Sample records for latent structure analysis

  1. Testing Specific Hypotheses Concerning Latent Group Differences in Multi-group Covariance Structure Analysis with Structured Means.

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Molenaar, Peter C. M.

    1994-01-01

    In multigroup covariance structure analysis with structured means, the traditional latent selection model is formulated as a special case of phenotypic selection. Illustrations with real and simulated data demonstrate how one can test specific hypotheses concerning selection on latent variables. (SLD)

  2. Application of Local Linear Embedding to Nonlinear Exploratory Latent Structure Analysis

    ERIC Educational Resources Information Center

    Wang, Haonan; Iyer, Hari

    2007-01-01

    In this paper we discuss the use of a recent dimension reduction technique called Locally Linear Embedding, introduced by Roweis and Saul, for performing an exploratory latent structure analysis. The coordinate variables from the locally linear embedding describing the manifold on which the data reside serve as the latent variable scores. We…

  3. Generalized Structured Component Analysis with Latent Interactions

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan

    2010-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…

  4. Use of Latent Profile Analysis in Studies of Gifted Students

    ERIC Educational Resources Information Center

    Mammadov, Sakhavat; Ward, Thomas J.; Cross, Jennifer Riedl; Cross, Tracy L.

    2016-01-01

    To date, in gifted education and related fields various conventional factor analytic and clustering techniques have been used extensively for investigation of the underlying structure of data. Latent profile analysis is a relatively new method in the field. In this article, we provide an introduction to latent profile analysis for gifted education…

  5. Bayesian latent structure modeling of walking behavior in a physical activity intervention

    PubMed Central

    Lawson, Andrew B; Ellerbe, Caitlyn; Carroll, Rachel; Alia, Kassandra; Coulon, Sandra; Wilson, Dawn K; VanHorn, M Lee; St George, Sara M

    2017-01-01

    The analysis of walking behavior in a physical activity intervention is considered. A Bayesian latent structure modeling approach is proposed whereby the ability and willingness of participants is modeled via latent effects. The dropout process is jointly modeled via a linked survival model. Computational issues are addressed via posterior sampling and a simulated evaluation of the longitudinal model’s ability to recover latent structure and predictor effects is considered. We evaluate the effect of a variety of socio-psychological and spatial neighborhood predictors on the propensity to walk and the estimation of latent ability and willingness in the full study. PMID:24741000

  6. Taxometric Analysis as a General Strategy for Distinguishing Categorical from Dimensional Latent Structure

    ERIC Educational Resources Information Center

    McGrath, Robert E.; Walters, Glenn D.

    2012-01-01

    Statistical analyses investigating latent structure can be divided into those that estimate structural model parameters and those that detect the structural model type. The most basic distinction among structure types is between categorical (discrete) and dimensional (continuous) models. It is a common, and potentially misleading, practice to…

  7. Using Structural Equation Models with Latent Variables to Study Student Growth and Development.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1991-01-01

    Analysis of data on freshman-to-senior developmental gains in 722 University of Tennessee-Knoxville students provides evidence of the advantages of structural equation modeling with latent variables and suggests that the group differences identified by traditional analysis of variance and covariance techniques may be an artifact of measurement…

  8. Residual Structures in Latent Growth Curve Modeling

    ERIC Educational Resources Information Center

    Grimm, Kevin J.; Widaman, Keith F.

    2010-01-01

    Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…

  9. Space-time latent component modeling of geo-referenced health data.

    PubMed

    Lawson, Andrew B; Song, Hae-Ryoung; Cai, Bo; Hossain, Md Monir; Huang, Kun

    2010-08-30

    Latent structure models have been proposed in many applications. For space-time health data it is often important to be able to find the underlying trends in time, which are supported by subsets of small areas. Latent structure modeling is one such approach to this analysis. This paper presents a mixture-based approach that can be applied to component selection. The analysis of a Georgia ambulatory asthma county-level data set is presented and a simulation-based evaluation is made. Copyright (c) 2010 John Wiley & Sons, Ltd.

  10. Factor Structure Invariance of the Kaufman Adolescent and Adult Intelligence Test across Male and Female Samples

    ERIC Educational Resources Information Center

    Immekus, Jason C.; Maller, Susan J.

