dormancy, and to determine the effect of dehydration after embryo growth on seed viability and secondary dormancy. Methods The temperature requirements for embryo growth and germination were investigated under growth chamber and field conditions. The effect of GA3 on embryo growth was also analysed to determine the specific type of seed dormancy. The effect of dehydration on seed viability and induction of secondary dormancy were tested in seeds where embryos had elongated about 4-fold their initial length. Most experiments examining the nature of seed dormancy were conducted with seeds collected at one site in two different years. To characterize the degree of variation in dormancy-breaking requirements among seed populations, the stratification requirements of seeds collected at eight different sites were compared. Key Results Embryo growth prior to and during germination occurred at temperatures between 3 and 6 °C and was negligible at stratification temperatures of 0·5 and 9·1 °C. Seeds buried in the field and exposed to natural winter conditions showed similar trends. Interruption of the cold stratification period by 8 weeks of dehydration decreased seed viability by about 30 % and induced secondary dormancy in the remaining viable seeds. Comparison of the cold stratification requirements of different seed populations indicates that seeds collected from moist habitats have longer cold stratification requirements that those from semiarid environments. Conclusions Seeds of L. dissectum have deep complex morphophysiological dormancy. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter. PMID:19233890

  11. Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum.

    PubMed

    Otegui, Marisa S; Capp, Roberta; Staehelin, L Andrew

    2002-06-01

    Mineral-accumulating compartments in developing seeds of Arabidopsis were studied using high-pressure-frozen/freeze-substituted samples. Developing seeds store minerals in three locations: in the protein storage vacuoles of the embryo, and transiently in the endoplasmic reticulum (ER) and vacuolar compartments of the chalazal endosperm. Energy dispersive x-ray spectroscopy and enzyme treatments suggest that the minerals are stored as phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate) salts in all three compartments, although they differ in cation composition. Whereas embryo globoids contain Mg, K, and Ca as cations, the chalazal ER deposits show high levels of Mn, and the chalazal vacuolar deposits show high levels of Zn. The appearance of the first Zn-phytate crystals coincides with the formation of network-like extensions of the chalazal vacuoles. The core of these networks consists of a branched network of tubular ER membranes, which are separated from the delineating tonoplast membranes by a layer of cytosolic material. Degradation of the networks starts with the loss of the cytosol and is followed by the retraction of the ER, generating a network of collapsed tonoplast membranes that are resorbed. Studies of fertilized fis2 seeds, which hyperaccumulate Zn-phytate crystals in the chalazal vacuolar compartments, suggest that only the intact network is active in mineral sequestration. Mineral determination analysis and structural observations showed that Zn and Mn are mobilized from the endosperm to the embryo at different developmental stages. Thus, Zn appears to be removed from the endosperm at the late globular stage, and Mn stores appear to be removed at the late bent-cotyledon stage of embryo development. The disappearance of the Mn-phytate from the endosperm coincides with the accumulation of two major Mn binding proteins in the embryo, the 33-kD protein from the oxygen-evolving complex of photosystem II and the Mn superoxide dismutase. The possible functions of transient heavy metal storage in the chalazal endosperm are discussed. A model showing how phytic acid, a potentially cytotoxic molecule, is transported from its site of synthesis, the ER, to the different mineral storage sites is presented.

  12. Developing Seeds of Arabidopsis Store Different Minerals in Two Types of Vacuoles and in the Endoplasmic Reticulum

    PubMed Central

    Otegui, Marisa S.; Capp, Roberta; Staehelin, L. Andrew

    2002-01-01

    Mineral-accumulating compartments in developing seeds of Arabidopsis were studied using high-pressure-frozen/freeze-substituted samples. Developing seeds store minerals in three locations: in the protein storage vacuoles of the embryo, and transiently in the endoplasmic reticulum (ER) and vacuolar compartments of the chalazal endosperm. Energy dispersive x-ray spectroscopy and enzyme treatments suggest that the minerals are stored as phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate) salts in all three compartments, although they differ in cation composition. Whereas embryo globoids contain Mg, K, and Ca as cations, the chalazal ER deposits show high levels of Mn, and the chalazal vacuolar deposits show high levels of Zn. The appearance of the first Zn-phytate crystals coincides with the formation of network-like extensions of the chalazal vacuoles. The core of these networks consists of a branched network of tubular ER membranes, which are separated from the delineating tonoplast membranes by a layer of cytosolic material. Degradation of the networks starts with the loss of the cytosol and is followed by the retraction of the ER, generating a network of collapsed tonoplast membranes that are resorbed. Studies of fertilized fis2 seeds, which hyperaccumulate Zn-phytate crystals in the chalazal vacuolar compartments, suggest that only the intact network is active in mineral sequestration. Mineral determination analysis and structural observations showed that Zn and Mn are mobilized from the endosperm to the embryo at different developmental stages. Thus, Zn appears to be removed from the endosperm at the late globular stage, and Mn stores appear to be removed at the late bent-cotyledon stage of embryo development. The disappearance of the Mn-phytate from the endosperm coincides with the accumulation of two major Mn binding proteins in the embryo, the 33-kD protein from the oxygen-evolving complex of photosystem II and the Mn superoxide dismutase. The possible functions of transient heavy metal storage in the chalazal endosperm are discussed. A model showing how phytic acid, a potentially cytotoxic molecule, is transported from its site of synthesis, the ER, to the different mineral storage sites is presented. PMID:12084829

  13. [Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape].

    PubMed

    Zhang, Shu-Jie; Li, Ling; Zhang, Chun-Lei

    2012-05-01

    A field experiment was conducted to investigate the effects of different sowing date and planting density on the seed yield and seed oil content of winter oilseed rape (Brassica napus). Sowing date mainly affected the seed yield of branch raceme, while planting density affected the seed yields of both branch raceme and main raceme. The seed oil content was less affected by sowing date. The proportion of the seed yield of main raceme to the seed yield per plant increased with increasing planting density, and the seed oil content of main raceme was about 1% higher than that of branch raceme. Consequently, the seed oil production per plot increased significantly with increasing planting density. In the experimental region, the sowing date of winter oilseed rape should be earlier than mid-October. When sowing in late October, the seed yield would be decreased significantly. A planting density of 36-48 plants x m(-2) could improve the seed yield and oil content of winter oilseed rape.

  14. Row distance method sowing of forage Kochia, eastern saltwort and winterfat.

    PubMed

    Zadbar, M; Dormanov, D N; Shariph-abad, H Heidari; Dorikov, M; Jalilvand, H

    2007-05-15

    In this study, we used three native range species of eastern saltwort, winterfat and forage Kochia. These species are extremely adapted to dry lands and have high productivity comparison with other forage species. In order to increase range production in poor, dry and sub dry land in the province of Khorasan (Sabzevar) the seeds of these species naturally were sowed. They were sowed individually on rows and mixed of the two by 2 or 3 species on the alternative rows. The research was carried out statistically in Completely Randomized Block Design (CRBD) as a factorial experiment by two factors. The first factor was row distance of seeding (three levels, 50, 75 and 100 cm distance between each row) and the second was kinds of intercropping methods (seven level of individual seeding by three mentioned species and mixed alternative rows of two by 2 and 3 species together) with four replicates (3x7x4). Number of seed was accounted by the number of bushes were germinated or died in each experimental unit. The results showed that maximum abundant of seed germination of all treatments was occurred from late April to late May. Sowing in the row spaces of 50 cm had highly statistically significant production than the ones of 75 and 100 cm spaces. Also, by comparing relative frequency percentage of germinated seeds and relative germinated died seed revealed that individual sowing seed of Salsola orientalis and Eurotia ceratoides, by 50 cm row space in Sabzevar region had better result, respectively, because of lowest mortality of plants and highest productivity of biomass.

  15. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages.

    PubMed

    Hoeffel, Guillaume; Wang, Yilin; Greter, Melanie; See, Peter; Teo, Pearline; Malleret, Benoit; Leboeuf, Marylène; Low, Donovan; Oller, Guillaume; Almeida, Francisca; Choy, Sharon H Y; Grisotto, Marcos; Renia, Laurent; Conway, Simon J; Stanley, E Richard; Chan, Jerry K Y; Ng, Lai Guan; Samokhvalov, Igor M; Merad, Miriam; Ginhoux, Florent

    2012-06-04

    Langerhans cells (LCs) are the dendritic cells (DCs) of the epidermis, forming one of the first hematopoietic lines of defense against skin pathogens. In contrast to other DCs, LCs arise from hematopoietic precursors that seed the skin before birth. However, the origin of these embryonic precursors remains unclear. Using in vivo lineage tracing, we identify a first wave of yolk sac (YS)-derived primitive myeloid progenitors that seed the skin before the onset of fetal liver hematopoiesis. YS progenitors migrate to the embryo proper, including the prospective skin, where they give rise to LC precursors, and the brain rudiment, where they give rise to microglial cells. However, in contrast to microglia, which remain of YS origin throughout life, YS-derived LC precursors are largely replaced by fetal liver monocytes during late embryogenesis. Consequently, adult LCs derive predominantly from fetal liver monocyte-derived cells with a minor contribution of YS-derived cells. Altogether, we establish that adult LCs have a dual origin, bridging early embryonic and late fetal myeloid development.

  16. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages

    PubMed Central

    Hoeffel, Guillaume; Wang, Yilin; Greter, Melanie; See, Peter; Teo, Pearline; Malleret, Benoit; Leboeuf, Marylène; Low, Donovan; Oller, Guillaume; Almeida, Francisca; Choy, Sharon H.Y.; Grisotto, Marcos; Renia, Laurent; Conway, Simon J.; Stanley, E. Richard; Chan, Jerry K.Y.; Ng, Lai Guan; Samokhvalov, Igor M.

    2012-01-01

    Langerhans cells (LCs) are the dendritic cells (DCs) of the epidermis, forming one of the first hematopoietic lines of defense against skin pathogens. In contrast to other DCs, LCs arise from hematopoietic precursors that seed the skin before birth. However, the origin of these embryonic precursors remains unclear. Using in vivo lineage tracing, we identify a first wave of yolk sac (YS)–derived primitive myeloid progenitors that seed the skin before the onset of fetal liver hematopoiesis. YS progenitors migrate to the embryo proper, including the prospective skin, where they give rise to LC precursors, and the brain rudiment, where they give rise to microglial cells. However, in contrast to microglia, which remain of YS origin throughout life, YS-derived LC precursors are largely replaced by fetal liver monocytes during late embryogenesis. Consequently, adult LCs derive predominantly from fetal liver monocyte-derived cells with a minor contribution of YS-derived cells. Altogether, we establish that adult LCs have a dual origin, bridging early embryonic and late fetal myeloid development. PMID:22565823

  17. Factors affecting post-control reinvasion by seed of an invasive species, Phragmites australis, in the central Platte River, Nebraska.

    USGS Publications Warehouse

    Galatowitsch, Susan M.; Larson, Diane L.; Larson, Jennifer L.

    2016-01-01

    Invasive plants, such as Phragmites australis, can profoundly affect channel environments of large rivers by stabilizing sediments and altering water flows. Invasive plant removal is considered necessary where restoration of dynamic channels is needed to provide critical habitat for species of conservation concern. However, these programs are widely reported to be inefficient. Post-control reinvasion is frequent, suggesting increased attention is needed to prevent seed regeneration. To develop more effective responses to this invader in the Central Platte River (Nebraska, USA), we investigated several aspects of Phragmites seed ecology potentially linked to post-control reinvasion, in comparison to other common species: extent of viable seed production, importance of water transport, and regeneration responses to hydrology. We observed that although Phragmites seed does not mature until very late in the ice-free season, populations produce significant amounts of viable seed (>50 % of filled seed). Most seed transported via water in the Platte River are invasive perennial species, although Phragmites abundances are much lower than species such as Lythrum salicaria, Cyperus esculentus and Phalaris arundinacea. Seed regeneration of Phragmites varies greatly depending on hydrology, especially timing of water level changes. Flood events coinciding with the beginning of seedling emergence reduced establishment by as much as 59 % compared to flood events that occurred a few weeks later. Results of these investigations suggest that prevention of seed set (i.e., by removal of flowering culms) should be a priority in vegetation stands not being treated annually. After seeds are in the seedbank, preventing reinvasion using prescribed flooding has a low chance of success given that Phragmites can regenerate in a wide variety of hydrologic microsites.

  18. Late time cosmological phase transitions 1: Particle physics models and cosmic evolution

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Hill, Christopher T.; Watkins, Richard

    1991-01-01

    We described a natural particle physics basis for late-time phase transitions in the universe. Such a transition can seed the formation of large-scale structure while leaving a minimal imprint upon the microwave background anisotropy. The key ingredient is an ultra-light pseudo-Nambu-Goldstone boson with an astronomically large (O(kpc-Mpc)) Compton wavelength. We analyze the cosmological signatures of and constraints upon a wide class of scenarios which do not involve domain walls. In addition to seeding structure, coherent ultra-light bosons may also provide unclustered dark matter in a spatially flat universe, omega sub phi approx. = 1.

  19. Influence of different Sinorhizobium meliloti inocula on abundance of genes involved in nitrogen transformations in the rhizosphere of alfalfa (Medicago sativa L.).

    PubMed

    Babić, Katarina Huić; Schauss, Kristina; Hai, Brigitte; Sikora, Sanja; Redzepović, Sulejman; Radl, Viviane; Schloter, Michael

    2008-11-01

    Inoculation of leguminous seeds with selected rhizobial strains is practised in agriculture to ameliorate the plant yield by enhanced root nodulation and nitrogen uptake of the plant. However, effective symbiosis between legumes and rhizobia does not only depend on the capacity of nitrogen fixation but also on the entire nitrogen turnover in the rhizosphere. We investigated the influence of seed inoculation with two indigenous Sinorhizobium meliloti strains exhibiting different efficiency concerning plant growth promotion on nitrogen turnover processes in the rhizosphere during the growth of alfalfa. Quantification of six target genes (bacterial amoA, nirK, nirS, nosZ, nifH and archaeal amoA) within the nitrogen cycle was performed in rhizosphere samples before nodule formation, at bud development and at the late flowering stage. The results clearly demonstrated that effectiveness of rhizobial inocula is related to abundance of nifH genes in the late flowering phase of alfalfa. Moreover, other genes involved in nitrogen turnover had been affected by the inocula, e.g. higher numbers of amoA copies were observed during flowering when the more effective strain had been inoculated. However, the respective gene abundances differed overall to a greater extent between the three plant development stages than between the inoculation variants.

  20. Pollen gene flow, male reproductive success, and genetic correlations among offspring in a northern red oak (Quercus rubra L.) seed orchard

    PubMed Central

    Woeste, Keith

    2017-01-01

    Northern red oak is a high-value hardwood used for lumber, furniture and veneer. Intensively managed northern red oak seed orchards are required to obtain genetic gain for trait improvement. Data from conifer seed orchards and natural and managed stands of hardwood trees have shed light on the distance over which pollen can move, and underscore the need for managerial attention to seed orchard design, placement, and maintenance. We used eleven microsatellite markers to investigate pollen gene flow, female mate choice, and male reproductive success in a clonal seed orchard of northern red oak based on paternity analysis of seed orchard offspring in progeny tests. Nearly all (93%) offspring were sired by a male parent within the seed orchard. The mean number of male parents per year was 69.5, or 47.6% of all clones in the seed orchard. Female clones in the early phenology group had more offspring sired from extra-orchard pollen (13%) than clones in the intermediate (5%) and late (1%) phenology groups. Distance was the largest influence on pollination success, and pollination occurred most often by male trees in the same subline as the maternal tree. Males in the early phenology group sired more offspring overall in the progeny pool and more offspring per mother tree than males in the intermediate or late phenology groups. Average genetic correlations among all OP progeny ranged between 0.2557 and 0.3529 with a mean of 0.28±0.01. The importance of progeny test genotyping for northern red oak improvement likely is increasing with the demand for improved varieties. The current study demonstrated the feasibility of post hoc assembly of full-sib families for genetic analysis. PMID:28166543

  1. The evolutionary diversification of seed size: using the past to understand the present.

    PubMed

    Sims, Hallie J

    2012-05-01

    The Devonian origin of seed plants and subsequent morphological diversification of seeds during the late Paleozoic represents an adaptive radiation into unoccupied ecological niche space. A plant's seed size is correlated with its life-history strategy, growth form, and seed dispersal syndrome. The fossil record indicates that the oldest seed plants had relatively small seeds, but the Mississippian seed size envelope increased significantly with the diversification of larger seeded lineages. Fossil seeds equivalent to the largest extant gymnosperm seeds appeared by the Pennsylvanian, concurrent with morphological diversification of growth forms and dispersal syndromes as well as the clade's radiation into new environments. Wang's Analysis of Skewness indicates that the evolutionary trend of increasing seed size resulted from primarily passive processes in Pennsylvanian seed plants. The distributions of modern angiosperms indicate a more diverse system of active and some passive processes, unbounded by Paleozoic limits; multiple angiosperm lineages independently evolved though the upper and lower bounds. Quantitative measures of preservation suggest that, although our knowledge of Paleozoic seeds is far from complete, the evolutionary trend in seed size is unlikely to be an artifact of taphonomy. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.

  2. Stage- and tissue-expression of genes involved in the biosynthesis and signalling of ethylene in reproductive organs of damson plum (Prunus domestica L. subsp. insititia).

    PubMed

    Fernández-Otero, C I; de la Torre, F; Iglesias, R; Rodríguez-Gacio, M C; Matilla, A J

    2007-01-01

    In this work, four cDNA clones (Pd-ACS1,AJ890088; Pd-ETR1 and Pd-ERS1, AJ890092, AJ890091; and Pd-CTR1, AJ890089) encoding an ACC-synthase, two putative ethylene (ET) receptors, and a putative MAPKKK, respectively, were isolated and phylogenetically characterized in Prunus domestica L. subsp. insititia. Their expression was studied by real-time PCR during flower (closed, open and senescent) and fruit (early green, late green, maturation and ripening) development of damson plum, which is climateric. While two peaks of ET production were quantified at early green and ripening stages in whole fruits, the seed was not able to produce it during maturation and ripening stages. All studied genes were differentially expressed during flower and fruit development. In general, the level of transcripts of Pd-ACS1 was higher in fruits than in flowers. However, it was noteworthy that: (1) Pd-ACS1 expression was hardly detected in closed flowers and at low levels during early green stage; and fruit development provoked a notable differential expression in seeds, and pericarp; (2) the results of Pd-ACS1 expression during fruit development suggest a preponderant role of this gene from late green stage onward. The stamen was the only floral organ in which expression of both Pd-ETR1 and Pd-ERS1 receptor genes was not significantly altered during development; however, their expression decreased concomitantly with development of pistil (only floral organ to register a net ET production when fertilized) and during first days of ovary development (the highest ET production during all fruit development). Contrary to Pd-ERS1, the level of Pd-ETR1 mRNA was temporally quite similar in the seed. With regard Pd-ETR1, even its expression was very scarce during maturation of mesocarp, was stimulated during ripening. In the epicarp, Pd-ERS1 and Pd-ETR1 were low expressed during pit hardening increasing onward and decreasing during ripening. Pd-CTR1 expression was in the seed>mesocarp>epicarp. Spatial and temporal levels of Pd-ACS1, Pd-ETR1, Pd-ERS1 and Pd-CTR1 mRNAs described in this work demonstrate that the expression of these genes is not always constitutive and that control of its transcription may play an important role in regulating the development of reproductive organs of damson plum.

  3. Molecular characterization of the acquisition of longevity during seed maturation in soybean

    PubMed Central

    Lalanne, David; Rossi, Rubiana Falopa; Pelletier, Sandra; da Silva, Edvaldo Aparecido Amaral

    2017-01-01

    Seed longevity, defined as the ability to remain alive during storage, is an important agronomic factor. Poor longevity negatively impacts seedling establishment and consequently crop yield. This is particularly problematic for soybean as seeds have a short lifespan. While the economic importance of soybean has fueled a large number of transcriptome studies during embryogenesis and seed filling, the mechanisms regulating seed longevity during late maturation remain poorly understood. Here, a detailed physiological and molecular characterization of late seed maturation was performed in soybean to obtain a comprehensive overview of the regulatory genes that are potentially involved in longevity. Longevity appeared at physiological maturity at the end of seed filling before maturation drying and progressively doubled until the seeds reached the dry state. The increase in longevity was associated with the expression of genes encoding protective chaperones such as heat shock proteins and the repression of nuclear and chloroplast genes involved in a range of chloroplast activities, including photosynthesis. An increase in the raffinose family oligosaccharides (RFO)/sucrose ratio together with changes in RFO metabolism genes was also associated with longevity. A gene co-expression network analysis revealed 27 transcription factors whose expression profiles were highly correlated with longevity. Eight of them were previously identified in the longevity network of Medicago truncatula, including homologues of ERF110, HSF6AB, NFXL1 and members of the DREB2 family. The network also contained several transcription factors associated with auxin and developmental cell fate during flowering, organ growth and differentiation. A transcriptional transition occurred concomitant with seed chlorophyll loss and detachment from the mother plant, suggesting the activation of a post-abscission program. This transition was enriched with AP2/EREBP and WRKY transcription factors and genes associated with growth, germination and post-transcriptional processes, suggesting that this program prepares the seed for the dry quiescent state and germination. PMID:28700604

  4. Seed production and field establishment of hoary tansyaster (Machaeranthera canescens)

    Treesearch

    Derek J. Tilley

    2015-01-01

    The USDA NRCS Aberdeen Plant Materials Center (PMC) produces certified early generation seed of hoary tansyaster (Machaeranthera canescens (Pursh) A. Gray [Asteraceae]), a late summer and fall blooming forb native to the Intermountain West region. Hoary tansyaster is an excellent forb candidate for restoration efforts in arid to semiarid sites. It is relatively easy to...

  5. Maturation and Collection of Yellow-Poplar Seeds in the Midsouth

    Treesearch

    F. T. Bonner

    1976-01-01

    Yellow-poplar fruits are best collected in late October when their color changes from green to yellow-green or yellow. There were no other obvious physical or chemical changes indicating maturity. The seeds are physiologically mature as early as September 1, although high fruit moisture contents make special handling necessary if fruits are collected at this time....

  6. Educating the Future Leaders of the Middle East

    ERIC Educational Resources Information Center

    Maddy-Weitzman, Edie

    2006-01-01

    In this article, the author, a volunteer college counselor for Palestinian and Israeli members of "Seeds of Peace"--students who want to study in the U.S., describes her experience working with these youths as they embark upon their voyage to acquire a U.S. university education. Founded in 1993 by the late John Wallach, Seeds of Peace is…

  7. The UAE Rainfall Enhancement Assessment Program: Implications of Thermodynamic Profiles on the Development of Precipitation in Convective Clouds over the Oman Mountains

    NASA Astrophysics Data System (ADS)

    Breed, D.; Bruintjes, R.; Jensen, T.; Salazar, V.; Fowler, T.

    2005-12-01

    During the winter and summer seasons of 2001 and 2002, data were collected to assess the efficacy of cloud seeding to enhance precipitation in the United Arab Emirates (UAE). The results of the feasibility study concluded: 1) that winter clouds in the UAE rarely produced conditions amenable to hygroscopic cloud seeding; 2) that summer convective clouds developed often enough, particularly over the Oman Mountains (e.g., the Hajar Mountains along the eastern UAE border and into Oman) to justify a randomized seeding experiment; 3) that collecting quantitative radar observations continues to be a complex but essential part of evaluating a cloud seeding experiment; 4) that successful flight operations would require solving several logistical issues; and 5) that several scientific questions would need to be studied in order to fully evaluate the efficacy and feasibility of hygroscopic cloud seeding, including cloud physical responses, radar-derived rainfall estimates as related to rainfall at the ground, and hydrological impacts. Based on these results, the UAE program proceeded through the design and implemention of a randomized hygroscopic cloud seeding experiment during the summer seasons to statistically quantify the potential for cloud seeding to enhance rainfall, specifically over the UAE and Oman Mountains, while collecting concurrent and separate physical measurements to support the statistical results and provide substantiation for the physical hypothesis. The randomized seeding experiment was carried out over the summers of 2003 and 2004, and a total of 134 cases were treated over the two summer seasons, of which 96 met the analysis criteria established in the experimental design of the program. The statistical evaluation of these cases yielded largely inconclusive results. Evidence will show that the thermodynamic profile had a large influence on storm characteristics and on precipitation development. This in turn provided a confounding factor in the conduct of the seeding experiment, particularly in the lateness of treatment in the storm cycle. The prevalence of capping inversions and the sensitivity of clouds to the level of the inversions as well as to wind shear will be shown using several data sets (soundings, aircraft, radar, numerical models). Concurrent physical measurements with the randomized experiment provided new insights into the physical processes of precipitation that developed in summertime convective clouds over the UAE that in turn helped in the interpretation of the statistical results.

  8. Red fox ( Vulpes vulpes L.) favour seed dispersal, germination and seedling survival of Mediterranean Hackberry ( Celtis australis L.)

    NASA Astrophysics Data System (ADS)

    Juan, Traba; Sagrario, Arrieta; Jesús, Herranz; Cristina, Clamagirand M.

    2006-07-01

    Seeds of the Mediterranean Hackberry Celtis australis are often encountered in fox faeces. In order to evaluate the effect of gut transit on the size of seeds selected, the rates and speed of germination and on the survival of the seedlings, Mediterranean Hackberry seeds from fox faeces were germinated in a greenhouse. The results were compared with those of seeds taken from ripe, uneaten fruits. Fox-dispersed seeds were smaller and lighter than the control ones and had higher (74% vs. 57%) and more rapid germination (74.5 days vs. 99.2 days). Seedlings from fox-dispersed seeds showed significantly greater survival by the end of the study period (74.1% vs. 43.6%) than the control ones. Survival in seedlings from fox-dispersed seeds was related to germination date, late seedlings showing poorer survival. This relationship was not observed away in the control seedlings. Seed mass did not affect seedling survival. Seedling arising from fox-dispersed seeds grew faster than control ones. These results suggest that fox can play a relevant role as seed disperser of Mediterranean Hackberry.

  9. Crotonic acid as a bioactive factor in carrot seeds (Daucus carota L.).

    PubMed

    Jasicka-Misiak, Izabela; Wieczorek, Piotr P; Kafarski, Paweł

    2005-06-01

    Water extracts from the carrot seed (Daucus carota L.) var. Perfekcja exhibit plant growth inhibitory properties against cress, cucumber, onion and carrot in a dose-dependant manner. This property results from the action of low-and high-molecular components of the extract. The low-molecular component was identified as crotonic acid ((E)-2-butenoic acid). Its presence was also confirmed in other late varieties of carrot. The determined strong herbicidal properties of crotonic acid and its availability after release to soil combined with its high level in seeds suggest that it might be considered as an allelopathic and autotoxic factor in the seeds.

  10. Comparison of in Situ and in Vitro Regulation of Soybean Seed Growth and Development

    PubMed Central

    Dyer, Daniel J.; Cotterman, C. Daniel; Cotterman, Josephine C.

    1987-01-01

    The growth characteristics of soybean (Glycine max [L.] Merr.) embryos in culture and seeds in situ were found to be similar, but developmental differences were observed. Embryos placed in culture when very small (<2 milligrams dry weight) failed to attain the maximal growth rates attained by embryos which were more mature when placed in culture. When nutrient levels were maintained in the culture medium, embryos continued to grow indefinitely, reaching dry weights far in excess of seeds matured in situ. Apparently, maternal factors were important in early and late development during the determination of maximum growth rate and the cessation of growth. Embryo growth rate was not affected by substituting glucose plus fructose for sucrose in the medium, nor by hormone treatments, including abscisic acid. Glutamine was found to give substantially better growth than glutamate, however. Contrary to prior reports, the response of soybean embryo growth rate to irradiance was found to be primarily an artifact of the effect of irradiance on media temperature. Across seven genotypes the correlation coefficient between seed growth rate in situ and embryo growth rate in vitro was 0.94, indicating essentially all of the variability of in situ seed growth rate between cultivars could be attributed to inherent growth rate differences associated with the embryos. The response to temperature was very similar for both embryos in culture and seeds in situ at temperatures below 30°C. Beyond that temperature, embryo growth rate continued to increase, while seed growth rate did not. The implication is that in situ seed growth rate is determined by the inherent growth potential of the embryo at low to moderate temperatures; however, at higher temperatures, the maternal plant is unable to support the rapid growth rates that the embryo is capable of attaining under conditions of unlimited assimilate supply. PMID:16665434

  11. New radiocarbon dates on the cereals from Wadi Kubbaniya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendorf, F.; Schild, R.; Close, A.E.

    1984-01-01

    In 1978, three carbonized grains of barley and a carbonized grain of einkorn wheat were found in a buried hearth at a Late Paleolithic site at Wadi Kubbaniya in Egypt. In 1981, two large clusters of barley seeds, which were identified as six-row barley and thus domestic, were found at a nearby site of comparable age. Numerous grinding stones, presumed to have been used for processing the cereals, were found in these and other sites, often deeply buried, and 30 radiocarbon dates placed the occupations between 18,500 and 17,000 radiocarbon years ago. These finds led us to suggest an earlymore » origin of food production, with implications for the initial development of complex societies. Several barley seeds were analyzed by electron spin resonance spectroscopy to determine the maximal temperature to which they had been subjected before burial. Six barley seeds and three small pieces of wood charcoal were dated directly by using a tandem accelerator mass spectrometer.« less

  12. Differential foraging preferences on seed size by rodents result in higher dispersal success of medium-sized seeds.

    PubMed

    Cao, Lin; Wang, Zhenyu; Yan, Chuan; Chen, Jin; Guo, Cong; Zhang, Zhibin

    2016-11-01

    Rodent preference for scatter-hoarding large seeds has been widely considered to favor the evolution of large seeds. Previous studies supporting this conclusion were primarily based on observations at earlier stages of seed dispersal, or on a limited sample of successfully established seedlings. Because seed dispersal comprises multiple dispersal stages, we hypothesized that differential foraging preference on seed size by animal dispersers at different dispersal stages would ultimately result in medium-sized seeds having the highest dispersal success rates. In this study, by tracking a large number of seeds for 5 yr, we investigated the effects of seed size on seed fates from seed removal to seedling establishment of a dominant plant Pittosporopsis kerrii (Icacinaceae) dispersed by scatter-hoarding rodents in tropical forest in southwest China. We found that small seeds had a lower survival rate at the early dispersal stage where more small seeds were predated at seed stations and after removal; large seeds had a lower survival rate at the late dispersal stage, more large seeds were recovered, predated after being cached, or larder-hoarded. Medium-sized seeds experienced the highest dispersal success. Our study suggests that differential foraging preferences by scatter-hoarding rodents at different stages of seed dispersal could result in conflicting selective pressures on seed size and higher dispersal success of medium-sized seeds. © 2016 by the Ecological Society of America.

  13. How early can the seeding dates of spring wheat be under current and future climate in Saskatchewan, Canada?

    PubMed

    He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron

    2012-01-01

    Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.

  14. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change.

    PubMed

    Atlin, Gary N; Cairns, Jill E; Das, Biswanath

    2017-03-01

    Plant breeding is a key mechanism for adaptation of cropping systems to climate change. Much discussion of breeding for climate change focuses on genes with large effects on heat and drought tolerance, but phenology and stress tolerance are highly polygenic. Adaptation will therefore mainly result from continually adjusting allele frequencies at many loci through rapid-cycle breeding that delivers a steady stream of incrementally improved cultivars. This will require access to elite germplasm from other regions, shortened breeding cycles, and multi-location testing systems that adequately sample the target population of environments. The objective of breeding and seed systems serving smallholder farmers should be to ensure that they use varieties developed in the last 10 years. Rapid varietal turnover must be supported by active dissemination of new varieties, and active withdrawal of obsolete ones. Commercial seed systems in temperate regions achieve this through competitive seed markets, but in the developing world, most crops are not served by competitive commercial seed systems, and many varieties date from the end of the Green Revolution (the late 1970s, when the second generation of modern rice and wheat varieties had been widely adopted). These obsolete varieties were developed in a climate different than today's, placing farmers at risk. To reduce this risk, a strengthened breeding system is needed, with freer international exchange of elite varieties, short breeding cycles, high selection intensity, wide-scale phenotyping, and accurate selection supported by genomic technology. Governments need to incentivize varietal release and dissemination systems to continuously replace obsolete varieties.

  15. Late-summer food of red-winged blackbirds in a fresh tidal-river marsh

    USGS Publications Warehouse

    Meanley, B.

    1961-01-01

    During late summer in the Delaware Valley and Chesapeake Bay region, hundreds of thousands of Red-winged Blackbirds feed in wild rice beds of fresh tidal-river marshes. The period during which wild rice seed is available coincides with the ripening period of a part of the corn crop, and there is evidence to indicate that the availability of the wild rice reduces bird feeding pressure on corn in the area. The importance of wild rice and other marsh plants to the redwing during the period when wild rice seed is available was studied further by field observations and by analysis of stomach contents of 130 birds collected in wild rice beds of the Patuxent River in southern Maryland. Seeds of marsh plants formed the bulk of the food of redwings collected. Dotted smartweed, wild rice, and Walter?s millet were the most important food plants. Corn was the fourth most important item. It occurred in 35, approximately one-fourth, of the stomachs

  16. Identification and characterization of a LEA family gene CarLEA4 from chickpea (Cicer arietinum L.).

    PubMed

    Gu, Hanyan; Jia, Yuying; Wang, Xiansheng; Chen, Quanjia; Shi, Shubing; Ma, Lin; Zhang, Jusong; Zhang, Hua; Ma, Hao

    2012-04-01

    Late-embryogenesis abundant (LEA) proteins have been reported to be closely correlated with the acquisition of desiccation tolerance during seed development and response of plant to drought, salinity, and freezing, etc. In this study, a LEA gene, CarLEA4 (GenBank accession no. GU247511), was isolated from chickpea based on a cDNA library constructed with chickpea seedling leaves treated by polyethylene glycol (PEG). CarLEA4 contained two exons and one intron within genomic DNA sequence and encoded a putative polypeptide of 152 amino acids. CarLEA4 had a conserved pfam domain, and showed high similarity to the group 4 LEA proteins in secondary structure. It was localized in the nucleus. The transcripts of CarLEA4 were detected in many chickpea organs including seedling leaves, stems, roots, flowers, young pods, and young seeds. CarLEA4 was inhibited by leaf age and showed expression changes in expression during seed development, pod development and germination. Furthermore, the expression of CarLEA4 was strongly induced by drought, salt, heat, cold, ABA, IAA, GA(3) and MeJA. Our results suggest that CarLEA4 encodes a protein of LEA group 4 and may be involved in various plant developmental processes and abiotic stress responses.

  17. The struggles of jojoba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shani, A.

    1995-05-01

    In the 1950s jojoba oil was suggested as a substitute for sperm whale oil because of the similarities between the oils. The suggestion was accepted by US authorities, who were looking for ways to increase income for Native Americans on reservations. Unfortunately, the plantations were established without any botanical or agronomic preparation and proved unprofitable. The poor seed yields--barely 300--400 kg/ha--are ultimately traceable to the dioecious nature of the plant: one-half of the seeds yield male shrubs, which do not produce seeds and develop more rapidly than the females, taking over most of the field unless removed in time. Evenmore » after early culling of male shrubs and replacement with female shrubs was instituted, it was impossible to improve seed yields beyond 400--600 kg/ha. Disappointment in this new agroindustrial crop was so strong that today there is no US Federal support for research and development in jojoba. Only in Israel was there a gradual increase in jojoba cultivation, culminating in a great leap forward in the late 1980s and early 1990s. It took some 20--25 years of selection and improvement to obtain female plants and lines producing 3,000--3,500 kg/ha of seeds, close to twice the current rate of yield in the US. This botanical work was accompanied by agronomical studies of drip irrigation and fertilization regimes as well as agrotechnical studies, which eventually led to the design of a special mechanical harvester. Based on an almond pick-up system, the harvester collects up to 90% of the seeds from the ground. Chemical studies were also carried out on the raw wax, its derivatives, and potential applications. Extensive research and development as well as full domestication of the jojoba plant occurred in this 25-year period. The paper gives facts about jojoba, its chemical aspects, by-products from jojoba, the current marketplace and future trends.« less

  18. Use of ryegrass seeding as an emergency revegetation measure in chaparral ecosystems

    Treesearch

    Susan C. Barro

    1987-01-01

    Fire is a common occurrence in the California chaparral. Aside from brush removal through combustion, physical changes also take place in the soil during fire. These changes lead to accelerated erosion rates which begin almost immediately and continue through the next 5 to 10 years (Rowe and others 1954; Wells and Brown 1982). Since the late 1940's seeding burned...

  19. A new Late Devonian genus with seed plant affinities.

    PubMed

    Wang, Deming; Liu, Le

    2015-02-26

    Many ovules of Late Devonian (Famennian) seed plants have been well studied. However, because few taxa occur with anatomically preserved stems and/or petioles, the vascular system of these earliest spermatophytes is little understood and available data come mostly from Euramerica. There remains great controversy over the anatomical differentiation of Late Devonian and Carboniferous seed plant groups of Buteoxylonales, Calamopityales and Lyginopteridales. Protostele evolution of these early spermatophytes needs more research. A new taxon Yiduxylon trilobum gen. et sp. nov. with seed plant affinities has been discovered in the Upper Devonian (Famennian) Tizikou Formation of Hubei Province, China. It is represented by stems, helically arranged and bifurcate fronds with two orders of pinnae and planate pinnules. Both secondary pinnae and pinnules are borne alternately. Stems contain a small protostele with three primary xylem ribs possessing a single peripheral protoxylem strand. Thick secondary xylem displays multiseriate bordered pitting on the tangential and radial walls of the tracheids, and has biseriate to multiseriate and high rays. A narrow cortex consists of inner cortex without sclerotic nests and sparganum-type outer cortex with peripheral bands of vertically aligned sclerenchyma cells. Two leaf traces successively arise tangentially from each primary xylem rib and they divide once to produce four circular-oval traces in the stem cortex. Four vascular bundles occur in two C-shaped groups at each petiole base with ground tissue and peripheral bands of sclerenchyma cells. Yiduxylon justifies the assignment to a new genus mainly because of the protostele with protoxylem strands only near the periphery of primary xylem ribs, leaf trace origination and petiolar vascular supply structure. It shares many definitive characters with Calamopityales and Lyginopteridales, further underscoring the anatomical similarities among early seed plants. The primary vascular system, pycnoxylic-manoxylic secondary xylem with bordered pits on both tangential and radial walls of a tracheid and leaf trace divergence of Yiduxylon suggest transitional features between the early spermatophytes and ancestral aneurophyte progymnosperms.

  20. A deletion mutation at the ep locus causes low seed coat peroxidase activity in soybean.

    PubMed

    Gijzen, M

    1997-11-01

    The Ep locus severely affects the amount of peroxidase enzyme in soybean seed coats. Plants containing the dominant Ep allele accumulate large amounts of peroxidase in the hourglass cells of the sub-epidermis. Homozygous recessive epep genotypes do not accumulate peroxidase in the hourglass cells and are much reduced in total seed coat peroxidase activity. To isolate the gene encoding the seed coat peroxidase and to determine whether it corresponds to the Ep locus, a cDNA library was constructed from developing seed coats and an abundant 1.3 kb peroxidase transcript was cloned. The corresponding structural gene was also isolated from a genomic library. Sequence analysis shows that the seed coat peroxidase is translated as a 352 amino acid precursor protein of 38 kDa. Processing of a putative 26 amino acid signal sequence results in a mature protein of 326 residues with a calculated mass of 35 kDa and a pl of 4.4. Using probes derived from the cDNA, genomic DNA blot hybridization and polymerase chain reaction analysis detected polymorphisms that distinguished EpEp and epep genotypes. Co-segregation of the polymorphisms in an F2 population from a cross of EpEp and epep plants shows that the Ep locus encodes the seed coat peroxidase protein. Comparison of Ep and ep alleles indicates that the recessive gene lacks 87 bp of sequence encompassing the translation start codon. Analysis by RNA blot hybridization shows that epep plants have drastically reduced amounts of peroxidase transcript compared with EpEp plants. The peroxidase mRNA is abundant in seed coat tissues of EpEp plants during the late stages of seed maturation, and could also be detected in root tissues, but not in the flower, embryo, pod or leaf. The results indicate that the lack of peroxidase accumulation in seed coats of homozygous recessive epep plants is due to a mutation of the structural gene that reduces transcript abundance.

  1. Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis

    PubMed Central

    Prieto-Dapena, Pilar; Almoguera, Concepción; Personat, José-María; Merchan, Francisco

    2017-01-01

    Abstract HSFA9 is a seed-specific transcription factor that in sunflower (Helianthus annuus) is involved in desiccation tolerance and longevity. Here we show that the constitutive overexpression of HSFA9 in tobacco (Nicotiana tabacum) seedlings attenuated hypocotyl growth under darkness and accelerated the initial photosynthetic development. Plants overexpressing HSFA9 increased accumulation of carotenoids, chlorophyllide, and chlorophyll, and displayed earlier unfolding of the cotyledons. HSFA9 enhanced phytochrome-dependent light responses, as shown by an intensified hypocotyl length reduction after treatments with continuous far-red or red light. This observation indicated the involvement of at least two phytochromes: PHYA and PHYB. Reduced hypocotyl length under darkness did not depend on phytochrome photo-activation; this was inferred from the lack of effect observed using far-red light pulses applied before the dark treatment. HSFA9 increased the expression of genes that activate photomorphogenesis, including PHYA, PHYB, and HY5. HSFA9 might directly upregulate PHYA and indirectly affect PHYB transcription, as suggested by transient expression assays. Converse effects on gene expression, greening, and cotyledon unfolding were observed using a dominant-negative form of HSFA9, which was overexpressed under a seed-specific promoter. This work uncovers a novel transcriptional link, through HSFA9, between seed maturation and early photomorphogenesis. In all, our data suggest that HSFA9 enhances photomorphogenesis via early transcriptional effects that start in seeds under darkness. PMID:28207924

  2. Annotated Bibliography of the Lower Chesapeake Bay: Current Literature of Biological, Chemical, Geological and Physical Studies.

    DTIC Science & Technology

    1984-01-31

    Bathymetry and Sediment Transport,,. 75 F.Degn ........ 8 IV Physical: 81 A. Circulation . ........ * 82 B. Temperature and Salinity ) . .. 84 C. Tides...Chesapeake Bay was spread in the lover half of the seed area in the James River in 1959-1960. Low salinities inhibit the development of infections, with...minimal infections occurring where salinities do not exceed 15-20 ppt in late summer and fall. The oysters expel the pathogen in early spring, usually in

  3. Contribution of the pod wall to seed grain filling in alfalfa.

    PubMed

    Wang, Hui; Hou, Longyu; Wang, Mingya; Mao, Peisheng

    2016-05-23

    Three genotypes of alfalfa viz. Medicago sativa (Zhongmu No. 1, Zhongmu No. 2) and M. varia (Caoyuan No. 3) grown in the filed were investigated for the contribution of pod wall and leaves by shading all pods and leaves on July 15, 20 and 25, respectively. Date was recorded for total pod weight (TPW), pod wall weight (PWW), seed weight per pod (SWP), seed number per pod (SNP) and single seed weight (SSW) of one-coil and two-coil spiral pods. TPW, SNP, PWW and SWP were reduced by shading all leaves or pods, whereas SSW was not significantly affected. The relative photosynthetic contribution of pod wall to SWP was 25.6-48.1% in three genotypes on July 15. The pod wall in one-coil spiral pods generated a greater relative contribution to the TPW and SWP than in two-coil spiral pods. In the last stage (July 25), the relative photosynthetic contribution of leaves to SWP sharply decreased, whereas the relative photosynthetic contribution of pod wall to SWP was stable in the late stage (July 20 and 25). In conclusion, the pod wall of alfalfa could carry out photosynthesis and the pod wall played an important role in pod filling at the late growth stage.

  4. Thieving rodents as substitute dispersers of megafaunal seeds.

    PubMed

    Jansen, Patrick A; Hirsch, Ben T; Emsens, Willem-Jan; Zamora-Gutierrez, Veronica; Wikelski, Martin; Kays, Roland

    2012-07-31

    The Neotropics have many plant species that seem to be adapted for seed dispersal by megafauna that went extinct in the late Pleistocene. Given the crucial importance of seed dispersal for plant persistence, it remains a mystery how these plants have survived more than 10,000 y without their mutualist dispersers. Here we present support for the hypothesis that secondary seed dispersal by scatter-hoarding rodents has facilitated the persistence of these large-seeded species. We used miniature radio transmitters to track the dispersal of reputedly megafaunal seeds by Central American agoutis, which scatter-hoard seeds in shallow caches in the soil throughout the forest. We found that seeds were initially cached at mostly short distances and then quickly dug up again. However, rather than eating the recovered seeds, agoutis continued to move and recache the seeds, up to 36 times. Agoutis dispersed an estimated 35% of seeds for >100 m. An estimated 14% of the cached seeds survived to the next year, when a new fruit crop became available to the rodents. Serial video-monitoring of cached seeds revealed that the stepwise dispersal was caused by agoutis repeatedly stealing and recaching each other's buried seeds. Although previous studies suggest that rodents are poor dispersers, we demonstrate that communities of rodents can in fact provide highly effective long-distance seed dispersal. Our findings suggest that thieving scatter-hoarding rodents could substitute for extinct megafaunal seed dispersers of tropical large-seeded trees.

  5. Wheat seed transcriptome reveals genes controlling key traits for human preference and crop adaptation.

    PubMed

    Henry, Robert J; Furtado, Agnelo; Rangan, Parimalan

    2018-05-17

    Analysis of the transcriptome of the developing wheat grain has associated expression of genes with traits involving production (e.g. yield) and quality (e.g. bread quality). Photosynthesis in the grain may be important in retaining carbon that would be lost in respiration during grain filling and may contribute to yield in the late stages of seed formation under warm and dry environments. A small number of genes have been identified as having been selected by humans to optimize the performance of wheat for foods such as bread. Genes determining flour yield in milling have been discovered. Hardness is explained by variations in expression of pin genes. Knowledge of these genes should dramatically improve the efficiency of breeding better climate adapted wheat genotypes. Copyright © 2018. Published by Elsevier Ltd.

  6. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain.

    PubMed

    Wang, Bin; Zhang, Yinghua; Hao, Baozhen; Xu, Xuexin; Zhao, Zhigan; Wang, Zhimin; Xue, Qingwu

    2016-01-01

    Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2). Average yields of 7.42 t ha(-1) and WUE of 1.84 kg m(-3) were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.

  7. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development.

    PubMed

    Dekkers, Bas J W; He, Hanzi; Hanson, Johannes; Willems, Leo A J; Jamar, Diaan C L; Cueff, Gwendal; Rajjou, Loïc; Hilhorst, Henk W M; Bentsink, Leónie

    2016-02-01

    The seed expressed gene DELAY OF GERMINATION (DOG) 1 is absolutely required for the induction of dormancy. Next to a non-dormant phenotype, the dog1-1 mutant is also characterized by a reduced seed longevity suggesting that DOG1 may affect additional seed processes as well. This aspect however, has been hardly studied and is poorly understood. To uncover additional roles of DOG1 in seeds we performed a detailed analysis of the dog1 mutant using both transcriptomics and metabolomics to investigate the molecular consequences of a dysfunctional DOG1 gene. Further, we used a genetic approach taking advantage of the weak aba insensitive (abi) 3-1 allele as a sensitized genetic background in a cross with dog1-1. DOG1 affects the expression of hundreds of genes including LATE EMBRYOGENESIS ABUNDANT and HEAT SHOCK PROTEIN genes which are affected by DOG1 partly via control of ABI5 expression. Furthermore, the content of a subset of primary metabolites, which normally accumulate during seed maturation, was found to be affected in the dog1-1 mutant. Surprisingly, the abi3-1 dog1-1 double mutant produced green seeds which are highly ABA insensitive, phenocopying severe abi3 mutants, indicating that dog1-1 acts as an enhancer of the weak abi3-1 allele and thus revealing a genetic interaction between both genes. Analysis of the dog1 and dog1 abi3 mutants revealed additional seed phenotypes and therefore we hypothesize that DOG1 function is not limited to dormancy but that it is required for multiple aspects of seed maturation, in part by interfering with ABA signalling components. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  8. Variability within a pea core collection of LEAM and HSP22, two mitochondrial seed proteins involved in stress tolerance.

    PubMed

    Avelange-Macherel, Marie-Hélène; Payet, Nicole; Lalanne, David; Neveu, Martine; Tolleter, Dimitri; Burstin, Judith; Macherel, David

    2015-07-01

    LEAM, a late embryogenesis abundant protein, and HSP22, a small heat shock protein, were shown to accumulate in the mitochondria during pea (Pisum sativum L.) seed development, where they are expected to contribute to desiccation tolerance. Here, their expression was examined in seeds of 89 pea genotypes by Western blot analysis. All genotypes expressed LEAM and HSP22 in similar amounts. In contrast with HSP22, LEAM displayed different isoforms according to apparent molecular mass. Each of the 89 genotypes harboured a single LEAM isoform. Genomic and RT-PCR analysis revealed four LEAM genes differing by a small variable indel in the coding region. These variations were consistent with the apparent molecular mass of each isoform. Indels, which occurred in repeated domains, did not alter the main properties of LEAM. Structural modelling indicated that the class A α-helix structure, which allows interactions with the mitochondrial inner membrane in the dry state, was preserved in all isoforms, suggesting functionality is maintained. The overall results point out the essential character of LEAM and HSP22 in pea seeds. LEAM variability is discussed in terms of pea breeding history as well as LEA gene evolution mechanisms. © 2014 John Wiley & Sons Ltd.

  9. Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed.

    PubMed

    Wang, Xiu-Ling; Hu, Zi-Ying; You, Chun-Xiang; Kong, Xiu-Zhen; Shi, Xiao-Pu

    2013-09-01

    Sorbitol is the primary photosynthate and translocated carbohydrate in fruit trees of the Rosaceae family. NAD(+)-dependent sorbitol dehydrogenase (NAD-SDH, EC 1.1.1.14), which mainly catalyzes the oxidation of sorbitol to fructose, plays a key role in regulating sink strength in apple. In this study, we found that apple NAD-SDH was ubiquitously distributed in epidermis, parenchyma, and vascular bundle in developing cotyledon. NAD-SDH was localized in the cytosol, the membranes of endoplasmic reticulum and vesicles, and the vacuolar lumen in the cotyledon at the middle stage of seed development. In contrast, NAD-SDH was mainly distributed in the protein storage vacuoles in cotyledon at the late stage of seed development. Sequence analysis revealed there is a putative signal peptide (SP), also being predicated to be a transmembrane domain, in the middle of proteins of apple NAD-SDH isoforms. To investigate whether the putative internal SP functions in the vacuolar targeting of NAD-SDH, we analyzed the localization of the SP-deletion mutants of MdSDH5 and MdSDH6 (two NAD-SDH isoforms in apple) by the transient expression system in Arabidopsis protoplasts. MdSDH5 and MdSDH6 were not localized in the vacuoles after their SPs were deleted, suggesting the internal SP functions in the vacuolar targeting of apple NAD-SDH. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Development and characterization of transgenic dominant male sterile rice toward an outcross-based breeding system.

    PubMed

    Abe, Kiyomi; Oshima, Masao; Akasaka, Maiko; Konagaya, Ken-Ichi; Nanasato, Yoshihiko; Okuzaki, Ayako; Taniguchi, Yojiro; Tanaka, Junichi; Tabei, Yutaka

    2018-03-01

    Genomic selection is attracting attention in the field of crop breeding. To apply genomic selection effectively for autogamous (self-pollinating) crops, an efficient outcross system is desired. Since dominant male sterility is a powerful tool for easy and successive outcross of autogamous crops, we developed transgenic dominant male sterile rice ( Oryza sativa L.) using the barnase gene that is expressed by the tapetum-specific promoter BoA9 . Barnase -induced male sterile rice No. 10 (BMS10) was selected for its stable male sterility and normal growth characteristics. The BMS10 flowering habits, including heading date, flowering date, and daily flowering time of BMS10 tended to be delayed compared to wild type. When BMS10 and wild type were placed side-by-side and crossed under an open-pollinating condition, the seed-setting rate was <1.5%. When the clipping method was used to avoid the influence of late flowering habits, the seed-setting rate of BMS10 increased to a maximum of 86.4%. Although flowering synchronicity should be improved to increase the seed-setting rate, our results showed that this system can produce stable transgenic male sterility with normal female fertility in rice. The transgenic male sterile rice would promote a genomic selection-based breeding system in rice.

  11. Flowering time and seed dormancy control use external coincidence to generate life history strategy.

    PubMed

    Springthorpe, Vicki; Penfield, Steven

    2015-03-31

    Climate change is accelerating plant developmental transitions coordinated with the seasons in temperate environments. To understand the importance of these timing advances for a stable life history strategy, we constructed a full life cycle model of Arabidopsis thaliana. Modelling and field data reveal that a cryptic function of flowering time control is to limit seed set of winter annuals to an ambient temperature window which coincides with a temperature-sensitive switch in seed dormancy state. This coincidence is predicted to be conserved independent of climate at the expense of flowering date, suggesting that temperature control of flowering time has evolved to constrain seed set environment and therefore frequency of dormant and non-dormant seed states. We show that late flowering can disrupt this bet-hedging germination strategy. Our analysis shows that life history modelling can reveal hidden fitness constraints and identify non-obvious selection pressures as emergent features.

  12. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management

    PubMed Central

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3 --N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha-1 biomass, whereas mixtures averaged 4.1 Mg ha-1 and hairy vetch 2.3 Mg ha-1. Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha-1 N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3 --N (0 to 30 cm depth) averaged 62 kg ha-1 for rye, 97 kg ha-1 for the mixtures, and 119 kg ha-1 for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures. PMID:26080008

  13. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management.