    2010-01-01

    Multisample confirmatory factor analysis (MCFA) and latent mean structures analysis (LMS) were used to test measurement invariance and latent mean differences on the Kaufman Adolescent and Adult Intelligence Scale[TM] (KAIT) across males and females in the standardization sample. MCFA found that the parameters of the KAIT two-factor model were…

  11. Evaluating measurement models in clinical research: covariance structure analysis of latent variable models of self-conception.

    PubMed

    Hoyle, R H

    1991-02-01

    Indirect measures of psychological constructs are vital to clinical research. On occasion, however, the meaning of indirect measures of psychological constructs is obfuscated by statistical procedures that do not account for the complex relations between items and latent variables and among latent variables. Covariance structure analysis (CSA) is a statistical procedure for testing hypotheses about the relations among items that indirectly measure a psychological construct and relations among psychological constructs. This article introduces clinical researchers to the strengths and limitations of CSA as a statistical procedure for conceiving and testing structural hypotheses that are not tested adequately with other statistical procedures. The article is organized around two empirical examples that illustrate the use of CSA for evaluating measurement models with correlated error terms, higher-order factors, and measured and latent variables.

  12. The Use of a Context-Based Information Retrieval Technique

    DTIC Science & Technology

    2009-07-01

    provided in context. Latent Semantic Analysis (LSA) is a statistical technique for inferring contextual and structural information, and previous studies...WAIS). 10 DSTO-TR-2322 1.4.4 Latent Semantic Analysis LSA, which is also known as latent semantic indexing (LSI), uses a statistical and...1.4.6 Language Models In contrast, natural language models apply algorithms that combine statistical information with semantic information. Semantic

  13. Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…

  14. Nonlinear and Quasi-Simplex Patterns in Latent Growth Models

    ERIC Educational Resources Information Center

    Bianconcini, Silvia

    2012-01-01

    In the SEM literature, simplex and latent growth models have always been considered competing approaches for the analysis of longitudinal data, even if they are strongly connected and both of specific importance. General dynamic models, which simultaneously estimate autoregressive structures and latent curves, have been recently proposed in the…

  15. Characterising the latent structure and organisation of self-reported thoughts, feelings and behaviours in adolescents and young adults

    PubMed Central

    Neufeld, Sharon; Jones, Peter B.; Fonagy, Peter; Bullmore, Edward T.; Dolan, Raymond J.; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M.

    2017-01-01

    Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed ‘distress’ and five ‘distress independent’ specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits. PMID:28403164

  16. Characterising the latent structure and organisation of self-reported thoughts, feelings and behaviours in adolescents and young adults.

    PubMed

    St Clair, Michelle C; Neufeld, Sharon; Jones, Peter B; Fonagy, Peter; Bullmore, Edward T; Dolan, Raymond J; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M

    2017-01-01

    Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed 'distress' and five 'distress independent' specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits.

  17. The effects of rurality on substance use disorder diagnosis: A multiple-groups latent class analysis.

    PubMed

    Brooks, Billy; McBee, Matthew; Pack, Robert; Alamian, Arsham

    2017-05-01

    Rates of accidental overdose mortality from substance use disorder (SUD) have risen dramatically in the United States since 1990. Between 1999 and 2004 alone rates increased 62% nationwide, with rural overdose mortality increasing at a rate 3 times that seen in urban populations. Cultural differences between rural and urban populations (e.g., educational attainment, unemployment rates, social characteristics, etc.) affect the nature of SUD, leading to disparate risk of overdose across these communities. Multiple-groups latent class analysis with covariates was applied to data from the 2011 and 2012 National Survey on Drug Use and Health (n=12.140) to examine potential differences in latent classifications of SUD between rural and urban adult (aged 18years and older) populations. Nine drug categories were used to identify latent classes of SUD defined by probability of diagnosis within these categories. Once the class structures were established for rural and urban samples, posterior membership probabilities were entered into a multinomial regression analysis of socio-demographic predictors' association with the likelihood of SUD latent class membership. Latent class structures differed across the sub-groups, with the rural sample fitting a 3-class structure (Bootstrap Likelihood Ratio Test P value=0.03) and the urban fitting a 6-class model (Bootstrap Likelihood Ratio Test P value<0.0001). Overall the rural class structure exhibited less diversity in class structure and lower prevalence of SUD in multiple drug categories (e.g. cocaine, hallucinogens, and stimulants). This result supports the hypothesis that different underlying elements exist in the two populations that affect SUD patterns, and thus can inform the development of surveillance instruments, clinical services, and prevention programming tailored to specific communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Latent Profile and Cluster Analysis of Infant Temperament: Comparisons across Person-Centered Approaches