    PubMed

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3(-)-N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha(-1) biomass, whereas mixtures averaged 4.1 Mg ha(-1) and hairy vetch 2.3 Mg ha(-1). Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha(-1) N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3(-)-N (0 to 30 cm depth) averaged 62 kg ha(-1) for rye, 97 kg ha(-1) for the mixtures, and 119 kg ha(-1) for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures.

  14. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media.

    PubMed

    Xu, Jianlin; Rehmann, Matthew S; Xu, Xuankuo; Huang, Chao; Tian, Jun; Qian, Nan-Xin; Li, Zheng Jian

    2018-04-01

    During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.

  15. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds.

    PubMed

    Korani, Walid Ahmed; Chu, Ye; Holbrook, Corley; Clevenger, Josh; Ozias-Akins, Peggy

    2017-07-12

    Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, ten genotypes were infected with a green fluorescent protein (GFP)-expressing Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity were documented by visual ratings every 8 h for 72 h after inoculation. Significant genotypic differences in fungal growth rates were documented by repeated measures and area under the disease progress curve (AUDPC) analyses. SICIA (Seed Infection Coverage and Intensity Analyzer), an image processing software, was developed to digitize fungal GFP signals. Data from SICIA image analysis confirmed visual rating results validating its utility for quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the seeds was not significantly different across genotypes based on a fluorometric GFP assay. Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under simulated late-season drought also showed that ICG 1471 had reduced aflatoxin production under pre-harvest field conditions. These results suggest that all peanut genotypes support A. flavus fungal growth yet differentially influence aflatoxin production.

  16. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds

    PubMed Central

    Chu, Ye; Holbrook, Corley; Clevenger, Josh; Ozias-Akins, Peggy

    2017-01-01

    Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, ten genotypes were infected with a green fluorescent protein (GFP)—expressing Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity were documented by visual ratings every 8 h for 72 h after inoculation. Significant genotypic differences in fungal growth rates were documented by repeated measures and area under the disease progress curve (AUDPC) analyses. SICIA (Seed Infection Coverage and Intensity Analyzer), an image processing software, was developed to digitize fungal GFP signals. Data from SICIA image analysis confirmed visual rating results validating its utility for quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the seeds was not significantly different across genotypes based on a fluorometric GFP assay. Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under simulated late-season drought also showed that ICG 1471 had reduced aflatoxin production under pre-harvest field conditions. These results suggest that all peanut genotypes support A. flavus fungal growth yet differentially influence aflatoxin production. PMID:28704974

  17. Selection on pollen and pistil traits during pollen competition is affected by both sexual conflict and mixed mating in a self-compatible herb.

    PubMed

    Lankinen, Åsa; Smith, Henrik G; Andersson, Stefan; Madjidian, Josefin A

    2016-03-01

    Although much attention has focused on the diversity of plant mating systems, only a few studies have considered the joint effects of mating system and sexual conflict in plant evolution. In mixed-mating Collinsia heterophylla, a sexual conflict over timing of stigma receptivity is proposed: pollen with a capacity to induce early onset of stigma receptivity secures paternity for early-arriving pollen (at the expense of reduced maternal seed set), whereas late onset of stigma receptivity mitigates the negative effects of early-arriving pollen. Here we investigated whether selection on pollen and pistil traits involved in sexual conflict is affected by the presence of both outcross- and self-pollen (mixed mating) during pollen competition. We conducted two-donor crosses at different floral developmental stages to explore male fitness (siring ability) and female fitness (seed set) in relation to male and female identity, pollen and pistil traits, and type of competitor pollen (outcross vs. self). Late-fertilizing pollen rather than rapidly growing pollen tubes was most successful in terms of siring success, especially in competition with self-pollen after pollination at early floral stages. Late stigma receptivity increased seed set after early-stage pollinations, in agreement with selection against antagonistic pollen. Selection on pollen and pistil traits in C. heterophylla is affected by both sexual conflict and mixed mating, suggesting the importance of jointly considering these factors in plant evolution. © 2016 Botanical Society of America.

  18. Radioactive seed migration following parotid gland interstitial brachytherapy.

    PubMed

    Fan, Yi; Huang, Ming-Wei; Zhao, Yi-Jiao; Gao, Hong; Zhang, Jian-Guo

    To evaluate the incidence and associated factors of pulmonary seed migration after parotid brachytherapy using a novel migrated seed detection technique. Patients diagnosed with parotid cancer who underwent permanent parotid brachytherapy from January 2006 to December 2011 were reviewed retrospectively. Head and neck CT scans and chest X-rays were evaluated during routine follow-up. Mimics software and Geomagic Studio software were used for seed reconstruction and migrated seed detection from the original implanted region, respectively. Postimplant dosimetry analysis was performed after seeds migration if the seeds were still in their emitting count. Adverse clinical sequelae from seed embolization to the lung were documented. The radioactive seed implants were identified on chest X-rays in 6 patients. The incidence rate of seed migration in 321 parotid brachytherapy patients was 1.87% (6/321) and that of individual seed migration was 0.04% (6/15218 seeds). All migrated seeds were originally from the retromandibular region. No adverse dosimetric consequences were found in the target region. Pulmonary symptoms were not reported by any patient in this study. In our patient set, migration of radioactive seeds with an initial radioactivity of 0.6-0.7 mCi to the chest following parotid brachytherapy was rare. Late migration of a single seed from the central target region did not affect the dosimetry significantly, and patients did not have severe short-term complications. This study proposed a novel technique to localize the anatomical origin of the migrated seeds during brachytherapy. Our evidence suggested that placement of seeds adjacent to blood vessels was associated with an increased likelihood of seed migration to the lungs. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  19. North-south patterning of millet agriculture on the Loess Plateau: Late Neolithic adaptations to water stress, NW China.

    NASA Astrophysics Data System (ADS)

    Sheng, P.; Shang, X.; Yang, L.; Jones, M.

    2017-12-01

    Abstract: Water availability and climatic condition profoundly affect agricultural system in different areas. The Loess Plateau, which lies on the marginal area of the East Asian monsoonal climatic zone, is one of the most ideal region to study the agricultural decision-making by ancient farm communities to adapt to different water stress level in same geographic region. Here we report new results of archaeobotanical research on the analysis of charred seeds from two late Neolithic sites on the northern Loess Plateau and review many contemporaneous archaeobotanical data recovered from the south and middle parts of the Loess Plateau. It is indicative of that common millet-based millet agriculture was developed in the arid northern Loess Plateau from the late Yangshao to Longshan periods (3000 1800 BC). Yet, there is a clear preference of foxtail millet farming with rice and wheat production as a supplement in the south and middle parts of the Loess Plateau during the same period. The north-south patterns of millet farming preferring by ancient farmers certainly promoted the social diversity and different evolutionary trajectories of human culture in both areas during the Mid-Late Holocene.

  20. Gallbladder carcinoma late metastases and incisional hernia at umbilical port site after laparoscopic cholecystectomy.

    PubMed

    Ciulla, A; Romeo, G; Genova, G; Tomasello, G; Agnello, G; Cstronovo, Gaetano

    2006-05-01

    A potentially serious complication of laparoscopic cholecystectomy is the inadvertent dissemination of unsuspected gallbladder carcinoma. There are increasing reports of seeding of tumor at the trocar sites following laparoscopic cholecystectomy in patients with unexpected or inapparent gallbladder carcinoma. Although the mechanism of the abdominal wall recurrence is still unclear, laparoscopic handling of the tumor, perforation of the gallbladder, and extraction of the specimen without an endobag may be risk factors for the spreading of malignant cells. The Authors report the case of late development of umbilical metastasis after laparoscopic cholecystectomy; the presence of an incisional hernia and the finding of a stone in subcutaneous tissue demonstrate the diffusion of tumor cells into subcutaneous tissue during the extraction of gallbladder. The patient underwent an excision of the metastases. She is disease free two years after surgical treatment.

  1. Dose-dependent effects of higher methionine levels on the transcriptome and metabolome of transgenic Arabidopsis seeds.

    PubMed

    Cohen, Hagai; Amir, Rachel

    2017-05-01

    Higher methionine levels in transgenic Arabidopsis seeds trigger the accumulation of stress-related transcripts and primary metabolites. These responses depend on the levels of methionine within seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. To reveal the regulatory role of the Arabidopsis thaliana CYSTATHIONINE γ-SYNTHASE (AtCGS), methionine main regulatory enzyme, in the synthesis of methionine in seeds, we generated transgenic RNAi seeds with targeted repression of AtCGS during late developmental stages of seeds. Unexpectedly, these seeds accumulated 2.5-fold more methionine than wild-type seeds. To study the nature of these seeds, transcriptomic and primary metabolite profiling were employed using Affymetrix ATH1 microarray and gas chromatography-mass spectrometry analyses, respectively. The results were compared to transgenic Arabidopsis seeds expressing a feedback-insensitive form of AtCGS (named SSE-AtD-CGS) that were previously showed to accumulate up to sixfold more soluble methionine than wild-type seeds. Statistical assessments showed that the nature of transcriptomic and metabolic changes that occurred in RNAi::AtCGS seeds were relatively similar, but to lesser extents, to those previously reported for SSE-AtD-CGS seeds, and linked to the induction of global transcriptomic and metabolic responses associated with stronger desiccation stress. As transgenic seeds obtained by both manipulations exhibited higher, but different methionine levels, the data strongly suggest that these changes depend on the absolute amounts of methionine within seeds and much less to the expression level of AtCGS.

  2. Effects of seed mass on seedling success in Artocarpus heterophyllus L., a tropical tree species of north-east India

    NASA Astrophysics Data System (ADS)

    Khan, M. L.

    2004-03-01

    I examined the effects of seed mass on performance of seedlings of Artocarpus heterophyllus L. (Moraceae), a large evergreen late successional shade-tolerant tree species in three contrasting light conditions. Seed mass varied many fold from 1.5 to 14 g in A. heterophyllus. Germination and germination time showed a significant correlation with seed mass. Germination differed significantly among three light regimes (50%, 25% and 3%). Seed mass and light level significantly affected seedling survival. The seedlings that emerged from large seeds survived better than those from small seeds under all light regimes. Survival of seedlings was maximum in 25% light regime for all seed mass classes but did not differ significantly from that at 50% light regime. Survival was significantly lower in 3% light as compared to 50% and 25% light regimes. Seedling vigor (expressed in terms of seedling height, leaf area and dry weight) was also significantly affected by seed mass and light regimes. Seedlings that emerged from larger seeds and grew under 50% light regime produced the heaviest seedlings, while those resulting from smaller seeds and grown under 3% light regime produced the lightest seedlings. Resprouting capacity of seedlings after clipping was significantly affected by seed mass and light regime. Seedlings emerging from larger seeds were capable of resprouting several times successively. Resprouting was more pronounced under 50% and 25% light regimes as compared to 3% light. Success of A. heterophyllus regeneration appears to be regulated by an interactive effect of seed mass and light regime.

  3. Are metastases from metastases clinical relevant? Computer modelling of cancer spread in a case of hepatocellular carcinoma.

    PubMed

    Bethge, Anja; Schumacher, Udo; Wree, Andreas; Wedemann, Gero

    2012-01-01

    Metastasis formation remains an enigmatic process and one of the main questions recently asked is whether metastases are able to generate further metastases. Different models have been proposed to answer this question; however, their clinical significance remains unclear. Therefore a computer model was developed that permits comparison of the different models quantitatively with clinical data and that additionally predicts the outcome of treatment interventions. The computer model is based on discrete events simulation approach. On the basis of a case from an untreated patient with hepatocellular carcinoma and its multiple metastases in the liver, it was evaluated whether metastases are able to metastasise and in particular if late disseminated tumour cells are still capable to form metastases. Additionally, the resection of the primary tumour was simulated. The simulation results were compared with clinical data. The simulation results reveal that the number of metastases varies significantly between scenarios where metastases metastasise and scenarios where they do not. In contrast, the total tumour mass is nearly unaffected by the two different modes of metastasis formation. Furthermore, the results provide evidence that metastasis formation is an early event and that late disseminated tumour cells are still capable of forming metastases. Simulations also allow estimating how the resection of the primary tumour delays the patient's death. The simulation results indicate that for this particular case of a hepatocellular carcinoma late metastases, i.e., metastases from metastases, are irrelevant in terms of total tumour mass. Hence metastases seeded from metastases are clinically irrelevant in our model system. Only the first metastases seeded from the primary tumour contribute significantly to the tumour burden and thus cause the patient's death.

  4. Mosquito larvicidal activity of Rauvolfia serpentina L. seeds against Culex quinquefasciatus Say.

    PubMed

    Das, Dipanwita; Chandra, Goutam

    2012-01-01

    To establish the larvicidal activities, if any of solvent extracts of Rauvolfia serpentina (R. serpentina) L. seeds against Culex quinquefasciatus (Cx. quinquefasciatus) Say, 1823 as target species. Seeds of R. serpentina were extracted with five solvents graded according to the polarity [viz. petroleum ether, benzene, ethyl acetate, acetone and absolute alcohol] continuing one after another with the same seeds. Mortality rate with petroleum ether extract was significantly higher than other extracts. The mortality rates of late 3rd instar larvae were 50.33±5.51, 10.00±1.00, 0.00±0.00, 21.33±1.53 and 0.00±0.00 in 100 ppm concentration of petroleum ether, benzene, ethyl acetate, acetone and absolute alcohol respectively, after 24 h of exposure period. Results of this study show that petroleum ether extract of R. serpentina seed may be considered as a potent source of mosquito larvicidal agent. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Flowering time and seed dormancy control use external coincidence to generate life history strategy

    PubMed Central

    Springthorpe, Vicki; Penfield, Steven

    2015-01-01

    Climate change is accelerating plant developmental transitions coordinated with the seasons in temperate environments. To understand the importance of these timing advances for a stable life history strategy, we constructed a full life cycle model of Arabidopsis thaliana. Modelling and field data reveal that a cryptic function of flowering time control is to limit seed set of winter annuals to an ambient temperature window which coincides with a temperature-sensitive switch in seed dormancy state. This coincidence is predicted to be conserved independent of climate at the expense of flowering date, suggesting that temperature control of flowering time has evolved to constrain seed set environment and therefore frequency of dormant and non-dormant seed states. We show that late flowering can disrupt this bet-hedging germination strategy. Our analysis shows that life history modelling can reveal hidden fitness constraints and identify non-obvious selection pressures as emergent features. DOI: http://dx.doi.org/10.7554/eLife.05557.001 PMID:25824056

  6. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination

    PubMed Central

    Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis

    2015-01-01

    Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties. PMID:26681322

  7. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    PubMed

    De Giorgi, Julien; Piskurewicz, Urszula; Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis

    2015-12-01

    Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

  8. Developmentally regulated HEART STOPPER, a mitochondrially targeted L18 ribosomal protein gene, is required for cell division, differentiation, and seed development in Arabidopsis

    PubMed Central

    Zhang, Hongyu; Luo, Ming; Day, Robert C.; Talbot, Mark J.; Ivanova, Aneta; Ashton, Anthony R.; Chaudhury, Abed M.; Macknight, Richard C.; Hrmova, Maria; Koltunow, Anna M.

    2015-01-01

    Evidence is presented for the role of a mitochondrial ribosomal (mitoribosomal) L18 protein in cell division, differentiation, and seed development after the characterization of a recessive mutant, heart stopper (hes). The hes mutant produced uncellularized endosperm and embryos arrested at the late globular stage. The mutant embryos differentiated partially on rescue medium with some forming callus. HES (At1g08845) encodes a mitochondrially targeted member of a highly diverged L18 ribosomal protein family. The substitution of a conserved amino residue in the hes mutant potentially perturbs mitoribosomal function via altered binding of 5S rRNA and/or influences the stability of the 50S ribosomal subunit, affecting mRNA binding and translation. Consistent with this, marker genes for mitochondrial dysfunction were up-regulated in the mutant. The slow growth of the endosperm and embryo indicates a defect in cell cycle progression, which is evidenced by the down-regulation of cell cycle genes. The down-regulation of other genes such as EMBRYO DEFECTIVE genes links the mitochondria to the regulation of many aspects of seed development. HES expression is developmentally regulated, being preferentially expressed in tissues with active cell division and differentiation, including developing embryos and the root tips. The divergence of the L18 family, the tissue type restricted expression of HES, and the failure of other L18 members to complement the hes phenotype suggest that the L18 proteins are involved in modulating development. This is likely via heterogeneous mitoribosomes containing different L18 members, which may result in differential mitochondrial functions in response to different physiological situations during development. PMID:26105995

  9. The community-level effect of light on germination timing in relation to seed mass: a source of regeneration niche differentiation.

    PubMed

    Zhang, Chunhui; Willis, Charles G; Burghardt, Liana T; Qi, Wei; Liu, Kun; Souza-Filho, Paulo Roberto de Moura; Ma, Zhen; Du, Guozhen

    2014-11-01

    Within a community, species may germinate at different times so as to mitigate competition and to take advantage of different aspects of the seasonal environment (temporal niche differentiation). We illustrated a hypothesis of the combined effects of abiotic and biotic competitive factors on germination timing and the subsequent upscale effects on community assembly. We estimated the germination timing (GT) for 476 angiosperm species of the eastern Tibetan Plateau grasslands under two light treatments in the field: high (i.e. natural) light and low light. We also measured the shift in germination timing (SGT) across treatments for all species. Furthermore, we used phylogenetic comparative methods to test if GT and SGT were associated with seed mass, an important factor in competitive interactions. We found a significant positive correlation between GT and seed mass in both light treatments. Additionally, small seeds (early germinating seeds) tended to germinate later and large seeds (late germinating seeds) tended to germinate earlier under low light vs high light conditions. Low light availability can reduce temporal niche differentiation by increasing the overlap in germination time between small and large seeds. In turn, reduced temporal niche differentiation may increase competition in the process of community assembly. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A

    PubMed Central

    2012-01-01

    Myrigalone A (MyA) is a rare flavonoid in fruit leachates of Myrica gale, a deciduous shrub adapted to flood-prone habitats. As a putative allelochemical it inhibits seed germination and seedling growth. Using Lepidium sativum as a model target species, experiments were conducted to investigate how environmental cues modulate MyA’s interference with key processes of seed germination. Time course analyses of L. sativum testa and endosperm rupture under different light conditions and water potentials were combined with quantifying testa permeability, endosperm weakening, tissue-specific gibberellin (GA) and abscisic acid (ABA) contents, as well as embryo growth and apoplastic superoxide production important for cell expansion growth. Lepidium sativum testa permeability and early water uptake by imbibition is enhanced by MyA. During late germination, MyA inhibits endosperm weakening and embryo growth, both processes required for endosperm rupture. Inhibition of embryo cell expansion by MyA depends on environmental cues, which is evident from the light-modulated severity of the MyA-mediated inhibition of apoplastic superoxide accumulation. Several important key weakening and growth processes during early and late germination are targets for MyA. These effects are modulated by light conditions and ambient water potential. It is speculated that MyA is a soil seed bank-destroying allelochemical that secures the persistence of M. gale in its flood-prone environment. PMID:22821938

  11. Jet fuel from 18 cool-season oilseed feedstocks in a semi-arid environment

    NASA Astrophysics Data System (ADS)

    Allen, Brett; Jabro, Jay

    2017-04-01

    Renewable jet fuel feedstocks can potentially offset the demand for petroleum based transportation resources, diversify cropping systems, and provide numerous ecosystem services . However, identifying suitable feedstock supplies remains a primary constraint to adoption. A 4-yr, multi-site experiment initiated in fall 2012 investigated the yield potential of six winter- and twelve spring-types of cool-season oilseed feedstocks. Sidney, MT (250 mm annual growing season precipitation) was one of eight sites in the western USA with others in Colorado, Idaho, Iowa, Minnesota, North Dakota, Oregon, and Texas. Winter types of Camelina sativa (1), Brassica napus (4), and B. rapa (1) were planted in mid-September, while spring types of Camelina sativa (1), B. napus (4), B. rapa (1), B. juncea (2), B. carinata (2), and Sinapis alba (2) were planted in early to late April. Seeding rates varied by entry and were between 4 to 11 kg/ha. All plots were under no-till management. Plots were 3 by 9 m with each treatment (oilseed entry) replicated four times. Camelina 'Joelle' was the only fall-seeded entry that survived winters with little to no snow cover on plots and where minimum air temperature reached -32°C. Stands of 'Joelle' in the spring of all years were excellent. 'Joelle' plots were typically harvested in July, while spring types were harvested 2-6 weeks later. Severe hailstorms during the late growing seasons of 2013 and 2015 resulted in up to 95% seed loss, preventing normal seed yield harvest of spring types. The B. carinata and spring camelina were the least and most susceptible to hail damage during plant maturity, respectively. 'Joelle' winter camelina was harvested before the severe weather in both years, showing the benefit of an early maturing crop in regions prone to late season hail. Overall, camelina was the only winter type that showed potential as an oilseed feedstock due to its superior winter hardiness. For spring types, B. napus, Camelina sativa, and B. carinata showed the greatest potential. Seed yield, excluding the five winter types that succumbed every year to winter kill, ranged from about 200 to 2000 kg/ha, with B. napus hybrids (1900 kg/ha), winter and spring camelina (1700 kg/ha), and B. carinata (1300 kg/ha) showing the greatest feedstock potential. Other measurements taken, but not reported included crop phenology, canopy spectral reflectance, leaf area, leaf area index, canopy temperature, soil water use, crop biomass, yield components, seed oil%, seed fatty acid composition, and drought resistance. Overall, camelina was the only winter type in addition to spring types of B. napus, B. carinata, and camelina that showed good potential for jet fuel feedstocks in the semi-arid northern Great Plains, USA.

  12. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain

    PubMed Central

    Wang, Bin; Zhang, Yinghua; Hao, Baozhen; Xu, Xuexin; Zhao, Zhigan; Wang, Zhimin; Xue, Qingwu

    2016-01-01

    Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800–850 seeds m−2. Average yields of 7.42 t ha−1 and WUE of 1.84 kg m−3 were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%–8.9% higher yield and 4.2%–9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP. PMID:27100187

  13. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction.

    PubMed

    Pires, Mathias M; Galetti, Mauro; Donatti, Camila I; Pizo, Marco A; Dirzo, Rodolfo; Guimarães, Paulo R

    2014-08-01

    The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.

  14. Stomatal innovation and the rise of seed plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2012-01-01

    Stomatal valves on the leaves of vascular plants not only prevent desiccation but also dynamically regulate water loss to maintain efficient daytime water use. This latter process involves sophisticated active control of stomatal aperture that may be absent from early-branching plant clades. To test this hypothesis, we compare the stomatal response to light intensity in 13 species of ferns and lycophytes with a diverse sample of seed plants to determine whether the capacity to optimise water use is an ancestral or derived feature of stomatal physiology. We found that in seed plants, the ratio of photosynthesis to water use remained high and constant at different light intensities, but fern and lycophyte stomata were incapable of sustaining homeostatic water use efficiency. We conclude that efficient water use in early seed plants provided them with a competitive advantage that contributed to the decline of fern and lycophyte dominated-ecosystems in the late Paleozoic. © 2011 Blackwell Publishing Ltd/CNRS.

  15. 7 CFR 905.5 - Variety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Gong, and similar late maturing oranges of the Valencia type; (b) Valencia, Lue Gim Gong, and similar... seedless grapefruit; (g) Pink seeded grapefruit; (h) Tangelos; (i) Dancy and similar tangerines, excluding...

  16. Use of Irrigation to Extend the Seeding Window for Final Reclamation at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TRW Environmental Safety

    2000-08-01

    The U.S. Department of Energy has implemented a program to investigate the feasibility of various techniques for reclaiming lands disturbed during site characterization at Yucca Mountain. As part of this program, two studies were conducted in 1997 to assess the effects of combinations of seeding date (date that seeds are planted) and supplemental irrigation on densities of native plant species at Yucca Mountain. Study objectives were to (1) determine whether the traditional seeding window (October-December) could be extended through combinations of seeding date and irrigation date, (2) determine which combination of seeding date and irrigation was most successful, and (3)more » assess the effects of irrigation versus natural precipitation on seedling establishment. In the first study, a multi-species seed mix of 16 native species was sown into plots on four dates (12/96, 2/97, 3/97, and 4/97). Irrigation treatments were control (no irrigation) or addition of 80 mm of supplemental water applied over a one month period. Plant densities were sampled in August and again in October, 1997. In the second study, Larrea tridentata and Lycium andersonii, two species that are common at Yucca Mountain, but difficult to establish from seed, were sown together into plots in January and August, 1997. Half the plots were irrigated with approximately 250 mm of water between August 18 and September 11, while the remaining plots received no irrigation (control). Plant densities were sampled in October, 1997. The August census for the multi-species mix study showed irrigated plots that were sown in February, March and April had higher plant densities and more species than plots that were not irrigated. Irrigation had no effect on plant densities on plots that were seeded in December. Plots were used again in October following 18 mm of precipitation in September. Densities of three species, Ambrosia dumosa, Hymenoclea salsola, and L. tridentata, (warm-season species) were lower on irrigated plots sown in December, February, and March, and showed no response to irrigation on plots sown in April. Therefore, early spring irrigation did not facilitate establishment of warm-season species. These results suggest that these species are dependent upon precipitation while temperatures are warm in late summer or fall. However, control plots that were seeded in December had acceptable densities of these species. A more practical approach might be to avoid irrigation costs by seeding in December and waiting for fall precipitation. The remaining species (cool-season species) showed an opposite response to supplemental water with greater densities on irrigated plots sown in February, March, and April, and no response to irrigation on plots sown in December. While these results show that irrigation can extend the seeding window for cool-season species should it be necessary, it was also apparent that if seeds are sown by late December, irrigation is not necessary to achieve acceptable plant densities.« less

  17. Co-adaptation of seed dormancy and flowering time in the arable weed Capsella bursa-pastoris (shepherd's purse)

    PubMed Central

    Toorop, Peter E.; Campos Cuerva, Rafael; Begg, Graham S.; Locardi, Bruna; Squire, Geoff R.; Iannetta, Pietro P. M.

    2012-01-01

    Background and Aims The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherd's purse. Methods Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy. Key Results Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds. Conclusions In shepherd's purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering genotypes. The weaker secondary dormancy of early-flowering genotypes confers a selective advantage in arable fields. PMID:22147546

  18. Early Cretaceous Umkomasia from Mongolia: implications for homology of corystosperm cupules.

    PubMed

    Shi, Gongle; Leslie, Andrew B; Herendeen, Patrick S; Herrera, Fabiany; Ichinnorov, Niiden; Takahashi, Masamichi; Knopf, Patrick; Crane, Peter R

    2016-06-01

    Corystosperms, a key extinct group of Late Permian to Early Cretaceous plants, are important for understanding seed plant phylogeny, including the evolution of the angiosperm carpel and anatropous bitegmic ovule. Here, we describe a new species of corystosperm seed-bearing organ, Umkomasia mongolica sp. nov., based on hundreds of three-dimensionally preserved mesofossils from the Early Cretaceous of Mongolia. Individual seed-bearing units of U. mongolica consist of a bract subtending an axis that bifurcates, with each fork (cupule stalk) bearing a cupule near the tip. Each cupule is formed by the strongly reflexed cupule stalk and two lateral flaps that partially enclose an erect seed. The seed is borne at, or close to, the tip of the reflexed cupule stalk, with the micropyle oriented towards the stalk base. The corystosperm cupule is generally interpreted as a modified leaf that bears a seed on its abaxial surface. However, U. mongolica suggests that an earlier interpretation, in which the seed is borne directly on an axis (shoot), is equally likely. The 'axial' interpretation suggests a possible relationship of corystosperms to Ginkgo. It also suggests that the cupules of corystosperms may be less distinct from those of Caytonia than has previously been supposed. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Proanthocyanidin Accumulation and Biosynthesis Are Modulated by the Irrigation Regime in Tempranillo Seeds

    PubMed Central

    Genebra, Tania; Santos, Raquen Raissa; Francisco, Rita; Pinto-Marijuan, Marta; Brossa, Ricard; Serra, Ana Teresa; Duarte, Catarina M. M.; Chaves, Maria Manuela; Zarrouk, Olfa

    2014-01-01

    The main effects of three different irrigation regimes, i.e., sustained deficit irrigation (SDI), regulated deficit irrigation (RDI) and non-irrigated (NI), on seed traits namely proanthocyanidins (PAs) were evaluated in the wine grape cultivar Aragonez (syn. Tempranillo) grown in Alentejo (Portugal) over two growing seasons. Results showed that while the number of seeds per berry was not affected by water availability, seed fresh weight differed among treatments, the NI treatment exhibiting the lowest values. The biosynthetic pathway of flavanols appeared to be modified by the irrigation treatment, and several genes responsible for PA synthesis were up-regulated in the most stressed seeds (RDI and NI). However, this effect had no impact on PA content, suggesting the influence of other factors such as oxidation and/or degradation of PAs at late stages of maturation in grape seeds. The seeds’ non-enzymatic antioxidant capacities (oxygen radical absorbance capacity (ORAC) and hydroxyl radical adverting capacity (HORAC)) were modulated by water deficit and correlated well with PA content. The impact of irrigation strategy on PA biosynthesis, content, and anti-radical activity during seed ripening is discussed in the context of increasing interest in the role of PAs in the color and taste of wine, and the potential health benefits relating to their antioxidant capacity. PMID:25000262

  20. Cryptic Genetic Variation for Arabidopsis thaliana Seed Germination Speed in a Novel Salt Stress Environment

    PubMed Central

    Yuan, Wei; Flowers, Jonathan M.; Sahraie, Dustin J.; Purugganan, Michael D.

    2016-01-01

    The expansion of species ranges frequently necessitates responses to novel environments. In plants, the ability of seeds to disperse to marginal areas relies in part to its ability to germinate under stressful conditions. Here we examine the genetic architecture of Arabidopsis thaliana germination speed under a novel, saline environment, using an Extreme QTL (X-QTL) mapping platform we previously developed. We find that early germination in normal and salt conditions both rely on a QTL on the distal arm of chromosome 4, but we also find unique QTL on chromosomes 1, 2, 4, and 5 that are specific to salt stress environments. Moreover, different QTLs are responsible for early vs. late germination, suggesting a temporal component to the expression of life history under these stress conditions. Our results indicate that cryptic genetic variation exists for responses to a novel abiotic stress, which may suggest a role of such variation in adaptation to new climactic conditions or growth environments. PMID:27543295

  1. Timely precipitation drives cover crop outcomes

    USDA-ARS?s Scientific Manuscript database

    Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...

  2. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms.

    PubMed

    Rajjou, Loïc; Belghazi, Maya; Huguet, Romain; Robin, Caroline; Moreau, Adrien; Job, Claudette; Job, Dominique

    2006-07-01

    The influence of salicylic acid (SA) on elicitation of defense mechanisms in Arabidopsis (Arabidopsis thaliana) seeds and seedlings was assessed by physiological measurements combined with global expression profiling (proteomics). Parallel experiments were carried out using the NahG transgenic plants expressing the bacterial gene encoding SA hydroxylase, which cannot accumulate the active form of this plant defense elicitor. SA markedly improved germination under salt stress. Proteomic analyses disclosed a specific accumulation of protein spots regulated by SA as inferred by silver-nitrate staining of two-dimensional gels, detection of carbonylated (oxidized) proteins, and neosynthesized proteins with [35S]-methionine. The combined results revealed several processes potentially affected by SA. This molecule enhanced the reinduction of the late maturation program during early stages of germination, thereby allowing the germinating seeds to reinforce their capacity to mount adaptive responses in environmental water stress. Other processes affected by SA concerned the quality of protein translation, the priming of seed metabolism, the synthesis of antioxidant enzymes, and the mobilization of seed storage proteins. All the observed effects are likely to improve seed vigor. Another aspect revealed by this study concerned the oxidative stress entailed by SA in germinating seeds, as inferred from a characterization of the carbonylated (oxidized) proteome. Finally, the proteomic data revealed a close interplay between abscisic signaling and SA elicitation of seed vigor.

  3. Archaeological Soybean (Glycine max) in East Asia: Does Size Matter?

    PubMed Central

    Lee, Gyoung-Ah; Crawford, Gary W.; Liu, Li; Sasaki, Yuka; Chen, Xuexiang

    2011-01-01

    The recently acquired archaeological record for soybean from Japan, China and Korea is shedding light on the context in which this important economic plant became associated with people and was domesticated. This paper examines archaeological (charred) soybean seed size variation to determine what insight can be gained from a comprehensive comparison of 949 specimens from 22 sites. Seed length alone appears to represent seed size change through time, although the length×width×thickness product has the potential to provide better size change resolution. A widespread early association of small seeded soybean is as old as 9000–8600 cal BP in northern China and 7000 cal BP in Japan. Direct AMS radiocarbon dates on charred soybean seeds indicate selection resulted in large seed sizes in Japan by 5000 cal BP (Middle Jomon) and in Korea by 3000 cal BP (Early Mumun). Soybean seeds recovered in China from the Shang through Han periods are similar in length to the large Korean and Japanese specimens, but the overall size of the large Middle and Late Jomon, Early Mumun through Three Kingdom seeds is significantly larger than any of the Chinese specimens. The archaeological record appears to disconfirm the hypothesis of a single domestication of soybean and supports the view informed by recent phyologenetic research that soybean was domesticated in several locations in East Asia. PMID:22073186

  4. De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.)

    PubMed Central

    Sinha, Somya; Raxwal, Vivek K.; Joshi, Bharat; Jagannath, Arun; Katiyar-Agarwal, Surekha; Goel, Shailendra; Kumar, Amar; Agarwal, Manu

    2015-01-01

    Low temperature is a major abiotic stress that impedes plant growth and development. Brassica juncea is an economically important oil seed crop and is sensitive to freezing stress during pod filling subsequently leading to abortion of seeds. To understand the cold stress mediated global perturbations in gene expression, whole transcriptome of B. juncea siliques that were exposed to sub-optimal temperature was sequenced. Manually self-pollinated siliques at different stages of development were subjected to either short (6 h) or long (12 h) durations of chilling stress followed by construction of RNA-seq libraries and deep sequencing using Illumina's NGS platform. De-novo assembly of B. juncea transcriptome resulted in 133,641 transcripts, whose combined length was 117 Mb and N50 value was 1428 bp. We identified 13,342 differentially regulated transcripts by pair-wise comparison of 18 transcriptome libraries. Hierarchical clustering along with Spearman correlation analysis identified that the differentially expressed genes segregated in two major clusters representing early (5–15 DAP) and late stages (20–30 DAP) of silique development. Further analysis led to the discovery of sub-clusters having similar patterns of gene expression. Two of the sub-clusters (one each from the early and late stages) comprised of genes that were inducible by both the durations of cold stress. Comparison of transcripts from these clusters led to identification of 283 transcripts that were commonly induced by cold stress, and were referred to as “core cold-inducible” transcripts. Additionally, we found that 689 and 100 transcripts were specifically up-regulated by cold stress in early and late stages, respectively. We further explored the expression patterns of gene families encoding for transcription factors (TFs), transcription regulators (TRs) and kinases, and found that cold stress induced protein kinases only during early silique development. We validated the digital gene expression profiles of selected transcripts by qPCR and found a high degree of concordance between the two analyses. To our knowledge this is the first report of transcriptome sequencing of cold-stressed B. juncea siliques. The data generated in this study would be a valuable resource for not only understanding the cold stress signaling pathway but also for introducing cold hardiness in B. juncea. PMID:26579175

  5. Phytochrome-mediated long-term memory of seeds.

    PubMed

    Hartmann, K M; Grundy, A C; Market, R

    2005-12-01

    The question is how long phytochrome, stored within the cytoplasm of plant diaspores, may stimulate their germination. This question arose from the observation that soil cultivations in darkness for weed control gave inconsistent results. Namely, after a single nighttime or daytime cultivation during spring and summer, differences in weed emergence became hardly detectable after a period of six weeks. However, after nighttime and daytime cultivations in late autumn, emergence differences persisted for up to nine months. To examine whether this differing memory effect is phytochrome-mediated, seeds of Chenopodium album and Stellaria media were sown in pots with wet peat, either in daylight or after sunset. In the latter, seeds were irradiated with far-red light for one day prior to being covered and buried. For more than two years the far-red irradiated seeds produced significantly reduced emergence, indicating that germination and emergence of weeds in the field may be supported by maternal far-red absorbing seed phytochrome B(fr) over several months or even years. This conclusion allows refining of the strategy of lightless tillage.

  6. Anatomically preserved fossil cornalean fruits from the Upper Cretaceous of Hokkaido: Eydeia hokkaidoensis gen. et sp. nov.

    PubMed

    Stockey, Ruth A; Nishida, Harufumi; Atkinson, Brian A

    2016-09-01

    The basal asterid clade Cornales radiated during the Late Cretaceous. However, our understanding of early evolutionary patterns and relationships remain obscure. New data from five permineralized fruits in calcareous concretions from the Upper Cretaceous (Coniacian-Santonian) Haborogawa Formation, Hokkaido, Japan provide anatomical details that aid our knowledge of the group. Specimens were studied from cellulose acetate peels, and three-dimensional reconstructions were rendered using AVIZO. Fruits are drupaceous, roughly pyriform, 2.9-4.3 mm in diameter, with a fleshy mesocarp, transition sclereids, and a stony endocarp of four to five locules, with the septa forming a cross or star-like pattern in transverse section, distinct germination valves, and one apically attached anatropous seed per locule. Vascular tissue occurs in zones between the mesocarp and exocarp, in two rows within the septa, and prominent seed bundles can be traced throughout the fruit sections. Seeds have a single integumentary layer of radially flattened square to rectangular cells and copious cellular endosperm. A fully formed, straight, cellular dicotyledonous embryo, with closely appressed, spathulate cotyledons, is present within each seed. The unique combination of characters shown by these fruits is found in Cornaceae, Curtisiaceae, and Davidiaceae and allows us to describe a new taxon of Cornales, Eydeia hokkaidoensis gen. et sp. nov., with many similarities to extant Davidia involucrata. These fossils underscore the phylogenetic diversification of Cornales that was underway during the Late Cretaceous and support the hypothesis that a Davidia-like fruit morphology is plesiomorphic within Cornales. © 2016 Botanical Society of America.

  7. In vivo thermoterapy: attempt to eliminate virus in potato tuber

    NASA Astrophysics Data System (ADS)

    Ayu Astarini, Ida; Margareth, Deborah; Temaja, I. Gede Rai Maya

    2018-03-01

    Potato is one of an important vegetable crop in Indonesia, including Bali. Main potato production areas in Bali are at Bedugul region, 1.200 m above sea level. Potato production in Bali continued to decrease due to diseases infection, such as early blight, late blight, black leg and virus diseases. Potato farmers in Bali usually set aside their harvest as seed potatoes, resulting in virus diseases being carried out on the next planting seasons and eventually would decrease potato production both in quantity and quality. Four types of virus were confirmed: PVY, PVX, PVS and PRLV. A number of studies have reported thermotherapy technique has been employed to eliminate potato virus in vitro. However, this technique is not readily available for farmers, since there is no established tissue culture laboratory to support. Therefore, there is an urgent need to develop a more practical method. The objective of this study was to eliminate virus on seed potatoes using thermotherapy on tuber. Seed potatoes with 1 cm sprout which were virus positive were placed on sterile charred rice paddy husk, and then put into a humidified incubator. Tubers were exposed to 37°C for four days followed by 34°C for three days alternately for two weeks and three weeks duration. Four tubers received heat exposure regime for each virus type. After thermotherapy, potato tubers were transferred to pots containing charred rice paddy husk and maintain for three weeks until new leaves emerge for virus analyses. Results show that seed tubers experienced delayed growth after thermotherapy. Control plants sprout one week after thermotherapy, while treated plants were not yet sprouting. Experiment is currently underway. It is expected that heat treatment on tuber will give a practical method for farmers to eliminate virus of seed potatoes.

  8. [Community types, phenology and propagation characteristics of Taxus mairei in north Guangdong].

    PubMed

    Liao, Wenbo; Zhang, Zhiqian; Chen, Zhiming; Tang, Changgen; Deng, Shifu

    2002-07-01

    Community types, phenology and propagation characteristics of Taxus mairei in north Guangdong were studied. The results showed that in north Guangdong province, Taxus mairei mainly distributed in the typical ever-green broad-leaf forest of lower and mid-subtropics dispersedly. Terminal bud of Taxus mairei was formed in late October and begun to grow foliages in mid-April, male flower bud was appeared in mid-May and the efflorescence was from late July to late November, female flower bud was formed in late August and the efflorescence was from late October to late January of second year, and the fruit mature period was in early October of second year. Under natural condition, the seed germination needed 2-3 years. Under experimental condition, the germination rate could be up to 82.2%. The effect of cuttage was better by taking mature annual twig and pretreatment by ABT1(100 mg.L-1) from October to November every year, and the rooting rate could be up to 95%.

  9. Seed dispersal of Diospyros virginiana in the past and the present: Evidence for a generalist evolutionary strategy.

    PubMed

    Rebein, Mimi; Davis, Charli N; Abad, Helena; Stone, Taylor; Del Sol, Jillian; Skinner, Natalie; Moran, Matthew D

    2017-06-01

    Several North American trees are hypothesized to have lost their co-evolved seed disperser during the late-Pleistocene extinction and are therefore considered anachronistic. We tested this hypothesis for the American persimmon ( Diospyros virginiana ) by studying the effects of gut passage of proposed seed dispersers on seedling survival and growth, natural fruiting characteristics, and modern animal consumption patterns. We tested gut passage effects on persimmon seeds using three native living species, the raccoon ( Procyon lotor ), Virginia opossum ( Didelphis virginiana ), and coyote ( Canis latrans ), and two Pleistocene analogs; the Asian elephant ( Elephas maximus ) and alpaca ( Vicugna pacos ). Persimmon seeds excreted by raccoons, coyotes, and elephants survived gut transit. Gut passage did not affect sprouting success, but did tend to decrease time to sprout and increase seedling quality. Under field conditions, persimmon fruits were palatable on the parent tree and on the ground for an equal duration, but most fruits were consumed on the ground. Seven vertebrate species fed upon persimmon fruits, with the white-tailed deer ( Odocoileus virginianus )-a species not capable of dispersing persimmon seeds-comprising over 90% of detections. Conversely, potential living seed dispersers were rarely detected. Our results suggest the American persimmon evolved to attract a variety of seed dispersers and thus is not anachronistic. However, human-induced changes in mammal communities could be affecting successful seed dispersal. We argue that changes in the relative abundance of mammals during the Anthropocene may be modifying seed dispersal patterns, leading to potential changes in forest community composition.

  10. Agronomic responses to late-seeded cover crops in a semiarid region

    USDA-ARS?s Scientific Manuscript database

    Intensification of cropping systems in the Great Plains beyond annual cropping practices may be limited by inadequate precipitation, short growing seasons, and highly variable climatic conditions. Inclusion of cover crops in dryland cropping systems may serve as an effective intensification strateg...

  11. Response of Late Carboniferous and Early Permian Plant Communities to Climate Change

    NASA Astrophysics Data System (ADS)

    Dimichele, William A.; Pfefferkorn, Hermann W.; Gastaldo, Robert A.

    Late Carboniferous and Early Permian strata record the transition from a cold interval in Earth history, characterized by the repeated periods of glaciation and deglaciation of the southern pole, to a warm-climate interval. Consequently, this time period is the best available analogue to the Recent in which to study patterns of vegetational response, both to glacial-interglacial oscillation and to the appearance of warm climate. Carboniferous wetland ecosystems were dominated by spore-producing plants and early gymnospermous seed plants. Global climate changes, largely drying, forced vegetational changes, resulting in a change to a seed plant-dominated world, beginning first at high latitudes during the Carboniferous, reaching the tropics near the Permo-Carboniferous boundary. For most of this time plant assemblages were very conservative in their composition. Change in the dominant vegetation was generally a rapid process, which suggests that environmental thresholds were crossed, and involved little mixing of elements from the wet and dry floras.

  12. Seeding life on the moons of the outer planets via lithopanspermia.

    PubMed

    Worth, R J; Sigurdsson, Steinn; House, Christopher H

    2013-12-01

    Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1-2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment.

  13. Many to flower, few to fruit: the reproductive biology of Hamamelis virginiana (Hamamelidaceae).

    PubMed

    Anderson, Gregory J; Hill, James D

    2002-01-01

    Hamamelis virginiana flowers from late September to late November. In 1977, we began studying the reproductive biology of this eastern North American arborescent shrub by examining floral phenology and rewards, pollen-ovule ratios, breeding system, pollination, pollinator and resource limitation, and seed dispersal. The homogamous, self-incompatible flowers emit a faint odor, bear nectar with sucrose ratios typical of bee- and fly-pollinated flowers, and produce abundant sticky pollen. Flowers were visited infrequently by insects representing six orders. Flies were the most common floral visitors, specifically members of the genus Bradysia, but small bees also carried high percentages of Hamamelis pollen. Despite high pollen/ovule ratios (11 445 grains/ovule), bees and flies are likely pollinators, as experiments indicate wind pollination is less likely. Pollen quantity and resource availability did not appear to limit reproductive output, but pollen quality did. Tests of >40 000 flowers showed natural fruit set to be <1%. The flowering time, breeding system, and clumped distribution of plants, likely due in part to limited seed dispersal, combine to yield this remarkably low fruit set. Because all other species of Hamamelis flower from late winter to early summer, it may be that H. virginiana evolved a fall flowering phenology to avoid competition for pollinators with the closely related H. vernalis.

  14. Metabolite Profiling Reveals Developmental Inequalities in Pinot Noir Berry Tissues Late in Ripening.

    PubMed

    Vondras, Amanda M; Commisso, Mauro; Guzzo, Flavia; Deluc, Laurent G

    2017-01-01

    Uneven ripening in Vitis vinifera is increasingly recognized as a phenomenon of interest, with substantial implications for fruit and wine composition and quality. This study sought to determine whether variation late in ripening (∼Modified Eichhorn-Lorenz stage 39) was associated with developmental differences that were observable as fruits within a cluster initiated ripening (véraison). Four developmentally distinct ripening classes of berries were tagged at cluster véraison, sampled at three times late in ripening, and subjected to untargeted HPLC-MS to measure variation in amino acids, sugars, organic acids, and phenolic metabolites in skin, pulp, and seed tissues separately. Variability was described using predominantly two strategies. In the first, multivariate analysis (Orthogonal Projections to Latent Structures-Discriminant Analysis, OPLS-DA) was used to determine whether fruits were still distinguishable per their developmental position at véraison and to identify which metabolites accounted for these distinctions. The same technique was used to assess changes in each tissue over time. In a second strategy and for each annotated metabolite, the variance across the ripening classes at each time point was measured to show whether intra-cluster variance (ICV) was growing, shrinking, or constant over the period observed. Indeed, berries could be segregated by OPLS-DA late in ripening based on their developmental position at véraison, though the four ripening classes were aggregated into two larger ripening groups. Further, not all tissues were dynamic over the period examined. Although pulp tissues could be segregated by time sampled, this was not true for seed and only moderately so for skin. Ripening group differences in seed and skin, rather than the time fruit was sampled, were better able to define berries. Metabolites also experienced significant reductions in ICV between single pairs of time points, but never across the entire experiment. Metabolites often exhibited a combination of ICV expansion, contraction and persistence. Finally, we observed significant differences in the abundance of some metabolites between ripening classes that suggest the berries that initiated ripening first remained developmentally ahead of the lagging fruit even late in the ripening phase. This presents a challenge to producers who would seek to harvest at uniformity or at a predefined level of variation.

  15. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance.

    PubMed

    Delahaie, Julien; Hundertmark, Michaela; Bove, Jérôme; Leprince, Olivier; Rogniaux, Hélène; Buitink, Julia

    2013-11-01

    In contrast to orthodox seeds that acquire desiccation tolerance during maturation, recalcitrant seeds are unable to survive drying. These desiccation-sensitive seeds constitute an interesting model for comparative analysis with phylogenetically close species that are desiccation tolerant. Considering the importance of LEA (late embryogenesis abundant) proteins as protective molecules both in drought and in desiccation tolerance, the heat-stable proteome was characterized in cotyledons of the legume Castanospermum australe and it was compared with that of the orthodox model legume Medicago truncatula. RNA sequencing identified transcripts of 16 homologues out of 17 LEA genes for which polypeptides are detected in M. truncatula seeds. It is shown that for 12 LEA genes, polypeptides were either absent or strongly reduced in C. australe cotyledons compared with M. truncatula seeds. Instead, osmotically responsive, non-seed-specific dehydrins accumulated to high levels in the recalcitrant cotyledons compared with orthodox seeds. Next, M. truncatula mutants of the abscisic acid insensitive3 (ABI3) gene were characterized. Mature Mtabi3 seeds were found to be desiccation sensitive when dried below a critical water content of 0.4 g H2O g DW(-1). Characterization of the LEA proteome of the Mtabi3 seeds revealed a subset of LEA proteins with severely reduced abundance that were also found to be reduced or absent in C. australe cotyledons. Transcripts of these genes were indeed shown to be ABI3 responsive. The results highlight those LEA proteins that are critical to desiccation tolerance and suggest that comparable regulatory pathways responsible for their accumulation are missing in both desiccation-sensitive genotypes, revealing new insights into the mechanistic basis of the recalcitrant trait in seeds.

  16. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance

    PubMed Central

    Hundertmark, Michaela; Buitink, Julia

    2013-01-01

    In contrast to orthodox seeds that acquire desiccation tolerance during maturation, recalcitrant seeds are unable to survive drying. These desiccation-sensitive seeds constitute an interesting model for comparative analysis with phylogenetically close species that are desiccation tolerant. Considering the importance of LEA (late embryogenesis abundant) proteins as protective molecules both in drought and in desiccation tolerance, the heat-stable proteome was characterized in cotyledons of the legume Castanospermum australe and it was compared with that of the orthodox model legume Medicago truncatula. RNA sequencing identified transcripts of 16 homologues out of 17 LEA genes for which polypeptides are detected in M. truncatula seeds. It is shown that for 12 LEA genes, polypeptides were either absent or strongly reduced in C. australe cotyledons compared with M. truncatula seeds. Instead, osmotically responsive, non-seed-specific dehydrins accumulated to high levels in the recalcitrant cotyledons compared with orthodox seeds. Next, M. truncatula mutants of the ABSCISIC ACID INSENSITIVE3 (ABI3) gene were characterized. Mature Mtabi3 seeds were found to be desiccation sensitive when dried below a critical water content of 0.4g H2O g DW–1. Characterization of the LEA proteome of the Mtabi3 seeds revealed a subset of LEA proteins with severely reduced abundance that were also found to be reduced or absent in C. australe cotyledons. Transcripts of these genes were indeed shown to be ABI3 responsive. The results highlight those LEA proteins that are critical to desiccation tolerance and suggest that comparable regulatory pathways responsible for their accumulation are missing in both desiccation-sensitive genotypes, revealing new insights into the mechanistic basis of the recalcitrant trait in seeds. PMID:24043848

  17. Late-Time Evolution of Broad-Bandwidth, Laser-Imposed Nonuniformities in Accelerated Foils

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Boehly, T. R.; Bradley, D. K.; Knauer, J. P.; Meyerhofer, D. D.; Oron, D.; Srebro, Y.; Shvarts, D.

    1998-11-01

    The late-time evolution of broad-bandwidth nonuniformities is studied in planar-foil experiments on the OMEGA laser system. Five beams with ~600-μm-diam uniform region accelerate 20-μm-thick CH foils at an average intensity of 2×10^14\\:W/cm^2 in a 3-ns square pulse. Growth of perturbations seeded by irradiation nonuniformities was observed using time-gated, pinhole photographs of ~1.2-keV x rays from a backlighter. At late times collective saturation is observed at levels similar to Haan's prediction.(S. W. Haan, Phys. Rev. A 39), 5812 (1989). The maximum of the nonuniformity spectrum moves toward longer wavelength in time as expected. Target images taken at different times show the formation of bubbles and spikes from initial elongated ``wormy'' structures. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

  18. Genome-Wide Analysis of the Complex Transcriptional Networks of Rice Developing Seeds

    PubMed Central

    Xue, Liang-Jiao; Zhang, Jing-Jing; Xue, Hong-Wei

    2012-01-01

    Background The development of rice (Oryza sativa) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement. Principal Findings Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of Arabidopsis seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant cultivar Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development. Conclusions These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed. PMID:22363552

  19. Moon tree ceremony

    NASA Image and Video Library

    2011-02-03

    Apollo 13 astronaut Fred Haise stands with Rosemary Roosa, daughter of late Apollo 14 astronaut Stuart Roosa, beside a 'moon tree' planted at the INFINITY science center on Feb. 3, 2011. The moon tree is a descendent of seeds carried into space by Stuart Roosa on the Apollo 14 mission in 1971.

  20. Successful biological control of Melaleuca quinquenervia

    USDA-ARS?s Scientific Manuscript database

    Melaleuca quinquenervia is native to north-eastern Australia, parts of New Guinea, and New Caledonia. It has been present in south Florida since the late ninteenth century (Dray et al. 2006) and dispersal was assisted by nurserymen who are believed to have deliberately spread seeds into natural area...

  1. FTIR and py-GC-MS spectra of true-fern and seed-fern sphenopterids (Sydney Coalfield, Nova Scotia, Canada, Pennsylvanian)

    USGS Publications Warehouse

    Zodrow, E.L.; Mastalerz, Maria

    2002-01-01

    Sphenopterid specimens from the Late Pennsylvanian of Sydney Coalfield, Canada, are investigated by FTIR and py-GC-MS techniques as part of an on-going research project into the biochemistry and chemotaxonomy of Pennsylvanian-age pteridophylls. Included in the investigation are samples of the true-fern species Oligocarpia brongniartii and Zeilleria delicatula that are preserved as naturally macerated cuticles (NMC), and the seed-fern Eusphenopteris neuropteroides that is also preserved as a compression/impression. FTIR spectra of NMC seed-fern E. neuropteroides, and fern sphenopterid O. brongniartii are very similar, except that the latter does not have aromatic bands in the 700-900 cm-1 out-of-plane region, py-GC-MS show more aromatic compounds for the seed fern than for the two true-fern sphenopterids. Another difference between seed-fern and true-fern sphenopterids is a lower ratio of CH2 to CH3 in chemically treated specimens (CTC) for the seed fern. These observations suggest slightly higher aromaticity for the seed ferns, perhaps related to some chemotaxonomic differences. Comparison of FTIR and py-GC-MS characteristics of sphenopterids and other plant groups shows that these two techniques have potential to identifying chemotaxonomic signals from Carboniferous pteridophylls in general, although more data are needed to confirm this. ?? 2002 Elsevier Science B.V. All rights reserved.

  2. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning.

    PubMed

    Gee, Carole T

    2013-11-01

    As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.

  3. Genetic relatedness among developing seeds and intra fruit seed abortion in Dalbergia sissoo (Fabaceae).

    PubMed

    Mohana, G S; Shaanker, R U; Ganeshaiah, K N; Dayanandan, S

    2001-07-01

    Dalbergia sissoo, a wind-dispersed tropical tree, exhibits high intrafruit seed abortion. Of the four to five ovules in the flower, generally one and occasionally two or three develop to maturity. It has been proposed that the seed abortion is a consequence of intense sibling competition for maternal resources and that this competition occurs as an inverse function of the genetic relatedness among the developing seeds. Accordingly, developing seeds compete intensely when they are genetically less related but tend to develop together when genetically more related. We tested this hypothesis by comparing the genetic similarity among the pairs of seeds developing within a pod with that among (a) random pairs from the pool of all seeds, (b) random pairs from single-seeded pods, and (c) random pairs from two-seeded pods, using both randomly amplified polymorphic DNA (RAPD) and isozymes in five trees. We found that the pairs of seeds developing within a pod are genetically more similar than any random pairs of seeds in a tree. Thus the formation of two-seeded pods appear to be associated with increased genetic relatedness among the developing seeds. We discuss the results in the context of possible fitness advantages and then discuss the possible mechanisms that promote tolerance among related seeds.

  4. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate ofmore » seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.« less

  5. Germination season and watering regime, but not seed morph, affect life history traits in a cold desert diaspore-heteromorphic annual.

    PubMed

    Lu, Juan J; Tan, Dun Y; Baskin, Jerry M; Baskin, Carol C

    2014-01-01

    Seed morph, abiotic conditions and time of germination can affect plant fitness, but few studies have tested their combined effects on plasticity of plant life history traits. Thus, we tested the hypothesis that seed morph, germination season and watering regime influence phenotypic expression of post-germination life history traits in the diaspore-heteromorphic cold desert winter annual/spring ephemeral Diptychocarpus strictus. The two seed morphs were sown in watered and non-watered plots in late summer, and plants derived from them were watered or not-watered throughout the study. Seed morph did not affect phenology, growth and morphology, survival, dry mass accumulation and allocation or silique and seed production. Seeds in watered plots germinated in autumn (AW) and spring (SW) but only in spring for non-watered plots (SNW). A high percentage of AW, SW and SNW plants survived and reproduced, but flowering date and flowering period of autumn- vs. spring-germinated plants differed. Dry mass also differed with germination season/watering regime (AW > SW > SNW). Number of siliques and seeds increased with plant size (AW > SW > SNW), whereas percent dry mass allocated to reproduction was higher in small plants: SNW > SW > AW. Thus, although seed morph did not affect the expression of life history traits, germination season and watering regime significantly affected phenology, plant size and accumulation and allocation of biomass to reproduction. Flexibility throughout the life cycle of D. strictus is an adaptation to the variation in timing and amount of rainfall in its cold desert habitat.

  6. Silicified wood from the Permian and Triassic of Antarctica: Tree rings from polar paleolatitudes

    USGS Publications Warehouse

    Ryberg, P.E.; Taylor, E.L.

    2007-01-01

    The mass extinction at the Permian-Triassic boundary produced a floral turnover in Gondwana in which Paleozoic seed ferns belonging to the Glossopteridales were replaced by corystosperm seed ferns and other seed plant groups in the Mesozoic. Secondary growth (wood production) in both plant groups provides information on plant growth in relation to environment in the form of permineralized tree rings. Techniques utilized to analyze extant wood can be used on fossil specimens to better understand the climate from both of these periods. Late Permian and early Middle Triassic tree rings from the Beardmore Glacier area indicate an environment where extensive plant growth occurred at polar latitudes (~80–85°S, Permian; ~75°S, Triassic). A rapid transition to dormancy in both the Permian and Triassic woods suggests a strong influence of the annual light/dark cycle within the Antarctic Circle on ring production. Latewood production in each ring was most likely triggered by the movement of the already low-angled sun below the horizon. The plants which produced the wood have been reconstructed as seasonally deciduous, based on structural and sedimentologic evidence. Although the Late Permian climate has been reconstructed as cold temperate and the Middle Triassic as a greenhouse, these differences are not reflected in tree ring anatomy or wood production in these plant fossils from the central Transantarctic Mountains.

  7. Fall and winter foods of northern pintails in the Sacramento Valley, California

    USGS Publications Warehouse

    Miller, Michael R.

    1987-01-01

    Food habits of northern pintails (Anas acuta) were investigated on 3 national wildlife refuges in the western portion of the Sacramento Valley, California, from August to March 1979-82. Pintails consumed 97% (aggregate % dry wt) plant food during diurnal foraging on national wildlife refuge rice, summer-irrigated, and summer-dry habitats from August through January. Invertebrate use increased to 28.9-65.6% of the diet in these habitats during February and March. Rice, swamp timothy (Heleochloa schoenoides), flatsedges (Cyperus spp.), common barnyardgrass (Echinochloa crusgalli), southern naiad (Najas guadalupensis), and smartweed (Polygonum spp.) seeds, miscellaneous vegetation, snails (Gastropoda), and midge (Diptera) and water beetle (Coleoptera) larvae were most important. These foods usually were taken proportional to or greater than availability. Rice was the most important food of pintails feeding nocturnally off the refuges in harvested rice fields from October through January (99.7%) and February and March (63%; barnyardgrass formed 31% of the diet). In August and October, some pintails consumed invertebrates or bulrush (Scirpus spp. ) seedlings in marshes soon after feeding in refuge rice (Aug) or harvested commercial rice fields (Oct), thereby increasing dietary protein. In late winter, females and males obtained similar (P > 0.05) percentages of invertebrates from refuge habitats. Important dietary seeds and invertebrates contained high protein or metabolizable energy content. Management should maintain adequate seed production in fall and mid-winter and invertebrate biomass in late winter.

  8. Germination Under Stress: A Marker For Inherent Vigor Or An Isolated Event?

    USDA-ARS?s Scientific Manuscript database

    Seedling vigor and its translation to late-season vigor are, at best, murky for most beet breeders. The initial conditions a germinating seed encounters, and its ability to overcome them, affects stored energy reserves to withstand future adverse environments and the ability of the seedling to survi...

  9. Intermediate complex morphophysiological dormancy in seeds of the cold desert sand dune geophyte Eremurus anisopterus (Xanthorrhoeaceae; Liliaceae s.l.)

    PubMed Central

    Mamut, Jannathan; Tan, Dun Yan; Baskin, Carol C.; Baskin, Jerry M.

    2014-01-01

    Background and Aims Little is known about morphological (MD) or morphophysiological (MPD) dormancy in cold desert species and in particular those in Liliaceae sensu lato, an important floristic element in the cold deserts of Central Asia with underdeveloped embyos. The primary aim of this study was to determine if seeds of the cold desert liliaceous perennial ephemeral Eremurus anisopterus has MD or MPD, and, if it is MPD, then at what level. Methods Embryo growth and germination was monitored in seeds subjected to natural and simulated natural temperature regimes and the effects of after-ripening and GA3 on dormancy break were tested. In addition, the temperature requirements for embryo growth and dormancy break were investigated. Key Results At the time of seed dispersal in summer, the embryo length:seed length (E:S) ratio was 0·73, but it increased to 0·87 before germination. Fresh seeds did not germinate during 1 month of incubation in either light or darkness over a range of temperatures. Thus, seeds have MPD, and, after >12 weeks incubation at 5/2 °C, both embryo growth and germination occurred, showing that they have a complex level of MPD. Since both after-ripening and GA3 increase the germination percentage, seeds have intermediate complex MPD. Conclusions Embryos in after-ripened seeds of E. anisopterus can grow at low temperatures in late autumn, but if the soil is dry in autumn then growth is delayed until snowmelt wets the soil in early spring. The ecological advantage of embryo growth phenology is that seeds can germinate at a time (spring) when sand moisture conditions in the desert are suitable for seedling establishment. PMID:25180288

  10. Annual variation in seedfall, postdispersal predation, and recruitment of a neotropical tree

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schupp, E.W.

    1990-04-01

    Knowledge of the dynamics of seed production and seedling recruitment of individual tree species is crucial for a complete understanding of tropical forest dynamics, yet multiyear studies on the seed and young seedling stages of tropical trees are virtually nonexistent. In a 4-yr study of the understory tree Faramea occidentalis on Barro Colorado Island, Panama, the author quantified natural levels of viable seedfall, seedling emergence, and seedling establishment, and experimentally estimated postdispersal seed predation. The levels of viable seedfall, seed predation, seedling emergence, early seedling survival, and seedling recruitment all differed significantly among years. The proportion of fallen seeds destroyedmore » by predators before germination was not related to the quantity of F. occidentalis seedfall. Within a year, however, F. occidentalis seed predation appeared to be influenced by community-wide seedfall, with high predation rates during times of low seed abundance and very low predation during the late dry season peak in seedfall by the community. Most of the annual variation in recruitment can be explained by the combination of seedfall and seed predation; in 3 of the 4 yr seedling emergence could be predicted from a knowledge of viable seedfall and the probability of a seed surviving until the peak of germination. The 4th yr, however, demonstrated that environmental conditions provide a sporadic, though important, limitation to recruitment. In comparison to many tree species, early seedling survival was relatively high, as was the ratio of seedlings recruited per seed falling. The highly successful recruitment of F. occidentalis is associated with a high population density of both saplings and adults in the study area.« less

  11. Can prescribed fire be used to control Yellow Sweetclover (Meliotus officinalis) in a cool-season mixed-grass prairie?

    USGS Publications Warehouse

    Larson, Diane L.

    2010-01-01

    This report summarizes the results of a study on the effects of early- versus late-season fire on yellow sweetclover. The study was motivated by a desire to develop realistic management methods for yellow sweetclover at Badlands National Park. Limitations imposed by an inability to apply fire treatments at the times required made it impossible to test the hypothesis that late summer fires would be effective at reducing sweetclover. Nonetheless, I summarize data on yellow sweetclover stem counts, cover of plant species, and proportion of native and exotic cover with respect to the fire treatments in this report. In addition, I present results of a germination study, in which scarified sweetclover seeds were planted at 2-week intervals. The data summarized in the report, and included in the accompanying spreadsheet, may prove useful in future studies of effects of fire on prairie vegetation in general, and yellow sweetclover in particular.

  12. Salt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella) salsugineum, a Halophytic Relative of Arabidopsis

    PubMed Central

    Kazachkova, Yana; Khan, Asif; Acuña, Tania; López-Díaz, Isabel; Carrera, Esther; Khozin-Goldberg, Inna; Fait, Aaron; Barak, Simon

    2016-01-01

    The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress. In addition, halophytes could provide a food source on marginal lands. However, despite halophytes being salt-tolerant plants, the seeds of several halophytic species will not germinate on saline soils. Yet, little is understood regarding biochemical and gene expression changes underlying salt-mediated inhibition of halophyte seed germination. We have used the halophytic Arabidopsis relative model system, Eutrema (Thellungiella) salsugineum to explore salt-mediated inhibition of germination. We show that E. salsugineum seed germination is inhibited by salt to a far greater extent than in Arabidopsis, and that this inhibition is in response to the osmotic component of salt exposure. E. salsugineum seeds remain viable even when germination is completely inhibited, and germination resumes once seeds are transferred to non-saline conditions. Moreover, removal of the seed coat from salt-treated seeds allows embryos to germinate on salt-containing medium. Mobilization of seed storage reserves is restricted in salt-treated seeds, while many germination-associated metabolic changes are arrested or progress to a lower extent. Salt-exposed seeds are further characterized by a reduced GA/ABA ratio and increased expression of the germination repressor genes, RGL2, ABI5, and DOG1. Furthermore, a salt-mediated increase in expression of a LATE EMBRYOGENESIS ABUNDANT gene and accretion of metabolites involved in osmoprotection indicates induction of processes associated with stress tolerance, and accumulation of easily mobilized carbon reserves. Overall, our results suggest that salt inhibits E. salsugineum seed germination by inducing a seed state with molecular features of dormancy while a physical constraint to radicle emergence is provided by the seed coat layers. This seed state could facilitate survival on saline soils until a rain event(s) increases soil water potential indicating favorable conditions for seed germination and establishment of salt-tolerant E. salsugineum seedlings. PMID:27536302

  13. Overexpression of Jatropha Gibberellin 2-oxidase 6 (JcGA2ox6) Induces Dwarfism and Smaller Leaves, Flowers and Fruits in Arabidopsis and Jatropha

    PubMed Central

    Hu, Ying-Xiong; Tao, Yan-Bin; Xu, Zeng-Fu

    2017-01-01

    Gibberellins (GAs) are plant hormones that play fundamental roles in plant growth and development. Gibberellin 2-oxidase (GA2ox) plays a direct role in determining the levels of bioactive GAs by catalyzing bioactive GAs or their immediate precursors to inactive forms. In this study, a GA2ox gene, designated JcGA2ox6, was isolated from Jatropha curcas. JcGA2ox6 is expressed in all tissues of adult Jatropha, with the highest expression level in male flowers and the lowest expression level in young leaves. Overexpression of JcGA2ox6 in Arabidopsis resulted in a typical dwarf phenotype, along with late flowering, smaller leaves and flowers, shorter siliques and smaller seeds. Similarly, when JcGA2ox6 was overexpressed in Jatropha, the transgenic plants exhibited a dwarf phenotype with dark-green leaves and smaller inflorescences, flowers, fruits and seeds. However, the flowering time of Jatropha was not affected by overexpression of JcGA2ox6, unlike that in the transgenic Arabidopsis. Moreover, the number of flowers per inflorescence, the weight of 10 seeds and the seed oil content were significantly decreased in transgenic Jatropha. The results indicated that overexpression of JcGA2ox6 had a great impact on the vegetative and reproductive growth of transgenic Jatropha. Furthermore, we found that the dwarf phenotype of transgenic Jatropha was caused by a decrease in endogenous bioactive GA4, which was correlated with the degree of dwarfism. PMID:29312375

  14. Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size.

    PubMed

    Wang, Li; Hu, Xiaoyan; Jiao, Chen; Li, Zhi; Fei, Zhangjun; Yan, Xiaoxiao; Liu, Chonghuai; Wang, Yuejin; Wang, Xiping

    2016-11-09

    Seedlessness in grape (Vitis vinifera) is of considerable commercial importance for both the table grape and processing industries. Studies to date of grape seed development have been made certain progress, but many key genes have yet to be identified and characterized. In this study we analyzed the seed transcriptomes of progeny derived from the V. vinifera seeded maternal parent 'Red Globe' and the seedless paternal parent 'Centennial seedless' to identify genes associated with seedlessness. A total of 6,607 differentially expressed genes (DEGs) were identified and examined from multiple perspectives, including expression patterns, Gene Ontology (GO) annotations, pathway enrichment, inferred hormone influence and epigenetic regulation. The expression data of hormone-related genes and hormone level measurement reveals the differences during seed development between seedless and seeded progeny. Based on both our results and previous studies of A. thaliana seed development, we generated network maps of grape seed-related DEGs, with particular reference to hormone balance, seed coat and endosperm development, and seed identity complexes. In summary, the major differences identified during seed development of seedless and seeded progeny were associated with hormone and epigenetic regulation, the development of the seed coat and endosperm, and the formation of seed identity complexes. Overall the data provides insights into the possible molecular mechanism controlling grape seed size, which is of great importance for both basic research and future translation applications in the grape industry.

  15. Archaeobotanical reconstructions of vegetation and report of mummified apple seeds found in the cellar of a first-century Roman villa on Elba Island.

    PubMed

    Milanesi, Claudio; Scali, Monica; Vignani, Rita; Cambi, Franco; Dugerdil, Lucas; Faleri, Claudia; Cresti, Mauro

    In the late Roman Republic period (2nd-1st century BC), in the area of San Giovanni on Elba Island, previously subject to intense extraction of iron ore, a rustic villa was established by Marco Valerio Messalla, a supreme Roman magistrate. The foundations of the walls were discovered and excavated by an archaeological mission. Palaeobotanical analysis of a set of stratigraphic layers was performed. Palynological slides showed remains of palynomorphic and non-pollen objects, while data combined with anthracological investigations confirmed the hypothesis that in the 1st century AD the villa was destroyed by a fire that created a compact crust under which were discovered four broken Roman amphorae containing about five hundred apple seeds. Comparisons of archaeological and fresh seeds from reference collections showed discontinuous morphology except for one group of archaeological samples. DNA was isolated from seeds that had well-preserved embryos in all groups. DNA extracts from archaeological, wild and modern domestic seeds (controls) were amplified by PCR and tested with SSR molecular markers, followed by genome analysis. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Genetic consequences of seed dispersal to sleeping trees by white-bellied spider monkeys

    NASA Astrophysics Data System (ADS)

    Karubian, Jordan; Ottewell, Kym; Link, Andres; Di Fiore, Anthony

    2015-10-01

    Frugivorous animals frequently generate clumped distributions of seeds away from source trees via 'destination-based' dispersal processes. For example, use of traditional sleeping trees by white-bellied spider monkeys Ateles belzebuth generates high densities of seeds of a preferred food source, the palm Oenocarpus bataua, at these sites. Little is known about the maternal seed source diversity and population genetic metrics of seed pools encountered at these sites. Given the repeated use of sleeping trees over time, and the fluid social organization and wide ranging movements exhibited by spider monkeys, we predicted that O. bataua seed pools beneath sleeping trees would be characterized by relatively high values of maternal seed source diversity and standard metrics of genetic diversity. Contrary to these expectations, we found relatively low average maternal seed source diversity beneath each of 6 sleeping trees we studied (weighted mean α = 3.74), but considerable variation in diversity of maternal seed sources between sleeping trees (range = 1.75-10.1) and high heterogeneity in standard genetic diversity measures between sleeping trees. There was no evidence for overlap in maternal seed sources between sleeping tree sites (δ = 1.0), resulting in significant genetic differentiation (Fst = 0.055-0.319) between these sites. Observed variation between sleeping trees could not be explained by the number of individual spider monkeys whose core home ranges included a given tree, nor by distance to a central mineral lick, a focal point of spider monkey activity. These findings suggest that spider monkey seed dispersal to sleeping trees is spatially restricted, perhaps because the animals visit sleeping trees at the end of the day and therefore only disperse O. bataua fruits that they ingest late in the day. These results add to our growing appreciation of the ways frugivore behavior mechanistically shapes seed dispersal outcomes.

  17. [Study on procedure of seed quality testing and seed grading scale of Phellodendron amurense].

    PubMed

    Liu, Yanlu; Zhang, Zhao; Dai, Lingchao; Zhang, Bengang; Zhang, Xiaoling; Wang, Han

    2011-12-01

    To study the procedure of seed quality testing and seed grading scale of Phellodendron amurense. Seed quality testing methods were developed, which included the test of sampling, seed purity, weight per 1 000 seeds, seed moisture, seed viability and germination rate. The related data from 62 cases of seed specimens of P. amurense were analyzed by cluster analysis. The seed quality test procedure was developed, and the seed quality grading scale was formulated.

  18. Impact of Lygus spp. (Hemiptera: Miridae) on damage, yield and quality of lesquerella (Physaria fendleri), a potential new oil-seed crop.

    PubMed

    Naranjo, Steven E; Ellsworth, Peter C; Dierig, David A

    2011-10-01

    Lesquerella, Physaria fendleri (A. Gray) S. Watson, is a mustard native to the western United States and is currently being developed as a commercial source of valuable hydroxy fatty acids that can be used in a number of industrial applications, including biolubricants, biofuel additives, motor oils, resins, waxes, nylons, plastics, corrosion inhibitors, cosmetics, and coatings. The plant is cultivated as a winter-spring annual and in the desert southwest it harbors large populations of arthropods, several of which could be significant pests once production expands. Lygus spp. (Hemiptera: Miridae) are common in lesquerella and are known pests of a number of agronomic and horticultural crops where they feed primarily on reproductive tissues. A 4-yr replicated plot study was undertaken to evaluate the probable impact of Lygus spp. on production of this potential new crop. Plant damage and subsequent seed yield and quality were examined relative to variable and representative densities of Lygus spp. (0.3-4.9 insects per sweep net) resulting from variable frequency and timing of insecticide applications. Increasing damage to various fruiting structures (flowers [0.9-13.9%], buds [1.2-7.1%], and seed pods [19.4-42.5%]) was significantly associated with increasing pest abundance, particularly the abundance of nymphs, in all years. This damage, however, did not consistently translate into reductions in seed yield (481-1,336 kg/ha), individual seed weight (0.5-0.7 g per 1,000 seed), or seed oil content (21.8-30.4%), and pest abundance generally explained relatively little of the variation in crop yield and quality. Negative effects on yield were not sensitive to the timing of pest damage (early versus late season) but were more pronounced during years when potential yields were lower due to weed competition and other agronomic factors. Results suggest that if the crop is established and managed in a more optimal fashion, Lygus spp. may not significantly limit yield. Nonetheless, additional work will be needed once more uniform cultivars become available and yield effects can be more precisely measured. Densities of Lygus spp. in unsprayed lesquerella are on par with those in other known agroecosystem level sources of this pest (e.g., forage and seed alfalfa, Medicago sativa L.). Thus, lesquerella production may introduce new challenges to pest management in crops such as cotton.

  19. Field observations of climbing behavior and seed predation by adult ground beetles (Coleoptera: Carabidae) in a lowland area of the temperate zone.

    PubMed

    Sasakawa, Kôji

    2010-10-01

    Granivory is a specialized food habit in the predominantly carnivorous beetle family Carabidae. Most studies of carabid granivory have been conducted under laboratory conditions; thus, our knowledge of the feeding ecology of granivorous carabids in the field is insufficient. I conducted field observations of climbing behavior and seed predation by adult carabids in a lowland area of eastern Japan, from early October to late November in 2008. This is the first systematic field observation of the feeding ecology of granivorous carabids in the temperate zone. In total, 176 carabid individuals of 11 species were observed, with 108 individuals feeding on plant seeds/flowers. Each carabid species was primarily observed feeding on a particular plant species. Frequently observed combinations were: Amara gigantea Motschulsky on Humulus scandens (Loureiro) Merrill (Moraceae) seed, Amara lucens Baliani on Artemisia indica Willdenow (Asteraceae) flower, and Amara macronota (Solsky) and Harpalus (Pseudoophonus) spp. on Digitaria ciliaris (Retzius) Koeler (Poaceae) seed. In all but one species, the sex ratio of individuals observed feeding was female-biased. In Am. gigantea and Am. macronota, a larger proportion of females than males ate seeds. In the three Amara species, copulations on plants, with the female feeding on its seeds/flowers, were often observed. These observations may indicate that, whereas females climb onto plants to feed on seeds, males climb to seek females for copulation rather than forage. Because granivorous carabids play important roles as weed-control agents in temperate agro-ecosystems, the present results would provide valuable basic information for future studies on this subject.

  20. Re-establishment of hummock topography promotes tree regeneration on highly disturbed moderate-rich fens.

    PubMed

    Lieffers, Victor J; Caners, Richard T; Ge, Hangfei

    2017-07-15

    Winter exploration of oil sands deposits underlying wooded fens mostly eliminates the hummock-hollow topography on drilling pads and the ice roads leading to them, after their abandonment in spring. Recovery of black spruce (Picea mariana (P. Mill.) B.S.P.) and tamarack (Larix laricina (Du Roi) K. Koch) on these disturbed peatlands is thought to depend on the recovery of hummock topography. In late winter, numerous large blocks of frozen peat (1.5 × 1.5 m) were lifted out of the flattened drilling pads and positioned beside their excavated hollows; this was done on six temporary pads. Four years later, the condition of the mounds and the regeneration of conifers from natural seed dispersal were assessed on these elevated mounds compared to adjacent flattened areas of the pads. Then, conifer seedling density was more than five times higher on elevated spots than the mostly flat, flood-prone areas between them, and seedling density was positively related to mound height and strength of seed source. Higher mounds tended to have larger seedlings. Mounds on some of the pads were heavily eroded down; these pads had peat with higher humification, and operationally these pads were also treated in late winter when peat was thawing and fractured into pieces during mound construction. Developing a large volume of elevated substrate that persists until natural hummock-forming mosses can establish is thought necessary for tree recruitment and the recovery of the habitat for the threatened woodland caribou of this region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Timing aminopyralid to prevent Medusahead (Taeniatherum caput-medusae (L.) Nevski) seed production controls the invader and increases forage grasses

    USDA-ARS?s Scientific Manuscript database

    Exotic annual grasses dominate millions of hectares of grasslands in the western U.S. Among other herbicides, growth regulators such as picloram and aminopyralid have been tested against these invaders. Recent studies demonstrate growth regulators applied at late growth stages drastically reduce s...

  2. Consumption of endophyte-infected fescue seed during the dry period does not decrease milk production in the following lactation

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and may reduce milk production of cows consuming endophyte-infected grasses. We investigated the effects of consuming endophyte-infected fescue during late lactation and the dry period on mammary growth, differentiation ...

  3. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning1

    PubMed Central

    Gee, Carole T.

    2013-01-01

    • Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495

  4. Introducing cultivated trees into the wild: Wood pigeons as dispersers of domestic olive seeds

    NASA Astrophysics Data System (ADS)

    Perea, Ramón; Gutiérrez-Galán, Alejandro

    2016-02-01

    Animals may disperse cultivated trees outside the agricultural land, favoring the naturalization or, even, the invasiveness of domestic plants. However, the ecological and conservation implications of new or unexplored mutualisms between cultivated trees and wild animals are still far from clear. Here, we examine the possible role of an expanding and, locally, overabundant pigeon species (Columba palumbus) as an effective disperser of domestic olive trees (Olea europaea), a widespread cultivated tree, considered a naturalized and invasive species in many areas of the world. By analyzing crop and gizzard content we found that olive fruits were an important food item for pigeons in late winter and spring. A proportion of 40.3% pigeons consumed olive seeds, with an average consumption of 7.8 seeds per pigeon and day. Additionally, most seed sizes (up to 0.7 g) passed undamaged through the gut and were dispersed from cultivated olive orchards to areas covered by protected Mediterranean vegetation, recording minimal dispersal distances of 1.8-7.4 km. Greenhouse experiments showed that seeds dispersed by pigeons significantly favored the germination and establishment in comparison to non-ingested seeds. The ability of pigeons to effectively disperse domestic olive seeds may facilitate the introduction of cultivated olive trees into natural systems, including highly-protected wild olive woodlands. We recommend harvesting ornamental olive trees to reduce both pigeon overpopulation and the spread of artificially selected trees into the natural environment.

  5. Seeding Life on the Moons of the Outer Planets via Lithopanspermia

    PubMed Central

    Sigurdsson, Steinn; House, Christopher H.

    2013-01-01

    Abstract Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1–2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment. Key Words: Panspermia—Impact—Meteorites—Titan—Europa. Astrobiology 13, 1155–1165. PMID:24341459

  6. Fertilization-independent seed development in Arabidopsis thaliana

    PubMed Central

    Chaudhury, Abdul M.; Ming, Luo; Miller, Celia; Craig, Stuart; Dennis, Elizabeth S.; Peacock, W. James

    1997-01-01

    We report mutants in Arabidopsis thaliana (fertilization-independent seed: fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers remain free of pollen. The three fis mutations map to loci on three different chromosomes. In fis1 and fis2 seeds, the autonomous endosperm nuclei are diploid and the endosperm develops to the point of cellularization; the partially developed seeds then atrophy. In these two mutants, proembryos are formed in a low proportion of seeds and do not develop beyond the globular stage. When FIS/fis plants are pollinated by pollen from FIS/FIS plants, ≈50% of the resulting seeds contain fully developed embryos; these seeds germinate and form viable seedlings (FIS/FIS). The other 50% of seeds shrivel and do not germinate; they contain embryos arrested at the torpedo stage (FIS/fis). In normal sexual reproduction, the products of the FIS genes are likely to play important regulatory roles in the development of seed after fertilization. PMID:9108133

  7. Fertilization-independent seed development in Arabidopsis thaliana.

    PubMed

    Chaudhury, A M; Ming, L; Miller, C; Craig, S; Dennis, E S; Peacock, W J

    1997-04-15

    We report mutants in Arabidopsis thaliana (fertilization-independent seed:fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers remain free of pollen. The three fis mutations map to loci on three different chromosomes. In fis1 and fis2 seeds, the autonomous endosperm nuclei are diploid and the endosperm develops to the point of cellularization; the partially developed seeds then atrophy. In these two mutants, proembryos are formed in a low proportion of seeds and do not develop beyond the globular stage. When FIS/fis plants are pollinated by pollen from FIS/FIS plants, approximately 50% of the resulting seeds contain fully developed embryos; these seeds germinate and form viable seedlings (FIS/FIS). The other 50% of seeds shrivel and do not germinate; they contain embryos arrested at the torpedo stage (FIS/fis). In normal sexual reproduction, the products of the FIS genes are likely to play important regulatory roles in the development of seed after fertilization.

  8. Seed dormancy and germination in Jeffersonia dubia (Berberidaceae) as affected by temperature and gibberellic acid.

    PubMed

    Rhie, Y H; Lee, S Y; Kim, K S

    2015-03-01

    The genus Jeffersonia, which contains only two species, has a trans-Atlantic disjunct distribution. The aims of this study were to determine the requirements for breaking dormancy and germination of J. dubia seeds and to compare its dormancy characteristics with those of the congener in eastern North America. Ripe seeds of J. dubia contain an underdeveloped embryo and were permeable to water. In nature, seeds were dispersed in May, while embryos began to grow in September, and were fully elongated by late November. Germination started in March of the next year, and seeds emerged as seedlings soon after germination. In laboratory experiments, incubation at high temperatures (25 °C, 25/15 °C) for at least 8 weeks was required to initiate embryo growth, while a transfer to moderate temperatures (20/10 °C, 15/6 °C) was needed for the completion of embryo growth. At least 8 weeks at 5 °C was effective in overcoming physiological dormancy and for germination in seeds after the embryos had fully elongated. Thus, both high and low temperatures were essential to break dormancy. Gibberellic acid (GA3 ) treatment could substitute for the high temperature requirement, but not for the low temperature requirement. Based on the dormancy-breaking requirements, it is confirmed that the seeds have deep simple morphophysiological dormancy. This dormancy type is similar to that of seeds of the eastern North American species J. diphylla. Although seeds require 10-11 months from seed dispersal to germination in nature, under controlled conditions they required only 3 months after treatment with 1000 mg·l(-1) GA3 , followed by incubation at 15/6 °C. This represents practical knowledge for propagation of these plants from seed. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Seed-bank structure and plant-recruitment conditions regulate the dynamics of a grassland-shrubland Chihuahuan ecotone.

    PubMed

    Moreno-de Las Heras, Mariano; Turnbull, Laura; Wainwright, John

    2016-09-01

    Large areas of desert grasslands in the southwestern United States have shifted to sparse shrublands dominated by drought-tolerant woody species over the last 150 yr, accompanied by accelerated soil erosion. An important step toward the understanding of patterns in species dominance and vegetation change at desert grassland-shrubland transitions is the study of environmental limitations imposed by the shrub-encroachment phenomenon on plant establishment. Here, we analyze the structure of soil seed banks, environmental limitations for seed germination (i.e., soil-water availability and temperature), and simulated seedling emergence and early establishment of dominant species (black grama, Bouteloua eriopoda, and creosotebush, Larrea tridentata) across a Chihuahuan grassland-shrubland ecotone (Sevilleta National Wildlife Refuge, New Mexico, USA). Average viable seed density in soils across the ecotone is generally low (200-400 seeds/m 2 ), although is largely concentrated in densely vegetated areas (with peaks up to 800-1,200 seeds/m 2 in vegetated patches). Species composition in the seed bank is strongly affected by shrub encroachment, with seed densities of grass species sharply decreasing in shrub-dominated sites. Environmental conditions for seed germination and seedling emergence are synchronized with the summer monsoon. Soil-moisture conditions for seedling establishment of B. eriopoda take place with a recurrence interval ranging between 5 and 8 yr for grassland and shrubland sites, respectively, and are favored by strong monsoonal precipitation. Limited L. tridentata seed dispersal and a narrow range of rainfall conditions for early seedling establishment (50-100 mm for five to six consecutive weeks) constrain shrub-recruitment pulses to localized and episodic decadal events (9-25 yr recurrence intervals) generally associated with late-summer rainfall. Re-establishment of B. eriopoda in areas now dominated by L. tridentata is strongly limited by the lack of seeds and decreased plant-available soil moisture for seedling establishment. © 2016 by the Ecological Society of America.

  10. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA.

    PubMed

    Bellaloui, Nacer; Bruns, H Arnold; Abbas, Hamed K; Mengistu, Alemu; Fisher, Daniel K; Reddy, Krishna N

    2015-01-01

    Information on the effects of management practices on soybean seed composition is scarce. Therefore, the objective of this research was to investigate the effects of planting date (PD) and seeding rate (SR) on seed composition (protein, oil, fatty acids, and sugars) and seed minerals (B, P, and Fe) in soybean grown in two row-types (RTs) on the Mississippi Delta region of the Midsouth USA. Two field experiments were conducted in 2009 and 2010 on Sharkey clay and Beulah fine sandy loam soil at Stoneville, MS, USA, under irrigated conditions. Soybean were grown in 102 cm single-rows and 25 cm twin-rows in 102 cm centers at SRs of 20, 30, 40, and 50 seeds m(-2). The results showed that in May and June planting, protein, glucose, P, and B concentrations increased with increased SR, but at the highest SRs (40 and 50 seeds m(-2)), the concentrations remained constant or declined. Palmitic, stearic, and linoleic acid concentrations were the least responsive to SR increases. Early planting resulted in higher oil, oleic acid, sucrose, B, and P on both single and twin-rows. Late planting resulted in higher protein and linolenic acid, but lower oleic acid and oil concentrations. The changes in seed constituents could be due to changes in environmental factors (drought and temperature), and nutrient accumulation in seeds and leaves. The increase of stachyose sugar in 2010 may be due to a drier year and high temperature in 2010 compared to 2009; suggesting the possible role of stachyose as an environmental stress compound. Our research demonstrated that PD, SR, and RT altered some seed constituents, but the level of alteration in each year dependent on environmental factors such as drought and temperature. This information benefits growers and breeders for considering agronomic practices to select for soybean seed nutritional qualities under drought and high heat conditions.

  11. Further study of Late Devonian seed plant Cosmosperma polyloba: its reconstruction and evolutionary significance.

    PubMed

    Liu, Le; Wang, Deming; Meng, Meicen; Xue, Jinzhuang

    2017-06-26

    The earliest seed plants in the Late Devonian (Famennian) are abundant and well known. However, most of them lack information regarding the frond system and reconstruction. Cosmosperma polyloba represents the first Devonian ovule in China and East Asia, and its cupules, isolated synangiate pollen organs and pinnules have been studied in the preceding years. New fossils of Cosmosperma were obtained from the type locality, i.e. the Leigutai Member of the Wutong Formation in Fanwan Village, Changxing County, Zhejiang Province, South China. The collection illustrates stems and fronds extensively covered in prickles, as well as fertile portions including uniovulate cupules and anisotomous branches bearing synangiate pollen organs. The stems are unbranched and bear fronds helically. Fronds are dimorphic, displaying bifurcate and trifurcate types, with the latter possibly connected to fertile rachises terminated by pollen organs. Tertiary and quaternary rachises possessing pinnules are arranged alternately (pinnately). The cupule is uniovulate and the ovule has four linear integumentary lobes fused in basal 1/3. The striations on the stems and rachises may indicate a Sparganum-type cortex. Cosmosperma further demonstrates diversification of frond branching patterns in the earliest seed plants. The less-fused cupule and integument of this plant are considered primitive among Devonian spermatophytes with uniovulate cupules. We tentatively reconstructed Cosmosperma with an upright, semi-self-supporting habit, and the prickles along stems and frond rachises were interpreted as characteristics facilitating supporting rather than defensive structures.

  12. Antisense expression of the peptide transport gene AtPTR2-B delays flowering and arrests seed development in transgenic Arabidopsis plants.

    PubMed Central

    Song, W; Koh, S; Czako, M; Marton, L; Drenkard, E; Becker, J M; Stacey, G

    1997-01-01

    Previously, we identified a peptide transport gene, AtPTR2-B, from Arabidopsis thaliana that was constitutively expressed in all plant organs, suggesting an important physiological role in plant growth and development. To evaluate the function of this transporter, transgenic Arabidopsis plants were constructed expressing antisense or sense AtPTR2-B. Genomic Southern analysis indicated that four independent antisense and three independent sense AtPTR2-B transgenic lines were obtained, which was confirmed by analysis of the segregation of the kanamycin resistance gene carried on the T-DNA. RNA blot data showed that the endogenous AtPTR2-B mRNA levels were significantly reduced in transgenic leaves and flowers, but not in transgenic roots. Consistent with this reduction in endogenous AtPTR2-B mRNA levels, all four antisense lines and one sense line exhibited significant phenotypic changes, including late flowering and arrested seed development. These phenotypic changes could be explained by a defect in nitrogen nutrition due to the reduced peptide transport activity conferred by AtPTR2-B. These results suggest that AtPTR2-B may play a general role in plant nutrition. The AtPTR2-B gene was mapped to chromosome 2, which is closely linked to the restriction fragment length polymorphism marker m246. PMID:9232875

  13. Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage.

    PubMed

    Hu, Yuan-Yuan; Zhang, Ya-Li; Luo, Hong-Hai; Li, Wei; Oguchi, Riichi; Fan, Da-Yong; Chow, Wah Soon; Zhang, Wang-Feng

    2012-02-01

    Non-foliar green organs are recognized as important carbon sources after leaves. However, the contribution of each organ to total yield has not been comprehensively studied in relation to the time-course of changes in surface area and photosynthetic activity of different organs at different growth stages. We studied the contribution of leaves, main stem, bracts and capsule wall in cotton by measuring their time-course of surface area development, O(2) evolution capacity and photosynthetic enzyme activity. Because of the early senescence of leaves, non-foliar organs increased their surface area up to 38.2% of total at late growth stage. Bracts and capsule wall showed less ontogenetic decrease in O(2) evolution capacity per area and photosynthetic enzyme activity than leaves at the late growth stage. The total capacity for O(2) evolution of stalks and bolls (bracts plus capsule wall) was 12.7 and 23.7% (total ca. 36.4%), respectively, as estimated by multiplying their surface area by their O(2) evolution capacity per area. We also kept the bolls (from 15 days after anthesis) or main stem (at the early full bolling stage) in darkness for comparison with non-darkened controls. Darkening the bolls and main stem reduced the boll weight by 24.1 and 9%, respectively, and the seed weight by 35.9 and 16.3%, respectively. We conclude that non-foliar organs significantly contribute to the yield at the late growth stage.

  14. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia.

    PubMed

    Frey, Anne; Godin, Béatrice; Bonnet, Magda; Sotta, Bruno; Marion-Poll, Annie

    2004-04-01

    The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.

  15. Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants.

    PubMed Central

    Savard, L; Li, P; Strauss, S H; Chase, M W; Michaud, M; Bousquet, J

    1994-01-01

    We have estimated the time for the last common ancestor of extant seed plants by using molecular clocks constructed from the sequences of the chloroplastic gene coding for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and the nuclear gene coding for the small subunit of rRNA (Rrn18). Phylogenetic analyses of nucleotide sequences indicated that the earliest divergence of extant seed plants is likely represented by a split between conifer-cycad and angiosperm lineages. Relative-rate tests were used to assess homogeneity of substitution rates among lineages, and annual angiosperms were found to evolve at a faster rate than other taxa for rbcL and, thus, these sequences were excluded from construction of molecular clocks. Five distinct molecular clocks were calibrated using substitution rates for the two genes and four divergence times based on fossil and published molecular clock estimates. The five estimated times for the last common ancestor of extant seed plants were in agreement with one another, with an average of 285 million years and a range of 275-290 million years. This implies a substantially more recent ancestor of all extant seed plants than suggested by some theories of plant evolution. PMID:8197201

  16. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance.

    PubMed

    Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing

    2007-02-01

    Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress.

  17. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence.

    PubMed

    Balazadeh, Salma; Siddiqui, Hamad; Allu, Annapurna D; Matallana-Ramirez, Lilian P; Caldana, Camila; Mehrnia, Mohammad; Zanor, Maria-Inés; Köhler, Barbara; Mueller-Roeber, Bernd

    2010-04-01

    The onset and progression of senescence are under genetic and environmental control. The Arabidopsis thaliana NAC transcription factor ANAC092 (also called AtNAC2 and ORE1) has recently been shown to control age-dependent senescence, but its mode of action has not been analysed yet. To explore the regulatory network administered by ANAC092 we performed microarray-based expression profiling using estradiol-inducible ANAC092 overexpression lines. Approximately 46% of the 170 genes up-regulated upon ANAC092 induction are known senescence-associated genes, suggesting that the NAC factor exerts its role in senescence through a regulatory network that includes many of the genes previously reported to be senescence regulated. We selected 39 candidate genes and confirmed their time-dependent response to enhanced ANAC092 expression by quantitative RT-PCR. We also found that the majority of them (24 genes) are up-regulated by salt stress, a major promoter of plant senescence, in a manner similar to that of ANAC092, which itself is salt responsive. Furthermore, 24 genes like ANAC092 turned out to be stage-dependently expressed during seed growth with low expression at early and elevated expression at late stages of seed development. Disruption of ANAC092 increased the rate of seed germination under saline conditions, whereas the opposite occurred in respective overexpression plants. We also detected a delay of salinity-induced chlorophyll loss in detached anac092-1 mutant leaves. Promoter-reporter (GUS) studies revealed transcriptional control of ANAC092 expression during leaf and flower ageing and in response to salt stress. We conclude that ANAC092 exerts its functions during senescence and seed germination through partly overlapping target gene sets.

  18. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation.

    PubMed

    Bennett, John O; Yu, Oliver; Heatherly, Larry G; Krishnan, Hari B

    2004-12-15

    To circumvent drought conditions persisting during seed fill in the mid-south U.S. soybean production region, researchers have developed the early soybean (Glycine max [L.] Merr.) production system (ESPS), which entails early planting of short-season varieties. Because soybean supplies a preponderance of the world's protein and oil and consumption of soy-based foods has been associated with multiple health benefits, the effects of this agronomic practice on seed quality traits such as protein, oil, and isoflavones should be investigated. Four cultivars of soybean, two from maturity group IV and two from maturity group V, were planted in April (ESPS) and May (traditional) in a two-year study at Stoneville, MS. Near-infrared analysis of soybean seed was utilized to determine the percentages of protein and oil. Dependent upon variety, the oil content of the early-planted crop was increased by 3-8%, whereas protein was not significantly changed. Visualization of protein extracts fractionated by sodium dodecyl sulfate-polyacrylamide electrophoresis and fluorescence two-dimensional difference gel electrophoresis revealed that early planting did not affect the relative accumulation of the major seed-storage proteins; thus, protein composition was equal to that of traditionally cultivated soybeans. Maturity group IV cultivars contained a higher percentage of oil and a lower percentage of protein than did the maturity group V cultivars, regardless of planting date. Gas chromatographic separation of fatty acids revealed that the percentages of saturated and unsaturated fatty acids were not significantly altered by planting date. Methanol extracts of seed harvested from different planting dates when analyzed by high-performance liquid chromatography showed striking differences in isoflavone content. Dependent upon the variety, total isoflavone content was increased as much as 1.3-fold in early-planted soybeans. Irrigation enhanced the isoflavone content of both early- and late-planted soybeans as much as 2.5-fold. Accumulation of individual isoflavones, daidzein and genistein, was also elevated by irrigation. Because this cultural practice improves the quality traits of seeds, ESPS provides an opportunity for enhancing the quality of soybean.

  19. Effects of prepartum supplementation of linoleic and mid-oleic sunflower seed on cow performance, cow reproduction, and calf performance from birth through slaughter, and effects on intake and digestion in steers.

    PubMed

    Banta, J P; Lalman, D L; Owens, F N; Krehbiel, C R; Wettemann, R P

    2011-11-01

    Two experiments were conducted to determine the effects of sunflower seed supplements with varying fatty acid profiles on performance, reproduction, intake, and digestion in beef cattle. In Exp. 1, 127 multiparous spring-calving beef cows with free-choice access to bermudagrass hay were individually fed 1 of 3 supplements for an average of 83 d during mid to late gestation. Supplements (DM basis) included 1) 1.23 kg/d of a soybean hull-based supplement (control treatment); 2) 0.68 kg/d of linoleic sunflower seed plus 0.23 kg/d of the control supplement (linoleic treatment); and 3) 0.64 kg/d of mid-oleic sunflower seed plus 0.23 kg/d of the control supplement (oleic treatment). During the first 62 d of supplementation, the BW change was 11, 3, and -3 kg for cows fed the control, linoleic, and oleic supplements, respectively (P < 0.001). No difference in BW change was observed during the subsequent period (-65 kg, P = 0.83) or during the entire 303-d experiment (-31 kg, P = 0.49). During the first 62 d of supplementation, cows fed sunflower supplements tended (P = 0.08) to lose more body condition than cows fed the control diet, but BCS was not different (P > 0.22) for any subsequent measurement. At the beginning of the breeding season, the percentage of cows exhibiting luteal activity was greater for cows fed the control diet (43%; P = 0.02) than for cows fed either linoleic (20%) or oleic (16%) supplementation; however, first-service conception rate (67%; P = 0.22) and pregnancy rate at weaning (92%; P = 0.18) were not different among supplements. No differences were detected in calf birth (P = 0.46) or weaning BW (P = 0.74). In Exp. 2, 8 ruminally cannulated steers were used to determine the effects of sunflower seed supplementation on forage intake and digestion. Treatments (DM basis) included 1) no supplement; 2) a soybean hull-based supplement fed at 0.29% of BW/d; 3) whole linoleic sunflower seed fed at 0.16% of BW/d; and 4) whole high-oleic sunflower seed fed at 0.16% of BW/d. Hay intake was not influenced (P = 0.25) by supplement (1.51% of BW/d); however, DMI was greatest (P < 0.01) for steers fed the soybean hull-based supplement (1.93% of BW/d). Sunflower seed supplementation reduced (P < 0.01) NDF and ADF digestibility while increasing (P < 0.01) apparent CP and apparent lipid digestibility. In conclusion, whole sunflower seed supplementation resulted in reduced cow BW gain during mid to late gestation, but this reduction did not influence subsequent cow BW change, pregnancy rate, or calf performance.

  20. Maturation of Acorns of Cherrybark, Water, and Willow Oaks

    Treesearch

    F. T. Bonner

    1974-01-01

    Acorns of cherrybark, water, and willow oaks grew slowly but steadily in July and August and reached maximum size in September, when fats and carbohydrates, the major storage foods, accumulated rapidly. At physiological maturity in late October or early November, crude fat levels were 15 to 20 percent of seed dry weight and carbohydrates totaled 25 percent.

  1. Seeds of Innovation: Three Years of the Technology Innovation Challenge Grant Program.

    ERIC Educational Resources Information Center

    Harris, Larry A.

    This publication describes the 62 projects that received 5-year Technology Innovation Challenge Grants beginning in 1995, 1996, and 1997, with reviews of the projects occurring in late 1999 and early 2000. Part 1 of the report describes the Technology Innovation Challenge Grant (TICG) program and its importance. Part 2 contains the project…

  2. Fusarium species-a British Columbia perspective in forest seedling production

    Treesearch

    Michael Peterson

    2008-01-01

    This review provides a brief biological outline of some species in the genus Fusarium and how these can be implicated as seedborne organisms leading to conifer seed and seedling losses in British Columbia. Fusarium spp. are implicated with pre- and post-emergence damping-off, seedling wilt, late damping-off, root rot, and seedling mortality after outplanting. Current...

  3. Reproductive Strategies in Mediterranean Legumes: Trade-Offs between Phenology, Seed Size and Vigor within and between Wild and Domesticated Lupinus Species Collected along Aridity Gradients

    PubMed Central

    Berger, Jens D.; Shrestha, Damber; Ludwig, Christiane

    2017-01-01

    To investigate wild and domesticated Mediterranean annual reproductive strategies, common garden comparisons of Old World lupins collected along aridity gradients were initiated. These are excellent candidates for ecophysiology, being widely distributed across contrasting environments, having distinct domestication histories, from ancient Lupinus albus to recently domesticated Lupinus angustifolius and Lupinus luteus, facilitating the study of both natural and human selection. Strong trade-offs between seed size, early vigor and phenology were observed: vigor increasing, and flowering becoming earlier with increasing seed size. Despite large specific differences in all these traits, natural and human selection have operated in very similar ways in all 3 species. In wild material, as collection environments became drier and hotter, phenology became earlier, while seed size, early vigor and reproductive investment increased. Wild and domesticated germplasm separated along similar lines. Within similar habitats, domesticated material was consistently earlier, with larger seeds, greater early vigor and higher reproductive investment than wild, suggesting selection for both early establishment and timely maturity/drought escape in both domesticated and wild low rainfall ecotypes. Species differences reflected their distribution. Small and soft-seeded, low vigor L. luteus had a late, rainfall-responsive phenology specifically adapted to long season environments, and a narrow coastal distribution. L. angustifolius was much more conservative; more hard-seeded, flowering and maturing much earlier, with a wide Mediterranean distribution. L. albus flowered earlier but matured much later, with longer reproductive phases supporting much larger seed sizes and early vigor than either L. luteus or L. angustifolius. This ruderal/competitive combination appears to give L. albus a broad adaptive capacity, reflected in its relatively wider Mediterranean/North African distribution. PMID:28450875

  4. Free and Conjugated Indole-3-Acetic Acid in Developing Bean Seeds 1

    PubMed Central

    Bialek, Krystyna; Cohen, Jerry D.

    1989-01-01

    The changes in conjugated indole-3-acetic acid (IAA) levels compared to the levels of free IAA have been analyzed during the development of bean (Phaseolus vulgaris L.) seed using quantitative mass spectrometry. Free and ester-linked IAA levels are both relatively high in the early stages of seed development but drop during seed maturation. Concomitantly, the amide-linked IAA becomes the major form of IAA present as the seed matures. In fully mature seed, amide IAA accounts for 80% of the total IAA. The total IAA pool in the seed is maintained at approximately the same level (150-170 nanograms/seed) once the level of free IAA has attained its maximum. Thus, the amount of amide IAA conjugates that accumulate in mature seed is closely related to the amounts of free and ester-linked IAA that disappeared from the rapidly growing seed. Analysis of developing bean pods, from which the seeds were taken for analysis, showed very low levels of both ester and amide-linked IAA conjugates. The pattern of changes seen in the levels of free and conjugated IAA in developing bean seed supports our prior hypothesis suggesting a role of IAA conjugates in the storage of the phytohormone in the seed. PMID:16667099

  5. Ectopic expression of pumpkin gibberellin oxidases alters gibberellin biosynthesis and development of transgenic Arabidopsis plants.

    PubMed

    Radi, Abeer; Lange, Theo; Niki, Tomoya; Koshioka, Masaji; Lange, Maria João Pimenta

    2006-02-01

    Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4. This indicates that, in Arabidopsis, 7-oxidation and 3-oxidation are rate-limiting steps in GA plant hormone biosynthesis that control plant development. With an opposite effect, overexpression of pumpkin seed-specific GA 20-oxidase1 (CmGA20ox1) in Arabidopsis resulted in dwarfed plants that flower late with reduced levels of GA4 and increased levels of physiological inactive GA17 and GA25 and unexpected GA34 levels. Severe dwarfed plants were obtained by overexpression of the pumpkin GA 2-oxidase1 (CmGA2ox1) in Arabidopsis. This dramatic change in phenotype was accompanied by a considerable decrease in the levels of bioactive GA4 and an increase in the corresponding inactivation product GA34 in comparison to control plants. In this study, we demonstrate the potential of four pumpkin GA oxidase-encoding genes to modulate the GA plant hormone pool and alter plant stature and development.

  6. Temporal dynamics of iris yellow spot virus and its vector, Thrips tabaci (Thysanoptera: Thripidae), in seeded and transplanted onion fields.

    PubMed

    Hsu, Cynthia L; Hoepting, Christine A; Fuchs, Marc; Shelton, Anthony M; Nault, Brian A

    2010-04-01

    Onion thrips, Thrips tabaci (Lindeman) (Thysanoptera: Thripidae), can reduce onion bulb yield and transmit iris yellow spot virus (IYSV) (Bunyaviridae: Tospovirus), which can cause additional yield losses. In New York, onions are planted using seeds and imported transplants. IYSV is not seed transmitted, but infected transplants have been found in other U.S. states. Transplants are also larger than seeded onions early in the season, and thrips, some of which may be viruliferous, may preferentially colonize larger plants. Limited information is available on the temporal dynamics of IYSV and its vector in onion fields. In 2007 and 2008, T. tabaci and IYSV levels were monitored in six seeded and six transplanted fields. We found significantly more thrips in transplanted fields early in the season, but by the end of the season seeded fields had higher levels of IYSV. The percentage of sample sites with IYSV-infected plants remained low (<12%) until August, when infection levels increased dramatically in some fields. The densities of adult and larval thrips in August and September were better predictors of final IYSV levels than early season thrips densities. For 2007 and 2008, the time onions were harvested may have been more important in determining IYSV levels than whether the onions were seeded or transplanted. Viruliferous thrips emigrating from harvested onion fields into nonharvested ones may be increasing the primary spread of IYSV in late-harvested onions. Managing T. tabaci populations before harvest, and manipulating the spatial arrangement of fields based on harvest date could mitigate the spread of IYSV.