    ERIC Educational Resources Information Center

    Gartstein, Maria A.; Prokasky, Amanda; Bell, Martha Ann; Calkins, Susan; Bridgett, David J.; Braungart-Rieker, Julia; Leerkes, Esther; Cheatham, Carol L.; Eiden, Rina D.; Mize, Krystal D.; Jones, Nancy Aaron; Mireault, Gina; Seamon, Erich

    2017-01-01

    There is renewed interest in person-centered approaches to understanding the structure of temperament. However, questions concerning temperament types are not frequently framed in a developmental context, especially during infancy. In addition, the most common person-centered techniques, cluster analysis (CA) and latent profile analysis (LPA),…

  19. Visualizing Confidence Bands for Semiparametrically Estimated Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Chalmers, R. Philip; Kok, Bethany E.; Losardo, Diane

    2015-01-01

    Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural…

  20. A Latent Growth Curve Analysis of the Structure of Aggression, Drug Use, and Delinquent Behaviors and their Interrelations over Time in Urban and Rural Adolescents

    ERIC Educational Resources Information Center

    Farrell, Albert D.; Sullivan, Terri N.; Esposito, Layla E.; Meyer, Aleta L.; Valois, Robert F.

    2005-01-01

    Latent growth curve analysis was used to examine the structure and interrelations among aggression, drug use, and delinquent behavior during early adolescence. Five waves of data were collected from 667 students at three urban middle schools serving a predominantly African American population, and from a more ethnically diverse sample of 950…

  1. Mokken scaling analysis of the Hospital Anxiety and Depression Scale in individuals with cardiovascular disease.

    PubMed

    Cosco, Theodore D; Doyle, Frank; Watson, Roger; Ward, Mark; McGee, Hannah

    2012-01-01

    The Hospital Anxiety and Depression Scale (HADS) is a prolifically used scale of anxiety and depression. The original bidimensional anxiety-depression latent structure of the HADS has come under significant scrutiny, with previous studies revealing one-, two-, three- and four-dimensional structures. The current study examines the latent structure of the HADS using a non-parametric item response theory method. Using data conglomerated from four independent studies of cardiovascular disease employing the HADS (n=893), Mokken scaling procedure was conducted to assess the latent structure of the HADS. A single scale consisting of 12 of 14 HADS items was revealed, indicating a unidimensional latent HADS structure. The HADS was initially intended to measure mutually exclusive levels of anxiety and depression; however, the current study indicates that a single dimension of general psychological distress is captured. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Mean structure analysis from an IRT approach: an application in the context of organizational psychology.

    PubMed

    Revuelta Menéndez, Javier; Ximénez Gómez, Carmen

    2012-11-01

    The application of mean and covariance structure analysis with quantitative data is increasing. However, latent means analysis with qualitative data is not as widespread. This article summarizes the procedures to conduct an analysis of latent means of dichotomous data from an item response theory approach. We illustrate the implementation of these procedures in an empirical example referring to the organizational context, where a multi-group analysis was conducted to compare the latent means of three employee groups in two factors measuring personal preferences and the perceived degree of rewards from the organization. Results show that higher personal motivations are associated with higher perceived importance of the organization, and that these perceptions differ across groups, so that higher-level employees have a lower level of personal and perceived motivation. The article shows how to estimate the factor means and the factor correlation from dichotomous data, and how to assess goodness of fit. Lastly, we provide the M-Plus syntax code in order to facilitate the latent means analyses for applied researchers.

  3. Malingering as a Categorical or Dimensional Construct: The Latent Structure of Feigned Psychopathology as Measured by the SIRS and MMPI-2

    ERIC Educational Resources Information Center

    Walters, Glenn D.; Rogers, Richard; Berry, David T. R.; Miller, Holly A.; Duncan, Scott A.; McCusker, Paul J.; Payne, Joshua W.; Granacher, Robert P., Jr.

    2008-01-01

    The 6 nonoverlapping primary scales of the Structured Interview of Reported Symptoms (SIRS) were subjected to taxometric analysis in a group of 1,211 criminal and civil examinees in order to investigate the latent structure of feigned psychopathology. Both taxometric procedures used in this study, mean above minus below a cut (MAMBAC) and maximum…

  4. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  5. Structural Relationships between Social Activities and Longitudinal Trajectories of Depression among Older Adults

    ERIC Educational Resources Information Center

    Hong, Song-Iee; Hasche, Leslie; Bowland, Sharon

    2009-01-01

    Purpose: This study examines the structural relationships between social activities and trajectories of late-life depression. Design and Methods: Latent class analysis was used with a nationally representative sample of older adults (N = 5,294) from the Longitudinal Study on Aging II to classify patterns of social activities. A latent growth curve…

  6. Does Attention-Deficit/Hyperactivity Disorder Have a Dimensional Latent Structure? A Taxometric Analysis

    PubMed Central

    Marcus, David K.; Barry, Tammy D.

    2010-01-01

    An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667–1078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators, for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD. PMID:20973595

  7. Does attention-deficit/hyperactivity disorder have a dimensional latent structure? A taxometric analysis.

    PubMed

    Marcus, David K; Barry, Tammy D

    2011-05-01

    An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667 and 1,078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD.

  8. Pain and the defense response: structural equation modeling reveals a coordinated psychophysiological response to increasing painful stimulation.

    PubMed

    Donaldson, Gary W; Chapman, C Richard; Nakamura, Yoshi; Bradshaw, David H; Jacobson, Robert C; Chapman, Christopher N

    2003-03-01

    The defense response theory implies that individuals should respond to increasing levels of painful stimulation with correlated increases in affectively mediated psychophysiological responses. This paper employs structural equation modeling to infer the latent processes responsible for correlated growth in the pain report, evoked potential amplitudes, pupil dilation, and skin conductance of 92 normal volunteers who experienced 144 trials of three levels of increasingly painful electrical stimulation. The analysis assumed a two-level model of latent growth as a function of stimulus level. The first level of analysis formulated a nonlinear growth model for each response measure, and allowed intercorrelations among the parameters of these models across individuals. The second level of analysis posited latent process factors to account for these intercorrelations. The best-fitting parsimonious model suggests that two latent processes account for the correlations. One of these latent factors, the activation threshold, determines the initial threshold response, while the other, the response gradient, indicates the magnitude of the coherent increase in response with stimulus level. Collectively, these two second-order factors define the defense response, a broad construct comprising both subjective pain evaluation and physiological mechanisms.

  9. Multilevel Latent Class Analysis: An Application of Adolescent Smoking Typologies with Individual and Contextual Predictors

    ERIC Educational Resources Information Center

    Henry, Kimberly L.; Muthen, Bengt

    2010-01-01

    Latent class analysis (LCA) is a statistical method used to identify subtypes of related cases using a set of categorical or continuous observed variables. Traditional LCA assumes that observations are independent. However, multilevel data structures are common in social and behavioral research and alternative strategies are needed. In this…

  10. Latent Structure Agreement Analysis

    DTIC Science & Technology

    1989-11-01

    correct for bias in estimation of disease prevalence due to misclassification error [39]. Software Varying panel latent class agreement models can be...D., and L. M. Irwig, "Estimation of Test Error Rates, Disease Prevalence and Relative Risk from Misclassified Data: A Review," Journal of Clinical

  11. Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data.

    PubMed

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S

    2016-06-01

    We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.