  7. Short seed longevity, variable germination conditions, and infrequent establishment events provide a narrow window for Yucca brevifolia (Agavaceae) recruitment

    USGS Publications Warehouse

    Bryant, M.; Reynolds, J.; DeFalco, Lesley A.; Esque, Todd C.

    2012-01-01

    PREMISE OF THE STUDY: The future of long-lived stand-forming desert plants such as Yucca brevifolia (Joshua tree) has come into question in light of climate variation and landscape-scale disturbances such as wildfire. Understanding plant establishment dynamics is important for mitigating the impacts of disturbances and promoting revegetation. • METHODS: We placed Y. brevifolia seeds in shallow caches and manipulated granivore access, nurse shrub effects, and the season of cache placement to determine conditions for seed germination and seedling establishment. • KEY RESULTS: Greatest seedling emergence occurred during spring and summer, when increased soil moisture was accompanied by warm soil temperatures. Late winter-spring emergence for cached seeds was enhanced beneath shrub canopies, but seedling survival declined beneath shrubs as temperatures increased in spring. Germinability of seed remaining in the soil was reduced from 50-68% after 12 mo residence time in soil and declined to <3% after 40 mo. Following dispersal from parent plants, seeds are either removed by granivores or lose germinability, imposing substantial losses of potential germinants. • CONCLUSIONS: Specific germination and establishment requirements impose stringent limits on recruitment rates for Y. brevifolia. Coupled with infrequent seed availability, the return rates to prefire densities and demographic structure may require decades to centuries, especially in light of potential changes to regional desert climate in combination with the potential for fire recurrence. Demographic patterns are predicted to vary spatially in response to environmental variability that limits recruitment and may already be apparent among extant populations.

  8. Moist-soil seed abundance in managed wetlands in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Kross, J.; Kaminski, R.M.; Reinecke, K.J.; Penny, E.J.; Pearse, A.T.

    2008-01-01

    Managed moist-soil units support early succession herbaceous vegetation that produces seeds, tubers, and other plant parts used by waterfowl in the Mississippi Alluvial Valley (MAV), USA. We conducted a stratified multi-stage sample survey on state and federal lands in the MAV of Arkansas, Louisiana, Mississippi, and Missouri during autumns 2002?2004 to generate a contemporary estimate of combined dry mass of seeds and tubers (herein seed abundance) in managed moist-soil units for use by the Lower Mississippi Valley Joint Venture (LMVJV) of the North American Waterfowl Management Plan. We also examined variation in mean seed abundance among moist-soil units in 2003 and 2004 in relation to management intensity (active or passive), soil pH and nutrient levels, proportional occurrence of plant life-forms (e.g., grass, flatsedge, and forb; vine; woody plants), and unit area. Estimates of mean seed abundance were similar in 2002 (X over bar = 537.1 kg/ha, SE = 100.1) and 2004 (X over bar = 555.2 kg/ha, SE = 105.2) but 35?40% less in 2003 (X over bar = 396.8 kg/ha, SE = 116.1). Averaged over years, seed abundance was 496.3 kg/ha (SE = 62.0; CV = 12.5%). Multiple regression analysis indicated seed abundance varied among moist-soil units inversely with proportional occurrence of woody vegetation and unit area and was greater in actively than passively managed units (R2adj = 0.37). Species of early succession grasses occurred more frequently in actively than passively managed units (P < 0.09), whereas mid- and late-succession plants occurred more often in passively managed units (P < 0.02). We recommend the LMVJV consider 556 kg/ha as a measure of seed abundance for use in estimating carrying capacity in managed moist-soil units on public lands in the MAV. We recommend active management of moist-soil units to achieve maximum potential seed production and further research to determine recovery rates of seeds of various sizes from core samples and the relationship between seed abundance and unit area.

  9. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level, ground simulation method could be utilized to simu-late the space radiation biological effects and such a comparative proteomic work might explain both energy and dose effects of space radiation environment.

  10. Thick strings, the liquid crystal blue phase, and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.

  11. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes.

    PubMed

    Basnet, Ram Kumar; Moreno-Pachon, Natalia; Lin, Ke; Bucher, Johan; Visser, Richard G F; Maliepaard, Chris; Bonnema, Guusje

    2013-12-01

    Brassica seeds are important as basic units of plant growth and sources of vegetable oil. Seed development is regulated by many dynamic metabolic processes controlled by complex networks of spatially and temporally expressed genes. We conducted a global microarray gene co-expression analysis by measuring transcript abundance of developing seeds from two diverse B. rapa morphotypes: a pak choi (leafy-type) and a yellow sarson (oil-type), and two of their doubled haploid (DH) progenies, (1) to study the timing of metabolic processes in developing seeds, (2) to explore the major transcriptional differences in developing seeds of the two morphotypes, and (3) to identify the optimum stage for a genetical genomics study in B. rapa seed. Seed developmental stages were similar in developing seeds of pak choi and yellow sarson of B. rapa; however, the colour of embryo and seed coat differed among these two morphotypes. In this study, most transcriptional changes occurred between 25 and 35 DAP, which shows that the timing of seed developmental processes in B. rapa is at later developmental stages than in the related species B. napus. Using a Weighted Gene Co-expression Network Analysis (WGCNA), we identified 47 "gene modules", of which 27 showed a significant association with temporal and/or genotypic variation. An additional hierarchical cluster analysis identified broad spectra of gene expression patterns during seed development. The predominant variation in gene expression was according to developmental stages rather than morphotype differences. Since lipids are the major storage compounds of Brassica seeds, we investigated in more detail the regulation of lipid metabolism. Four co-regulated gene clusters were identified with 17 putative cis-regulatory elements predicted in their 1000 bp upstream region, either specific or common to different lipid metabolic pathways. This is the first study of genome-wide profiling of transcript abundance during seed development in B. rapa. The identification of key physiological events, major expression patterns, and putative cis-regulatory elements provides useful information to construct gene regulatory networks in B. rapa developing seeds and provides a starting point for a genetical genomics study of seed quality traits.

  12. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; Musgrave, M. E.

    1996-01-01

    Successful development of seeds under spaceflight conditions has been an elusive goal of numerous long-duration experiments with plants on orbital spacecraft. Because carbohydrate metabolism undergoes changes when plants are grown in microgravity, developing seed storage reserves might be detrimentally affected during spaceflight. Seed development in Arabidopsis thaliana plants that flowered during 11 d in space on shuttle mission STS-68 has been investigated in this study. Plants were grown to the rosette stage (13 d) on a nutrient agar medium on the ground and loaded into the Plant Growth Unit flight hardware 18 h prior to lift-off. Plants were retrieved 3 h after landing and siliques were immediately removed from plants. Young seeds were fixed and processed for microscopic observation. Seeds in both the ground control and flight plants are similar in their morphology and size. The oldest seeds from these plants contain completely developed embryos and seed coats. These embryos developed radicle, hypocotyl, meristematic apical tissue, and differentiated cotyledons. Protoderm, procambium, and primary ground tissue had differentiated. Reserves such as starch and protein were deposited in the embryos during tissue differentiation. The aleurone layer contains a large quantity of storage protein and starch grains. A seed coat developed from integuments of the ovule with gradual change in cell composition and cell material deposition. Carbohydrates were deposited in outer integument cells especially in the outside cell walls. Starch grains decreased in number per cell in the integument during seed coat development. All these characteristics during seed development represent normal features in the ground control plants and show that the spaceflight environment does not prevent normal development of seeds in Arabidopsis.

  13. Alterations in Seed Development Gene Expression Affect Size and Oil Content of Arabidopsis Seeds1[C][W][OPEN

    PubMed Central

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-01-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds. PMID:24014578

  14. [Seed geography: its concept and basic scientific issues].

    PubMed

    Yu, Shun-Li; Wang, Zong-Shuai; Zeren, Wangmu

    2010-01-01

    In this paper, a new concept 'seed geography' was provided, and its definition, research contents, and scientific issues were put forward. Seed geography is a newly developed interdisciplinary science from plant geography, seed ecology, and phytosociology, which studies the geographic variation patterns of seed biological traits as well as their relationships with environmental factors from macroscopic to microscopic, and the seed formation, development, and change trends. The main research contents would include geography of seed mass, geography of seed chemical components, geography of seed morphology, geography of seed cell biological characteristics, geography of seed physiological characteristics, geography of seed genetic characteristics, and geography of flower and fruit. To explore the scientific issues in seed geography would help us to better understand the long-term adaptation and evolution of seed characteristics to natural environments.

  15. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds.

    PubMed

    Frey, Anne; Boutin, Jean-Pierre; Sotta, Bruno; Mercier, Raphaël; Marion-Poll, Annie

    2006-08-01

    Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.

  16. Seed development and maturation in early spring-flowering Galanthus nivalis and Narcissus pseudonarcissus continues post-shedding with little evidence of maturation in planta

    PubMed Central

    Newton, Rosemary J.; Hay, Fiona R.; Ellis, Richard H.

    2013-01-01

    Background and Aims Seeds of the moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus, dispersed during spring or early summer, germinated poorly in laboratory tests. Seed development and maturation were studied to better understand the progression from developmental to germinable mode in order to improve seed collection and germination practices in these and similar species. Methods Phenology, seed mass, moisture content and ability to germinate and tolerate desiccation were monitored during seed development until shedding. Embryo elongation within seeds was investigated during seed development and under several temperature regimes after shedding. Key Results Seeds were shed at high moisture content (>59 %) with little evidence that dry mass accumulation or embryo elongation were complete. Ability to germinate developed prior to the ability of some seeds to tolerate enforced desiccation. Germination was sporadic and slow. Embryo elongation occurred post-shedding in moist environments, most rapidly at 20 °C in G. nivalis and 15 °C in N. pseudonarcissus. The greatest germination also occurred in these regimes, 78 and 48 %, respectively, after 700 d. Conclusions Seeds of G. nivalis and N. pseudonarcissus were comparatively immature at shedding and substantial embryo elongation occurred post-shedding. Seeds showed limited desiccation tolerance at dispersal. PMID:23478943

  17. Pinaceae-like reproductive morphology in Schizolepidopsis canicularis sp. nov. from the Early Cretaceous (Aptian-Albian) of Mongolia.

    PubMed

    Leslie, Andrew B; Glasspool, Ian; Herendeen, Patrick S; Ichinnorov, Niiden; Knopf, Patrick; Takahashi, Masamichi; Crane, Peter R

    2013-12-01

    Seed cone scales assigned to the genus Schizolepidopsis are widespread in Late Triassic to Cretaceous Eurasian deposits. They have been linked to the conifer family Pinaceae based on associated vegetative remains, but their exact affinities are uncertain. Recently discovered material from the Early Cretaceous of Mongolia reveals important new information concerning Schizolepidopsis cone scales and seeds, and provides support for a relationship between the genus and extant Pinaceae. Specimens were collected from Early Cretaceous (probable Aptian-Albian) lignite deposits in central Mongolia. Lignite samples were disaggregated, cleaned in hydrofluoric acid, and washed in water. Specimens were selected for further study using light and electron microscopy. Schizolepidopsis canicularis seed cones consist of loosely arranged, bilobed ovulate scales subtended by a small bract. A single inverted seed with an elongate micropyle is borne on each lobe of the ovulate scale. Each seed has a wing formed by the separation of the adaxial surface of the ovulate scale. Schizolepidopsis canicularis produced winged seeds that formed in a manner that is unique to Pinaceae among extant conifers. We do not definitively place this species in Pinaceae pending more complete information concerning its pollen cones and vegetative remains. Nevertheless, this material suggests that Schizolepidopsis may be important for understanding the early evolution of Pinaceae, and may potentially help reconcile the appearance of the family in the fossil record with results based on phylogenetic analyses of molecular data.

  18. Linking Seed Photosynthesis and Evolution of the Australian and Mediterranean Seagrass Genus Posidonia.

    PubMed

    Celdran, David; Lloret, Javier; Verduin, Jennifer; van Keulen, Mike; Marín, Arnaldo

    2015-01-01

    Recent findings have shown that photosynthesis in the skin of the seed of Posidonia oceanica enhances seedling growth. The seagrass genus Posidonia is found only in two distant parts of the world, the Mediterranean Sea and southern Australia. This fact led us to question whether the acquisition of this novel mechanism in the evolution of this seagrass was a pre-adaptation prior to geological isolation of the Mediterranean from Tethys Sea in the Eocene. Photosynthetic activity in seeds of Australian species of Posidonia is still unknown. This study shows oxygen production and respiration rates, and maximum PSII photochemical efficiency (Fv : Fm) in seeds of two Australian Posidonia species (P. australis and P. sinuosa), and compares these with previous results for P. oceanica. Results showed relatively high oxygen production and respiratory rates in all three species but with significant differences among them, suggesting the existence of an adaptive mechanism to compensate for the relatively high oxygen demands of the seeds. In all cases maximal photochemical efficiency of photosystem II rates reached similar values. The existence of photosynthetic activity in the seeds of all three species implicates that it was an ability probably acquired from a common ancestor during the Late Eocene, when this adaptive strategy could have helped Posidonia species to survive in nutrient-poor temperate seas. This study sheds new light on some aspects of the evolution of marine plants and represents an important contribution to global knowledge of the paleogeographic patterns of seagrass distribution.

  19. Light-energy processing and freezing-tolerance traits in red spruce and black spruce: species and seed-source variation.

    PubMed

    Major, John E; Barsi, Debby C; Mosseler, Alex; Campbell, Moira; Rajora, Om P

    2003-07-01

    Red spruce (Picea rubens Sarg.) and black spruce (Picea mariana (Mill.) B.S.P.) are genetically and morphologically similar but ecologically distinct species. We determined intraspecific seed-source and interspecific variation of red spruce and black spruce, from across the near-northern margins of their ranges, for several light-energy processing and freezing-tolerance adaptive traits. Before exposure to low temperature, red spruce had variable fluorescence (Fv) similar to black spruce, but higher photochemical efficiency (Fv/Fm), lower quantum yield, lower chlorophyll fluorescence (%), and higher thermal dissipation efficiency (qN), although the seed-source effect and the seed-source x species interaction were significant only for Fv/Fm. After low-temperature exposure (-40 degrees C), red spruce had significantly lower Fv/Fm, quantum yield and qN than black spruce, but higher chlorophyll fluorescence and relative fluorescence. Species, seed-source effect, and seed-source x species interaction were consistent with predictions based on genetic (e.g., geographic) origins. Multi-temperature exposures (5, -20 and -40 degrees C) often produced significant species and temperature effects, and species x temperature interactions as a result of species-specific responses to temperature exposures. The inherent physiological species-specific adaptations of red spruce and black spruce were largely consistent with a shade-tolerant, late-successional species and an early successional species, respectively. Species differences in physiological adaptations conform to a biological trade-off, probably as a result of natural selection pressure in response to light availability and prevailing temperature gradients.

  20. Linking Seed Photosynthesis and Evolution of the Australian and Mediterranean Seagrass Genus Posidonia

    PubMed Central

    Celdran, David; Lloret, Javier; Verduin, Jennifer; van Keulen, Mike; Marín, Arnaldo

    2015-01-01

    Recent findings have shown that photosynthesis in the skin of the seed of Posidonia oceanica enhances seedling growth. The seagrass genus Posidonia is found only in two distant parts of the world, the Mediterranean Sea and southern Australia. This fact led us to question whether the acquisition of this novel mechanism in the evolution of this seagrass was a pre-adaptation prior to geological isolation of the Mediterranean from Tethys Sea in the Eocene. Photosynthetic activity in seeds of Australian species of Posidonia is still unknown. This study shows oxygen production and respiration rates, and maximum PSII photochemical efficiency (Fv : Fm) in seeds of two Australian Posidonia species (P. australis and P. sinuosa), and compares these with previous results for P. oceanica. Results showed relatively high oxygen production and respiratory rates in all three species but with significant differences among them, suggesting the existence of an adaptive mechanism to compensate for the relatively high oxygen demands of the seeds. In all cases maximal photochemical efficiency of photosystem II rates reached similar values. The existence of photosynthetic activity in the seeds of all three species implicates that it was an ability probably acquired from a common ancestor during the Late Eocene, when this adaptive strategy could have helped Posidonia species to survive in nutrient-poor temperate seas. This study sheds new light on some aspects of the evolution of marine plants and represents an important contribution to global knowledge of the paleogeographic patterns of seagrass distribution. PMID:26066515

  1. Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa.

    PubMed

    Xu, Yange; Zhao, Yuanqin; Duan, Huimin; Sui, Na; Yuan, Fang; Song, Jie

    2017-09-13

    Suaeda salsa (S. salsa) is a euhalophyte with high economic value. S. salsa can produce dimorphic seeds. Brown seeds are more salt tolerant, can germinate quickly and maintain the fitness of the species under high saline conditions. Black seeds are less salt tolerant, may become part of the seed bank and germinate when soil salinity is reduced. Previous reports have mainly focused on the ecophysiological traits of seed germination and production under saline conditions in this species. However, there is no information available on the molecular characteristics of S. salsa dimorphic seeds. In the present study, a total of 5825 differentially expressed genes were obtained; and 4648 differentially expressed genes were annotated based on a sequence similarity search, utilizing five public databases by transcriptome analysis. The different expression of these genes may be associated with embryo development, fatty acid, osmotic regulation substances and plant hormones in brown and black seeds. Compared to black seeds, most genes may relate to embryo development, and various genes that encode fatty acid desaturase and are involved in osmotic regulation substance synthesis or transport are upregulated in brown seeds. A large number of differentially expressed genes related to plant hormones were found in brown and black seeds, and their possible roles in regulating seed dormancy/germination were discussed. Upregulated genes involved in seed development and osmotic regulation substance accumulation may relate to bigger seed size and rapid seed germination in brown seeds, compared to black seeds. Differentially expressed genes of hormones may relate to seed dormancy/germination and the development of brown and black seeds. The transcriptome dataset will serve as a valuable resource to further understand gene expression and functional genomics in S. salsa dimorphic seeds.

  2. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    PubMed

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. © 2014 John Wiley & Sons Ltd.

  3. The Meaning of the "Public Interest" in Communications Policy--Part I: Its Origins in State and Federal Regulation.

    ERIC Educational Resources Information Center

    Rowland, Willard D., Jr.

    The late 1980s' resurgent appeal to public interest standards entails a misunderstanding of the real meaning of "public interest" and, whatever the merits of the critique of the deficiencies during the recent regulatory period, the standard still contains within it the seeds of its own compromise, if not destruction. Even among its…

  4. Rectourethral fistula following LDR brachytherapy.

    PubMed

    Borchers, Holger; Pinkawa, Michael; Donner, Andreas; Wolter, Timm P; Pallua, Norbert; Eble, Michael J; Jakse, Gerhard

    2009-01-01

    Modern LDR brachytherapy has drastically reduced rectal toxicity and decreased the occurrence of rectourethral fistulas to <0.5% of patients. Therefore, symptoms of late-onset sequelae are often ignored initially. These fistulas cause severe patient morbidity and require interdisciplinary treatment. We report on the occurrence and management of a rectourethral fistula which occurred 4 years after (125)I seed implantation. Copyright 2009 S. Karger AG, Basel.

  5. Establishment and growth of white spruce on a boreal forest floodplain: interactions between microclimate and mammalian herbivory

    Treesearch

    Amy C. Angell; Knut Kielland

    2009-01-01

    White spruce (Picea glauca (Moench) Voss) is a dominant species in late-successional ecosystems along the Tanana River, interior Alaska, and the most important commercial timber species in these boreal floodplain forests. Whereas white spruce commonly seed in on young terraces in early primary succession, the species does not become a conspicuous...

  6. A novel plant-fungal mutualism associated with fire

    Treesearch

    Melissa Baynes; George Newcombe; Linley Dixon; Lisa Castlebury; Kerry O' Donnell

    2012-01-01

    Bromus tectorum, or cheatgrass, is native to Eurasia and widely invasive in western North America. By late spring, this annual plant has dispersed its seed and died; its aboveground biomass then becomes fine fuel that burns as frequently as once every 3-5 y in its invaded range. Cheatgrass has proven to be better adapted to fire there than many competing plants, but...

  7. Direct seeding experiments on the 1951 Forks Burn.

    Treesearch

    Elmer W. Shaw

    1953-01-01

    Late in the summer of 1951 the Port Angeles and Western Railroad fire (commonly called the Forks fire) killed more than a half billion board feet of timber. An area approximately 20 miles long and 2-1/2 miles wide, covering 32,668 acres, was burned. It included fine virgin timber, thrifty plantations, ranch lands, reproduction areas, advanced young growth, logged-off...

  8. Protective Effects of Flax Seed (Linum Usitatissimum) Hydroalcoholic Extract on Fetus Brain in Aged and Young Mice.

    PubMed

    Kamali, Mahsa; Bahmanpour, Soghra

    2016-05-01

    One of the major problems of the aged women or older than 35 is getting pregnant in the late fertility life. Fertility rates begin to decline gradually at the age of 30, more so at 35, and markedly at 40. Even with fertility treatments such as in vitro fertilization, women have more difficulty in getting pregnant or may deliver abnormal fetus. The purpose of this study was to assess the effects of flax seed hydroalcoholic extract on the fetal brain of aged mice and its comparison with young mice. In this experimental study, 32 aged and 32 young mice were divided into 4 groups. Controls received no special treatment. The experimental mice groups, 3 weeks before mating, were fed with flax seed hydroalcoholic extract by oral gavages. After giving birth, the brains of the fetus were removed. Data analysis was performed by statistical test ANOVA using SPSS version 18 (P<0.05). The mean fetus brain weight of aged mother groups compared to the control group was increased significantly (P<0.05). This study showed that flax seed hydroalcoholic extract could improve fetal brain weights in the aged groups.

  9. Dynamic distribution and the role of abscisic acid during seed development of a lady’s slipper orchid, Cypripedium formosanum

    PubMed Central

    Lee, Yung-I; Chung, Mei-Chu; Yeung, Edward C.; Lee, Nean

    2015-01-01

    Background and Aims Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum. Methods The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability. Key Results ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds. Conclusions The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity. PMID:26105185

  10. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes.

    PubMed

    Graeber, Kai; Linkies, Ada; Müller, Kerstin; Wunchova, Andrea; Rott, Anita; Leubner-Metzger, Gerhard

    2010-05-01

    Seed dormancy is genetically determined with substantial environmental influence mediated, at least in part, by the plant hormone abscisic acid (ABA). The ABA-related transcription factor ABI3/VP1 (ABA INSENSITIVE3/VIVIPAROUS1) is widespread among green plants. Alternative splicing of its transcripts appears to be involved in regulating seed dormancy, but the role of ABI3/VP1 goes beyond seeds and dormancy. In contrast, DOG1 (DELAY OF GERMINATION 1), a major quantitative trait gene more specifically involved in seed dormancy, was so far only known from Arabidopsis thaliana (AtDOG1) and whether it also has roles during the germination of non-dormant seeds was not known. Seed germination of Lepidium sativum ('garden cress') is controlled by ABA and its antagonists gibberellins and ethylene and involves the production of apoplastic hydroxyl radicals. We found orthologs of AtDOG1 in the Brassicaceae relatives L. sativum (LesaDOG1) and Brassica rapa (BrDOG1) and compared their gene structure and the sequences of their transcripts expressed in seeds. Tissue-specific analysis of LesaDOG1 transcript levels in L. sativum seeds showed that they are degraded upon imbibition in the radicle and the micropylar endosperm. ABA inhibits germination in that it delays radicle protrusion and endosperm weakening and it increased LesaDOG1 transcript levels during early germination due to enhanced transcription and/or inhibited degradation. A reduced decrease in LesaDOG1 transcript levels upon ABA treatment is evident in the late germination phase in both tissues. This temporal and ABA-related transcript expression pattern suggests a role for LesaDOG1 in the control of germination timing of non-dormant L. sativum seeds. The possible involvement of the ABA-related transcription factors ABI3 and ABI5 in the regulation of DOG1 transcript expression is discussed. Other species of the monophyletic genus Lepidium showed coat or embryo dormancy and are therefore highly suited for comparative seed biology.

  11. Seed development and viviparous germination in one accession of a tomato rin mutant

    PubMed Central

    Wang, Xu; Zhang, Lili; Xu, Xiaochun; Qu, Wei; Li, Jingfu; Xu, Xiangyang; Wang, Aoxue

    2016-01-01

    In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45–50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25–60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination. PMID:27436947

  12. Impact of heat stress during seed development on soybean seed metabolome

    USDA-ARS?s Scientific Manuscript database

    Seed development is a temperature-sensitive process that is much more vulnerable than vegetative tissues to abiotic stresses. Climate change is expected to increase the incidence and severity of summer heatwaves, and the impact of heat stress on seed development is expected to become more widespread...

  13. A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant.

    PubMed

    Al-Obaidi, Jameel R; Halabi, Mohammed Farouq; AlKhalifah, Nasser S; Asanar, Shanavaskhan; Al-Soqeer, Abdulrahman A; Attia, M F

    2017-08-24

    Jojoba is considered a promising oil crop and is cultivated for diverse purposes in many countries. The jojoba seed produces unique high-quality oil with a wide range of applications such as medical and industrial-related products. The plant also has potential value in combatting desertification and land degradation in dry and semi-dry areas. Although the plant is known for its high-temperature and high-salinity tolerance growth ability, issues such as its male-biased ratio, relatively late flowering and seed production time hamper the cultivation of this plant. The development of efficient biotechnological platforms for better cultivation and an improved production cycle is a necessity for farmers cultivating the plant. In the last 20 years, many efforts have been made for in vitro cultivation of jojoba by applying different molecular biology techniques. However, there is a lot of work to be done in order to reach satisfactory results that help to overcome cultivation problems. This review presents a historical overview, the medical and industrial importance of the jojoba plant, agronomy aspects and nutrient requirements for the plant's cultivation, and the role of recent biotechnology and molecular biology findings in jojoba research.

  14. Carabid larvae as predators of weed seeds: granivory in larvae of Amara eurynota (Coleoptera: Carabidae).

    PubMed

    Saska, Pavel

    2004-01-01

    Up to date we do not have much information about predation on seeds by larvae of ground beetles. One of the reasons why such knowledge is important is that granivorous larvae contribute to predation of weed seeds. In this study, the food requirements of larvae of autumn breeding carabid species Amara eurynota (Panzer) were investigated in the laboratory and a hypothesis, that they are granivorous was tested. Insect diet (Tenebrio molitor larvae), three seed diets (seeds of Artemisia vulgaris, Tripleurospermum inodorum or Urtica dioica or a mixed diet (T. molitor + A. uulgaris) were used as food. For larvae of A. eurynota, seeds are essential for successful completion of development, because all those fed pure insect diet died before pupation. However, differences in suitability were observed between pure seed diets. Larvae fed seeds of A. vulgaris had the lowest mortality and fastest development of the seed diets. Those fed seeds of T. inodorum had also low mortality, but the development was prolonged in the third instar. In contrast, development of larvae reared on seeds of U. dioica was slowest of the tested diets and could not be completed, as all individuals died before pupation. When insects were included to seed diet of A. vulgaris (mixed diet), the duration of development shortened, but mortality remained the same when compared to seed diet of A. vulgaris. According to the results it was concluded that larvae of A. eurynota are granivorous. A mixed diet and seed diets of A. uulgaris and T. inodorum were suitable and insect diet and seeds of U. dioica were unsuitable diets in this experiment.

  15. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy

    PubMed Central

    Martínez-Andújar, Cristina; Ordiz, M. Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N.; Nonogaki, Hiroyuki

    2011-01-01

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism. PMID:21969557

  16. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy.

    PubMed

    Martínez-Andújar, Cristina; Ordiz, M Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N; Nonogaki, Hiroyuki

    2011-10-11

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism.

  17. Sulfur Assimilation in Developing Lupin Cotyledons Could Contribute Significantly to the Accumulation of Organic Sulfur Reserves in the Seed

    PubMed Central

    Tabe, Linda Marie; Droux, Michel

    2001-01-01

    It is currently assumed that the assimilation of sulfur into reduced forms occurs predominantly in the leaves of plants. However, developing seeds have a strong requirement for sulfur amino acids for storage protein synthesis. We have assessed the capacity of developing seeds of narrow-leaf lupin (Lupinus angustifolius) for sulfur assimilation. Cotyledons of developing lupin seeds were able to transfer the sulfur atom from 35S-labeled sulfate into seed proteins in vitro, demonstrating the ability of the developing cotyledons to perform all the steps of sulfur reduction and sulfur amino acid biosynthesis. Oxidized sulfur constituted approximately 30% of the sulfur in mature seeds of lupins grown in the field and almost all of the sulfur detected in phloem exuded from developing pods. The activities of three enzymes of the sulfur amino acid biosynthetic pathway were found in developing cotyledons in quantities theoretically sufficient to account for all of the sulfur amino acids that accumulate in the protein of mature lupin seeds. We conclude that sulfur assimilation by developing cotyledons is likely to be an important source of sulfur amino acids for the synthesis of storage proteins during lupin seed maturation. PMID:11351081

  18. Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed.

    PubMed

    Tabe, L M; Droux, M

    2001-05-01

    It is currently assumed that the assimilation of sulfur into reduced forms occurs predominantly in the leaves of plants. However, developing seeds have a strong requirement for sulfur amino acids for storage protein synthesis. We have assessed the capacity of developing seeds of narrow-leaf lupin (Lupinus angustifolius) for sulfur assimilation. Cotyledons of developing lupin seeds were able to transfer the sulfur atom from 35S-labeled sulfate into seed proteins in vitro, demonstrating the ability of the developing cotyledons to perform all the steps of sulfur reduction and sulfur amino acid biosynthesis. Oxidized sulfur constituted approximately 30% of the sulfur in mature seeds of lupins grown in the field and almost all of the sulfur detected in phloem exuded from developing pods. The activities of three enzymes of the sulfur amino acid biosynthetic pathway were found in developing cotyledons in quantities theoretically sufficient to account for all of the sulfur amino acids that accumulate in the protein of mature lupin seeds. We conclude that sulfur assimilation by developing cotyledons is likely to be an important source of sulfur amino acids for the synthesis of storage proteins during lupin seed maturation.

  19. Embryo development in association with asymbiotic seed germination in vitro of Paphiopedilum armeniacum S. C. Chen et F. Y. Liu

    PubMed Central

    Zhang, Yan-Yan; Wu, Kun-Lin; Zhang, Jian-Xia; Deng, Ru-Fang; Duan, Jun; Teixeira da Silva, Jaime A.; Huang, Wei-Chang; Zeng, Song-Jun

    2015-01-01

    This paper documents the key anatomical features during the development of P. armeniacum zygotic embryos and their ability to germinate asymbiotically in vitro. This study also examines the effect of media and seed pretreatments on seed germination and subsequent seedling growth. Seeds collected from pods 45 days after pollination (DAP) did not germinate while 95 DAP seeds displayed the highest seed germination percentage (96.2%). Most seedlings (50%) developed to stage 5 from 110 DAP seeds whose compact testa had not yet fully formed. Suspensor cells were vacuolated, which enabled the functional uptake of nutrients. The optimum basal medium for seed germination and subsequent protocorm development was eighth-strength Murashige and Skoog (1/8MS) for 95 DAP seeds and ¼MS for 110 DAP seeds. Poor germination was displayed by 140 DAP seeds with a compact testa. Pretreatment of dry mature seeds (180 DAP) with 1.0% sodium hypochlorite solution for 90 min or 40 kHz of ultrasound for 8 min improved germination percentage from 0 to 29.2% or to 19.7%, respectively. Plantlets that were at least 5 cm in height were transplanted to a Zhijing stone substrate for orchids, and 85.3% of plantlets survived 180 days after transplanting. PMID:26559888

  20. Endozoochory by mallard in New Zealand: what seeds are dispersed and how far?

    PubMed

    Bartel, Riley D; Sheppard, Jennifer L; Lovas-Kiss, Ádám; Green, Andy J

    2018-01-01

    In Europe and North America waterfowl are major dispersers of aquatic and terrestrial plants, but in New Zealand their role has yet to be investigated. Mallards were introduced to New Zealand in the late 1800s, and today they are the most abundant and widespread waterfowl in the country. To assess seed dispersal, we radiomarked 284 female mallards from two study sites during the pre-breeding (June-August) and breeding (August-December) periods in 2014-2015, and examined movements that occurred within 24, 48 or 72 h when seed dispersal by endozoochory is considered likely. During June and July 2015, we collected 29 faecal samples from individual female mallards during radiomarking and 24 samples from mallard flocks. We recovered 69 intact seeds from the faecal samples and identified 12 plant taxa. Of the plant seeds identified and dispersed by mallards in this study, 40% were members of the Asteraceae family, nine plant species were alien to New Zealand, and the indigenous-status of three unidentified taxa could not be determined. Two taxa (and 9% of seeds) were germinated following gut passage: an unidentified Asteraceae and Solanum nigrum . During the pre-breeding and breeding periods, movement of females within 24 h averaged 394 m (SD = 706 m) and 222 m (SD = 605 m) respectively, with maximum distances of 3,970 m and 8,028 m. Maxima extended to 19,230 m within 48 h. Most plant species recorded are generally assumed to be self-dispersed or dispersed by water; mechanisms that provide a much lower maximum dispersal distance than mallards. The ability of mallards to disperse viable seeds up to 19 km within 48 h suggests they have an important and previously overlooked role as vectors for a variety of wetland or grassland plant species in New Zealand.

  1. The late Cretaceous Arman flora of Magadan oblast, Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Herman, A. B.; Golovneva, L. B.; Shczepetov, S. V.; Grabovsky, A. A.

    2016-12-01

    The Arman flora from the volcanogenic-sedimentary beds of the Arman Formation is systematically studied using materials from the Arman River basin and the Nelkandya-Khasyn interfluve (Magadan oblast, Northeastern Russia). Seventy-three species of fossil plants belonging to 49 genera are described. They consist of liverworts, horsetails, ferns, seed ferns, cycadaleans, bennettitaleans, ginkgoaleans, czekanowskialeans, conifers, gymnosperms of uncertain systematic affinity, and angiosperms. The Arman flora shows a unique combination, with relatively ancient Early Cretaceous ferns and gymnosperms occurring alongside younger Late Cretaceous plants, primarily angiosperms. The similarity of the Arman flora to the Penzhina and Kaivayam floras of northwestern Kamchatka and the Tylpegyrgynai flora of the Pekul'nei Ridge allows the Arman flora to be dated as Turonian and Coniacian (Late Cretaceous), which is corroborated by isotopic (U-Pb and 40Ar/39Ar) age determination for the plant-bearing layers.

  2. Control of early seed development.

    PubMed

    Chaudhury, A M; Koltunow, A; Payne, T; Luo, M; Tucker, M R; Dennis, E S; Peacock, W J

    2001-01-01

    Seed development requires coordinated expression of embryo and endosperm and has contributions from both sporophytic and male and female gametophytic genes. Genetic and molecular analyses in recent years have started to illuminate how products of these multiple genes interact to initiate seed development. Imprinting or differential expression of paternal and maternal genes seems to be involved in controlling seed development, presumably by controlling gene expression in developing endosperm. Epigenetic processes such as chromatin remodeling and DNA methylation affect imprinting of key seed-specific genes; however, the identity of many of these genes remains unknown. The discovery of FIS genes has illuminated control of autonomous endosperm development, a component of apomixis, which is an important developmental and agronomic trait. FIS genes are targets of imprinting, and the genes they control in developing endosperm are also regulated by DNA methylation and chromatin remodeling genes. These results define some exciting future areas of research in seed development.

  3. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis.

    PubMed

    Guan, Yucheng; Ren, Haibo; Xie, He; Ma, Zeyang; Chen, Fan

    2009-10-01

    Seed dormancy is an important adaptive trait that enables seeds of many species to remain quiescent until conditions become favorable for germination. Abscisic acid (ABA) plays an important role in these developmental processes. Like dormancy and germination, the elongation of carrot somatic embryo radicles is retarded by sucrose concentrations at or above 6%, and normal growth resumes at sucrose concentrations below 3%. Using a yeast one-hybrid screening system, we isolated two bZIP-type transcription factors, CAREB1 and CAREB2, from a cDNA library prepared from carrot somatic embryos cultured in a high-sucrose medium. Both CAREB1 and CAREB2 were localized to the nucleus, and specifically bound to the ABA response element (ABRE) in the Dc3 promoter. Expression of CAREB2 was induced in seedlings by drought and exogenous ABA application; whereas expression of CAREB1 increased during late embryogenesis, and reduced dramatically when somatic embryos were treated with fluridone, an inhibitor of ABA synthesis. Overexpression of CAREB1 caused somatic embryos to develop slowly when cultured in low-sucrose medium, and retarded the elongation of the radicles. These results indicate that CAREB1 and CAREB2 have similar DNA-binding activities, but play different roles during carrot development. Our results indicate that CAREB1 functions as an important trans-acting factor in the ABA signal transduction pathway during carrot somatic embryogenesis.

  4. POST-HARVEST EMBRYO DEVELOPMENT IN GINSENG SEEDS INCREASES DESICCATION SENSITIVITY AND NARROWS THE HYDRATION WINDOW FOR CRYOPRESERVATION.

    PubMed

    Han, E; Popova, E; Cho, G; Park, S; Lee, S; Pritchard, H W; Kim, H H

    Despite its self-pollinating characteristics, Korean ginseng germplasm is mainly maintained in clonal gene banks as there is no defined approach to the long-term conservation of its seed, including the most appropriate stage of embryo development for storage. The aim of this study was to reveal the effect of embryo development on desiccation tolerance and cryopreservation success in ginseng seeds. Seeds of Korean ginseng (Panax ginseng C.A. Meyer) at three post-harvest stages (immediately after harvesting and following treatments to enable internal growth of the embryo) were desiccated and cryopreserved. The hydration window for the >80% dehiscence and germination of cryopreserved ginseng seeds varied with embryo developmental stage: 3-9% moisture content (MC) for both unpulped and undehisced seeds when the embryo was 0.1 the length of the endosperm, 7-10% MC for dehisced seeds (0.5 embryo:endosperm) and 9-11% MC for seeds with fully developed embryos (0.9 embryo:endosperm). Whilst dried (4-8% moisture content) and undehisced seeds within fruits (unpulped seeds) lost more than half their viability during 1 year's storage at room temperature, cryopreservation enabled germination levels of c. 90%. Overall, 432 accessions of Korean ginseng landraces have been cryopreserved using undehisced seeds with or without fruits. Post-harvest treatment of Korean ginseng seeds to enable embryo development decreases tolerance of very low MCs, and thus narrows the hydration window for cryopreservation. Fresh-harvested and unpulped seeds that have been dried to c. 5% MC are recommended for long-term cryogenic storage.

  5. Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity.

    PubMed

    Link, Bruce M; Busse, James S; Stankovic, Bratislav

    2014-10-01

    Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves.

  6. Analysis of Large Seeds from Three Different Medicago truncatula Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains

    PubMed Central

    Bandyopadhyay, Kaustav; Uluçay, Orhan; Şakiroğlu, Muhammet; Udvardi, Michael K.; Verdier, Jerome

    2016-01-01

    Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA) and abscisic acid (ABA) ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination. PMID:27618017

  7. Endosperm turgor pressure decreases during early Arabidopsis seed development.

    PubMed

    Beauzamy, Léna; Fourquin, Chloé; Dubrulle, Nelly; Boursiac, Yann; Boudaoud, Arezki; Ingram, Gwyneth

    2016-09-15

    In Arabidopsis, rapid expansion of the coenocytic endosperm after fertilisation has been proposed to drive early seed growth, which is in turn constrained by the seed coat. This hypothesis implies physical heterogeneity between the endosperm and seed coat compartments during early seed development, which to date has not been demonstrated. Here, we combine tissue indentation with modelling to show that the physical properties of the developing seed are consistent with the hypothesis that elevated endosperm-derived turgor pressure drives early seed expansion. We provide evidence that whole-seed turgor is generated by the endosperm at early developmental stages. Furthermore, we show that endosperm cellularisation and seed growth arrest are associated with a drop in endosperm turgor pressure. Finally, we demonstrate that this decrease is perturbed when the function of POLYCOMB REPRESSIVE COMPLEX 2 is lost, suggesting that turgor pressure changes could be a target of genomic imprinting. Our results indicate a developmental role for changes in endosperm turgor pressure in the Arabidopsis seed. © 2016. Published by The Company of Biologists Ltd.

  8. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size.

    PubMed

    Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian

    2015-07-01

    Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  9. Land uses, fire, and invasion: Exotic annual Bromus and human dimensions [Chapter 11

    Treesearch

    David A. Pyke; Jeanne C. Chambers; Jeffrey L. Beck; Matthew L. Brooks; Brian A. Mealor

    2016-01-01

    Human land uses are the primary cause of the introduction and spread of exotic annual Bromus species. Initial introductions were likely linked to contaminated seeds used by homesteading farmers in the late 1880s and early 1900s. Transportation routes aided their spread. Unrestricted livestock grazing from the 1800s through the mid-1900s reduced native plant competitors...

  10. China: Unfolding the Paper Dragon

    DTIC Science & Technology

    2011-03-23

    accompanied Chinese economic prosperity. In the following decade, China has devalued its currency , purchased debt around the world, and used coercive...partners.79 Nations protest China‟s currency devaluation practice, because it makes China‟s exports cheaper and foreign imports more expensive...as the IMF . Consequently, Nigeria ‟s late president Umaru Yar‟Adua canceled a number of the projects.90 The seeds of corruption have grown into

  11. Status of white pine blister rust and seed collections in california's high-elevation white pine species

    Treesearch

    J. Dunlap

    2011-01-01

    White pine blister rust (caused by the non-native pathogen Cronartium ribicola) reached northern California about 80 years ago. Over the years its spread southward had been primarily recorded on sugar pine. However, observations on its occurrence had also been reported in several of the higher elevation five-needled white pine species in California. Since the late...

  12. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Popova, A.; McClure, G.; Musgrave, M. E.

    2005-01-01

    Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.

  13. Ectopic Expression of Pumpkin Gibberellin Oxidases Alters Gibberellin Biosynthesis and Development of Transgenic Arabidopsis Plants1

    PubMed Central

    Radi, Abeer; Lange, Theo; Niki, Tomoya; Koshioka, Masaji; Lange, Maria João Pimenta

    2006-01-01

    Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4. This indicates that, in Arabidopsis, 7-oxidation and 3-oxidation are rate-limiting steps in GA plant hormone biosynthesis that control plant development. With an opposite effect, overexpression of pumpkin seed-specific GA 20-oxidase1 (CmGA20ox1) in Arabidopsis resulted in dwarfed plants that flower late with reduced levels of GA4 and increased levels of physiological inactive GA17 and GA25 and unexpected GA34 levels. Severe dwarfed plants were obtained by overexpression of the pumpkin GA 2-oxidase1 (CmGA2ox1) in Arabidopsis. This dramatic change in phenotype was accompanied by a considerable decrease in the levels of bioactive GA4 and an increase in the corresponding inactivation product GA34 in comparison to control plants. In this study, we demonstrate the potential of four pumpkin GA oxidase-encoding genes to modulate the GA plant hormone pool and alter plant stature and development. PMID:16384902

  14. A Cascade of Sequentially Expressed Sucrose Transporters in the Seed Coat and Endosperm Provides Nutrition for the Arabidopsis Embryo[OPEN

    PubMed Central

    Chen, Li-Qing; Lin, I Winnie; Qu, Xiao-Qing; Sosso, Davide; McFarlane, Heather E.; Londoño, Alejandra; Samuels, A. Lacey; Frommer, Wolf B.

    2015-01-01

    Developing plant embryos depend on nutrition from maternal tissues via the seed coat and endosperm, but the mechanisms that supply nutrients to plant embryos have remained elusive. Sucrose, the major transport form of carbohydrate in plants, is delivered via the phloem to the maternal seed coat and then secreted from the seed coat to feed the embryo. Here, we show that seed filling in Arabidopsis thaliana requires the three sucrose transporters SWEET11, 12, and 15. SWEET11, 12, and 15 exhibit specific spatiotemporal expression patterns in developing seeds, but only a sweet11;12;15 triple mutant showed severe seed defects, which include retarded embryo development, reduced seed weight, and reduced starch and lipid content, causing a “wrinkled” seed phenotype. In sweet11;12;15 triple mutants, starch accumulated in the seed coat but not the embryo, implicating SWEET-mediated sucrose efflux in the transfer of sugars from seed coat to embryo. This cascade of sequentially expressed SWEETs provides the feeding pathway for the plant embryo, an important feature for yield potential. PMID:25794936

  15. Immunocytolocalization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper

    PubMed Central

    1987-01-01

    In soybean seed coats the accumulation of the hydroxyproline-rich glycoprotein extensin is regulated in a developmental and tissue- specific manner. The time course of appearance of extensin during seed development was studied by Western blot analysis and by immunogold- silver localization. Using these techniques extensin was first detected at 16-18 d after anthesis, increasing during development to high levels at 24 d after anthesis. Immunogold-silver localization of extensin in the seed coat showed marked deposition of the glycoprotein in the walls of palisade epidermal cells and hourglass cells. The immunolocalization of extensin in developing soybean seeds was also made by a new technique--tissue printing on nitrocellulose paper. It was found that extensin is primarily localized in the seed coat, hilum, and vascular elements of the seed. PMID:3693394

  16. Compression-cuticle relationship of seed ferns: Insights from liquid-solid states FTIR (Late Palaeozoic-Early Mesozoic, Canada-Spain-Argentina)

    USGS Publications Warehouse

    Zodrow, E.L.; D'Angelo, J. A.; Mastalerz, Maria; Keefe, D.

    2009-01-01

    Cuticles have been macerated from suitably preserved compressed fossil foliage by Schulze's process for the past 150 years, whereas the physical-biochemical relationship between the "coalified layer" with preserved cuticle as a unit has hardly been investigated, although they provide complementary information. This relationship is conceptualized by an analogue model of the anatomy of an extant leaf: "vitrinite (mesophyll) + cuticle (biomacropolymer) = compression". Alkaline solutions from Schulze's process as a proxy for the vitrinite, are studied by means of liquid-solid states Fourier transform infrared spectroscopy (FTIR). In addition, cuticle-free coalified layers and fossilized cuticles of seed ferns mainly from Canada, Spain and Argentina of Late Pennsylvanian-Late Triassic age are included in the study sample. Infrared data of cuticle and alkaline solutions differ which is primarily contingent on the mesophyll +biomacropolymer characteristics. The compression records two pathways of organic matter transformation. One is the vitrinized component that reflects the diagenetic-post-diagenetic coalification history parallel with the evolution of the associated coal seam. The other is the cuticle that reflects the sum-total of evolutionary pathway of the biomacropolymer, its monomeric, or polymeric fragmentation, though factors promoting preservation include entombing clay minerals and lower pH conditions. Caution is advised when interpreting liquid-state-based FTIR data, as some IR signals may have resulted from the interaction of Schulze's process with the cuticular biochemistry. A biochemical-study course for taphonomy is suggested, as fossilized cuticles, cuticle-free coalified layers, and compressions are responses to shared physicogeochemical factors. ?? 2009 Elsevier B.V. All rights reserved.

  17. Secondary dispersal driven by overland flow in drylands: Review and mechanistic model development.

    PubMed

    Thompson, Sally E; Assouline, Shmuel; Chen, Li; Trahktenbrot, Ana; Svoray, Tal; Katul, Gabriel G

    2014-01-01

    Seed dispersal alters gene flow, reproduction, migration and ultimately spatial organization of dryland ecosystems. Because many seeds in drylands lack adaptations for long-distance dispersal, seed transport by secondary processes such as tumbling in the wind or mobilization in overland flow plays a dominant role in determining where seeds ultimately germinate. Here, recent developments in modeling runoff generation in spatially complex dryland ecosystems are reviewed with the aim of proposing improvements to mechanistic modeling of seed dispersal processes. The objective is to develop a physically-based yet operational framework for determining seed dispersal due to surface runoff, a process that has gained recent experimental attention. A Buoyant OBject Coupled Eulerian - Lagrangian Closure model (BOB-CELC) is proposed to represent seed movement in shallow surface flows. The BOB-CELC is then employed to investigate the sensitivity of seed transport to landscape and storm properties and to the spatial configuration of vegetation patches interspersed within bare earth. The potential to simplify seed transport outcomes by considering the limiting behavior of multiple runoff events is briefly considered, as is the potential for developing highly mechanistic, spatially explicit models that link seed transport, vegetation structure and water movement across multiple generations of dryland plants.

  18. Oil and Protein Accumulation in Developing Seeds Is Influenced by the Expression of a Cytosolic Pyrophosphatase in Arabidopsis[C][W][OA

    PubMed Central

    Meyer, Knut; Stecca, Kevin L.; Ewell-Hicks, Kim; Allen, Stephen M.; Everard, John D.

    2012-01-01

    This study describes a dominant low-seed-oil mutant (lo15571) of Arabidopsis (Arabidopsis thaliana) generated by enhancer tagging. Compositional analysis of developing siliques and mature seeds indicated reduced conversion of photoassimilates to oil. Immunoblot analysis revealed increased levels of At1g01050 protein in developing siliques of lo15571. At1g01050 encodes a soluble, cytosolic pyrophosphatase and is one of five closely related genes that share predicted cytosolic localization and at least 70% amino acid sequence identity. Expression of At1g01050 using a seed-preferred promoter recreated most features of the lo15571 seed phenotype, including low seed oil content and increased levels of transient starch and soluble sugars in developing siliques. Seed-preferred RNA interference-mediated silencing of At1g01050 and At3g53620, a second cytosolic pyrophosphatase gene that shows expression during seed filling, led to a heritable oil increase of 1% to 4%, mostly at the expense of seed storage protein. These results are consistent with a scenario in which the rate of mobilization of sucrose, for precursor supply of seed storage lipid biosynthesis by cytosolic glycolysis, is strongly influenced by the expression of endogenous pyrophosphatase enzymes. This emphasizes the central role of pyrophosphate-dependent reactions supporting cytosolic glycolysis during seed maturation when ATP supply is low, presumably due to hypoxic conditions. This route is the major route providing precursors for seed oil biosynthesis. ATP-dependent reactions at the entry point of glycolysis in the cytosol or plastid cannot fully compensate for the loss of oil content observed in transgenic events with increased expression of cytosolic pyrophosphatase enzyme in the cytosol. These findings shed new light on the dynamic properties of cytosolic pyrophosphate pools in developing seed and their influence on carbon partitioning during seed filling. Finally, our work uniquely demonstrates that genes encoding cytosolic pyrophosphatase enzymes provide novel targets to improve seed composition for plant biotechnology applications. PMID:22566496

  19. A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.).

    PubMed

    Wang, Yifeng; Hou, Yuxuan; Qiu, Jiehua; Li, Zhiyong; Zhao, Juan; Tong, Xiaohong; Zhang, Jian

    2017-06-27

    PKA (protein lysine acetylation) is a critical post-translational modification that regulates various developmental processes, including seed development. However, the acetylation events and dynamics on a proteomic scale in this process remain largely unknown, especially in rice early seed development. We report the first quantitative acetylproteomic study focused on rice early seed development by employing a mass spectral-based (MS-based), label-free approach. A total of 1817 acetylsites on 1688 acetylpeptides from 972 acetylproteins were identified in pistils and seeds at three and seven days after pollination, including 268 acetyproteins differentially acetylated among the three stages. Motif-X analysis revealed that six significantly enriched motifs, such as (DxkK), (kH) and (kY) around the acetylsites of the identified rice seed acetylproteins. Differentially acetylated proteins among the three stages, including adenosine diphosphate (ADP) -glucose pyrophosphorylases (AGPs), PDIL1-1 (protein disulfide isomerase like 1-1), hexokinases, pyruvate dehydrogenase complex (PDC) and numerous other regulators that are extensively involved in the starch and sucrose metabolism, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle and photosynthesis pathways during early seed development. This study greatly expanded the rice acetylome dataset, and shed novel insight into the regulatory roles of PKA in rice early seed development.

  20. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    PubMed Central

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  1. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    PubMed

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  2. An analysis of the development of cauliflower seed as a model to improve the molecular mechanism of abiotic stress tolerance in cauliflower artificial seeds.

    PubMed

    Rihan, Hail Z; Al-Issawi, Mohammed; Fuller, Michael P

    2017-07-01

    The development stages of conventional cauliflower seeds were studied and the accumulation of dehydrin proteins through the maturation stages was investigated with the aim of identifying methods to improve the viability of artificial seeds of cauliflower. While carbohydrate, ash and lipids increased throughout the development of cauliflower traditional seeds, proteins increased with the development of seed and reached the maximum level after 75 days of pollination, however, the level of protein started to decrease after that. A significant increase in the accumulation of small size dehydrin proteins (12, 17, 26 KDa) was observed during the development of cauliflower seeds. Several experiments were conducted in order to increase the accumulation of important dehydrin proteins in cauliflower microshoots (artificial seeds). Mannitol and ABA (Absisic acid) increased the accumulation of dehydrins in cauliflower microshoots while cold acclimation did not have a significant impact on the accumulation of these proteins. Molybdenum treatments had a negative impact on dehydrin accumulation. Dehydrins have an important role in the drought tolerance of seeds and, therefore, the current research helps to improve the accumulation of these proteins in cauliflower artificial seeds. This in turns improves the quality of these artificial seeds. The current results suggest that dehydrins do not play an important role in cold tolerance of cauliflower artificial seeds. This study could have an important role in improving the understanding of the molecular mechanism of abiotic stress tolerance in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Characterization and structural analysis of wild type and a non-abscission mutant at the development funiculus (Def) locus in Pisum sativum L.

    PubMed

    Ayeh, Kwadwo Owusu; Lee, YeonKyeong; Ambrose, Mike J; Hvoslef-Eide, Anne Kathrine

    2009-06-23

    In pea seeds (Pisum sativum L.), the Def locus defines an abscission event where the seed separates from the funicle through the intervening hilum region at maturity. A spontaneous mutation at this locus results in the seed failing to abscise from the funicle as occurs in wild type peas. In this work, structural differences between wild type peas that developed a distinct abscission zone (AZ) between the funicle and the seed coat and non-abscission def mutant were characterized. A clear abscission event was observed in wild type pea seeds that were associated with a distinct double palisade layers at the junction between the seed coat and funicle. Generally, mature seeds fully developed an AZ, which was not present in young wild type seeds. The AZ was formed exactly below the counter palisade layer. In contrast, the palisade layers at the junction of the seed coat and funicle were completely absent in the def mutant pea seeds and the cells in this region were seen to be extensions of surrounding parenchymatous cells. The Def wild type developed a distinct AZ associated with palisade layer and counterpalisade layer at the junction of the seed coat and funicle while the def mutant pea seed showed non-abscission and an absence of the double palisade layers in the same region. We conclude that the presence of the double palisade layer in the hilum of the wild type pea seeds plays an important structural role in AZ formation by delimiting the specific region between the seed coat and the funicle and may play a structural role in the AZ formation and subsequent detachment of the seed from the funicle.

  4. TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis1[OPEN

    PubMed Central

    Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao

    2015-01-01

    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. PMID:26152712

  5. TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis.

    PubMed

    Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao

    2015-09-01

    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Towards a better monitoring of seed ageing under ex situ seed conservation

    PubMed Central

    Fu, Yong-Bi; Ahmed, Zaheer; Diederichsen, Axel

    2015-01-01

    Long-term conservation of 7.4 million ex situ seed accessions held in agricultural genebanks and botanic gardens worldwide is a challenging mission for human food security and ecosystem services. Recent advances in seed biology and genomics may have opened new opportunities for effective management of seed germplasm under long-term storage. Here, we review the current development of tools for assessing seed ageing and research advances in seed biology and genomics, with a focus on exploring their potential as better tools for monitoring of seed ageing. Seed ageing is found to be associated with the changes reflected in reactive oxygen species and mitochondria-triggered programmed cell deaths, expression of antioxidative genes and DNA and protein repair genes, chromosome telomere lengths, epigenetic regulation of related genes (microRNA and methylation) and altered organelle and nuclear genomes. Among these changes, the signals from mitochondrial and nuclear genomes may show the most promise for use in the development of tools to predict seed ageing. Non-destructive and non-invasive analyses of stored seeds through calorimetry or imaging techniques are also promising. It is clear that research into developing advanced tools for monitoring seed ageing to supplement traditional germination tests will be fruitful for effective conservation of ex situ seed germplasm. PMID:27293711

  7. Efficiency of seed production in southern pine seed orchards

    Treesearch

    David L. Bramlett

    1977-01-01

    Seed production in southern pine seed orchards can be evaluated by estimating the efficiency of four separate stages of cone, seed, and seedling development. Calculated values are: cone efficiency (CE), the ratio of mature cones to the initial flower crop; seed efficiency (SE), the ratio of filled seeds per cone to the seed potential; extraction efficiency (EE), the...

  8. Two early eudicot fossil flowers from the Kamikitaba assemblage (Coniacian, Late Cretaceous) in northeastern Japan

    DOE PAGES

    Takahashi, Masamichi; Herendeen, Patrick S.; Xiao, Xianghui

    2017-05-11

    Two new fossil taxa referable to the basal eudicot grade are described from the Kamikitaba locality (ca. 89 MYBP, early Coniacian: Late Cretaceous) in the Ashizawa Formation (Asamigawa Member) of Futaba Group in northeastern Japan. These charcoalified mesofossils exhibit well-preserved three-dimensional structure and were analyzed using synchrotron-radiation X-ray microtomography (SRXTM) at the Advanced Photon Source (APS) to document the composition and internal structure. Cathiaria japonica sp. nov. is represented by infructescence segments that consist of an axis bearing three to four fruits. The capsular fruits are sessile and dehiscent and consist of a gynoecium subtended by a bract. No perianthmore » parts are present. The gynoecium is monocarpellate containing two pendulous seeds. The carpel is ascidiate in the lower half and conduplicate in the upper part, style is deflected abaxially with a dorsiventral suture and a large, obliquely decurrent stigma. Pollen grains are tricolpate with a reticulate exine. The morphological features of Cathiaria are consistent with an assignment to the Buxaceae s. l. (including Didymelaceae). Archaeostella verticillata gen. et sp. nov. is represented by flowers that are small, actinomorphic, pedicellate, bisexual, semi-inferior, and multicarpellate. The floral receptacle is cup shaped with a perigynous perianth consisting of several tepals inserted around the rim. The androecium comprises ca. 120 stamens with clear differentiation into anther and filament. The anthers are basifixed and tetrasporangiate. The gynoecium consists of a whorl of ten conduplicate, laterally connate but distally distinct carpels with a conspicuous dorsal bulge, including a central cavity. The styles are short, becoming recurved with a ventrally decurrent stigma. The fruit type is a follicle. Seeds are ca. 10 per carpel, marginal, pendulous from the broad, oblique summit of the locule. Seeds are small, spindle-shaped, with a chalazal extension, Pollen grains are tricolpate with a reticulate exine pattern, suggesting a relationship to eudicots. The morphological features of Archaeostella indicate a possible relationship to Trochodendraceae in the basal grade of eudicots, although it is uncertain if the anther thecae open by longitudinal slits as in extant Trochodendron. The fossil currently provides the earliest record of the family and documents the presence of Trochodendraceae in eastern Eurasia during the middle part of the Late Cretaceous. Furthermore, the recovery of Cathiaria japonica and Archaeostella verticillata from the Kamikitaba locality suggests that the basal eudicot families Trochodendraceae and Buxaceae s. l. (including Didymelaceae) were differentiated and distributed in eastern Eurasia area during the Late Cretaceous.« less

  9. Two early eudicot fossil flowers from the Kamikitaba assemblage (Coniacian, Late Cretaceous) in northeastern Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Masamichi; Herendeen, Patrick S.; Xiao, Xianghui

    Two new fossil taxa referable to the basal eudicot grade are described from the Kamikitaba locality (ca. 89 MYBP, early Coniacian: Late Cretaceous) in the Ashizawa Formation (Asamigawa Member) of Futaba Group in northeastern Japan. These charcoalified mesofossils exhibit well-preserved three-dimensional structure and were analyzed using synchrotron-radiation X-ray microtomography (SRXTM) at the Advanced Photon Source (APS) to document the composition and internal structure. Cathiaria japonica sp. nov. is represented by infructescence segments that consist of an axis bearing three to four fruits. The capsular fruits are sessile and dehiscent and consist of a gynoecium subtended by a bract. No perianthmore » parts are present. The gynoecium is monocarpellate containing two pendulous seeds. The carpel is ascidiate in the lower half and conduplicate in the upper part, style is deflected abaxially with a dorsiventral suture and a large, obliquely decurrent stigma. Pollen grains are tricolpate with a reticulate exine. The morphological features of Cathiaria are consistent with an assignment to the Buxaceae s. l. (including Didymelaceae). Archaeostella verticillata gen. et sp. nov. is represented by flowers that are small, actinomorphic, pedicellate, bisexual, semi-inferior, and multicarpellate. The floral receptacle is cup shaped with a perigynous perianth consisting of several tepals inserted around the rim. The androecium comprises ca. 120 stamens with clear differentiation into anther and filament. The anthers are basifixed and tetrasporangiate. The gynoecium consists of a whorl of ten conduplicate, laterally connate but distally distinct carpels with a conspicuous dorsal bulge, including a central cavity. The styles are short, becoming recurved with a ventrally decurrent stigma. The fruit type is a follicle. Seeds are ca. 10 per carpel, marginal, pendulous from the broad, oblique summit of the locule. Seeds are small, spindle-shaped, with a chalazal extension, Pollen grains are tricolpate with a reticulate exine pattern, suggesting a relationship to eudicots. The morphological features of Archaeostella indicate a possible relationship to Trochodendraceae in the basal grade of eudicots, although it is uncertain if the anther thecae open by longitudinal slits as in extant Trochodendron. The fossil currently provides the earliest record of the family and documents the presence of Trochodendraceae in eastern Eurasia during the middle part of the Late Cretaceous. Furthermore, the recovery of Cathiaria japonica and Archaeostella verticillata from the Kamikitaba locality suggests that the basal eudicot families Trochodendraceae and Buxaceae s. l. (including Didymelaceae) were differentiated and distributed in eastern Eurasia area during the Late Cretaceous.« less

  10. Interference and economic threshold level of little seed canary grass in wheat under different sowing times.

    PubMed

    Hussain, Saddam; Khaliq, Abdul; Matloob, Amar; Fahad, Shah; Tanveer, Asif

    2015-01-01

    Little seed canary grass (LCG) is a pernicious weed of wheat crop causing enormous yield losses. Information on the interference and economic threshold (ET) level of LCG is of prime significance to rationalize the use of herbicide for its effective management in wheat fields. The present study was conducted to quantify interference and ET density of LCG in mid-sown (20 November) and late-sown (10 December) wheat. Experiment was triplicated in randomized split-plot design with sowing dates as the main plots and LCG densities (10, 20, 30, and 40 plants m(-2)) as the subplots. Plots with two natural infestations of weeds including and excluding LCG were maintained for comparing its interference in pure stands with designated densities. A season-long weed-free treatment was also run. Results indicated that composite stand of weeds, including LCG, and density of 40 LCG plants m(-2) were more competitive with wheat, especially when crop was sown late in season. Maximum weed dry biomass was attained by composite stand of weeds including LCG followed by 40 LCG plants m(-2) under both sowing dates. Significant variations in wheat growth and yield were observed under the influence of different LCG densities as well as sowing dates. Presence of 40 LCG plants m(-2) reduced wheat yield by 28 and 34% in mid- and late-sown wheat crop, respectively. These losses were much greater than those for infestation of all weeds, excluding LCG. Linear regression model was effective in simulating wheat yield losses over a wide range of LCG densities, and the regression equations showed good fit to observed data. The ET levels of LCG were 6-7 and 2.2-3.3 plants m(-2) in mid- and late-sown wheat crop, respectively. Herbicide should be applied in cases when LCG density exceeds these levels under respective sowing dates.

  11. Seed-to-Seed-to-Seed Growth and Development of Arabidopsis in Microgravity

    PubMed Central

    Link, Bruce M.; Busse, James S.

    2014-01-01

    Abstract Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves. Key Words: Arabidopsis—Branch—Inflorescence—Microgravity—Morphology—Seed—Space. Astrobiology 14, 866–875. PMID:25317938

  12. Early perception of stink bug damage in developing seeds of field-grown soybean induces chemical defences and reduces bug attack.

    PubMed

    Giacometti, Romina; Barneto, Jesica; Barriga, Lucia G; Sardoy, Pedro M; Balestrasse, Karina; Andrade, Andrea M; Pagano, Eduardo A; Alemano, Sergio G; Zavala, Jorge A

    2016-08-01

    Southern green stink bugs (Nezara viridula L.) invade field-grown soybean crops, where they feed on developing seeds and inject phytotoxic saliva, which causes yield reduction. Although leaf responses to herbivory are well studied, no information is available about the regulation of defences in seeds. This study demonstrated that mitogen-activated protein kinases MPK3, MPK4 and MPK6 are expressed and activated in developing seeds of field-grown soybean and regulate a defensive response after stink bug damage. Although 10-20 min after stink bug feeding on seeds induced the expression of MPK3, MPK6 and MPK4, only MPK6 was phosphorylated after damage. Herbivory induced an early peak of jasmonic acid (JA) accumulation and ethylene (ET) emission after 3 h in developing seeds, whereas salicylic acid (SA) was also induced early, and at increasing levels up to 72 h after damage. Damaged seeds upregulated defensive genes typically modulated by JA/ET or SA, which in turn reduced the activity of digestive enzymes in the gut of stink bugs. Induced seeds were less preferred by stink bugs. This study shows that stink bug damage induces seed defences, which is perceived early by MPKs that may activate defence metabolic pathways in developing seeds of field-grown soybean. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins.

    PubMed

    Gao, Yongfeng; Liu, Jikai; Chen, Yongfu; Tang, Hai; Wang, Yang; He, Yongmei; Ou, Yongbin; Sun, Xiaochun; Wang, Songhu; Yao, Yinan

    2018-01-01

    The flavonoid compounds are important secondary metabolites with versatile human nutritive benefits and fulfill a multitude of functions during plant growth and development. The abundance of different flavonoid compounds are finely tuned with species-specific pattern by a ternary MBW complex, which consists of a MYB, a bHLH, and a WD40 protein, but the essential role of SlAN11, which is a WD40 protein, is not fully understood in tomato until now. In this study, a tomato WD40 protein named as SlAN11 was characterized as an effective transcription regulator to promote plant anthocyanin and seed proanthocyanidin (PA) contents, with late flavonoid biosynthetic genes activated in 35S::SlAN11 transgenic lines, while the dihydroflavonol flow to the accumulation of flavonols or their glycosylated derivatives was reduced by repressing the expression of SlFLS in this SlAN11 -overexpressed lines. The above changes were reversed in 35S::SlAN11-RNAi transgenic lines except remained levels of flavonol compounds and SlFLS expression. Interestingly, our data revealed that SlAN11 gene could affect seed dormancy by regulating the expressions of abscisic acid (ABA) signaling-related genes SlABI3 and SlABI5 , and the sensitivity to ABA treatment in seed germination is conversely changed by SlAN11 -overexpressed or -downregulated lines. Yeast two-hybrid assays demonstrated that SlAN11 interacted with bHLH but not with MYB proteins in the ternary MBW complex, whereas bHLH interacted with MYB in tomato. Our results indicated that low level of anthocyanins in tomato fruits, with low expression of bHLH ( SlTT8 ) and MYB ( SlANT1 and SlAN2 ) genes, remain unchanged upon modification of SlAN11 gene alone in the transgenic lines. These results suggest that the tomato WD40 protein SlAN11, coordinating with bHLH and MYB proteins, plays a crucial role in the fine adjustment of the flavonoid biosynthesis and seed dormancy in tomato.

  14. TaCYP78A5 regulates seed size in wheat (Triticum aestivum).

    PubMed

    Ma, Meng; Zhao, Huixian; Li, Zhaojie; Hu, Shengwu; Song, Weining; Liu, Xiangli

    2016-03-01

    Seed size is an important agronomic trait and a major component of seed yield in wheat. However, little is known about the genes and mechanisms that determine the final seed size in wheat. Here, we isolated TaCYP78A5, the orthologous gene of Arabidopsis CYP78A5/KLUH in wheat, from wheat cv. Shaan 512 and demonstrated that the expression of TaCYP78A5 affects seed size. TaCYP78A5 encodes the cytochrome P450 (CYP) 78A5 protein in wheat and rescued the phenotype of the Arabidopsis deletion mutant cyp78a5. By affecting the extent of integument cell proliferation in the developing ovule and seed, TaCYP78A5 influenced the growth of the seed coat, which appears to limit seed growth. TaCYP78A5 silencing caused a 10% reduction in cell numbers in the seed coat, resulting in a 10% reduction in seed size in wheat cv. Shaan 512. By contrast, the overexpression of TaCYP78A5 increased the number of cells in the seed coat, resulting in seed enlargement of ~11-35% in Arabidopsis. TaCYP78A5 activity was positively correlated with the final seed size. However, TaCYP78A5 overexpression significantly reduced seed set in Arabidopsis, possibly due to an ovule development defect. TaCYP78A5 also influenced embryo development by promoting embryo integument cell proliferation during seed development. Accordingly, a working model of the influence of TaCYP7A5 on seed size was proposed. This study provides direct evidence that TaCYP78A5 affects seed size and is a potential target for crop improvement. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Dynamic changes of genome-wide DNA methylation during soybean seed development

    USDA-ARS?s Scientific Manuscript database

    Seed development is programmed by expression of many genes in plants. Seed maturation is an important developmental process to soybean seed quality and yield. DNA methylation is a major epigenetic modification regulating gene expression. However, little is known about the dynamic nature of DNA me...

  16. Seeds in space experiment results

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1991-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the space exposed experiment developed for students (SEEDS) tray in sealed canister number six and in two small vented canisters. The tray was in the F-2 position. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in Park Seed's seed storage facility. The initial results are presented. There was a better survival rate in the sealed canister in space than in the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.

  17. Activation of Arabidopsis Seed Hair Development by Cotton Fiber-Related Genes

    PubMed Central

    Pang, Mingxiong; Shi, Xiaoli; Stelly, David M.; Chen, Z. Jeffrey

    2011-01-01

    Each cotton fiber is a single-celled seed trichome or hair, and over 20,000 fibers may develop semi-synchronously on each seed. The molecular basis for seed hair development is unknown but is likely to share many similarities with leaf trichome development in Arabidopsis. Leaf trichome initiation in Arabidopsis thaliana is activated by GLABROUS1 (GL1) that is negatively regulated by TRIPTYCHON (TRY). Using laser capture microdissection and microarray analysis, we found that many putative MYB transcription factor and structural protein genes were differentially expressed in fiber and non-fiber tissues. Gossypium hirsutum MYB2 (GhMYB2), a putative GL1 homolog, and its downstream gene, GhRDL1, were highly expressed during fiber cell initiation. GhRDL1, a fiber-related gene with unknown function, was predominately localized around cell walls in stems, sepals, seed coats, and pollen grains. GFP:GhRDL1 and GhMYB2:YFP were co-localized in the nuclei of ectopic trichomes in siliques. Overexpressing GhRDL1 or GhMYB2 in A. thaliana Columbia-0 (Col-0) activated fiber-like hair production in 4–6% of seeds and had on obvious effects on trichome development in leaves or siliques. Co-overexpressing GhRDL1 and GhMYB2 in A. thaliana Col-0 plants increased hair formation in ∼8% of seeds. Overexpressing both GhRDL1 and GhMYB2 in A. thaliana Col-0 try mutant plants produced seed hair in ∼10% of seeds as well as dense trichomes inside and outside siliques, suggesting synergistic effects of GhRDL1 and GhMYB2 with try on development of trichomes inside and outside of siliques and seed hair in A. thaliana. These data suggest that a different combination of factors is required for the full development of trichomes (hairs) in leaves, siliques, and seeds. A. thaliana can be developed as a model a system for discovering additional genes that control seed hair development in general and cotton fiber in particular. PMID:21779324

  18. Deciphering Transcriptional Programming during Pod and Seed Development Using RNA-Seq in Pigeonpea (Cajanus cajan).

    PubMed

    Pazhamala, Lekha T; Agarwal, Gaurav; Bajaj, Prasad; Kumar, Vinay; Kulshreshtha, Akanksha; Saxena, Rachit K; Varshney, Rajeev K

    2016-01-01

    Seed development is an important event in plant life cycle that has interested humankind since ages, especially in crops of economic importance. Pigeonpea is an important grain legume of the semi-arid tropics, used mainly for its protein rich seeds. In order to understand the transcriptional programming during the pod and seed development, RNA-seq data was generated from embryo sac from the day of anthesis (0 DAA), seed and pod wall (5, 10, 20 and 30 DAA) of pigeonpea variety "Asha" (ICPL 87119) using Illumina HiSeq 2500. About 684 million sequencing reads have been generated from nine samples, which resulted in the identification of 27,441 expressed genes after sequence analysis. These genes have been studied for their differentially expression, co-expression, temporal and spatial gene expression. We have also used the RNA-seq data to identify important seed-specific transcription factors, biological processes and associated pathways during seed development process in pigeonpea. The comprehensive gene expression study from flowering to mature pod development in pigeonpea would be crucial in identifying candidate genes involved in seed traits directly or indirectly related to yield and quality. The dataset will serve as an important resource for gene discovery and deciphering the molecular mechanisms underlying various seed related traits.

  19. Deciphering Transcriptional Programming during Pod and Seed Development Using RNA-Seq in Pigeonpea (Cajanus cajan)

    PubMed Central

    Pazhamala, Lekha T.; Agarwal, Gaurav; Bajaj, Prasad; Kumar, Vinay; Kulshreshtha, Akanksha; Saxena, Rachit K.; Varshney, Rajeev K.

    2016-01-01

    Seed development is an important event in plant life cycle that has interested humankind since ages, especially in crops of economic importance. Pigeonpea is an important grain legume of the semi-arid tropics, used mainly for its protein rich seeds. In order to understand the transcriptional programming during the pod and seed development, RNA-seq data was generated from embryo sac from the day of anthesis (0 DAA), seed and pod wall (5, 10, 20 and 30 DAA) of pigeonpea variety “Asha” (ICPL 87119) using Illumina HiSeq 2500. About 684 million sequencing reads have been generated from nine samples, which resulted in the identification of 27,441 expressed genes after sequence analysis. These genes have been studied for their differentially expression, co-expression, temporal and spatial gene expression. We have also used the RNA-seq data to identify important seed-specific transcription factors, biological processes and associated pathways during seed development process in pigeonpea. The comprehensive gene expression study from flowering to mature pod development in pigeonpea would be crucial in identifying candidate genes involved in seed traits directly or indirectly related to yield and quality. The dataset will serve as an important resource for gene discovery and deciphering the molecular mechanisms underlying various seed related traits. PMID:27760186

  20. A stress-associated protein containing A20/AN1 zing-finger domains expressed in Medicago truncatula seeds.

    PubMed

    Gimeno-Gilles, Christine; Gervais, Marie-Laure; Planchet, Elisabeth; Satour, Pascale; Limami, Anis M; Lelievre, Eric

    2011-03-01

    MtSAP1 (Medicago truncatula stress-associated protein 1) was revealed as a down-regulated gene by suppressive subtractive hybridization between two mRNA populations of embryo axes harvested before and after radicle emergence. MtSAP1 is the first gene encoding a SAP with A20 and AN1 zinc-finger domains characterized in M. truncatula. MtSAP1 protein shares 54% and 62% homology with AtSAP7 (Arabidopsis thaliana) and OsiSAP8 (Oryza sativa) respectively, with in particular a strong homology in the A20 and AN1 conserved domains. MtSAP1 gene expression increased in the embryos during the acquisition of tolerance to desiccation, reached its maximum in dry seed and decreased dramatically during the first hours of imbibition. Abiotic stresses (cold and hypoxia), abscisic acid and desiccation treatments induced MtSAP1 gene expression and protein accumulation in embryo axis, while mild drought stress did not affect significantly its expression. This profile of expression along with the presence of anaerobic response elements and ABRE sequences in the upstream region of the gene is consistent with a role of MtSAP1 in the tolerance of low oxygen availability and desiccation during late stages of seed maturation. Silencing of MtSAP1 by RNA interference (RNAi) showed that the function of the encoded protein is required for adequate accumulation of storage globulin proteins, vicilin and legumin, and for the development of embryos able to achieve successful germination. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum

    PubMed Central

    Hay, F. R.; Smith, R. D.; Ellis, R. H.; Butler, L. H.

    2010-01-01

    Background and Aims Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds. Methods Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits. Key Results Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period. Conclusions Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors. PMID:20228084

  2. Rice Fertilization-Independent Endosperm1 Regulates Seed Size under Heat Stress by Controlling Early Endosperm Development1[W

    PubMed Central

    Folsom, Jing J.; Begcy, Kevin; Hao, Xiaojuan; Wang, Dong; Walia, Harkamal

    2014-01-01

    Although heat stress reduces seed size in rice (Oryza sativa), little is known about the molecular mechanisms underlying the observed reduction in seed size and yield. To elucidate the mechanistic basis of heat sensitivity and reduced seed size, we imposed a moderate (34°C) and a high (42°C) heat stress treatment on developing rice seeds during the postfertilization stage. Both stress treatments reduced the final seed size. At a cellular level, the moderate heat stress resulted in precocious endosperm cellularization, whereas severe heat-stressed seeds failed to cellularize. Initiation of endosperm cellularization is a critical developmental transition required for normal seed development, and it is controlled by Polycomb Repressive Complex2 (PRC2) in Arabidopsis (Arabidopsis thaliana). We observed that a member of PRC2 called Fertilization-Independent Endosperm1 (OsFIE1) was sensitive to temperature changes, and its expression was negatively correlated with the duration of the syncytial stage during heat stress. Seeds from plants overexpressing OsFIE1 had reduced seed size and exhibited precocious cellularization. The DNA methylation status and a repressive histone modification of OsFIE1 were observed to be temperature sensitive. Our data suggested that the thermal sensitivity of seed enlargement could partly be caused by altered epigenetic regulation of endosperm development during the transition from the syncytial to the cellularized state. PMID:24590858

  3. Early-acting inbreeding depression and reproductive success in the highbush blueberry, Vaccinium corymbosum L.

    PubMed

    Krebs, S L; Hancock, J F

    1990-06-01

    Tetraploid Vaccinium corymbosum genotypes exhibit wide variability in seed set following self- and cross-pollinations. In this paper, a post-zygotic mechanism (seed abortion) under polygenic control is proposed as the basis for fertility differences in this species. A pollen chase experiment indicated that self-pollen tubes fertilize ovules, but are also 'outcompeted' by foreign male gametes in pollen mixtures. Matings among cultivars derived from a pedigree showed a linear decrease in seed number per fruit, and increase in seed abortion, with increasing relatedness among parents. Selfed (S1) progeny from self-fertile parents were largely self-sterile. At zygotic levels of inbreeding of F>0.3 there was little or no fertility, suggesting that an inbreeding threshold regulates reproductive success in V. corymbosum matings. Individuals below the threshold are facultative selfers, while those above it are obligate outcrossers. Inbreeding also caused a decrease in pollen viability, and reduced female fertility more rapidly than male fertility. These phenomena are discussed in terms of two models of genetic load: (1) mutational load - homozygosity for recessive embryolethal or sub-lethal mutations and (2) segregational load - loss of allelic interactions essential for embryonic vigor. Self-infertility in highbush blueberries is placed in the context of 'late-acting' self-incompatibility versus 'early-acting' inbreeding depression in angiosperms.

  4. Tracing impacts of partner abundance in facultative pollination mutualisms: from individuals to populations.

    PubMed

    Geib, Jennifer C; Galen, Candace

    2012-07-01

    Partner abundance affects costs and benefits in obligate mutualisms, but its role in facultative partnerships is less clear. We address this gap in a pollination web consisting of two clovers (Trifolium) that differ in specialization on a bumble bee pollinator Bombus balteatus. We examine how pollination niche breadth affects plant responses to pollinator abundance, comparing early-flowering (specialized) and late-flowering (generalized) cohorts of T. parryi and early T. parryi to T. dasyphyllum, a pollination generalist. Co-pollinators disrupt the link between B. halteatus visitation and pollination rate for both clovers. Only for early-flowering T. parryi do visitation, pollination, and seed set increase with density of B. balteatus. Bumble bee density also alters timing of seed germination in T. parryi, with seeds from plants receiving augmented B. balteatus germinating sooner than seeds of open-pollinated counterparts. Benefits saturate at intermediate bumble bee densities. Despite strong effects of B. balteatus density on individual plant fitness components, population models suggest little impact of B. balteatus density on lamda in T. parryi or T. dasyphyllum. Findings show that functional redundancy in a pollinator guild mediates host-plant responses to partner density. Unexpected effects of pollinator density on life history schedule have implications for recruitment under pollinator decline.

  5. First discovery of fossil winged seeds of Pinus L. (family Pinaceae) from the Indian Cenozoic and its palaeobiogeographic significance

    NASA Astrophysics Data System (ADS)

    Khan, Mahasin Ali; Bera, Subir

    2017-07-01

    The occurrences of Pinus L. (family Pinaceae) megafossils (cones and leaf remains) have been abundantly documented from the Cenozoic sediments of eastern Asia (Japan and China), but none has been confirmed from the Indian Cenozoic till date. Here, we describe Pinus arunachalensis Khan and Bera, sp. nov. on the basis of seed remains from the middle to late Miocene Siwalik sediments of the Dafla Formation exposed around West Kameng district in Arunachal Pradesh, eastern Himalaya. Seeds are winged, broadly oblong to oval in outline, 1.3-1.5 cm long and 0.4-0.6 cm broad (in the middle part), located basipetally and symmetrically to wing, cellular pattern of wing is seemingly undulatory and parallel with the long axis of the wing. So far, this report provides the first ever fossil record of Pinus winged seeds from India. This record suggests that Pinus was an important component of tropical-subtropical evergreen forest in the area during the Miocene and this group subsequently declined from the local vegetation probably because of the gradual intensification of MSI (monsoon index) from the Miocene to the present. We also review the historical phytogeography and highlight the phytogeographic implication of this genus.

  6. Cephalaria transsylvanica-Based Flower Strips as Potential Food Source for Bees during Dry Periods in European Mediterranean Basin Countries

    PubMed Central

    Benelli, Giovanni; Benvenuti, Stefano; Desneux, Nicolas; Canale, Angelo

    2014-01-01

    The introduction of sown wildflower strips favours the establishment of pollinator communities, with special reference to social Apoidea. Here, we evaluated the late summer flowering Cephalaria transsylvanica as suitable species for strips providing food for pollinators in paucity periods. C. transsylvanica showed no particular requirements in terms of seed germination and growth during summer. This plant had an excellent potential of self-seeding and competitiveness towards weed competitors. C. transsylvanica prevented from entomophilous pollination showed inbreeding depression, with a decrease in seed-set and accumulation of seed energy reserves. However, C. transsylvanica did not appear to be vulnerable in terms of pollination biology since it had a wide range of pollinators including bees, hoverflies and Lepidoptera. C. transsylvanica was visited mainly by honeybees and bumblebees and these latter pollinators increased their visits on C. transsylvanica flowers during early autumn. This plant may be useful as an abundant source of pollen during food paucity periods, such as autumn. We proposed C. transsylvanica for incorporation into flower strips to be planted in non-cropped farmlands in intensively managed agricultural areas as well as in proximity of beehives. The latter option may facilitate the honeybees collecting pollen and nectar for the colony, thereby ensuring robustness to overcome the winter season. PMID:24676345

  7. Cephalaria transsylvanica-based flower strips as potential food source for bees during dry periods in European Mediterranean basin countries.

    PubMed

    Benelli, Giovanni; Benvenuti, Stefano; Desneux, Nicolas; Canale, Angelo

    2014-01-01

    The introduction of sown wildflower strips favours the establishment of pollinator communities, with special reference to social Apoidea. Here, we evaluated the late summer flowering Cephalaria transsylvanica as suitable species for strips providing food for pollinators in paucity periods. C. transsylvanica showed no particular requirements in terms of seed germination and growth during summer. This plant had an excellent potential of self-seeding and competitiveness towards weed competitors. C. transsylvanica prevented from entomophilous pollination showed inbreeding depression, with a decrease in seed-set and accumulation of seed energy reserves. However, C. transsylvanica did not appear to be vulnerable in terms of pollination biology since it had a wide range of pollinators including bees, hoverflies and Lepidoptera. C. transsylvanica was visited mainly by honeybees and bumblebees and these latter pollinators increased their visits on C. transsylvanica flowers during early autumn. This plant may be useful as an abundant source of pollen during food paucity periods, such as autumn. We proposed C. transsylvanica for incorporation into flower strips to be planted in non-cropped farmlands in intensively managed agricultural areas as well as in proximity of beehives. The latter option may facilitate the honeybees collecting pollen and nectar for the colony, thereby ensuring robustness to overcome the winter season.

  8. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism

    PubMed Central

    Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang

    2018-01-01

    Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan. PMID:29694395

  9. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism.

    PubMed

    Xu, Zheng; Ni, Jun; Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang; Fu, Songling

    2018-01-01

    Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan.

  10. Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L. Gartn.).

    PubMed

    Mirza, Neelofar; Taj, Gohar; Arora, Sandeep; Kumar, Anil

    2014-10-25

    Finger millet (Eleusine coracana) variably accumulates calcium in different tissues, due to differential expression of genes involved in uptake, translocation and accumulation of calcium. Ca(2+)/H(+) antiporter (CAX1), two pore channel (TPC1), CaM-stimulated type IIB Ca(2+) ATPase and two CaM dependent protein kinase (CaMK1 and 2) homologs were studied in finger millet. Two genotypes GP-45 and GP-1 (high and low calcium accumulating, respectively) were used to understand the role of these genes in differential calcium accumulation. For most of the genes higher expression was found in the high calcium accumulating genotype. CAX1 was strongly expressed in the late stages of spike development and could be responsible for accumulating high concentrations of calcium in seeds. TPC1 and Ca(2+) ATPase homologs recorded strong expression in the root, stem and developing spike and signify their role in calcium uptake and translocation, respectively. Calmodulin showed strong expression and a similar expression pattern to the type IIB ATPase in the developing spike only and indicating developing spike or even seed specific isoform of CaM affecting the activity of downstream target of calcium transportation. Interestingly, CaMK1 and CaMK2 had expression patterns similar to ATPase and TPC1 in various tissues raising a possibility of their respective regulation via CaM kinase. Expression pattern of 14-3-3 gene was observed to be similar to CAX1 gene in leaf and developing spike inferring a surprising possibility of CAX1 regulation through 14-3-3 protein. Our results provide a molecular insight for explaining the mechanism of calcium accumulation in finger millet. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Potential effects of arboreal and terrestrial avian dispersers on seed dormancy, seed germination and seedling establishment in Ormosia (Papilionoideae) species in Peru

    USGS Publications Warehouse

    Foster, Mercedes S.

    2008-01-01

    The relative effectiveness of arboreal or terrestrial birds at dispersing seeds of Ormosia macrocalyx and O. bopiensis (Fabaceae: Papilionoideae) were studied in south-eastern Peru. Seeds of both species were either scarified, to represent seed condition after dispersal by terrestrial birds, or left intact, to represent seed condition after dispersal by arboreal birds. Seeds were distributed along forest transects, and germination, seedling development and mortality were monitored to determine the successes of the two groups at producing seedlings. Scarified seeds germinated with the early rains of the dry-to-wet-season transition, when erratic rainfall was interspersed with long dry spells. Intact seeds germinated 30 d later when the rain was more plentiful and regular. Intact seeds of O. macrocalyx gave rise to significantly more seedlings (41.1% vs. 25.5%) than did scarified seeds, in part, because significantly more seedlings from scarified seeds (n = 20) than from intact seeds (n = 3) died from desiccation when their radicles failed to enter the dry ground present during the dry-to-wet-season transition. Also, seedlings from scarified seeds were neither larger nor more robust than those from intact seeds despite their longer growing period. Results are consistent with the hypothesis that dispersal effectiveness of arboreal birds, at least for O. macrocalyx, is greater than that of terrestrial birds. Screen-house experiments in which seedlings developed under different watering regimes supported this result. Numbers of seedlings developing from intact and scarified seeds of O. bopiensis did not differ significantly.

  12. Oleoresin crystallization in eastern white pine: relationships with chemical components of cortical oleoresin and resistance to the white-pine weevil

    Treesearch

    Ronald C. Wilkinson

    1979-01-01

    Natural and weevil-larva-induced crystallization of oleoresin from 45 eastern white pine trees with known resin acid and monoterpene composition, and from 59 pairs of nonweeviled and heavily weeviled trees from the same seed sources, was examined in mid- and late spring. Very little difference was found between larva-induced and natural crystallization. Strobic acid-...

  13. Crisis, Criteria, and Coercion - Beyond Half Measures: The US Marine Corps and Mass Atrocity Response Operations

    DTIC Science & Technology

    2017-05-25

    war is a breeding ground for human atrocities. There exists a large body of scholarship on the relationship between war, politics, and occasions of...considerations are secondary to pursuing political ends. The Responsibility to Protect The seeds of R2P were planted in the late 1990s by humanitarian...respecting commercial shipping. 113 Headquarters, US Marine Corps, Concepts and Programs, 6

  14. Insights on germinability and desiccation tolerance in developing neem seeds (Azadirachta indica): Role of AOS, antioxidative enzymes and dehydrin-like protein.

    PubMed

    Sahu, Balram; Sahu, Alok Kumar; Chennareddy, Srinivasa Rao; Soni, Avinash; Naithani, Subhash Chandra

    2017-03-01

    The germinability and desiccation tolerance (DT) in developing seed are regulated by cellular metabolism involving active oxygen species (AOS) and protective proteins during maturation drying. The aim of the present investigation was to unravel the functions of AOS (superoxide, H 2 O 2 and OH-radical), antioxidative enzymes (SOD, CAT and APX) and dehydrin-like proteins in regulating the germinability and DT in undried and artificially desiccated developing neem seeds. Germination was first observed in seeds of 8 weeks after anthesis (waa) whereas DT was noticed from 9 waa. High levels of superoxide in undried and artificially desiccated seeds of 9 waa were rapidly declined up to 15 waa with simultaneous increase in levels of SOD (quantitative and isoenzymes) that dismutates superoxide with corresponding formation and accumulation of H 2 O 2 . Activities and isoenzymes of APX and CAT were promoted in seeds from 9 to 12 waa. Intensity of dehydrin-like proteins increased as development progressed in seeds with higher intensities in slow dried (SD) seeds. Desiccation modulated the metabolism for the acquisition of germinability and DT in the developing neem seeds from 8 to 15 waa by altering the levels of superoxide, H 2 O 2 and OH-radical those possibly act as signalling molecules for reprogramming protective proteins. Desiccation mediated the expression of new bands of SOD and APX in undried as well as SD seeds during 9-12 waa but the bands were more intense in SD seeds. The superoxide and H 2 O 2 -regulated intensity of dehydrin-like protein in SD seeds further validated our conclusion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds

    PubMed Central

    Borland, Helena; Vilhardt, Frederik

    2017-01-01

    A mechanistic link between neuron-to-neuron transmission of secreted amyloid and propagation of protein malconformation cytopathology and disease has recently been uncovered in animal models. An enormous interest in the unconventional secretion of amyloids from neurons has followed. Amphisomes and late endosomes are the penultimate maturation products of the autophagosomal and endosomal pathways, respectively, and normally fuse with lysosomes for degradation. However, under conditions of perturbed membrane trafficking and/or lysosomal deficiency, prelysosomal compartments may instead fuse with the plasma membrane to release any contained amyloid. After a brief introduction to the endosomal and autophagosomal pathways, we discuss the evidence for autophagosomal secretion (exophagy) of amyloids, with a comparative emphasis on Aβ1–42 and α-synuclein, as luminal and cytosolic amyloids, respectively. The ESCRT-mediated import of cytosolic amyloid into late endosomal exosomes, a known vehicle of transmission of macromolecules between cells, is also reviewed. Finally, mechanisms of lysosomal dysfunction, deficiency, and exocytosis are exemplified in the context of genetically identified risk factors, mainly for Parkinson’s disease. Exocytosis of prelysosomal or lysosomal organelles is a last resort for clearance of cytotoxic material and alleviates cytopathy. However, they also represent a vehicle for the concentration, posttranslational modification, and secretion of amyloid seeds. PMID:28124989

  16. A lower Cretaceous (Valanginian) seed cone provides the earliest fossil record for Picea (Pinaceae).

    PubMed

    Klymiuk, Ashley A; Stockey, Ruth A

    2012-06-01

    Sequence analyses for Pinaceae have suggested that extant genera diverged in the late Mesozoic. While the fossil record indicates that Pinaceae was highly diverse during the Cretaceous, there are few records of living genera. This description of an anatomically preserved seed cone extends the fossil record for Picea A. Dietrich (Pinaceae) by ∼75 Ma. The specimen was collected from the Apple Bay locality of Vancouver Island (Lower Cretaceous, Valanginian) and is described from anatomical sections prepared using cellulose acetate peels. Cladistic analyses of fossil and extant pinaceous seed cones employed parsimony ratchet searches of an anatomical and morphological matrix. This new seed cone has a combination of characters shared only with the genus Picea A. Dietr. and is thus described as Picea burtonii Klymiuk et Stockey sp. nov. Bisaccate pollen attributable to Picea is found in the micropyles of several ovules, corroborating the designation of this cone as an early spruce. Cladistic analyses place P. burtonii with extant Picea and an Oligocene representative of the genus. Furthermore, our analyses indicate that Picea is sister to Cathaya Chun et Kuang, and P. burtonii helps to establish a minimum date for this node in hypotheses of conifer phylogeny. As an early member of the extant genus Picea, this seed cone extends the fossil record of Picea to the Valanginian Stage of the Early Cretaceous, ca. 136 Ma, thereby resolving a ghost lineage predicted by molecular divergence analyses, and offers new insight into the evolution of Pinaceae.

  17. Fitness drivers in the threatened Dianthus guliae Janka (Caryophyllaceae): disentangling effects of growth context, maternal influence and inbreeding depression.

    PubMed

    Gargano, D; Gullo, T; Bernardo, L

    2011-01-01

    We studied inbreeding depression, growth context and maternal influence as constraints to fitness in the self-compatible, protandrous Dianthus guliae Janka, a threatened Italian endemic. We performed hand-pollinations to verify outcomes of self- and cross-fertilisation over two generations, and grew inbred and outbred D. guliae offspring under different conditions - in pots, a common garden and field conditions (with/without nutrient addition). The environment influenced juvenile growth and flowering likelihood/rate, but had little effect on inbreeding depression. Significant interactions among genetic and environmental factors influenced female fertility. Overall, genetic factors strongly affected both early (seed mass, seed germination, early survival) and late (seed/ovule ratio) life-history traits. After the first pollination experiment, we detected higher mortality in the selfed progeny, which is possibly a consequence of inbreeding depression caused by over-expression of early-acting deleterious alleles. The second pollination induced a strong loss of reproductive fitness (seed production, seed mass) in inbred D. guliae offspring, regardless of the pollination treatment (selfing/crossing); hence, a strong (genetic) maternal influence constrained early life-history traits of the second generation. Based on current knowledge, we conclude that self-compatibility does not prevent the detrimental effects of inbreeding in D. guliae populations, and may increase the severe extinction risk if out-crossing rates decrease. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Endoreduplication intensity as a marker of seed developmental stage in the Fabaceae.

    PubMed

    Rewers, Monika; Sliwinska, Elwira

    2012-12-01

    Flow cytometry (FCM) can be used to study cell cycle activity in developing, mature and germinating seeds. It provides information about a seed's physiological state and therefore can be used by seed growers for assessing optimal harvest times and presowing treatments. Because an augmented proportion of 4C nuclei usually is indicative of high mitotic activity, the 4C/2C ratio is commonly used to follow the progress of seed development and germination. However, its usefulness for polysomatic (i.e., containing cells with different DNA content) seeds is questioned. Changes in cell cycle/endoreduplication activity in developing seeds of five members of the Fabaceae were studied to determine a more suitable marker of seed developmental stages for polysomatic species based on FCM measurements. Seeds of Phaseolus vulgaris, Medicago sativa, Pisum sativum, Vicia sativa, and Vicia faba var. minor were collected 20, 30, 40, 50, and 60 days after flowering (DAF), embryos were isolated and the proportion of nuclei with different DNA contents in the embryo axis and cotyledon was established. The ratios 4C/2C and (Σ>2C)/2C were calculated. Dried seeds were subjected to laboratory germination tests following international seed testing association (ISTA) rules. Additionally, the absolute nuclear DNA content was estimated in the leaves of the studied species. During seed development nuclei with DNA contents from 2C to 128C were detected; the endopolyploidy pattern depended on the species, seed organ and developmental stage. The cell cycle/endoreduplication parameters correlated negatively with genome size. The (Σ>2C)/2C ratio in the cotyledons reflected the seed developmental stage and corresponded with seed germinability. Therefore, this ratio is recommended as a marker in polysomatic seed research and production instead of the 4C/2C ratio, which does not consider the occurrence of endopolyploid cells. Copyright © 2012 International Society for Advancement of Cytometry.

  19. Transcriptional changes during ovule development in two genotypes of litchi (Litchi chinensis Sonn.) with contrast in seed size.

    PubMed

    Pathak, Ashish K; Singh, Sudhir P; Gupta, Yogesh; Gurjar, Anoop K S; Mantri, Shrikant S; Tuli, Rakesh

    2016-11-08

    Litchi chinensis is a subtropical fruit crop, popular for its nutritional value and taste. Fruits with small seed size and thick aril are desirable in litchi. To gain molecular insight into gene expression that leads to the reduction in the size of seed in Litchi chinensis, transcriptomes of two genetically closely related genotypes, with contrasting seed size were compared in developing ovules. The cDNA library constructed from early developmental stages of ovules (0, 6, and 14 days after anthesis) of bold- and small-seeded litchi genotypes yielded 303,778,968 high quality paired-end reads. These were de-novo assembled into 1,19,939 transcripts with an average length of 865 bp. A total of 10,186 transcripts with contrast in expression were identified in developing ovules between the small- and large- seeded genotypes. A majority of these differences were present in ovules before anthesis, thus suggesting the role of maternal factors in seed development. A number of transcripts indicative of metabolic stress, expressed at higher level in the small seeded genotype. Several differentially expressed transcripts identified in such ovules showed homology with Arabidopsis genes associated with different stages of ovule development and embryogenesis.

  20. Brassinosteroid Regulates Seed Size and Shape in Arabidopsis1[W][OPEN

    PubMed Central

    Jiang, Wen-Bo; Huang, Hui-Ya; Hu, Yu-Wei; Zhu, Sheng-Wei; Wang, Zhi-Yong; Lin, Wen-Hui

    2013-01-01

    Seed development is important for agriculture productivity. We demonstrate that brassinosteroid (BR) plays crucial roles in determining the size, mass, and shape of Arabidopsis (Arabidopsis thaliana) seeds. The seeds of the BR-deficient mutant de-etiolated2 (det2) are smaller and less elongated than those of wild-type plants due to a decreased seed cavity, reduced endosperm volume, and integument cell length. The det2 mutant also showed delay in embryo development, with reduction in both the size and number of embryo cells. Pollination of det2 flowers with wild-type pollen yielded seeds of normal size but still shortened shape, indicating that the BR produced by the zygotic embryo and endosperm is sufficient for increasing seed volume but not for seed elongation, which apparently requires BR produced from maternal tissues. BR activates expression of SHORT HYPOCOTYL UNDER BLUE1, MINISEED3, and HAIKU2, which are known positive regulators of seed size, but represses APETALA2 and AUXIN RESPONSE FACTOR2, which are negative regulators of seed size. These genes are bound in vivo by the BR-activated transcription factor BRASSINAZOLE-RESISTANT1 (BZR1), and they are known to influence specific processes of integument, endosperm, and embryo development. Our results demonstrate that BR regulates seed size and seed shape by transcriptionally modulating specific seed developmental pathways. PMID:23771896

  1. Continued results of the seeds in space experiment

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1993-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seed were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The tray was in the F-2 position. The seed were germinated and the germination rates and the development of the resulting plants were compared to the performance of the control seed that stayed in Park Seed's seed storage facility. The initial results were presented in a paper at the First LDEF Post-Retrieval Symposium. There was a better survival rate of the seed in the sealed canister in space than in the storage facility at Park Seed. At least some of the seed in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutations and obtain second generation seed. These small seeded crops have now been grown for evaluation and second generation seed collected.

  2. Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions

    PubMed Central

    Nguyen, Quoc Thien.; Kisiala, Anna; Andreas, Peter; Neil Emery, R.J.; Narine, Suresh

    2016-01-01

    Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds. PMID:27252591

  3. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana

    PubMed Central

    Tekleyohans, Dawit G.; Wittkop, Benjamin; Snowdon, Rod J.

    2016-01-01

    Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner. PMID:27776173

  4. Continued results of the seeds in space experiment

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1992-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in the storage facility. There was a better survival rate in the sealed canister in space than in the storage facility. At least some of the seed in the vented canisters survived the exposure to vacuum for almost six years. The number of observed mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutation and obtain a second generation seed. These small seeded crops are now being grown for evaluation.

  5. Urinary and Rectal Toxicity Profiles After Permanent Iodine-125 Implant Brachytherapy in Japanese Men: Nationwide J-POPS Multi-institutional Prospective Cohort Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Toshio, E-mail: ohashi@rad.med.keio.ac.jp; Yorozu, Atsunori; Saito, Shiro

    Purpose: To assess, in a nationwide multi-institutional cohort study begun in 2005 and in which 6927 subjects were enrolled by 2010, the urinary and rectal toxicity profiles of subjects who enrolled during the first 2 years, and evaluate the toxicity profiles for permanent seed implantation (PI) and a combination therapy with PI and external beam radiation therapy (EBRT). Methods and Materials: Baseline data for 2339 subjects out of 2354 patients were available for the analyses. Toxicities were evaluated using the National Cancer Institute's Common Terminology Criteria for Adverse Events, and the International Prostate Symptom Scores were recorded prospectively until 36 months after radiationmore » therapy. Results: Grade 2+ acute urinary toxicities developed in 7.36% (172 of 2337) and grade 2+ acute rectal toxicities developed in 1.03% (24 of 2336) of the patients. Grade 2+ late urinary and rectal toxicities developed in 5.75% (133 of 2312) and 1.86% (43 of 2312) of the patients, respectively. A higher incidence of grade 2+ acute urinary toxicity occurred in the PI group than in the EBRT group (8.49% vs 3.66%; P<.01). Acute rectal toxicity outcomes were similar between the treatment groups. The 3-year cumulative incidence rates for grade 2+ late urinary toxicities were 6.04% versus 4.82% for the PI and the EBRT groups, respectively, with no significant differences between the treatment groups. The 3-year cumulative incidence rates for grade 2+ late rectal toxicities were 0.90% versus 5.01% (P<.01) for the PI and the EBRT groups, respectively. The mean of the postimplant International Prostate Symptom Score peaked at 3 months, but it decreased to a range that was within 2 points of the baseline score, which was observed in 1625 subjects (69.47%) at the 1-year follow-up assessment. Conclusions: The acute urinary toxicities observed were acceptable given the frequency and retention, and the late rectal toxicities were more favorable than those of other studies.« less

  6. Programmed cell death in seeds of angiosperms.

    PubMed

    López-Fernández, María Paula; Maldonado, Sara

    2015-12-01

    During the diversification of angiosperms, seeds have evolved structural, chemical, molecular and physiologically developing changes that specially affect the nucellus and endosperm. All through seed evolution, programmed cell death (PCD) has played a fundamental role. However, examples of PCD during seed development are limited. The present review examines PCD in integuments, nucellus, suspensor and endosperm in those representative examples of seeds studied to date. © 2015 Institute of Botany, Chinese Academy of Sciences.

  7. BnLATE, a Cys2/His2-Type Zinc-Finger Protein, Enhances Silique Shattering Resistance by Negatively Regulating Lignin Accumulation in the Silique Walls of Brassica napus

    PubMed Central

    Tao, Zhangsheng; Huang, Yi; Zhang, Lida; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2017-01-01

    Silique shattering resistance is one of the most important agricultural traits in oil crop breeding. Seed shedding from siliques prior to and during harvest causes devastating losses in oilseed yield. Lignin biosynthesis in the silique walls is thought to affect silique-shattering resistance in oil crops. Here, we identified and characterized B. napus LATE FLOWERING (BnLATE), which encodes a Cys2/His2-type zinc-finger protein. Heterologous expression of BnLATE under the double enhanced CaMV 35S promoter (D35S) in wild-type Arabidopsis plants resulted in a marked decrease in lignification in the replum, valve layer (carpel) and dehiscence zone. pBnLATE::GUS activity was strong in the yellowing silique walls of transgenic lines. Furthermore, the expression pattern of BnLATE and the lignin content gradient in the silique walls at 48 days after pollination (DAP) of 73290, a B. napus silique shattering-resistant line, are similar to those in transgenic Arabidopsis lines expressing BnLATE. Transcriptome sequencing of the silique walls revealed that genes encoding peroxidases, which polymerize monolignols and lignin in the phenylpropanoid pathway, were down-regulated at least two-fold change in the D35S::BnLATE transgenic lines. pBnLATE::BnLATE transgenic lines were further used to identify the function of BnLATE, and the results showed that lignification in the carpel and dehiscence zone of yellowing silique also remarkably decreased compared with the wild-type control, the silique shattering-resistance and expression pattern of peroxidase genes are very similar to results with D35S::BnLATE. These results suggest that BnLATE is a negative regulator of lignin biosynthesis in the yellowing silique walls, and promotes silique-shattering resistance in B. napus through restraining the polymerization of monolignols and lignin. PMID:28081140

  8. 7 CFR 52.1844 - Definition of terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by... appearance, edibility, keeping quality, or shipping quality of the raisins. In seeded Raisins with Seeds...

  9. 7 CFR 52.1844 - Definition of terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by... appearance, edibility, keeping quality, or shipping quality of the raisins. In seeded Raisins with Seeds...

  10. A multidisciplinary study of archaeological grape seeds

    NASA Astrophysics Data System (ADS)

    Cappellini, Enrico; Gilbert, M. Thomas P.; Geuna, Filippo; Fiorentino, Girolamo; Hall, Allan; Thomas-Oates, Jane; Ashton, Peter D.; Ashford, David A.; Arthur, Paul; Campos, Paula F.; Kool, Johan; Willerslev, Eske; Collins, Matthew J.