  12. Selection of latent variables for multiple mixed-outcome models

    PubMed Central

    ZHOU, LING; LIN, HUAZHEN; SONG, XINYUAN; LI, YI

    2014-01-01

    Latent variable models have been widely used for modeling the dependence structure of multiple outcomes data. However, the formulation of a latent variable model is often unknown a priori, the misspecification will distort the dependence structure and lead to unreliable model inference. Moreover, multiple outcomes with varying types present enormous analytical challenges. In this paper, we present a class of general latent variable models that can accommodate mixed types of outcomes. We propose a novel selection approach that simultaneously selects latent variables and estimates parameters. We show that the proposed estimator is consistent, asymptotically normal and has the oracle property. The practical utility of the methods is confirmed via simulations as well as an application to the analysis of the World Values Survey, a global research project that explores peoples’ values and beliefs and the social and personal characteristics that might influence them. PMID:27642219

  13. Evaluating the Latent Structure of the MMPI-2 F(p) Scale in a Forensic Sample: A Taxometric Analysis

    ERIC Educational Resources Information Center

    Strong, David R.; Glassmire, David M.; Frederick, Richard I.; Greene, Roger L.

    2006-01-01

    P. A. Arbisi and Y. S. Ben-Porath (1995) originally proposed that the Infrequency Psychopathology scale, F(p), be used as the final step in an algorithm to determine the validity of a Minnesota Multiphasic Personality Inventory-2 (MMPI-2) protocol. The current study used taxometric procedures to determine the latent structure of F(p) among…

  14. The Latent Structures of the Learning and Study Strategies Inventory (LASSI): A Comparative Analysis.

    ERIC Educational Resources Information Center

    Obiekwe, Jerry C.

    The first purpose of this study was to analyze the results of the confirmatory factor analyses, via EQS, with regard to the latent structures of the Learning and Study Strategies Inventory (LASSI) (C. Weinstein, D. Palmer, and A. Schulte, 1987) as proposed by S. Olejnik and S. Nist (1992), A. Olivarez and M. Tallent-Runnels (1994), B. Olaussen and…

  15. Research on the application of a decoupling algorithm for structure analysis

    NASA Technical Reports Server (NTRS)

    Denman, E. D.

    1980-01-01

    The mathematical theory for decoupling mth-order matrix differential equations is presented. It is shown that the decoupling precedure can be developed from the algebraic theory of matrix polynomials. The role of eigenprojectors and latent projectors in the decoupling process is discussed and the mathematical relationships between eigenvalues, eigenvectors, latent roots, and latent vectors are developed. It is shown that the eigenvectors of the companion form of a matrix contains the latent vectors as a subset. The spectral decomposition of a matrix and the application to differential equations is given.

  16. Realist identification of group-level latent variables for perinatal social epidemiology theory building.

    PubMed

    Eastwood, John Graeme; Jalaludin, Bin Badrudin; Kemp, Lynn Ann; Phung, Hai Ngoc

    2014-01-01

    We have previously reported in this journal on an ecological study of perinatal depressive symptoms in South Western Sydney. In that article, we briefly reported on a factor analysis that was utilized to identify empirical indicators for analysis. In this article, we report on the mixed method approach that was used to identify those latent variables. Social epidemiology has been slow to embrace a latent variable approach to the study of social, political, economic, and cultural structures and mechanisms, partly for philosophical reasons. Critical realist ontology and epistemology have been advocated as an appropriate methodological approach to both theory building and theory testing in the health sciences. We describe here an emergent mixed method approach that uses qualitative methods to identify latent constructs followed by factor analysis using empirical indicators chosen to measure identified qualitative codes. Comparative analysis of the findings is reported together with a limited description of realist approaches to abstract reasoning.