    2010-02-01

    We report here the first integrated investigation of both ancient DNA and proteins in archaeobotanical samples: medieval grape ( Vitis vinifera L.) seeds, preserved by anoxic waterlogging, from an early medieval (seventh-eighth century A.D.) Byzantine rural settlement in the Salento area (Lecce, Italy) and a late (fourteenth-fifteenth century A.D.) medieval site in York (England). Pyrolysis gas chromatography mass spectrometry documented good carbohydrate preservation, whilst amino acid analysis revealed approximately 90% loss of the original protein content. In the York sample, mass spectrometry-based sequencing identified several degraded ancient peptides. Nuclear microsatellite locus (VVS2, VVMD5, VVMD7, ZAG62 and ZAG79) analysis permitted a tentative comparison of the genetic profiles of both the ancient samples with the modern varieties. The ability to recover microsatellite DNA has potential to improve biomolecular analysis on ancient grape seeds from archaeological contexts. Although the investigation of five microsatellite loci cannot assign the ancient samples to any geographic region or modern cultivar, the results allow speculation that the material from York was not grown locally, whilst the remains from Supersano could represent a trace of contacts with the eastern Mediterranean.

  11. Fine-scale spatial genetic dynamics over the life cycle of the tropical tree Prunus africana.

    PubMed

    Berens, D G; Braun, C; González-Martínez, S C; Griebeler, E M; Nathan, R; Böhning-Gaese, K

    2014-11-01

    Studying fine-scale spatial genetic patterns across life stages is a powerful approach to identify ecological processes acting within tree populations. We investigated spatial genetic dynamics across five life stages in the insect-pollinated and vertebrate-dispersed tropical tree Prunus africana in Kakamega Forest, Kenya. Using six highly polymorphic microsatellite loci, we assessed genetic diversity and spatial genetic structure (SGS) from seed rain and seedlings, and different sapling stages to adult trees. We found significant SGS in all stages, potentially caused by limited seed dispersal and high recruitment rates in areas with high light availability. SGS decreased from seed and early seedling stages to older juvenile stages. Interestingly, SGS was stronger in adults than in late juveniles. The initial decrease in SGS was probably driven by both random and non-random thinning of offspring clusters during recruitment. Intergenerational variation in SGS could have been driven by variation in gene flow processes, overlapping generations in the adult stage or local selection. Our study shows that complex sequential processes during recruitment contribute to SGS of tree populations.

  12. An unusual spliced variant of DELLA protein, a negative regulator of gibberellin signaling, in lettuce.

    PubMed

    Sawada, Yoshiaki; Umetsu, Asami; Komatsu, Yuki; Kitamura, Jun; Suzuki, Hiroyuki; Asami, Tadao; Fukuda, Machiko; Honda, Ichiro; Mitsuhashi, Wataru; Nakajima, Masatoshi; Toyomasu, Tomonobu

    2012-01-01

    DELLA proteins are negative regulators of the signaling of gibberellin (GA), a phytohormone regulating plant growth. DELLA degradation is triggered by its interaction with GID1, a soluble GA receptor, in the presence of bioactive GA. We isolated cDNA from a spliced variant of LsDELLA1 mRNA in lettuce, and named it LsDELLA1sv. It was deduced that LsDELLA1sv encodes truncated LsDELLA1, which has DELLA and VHYNP motifs at the N terminus but lacks part of the C-terminal GRAS domain. The recombinant LsDELLA1sv protein interacted with both Arabidopsis GID1 and lettuce GID1s in the presence of GA. A yeast two-hybrid assay suggested that LsDELLA1sv interacted with LsDELLA1. The ratio of LsDELLA1sv to LsDELLA1 transcripts was higher in flower samples at the late reproductive stage and seed samples (dry seeds and imbibed seeds) than in the other organ samples examined. This study suggests that LsDELLA1sv is a possible modulator of GA signaling in lettuce.

  13. Overlapping and distinct roles of AKIN10 and FUSCA3 in ABA and sugar signaling during seed germination.

    PubMed

    Tsai, Allen Yi-Lun; Gazzarrini, Sonia

    2012-10-01

    The Arabidopsis B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed maturation and also a central modulator of hormonal responses during late embryogenesis and germination. Recently, we have identified AKIN10, the Arabidopsis ortholog of Snf1 (Sucrose Non-Fermenting-1)-Related Kinase1 (SnRK1), as a FUS3-interacting protein. We demonstrated that AKIN10 physically interacts with and phosphorylates FUS3 at its N-terminal region, and genetically interacts with FUS3 to regulate developmental phase transition and lateral organ growth. Snf1/AMPK/SnRK1 kinases are important sensors of the cellular energy level, and they are activated in response to starvation and cellular stress. Here we present findings that indicate FUS3 and AKIN10 functionally overlap in ABA signaling, but play different roles in sugar responses during germination. Seeds overexpressing FUS3 and AKIN10 both display ABA-hypersensitivity and delayed germination. The latter is partly dependent on de novo ABA synthesis in both genotypes, as delayed germination can be partially rescued by the ABA biosynthesis inhibitor, fluridone. However, seeds and seedlings overexpressing FUS3 and AKIN10 show different sugar responses. AKIN10-overexpressing seeds and seedlings are hypersensitive to glucose, while those overexpressing FUS3 display overall defects in osmotic stress, primarily during seedling growth, as they show increased sensitivity toward sorbitol and glucose. Hypersensitivity to sugar and/or osmotic stress during germination are partly dependent on de novo ABA synthesis for both genotypes, although are likely to act through distinct pathways. This data suggests that AKIN10 and FUS3 both act as positive regulators of seed responses to ABA, and that AKIN10 regulates sugar signaling while FUS3 mediates osmotic stress responses.

  14. Conditional cold avoidance drives between-population variation in germination behaviour in Calluna vulgaris.

    PubMed

    Spindelböck, Joachim P; Cook, Zoë; Daws, Matthew I; Heegaard, Einar; Måren, Inger E; Vandvik, Vigdis

    2013-09-01

    Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season.

  15. Conditional cold avoidance drives between-population variation in germination behaviour in Calluna vulgaris

    PubMed Central

    Spindelböck, Joachim P.; Cook, Zoë; Daws, Matthew I.; Heegaard, Einar; Måren, Inger E.; Vandvik, Vigdis

    2013-01-01

    Background and Aims Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Methods Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Key Results Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Conclusions Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season. PMID:23884396

  16. One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels

    NASA Astrophysics Data System (ADS)

    Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.

    2017-12-01

    Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.

  17. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.

    PubMed

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  18. Identification of microRNAs involved in lipid biosynthesis and seed size in developing sea buckthorn seeds using high-throughput sequencing.

    PubMed

    Ding, Jian; Ruan, Chengjiang; Guan, Ying; Krishna, Priti

    2018-03-05

    Sea buckthorn is a plant of medicinal and nutritional importance owing in part to the high levels of essential fatty acids, linoleic (up to 42%) and α-linolenic (up to 39%) acids in the seed oil. Sea buckthorn can produce seeds either via the sexual pathway or by apomixis. The seed development and maturation programs are critically dependent on miRNAs. To understand miRNA-mediated regulation of sea buckthorn seed development, eight small RNA libraries were constructed for deep sequencing from developing seeds of a low oil content line 'SJ1' and a high oil content line 'XE3'. High-throughput sequencing identified 137 known miRNA from 27 families and 264 novel miRNAs. The potential targets of the identified miRNAs were predicted based on sequence homology. Nineteen (four known and 15 novel) and 22 (six known and 16 novel) miRNAs were found to be involved in lipid biosynthesis and seed size, respectively. An integrated analysis of mRNA and miRNA transcriptome and qRT-PCR identified some key miRNAs and their targets (miR164d-ARF2, miR168b-Δ9D, novelmiRNA-108-ACC, novelmiRNA-23-GPD1, novelmiRNA-58-DGAT1, and novelmiRNA-191-DGAT2) potentially involved in seed size and lipid biosynthesis of sea buckthorn seed. These results indicate the potential importance of miRNAs in regulating lipid biosynthesis and seed size in sea buckthorn.

  19. Modern and prospective technologies for weather modification activities: Developing a framework for integrating autonomous unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    DeFelice, T. P.; Axisa, Duncan

    2017-09-01

    This paper builds upon the processes and framework already established for identifying, integrating and testing an unmanned aircraft system (UAS) with sensing technology for use in rainfall enhancement cloud seeding programs to carry out operational activities or to monitor and evaluate seeding operations. We describe the development and assessment methodologies of an autonomous and adaptive UAS platform that utilizes in-situ real time data to sense, target and implement seeding. The development of a UAS platform that utilizes remote and in-situ real-time data to sense, target and implement seeding deployed with a companion UAS ensures optimal, safe, secure, cost-effective seeding operations, and the dataset to quantify the results of seeding. It also sets the path for an innovative, paradigm shifting approach for enhancing precipitation independent of seeding mode. UAS technology is improving and their application in weather modification must be explored to lay the foundation for future implementation. The broader significance lies in evolving improved technology and automating cloud seeding operations that lowers the cloud seeding operational footprint and optimizes their effectiveness and efficiency, while providing the temporal and spatial sensitivities to overcome the predictability or sparseness of environmental parameters needed to identify conditions suitable for seeding, and how such might be implemented. The dataset from the featured approach will contain data from concurrent Eulerian and Lagrangian perspectives over sub-cloud scales that will facilitate the development of cloud seeding decision support tools.

  20. New Insights into Different Reproductive Effort and Sexual Recruitment Contribution between Two Geographic Zostera marina L. Populations in Temperate China

    PubMed Central

    Xu, Shaochun; Wang, Pengmei; Zhou, Yi; Zhang, Xiaomei; Gu, Ruiting; Liu, Xujia; Liu, Bingjian; Song, Xiaoyue; Xu, Shuai; Yue, Shidong

    2018-01-01

    Seagrasses are important components of global coastal ecosystems, and the eelgrass Zostera marina L. is widely distributed along the Atlantic and Pacific coasts in the temperate northern hemisphere, but limited datum related to the contribution of sexual reproduction to population recruitment have been reported. This study aimed to understand eelgrass sexual reproduction and population recruitment in Swan Lake (SLL), and Huiquan Bay (HQB) was included for comparison. Random sampling, permanent quadrats or cores and laboratory seed germination-based experimental methods were employed. The flowering, seed production, seed banks, seed germination, seedling survival, and seedling growth of eelgrass were investigated from July 2014 to December 2015 to evaluate the contribution of sexual reproduction to population recruitment. Results indicated a dominant role of asexual reproduction in HQB, while sexual reproduction played a relatively important role in SLL. The highest flowering shoot density in SLL was 517.27 ± 504.29 shoots m−2 (June) and represented 53.34% of the total shoots at the center site. The potential seed output per reproductive shoot and per unit area in SLL were 103.67 ± 37.95 seeds shoot−1 and 53,623.66 ± 19,628.11 seeds m−2, respectively. The maximum seed bank density in SLL was 552.21 ± 204.94 seeds m−2 (October). Seed germination mainly occurred from the middle of March to the end of May, and the highest seedling density was 296.88 ± 274.27 seedlings m−2 in April. The recruitment from seedlings accounted for 41.36% of the Z. marina population recruitment at the center site, while the sexual recruitment contribution at the patch site (50.52%) was greater than that at the center site. Seeds in SLL were acclimated to spring germination, while in HQB, they were acclimated to autumn germination (early October–late November). Seed bank density in HQB was very low, with a value of 254.35 ± 613.34 seeds m−2 (early October). However, seeds in HQB were significantly larger and heavier than those in SLL (size: P = 0.004; weight: P < 0.001). The recruitment from seedlings accounted for as low as 2.53% of the Z. marina population recruitment in HQB. Our laboratory seed germination experiment, which was conducted in autumn, showed that the seed germination percent in HQB was significantly greater than in SLL at optimal germination temperatures (10 and 15°C; P < 0.001). A laboratory seed germination test at suitable temperature may be a potential novel approach to identify the ecological differences among different geographic populations. It is suggested that the Z. marina population recruitment may have different strategies and adapt to specific local conditions, such as in SLL and HQB, and the temperature regime may control morphological and phonological variations. PMID:29483922

  1. New Insights into Different Reproductive Effort and Sexual Recruitment Contribution between Two Geographic Zostera marina L. Populations in Temperate China.

    PubMed

    Xu, Shaochun; Wang, Pengmei; Zhou, Yi; Zhang, Xiaomei; Gu, Ruiting; Liu, Xujia; Liu, Bingjian; Song, Xiaoyue; Xu, Shuai; Yue, Shidong

    2018-01-01

    Seagrasses are important components of global coastal ecosystems, and the eelgrass Zostera marina L. is widely distributed along the Atlantic and Pacific coasts in the temperate northern hemisphere, but limited datum related to the contribution of sexual reproduction to population recruitment have been reported. This study aimed to understand eelgrass sexual reproduction and population recruitment in Swan Lake (SLL), and Huiquan Bay (HQB) was included for comparison. Random sampling, permanent quadrats or cores and laboratory seed germination-based experimental methods were employed. The flowering, seed production, seed banks, seed germination, seedling survival, and seedling growth of eelgrass were investigated from July 2014 to December 2015 to evaluate the contribution of sexual reproduction to population recruitment. Results indicated a dominant role of asexual reproduction in HQB, while sexual reproduction played a relatively important role in SLL. The highest flowering shoot density in SLL was 517.27 ± 504.29 shoots m -2 (June) and represented 53.34% of the total shoots at the center site. The potential seed output per reproductive shoot and per unit area in SLL were 103.67 ± 37.95 seeds shoot -1 and 53,623.66 ± 19,628.11 seeds m -2 , respectively. The maximum seed bank density in SLL was 552.21 ± 204.94 seeds m -2 (October). Seed germination mainly occurred from the middle of March to the end of May, and the highest seedling density was 296.88 ± 274.27 seedlings m -2 in April. The recruitment from seedlings accounted for 41.36% of the Z. marina population recruitment at the center site, while the sexual recruitment contribution at the patch site (50.52%) was greater than that at the center site. Seeds in SLL were acclimated to spring germination, while in HQB, they were acclimated to autumn germination (early October-late November). Seed bank density in HQB was very low, with a value of 254.35 ± 613.34 seeds m -2 (early October). However, seeds in HQB were significantly larger and heavier than those in SLL (size: P = 0.004; weight: P < 0.001). The recruitment from seedlings accounted for as low as 2.53% of the Z. marina population recruitment in HQB. Our laboratory seed germination experiment, which was conducted in autumn, showed that the seed germination percent in HQB was significantly greater than in SLL at optimal germination temperatures (10 and 15°C; P < 0.001). A laboratory seed germination test at suitable temperature may be a potential novel approach to identify the ecological differences among different geographic populations. It is suggested that the Z. marina population recruitment may have different strategies and adapt to specific local conditions, such as in SLL and HQB, and the temperature regime may control morphological and phonological variations.

  2. Biodiesel production methods of rubber seed oil: a review

    NASA Astrophysics Data System (ADS)

    Ulfah, M.; Mulyazmi; Burmawi; Praputri, E.; Sundari, E.; Firdaus

    2018-03-01

    The utilization of rubber seed as raw material of biodiesel production is seen highly potential in Indonesia. The availability of rubber seeds in Indonesia is estimated about 5 million tons per annum, which can yield rubber seed oil about 2 million tons per year. Due to the demand of edible oils as a food source is tremendous and the edible oil feedstock costs are far expensive to be used as fuel, production of biodiesel from non-edible oils such as rubber seed is an effective way to overcome all the associated problems with edible oils. Various methods for producing biodiesel from rubber seed oil have been reported. This paper introduces an optimum condition of biodiesel production methods from rubber seed oil. This article was written to be a reference in the selection of methods and the further development of biodiesel production from rubber seed oil. Biodiesel production methods for rubber seed oils has been developed by means of homogeneous catalysts, heterogeneous catalysts, supercritical method, ultrasound, in-situ and enzymatic processes. Production of biodiesel from rubber seed oil using clinker loaded sodium methoxide as catalyst is very interesting to be studied and developed further.

  3. Automated seed manipulation and planting

    NASA Technical Reports Server (NTRS)

    Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave

    1988-01-01

    Activities for the Fall Semester, 1987 focused on investigating the mechanical/electrical properties of wheat seeds and forming various Seed Planting System (SPS) concepts based on those properties. The Electrical Division of the design group was formed to devise an SPS using electrostatic charge fields for seeding operations. Experiments concerning seed separation using electrical induction (rearranging of the charges within the seed) were conducted with promising results. The seeds, when exposed to the high voltage and low current field produced by a Van de Graff generator, were observed to move back and forth between two electrodes. An SPS concept has been developed based on this phenomena, and will be developed throughout the Spring Semester, 1988. The Mechanical Division centered on SPS concepts involving valves, pumps, and fluids to separate and deliver seeds. An SPS idea utilizing the pressure difference caused by air as it rushes out of holes drilled in the wall of a closed container has been formulated and will be considered for future development. Also, a system of seed separation and delivery employing a combination of centrifugal force, friction, and air flow was considered.

  4. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2012-12-07

    Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

  5. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.).

    PubMed

    Verma, S K; White, J F

    2018-03-01

    This study was conducted to investigate indigenous seed endophyte effects on browntop millet seedling development. We report that seed-inhabiting bacterial endophytes are responsible for promoting seedling development, including stimulation of root hair formation, increasing root and shoot length growth and increasing photosynthetic pigment content of seedlings. Bacterial endophytes also improved resistance of seedlings to disease. A total of four endophytic bacteria were isolated from surface-sterilized seeds and identified by 16S rDNA sequencing as Curtobacterium sp. (M1), Microbacterium sp. (M2), Methylobacterium sp. (M3) and Bacillus amyloliquefaciens (M4). Removal of bacteria with streptomycin treatment from the seeds compromised seedling growth and development. When endophytes were reinoculated onto seeds, seedlings recovered normal development. Strains M3 and M4 were found to be most potent in promoting growth of seedlings. Bacteria were found to produce auxin, solubilize phosphate and inhibit fungal pathogens. Significant protection of seedlings from Fusarium infection was found using strain M4 in microcosm assays. The antifungal lipopeptide genes for surfactin and iturin were detected in M4; culture extracts of M4 showed a positive drop collapse result for surfactins. This study demonstrates that browntop millet seeds vector indigenous endophytes that are responsible for modulation of seedling development and protection of seedlings from fungal disease. This study is significant and original in that it is the first report of seed-inhabiting endophytes of browntop millet that influence seedling development and function in defence against soilborne pathogens. This study suggests that conservation and management of seed-vectored endophytes may be important in development of more sustainable agricultural practices. © 2017 The Society for Applied Microbiology.

  6. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas

    PubMed Central

    Sun, Yanwei; Wang, Chunming; Wang, Ning; Jiang, Xiyuan; Mao, Huizhu; Zhu, Changxiang; Wen, Fujiang; Wang, Xianghua; Lu, Zhijun; Yue, Genhua; Xu, Zengfu; Ye, Jian

    2017-01-01

    Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield. Through Virus Induced Gene Silencing (VIGS), we found that JcARF19 was a positive upstream modulator in auxin signaling and may control plant organ size in J. curcas. Importantly, transgenic overexpression of JcARF19 significantly increased seed size and seed yield in plants Arabidopsis thaliana and J. curcas, indicating the importance of auxin pathway in seed yield controlling in dicot plants. Transcripts analysis indicated that ectopic expression of JcARF19 in J. curcas upregulated auxin responsive genes encoding essential regulators in cell differentiation and cytoskeletal dynamics of seed development. Our data suggested the potential of improving seed traits by precisely engineering auxin signaling in woody perennial plants. PMID:28102350

  7. Tomato seeds maturity detection system based on chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  8. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L.

    PubMed

    Su, Zhen-Zhu; Wang, Ting; Shrivastava, Neeraj; Chen, You-Yuan; Liu, Xiaoxi; Sun, Chao; Yin, Yufeng; Gao, Qi-Kang; Lou, Bing-Gan

    2017-06-01

    In current scenario, crop productivity is being challenged by decreasing soil fertility. To cope up with this problem, different beneficial microbes are explored to increase the crop productivity with value additions. In this study, Brassica napus L., an important agricultural economic oilseed crop with rich source of nutritive qualities, was interacted with Piriformospora indica, a unique root colonizing fungus with wide host range and multifunctional aspects. The fungus-treated plants showed a significant increase in agronomic parameters with plant biomass, lodging-resistance, early bolting and flowering, oil yield and quality. Nutritional analysis revealed that plants treated by P. indica had reduced erucic acid and glucosinolates contents, and increased the accumulation of N, Ca, Mg, P, K, S, B, Fe and Zn elements. Low erucic acid and glucosinolates contents are important parameters for high quality oil, because oils high in erucic acid and glucosinolates are considered undesirable for human nutrition. Furthermore, the expression profiles of two encoding enzyme genes, Bn-FAE1 and BnECR, which are responsible for regulating erucic acid biosynthesis, were down-regulated at mid- and late- life stages during seeds development in colonized plants. These results demonstrated that P. indica played an important role in enhancing plant growth, rapeseed yield and quality improvement of B. napus. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Quantification of climate and vegetation from Southern African Middle Stone Age sites - an application using Late Pleistocene plant material from Sibudu, South Africa

    NASA Astrophysics Data System (ADS)

    Bruch, A. A.; Sievers, C.; Wadley, L.

    2012-04-01

    The isolated geographical situation of South Africa makes the unraveling of various parameters that influence its regional climate in time challenging. If the South African climate does not exhibit a linear correlation with global archives as suggested by some authors then the contribution of independent local data that provides direct information on the environment at a certain place and time is crucial. Fossil plant remains provide valuable information on past environmental conditions. Although few paleobotanical data are available from Southern Africa, some sites reveal rich and diverse fossil floras, most notably, Sibudu Cave, KwaZulu-Natal, South Africa, with its numerous fruits, seeds, pollen and charcoal flora. Such plant remains not only provide information on past vegetation, but also serve as a sound base for paleoclimate quantification with the Coexistence Approach (CA). Sibudu Cave has pulses of Middle Stone Age occupation separated by hiatuses that are as long as 10 ka. Pre-Still Bay, Still Bay, Howiesons Poort, post-Howiesons Poort and late and final Middle Stone Age industries are present. Variations in vegetation and the animals preyed on through time suggest that subtle environmental changes could have occurred during MIS4 and MIS3 in the Sibudu area. Whilst always semi-forested, the region may have comprised a mosaic of uneven and changeable patches of coastal forest and savanna. These in turn might have influenced the numbers of forest versus plains animals in the area. Cultural factors could also have played a part in the faunal variability observed in Sibudu. Preliminary analyses of Sibudu Cave material confirm the potential of the CA for its application on Late Pleistocene African floras. In the future, comparison with other contemporaneous sites will help quantify spatial differences in the climate of the Late Pleistocene in South Africa, and may answer if environmental changes effected the cultural development from Still Bay to late MSA industries.

  10. The Design and Development of Test Platform for Wheat Precision Seeding Based on Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie

    The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.

  11. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    PubMed

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.

  12. A Role for the Surrounding Fruit Tissues in Preventing the Germination of Tomato (Lycopersicon esculentum) Seeds 1

    PubMed Central

    Berry, Tannis; Bewley, J. Derek

    1992-01-01

    During tomato seed development the endogenous abscisic acid (ABA) concentration peaks at about 50 d after pollination (DAP) and then declines at later stages (60-70 DAP) of maturation. The ABA concentration in the sheath tissue immediately surrounding the seed increases with time of development, whereas that of the locule declines. The water contents of the seed and fruit tissues are similar during early development (20-30 DAP), but decline in the seed tissues between 30 and 40 DAP. The water potential and the osmotic potential of the embryo are lower than that of the locular tissue after 35 DAP also. Seeds removed from the fruit at 30, 35, and 60 DAP and placed ex situ on 35 and 60 DAP sheath and locular tissue are prevented from germinating. Development of 30 DAP seeds is maintained or promoted by the ex situ fruit tissue with which they are in contact. Their germination is inhibited until subsequent transfer to water, and germination is normal, i.e. by radicle protrusion, and viable seedlings are produced, compared with 30 DAP seeds transferred directly to water; more of these seeds germinate, but by hypocotyl extension, and seedling viability is very poor. Isolated seeds at 35 and 60 DAP re-placed in contact with fruit tissues only germinate when transferred to water after 7 d. At 30 DAP, isolated seeds are insensitive to ABA at physiological concentrations in that they germinate as if on water, albeit by hypocotyl extension. At higher concentrations germination occurs by radicle protrusion. Osmoticum prevents germination, but there is some recovery upon subsequent transfer to water. Seeds at 35 DAP are very sensitive to ABA and exhibit little or no germination, even upon transfer to water. The response of the isolated seeds to osmoticum more closely approximates that to incubation on the ex situ fruit tissues than does their response to ABA. This is also the case for isolated 60 DAP seeds, whose germination is not prevented by ABA, but only by the osmoticum; these seeds are inhibited when in contact with ex situ fruit tissues also. It is proposed that the osmotic environment within the tissues of the tomato fruit plays a greater role than endogenous ABA in preventing precocious germination of the developing seeds. PMID:16653081

  13. Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.

    PubMed

    Lorenz, Christin; Rolletschek, Hardy; Sunderhaus, Stephanie; Braun, Hans-Peter

    2014-08-28

    Oilseeds are an important element of human nutrition and of increasing significance for the production of industrial materials. The development of the seeds is based on a coordinated interplay of the embryo and its surrounding tissue, the endosperm. This study aims to give insights into the physiological role of endosperm for seed development in the oilseed crop Brassica napus. Using protein separation by two-dimensional (2D) isoelectric focusing (IEF)/SDS polyacrylamide gel electrophoresis (PAGE) and protein identification by mass spectrometry three proteome projects were carried out: (i) establishment of an endosperm proteome reference map, (ii) proteomic characterization of endosperm development and (iii) comparison of endosperm and embryo proteomes. The endosperm proteome reference map comprises 930 distinct proteins, including enzymes involved in genetic information processing, carbohydrate metabolism, environmental information processing, energy metabolism, cellular processes and amino acid metabolism. To investigate dynamic changes in protein abundance during seed development, total soluble proteins were extracted from embryo and endosperm fractions at defined time points. Proteins involved in sugar converting and recycling processes, ascorbate metabolism, amino acid biosynthesis and redox balancing were found to be of special importance for seed development in B. napus. Implications for the seed filling process and the function of the endosperm for seed development are discussed. The endosperm is of key importance for embryo development during seed formation in plants. We present a broad study for characterizing endosperm proteins in the oilseed plant B. napus. Furthermore, a project on the biochemical interplay between the embryo and the endosperm during seed development is presented. We provide evidence that the endosperm includes a complete set of enzymes necessary for plant primary metabolism. Combination of our results with metabolome data will further improve systems-level understanding of the seed filling process and provide rational strategies for plant bioengineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Characterization of barley Prp1 gene and its expression during seed development and under abiotic stress.

    PubMed

    Jiang, Qian-Tao; Liu, Tao; Ma, Jian; Wei, Yu-Ming; Lu, Zhen-Xiang; Lan, Xiu-Jin; Dai, Shou-Fen; Zheng, You-Liang

    2011-10-01

    The pre-mRNA processing (Prp1) gene encodes a spliceosomal protein. It was firstly identified in fission yeast and plays a regular role during spliceosome activation and cell cycle. Plant Prp1 genes have only been identified from rice, Sorghum and Arabidopsis thaliana. In this study, we reported the identification and isolation of a novel Prp1 gene from barley, and further explored its expressional pattern by using real-time quantitative RTPCR, promoter prediction and analysis of microarray data. The putative barley Prp1 protein has a similar primary structure features to those of other known Prp1 protein in this family. The results of amino acid comparison indicated that Prp1 protein of barley and other plant species has a highly conserved 30 termnal region while their 50 sequences greatly varied. The results of expressional analysis revealed that the expression level of barley Prp1 gene is always stable in different vegetative tissues, except it is up-regulated at the mid- and late stages of seed development or under the condition of cold stress. This kind of expressional pattern for barley Prp1 is also supported by our results of comparison of microarray data from barley, rice and Arabidopsis. For the molecular mechanism of its expressional pattern, we conclude that the expression of Prp1 gene may be up-regulated by the increase of pre-mRNAs and not be constitutive or ubiquitous.

  15. De-pulping and Seed Separation from Tumba ( Citrullus colocynthis) Fruit

    NASA Astrophysics Data System (ADS)

    Mudgal, Vishvambhar Dayal

    2017-09-01

    Tumba ( Citrullus colocynthis) contains spongy pulp in which seeds are embedded unevenly. Seeds contain about 26% fats and 13% protein. The process of seed separation is highly time consuming and labour intensive. Two weeks are required to separate its seeds with traditional methods. The developed prototype, for separating tumba seeds, mainly consists of chopper, de-pulping screw, barrel assembly and seed separation unit. The de-pulping screw and barrel assembly was divided in two sections i.e. conveying (feeding zone) and compression sections (de-pulping zone). The performance of developed machine was evaluated at different screw speed in the range of 40-100 rpm. Maximum pulp removal efficiency of 78.1% was achieved with screw speed of 60 rpm. Seed separation from the pulp was carried out by adding different chemicals. Use of sodium hydroxide and potassium hydroxide produced seed separation up to 99%.

  16. Late-glacial vegetation and climate at the Manis Mastodon site, Olympic Peninsula, Washington

    NASA Astrophysics Data System (ADS)

    Petersen, Kenneth L.; Mehringer, Peter J.; Gustafson, Carl E.

    1983-09-01

    As the late Wisconsin Cordilleran Ice Sheet retreated, sediment accumulated in shallow depressions at the Manis Mastodon Archaeological site on the Olympic Peninsula, near Sequim, Washington. Pollen, plant macrofossils, and bones of mastodon, caribou, and bison occur within the lower 47 cm of these deposits. The fossil pollen and seed assemblages indicate persistence for 1000 yr (11,000-12,000 yr B.P.) of an herb-and-shrub-dominated landscape at a time when forest species appear elsewhere in Washington and in adjacent British Columbia. At present, Sequim is near the northern coastal limits of both Cactaceae and Ceratophyllum. Mean annual precipitation is 42.7 cm and summer temperatures average 15°-16°C in July. The absence of coniferous trees and the presence of cactus and Ceratophyllum in late-glacial sediments are explained by a regional climate that was drier and at least as warm as today. These conditions persisted in the rain shadow of the Olympic Mountains until at least 11,000 yr B.P.

  17. Timing of fire relative to seed development controls availability of non-serotinous aerial seed banks

    Treesearch

    S.T. Michaletz; E.A. Johnson; W.E. Mell; D.F. Greene

    2012-01-01

    The existence of non-serotinous, non-sprouting species in fire regimes where serotiny confers an adaptive advantage is puzzling, particularly when these species recruit poorly from soil seed banks or from burn edges. In this paper, white spruce (Picea glauca (Moench) Voss) was used to show that the timing of fire relative to seed development can...

  18. Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    PubMed Central

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Background Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29–41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. Conclusions/Significance The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production. PMID:22574177

  19. Is Eucalyptus Cryptically Self-incompatible?

    PubMed

    Horsley, Tasmien N; Johnson, Steven D

    2007-12-01

    The probability that seeds will be fertilized from self- versus cross-pollen depends strongly on whether plants have self-incompatibility systems, and how these systems influence the fate of pollen tubes. In this study of breeding systems in Eucalyptus urophylla and Eucalyptus grandis, epifluorescence microscopy was used to study pollen tube growth in styles following self- and cross-pollinations. Pollen tubes from self-pollen took significantly longer than those from cross-pollen to grow to the base of the style in both E. urophylla (120 h vs. 96 h) and E. grandis (96 h vs. 72 h). In addition, both species exhibited reduced seed yields following self-pollination compared with cross-pollination. The present observations suggest that, in addition to a late-acting self-incompatibility barrier, cryptic self-incompatibility could be a mechanism responsible for the preferential out-crossing system in these two eucalypt species.

  20. Microfluidic devices for stem-cell cultivation, differentiation and toxicity testing

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hansen-Hagge, Thomas; Kurtz, Andreas; Mrowka, Ralf; Wölfl, Stefan; Gärtner, Claudia

    2017-02-01

    The development of new drugs is time-consuming, extremely expensive and often promising drug candidates fail in late stages of the development process due to the lack of suitable tools to either predict toxicological effects or to test drug candidates in physiologically relevant environments prior to clinical tests. We therefore try to develop diagnostic multiorgan microfluidic chips based on patient specific induced pluripotent stem cell (iPS) technology to explore liver dependent toxic effects of drugs on individual human tissues such as liver or kidney cells. Based initially on standardized microfluidic modules for cell culture, we have developed integrated microfluidic devices which contain different chambers for cell/tissue cultivation. The devices are manufactured using injection molding of thermoplastic polymers such as polystyrene or cyclo-olefin polymer. In the project, suitable surface modification methods of the used materials had to be explored. We have been able to successfully demonstrate the seeding, cultivation and further differentiation of modified iPS, as shown by the use of differentiation markers, thus providing a suitable platform for toxicity testing and potential tissue-tissue interactions.

  1. Development of the seeding system used for laser velocimeter surveys of the NASA Low-Speed Centrifugal Compressor flow field

    NASA Technical Reports Server (NTRS)

    Wasserbauer, Charles A.; Hathaway, Michael D.

    1993-01-01

    An atomizer-based system for distributing high-volume rates of seed material was developed to support laser velocimeter investigations of the NASA Low-Speed Centrifugal Compressor flow field. The seeding system and the major concerns that were addressed during its development are described. Of primary importance were that the seed material be dispersed as single particles and that the liquid carrier used be completely evaporated before entering the compressor.

  2. Oviposition strategies of conifer seed chalcids in relation to host phenology.

    PubMed

    Rouault, Gaëlle; Turgeon, Jean; Candau, Jean-Noël; Roques, Alain; von Aderkas, Patrick

    2004-10-01

    Insects are considered the most important predators of seed cones, the female reproductive structures of conifers, prior to seed dispersal. Slightly more than 100 genera of insects are known to parasitize conifer seed cones. The most diverse (i.e., number of species) of these genera is Megastigmus (Hymenoptera: Torymidae), which comprises many important seed pests of native and exotic conifers. Seed chalcids, Megastigmus spp., lay eggs inside the developing ovules of host conifers and, until recently, oviposition was believed to occur only in fertilized ovules. Ovule development begins just after pollination, but stops if cells are not fertilized. The morphological stage of cone development at the time of oviposition by seed chalcids has been established for many species; however, knowledge of ovule development at that time has been documented for only one species, M. spermotrophus. Megastigmus spermotrophus oviposits in Douglas-fir ovules after pollination but before fertilization. Unlike the unfertilized ovules, those containing a M. spermotrophus larva continue to develop, whether fertilized or not, stressing the need to broaden our understanding of the insect-plant interactions for this entire genus. To achieve this task, we reviewed the scientific literature and assembled information pertaining to the timing of oviposition and to the pollination and fertilization periods of their respective host(s). More specifically, we were searching for circumstantial evidence that other species of Megastigmus associated with conifers could behave (i.e., oviposit before ovule fertilization) and impact on female gametophyte (i.e., prevent abortion) like M. spermotrophus. The evidence from our compilation suggests that seed chalcids infesting Pinaceae may also oviposit before ovule fertilization, just like M. spermotrophus, whereas those infesting Cupressaceae seemingly oviposit after ovule fertilization. Based on this evidence, we hypothesize that all species of Megastigmus associated with Pinaceae can oviposit in unfertilized ovules, whereas those exploiting Cupressaceae cannot, and thus oviposit only in already fully developed fertilized seeds. Furthermore, we predict that the presence of a larva in unfertilized ovules of all Pinaceae will influence the development of the female gametophyte by preventing its abortion. This influence on the Pinaceae can be interpreted as an ability to parasitize any of the potential seeds present in a seed cone, and as such represents a much more efficient oviposition strategy than searching and locating only fertilized seeds. Concomitantly, this ability has likely led to an overestimation of the impact of the species of seed chalcid infesting Pinaceae on seed production.

  3. Oviposition strategies of conifer seed chalcids in relation to host phenology

    NASA Astrophysics Data System (ADS)

    Rouault, Gaëlle; Turgeon, Jean; Candau, Jean-Noël; Roques, Alain; Aderkas, Patrick

    2004-10-01

    Insects are considered the most important predators of seed cones, the female reproductive structures of conifers, prior to seed dispersal. Slightly more than 100 genera of insects are known to parasitize conifer seed cones. The most diverse (i.e., number of species) of these genera is Megastigmus (Hymenoptera: Torymidae), which comprises many important seed pests of native and exotic conifers. Seed chalcids, Megastigmus spp., lay eggs inside the developing ovules of host conifers and, until recently, oviposition was believed to occur only in fertilized ovules. Ovule development begins just after pollination, but stops if cells are not fertilized. The morphological stage of cone development at the time of oviposition by seed chalcids has been established for many species; however, knowledge of ovule development at that time has been documented for only one species, M. spermotrophus. Megastigmus spermotrophus oviposits in Douglas-fir ovules after pollination but before fertilization. Unlike the unfertilized ovules, those containing a M. spermotrophus larva continue to develop, whether fertilized or not, stressing the need to broaden our understanding of the insect plant interactions for this entire genus. To achieve this task, we reviewed the scientific literature and assembled information pertaining to the timing of oviposition and to the pollination and fertilization periods of their respective host(s). More specifically, we were searching for circumstantial evidence that other species of Megastigmus associated with conifers could behave (i.e., oviposit before ovule fertilization) and impact on female gametophyte (i.e., prevent abortion) like M. spermotrophus. The evidence from our compilation suggests that seed chalcids infesting Pinaceae may also oviposit before ovule fertilization, just like M. spermotrophus, whereas those infesting Cupressaceae seemingly oviposit after ovule fertilization. Based on this evidence, we hypothesize that all species of Megastigmus associated with Pinaceae can oviposit in unfertilized ovules, whereas those exploiting Cupressaceae cannot, and thus oviposit only in already fully developed fertilized seeds. Furthermore, we predict that the presence of a larva in unfertilized ovules of all Pinaceae will influence the development of the female gametophyte by preventing its abortion. This influence on the Pinaceae can be interpreted as an ability to parasitize any of the potential seeds present in a seed cone, and as such represents a much more efficient oviposition strategy than searching and locating only fertilized seeds. Concomitantly, this ability has likely led to an overestimation of the impact of the species of seed chalcid infesting Pinaceae on seed production.

  4. Sugar Treatments Can Induce AcLEAFY COTYLEDON1 Expression and Trigger the Accumulation of Storage Products during Prothallus Development of Adiantum capillus-veneris

    PubMed Central

    Fang, Yu-Han; Li, Xia; Bai, Shu-Nong; Rao, Guang-Yuan

    2017-01-01

    A seed is an intricate structure. Of the two development processes involved in seed formation, seed maturation, or seed program includes accumulation of storage products, acquisition of desiccation tolerance, and induction of dormancy. Little is known about how these processes were originated and integrated into the life cycle of seed plants. While previous investigation on seed origin was almost exclusively through fossil comparison in paleobotany, a wealth of information about the key role of LEAFY COTYLEDON1 (LEC1) in seed formation of spermatophyte inspired a new approach to investigating the seed origin mystery. Here, we examined the expression pattern of AcLEC1 during the entire life cycle of Adiantum capillus-veneris, a non-seed plant, confirmed no AcLEC1 gene expression detectable in prothalli, demonstrated inductive expressed by both sucrose and glucose in prothalli. As expected, we found that sugar treatments delayed prothallus development, promoted differentiation of reproductive organs, and triggered accumulation of storage products. These findings demonstrated links between the sugar treatments and the induction of AcLEC1 expression, as well as the sugar treatments and the events such as accumulation of storage products, which is similar to those considered as seed maturation process in seed plants. These links support a modified hypothesis that inductive expression of LEC1 homologs during embryogenesis might be a key innovation for the origin of the seed program. PMID:28484470

  5. Transcriptional profiling by DDRT-PCR analysis reveals gene expression during seed development in Carya cathayensis Sarg.

    PubMed

    Huang, You-Jun; Zhou, Qin; Huang, Jian-Qin; Zeng, Yan-Ru; Wang, Zheng-Jia; Zhang, Qi-Xiang; Zhu, Yi-Hang; Shen, Chen; Zheng, Bing-Song

    2015-06-01

    Hickory (Carya cathayensis Sarg.) seed has one of the highest oil content and is rich in polyunsaturated fatty acids (PUFAs), which kernel is helpful to human health, particularly to human brain function. A better elucidation of lipid accumulation mechanism would help to improve hickory production and seed quality. DDRT-PCR analysis was used to examine gene expression in hickory at thirteen time points during seed development process. A total of 67 unique genes involved in seed development were obtained, and those expression patterns were further confirmed by semi-quantitative RT-PCR and real time RT-PCR analysis. Of them, the genes with known functions were involved in signal transduction, amino acid metabolism, nuclear metabolism, fatty acid metabolism, protein metabolism, carbon metabolism, secondary metabolism, oxidation of fatty acids and stress response, suggesting that hickory underwent a complex metabolism process in seed development. Furthermore, 6 genes related to fatty acid synthesis were explored, and their functions in seed development process were further discussed. The data obtained here would provide the first clues for guiding further functional studies of fatty acid synthesis in hickory. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis1[OPEN

    PubMed Central

    2016-01-01

    Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis. PMID:27208265

  7. Final results of the Space Exposed Experiment Developed for Students (SEEDS) P-0004-2

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.

    1992-01-01

    Space Exposed Experiment Developed for Students (SEEDS), resulted in the distribution of over 132,000 SEED kits in 1990. The kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF) as well as seeds that had been stored in a climate controlled warehouse for the same period of time. Students compared germination and growth rate characteristics of the two seeds groups and returned data to NASA for analysis. The scientific information gained was valuable as students shared the excitement of taking part in a national project. Of greater importance was the subsequent interest generated in science education.

  8. Cytokinins and Expression of SWEET, SUT, CWINV and AAP Genes Increase as Pea Seeds Germinate

    PubMed Central

    Jameson, Paula E.; Dhandapani, Pragatheswari; Novak, Ondrej; Song, Jiancheng

    2016-01-01

    Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot. To determine if the sucrose transporter (SUT), amino acid permease (AAP), Sugar Will Eventually be Exported Transporter (SWEET), cell wall invertase (CWINV), cytokinin biosynthesis (IPT), activation (LOG) and degradation (CKX) gene family members are involved in both the sink and source activities of seeds, we used RT-qPCR to determine the expression of multiple gene family members, and LC-MS/MS to ascertain endogenous cytokinin levels in germinating Pisum sativum L. We show that genes that are actively expressed when the seed is a strong sink during its development, are also expressed when the seed is in the reverse role of being an active source during germination and early seedling growth. Cytokinins were detected in the imbibing seeds and were actively biosynthesised during germination. We conclude that, when the above gene family members are targeted for seed yield improvement, a downstream effect on subsequent seed germination or seedling vigour must be taken into consideration. PMID:27916945

  9. Effect of GA3 treatment on seed development and seed-related gene expression in grape.

    PubMed

    Cheng, Chenxia; Xu, Xiaozhao; Singer, Stacy D; Li, Jun; Zhang, Hongjing; Gao, Min; Wang, Li; Song, Junyang; Wang, Xiping

    2013-01-01

    The phytohormone gibberellic acid (GA3) is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes. In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars ('Kyoho' and 'Red Globe'), along with a seedless cultivar ('Thompson Seedless'), following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF), both 'Kyoho' and 'Red Globe' seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls. Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development.

  10. Effect of GA3 Treatment on Seed Development and Seed-Related Gene Expression in Grape

    PubMed Central

    Cheng, Chenxia; Xu, Xiaozhao; Singer, Stacy D.; Li, Jun; Zhang, Hongjing; Gao, Min; Wang, Li; Song, Junyang; Wang, Xiping

    2013-01-01

    Background The phytohormone gibberellic acid (GA3) is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes. Methodology/Principal Findings In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars (‘Kyoho’ and ‘Red Globe’), along with a seedless cultivar (‘Thompson Seedless’), following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF), both ‘Kyoho’ and ‘Red Globe’ seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls. Conclusion Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development. PMID:24224035

  11. Separating parental environment from seed size effects on next generation growth and development in Arabidopsis.

    PubMed

    Elwell, Angela L; Gronwall, David S; Miller, Nathan D; Spalding, Edgar P; Brooks, Tessa L Durham

    2011-02-01

    Plant growth and development is profoundly influenced by environmental conditions that laboratory experimentation typically attempts to control. However, growth conditions are not uniform between or even within laboratories and the extent to which these differences influence plant growth and development is unknown. Experiments with wild-type Arabidopsis thaliana were designed to quantify the influences of parental environment and seed size on growth and development in the next generation. A single lot of seed was planted in six environmental chambers and grown to maturity. The seed produced was mechanically sieved into small and large size classes then grown in a common environment and subjected to a set of assays spanning the life cycle. Analysis of variance demonstrated that seed size effects were particularly significant early in development, affecting primary root growth and gravitropism, but also flowering time. Parental environment affected progeny germination time, flowering and weight of seed the progeny produced. In some cases, the parental environment affected the magnitude of (interacted with) the observed seed size effects. These data indicate that life history circumstances of the parental generation can affect growth and development throughout the life cycle of the next generation to an extent that should be considered when performing genetic studies. © 2010 Blackwell Publishing Ltd.

  12. The effect of cultivar, sowing date and transplant location in field on bolting of Welsh onion (Allium fistulosum L.)

    PubMed Central

    2013-01-01

    Background Bolting reduces the quality and commercial yield of Welsh onion (Allium fistulosum L.) in production. However, seed production is directly dependent on flower induction and bolting. The Welsh onion belongs to the green plant vernalisation type, specific seedling characteristics and sufficient accumulated time at low temperature are indispensible for the completion of its vernalisation process. Only if these conditions for vernalisation are fulfilled, the plants will bolt in the following year. The present investigation evaluated the effects of cultivar, sowing date and transplant location in field on the bolting of Welsh onion at the Horticultural Farm of the College of Horticulture, Northwest A&F University, Yangling, Shannxi Province, China in two succeeding production years: 2010–2011 and 2011–2012. A strip split plot layout within a randomised complete block design with three replications was used. Results The results revealed that all three factors (cultivar, sowing date and transplant location) and their interaction had significant effects on the initiation and final rate of bolting observed by 30 April. The earliest bolting date (14 February, 2011 and 15 February, 2012) and the highest bolting rate (100% in 2011 and 62% in 2012) occurred when the JinGuan cultivar was sown on 20 August and transplanted in a plastic tunnel, whereas the latest date and lowest rate (no bolting observed until 30 April) of bolting occurred when the XiaHei cultivar was sown on 29 September and transplanted in an open field. Conclusions These results suggest that we can control bolting in Welsh onion production by choosing an appropriate cultivar, sowing date and transplant location. Choosing a late bolting cultivar, such as cultivar XiaHei, sowing around October, and transplanting in the open field can significantly delay bolting, while a sowing date in late August should be selected for seed production, and the seedlings should be transplanted in a plastic tunnel to accelerate development of the flower buds. PMID:24199907

  13. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models.

    PubMed

    Mehra, Lucky K; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S

    2016-01-01

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of the risk of SNB, facilitating sound disease management decisions prior to planting of wheat.

  14. The effect of cultivar, sowing date and transplant location in field on bolting of Welsh onion (Allium fistulosum L.).

    PubMed

    Dong, Yinxin; Cheng, Zhihui; Meng, Huanwen; Liu, Hanqiang; Wu, Cuinan; Khan, Abdul Rehman

    2013-10-07

    Bolting reduces the quality and commercial yield of Welsh onion (Allium fistulosum L.) in production. However, seed production is directly dependent on flower induction and bolting. The Welsh onion belongs to the green plant vernalisation type, specific seedling characteristics and sufficient accumulated time at low temperature are indispensible for the completion of its vernalisation process. Only if these conditions for vernalisation are fulfilled, the plants will bolt in the following year. The present investigation evaluated the effects of cultivar, sowing date and transplant location in field on the bolting of Welsh onion at the Horticultural Farm of the College of Horticulture, Northwest A&F University, Yangling, Shannxi Province, China in two succeeding production years: 2010-2011 and 2011-2012. A strip split plot layout within a randomised complete block design with three replications was used. The results revealed that all three factors (cultivar, sowing date and transplant location) and their interaction had significant effects on the initiation and final rate of bolting observed by 30 April. The earliest bolting date (14 February, 2011 and 15 February, 2012) and the highest bolting rate (100% in 2011 and 62% in 2012) occurred when the JinGuan cultivar was sown on 20 August and transplanted in a plastic tunnel, whereas the latest date and lowest rate (no bolting observed until 30 April) of bolting occurred when the XiaHei cultivar was sown on 29 September and transplanted in an open field. These results suggest that we can control bolting in Welsh onion production by choosing an appropriate cultivar, sowing date and transplant location. Choosing a late bolting cultivar, such as cultivar XiaHei, sowing around October, and transplanting in the open field can significantly delay bolting, while a sowing date in late August should be selected for seed production, and the seedlings should be transplanted in a plastic tunnel to accelerate development of the flower buds.

  15. Late Eocene white pines (Pinus subgenus Strobus) from southern China.

    PubMed

    Xu, Qingqing; Zhou, Wenjun; Kodrul, Tatiana M; Naugolnykh, Serge V; Jin, Jianhua

    2015-11-09

    Fossil records indicate that the genus Pinus L. split into two subgenera by the Late Cretaceous, although subgenus Strobus (D. Don) Lemmon is less well documented than subgenus Pinus L., especially in eastern Asia. In this paper, Pinus maomingensis sp. nov. is established based on a compressed seed cone from the upper Eocene of the Maoming Basin of southern China. This species is attributed to genus Pinus, subgenus Strobus, section Quinquefoliae Duhamel, subsection Strobus Loudon based on the combination of morphological characters obtained from the cone scales, specifically from the terminal umbo, rhombic apophysis, and cuticle structure. Associated fascicles of needle leaves with deciduous sheaths and bulbous bases are recognized as Pinus sp. and also represent Pinus subgenus Strobus. This new discovery from the Maoming Basin constitutes the first megafossil record of subgenus Strobus from southern China and implies that the members of this subgenus arrived in the southern region of China by the late Eocene. The extant species of subgenus Strobus are mainly distributed in northern temperate and tropical to subtropical mountainous regions. We propose that the Maoming Basin was adjacent to a mountainous region during the late Eocene.

  16. Late Eocene white pines (Pinus subgenus Strobus) from southern China

    PubMed Central

    Xu, Qingqing; Zhou, Wenjun; Kodrul, Tatiana M.; Naugolnykh, Serge V.; Jin, Jianhua

    2015-01-01

    Fossil records indicate that the genus Pinus L. split into two subgenera by the Late Cretaceous, although subgenus Strobus (D. Don) Lemmon is less well documented than subgenus Pinus L., especially in eastern Asia. In this paper, Pinus maomingensis sp. nov. is established based on a compressed seed cone from the upper Eocene of the Maoming Basin of southern China. This species is attributed to genus Pinus, subgenus Strobus, section Quinquefoliae Duhamel, subsection Strobus Loudon based on the combination of morphological characters obtained from the cone scales, specifically from the terminal umbo, rhombic apophysis, and cuticle structure. Associated fascicles of needle leaves with deciduous sheaths and bulbous bases are recognized as Pinus sp. and also represent Pinus subgenus Strobus. This new discovery from the Maoming Basin constitutes the first megafossil record of subgenus Strobus from southern China and implies that the members of this subgenus arrived in the southern region of China by the late Eocene. The extant species of subgenus Strobus are mainly distributed in northern temperate and tropical to subtropical mountainous regions. We propose that the Maoming Basin was adjacent to a mountainous region during the late Eocene. PMID:26548658

  17. Seed-feeding insects impacting globemallow seed production

    Treesearch

    Robert Hammon; Melissa Franklin

    2012-01-01

    Weevils (Anthonomus sphaeralciae Fall [Coleoptera: Curculionidae]), which attack flowers and developing seeds, can significantly impact globemallow Sphaeralcea spp. A. St.-Hil. (Malvaceae) seed production without a grower even noticing there was insect damage. This weevil damaged almost one-quarter of the flowers in a seed production field in Delta County, Colorado,...

  18. Enhanced Ultrasound Visualization of Brachytherapy Seeds by a Novel Magnetically Induced Motion Imaging Method

    DTIC Science & Technology

    2007-04-01

    We report our progress in developing Magnetically Induced Motion Imaging (MIMI) for unambiguous identification and localization brachytherapy seeds ...tail artifacts in segmented seed images. The second is a method for joining ends of seeds in segmented seed images based on the phase of the detected

  19. The Origin of our Universe: From Quantum to Cosmos

    NASA Astrophysics Data System (ADS)

    Hertog, Thomas

    2016-03-01

    The discovery in the late 1920s that our universe expands fundamentally changed the discussion about its origin. I first review the scientific, historical and philosophical background behind this discovery. A key player in this was Georges Lemaitre who was also a Catholic priest. Respecting meticulously the differences in methodology and language between science and religion he was first to conceive of a physical origin of our universe, based on quantum theory. Today Lemaitre's vision is realised concretely in inflationary cosmology where a phase of rapid expansion generates the seeds for a complex universe starting from a simple natural beginning. A fuzzy quantum origin however gives rise to a multiverse of possible universes. I discuss some of the challenges associated with the development of a truly predictive multiverse cosmology that is falsifiable to observers within one of its histories.

  20. Refined Synthesis and Characterization of Controlled Diameter, Narrow Size Distribution Microparticles for Aerospace Research Applications

    NASA Technical Reports Server (NTRS)

    Tiemsin, Pacita I.; Wohl, Christopher J.

    2012-01-01

    Flow visualization using polystyrene microspheres (PSL)s has enabled researchers to learn a tremendous amount of information via particle based diagnostic techniques. To better accommodate wind tunnel researchers needs, PSL synthesis via dispersion polymerization has been carried out at NASA Langley Research Center since the late 1980s. When utilizing seed material for flow visualization, size and size distribution are of paramount importance. Therefore, the work described here focused on further refinement of PSL synthesis and characterization. Through controlled variation of synthetic conditions (chemical concentrations, solution stirring speed, temperature, etc.) a robust, controllable procedure was developed. The relationship between particle size and salt concentration, MgSO4, was identified enabling the determination of PSL diameters a priori. Suggestions of future topics related to PSL synthesis, stability, and size variation are also described.

  1. Cell wall invertase as a regulator in determining sequential development of endosperm and embryo through glucose signaling early in seed development.

    PubMed

    Wang, Lu; Liao, Shengjin; Ruan, Yong-Ling

    2013-01-01

    Seed development depends on coordination among embryo, endosperm and seed coat. Endosperm undergoes nuclear division soon after fertilization, whereas embryo remains quiescent for a while. Such a developmental sequence is of great importance for proper seed development. However, the underlying mechanism remains unclear. Recent results on the cellular domain- and stage-specific expression of invertase genes in cotton and Arabidopsis revealed that cell wall invertase may positively and specifically regulate nuclear division of endosperm after fertilization, thereby playing a role in determining the sequential development of endosperm and embryo, probably through glucose signaling.

  2. Impact of seed predators on the herb Baptista lanceolata (Fabales: Fabacae).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Horn; James L. Hanula.

    2004-09-01

    Leguminous seeds are a concentrated source of nutrition (Brashier 2000). In a nutrient-poor habitat, these seeds are important resources for many of the animal species residing there. Several insect predators are known to feed on Baptisia seeds. One such insect is Apion rostrum Say (Coleoptera: Curculionidae), a weevil that feeds on seeds of several wild indigo species. Females lay eggs in developing seed pods where the larvae eat the seeds.

  3. Faith in a seed: on the origins of equatorial plasma bubbles

    NASA Astrophysics Data System (ADS)

    Retterer, J. M.; Roddy, P.

    2014-05-01

    Our faith in the seeds of equatorial plasma irregularities holds that there will generally always be density perturbations sufficient to provide the seeds for irregularity development whenever the Rayleigh-Taylor instability is active. When the duration of the time of the Rayleigh-Taylor instability is short, however, the magnitude of the seed perturbations can make a difference in whether the irregularities have a chance to grow to a strength at which the nonlinear development of plumes occurs. In addition, the character of the resulting irregularities reflects the characteristics of the initial seed density perturbation, e.g., their strength, spacing, and, to some extent, their spatial scales, and it is important to know the seeds to help determine the structure of the developed irregularities. To this end, we describe the climatology of daytime and early-evening density irregularities that can serve as seeds for later development of plumes, as determined from the Planar Langmuir Probe (PLP) plasma density measurements on the C/NOFS (Communication and Navigation Outage Forecast System) satellite mission, presenting their magnitude as a function of altitude, latitude, longitude, local time, season, and phase in the solar cycle (within the C/NOFS observation era). To examine some of the consequences of these density perturbations, they are used as initial conditions for the PBMOD PBMOD (Retterer, 2010a) 3-D irregularity model to follow their potential development into larger-amplitude irregularities, plumes, and radio scintillation. "Though I do not believe that a pla[sma bubble] will spring up where no seed has been, I have great faith in a seed. Convince me that you have a seed there, and I am prepared to expect wonders." - Henry David Thoreau

  4. Duplicate Maize Wrinkled1 Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis1[C][W

    PubMed Central

    Pouvreau, Benjamin; Baud, Sébastien; Vernoud, Vanessa; Morin, Valérie; Py, Cyrille; Gendrot, Ghislaine; Pichon, Jean-Philippe; Rouster, Jacques; Paul, Wyatt; Rogowsky, Peter M.

    2011-01-01

    WRINKLED1 (WRI1), a key regulator of seed oil biosynthesis in Arabidopsis (Arabidopsis thaliana), was duplicated during the genome amplification of the cereal ancestor genome 90 million years ago. Both maize (Zea mays) coorthologs ZmWri1a and ZmWri1b show a strong transcriptional induction during the early filling stage of the embryo and complement the reduced fatty acid content of Arabidopsis wri1-4 seeds, suggesting conservation of molecular function. Overexpression of ZmWri1a not only increases the fatty acid content of the mature maize grain but also the content of certain amino acids, of several compounds involved in amino acid biosynthesis, and of two intermediates of the tricarboxylic acid cycle. Transcriptomic experiments identified 18 putative target genes of this transcription factor, 12 of which contain in their upstream regions an AW box, the cis-element bound by AtWRI1. In addition to functions related to late glycolysis and fatty acid biosynthesis in plastids, the target genes also have functions related to coenzyme A biosynthesis in mitochondria and the production of glycerol backbones for triacylglycerol biosynthesis in the cytoplasm. Interestingly, the higher seed oil content in ZmWri1a overexpression lines is not accompanied by a reduction in starch, thus opening possibilities for the use of the transgenic maize lines in breeding programs. PMID:21474435

  5. Paleoactaea gen. nov. (Ranunculaceae) fruits from the Paleogene of North Dakota and the London Clay.

    PubMed

    Pigg, Kathleen B; Devore, Melanie L

    2005-10-01

    Paleoactea nagelii Pigg & DeVore gen. et sp. nov. is described for a small, ovoid ranunculaceous fossil fruit from the Late Paleocene Almont and Beicegel Creek floras of North Dakota, USA. Fruits are 5-7 mm wide, 4.5-6 mm high, 10-13 mm long, and bilaterally symmetrical, containing 10-17 seeds attached on the upper margin in 2-3 rows. A distinctive honeycomb pattern is formed where adjacent seeds with prominent palisade outer cell layers abut. Seeds are flattened, ovoid, and triangular. To the inside of the palisade cells, the seed coat has a region of isodiametric cells that become more tangentially elongate toward the center. The embryo cavity is replaced by an opaline cast. This fruit bears a striking resemblance to extant Actaea, the baneberry (Ranunculaceae), an herbaceous spring wildflower of North Temperate regions. A second species, Paleoactaea bowerbanki (Reid & Chandler) Pigg & DeVore nov. comb., is recognized from the Early Eocene London Clay flora, based on a single fruit. This fruit shares most of the organization and structure of P. nagelii but is larger and has a thicker pericarp. This study documents a rare Paleocene occurrence of a member of the buttercup family, a family that is today primarily herbaceous, and demonstrates a North Atlantic connection for an Actaea-like genus in the Paleogene.

  6. The Proteome of Seed Development in the Model Legume Lotus japonicus1[C][W

    PubMed Central

    Dam, Svend; Laursen, Brian S.; Ørnfelt, Jane H.; Jochimsen, Bjarne; Stærfeldt, Hans Henrik; Friis, Carsten; Nielsen, Kasper; Goffard, Nicolas; Besenbacher, Søren; Krusell, Lene; Sato, Shusei; Tabata, Satoshi; Thøgersen, Ida B.; Enghild, Jan J.; Stougaard, Jens

    2009-01-01

    We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family. PMID:19129418

  7. Transcriptome Analysis of Taxillusi chinensis (DC.) Danser Seeds in Response to Water Loss

    PubMed Central

    Wei, Shugen; Ma, Xiaojun; Pan, Limei; Miao, Jianhua; Fu, Jine; Bai, Longhua; Zhang, Zhonglian; Guan, Yanhong; Mo, Changming; Huang, Hao; Chen, Maoshan

    2017-01-01

    Background Taxillus chinensis (DC.) Danser, the official species of parasitic loranthus that grows by parasitizing other plants, is used in various traditional Chinese medicine prescriptions. ABA-dependent and ABA-independent pathways are two major pathways in response to drought stress for plants and some genes have been reported to play a key role during the dehydration including dehydration-responsive protein RD22, late embryogenesis abundant (LEA) proteins, and various transcription factors (TFs) like MYB and WRKY. However, genes responding to dehydration are still unknown in loranthus. Methods and Results Initially, loranthus seeds were characterized as recalcitrant seeds. Then, biological replicates of fresh loranthus seeds (CK), and seeds after being dehydrated for 16 hours (Tac-16) and 36 hours (Tac-36) were sequenced by RNA-Seq, generating 386,542,846 high quality reads. A total of 164,546 transcripts corresponding to 114,971 genes were assembled by Trinity and annotated by mapping them to NCBI non-redundant (NR), UniProt, GO, KEGG pathway and COG databases. Transcriptome profiling identified 60,695, 56,027 and 66,389 transcripts (>1 FPKM) in CK, Tac-16 and Tac-36, respectively. Compared to CK, we obtained 2,102 up-regulated and 1,344 down-regulated transcripts in Tac-16 and 1,649 up-regulated and 2,135 down-regulated transcripts in Tac-36 by using edgeR. Among them some have been reported to function in dehydration process, such as RD22, heat shock proteins (HSP) and various TFs (MYB, WRKY and ethylene-responsive transcription factors). Interestingly, transcripts encoding ribosomal proteins peaked in Tac-16. It is indicated that HSPs and ribosomal proteins may function in early response to drought stress. Raw sequencing data can be accessed in NCBI SRA platform under the accession number SRA309567. Conclusions This is the first time to profile transcriptome globally in loranthus seeds. Our findings provide insights into the gene regulations of loranthus seeds in response to water loss and expand our current understanding of drought tolerance and germination of seeds. PMID:28046012

  8. Immunohistochemistry of active gibberellins and gibberellin-inducible alpha-amylase in developing seeds of morning glory.

    PubMed

    Nakayama, Akira; Park, Seijin; Zheng-Jun, Xu; Nakajima, Masatoshi; Yamaguchi, Isomaro

    2002-07-01

    Gibberellins (GAs) in developing seeds of morning glory (Pharbitis nil) were quantified and localized by immunostaining. The starch grains began to be digested after the GA contents had increased and reached a plateau. Immunohistochemical staining with the antigibberellin A(1)-methyl ester-antiserum, which has high affinity to biologically active GAs, showed that GA(1) and/or GA(3) were localized around starch grains in the integument of developing young seeds, suggesting the participation of GA-inducible alpha-amylase in this digestion. We isolated an alpha-amylase cDNA (PnAmy1) that was expressed in the immature seeds, and using an antibody raised against recombinant protein, it was shown that PnAmy1 was expressed in the immature seeds. GA responsiveness of PnAmy1 was shown by treating the young fruits 9 d after anthesis with GA(3). RNA-blot and immunoblot analyses showed that PnAmy1 emerged soon after the rapid increase of GA(1/3). An immunohistochemical analysis of PnAmy1 showed that it, like the seed GA(1/3), was also localized around starch grains in the integument of developing young seeds. The localization of GA(1/3) in the integument coincident with the expression of PnAmy1 suggests that both function as part of a process to release sugars for translocation or for the further development of the seeds.

  9. Immunohistochemistry of Active Gibberellins and Gibberellin-Inducible α-Amylase in Developing Seeds of Morning Glory1

    PubMed Central

    Nakayama, Akira; Park, Seijin; Zheng-Jun, Xu; Nakajima, Masatoshi; Yamaguchi, Isomaro

    2002-01-01

    Gibberellins (GAs) in developing seeds of morning glory (Pharbitis nil) were quantified and localized by immunostaining. The starch grains began to be digested after the GA contents had increased and reached a plateau. Immunohistochemical staining with the antigibberellin A1-methyl ester-antiserum, which has high affinity to biologically active GAs, showed that GA1 and/or GA3 were localized around starch grains in the integument of developing young seeds, suggesting the participation of GA-inducible α-amylase in this digestion. We isolated an α-amylase cDNA (PnAmy1) that was expressed in the immature seeds, and using an antibody raised against recombinant protein, it was shown that PnAmy1 was expressed in the immature seeds. GA responsiveness of PnAmy1 was shown by treating the young fruits 9 d after anthesis with GA3. RNA-blot and immunoblot analyses showed that PnAmy1 emerged soon after the rapid increase of GA1/3. An immunohistochemical analysis of PnAmy1 showed that it, like the seed GA1/3, was also localized around starch grains in the integument of developing young seeds. The localization of GA1/3 in the integument coincident with the expression of PnAmy1 suggests that both function as part of a process to release sugars for translocation or for the further development of the seeds. PMID:12114559

  10. Use of remote sensing, geographic information systems, and spatial statistics to assess spatio-temporal population dynamics of Heterodera glycines and soybean yield quantity and quality

    NASA Astrophysics Data System (ADS)

    Moreira, Antonio Jose De Araujo

    Soybean, Glycine max (L.) Merr., is an important source of oil and protein worldwide, and soybean cyst nematode (SCN), Heterodera glycines, is among the most important yield-limiting factors in soybean production worldwide. Early detection of SCN is difficult because soybean plants infected by SCN often do not exhibit visible symptoms. It was hypothesized, however, that reflectance data obtained by remote sensing from soybean canopies may be used to detect plant stress caused by SCN infection. Moreover, reflectance measurements may be related to soybean growth and yield. Two field experiments were conducted from 2000 to 2002 to study the relationships among reflectance data, quantity and quality of soybean yield, and SCN population densities. The best relationships between reflectance and the quantity of soybean grain yield occurred when reflectance data were obtained late August to early September. Similarly, reflectance was best related to seed oil and seed protein content and seed size when measured during late August/early September. Grain quality-reflectance relationships varied spatially and temporally. Reflectance measured early or late in the season had the best relationships with SCN population densities measured at planting. Soil properties likely affected reflectance measurements obtained at the beginning of the season and somehow may have been related to SCN population densities at planting. Reflectance data obtained at the end of the growing season likely was affected by early senescence of SCN-infected soybeans. Spatio-temporal aspects of SCN population densities in both experiments were assessed using spatial statistics and regression analyses. In the 2000 and 2001 growing seasons, spring-to-fall changes in SCN population densities were best related to SCN population densities at planting for both experiments. However, within-season changes in SCN population densities were best related to SCN population densities at harvest for both experiments in 2002. Variograms were fitted to the data to describe the spatial characteristics of SCN population densities in both fields at planting and at harvest from 2000 to 2003 and these parameters varied within seasons and during overwinter periods in both experiments. Distinct relationships between temporal and spatial changes in SCN population densities were not detected.

  11. Wind-dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination.

    PubMed

    Qu, Rongming; Li, Xiaojie; Luo, Yibo; Dong, Ming; Xu, Huanli; Chen, Xuan; Dafni, Amots

    2007-12-01

    Delayed self-pollination is a mechanism that allows animal-pollinated plants to outcross while ensuring seed production in the absence of pollinators. This study aims to explore a new mechanism of delayed self-pollination facilitated by wind-driven corolla abscission in Incarvillea sinensis var. sinensis. Floral morphology and development, and the process of delayed self-pollination were surveyed. Experiments dealing with pollinator and wind exclusion, pollination manipulations, and pollinator observations were conducted in the field. Delayed self-pollination occurs when the abscising corolla driven by wind drags the adherent epipetalous stamens, thus leading to contact of anthers with stigma in late anthesis. There is no dichogamy and self-incompatibility in this species. The significantly higher proportion of abscised corolla under natural conditions as compared with that in wind-excluding tents indicates the importance of wind in corolla abscission. When pollinators were excluded, corolla abscission significantly increased the number of pollen grains deposited on the stigma and, as a result, the fruit and seed set. Only half of the flowers in plots were visited by pollinators, and the fruit set of emasculated flowers was significantly lower than that of untreated flowers in open pollination. This species has a sensitive stigma, and its two open stigmatic lobes closed soon after being touched by a pollinator, but always reopened if no or only little pollen was deposited. This delayed self-pollination, which involved the movement of floral parts, the active participation of the wind and sensitive stigma, is quite different from that reported previously. This mechanism provides reproductive assurance for this species. The sensitive stigma contributes to ensuring seed production and reducing the interference of selfing with outcrossing. The pollination pattern, which combines actions by bees with indirect participation by wind, is also a new addition to ambophily.

  12. Development of SNP Genotyping Assays for Seed Composition Traits in Soybean

    PubMed Central

    Patil, Gunvant; Chaudhary, Juhi; Vuong, Tri D.; Jenkins, Brian; Qiu, Dan; Kadam, Suhas; Shannon, Grover J.

    2017-01-01

    Seed composition is one of the most important determinants of the economic values in soybean. The quality and quantity of different seed components, such as oil, protein, and carbohydrates, are crucial ingredients in food, feed, and numerous industrial products. Soybean researchers have successfully developed and utilized a diverse set of molecular markers for seed trait improvement in soybean breeding programs. It is imperative to design and develop molecular assays that are accurate, robust, high-throughput, cost-effective, and available on a common genotyping platform. In the present study, we developed and validated KASP (Kompetitive allele-specific polymerase chain reaction) genotyping assays based on previously known functional mutant alleles for the seed composition traits, including fatty acids, oligosaccharides, trypsin inhibitor, and lipoxygenase. These assays were validated on mutant sources as well as mapping populations and precisely distinguish the homozygotes and heterozygotes of the mutant genes. With the obvious advantages, newly developed KASP assays in this study can substitute the genotyping assays that were previously developed for marker-assisted selection (MAS). The functional gene-based assay resource developed using common genotyping platform will be helpful to accelerate efforts to improve soybean seed composition traits. PMID:28630621

  13. Oil body proteins sequentially accumulate throughout seed development in Brassica napus.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Valot, Benoît; d'Andréa, Sabine; Zivy, Michel; Nesi, Nathalie; Chardot, Thierry

    2011-11-15

    Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis.

    PubMed

    Liu, Sushuang; Liu, Yanmin; Jia, Yanhong; Wei, Jiaping; Wang, Shuang; Liu, Xiaolin; Zhou, Yali; Zhu, Yajing; Gu, Weihong; Ma, Hao

    2017-06-01

    Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from -399 to -299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H 2 O 2 ) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Increased temperatures negatively affect Juniperus communis seeds: evidence from transplant experiments along a latitudinal gradient.

    PubMed

    Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K

    2016-05-01

    With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Sugar - hormone crosstalk in seed development: Two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize

    USDA-ARS?s Scientific Manuscript database

    The miniature1 (mn1) seed phenotype is a loss-of-function mutation at the Mn1 locus that encodes a cell wall invertase; its deficiency leads to pleiotropic changes including altered sugar levels and decreased levels of IAA throughout seed development. To understand the molecular details of such suga...

  17. Assessing of the contributions of pod photosynthesis to carbon acquisition of seed in alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Wenxu; Mao, Peisheng; Li, Yuan; Wang, Mingya; Xia, Fangshan; Wang, Hui

    2017-02-07

    The distribution of carbon from a branch setting pod in alfalfa was investigated during the seed development of seeds to determine the relative contribution of pod and leaf photoassimilates to the total C balance and to investigate the partitioning of these photoassimilates to other plant organs. A 13 Clabeling procedure was used to label C photoassimilates of pods and leaves in alfalfa, and the Δ 13 C values of a pod, leaves, a section of stem and roots were measured during seed development on day 10, 15, 20 and 25 after labeling of the pod. The results showed that the alfalfa pod had photosynthetic capacity early in the development of seeds, and that pod photosynthesis could provide carbon to alfalfa organs including seeds, pods, leaves, stems and roots, in addition to leaf photosynthesis. Photosynthesis in the pod affected the total C balance of the alfalfa branch with the redistribution of a portion of pod assimilates to other plant organs. The assimilated 13 C of the pod was used for the growth requirements of plant seeds and pods. The requirements for assimilated C came primarily from the young pod in early seed development, with later requirements provided primarily from the leaf.

  18. An Efficient Method for the Isolation of Highly Purified RNA from Seeds for Use in Quantitative Transcriptome Analysis.

    PubMed

    Kanai, Masatake; Mano, Shoji; Nishimura, Mikio

    2017-01-11

    Plant seeds accumulate large amounts of storage reserves comprising biodegradable organic matter. Humans rely on seed storage reserves for food and as industrial materials. Gene expression profiles are powerful tools for investigating metabolic regulation in plant cells. Therefore, detailed, accurate gene expression profiles during seed development are required for crop breeding. Acquiring highly purified RNA is essential for producing these profiles. Efficient methods are needed to isolate highly purified RNA from seeds. Here, we describe a method for isolating RNA from seeds containing large amounts of oils, proteins, and polyphenols, which have inhibitory effects on high-purity RNA isolation. Our method enables highly purified RNA to be obtained from seeds without the use of phenol, chloroform, or additional processes for RNA purification. This method is applicable to Arabidopsis, rapeseed, and soybean seeds. Our method will be useful for monitoring the expression patterns of low level transcripts in developing and mature seeds.

  19. Studies on optimum harvest time for hybrid rice seed.

    PubMed

    Fu, Hong; Cao, Dong-Dong; Hu, Wei-Min; Guan, Ya-Jing; Fu, Yu-Ying; Fang, Yong-Feng; Hu, Jin

    2017-03-01

    Timely harvest is critical for hybrid rice to achieve maximum seed viability, vigor and yield. However, how to predict the optimum harvest time has been rarely reported so far. The seed vigor of Zhuliangyou 06 (ZLY06) increased and reached the highest level at 20 days after pollination (DAP), when seed moisture content had a lower value, which was maintained until final seed maturation. For Chunyou 84 (CY84), seed vigor, fresh and dry weight had relatively high values at 25 DAP, when seed moisture content reached the lowest value and changed slightly from 25 to 55 DAP. In both hybrid rice varieties, seed glume chlorophyll content declined rapidly from 10 to 30 DAP and remained at a very low level after 35 DAP. Starch content exhibited an increasing trend during seed maturation, while both soluble sugar content and amylase activity decreased significantly at the early stages of seed development. Moreover, correlation analyses showed that seed dry weight, starch content and superoxide dismutase activity were significantly positively correlated with seed vigor. In contrast, chlorophyll content, moisture content, soluble sugar, soluble protein, abscisic acid, gibberellin content, electrical conductivity, catalase and ascorbate peroxidase activities were significantly negatively correlated with seed vigor. Physiological and biochemical parameters were obviously more closely related with seed vigor than with seed germinability during seed development. Seed vigor could be better used as a comprehensive factor to predict the optimum seed harvest time. It is suggested that for ZLY06 seeds could be harvested as early as 20 DAP, whereas for CY84 the earliest optimum harvest time was 25 DAP. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects

    PubMed Central

    Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed

    2015-01-01

    Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule’s nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule’s megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism. PMID:26441311

  1. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects.

    PubMed

    Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed

    2015-01-01

    Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule's nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule's megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism.

  2. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and transport processes. Seeds, which supply essential resources for embryo development, showed higher mRNA abundance of genes encoding phenylpropanoid biosynthetic enzymes, seed storage proteins, and late embryogenesis abundant proteins. Water-deficit stress affected the mRNA abundance of 13% of the genes with differential expression patterns occurring mainly in the pulp and skin. In pulp and seed tissues transcript abundance in most functional categories declined in water-deficit stressed vines relative to well-watered vines with transcripts for storage proteins and novel (no-hit) functional assignments being over represented. In the skin of berries from water-deficit stressed vines, however, transcripts from several functional categories including general phenypropanoid and ethylene metabolism, pathogenesis-related responses, energy, and interaction with the environment were significantly over-represented. Conclusion These results revealed novel insights into the tissue-specific expression mRNA expression patterns of an extensive repertoire of genes expressed in berry tissues. This work also establishes an extensive catalogue of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern tissue-specific expression patterns associated with tissue differentiation within berries. These results also confirmed that water-deficit stress has a profound effect on mRNA expression patterns particularly associated with the biosynthesis of aroma and color metabolites within skin and pulp tissues that ultimately impact wine quality. PMID:17584945

  3. An Arabidopsis thaliana embryo arrest mutant exhibiting germination potential

    USDA-ARS?s Scientific Manuscript database

    The ability to initiate radicle elongation, or germination potential, occurs in developing embryos before the completion of seed maturation. Green embryos after walking-stick stage in developing Arabidopsis thaliana seeds germinate when excised from seeds and incubated in MS media containing 1 % suc...

  4. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    PubMed Central

    Ibeas, Miguel A.; Grant-Grant, Susana; Navarro, Nathalia; Perez, M. F.; Roschzttardtz, Hannetz

    2017-01-01

    Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds. PMID:29312417

  5. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation

    NASA Astrophysics Data System (ADS)

    Caliari, Steven R.; Perepelyuk, Maryna; Cosgrove, Brian D.; Tsai, Shannon J.; Lee, Gi Yun; Mauck, Robert L.; Wells, Rebecca G.; Burdick, Jason A.

    2016-02-01

    Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.

  6. Development and efficacy assessments of tea seed oil makeup remover.

    PubMed

    Parnsamut, N; Kanlayavattanakul, M; Lourith, N

    2017-05-01

    The efficacy of tea seed oil to clean foundation and eyeliner was evaluated. The safe and efficient tea seed oil makeup remover was developed. In vitro cleansing efficacy of makeup remover was UV-spectrophotometric validated. The stability evaluation by means of accelerated stability test was conducted. In vitro and in vivo cleansing efficacy of the removers was conducted in a comparison with benchmark majorly containing olive oil. Tea seed oil cleaned 90.64±4.56% of foundation and 87.62±8.35% of eyeliner. The stable with most appropriate textures base was incorporated with tea seed oil. Three tea seed oil removers (50, 55 and 60%) were stabled. The 60% tea seed oil remover significantly removed foundation better than others (94.48±3.37%; P<0.001) and the benchmark (92.32±1.33%), but insignificant removed eyeliner (87.50±5.15%; P=0.059). Tea seed oil remover caused none of skin irritation as examined in 20 human volunteers. A single-blind, randomized control exhibited that the tea seed oil remover gained a better preference over the benchmark (75.42±8.10 and 70.00±7.78%; P=0.974). The safe and efficient tea seed oil makeup removers had been developed. The consumers' choices towards the makeup remover containing the bio-oils are widen. In vitro cleansing efficacy during the course of makeup remover development using UV-spectrophotometric method feasible for pharmaceutic industries is encouraged. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  7. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns

    PubMed Central

    Thangavel, Gokilavani; Nayar, Saraswati

    2018-01-01

    MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, “What is their role in non-seed plants?” From the studies reviewed here it can be gathered that unlike seed plants, MIKCC genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC* genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution. PMID:29720991

  8. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns.

    PubMed

    Thangavel, Gokilavani; Nayar, Saraswati

    2018-01-01

    MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, "What is their role in non-seed plants?" From the studies reviewed here it can be gathered that unlike seed plants, MIKC C genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC * genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution.

  9. Targeted Enhancement of Glutamate-to-γ-Aminobutyrate Conversion in Arabidopsis Seeds Affects Carbon-Nitrogen Balance and Storage Reserves in a Development-Dependent Manner1[W][OA

    PubMed Central

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P.; Napier, Johnathan A.; Galili, Gad; Fernie, Alisdair R.

    2011-01-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca2+-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation. PMID:21921115

  10. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner.

    PubMed

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P; Napier, Johnathan A; Galili, Gad; Fernie, Alisdair R

    2011-11-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation.

  11. Acquisition of physical dormancy and ontogeny of the micropyle--water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae).

    PubMed

    Gama-Arachchige, N S; Baskin, J M; Geneve, R L; Baskin, C C

    2011-07-01

    The 'hinged valve gap' has been previously identified as the initial site of water entry (i.e. water gap) in physically dormant (PY) seeds of Geranium carolinianum (Geraniaceae). However, neither the ontogeny of the hinged valve gap nor acquisition of PY by seeds of Geraniaceae has been studied previously. The aims of the present study were to investigate the physiological events related to acquisition of PY and the ontogeny of the hinged valve gap and seed coat of G. carolinianum. Seeds of G. carolinianum were studied from the ovule stage until dispersal. The developmental stages of acquisition of germinability, physiological maturity and PY were determined by seed measurement, germination and imbibition experiments using intact seeds and isolated embryos of both fresh and slow-dried seeds. Ontogeny of the seed coat and water gap was studied using light microscopy. Developing seeds achieved germinability, physiological maturity and PY on days 9, 14 and 20 after pollination (DAP), respectively. The critical moisture content of seeds on acquisition of PY was 11 %. Slow-drying caused the stage of acquisition of PY to shift from 20 to 13 DAP. Greater extent of cell division and differentiation at the micropyle, water gap and chalaza than at the rest of the seed coat resulted in particular anatomical features. Palisade and subpalisade cells of varying forms developed in these sites. A clear demarcation between the water gap and micropyle is not evident due to their close proximity. Acquisition of PY in seeds of G. carolinianum occurs after physiological maturity and is triggered by maturation drying. The micropyle and water gap cannot be considered as two separate entities, and thus it is more appropriate to consider them together as a 'micropyle--water-gap complex'.

  12. Towards better metrics and policymaking for seed system development: Insights from Asia's seed industry.

    PubMed

    Spielman, David J; Kennedy, Adam

    2016-09-01

    Since the 1980s, many developing countries have introduced policies to promote seed industry growth and improve the delivery of modern science to farmers, often with a long-term goal of increasing agricultural productivity in smallholder farming systems. Public, private, and civil society actors involved in shaping policy designs have, in turn, developed competing narratives around how best to build an innovative and sustainable seed system, each with varying goals, values, and levels of influence. Efforts to strike a balance between these narratives have often played out in passionate discourses surrounding seed rules and regulations. As a result, however, policymakers in many countries have expressed impatience with the slow progress on enhancing the contribution of a modern seed industry to the overarching goal of increasing agricultural productivity growth. One reason for this slow progress may be that policymakers are insufficiently cognizant of the trade-offs associated with rules and regulations required to effectively govern a modern seed industry. This suggests the need for new data and analysis to improve the understanding of how seed systems function. This paper explores these issues in the context of Asia's rapidly growing seed industry, with illustrations from seed markets for maize and several other crops, to highlight current gaps in the metrics used to analyze performance, competition, and innovation. The paper provides a finite set of indicators to inform policymaking on seed system design and monitoring, and explores how these indicators can be used to inform current policy debates in the region.

  13. Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus

    PubMed Central

    Chen, Jie; Tan, Ren-Ke; Guo, Xiao-Juan; Fu, Zheng-Li; Wang, Zheng; Zhang, Zhi-Yan; Tan, Xiao-Li

    2015-01-01

    Brassica napus seed is a lipid storage organ containing approximately 40% oil, while its leaves contain many kinds of lipids for many biological roles, but the overall amounts are less than in seeds. Thus, lipid biosynthesis in the developing seeds and the leaves is strictly regulated which results the final difference of lipids. However, there are few reports about the molecular mechanism controlling the difference in lipid biosynthesis between developing seeds and leaves. In this study, we tried to uncover this mechanism by analyzing the transcriptome data for lipid biosynthesis. The transcriptome data were de novo assembled and a total of 47216 unigenes were obtained, which had an N50 length and median of 1271 and 755 bp, respectively. Among these unigenes, 36368 (about 77.02%) were annotated and there were 109 up-regulated unigenes and 72 down-regulated unigenes in the developing seeds lipid synthetic pathway after comparing with leaves. In the oleic acid pathway, 23 unigenes were up-regulated and four unigenes were down-regulated. During triacylglycerol (TAG) synthesis, the key unigenes were all up-regulated, such as phosphatidate phosphatase and diacylglycerol O-acyltransferase. During palmitic acid, palmitoleic acid, stearic acid, linoleic acid and linolenic acid synthesis in leaves, the unigenes were nearly all up-regulated, which indicated that the biosynthesis of these particular fatty acids were more important in leaves. In the developing seeds, almost all the unigenes in the ABI3VP1, RKD, CPP, E2F-DP, GRF, JUMONJI, MYB-related, PHD and REM transcript factorfamilies were up-regulated, which helped us to discern the regulation mechanism underlying lipid biosynthesis. The differential up/down-regulation of the genes and TFs involved in lipid biosynthesis in developing seeds and leaves provided direct evidence that allowed us to map the network that regulates lipid biosynthesis, and the identification of new TFs that are up-regulated in developing seeds will help us to further elucidate the lipids biosynthesis pathway in developing seeds and leaves. PMID:25965272

  14. Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds.

    PubMed

    Li, Qing; Fan, Cheng-Ming; Zhang, Xiao-Mei; Fu, Yong-Fu

    2012-10-01

    Most of traditional reference genes chosen for real-time quantitative PCR normalization were assumed to be ubiquitously and constitutively expressed in vegetative tissues. However, seeds show distinct transcriptomes compared with the vegetative tissues. Therefore, there is a need for re-validation of reference genes in samples of seed development and germination, especially for soybean seeds. In this study, we aimed at identifying reference genes suitable for the quantification of gene expression level in soybean seeds. In order to identify the best reference genes for soybean seeds, 18 putative reference genes were tested with various methods in different seed samples. We combined the outputs of both geNorm and NormFinder to assess the expression stability of these genes. The reference genes identified as optimums for seed development were TUA5 and UKN2, whereas for seed germination they were novel reference genes Glyma05g37470 and Glyma08g28550. Furthermore, for total seed samples it was necessary to combine four genes of Glyma05g37470, Glyma08g28550, Glyma18g04130 and UKN2 [corrected] for normalization. Key message We identified several reference genes that stably expressed in soybean seed developmental and germinating processes.

  15. Elevated temperature during reproductive development affects cone traits and progeny performance in Picea glauca x engelmannii complex.

    PubMed

    Webber, Joe; Ott, Peter; Owens, John; Binder, Wolfgang

    2005-10-01

    Two temperature regimes were applied during reproductive development of seed and pollen cones of interior spruce (Picea glauca (Moench) Voss and Picea engelmannii (Parry) complex) to determine temperature effects on the adaptive traits of progeny. In Experiment 1, identical crosses were made on potted interior spruce using untreated pollen followed by exposure to a day/night temperature of 22/8 or 14/8 degrees C with a 12-h photoperiod during the stages of reproductive development from post-pollination to early embryo development. Frost hardiness and growth of progeny from seed produced in the two temperature treatments were measured over a 4-year period. Elevated temperature significantly affected both seed-cone development and the adaptive properties of the progeny. Seed cones exposed to the 22/8 degrees C treatment reached the early embryo stage in 53 days versus 92 days in the 14/8 degrees C treatment. Seed yields, cotyledon emergence and percent germination were also significantly enhanced by the 22/8 degrees C treatment. Progeny from seed produced in the higher temperature treatment showed significantly reduced spring and fall frost hardiness, but the elevated temperature treatment had no significant effects on time of bud burst, growth patterns or final heights. In Experiment 2, single ramets of the same clone were subjected to a day/night temperature of 20/8 or 10/8 degrees C during pollen cone development, starting from meiosis and ending at pollen shedding. The two populations of pollen were then crossed with untreated seed cones. Compared with pollen cones exposed to the 10/8 degrees C treatment, pollen cones exposed to the 20/8 degrees C treatment during development reached the shedding stage 2-4 weeks earlier, whereas pollen yields, in vitro viability and fertility (seed set) were significantly lower; however, the resulting progeny displayed no treatment differences in frost hardiness or growth after 1 year. Results suggest that seed orchard after-effects could be caused by temperature differences between orchard site and parent tree origin and that this effect acts on maternal development. Gametophytic (pollen or megagametophyte or both) and early embryo (sporophytic) selection are possible mechanisms that may explain the observed results. Although the effects are biologically significant, they are relatively small and do not justify changes in current deployment strategies for seed orchard seed.

  16. Endosperm and Nucellus Develop Antagonistically in Arabidopsis Seeds

    PubMed Central

    Xu, Wenjia; Coen, Olivier; Pechoux, Christine; Magnani, Enrico

    2016-01-01

    In angiosperms, seed architecture is shaped by the coordinated development of three genetically different components: embryo, endosperm, and maternal tissues. The relative contribution of these tissues to seed mass and nutrient storage varies considerably among species. The development of embryo, endosperm, or nucellus maternal tissue as primary storage compartments defines three main typologies of seed architecture. It is still debated whether the ancestral angiosperm seed accumulated nutrients in the endosperm or the nucellus. During evolution, plants shifted repeatedly between these two storage strategies through molecular mechanisms that are largely unknown. Here, we characterize the regulatory pathway underlying nucellus and endosperm tissue partitioning in Arabidopsis thaliana. We show that Polycomb-group proteins repress nucellus degeneration before fertilization. A signal initiated in the endosperm by the AGAMOUS-LIKE62 MADS box transcription factor relieves this Polycomb-mediated repression and therefore allows nucellus degeneration. Further downstream in the pathway, the TRANSPARENT TESTA16 (TT16) and GORDITA MADS box transcription factors promote nucellus degeneration. Moreover, we demonstrate that TT16 mediates the crosstalk between nucellus and seed coat maternal tissues. Finally, we characterize the nucellus cell death program and its feedback role in timing endosperm development. Altogether, our data reveal the antagonistic development of nucellus and endosperm, in coordination with seed coat differentiation. PMID:27233529

  17. Mutational effects of space flight on Zea mays seeds

    NASA Technical Reports Server (NTRS)

    Mei, M.; Qiu, Y.; He, Y.; Bucker, H.; Yang, C. H.

    1994-01-01

    The growth and development of more than 500 Zea mays seeds flown on Long Duration Exposure Facility (LDEF) were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chloroplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.

  18. (Hydroxyproline-rich glycoprotein of the plant cell wall): Report on work from June 1987 to June 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    In soybean seed costs the accumulation of the hydroxproline-rich glycoprotein extensin is regulated in a developmental and tissue-specific manner. The time course of appearance of extensin during seed development was studied by Western blot analysis and by immunogold-silver localization. Using these techniques extensin was first detected at 16 to 18 d after anthesis, increasing during development to high levels at 24 d after anthesis. Immunogold-silver localization of extensin in the seed coat showed marked depostion of the glycoprotein in the walls of palisade epidermal cells and hourglass cells. The immunolocalization of extensin in developing soybean seeds was also made bymore » a new technique - tissue printing on nitrocellulose paper. This technique shows that extensin is primarily localized in the seed coal, hilum, and vascular elements of the seed.« less

  19. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.

    PubMed

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-07-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.

  20. Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula

    PubMed Central

    Garcia, Christina B.; Grusak, Michael A.

    2015-01-01

    Enhancing nutrient density in legume seeds is one of several strategies being explored to improve the nutritional quality of the food supply. In order to develop crop varieties with increased seed mineral concentration, a more detailed understanding of mineral translocation within the plant is required. By studying mineral accumulation in different organs within genetically diverse members of the same species, it may be possible to identify variable traits that modulate seed mineral concentration. We utilized two ecotypes (A17 and DZA315.16) of the model legume, Medicago truncatula, to study dry mass and mineral accumulation in the leaves, pod walls, and seeds during reproductive development. The pod wall dry mass was significantly different between the two ecotypes beginning at 12 days after pollination, whereas there was no significant difference in the average dry mass of individual seeds between the two ecotypes at any time point. There were also no significant differences in leaf dry mass between ecotypes; however, we observed expansion of A17 leaves during the first 21 days of pod development, while DZA315.16 leaves did not display a significant increase in leaf area. Mineral profiling of the leaves, pod walls, and seeds highlighted differences in accumulation patterns among minerals within each tissue as well as genotypic differences with respect to individual minerals. Because there were differences in the average seed number per pod, the total seed mineral content per pod was generally higher in A17 than DZA315.16. In addition, mineral partitioning to the seeds tended to be higher in A17 pods. These data revealed that mineral retention within leaves and/or pod walls might attenuate mineral accumulation within the seeds. As a result, strategies to increase seed mineral content should include approaches that will enhance export from these tissues. PMID:26322063

  1. Separating live from dead longleaf pine seeds: good and bad news

    Treesearch

    James P. Barnett; R. Kasten Dumroese

    2006-01-01

    Of all southern pine seeds, longleaf pine (Pinus palutris Mill.) are the most difficult to collect, process, treat, and store while maintaining good seed quality. As a result, interest in techniques for separating filled dead from live longleaf pine seeds has developed. The good news is that new technologies are becoming available to evaluate seed...

  2. Analysis of soybean leaf metabolism and seed coat transcriptome reveal sink strength is maintained under abiotic stress conditions

    USDA-ARS?s Scientific Manuscript database

    The seed coat is a vital tissue for directing the flow of photosynthate from source leaves to the embryo and cotyledons during seed development. By forming a sucrose gradient, the seed coat promotes transport of sugars from source leaves to seeds, thereby establishing sink strength. Understanding th...

  3. UVA-induced ROS generation inhibition by Oenothera paradoxa defatted seeds extract and subsequent cell death in human dermal fibroblasts.

    PubMed

    Jaszewska, Edyta; Soin, Magdalena; Filipek, Agnieszka; Naruszewicz, Marek

    2013-09-05

    UVA radiation stimulates the production of reactive oxygen species (ROS), which react with lipids, proteins and other intracellular molecules leading to oxidative stress, cellular damage and ultimately cell death. There is, therefore, a growing need for substances exhibiting antioxidant activity, which may support repair mechanisms of the skin. This study evaluates the protective effect of the aqueous Oenothera paradoxa Hudziok defatted seeds extract, rich in polyphenolic compounds, against UVA (25 and 50J/cm(2))-induced changes in normal human dermal fibroblasts (NHDFs). The tested extract (0.1-10μg/ml) has decreased, in a concentration-dependent fashion, the UVA-induced release of lactate dehydrogenase (LDH) into the culture medium, the ROS production (with the use of 2',7'-dichlorodihydrofluorescein diacetate) and lipid peroxidation (utilizing redox reactions with ferrous ions) as compared to the control cells (incubated without the extract). Moreover, the extract increased the number of viable (calcein positive) cells decreasing the number of cells in late apoptosis (annexin V-FITC and propidium iodide positive). Thus our results show that O. paradoxa defatted seeds extract may be beneficial for the prevention of UVA skin damage. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L.) Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    PubMed Central

    Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S.; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon

    2014-01-01

    In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting. PMID:24763251

  5. Gibberellin induces alpha-amylase gene in seed coat of Ipomoea nil immature seeds.

    PubMed

    Nakajima, Masatoshi; Nakayama, Akira; Xu, Zheng-Jun; Yamaguchi, Isomaro

    2004-03-01

    Two full-length cDNAs encoding gibberellin 3-oxidases, InGA3ox1 and InGA3ox2, were cloned from developing seeds of morning glory (Ipomoea nil (Pharbitis nil) Choisy cv. Violet) with degenerate-PCR and RACEs. The RNA-blot analysis for these clones revealed that the InGA3ox2 gene was organ-specifically expressed in the developing seeds at 6-18 days after anthesis. In situ hybridization showed the signals of InGA3ox2 mRNA in the seed coat, suggesting that active gibberellins (GAs) were synthesized in the tissue, although no active GA was detected there by immunohistochemistry. In situ hybridization analysis for InAmy1 (former PnAmy1) mRNA showed that InAmy1 was also synthesized in the seed coat. Both InGA3ox2 and InAmy1 genes were expressed spatially overlapped without a clear time lag, suggesting that both active GAs and InAmy1 were synthesized almost simultaneously in seed coat and secreted to the integument. These observations support the idea that GAs play an important role in seed development by inducing alpha-amylase.

  6. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging.

    PubMed

    Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon

    2014-04-24

    In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400-700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares-discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400-700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600-700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  7. The RY/Sph element mediates transcriptional repression of maturation genes from late maturation to early seedling growth.

    PubMed

    Guerriero, Gea; Martin, Nathalie; Golovko, Anna; Sundström, Jens F; Rask, Lars; Ezcurra, Ines

    2009-11-01

    In orthodox seeds, the transcriptional activator ABI3 regulates two major stages in embryo maturation: a mid-maturation (MAT) stage leading to accumulation of storage compounds, and a late maturation (LEA) stage leading to quiescence and desiccation tolerance. Our aim was to elucidate mechanisms for transcriptional shutdown of MAT genes during late maturation, to better understand phase transition between MAT and LEA stages. Using transgenic and transient approaches in Nicotiana, we examined activities of two ABI3-dependent reporter genes driven by multimeric RY and abscisic acid response elements (ABREs) from a Brassica napus napin gene, termed RY and ABRE, where the RY reporter requires ABI3 DNA binding. Expression of RY peaks during mid-maturation and drops during late maturation, mimicking the MAT gene program, and in Arabidopsis thaliana RY elements are over-represented in MAT, but not in LEA, genes. The ABI3 transactivation of RY is inhibited by staurosporine, by a PP2C phosphatase, and by a repressor of maturation genes, VAL1/HSI2. The RY element mediates repression of MAT genes, and we propose that transcriptional shutdown of the MAT program during late maturation involves inhibition of ABI3 DNA binding by dephosphorylation. Later, during seedling growth, VAL1/HSI2 family repressors silence MAT genes by binding RY elements.

  8. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume

    PubMed Central

    Tabe, Linda; Wirtz, Markus; Molvig, Lisa; Droux, Michel; Hell, Ruediger

    2010-01-01

    There have been many attempts to increase concentrations of the nutritionally essential sulphur amino acids by modifying their biosynthetic pathway in leaves of transgenic plants. This report describes the first modification of cysteine biosyntheis in developing seeds; those of the grain legume, narrow leaf lupin (Lupinus angustifolius, L.). Expression in developing lupin embryos of a serine acetyltransferase (SAT) from Arabidopsis thaliana (AtSAT1 or AtSerat 2;1) was associated with increases of up to 5-fold in the concentrations of O-acetylserine (OAS), the immediate product of SAT, and up to 26-fold in free cysteine, resulting in some of the highest in vivo concentrations of these metabolites yet reported. Despite the dramatic changes in free cysteine in developing embryos of SAT overexpressers, concentrations of free methionine in developing embryos, and the total cysteine and methionine concentrations in mature seeds were not significantly altered. Pooled F2 seeds segregating for the SAT transgene and for a transgene encoding a methionine- and cysteine-rich sunflower seed storage protein also had increased OAS and free cysteine, but not free methionine, during development, and no increase in mature seed total sulphur amino acids compared with controls lacking SAT overexpression. The data support the view that the cysteine biosynthetic pathway is active in developing seeds, and indicate that SAT activity limits cysteine biosynthesis, but that cysteine supply is not limiting for methionine biosynthesis or for storage protein synthesis in maturing lupin embryos in conditions of adequate sulphur nutrition. OAS and free methionine, but not free cysteine, were implicated as signalling metabolites controlling expression of a gene for a cysteine-rich seed storage protein. PMID:19939888

  9. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume.

    PubMed

    Tabe, Linda; Wirtz, Markus; Molvig, Lisa; Droux, Michel; Hell, Ruediger

    2010-03-01

    There have been many attempts to increase concentrations of the nutritionally essential sulphur amino acids by modifying their biosynthetic pathway in leaves of transgenic plants. This report describes the first modification of cysteine biosynthesis in developing seeds; those of the grain legume, narrow leaf lupin (Lupinus angustifolius, L.). Expression in developing lupin embryos of a serine acetyltransferase (SAT) from Arabidopsis thaliana (AtSAT1 or AtSerat 2;1) was associated with increases of up to 5-fold in the concentrations of O-acetylserine (OAS), the immediate product of SAT, and up to 26-fold in free cysteine, resulting in some of the highest in vivo concentrations of these metabolites yet reported. Despite the dramatic changes in free cysteine in developing embryos of SAT overexpressers, concentrations of free methionine in developing embryos, and the total cysteine and methionine concentrations in mature seeds were not significantly altered. Pooled F(2) seeds segregating for the SAT transgene and for a transgene encoding a methionine- and cysteine-rich sunflower seed storage protein also had increased OAS and free cysteine, but not free methionine, during development, and no increase in mature seed total sulphur amino acids compared with controls lacking SAT overexpression. The data support the view that the cysteine biosynthetic pathway is active in developing seeds, and indicate that SAT activity limits cysteine biosynthesis, but that cysteine supply is not limiting for methionine biosynthesis or for storage protein synthesis in maturing lupin embryos in conditions of adequate sulphur nutrition. OAS and free methionine, but not free cysteine, were implicated as signalling metabolites controlling expression of a gene for a cysteine-rich seed storage protein.

  10. Brachypodium seed - a potential model for studying grain development of cereal crops

    USDA-ARS?s Scientific Manuscript database

    Seeds of small grains are important resources for human and animal food. The understanding of seed biology is essential for crop improvement by increasing grain yields and nutritional value. In the last decade, Brachypodium distachyon has been developed as a model plant for temperate cereal grasses...

  11. Seed development and hydroxy fatty acid biosynthesis in physaria lindheimeri

    USDA-ARS?s Scientific Manuscript database

    Hydroxy fatty acids (HFAs) are valuable industrial raw materials used in many industries. Physaria lindheimeri (Pl) accumulates over 80% HFA, in the form of lesquerolic acid (20:1OH), in its seed oil. Understanding the seed development of Pl is an important step to utilizing this unique wild specie...

  12. Monitoring viability of seeds in gene banks: developing software tools to increase efficiency

    USDA-ARS?s Scientific Manuscript database

    Monitoring the decline of seed viability is essential for effective long term seed storage in ex situ collections. Recent FAO Genebank Standards recommend monitoring intervals at one-third the time predicted for viability to fall to 85% of initial viability. This poster outlines the development of ...

  13. Development of near-infrared spectroscopy calibrations to measure quality characteristics in intact Brassicaceae germplasm

    USDA-ARS?s Scientific Manuscript database

    Determining seed quality parameters is an integral part of cultivar improvement and germplasm screening. However, quality tests are often time cnsuming, seed destructive, and can require large seed samples. This study describes the development of near-infrared spectroscopy (NIRS) calibrations to mea...

  14. Seed Cotton Mass Flow Measurement in the Gin

    USDA-ARS?s Scientific Manuscript database

    Seed cotton mass flow measurement is necessary for the development of improved gin process control systems that can increase gin efficiency and improve fiber quality. Previous studies led to the development of a seed cotton mass flow rate sensor based on the static pressure drop across the blowbox, ...

  15. New seed-cotton reclaimer for high speed roller gins

    USDA-ARS?s Scientific Manuscript database

    An experimental laboratory prototype reclaimer is being developed by the USDA-ARS in cooperation with Lummus Corporation. The objective of the project is to develop a seed-cotton reclaimer for high speed roller ginning that has a higher operational capacity and reduced seed loss in comparison to cur...

  16. Leprosy and the elusive M. leprae: colonial and Imperial medical exchanges in the nineteenth century.

    PubMed

    Robertson, Jo

    2003-01-01

    In the 1800s, humoral understandings of leprosy successively give way to disease models based on morbid anatomy, physiopathology, and bacteriology. Linkages between these disease models were reinforced by the ubiquitous seed/soil metaphor deployed both before and after the identification of M.leprae. While this metaphor provided a continuous link between medical descriptions, Henry Vandyke Carter's On leprosy (1874) marks a convergence of different models of disease. Simultaneously, this metaphor can be traced in popular medical debates in the late nineteenth century, accompanying fears of a resurgence of leprosy in Europe. Later the mapping of the genome ushers in a new model of disease but, ironically, while leprosy research draws its logic from a view of the world in which a seed and soil metaphor expresses many different aspects of the activity of the disease, the bacillus itself continues to be unreceptive to cultivation.

  17. Is Eucalyptus Cryptically Self-incompatible?

    PubMed Central

    Horsley, Tasmien N.; Johnson, Steven D.

    2007-01-01

    Background and Aims The probability that seeds will be fertilized from self- versus cross-pollen depends strongly on whether plants have self-incompatibility systems, and how these systems influence the fate of pollen tubes. Methods In this study of breeding systems in Eucalyptus urophylla and Eucalyptus grandis, epifluorescence microscopy was used to study pollen tube growth in styles following self- and cross-pollinations. Key Results Pollen tubes from self-pollen took significantly longer than those from cross-pollen to grow to the base of the style in both E. urophylla (120 h vs. 96 h) and E. grandis (96 h vs. 72 h). In addition, both species exhibited reduced seed yields following self-pollination compared with cross-pollination. Conclusions The present observations suggest that, in addition to a late-acting self-incompatibility barrier, cryptic self-incompatibility could be a mechanism responsible for the preferential out-crossing system in these two eucalypt species. PMID:17881341

  18. Validating Farmers' Indigenous Social Networks for Local Seed Supply in Central Rift Valley of Ethiopia.

    ERIC Educational Resources Information Center

    Seboka, B.; Deressa, A.

    2000-01-01

    Indigenous social networks of Ethiopian farmers participate in seed exchange based on mutual interdependence and trust. A government-imposed extension program must validate the role of local seed systems in developing a national seed industry. (SK)

  19. Seed germination and life history syndromes in the California chaparral

    USGS Publications Warehouse

    Keeley, J.E.

    1991-01-01

    Syndromes are life history responses that are correlated to environmental regimes and are shared by a group of species (Stebbins, 1974). In the California chaparral there are two syndromes contrasted by the timing of seedling recruitment relative to wildfires. One syndrome, here called the fire-recruiter or refractory seed syndrome, includes species (both resprouting and non-resprouting) which share the feature that the timing of seedling establishment is specialized to the first rainy season after fire. Included are woody, suffrutescent and annual life forms but no geophytes have this syndrome. These species are linked by the characteristic that their seeds have a dormancy which is readily broken by environmental stimuli such as intense heat shock or chemicals leached from charred wood. Such seeds are referred to as “refractory” and dormancy, in some cases, is due to seed coat impermeability (such seeds are commonly called hardseeded), but in other cases the mechanism is unknown. Seeds of some may require cold stratification and/or light in addition to fire related stimuli. In the absence of fire related cues, a portion or all of a species’ seed pool remains dormant. Most have locally dispersed seeds that persist in the soil seed bank until the site burns. Dispersal of propagules is largely during spring and summer which facilitates the avoidance of flowering and fruiting during the summer and fall drought. Within a life form (e.g., shrub, suffrutescent, etc.), the seeds of these species have less mass than those of species with non-refractory seeds and this possibly reflects the environmental favorableness of the postfire environment for seedling establishment. Regardless of when fire occurs, germination is normally delayed until late winter or early spring. In the absence of fire, or other disturbance, opportunities for population expansion are largely lacking for species with this syndrome. The other syndrome, here called the fire-resister or non-refractory seed syndrome, includes species that are resilient to frequent fires (mostly by vegetative resprouting), but require fire-free periods for recruiting new seedlings. Included are shrubs, subshrubs, suffrutescents, lianas, geophytes and annuals. All are linked by the characteristic that their seeds germinate in the absence of cues related to wildfires. In many cases no form of seed dormancy is present and the seeds germinate soon after dispersal; consequently these species do not accumulate a persistent seed bank. Germination and seedling establishment is independent of fire and thus opportunities for population expansion are also independent of fire. The demographic pattern of seedling recruitment varies with the life form. For shrubs, seedling recruitment may be restricted to sites free of fire for periods of a hundred years or more. Recruitment appears to require relatively mesic conditions and this may account for the patchy distribution of these species within the matrix of relatively arid sites. Finding such sites has selected for propagules specialized for wind or animal dispersal; the majority are bird dispersed. These shrub species all disperse fruits in fall and winter and this may have been selected to take advantage of migratory birds as well as to time dispersal to the winter rains typical of the mediterranean-climate. Germination typically occurs within several weeks of the first fall or winter rains. Maturation of flowers and fruits during the summer and fall drought may account for the distribution of these species on more mesic sites. Seed mass of these species is large and this may have been selected to provide an advantage to seedlings establishing under the canopy of this dense shrub community.

  20. Long-term survival of hydrated resting eggs from Brachionus plicatilis.

    PubMed

    Clark, Melody S; Denekamp, Nadav Y; Thorne, Michael A S; Reinhardt, Richard; Drungowski, Mario; Albrecht, Marcus W; Klages, Sven; Beck, Alfred; Kube, Michael; Lubzens, Esther

    2012-01-01

    Several organisms display dormancy and developmental arrest at embryonic stages. Long-term survival in the dormant form is usually associated with desiccation, orthodox plant seeds and Artemia cysts being well documented examples. Several aquatic invertebrates display dormancy during embryonic development and survive for tens or even hundreds of years in a hydrated form, raising the question of whether survival in the non-desiccated form of embryonic development depends on pathways similar to those occurring in desiccation tolerant forms. To address this question, Illumina short read sequencing was used to generate transcription profiles from the resting and amictic eggs of an aquatic invertebrate, the rotifer, Brachionus plicatilis. These two types of egg have very different life histories, with the dormant or diapausing resting eggs, the result of the sexual cycle and amictic eggs, the non-dormant products of the asexual cycle. Significant transcriptional differences were found between the two types of egg, with amictic eggs rich in genes involved in the morphological development into a juvenile rotifer. In contrast, representatives of classical "stress" proteins: a small heat shock protein, ferritin and Late Embryogenesis Abundant (LEA) proteins were identified in resting eggs. More importantly however, was the identification of transcripts for messenger ribonucleoprotein particles which stabilise RNA. These inhibit translation and provide a valuable source of useful RNAs which can be rapidly activated on the exit from dormancy. Apoptotic genes were also present. Although apoptosis is inconsistent with maintenance of prolonged dormancy, an altered apoptotic pathway has been proposed for Artemia, and this may be the case with the rotifer. These data represent the first transcriptional profiling of molecular processes associated with dormancy in a non-desiccated form and indicate important similarities in the molecular pathways activated in resting eggs compared with desiccated dormant forms, specifically plant seeds and Artemia.

  1. A high-throughput seed germination assay for root parasitic plants

    PubMed Central

    2013-01-01

    Background Some root-parasitic plants belonging to the Orobanche, Phelipanche or Striga genus represent one of the most destructive and intractable weed problems to agricultural production in both developed and developing countries. Compared with most of the other weeds, parasitic weeds are difficult to control by conventional methods because of their life style. The main difficulties that currently limit the development of successful control methods are the ability of the parasite to produce a tremendous number of tiny seeds that may remain viable in the soil for more than 15 years. Seed germination requires induction by stimulants present in root exudates of host plants. Researches performed on these minute seeds are until now tedious and time-consuming because germination rate is usually evaluated in Petri-dish by counting germinated seeds under a binocular microscope. Results We developed an easy and fast method for germination rate determination based on a standardized 96-well plate test coupled with spectrophotometric reading of tetrazolium salt (MTT) reduction. We adapted the Mosmann’s protocol for cell cultures to germinating seeds and determined the conditions of seed stimulation and germination, MTT staining and formazan salt solubilization required to obtain a linear relationship between absorbance and germination rate. Dose–response analyses were presented as applications of interest for assessing half maximal effective or inhibitory concentrations of germination stimulants (strigolactones) or inhibitors (ABA), respectively, using four parameter logistic curves. Conclusion The developed MTT system is simple and accurate. It yields reproducible results for germination bioassays of parasitic plant seeds. This method is adapted to high-throughput screenings of allelochemicals (stimulants, inhibitors) or biological extracts on parasitic plant seed germination, and strengthens the investigations of distinctive features of parasitic plant germination. PMID:23915294

  2. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica

    PubMed Central

    Guan, Rui; Lager, Ida; Li, Xueyuan; Stymne, Sten; Zhu, Li-Hua

    2014-01-01

    Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%–50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%–60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed. PMID:24119222

  3. The effects of smoke derivatives on in vitro seed germination and development of the leopard orchid Ansellia africana.

    PubMed

    Papenfus, H B; Naidoo, D; Pošta, M; Finnie, J F; Van Staden, J

    2016-03-01

    Plant-derived smoke and smoke-isolated compounds stimulate germination in seeds from over 80 genera. It has also been reported that smoke affects overall plant vigour and has a stimulatory effect on pollen growth. The effect of smoke on orchid seeds, however, has not been assessed. In South Africa, orchid seeds from several genera may be exposed to smoke when they are released from their seedpods. It is therefore possible that smoke may affect their germination and growth. Therefore, the effects of smoke [applied as smoke-water (SW)] and two smoke-derived compounds, karrikinolide (KAR1 ) and trimethylbutenolide (TMB), were investigated on the germination and growth of orchid seeds in vitro. The effect of SW, KAR1 and TMB were investigated on the endangered epiphytic orchid, Ansellia africana, which is indigenous to tropical areas of Africa. Smoke-water, KAR1 and TMB were infused in half-strength MS medium. The number of germinated seeds and number of seeds and protocorm bodies to reach predetermined developmental stages were recorded on a weekly basis using a dissecting microscope for a 13-week period. Infusing SW 1:250 (v:v) into half-strength MS medium significantly increased the germination rate index (GRI) and the development rate index (DRI) of the A. africana seeds. All the SW treatments significantly increased the number of large protocorm bodies at the final stage of development. Infusing KAR1 into the growing medium had no significant effect on germination or development of the seeds. The TMB treatment, however, significantly reduced the GRI and DRI of A. africana seeds. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. A Temporal Dimension to the Influence of Pollen Rewards on Bee Behaviour and Fecundity in Aloe tenuior

    PubMed Central

    Duffy, Karl J.; Johnson, Steven D.; Peter, Craig I.

    2014-01-01

    The net effect of pollen production on fecundity in plants can range from negative – when self-pollen interferes with fecundity due to incompatibility mechanisms, to positive – when pollen availability is associated with increased pollinator visitation and fecundity due to its utilization as a reward. We investigated the responses of bees to pollen and nectar rewards, and the effects of these rewards on pollen deposition and fecundity in the hermaphroditic succulent shrub Aloe tenuior. Self-pollinated plants failed to set fruit, but their ovules were regularly penetrated by self-pollen tubes, which uniformly failed to develop into seeds as expected from ovarian self-incompatibility (or strong early inbreeding depression). Bees consistently foraged for pollen during the morning and early afternoon, but switched to nectar in the late afternoon. As a consequence of this differential foraging, we were able to test the relative contribution to fecundity of pollen- versus nectar-collecting flower visitors. We exposed emasculated and intact flowers in either the morning or late afternoon to foraging bees and showed that emasculation reduced pollen deposition by insects in the morning, but had little effect in the afternoon. Despite the potential for self-pollination to result in ovule discounting due to late-acting self-sterility, fecundity was severely reduced in artificially emasculated plants. Although there were temporal fluctuations in reward preference, most bee visits were for pollen rewards. Therefore the benefit of providing pollen that is accessible to bee foragers outweighs any potential costs to fitness in terms of gender interference in this species. PMID:24755611

  5. Separation and purification of both tea seed polysaccharide and saponin from camellia cake extract using macroporous resin.

    PubMed

    Yang, Pengjie; Zhou, Mingda; Zhou, Chengyun; Wang, Qian; Zhang, Fangfang; Chen, Jian

    2015-02-01

    A novel method to separate and purify tea seed polysaccharide and tea seed saponin from camellia cake extract by macroporous resin was developed. Among four kinds of resins (AB-8, NKA-9, XDA-6, and D4020) tested, AB-8 macroporous resin possessed optimal separating capacity for the two substances and thus was selected for the separation, in which deionized water was used to elute tea seed polysaccharide, 0.25% NaOH solution to remove the undesired pigments, and 90% ethanol to elute tea seed saponin. Further dynamic adsorption/desorption experiments on AB-8 resin-based column chromatography were conducted to obtain the optimal parameters. Under optimal dynamic adsorption and desorption conditions, 18.7 and 11.8% yield of tea seed polysaccharide and tea seed saponin were obtained with purities of 89.2 and 96.0%, respectively. The developed method provides a potential approach for the large-scale production of tea seed polysaccharide and tea seed saponin from camellia cake. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pacific Northwest forest tree seed zones: a template for native plants?

    Treesearch

    GR Johnson; Frank C Sorensen; J Bradley St Clair; Richard C. Cronn

    2004-01-01

    Seed movement guidelines for restoration activities are lacking for most native grasses, forbs, and shrubs. The forestry community has decades of experience in establishing seed zones and seed movement guidelines that may be of value to restoration managers. We review the history of seed zone development in forest trees, with emphasis on the Pacific Northwest, and make...

  7. Space Exposed Experiment Developed for Students (SEEDS) P-0004-2

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.

    1991-01-01

    This cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company, resulted in the distribution, by the end of March, 1990, of approximately 132,000 space exposed experiment developed for students (SEEDS) kits to 64,000 teachers representing 40,000 classrooms and 3.3 million kindergarden through university students. Kits were sent to every state, as well as to 30 foreign countries. Preliminary radiation data indicates that layer A received 725 rads, while layer D received 350 rads. Germination rate was reported to be 73.8 percent for space exposed seeds and 70.3 percent for earth based control seeds. Tests conducted within the first six months after retrieval indicated space exposed seeds germinated in an average of 8.0 days, while earth based control seeds' average germination rate was 8.3 days. Some mutations (assumed to be radiation induced) reported by students and Park Seed include plants that added a leaf instead of the usual flower at the end of the flower front and fruit produced from a flower with a variegated calyx bore seeds producing albino plants, while fruit from a flower with a green calyx from the same plant bore seeds produced green plants.

  8. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    PubMed

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development.

  9. Late Embryogenesis Abundant (LEA) proteins in legumes

    PubMed Central

    Battaglia, Marina; Covarrubias, Alejandra A.

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions. PMID:23805145

  10. Holocene Vegetation and Climate Shifts from Sutherland Fen, Black Rock Forest, New York - Plant Macrofossils, Charcoal, and Carbon

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Guilderson, T.

    2008-12-01

    Sutherland Fen formed about 12,600 C-14 years ago (15,000 calendar years), the same time as adjacent Sutherland Pond and regional deglaciation. High-resolution (2 cm) analysis of the 3.2 m fen core indicates three major macrofossils zones indicative of climate shifts. These climate shifts were defined over fifty years ago through pollen stratigraphy of the regional northeastern US, but macrofossils provide new details concerning hydrological and ecological shifts. The lowest (SUB-1) dated to the late-glacial, is indicative of a shallow pond characterized by Najas, Nuphar, and Potamogeton seeds and containing Salix (willow) buds, a Rubus (berry) seed, and Picea glauca (white spruce) needles and sterigmata from the surrounding upland. Sedimention rates are highest in this boreal environmental zone. The overlying zone (SUB-2) beginning at 11,500 years ago (Holocene) indicates a continuing pond environment with aquatics such as Najas, Nuphar, and Brasenia, but Picea disappears and Pinus strobus (white pine) dominates the lower section of the zone. A warmer, drier climate produces sustained charcoal in the record at the Holocene boundary. Pinus strobus needles and seeds subsequently disappear and are replaced from 9000 to 7500 years ago by Pinus rigida (pitch pine), Betula populifolia/papyrifera (grey/paper birch), and emergent wetland plants such as Decodon, Cladium, and Cephalanthus, as well as Dulichium, Eleocharis, and Carex, suggesting a shallowing pond and a drier climate. Chara oospores indicate probably groundwater influx into the fen. About 4000 years ago, charcoal again is present. In the subsequent late Holocene a more acidic, moist, fen environment is characterized by Sphagnum, Rubus, Hypericum, Viola, Chamaedaphne, and Carex, though Brasenia and Potamogeton (pond indicators) are occasionally present. The continued presence of Sphagnum led to high carbon accumulation because of less decomposition. This increase in Sphagnum in recent millennia with aquatics suggest a cooler, wetter climate. Charcoal re-appears briefly in the uppermost sediment.

  11. Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads.

    PubMed

    Butler, Richard J; Barrett, Paul M; Kenrick, Paul; Penn, Malcolm G

    2009-02-01

    The significance of co-evolution over ecological timescales is well established, yet it remains unclear to what extent co-evolutionary processes contribute to driving large-scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long-term co-evolutionary hypotheses relate to proposed interactions between herbivorous non-avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co-occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright-coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur-cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified - GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co-evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co-evolutionary interactions between cycads and herbivorous dinosaurs - diffuse co-evolutionary scenarios that are proposed to operate over geological timescales are plausible, but such hypotheses need to be firmly grounded on direct evidence of interaction and may be difficult to support given the patchiness of the fossil record.

  12. Disasters and development in agricultural input markets: bean seed markets in Honduras after Hurricane Mitch.

    PubMed

    Mainville, Denise Y

    2003-06-01

    The bulk of developing countries' populations and poor depend on agriculture for food and income. While rural economies and people are generally the most severely affected by natural disasters, little is known about how disasters and subsequent relief activities affect agricultural markets with differing levels of development. The article addresses this gap, drawing evidence from bean seed markets in Honduras after Hurricane Mitch. Case studies are used to address hypotheses about a disaster's effects on supply and demand in seed markets, farmers' responses and the performance of relief interventions in markets showing differing levels of development. The results show the importance of tailoring relief interventions to the markets that they will affect and to the specific effects of a disaster; the potential to use local and emerging seed distribution channels in a relief intervention; and opportunities for relief activities to strengthen community seed systems.

  13. Advances in seed conservation of wild plant species: a review of recent research

    PubMed Central

    Hay, Fiona R.; Probert, Robin J.

    2013-01-01

    Seed banking is now widely used for the ex situ conservation of wild plant species. Many seed banks that conserve wild species broadly follow international genebank guidelines for seed collection, processing, storage, and management. However, over the last 10–20 years, problems and knowledge gaps have been identified, which have led to more focused seed conservation research on diverse species. For example, there is now greater ecogeographic understanding of seed storage behaviour and of the relative longevity of orthodox seeds, and we are therefore able to predict which species should be conserved using cryostorage techniques; seed development studies have identified when seeds should be harvested for maximal tolerance of desiccation and longevity in storage, as well as highlighting how seed development can vary between species; and there is now a wealth of literature on the dormancy-breaking and germination requirements of wild species which, as well as enabling better management of accessions, will also mean that their use in restoration, species reintroduction, or for evaluation for other applications is possible. Future research may be focused, for example, on nursery and plant production systems for wild plant species that maximize genetic diversity, so that introduced seeds and plant materials have the resilience to cope with future environmental stresses. PMID:27293614

  14. Proceedings of the Annual Meeting, Aquatic Plant Control Research Program (25th) Held in Orlando, Florida on 26-30 November 1990

    DTIC Science & Technology

    1991-06-01

    to locate and treat pioneering aquatic plants in late spring to assist in populations prior to their rapid expansion the formulation of treatment... Demography Wulff, R. D. 1986a. "Seed Size Variation in and Its Consequences for Potamogeton Desmodium paniculatum; I. Factors Af- pectinatus L...formed by the confluence of the include longevity of the method, constant fish- Wateree and Congaree Rivers. The Wateree feeding activity against

  15. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis.

    PubMed

    He, Hanzi; de Souza Vidigal, Deborah; Snoek, L Basten; Schnabel, Sabine; Nijveen, Harm; Hilhorst, Henk; Bentsink, Leónie

    2014-12-01

    Seed performance after dispersal is highly dependent on parental environmental cues, especially during seed formation and maturation. Here we examine which environmental factors are the most dominant in this respect and whether their effects are dependent on the genotypes under investigation. We studied the influence of light intensity, photoperiod, temperature, nitrate, and phosphate during seed development on five plant attributes and thirteen seed attributes, using 12 Arabidopsis genotypes that have been reported to be affected in seed traits. As expected, the various environments during seed development resulted in changed plant and/or seed performances. Comparative analysis clearly indicated that, overall, temperature plays the most dominant role in both plant and seed performance, whereas light has a prominent impact on plant traits. In comparison to temperature and light, nitrate mildly affected some of the plant and seed traits while phosphate had even less influence on those traits. Moreover, clear genotype-by-environment interactions were identified. This was shown by the fact that individual genotypes responded differentially to the environmental conditions. Low temperature significantly increased seed dormancy and decreased seed longevity of NILDOG1 and cyp707a1-1, whereas low light intensity increased seed dormancy and decreased seed longevity of NILDOG3 and NILDOG6. This also indicates that different genetic and molecular pathways are involved in the plant and seed responses. By identifying environmental conditions that affect the dormancy vs longevity correlation in the same way as previously identified naturally occurring loci, we have identified selective forces that probably shaped evolution for these important seed traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Standardized Method for High-throughput Sterilization of Arabidopsis Seeds.

    PubMed

    Lindsey, Benson E; Rivero, Luz; Calhoun, Chistopher S; Grotewold, Erich; Brkljacic, Jelena

    2017-10-17

    Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and inexpensive seed sterilization for a large number of Arabidopsis lines.

  17. Standardized Method for High-throughput Sterilization of Arabidopsis Seeds

    PubMed Central

    Calhoun, Chistopher S.; Grotewold, Erich; Brkljacic, Jelena

    2017-01-01

    Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and inexpensive seed sterilization for a large number of Arabidopsis lines. PMID:29155739

  18. Evaluating soybean breeding lines developed from differenct sources of resistance to phomopsis seed decay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) causes poor soybean seed quality worldwide. The primary causal agent of PSD is Phomopsis longicolla (syn. Diaporthe longicolla). Breeding for PSD-resistance is the most effective long-term strategy to control this disease. To develop soybean lines with resistance to PSD, m...

  19. Imidacloprid-treated seed ingestion has lethal effect on adult partridges and reduces both breeding investment and offspring immunity.

    PubMed

    Lopez-Antia, Ana; Ortiz-Santaliestra, Manuel E; Mougeot, François; Mateo, Rafael

    2015-01-01

    The ingestion of imidacloprid treated seeds by farmland birds may result in exposure to toxic amounts of this insecticide. Here we report on the effects that the exposure to the recommended application rate and to 20% of that rate may produce on birds feeding on treated seeds. Experimental exposure to imidacloprid treated seeds was performed on red-legged partridges (Alectoris rufa) (n=15 pairs per treatment group: control, 20% or 100% of the recommended application rate) during two periods that corresponded to the autumn (duration of exposure: 25 days) and late winter (10 days) cereal sowing times in Spanish farmlands. We studied effects on the survival, body condition, oxidative stress biomarkers, plasma biochemistry, carotenoid-based coloration, T-cell mediated immune response and reproduction of exposed adult partridges, and on the survival and T-cell immune response of their chicks. The high dose (recommended application rate) killed all partridges, with mortality occurring faster in females than in males. The low dose (20% the recommended application rate) had no effect on mortality, but reduced levels of plasma biochemistry parameters (glucose, magnesium and lactate dehydrogenase), increased blood superoxide dismutase activity, produced changes in carotenoid-based integument coloration, reduced the clutch size, delayed the first egg lay date, increased egg yolk vitamins and carotenoids and depressed T-cell immune response of chicks. Moreover, the analysis of the livers of dead partridges revealed an accumulation of imidacloprid during exposure time. Despite the moratorium on the use of neonicotinoids in the European Union, birds may still be at high risk of poisoning by these pesticides through direct sources of exposure to coated seeds in autumn and winter. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Low production may not mean depletion

    USGS Publications Warehouse

    Hile, Ralph

    1936-01-01

    Five feeding tests were conducted at the Patuxent Research Refuge, Bowie, Maryland, to determine the value or dwarf and smooth sumac fruits as the sole diet of quail, as well as a supplement to other feedstuffs.....When whole sumac fruits were force-fed quail, either alone or in combination with millet seed, many of the sumac seed were defecated undigested, whereas the millet seed was digested. Likewise, many sumac seed passed through the quail undigested when sumac fruit was fed ad libitum subsequent to a fasting period.....The quail did not relish sumac fruit as the sole article of diet. They lost weight nearly as rapidly on the fruit, ground or whole, 'the ground seed, or the pulp as they did when not given any food....Quail maintained their weight for 14 weeks during the late fall and winter in outdoor pens on a diet containing 50 per cent sumac fruit-pulp and other feedstuffs of high feeding value. A severe neck molt, however, occurred during the ninth week.....Quail lost weight rapidly on a diet containing 75 per cent sumac even though kept away from adverse weather conditions. A severe neck molt took place during the first week of this high-sumac diet. Heavy mortality occurred during the third and fourth weeks....Where the birds had a choice of many feedstuffs, they made sumac fruit 2 to 4 per cent of their diet....Therefore, it must be concluded, that even though sumac fruit is eaten by quail, and as a small percentage of the diet it may have a definite nutritional value, nevertheless as the sole or primary article of diet, it cannot be expected to maintain quail through a critical period in the winter.

  1. The sumac fruit: a food for bobwhite quail

    USGS Publications Warehouse

    Nestler, R.B.; Bailey, W.W.

    1944-01-01

    Five feeding tests were conducted at the Patuxent Research Refuge, Bowie, Maryland, to determine the value or dwarf and smooth sumac fruits as the sole diet of quail, as well as a supplement to other feedstuffs.....When whole sumac fruits were force-fed quail, either alone or in combination with millet seed, many of the sumac seed were defecated undigested, whereas the millet seed was digested. Likewise, many sumac seed passed through the quail undigested when sumac fruit was fed ad libitum subsequent to a fasting period.....The quail did not relish sumac fruit as the sole article of diet. They lost weight nearly as rapidly on the fruit, ground or whole, 'the ground seed, or the pulp as they did when not given any food....Quail maintained their weight for 14 weeks during the late fall and winter in outdoor pens on a diet containing 50 per cent sumac fruit-pulp and other feedstuffs of high feeding value. A severe neck molt, however, occurred during the ninth week.....Quail lost weight rapidly on a diet containing 75 per cent sumac even though kept away from adverse weather conditions. A severe neck molt took place during the first week of this high-sumac diet. Heavy mortality occurred during the third and fourth weeks....Where the birds had a choice of many feedstuffs, they made sumac fruit 2 to 4 per cent of their diet....Therefore, it must be concluded, that even though sumac fruit is eaten by quail, and as a small percentage of the diet it may have a definite nutritional value, nevertheless as the sole or primary article of diet, it cannot be expected to maintain quail through a critical period in the winter.

  2. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings.

    PubMed

    Adak, Totan; Kumar, Jitendra; Shakil, Najam A; Pandey, Sushil

    2016-10-01

    Nano-size and wide-range solubility of amphiphilic polymers (having both hydrophilic and hydrophobic blocks) can improve uniformity in seed coatings. An investigation was carried out to assess the positive effect of amphiphilic polymers over hydrophilic or hydrophobic polymers as seed coating agents and pesticide carriers. Amphiphilic polymers with 127.5-354 nm micelle size were synthesized in the laboratory using polyethylene glycols and aliphatic di-acids. After 6 months of storage, germination of uncoated soybean seeds decreased drastically from 97.80 to 81.55%, while polymer-coated seeds showed 89.44-95.92% germination. Similarly, vigour index-1 was reduced from 3841.10 to 2813.06 for control seeds but ranged from 3375.59 to 3844.60 for polymer-coated seeds after 6 months. The developed imidacloprid formulations retained more pesticide on soybean seed coatings than did a commercial formulation (Gaucho(®) 600 FS). The time taken for 50% release of imidacloprid from seed coatings in water was 7.12-9.11 h for the developed formulations and 0.41 h for the commercial formulation. Nano-range amphiphilic polymers can be used to protect soybean seeds from ageing. Formulations as seed treatments may produce improved and sustained efficacy with minimum environmental contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. 7 CFR 201.68 - Eligibility requirements for certification of varieties.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Certified Seed § 201.68 Eligibility requirements... breeding procedure used in its development. (c) A detailed description of the morphological, physiological, and other characteristics of the plants and seed that distinguish it from other varieties. (d...

  4. Overlapping and distinct roles of AKIN10 and FUSCA3 in ABA and sugar signaling during seed germination

    PubMed Central

    Tsai, Allen Yi-Lun; Gazzarrini, Sonia

    2012-01-01

    The Arabidopsis B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed maturation and also a central modulator of hormonal responses during late embryogenesis and germination. Recently, we have identified AKIN10, the Arabidopsis ortholog of Snf1 (Sucrose Non-Fermenting-1)–Related Kinase1 (SnRK1), as a FUS3-interacting protein. We demonstrated that AKIN10 physically interacts with and phosphorylates FUS3 at its N-terminal region, and genetically interacts with FUS3 to regulate developmental phase transition and lateral organ growth. Snf1/AMPK/SnRK1 kinases are important sensors of the cellular energy level, and they are activated in response to starvation and cellular stress. Here we present findings that indicate FUS3 and AKIN10 functionally overlap in ABA signaling, but play different roles in sugar responses during germination. Seeds overexpressing FUS3 and AKIN10 both display ABA-hypersensitivity and delayed germination. The latter is partly dependent on de novo ABA synthesis in both genotypes, as delayed germination can be partially rescued by the ABA biosynthesis inhibitor, fluridone. However, seeds and seedlings overexpressing FUS3 and AKIN10 show different sugar responses. AKIN10-overexpressing seeds and seedlings are hypersensitive to glucose, while those overexpressing FUS3 display overall defects in osmotic stress, primarily during seedling growth, as they show increased sensitivity toward sorbitol and glucose. Hypersensitivity to sugar and/or osmotic stress during germination are partly dependent on de novo ABA synthesis for both genotypes, although are likely to act through distinct pathways. This data suggests that AKIN10 and FUS3 both act as positive regulators of seed responses to ABA, and that AKIN10 regulates sugar signaling while FUS3 mediates osmotic stress responses. PMID:22902692

  5. Functional invertebrate prey groups reflect dietary responses to phenology and farming activity and pest control services in three sympatric species of aerially foraging insectivorous birds.

    PubMed

    Orłowski, Grzegorz; Karg, Jerzy; Karg, Grzegorz

    2014-01-01

    Farming activity severely impacts the invertebrate food resources of farmland birds, with direct mortality to populations of above-ground arthropods thorough mechanical damage during crop harvests. In this study we assessed the effects of phenological periods, including the timing of harvest, on the composition and biomass of prey consumed by three species of aerial insectivorous birds. Common Swifts Apus apus, Barn Swallows Hirundo rustica and House Martins Delichon urbica breed sympatrically and most of their diet is obtained from agricultural sources of invertebrate prey, especially from oil-seed rape crops. We categorized invertebrate prey into six functional groups, including oil-seed rape pests; pests of other arable crops; other crop-provisioned taxa; coprophilous taxa; and taxa living in non-crop and mixed crop/non-crop habitats. Seasonality impacted functional groups differently, but the general direction of change (increase/decrease) of all groups was consistent as indexed by prey composition of the three aerial insectivores studied here. After the oil-seed rape crop harvest (mid July), all three species exhibited a dietary shift from oil-seed rape insect pests to other aerial invertebrate prey groups. However, Common Switfts also consumed a relative large quantity of oil-seed rape insect pests in the late summer (August), suggesting that they could reduce pest insect emigration beyond the host plant/crop. Since these aerially foraging insectivorous birds operate in specific conditions and feed on specific pest resources unavailable to foliage/ground foraging avian predators, our results suggest that in some crops like oil-seed rape cultivations, the potential integration of the insectivory of aerial foraging birds into pest management schemes might provide economic benefits. We advise further research into the origin of airborne insects and the role of aerial insectivores as agents of the biological control of crop insect pests, especially the determination of depredation rates and the cascading effects of insectivory on crop damage and yield.

  6. [Procedure of seed quality testing and seed grading standard of Prunus humilis].

    PubMed

    Wen, Hao; Ren, Guang-Xi; Gao, Ya; Luo, Jun; Liu, Chun-Sheng; Li, Wei-Dong

    2014-11-01

    So far there exists no corresponding quality test procedures and grading standards for the seed of Prunus humilis, which is one of the important source of base of semen pruni. Therefor we set up test procedures that are adapt to characteristics of the P. humilis seed through the study of the test of sampling, seed purity, thousand-grain weight, seed moisture, seed viability and germination percentage. 50 cases of seed specimens of P. humilis tested. The related data were analyzed by cluster analysis. Through this research, the seed quality test procedure was developed, and the seed quality grading standard was formulated. The seed quality of each grade should meet the following requirements: for first grade seeds, germination percentage ≥ 68%, thousand-grain weight 383 g, purity ≥ 93%, seed moisture ≤ 5%; for second grade seeds, germination percentage ≥ 26%, thousand-grain weight ≥ 266 g, purity ≥ 73%, seed moisture ≤9%; for third grade seeds, germination percentage ≥ 10%, purity ≥ 50%, thousand-grain weight ≥ 08 g, seed moisture ≤ 13%.

  7. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well. PMID:21529361

  8. Disruption of endosperm development is a major cause of hybrid seed inviability between Mimulus guttatus and Mimulus nudatus.

    PubMed

    Oneal, Elen; Willis, John H; Franks, Robert G

    2016-05-01

    Divergence of developmental mechanisms within populations could lead to hybrid developmental failure, and might be a factor driving speciation in angiosperms. We investigate patterns of endosperm and embryo development in Mimulus guttatus and the closely related, serpentine endemic Mimulus nudatus, and compare them to those of reciprocal hybrid seed. We address whether disruption in hybrid seed development is the primary source of reproductive isolation between these sympatric taxa. M. guttatus and M. nudatus differ in the pattern and timing of endosperm and embryo development. Some hybrid seeds exhibit early disruption of endosperm development and are completely inviable, while others develop relatively normally at first, but later exhibit impaired endosperm proliferation and low germination success. These developmental patterns are reflected in mature hybrid seeds, which are either small and flat (indicating little to no endosperm) or shriveled (indicating reduced endosperm volume). Hybrid seed inviability forms a potent reproductive barrier between M. guttatus and M. nudatus. We shed light on the extent of developmental variation between closely related species within the M. guttatus species complex, an important ecological model system, and provide a partial mechanism for the hybrid barrier between M. guttatus and M. nudatus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Yan; Liu, Chunying; Lu, Wenwen

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysismore » revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.« less

  10. Acquisition of physical dormancy and ontogeny of the micropyle–water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae)

    PubMed Central

    Gama-Arachchige, N. S.; Baskin, J. M.; Geneve, R. L.; Baskin, C. C.

    2011-01-01

    Background and Aims The ‘hinged valve gap’ has been previously identified as the initial site of water entry (i.e. water gap) in physically dormant (PY) seeds of Geranium carolinianum (Geraniaceae). However, neither the ontogeny of the hinged valve gap nor acquisition of PY by seeds of Geraniaceae has been studied previously. The aims of the present study were to investigate the physiological events related to acquisition of PY and the ontogeny of the hinged valve gap and seed coat of G. carolinianum. Methods Seeds of G. carolinianum were studied from the ovule stage until dispersal. The developmental stages of acquisition of germinability, physiological maturity and PY were determined by seed measurement, germination and imbibition experiments using intact seeds and isolated embryos of both fresh and slow-dried seeds. Ontogeny of the seed coat and water gap was studied using light microscopy. Key Results Developing seeds achieved germinability, physiological maturity and PY on days 9, 14 and 20 after pollination (DAP), respectively. The critical moisture content of seeds on acquisition of PY was 11 %. Slow-drying caused the stage of acquisition of PY to shift from 20 to 13 DAP. Greater extent of cell division and differentiation at the micropyle, water gap and chalaza than at the rest of the seed coat resulted in particular anatomical features. Palisade and subpalisade cells of varying forms developed in these sites. A clear demarcation between the water gap and micropyle is not evident due to their close proximity. Conclusions Acquisition of PY in seeds of G. carolinianum occurs after physiological maturity and is triggered by maturation drying. The micropyle and water gap cannot be considered as two separate entities, and thus it is more appropriate to consider them together as a ‘micropyle–water-gap complex’. PMID:21546433

  11. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    PubMed

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  12. Flying saucer1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage.

    PubMed

    Voiniciuc, Catalin; Dean, Gillian H; Griffiths, Jonathan S; Kirchsteiger, Kerstin; Hwang, Yeen Ting; Gillett, Alan; Dow, Graham; Western, Tamara L; Estelle, Mark; Haughn, George W

    2013-03-01

    Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca(2+) ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca(2+) or completely rescued using alkaline Ca(2+) chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1-yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells.

  13. A new commelinid monocot seed fossil from the early Eocene previously identified as Solanaceae.

    PubMed

    Särkinen, Tiina; Kottner, Sören; Stuppy, Wolfgang; Ahmed, Farah; Knapp, Sandra

    2018-01-01

    Fossils provide minimum age estimates for extant lineages. Here we critically evaluate Cantisolanum daturoides Reid & Chandler and two other early putative seed fossils of Solanaceae, an economically important plant family in the Asteridae. Three earliest seed fossil taxa of Solanaceae from the London Clay Formation (Cantisolanum daturoides) and the Poole and Branksome Sand Formations (Solanum arnense Chandler and Solanispermum reniforme Chandler) were studied using x-ray microcomputed tomography (MCT) and scanning electron microscopy (SEM). The MCT scans of Cantisolanum daturoides revealed a high level of pyrite preservation at the cellular level. Cantisolanum daturoides can be clearly excluded from Solanaceae and has more affinities to the commelinid monocots based on a straight longitudinal axis, a prominent single layer of relatively thin-walled cells in the testa, and a clearly differentiated micropyle surrounded by radially elongated and inwardly curved testal cells. While the MCT scans show no internal preservation in Solanum arnense and Solanispermum reniforme, SEM images show the presence of several characteristics that allow the placement of these taxa at the stem node of Solanaceae. Cantisolanum daturoides is likely a member of commelinid monocots and not Solanaceae as previously suggested. The earliest fossil record of Solanaceae is revised to consist of fruit fossil with inflated calyces from the early Eocene of Patagonia (52 Ma) and fossilized seeds from the early to mid-Eocene of Europe (48-46 Ma). The new identity for Cantisolanum daturoides does not alter a late Cretaceous minimum age for commelinids. © 2018 Botanical Society of America.

  14. FLYING SAUCER1 Is a Transmembrane RING E3 Ubiquitin Ligase That Regulates the Degree of Pectin Methylesterification in Arabidopsis Seed Mucilage[W

    PubMed Central

    Voiniciuc, Cătălin; Dean, Gillian H.; Griffiths, Jonathan S.; Kirchsteiger, Kerstin; Hwang, Yeen Ting; Gillett, Alan; Dow, Graham; Western, Tamara L.; Estelle, Mark; Haughn, George W.

    2013-01-01

    Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca2+ ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca2+ or completely rescued using alkaline Ca2+ chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1–yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells. PMID:23482858

  15. QTL analysis of falling number and seed longevity in wheat (Triticum aestivum L.).

    PubMed

    Börner, Andreas; Nagel, Manuela; Agacka-Mołdoch, Monika; Gierke, Peter Ulrich; Oberforster, Michael; Albrecht, Theresa; Mohler, Volker

    2018-02-01

    Pre-harvest sprouting (PHS) and seed longevity (SL) are complex biological processes of major importance for agricultural production. In the present study, a recombinant inbred line (RIL) population derived from a cross between the German winter wheat (Triticum aestivum L.) cultivars History and Rubens was used to identify genetic factors controlling these two physiological seed traits. A falling number (FN) test was employed to evaluate PHS, while SL was measured using a germination test (and the speed of germination) after controlled deterioration. FN of the population was assessed in four environments; SL traits were measured in one environment. Four major quantitative trait loci (QTL) for FN were detected on chromosomes 4D, 5A, 5D, and 7B, whereas for SL traits, a major QTL was found on chromosome 1A. The FN QTL on chromosome 4D that coincided with the position of the dwarfing gene Rht-D1b only had effects in environments that were free of PHS. The remaining three QTL for FN were mostly pronounced under conditions conducive to PHS. The QTL on the long arm of chromosome 7B corresponded to the major gene locus controlling late maturity α-amylase (LMA) in wheat. The severity of the LMA phenotype became truly apparent under sprouting conditions. The position on the long arm of chromosome 1A of the QTL for SL points to a new QTL for this important regenerative seed trait.

  16. Within and between species variation in response to environmental gradients in Polygonum pensylvanicum and Polygonum virginianum.

    PubMed

    Lee, Hee Sun; Zangerl, A R; Garbutt, K; Bazzaz, F A

    1986-03-01

    The responses of Polygonum pensylvanicum L., an early successional annual, and of Polygonum virginianum L., a late successional perennial, were examined along discontinuous gradients of soil moisture, light and nutrient availability. In the case of P. virginianum both individuals grown from seed and individuals grown from rhizomes were examined. The results show that variation in the response of individuals of a species of different age to environmental variation is as great as that found between the two congeneric species of different successional habitats. In general, individuals of the two species were more similar to one another in response to the resource gradients when both were started from seed, than were individuals of P. virginianum grown from seed and from rhizomes. Potential differences in stored reserves (starting capital) between rhizomes and seeds appeared to have little effect upon responses to resource availability. A number of plant characters were found to vary along the gradients in ways that were unique to the character, the gradient, and the age of the individual. These characters included aspects of leaf size, shape, and orientation, as well as whole plant architecture. Many if not all of these characters are likely to have significant effects upon the functioning of plants. The origin of this difference in response to the gradients of individuals of P. virginianum of differing age may be ontogenetic or may reflect differences in genetic composition created by recombination.

  17. The aquatic macrophyte seed bank in Lake Onalaska, Wisconsin

    USGS Publications Warehouse

    McFarland, D.G.; Rogers, S.J.

    1998-01-01

    Submersed aquatic vegetation, dominated by Vallisneria americana Michx., declined dramatically in Lake Onalaska (Navigation Pool 7, on the Upper Mississippi River) following drought conditions in the late 1980s. Coinciding with the decline were marked increases in the abundance of Myriophyllum spicatum L., particularly in areas vacated by V. americana. Recent evidence indicates that much of the lake has remained unvegetated, but that since 1994, beds of V. americana have made a partial recovery. While the production of vegetative propagules may largely account for increases in populations of both species, the extent to which seed production may contribute to their expansion in the lake is unknown. To assess the germination potential and distribution of the aquatic macrophyte seed bank in Lake Onalaska, sediment cores (5 cm deep) were collected from 74 sampling sites injury 1996. Seedling emergence from sediments was observed in an environmental growth chamber operated at 25 C and a 14-hr photoperiod over a period of eight weeks. Fifteen species of aquatic macrophytes germinated in sediments from 55 sites. V. americana seedlings emerged from sediments from 36 sites throughout the lake, but were most prevalent in sediments collected within or downstream (within 250 m) of established V. americana beds. Seedlings of M. spicatum emerged from only two collected sediments that had supported this species in protected areas. These findings suggest that seed production may play a greater role in the dispersal of V. americana than M. spicatum, and further emphasize basic differences in their survival strategies, particularly in flowing water systems.

  18. 7 CFR 52.1844 - Definition of terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... branches of the bunch. (b) A piece of stem means a portion of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by sunburn, scars, insect injury, mechanical injury...

  19. 7 CFR 52.1844 - Definition of terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... branches of the bunch. (b) A piece of stem means a portion of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by sunburn, scars, insect injury, mechanical injury...

  20. Seeds: A Celebration of Science.

    ERIC Educational Resources Information Center

    Melton, Bob

    The Space Exposed Experiment Developed for Students (SEEDS) Project offered science classes at the 5-12 and college levels the opportunity to conduct experiments involving tomato seeds that had been space-exposed over long periods of time. SEEDS kits were complete packages obtained from the National Aeronautics and Space Administration (NASA) for…

  1. Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds

    PubMed Central

    Coen, Olivier; Fiume, Elisa; Xu, Wenjia; De Vos, Delphine; Lu, Jing; Pechoux, Christine; Lepiniec, Loïc

    2017-01-01

    Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products – embryo and endosperm – and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization. PMID:28348169

  2. Image-processing algorithms for inspecting characteristics of hybrid rice seed

    NASA Astrophysics Data System (ADS)

    Cheng, Fang; Ying, Yibin

    2004-03-01

    Incompletely closed glumes, germ and disease are three characteristics of hybrid rice seed. Image-processing algorithms developed to detect these seed characteristics were presented in this paper. The rice seed used for this study involved five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou. The algorithms were implemented with a 5*600 images set, a 4*400 images set and the other 5*600 images set respectively. The image sets included black background images, white background images and both sides images of rice seed. Results show that the algorithm for inspecting seeds with incompletely closed glumes based on Radon Transform achieved an accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with unclosed glumes, the algorithm for inspecting germinated seeds on panicle based on PCA and ANN achieved n average accuracy of 98% for normal seeds, 88% for germinated seeds on panicle and the algorithm for inspecting diseased seeds based on color features achieved an accuracy of 92% for normal and healthy seeds, 95% for spot diseased seeds and 83% for severe diseased seeds.

  3. Late-time cosmological phase transitions

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    It is shown that the potential galaxy formation and large scale structure problems of objects existing at high redshifts (Z approx. greater than 5), structures existing on scales of 100 M pc as well as velocity flows on such scales, and minimal microwave anisotropies ((Delta)T/T) (approx. less than 10(exp -5)) can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random Gaussian fluctuations and/or topological defects can form. Scale lengths of approx. 100 M pc for large scale structure as well as approx. 1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition.

  4. Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed.

    PubMed

    Jimenez-Lopez, Jose C; Zienkiewicz, Agnieszka; Zienkiewicz, Krzysztof; Alché, Juan D; Rodríguez-García, Maria I

    2016-03-01

    Much of our current knowledge about seed development and differentiation regarding reserves synthesis and accumulation come from monocot (cereals) plants. Studies in dicotyledonous seeds differentiation are limited to a few species and in oleaginous species are even scarcer despite their agronomic and economic importance. We examined the changes accompanying the differentiation of olive endosperm and cotyledon with a focus on protein bodies (PBs) biogenesis during legumin protein synthesis and accumulation, with the aim of getting insights and a better understanding of the PBs' formation process. Cotyledon and endosperm undergo differentiation during seed development, where an asynchronous time-course of protein synthesis, accumulation, and differential PB formation patterns was found in both tissues. At the end of seed maturation, a broad population of PBs, particularly in cotyledon cells, was distinguishable in terms of number per cell and morphometric and cytochemical features. Olive seed development is a tissue-dependent process characterized by differential rates of legumin accumulation and PB formation in the main tissues integrating seed. One of the main features of the impressive differentiation process is the specific formation of a broad group of PBs, particularly in cotyledon cells, which might depend on selective accumulation and packaging of proteins and specific polypeptides into PBs. The nature and availability of the major components detected in the PBs of olive seed are key parameters in order to consider the potential use of this material as a suitable source of carbon and nitrogen for animal or even human use.

  5. Fantasy Seed Company: A Role Playing Game for Plant Breeding Courses

    ERIC Educational Resources Information Center

    Hague, Steve S.

    2011-01-01

    Understanding plant breeding as well as procedures and issues of seed companies are skills students studying agronomy need to acquire. Simulation games can be effective teaching tools in developing higher-order thinking skills of students. The "Fantasy Seed Company" game was developed to create motivated learners by allowing students to run a mock…

  6. Something Special for Teachers. A Schoolhouse Energy Teaching Program. SEED: Schoolhouse Energy Efficiency Demonstration.

    ERIC Educational Resources Information Center

    Anderson, Calvin E.; Bottinelli, Charles A.

    The Schoolhouse Energy Efficiency Demonstration (SEED) program was developed to assist schools in reducing the impact of rising energy costs. Developed as part of the SEED program, this publication was designed to provide background information on the energy issue and to briefly describe what future energy sources may be. It includes: (1)…

  7. Economic Intervention and Parenting: A Randomized Experiment of Statewide Child Development Accounts

    ERIC Educational Resources Information Center

    Nam, Yunju; Wikoff, Nora; Sherraden, Michael

    2016-01-01

    Objective: We examine the effects of Child Development Accounts (CDAs) on parenting stress and practices. Methods: We use data from the SEED for Oklahoma Kids (SEED OK) experiment. SEED OK selected caregivers of infants from Oklahoma birth certificates using a probability sampling method, randomly assigned caregivers to the treatment (n = 1,132)…

  8. Uptake of Seeds Secondary Metabolites by Virola surinamensis Seedlings

    PubMed Central

    Kato, Massuo Jorge; Yoshida, Massayoshi; Lopes, Norberto Peporine; da Silva, Denise Brentan; Cavalheiro, Alberto José

    2012-01-01

    The major secondary metabolites and fatty acids occurring in the seeds of Virola surinamensis were monitored by GC-MS during germination and seedling development. The role as carbon source for seedling development was indicated considering that both classes of compounds were similarly consumed in the seeds and that no selective consumption of compounds could be detected. PMID:22505921

  9. Development of Single-Seed Near-Infrared Spectroscopic Predictions of Corn and Soybeans Constituents Using Bulk Teference Values and Mean Spectra

    USDA-ARS?s Scientific Manuscript database

    Near-Infrared reflectance spectroscopic prediction models were developed for common constituents of corn and soybeans using bulk reference values and mean spectra from single-seeds. The bulk reference model and a true single-seed model for soybean protein were compared to determine how well the bul...

  10. Seed treatments enhance photosynthesis in maize seedlings by reducing infection with Fusarium spp. and consequent disease development in maize

    USDA-ARS?s Scientific Manuscript database

    The effects of a seed treatment on early season growth, seedling disease development, incidence Fusarium spp. infection, and photosynthetic performance of maize were evaluated at two locations in Iowa in 2007. Maize seed was either treated with Cruiser 2Extreme 250 ® (fludioxonil + azoxystrobin + me...

  11. Are seed and cone pathogens causing significant losses in Pacific Northwest seed orchards?

    Treesearch

    E.E. Nelson; W.G. Thies; C.Y. Li

    1986-01-01

    Cones systematically collected in 1983 from eight Douglas-fir seed orchards in western Washington and Oregon yielded large numbers of common molds. Fungi isolated from apparently healthy, developing cones were similar to those from necrotic cones. Necrosis in cones aborted in early stages of development was apparently not associated with pathogenic fungi or bacteria....

  12. Distribution and Properties of a Potassium-dependent Asparaginase Isolated from Developing Seeds of Pisum sativum and Other Plants 1

    PubMed Central

    Sodek, Ladaslav; Lea, Peter J.; Miflin, Benjamin J.

    1980-01-01

    Asparaginase (EC 3.5.1.1) was isolated from the developing seed of Pisum sativum. The enzyme is dependent upon the presence of K+ for activity, although Na+ and Rb+ may substitute to a lesser extent. Maximum activity was obtained at K+ concentrations above 20 millimolar. Potassium ions protected the enzyme against heat denaturation. The enzyme has a molecular weight of 68,300. Asparaginase activity developed initially in the testa, with maximum activity (3.6 micromoles per hour per seed) being present 13 days after flowering. Maximum activity (1.2 micromoles per hour per seed) did not develop in the cotyledon until 21 days after flowering. Glutamine synthetase and glutamate dehydrogenase were also present in the testae and cotyledons but maximum activity developed later than that of asparaginase. Potassium-dependent asparaginase activity was also detected in the developing seeds of Vicia faba, Phaseolus multiflorus, Zea mays, Hordeum vulgare, and two Lupinus varieties. No stimulation of activity was detected with the enzyme isolated from Lupinus polyphyllus, which has previously been shown to contain a K+-independent enzyme. PMID:16661136

  13. Redundant CArG Box Cis-motif Activity Mediates SHATTERPROOF2 Transcriptional Regulation during Arabidopsis thaliana Gynoecium Development

    PubMed Central

    Sehra, Bhupinder; Franks, Robert G.

    2017-01-01

    In the Arabidopsis thaliana seed pod, pod shatter and seed dispersal properties are in part determined by the development of a longitudinally orientated dehiscence zone (DZ) that derives from cells of the gynoecial valve margin (VM). Transcriptional regulation of the MADS protein encoding transcription factors genes SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are critical for proper VM identity specification and later on for DZ development. Current models of SHP1 and SHP2 regulation indicate that the transcription factors FRUITFULL (FUL) and REPLUMLESS (RPL) repress these SHP genes in the developing valve and replum domains, respectively. Thus the expression of the SHP genes is restricted to the VM. FUL encodes a MADS-box containing transcription factor that is predicted to act through CArG-box containing cis-regulatory motifs. Here we delimit functional modules within the SHP2 cis-regulatory region and examine the functional importance of CArG box motifs within these regulatory regions. We have characterized a 2.2kb region upstream of the SHP2 translation start site that drives early and late medial domain expression in the gynoecium, as well as expression within the VM and DZ. We identified two separable, independent cis-regulatory modules, a 1kb promoter region and a 700bp enhancer region, that are capable of giving VM and DZ expression. Our results argue for multiple independent cis-regulatory modules that support SHP2 expression during VM development and may contribute to the robustness of SHP2 expression in this tissue. Additionally, three closely positioned CArG box motifs located in the SHP2 upstream regulatory region were mutated in the context of the 2.2kb reporter construct. Mutating simultaneously all three CArG boxes caused a moderate de-repression of the SHP2 reporter that was detected within the valve domain, suggesting that these CArG boxes are involved in SHP2 repression in the valve. PMID:29085379

  14. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.

    PubMed

    Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2012-01-01

    Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

  15. Seeds in space experiment. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1992-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed in one sealed canister and in two small vented canisters. After being returned to earth, the seeds were germinated and the germination rates and development of the resulting plants were compared to the performance of the control seeds that stayed in the Park Seed's seed storage facility. There was a better survival rate in the sealed canister in space than at the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.

  16. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  17. [Effect of high intensity magnetic field on the processes of early growth in plant seeds and development of honeybees].

    PubMed

    Es'kov, E K; Darkov, A V

    2003-01-01

    The influence of magnetic field on the early growth processes in plant seeds and the postembryonic development of honeybees was studied. Some general trends in the effects of magnetic field and differences in the tolerance of plant seeds and developing honeybees to its action were revealed. Some factors that may be responsible for a low reproducibility of magneto-biological effects are discussed.

  18. Seed storage and testing at Pennsylvania Department of Conservation and Natural Resources Penn Nursery and Wood Shop

    Treesearch

    Jeffrey J. Kozar

    2008-01-01

    Planting tree seeds at the Pennsylvania Department of Conservation and Natural Resources Penn Nursery, Spring Mills, Pennsylvania occurs in spring and fall. Seeds acquired for these plantings come from 3 sources. The first source is our own orchards, which were developed to provide “improved” seeds. Improved seeds are produced from scion material collected from trees...

  19. Functional relevance of “seed” and “non-seed” sequences in microRNA-mediated promotion of C. elegans developmental progression

    PubMed Central

    Zhang, Huibin; Artiles, Karen L.; Fire, Andrew Z.

    2015-01-01

    The founding heterochronic microRNAs, lin-4 and let-7, together with their validated targets and well-characterized phenotypes in C. elegans, offer an opportunity to test functionality of microRNAs in a developmental context. In this study, we defined sequence requirements at the microRNA level for these two microRNAs, evaluating lin-4 and let-7 mutant microRNAs for their ability to support temporal development under conditions where the wild-type lin-4 and let-7 gene products are absent. For lin-4, we found a strong requirement for seed sequences, with function drastically affected by several central mutations in the seed sequence, while rescue was retained by a set of mutations peripheral to the seed. let-7 rescuing activity was retained to a surprising degree by a variety of central seed mutations, while several non-seed mutant effects support potential noncanonical contributions to let-7 function. Taken together, this work illustrates both the functional partnership between seed and non-seed sequences in mediating C. elegans temporal development and a diversity among microRNA effectors in the contributions of seed and non-seed regions to activity. PMID:26385508

  20. Stabilized diode seed laser for flight and space-based remote lidar sensing applications

    NASA Astrophysics Data System (ADS)

    McNeil, Shirley; Pandit, Pushkar; Battle, Philip; Rudd, Joe; Hovis, Floyd

    2017-08-01

    AdvR, through support of the NASA SBIR program, has developed fiber-based components and sub-systems that are routinely used on NASA's airborne missions, and is now developing an environmentally hardened, diode-based, locked wavelength, seed laser for future space-based high spectral resolution lidar applications. The seed laser source utilizes a fiber-coupled diode laser, a fiber-coupled, calibrated iodine reference module to provide an absolute wavelength reference, and an integrated, dual-element, nonlinear optical waveguide component for second harmonic generation, spectral formatting and wavelength locking. The diode laser operates over a range close to 1064.5 nm, provides for stabilization of the seed to the desired iodine transition and allows for a highly-efficient, fully-integrated seed source that is well-suited for use in airborne and space-based environments. A summary of component level environmental testing and spectral purity measurements with a seeded Nd:YAG laser will be presented. A direct-diode, wavelength-locked seed laser will reduce the overall size weight and power (SWaP) requirements of the laser transmitter, thus directly addressing the need for developing compact, efficient, lidar component technologies for use in airborne and space-based environments.

Top