  17. Latent factor structure of a behavioral economic marijuana demand curve.

    PubMed

    Aston, Elizabeth R; Farris, Samantha G; MacKillop, James; Metrik, Jane

    2017-08-01

    Drug demand, or relative value, can be assessed via analysis of behavioral economic purchase task performance. Five demand indices are typically obtained from drug purchase tasks. The goal of this research was to determine whether metrics of marijuana reinforcement from a marijuana purchase task (MPT) exhibit a latent factor structure that efficiently characterizes marijuana demand. Participants were regular marijuana users (n = 99; 37.4% female, 71.5% marijuana use days [5 days/week], 15.2% cannabis dependent) who completed study assessments, including the MPT, during a baseline session. Principal component analysis was used to examine the latent structure underlying MPT indices. Concurrent validity was assessed via examination of relationships between latent factors and marijuana use, past quit attempts, and marijuana expectancies. A two-factor solution was confirmed as the best fitting structure, accounting for 88.5% of the overall variance. Factor 1 (65.8% variance) reflected "Persistence," indicating sensitivity to escalating marijuana price, which comprised four MPT indices (elasticity, O max , P max , and breakpoint). Factor 2 (22.7% variance) reflected "Amplitude," indicating the amount consumed at unrestricted price (intensity). Persistence factor scores were associated with fewer past marijuana quit attempts and lower expectancies of negative use outcomes. Amplitude factor scores were associated with more frequent use, dependence symptoms, craving severity, and positive marijuana outcome expectancies. Consistent with research on alcohol and cigarette purchase tasks, the MPT can be characterized with a latent two-factor structure. Thus, demand for marijuana appears to encompass distinct dimensions of price sensitivity and volumetric consumption, with differential relations to other aspects of marijuana motivation.

  18. The Peer Interaction in Primary School Questionnaire: Testing for Measurement Equivalence and Latent Mean Differences in Bullying between Gender in Egypt, Saudi Arabia and the USA

    ERIC Educational Resources Information Center

    Hussein, Mohamed Habashy

    2010-01-01

    The Peer Interaction in Primary School Questionnaire (PIPSQ) was developed to assess individuals' levels of bullying and victimization. This study used the approach of latent means analysis (LMA) within the framework of structural equation modeling (SEM) to explore the factor structure and gender differences associated with the PIPSQ in a sample…

  19. Post-traumatic stress symptoms and structure among orphan and vulnerable children and adolescents in Zambia.

    PubMed

    Familiar, Itziar; Murray, Laura; Gross, Alden; Skavenski, Stephanie; Jere, Elizabeth; Bass, Judith

    2014-11-01

    Scant information exists on PTSD symptoms and structure in youth from developing countries. We describe the symptom profile and exposure to trauma experiences among 343 orphan and vulnerable children and adolescents from Zambia. We distinguished profiles of post-traumatic stress symptoms using latent class analysis. Average number of trauma-related symptoms (21.6; range 0-38) was similar across sex and age. Latent class model suggested 3 classes varying by level of severity: low (31% of the sample), medium (45% of the sample), and high (24% of the sample) symptomatology. Results suggest that PTSD is a continuously distributed latent trait.

  20. Psychometrican analysis and dimensional structure of the Brazilian version of melasma quality of life scale (MELASQoL-BP)*

    PubMed Central

    Maranzatto, Camila Fernandes Pollo; Miot, Hélio Amante; Miot, Luciane Donida Bartoli; Meneguin, Silmara

    2016-01-01

    Background Although asymptomatic, melasma inflicts significant impact on quality of life. MELASQoL is the main instrument used to assess quality of life associated with melasma, it has been validated in several languages, but its latent dimensional structure and psychometric properties haven´t been fully explored. Objectives To evaluate psychometric characteristics, information and dimensional structure of the Brazilian version of MELASQoL. Methods Survey with patients with facial melasma through socio-demographic questionnaire, DLQI-BRA, MASI and MELASQoL-BP, exploratory and confirmatory factor analysis, internal consistency of MELASQoL and latent dimensions (Cronbach's alpha). The informativeness of the model and items were investigated by the Rasch model (ordinal data). Results We evaluated 154 patients, 134 (87%) were female, mean age (± SD) of 39 (± 8) years, the onset of melasma at 27 (± 8) years, median (p25-p75) of MASI scores , DLQI and MELASQoL 8 (5-15) 2 (1-6) and 30 (17-44). The correlation (rho) of MELASQoL with DLQI and MASI were: 0.70 and 0.36. Exploratory factor analysis identified two latent dimensions: Q1-Q3 and Q4-Q10, which had significantly more adjusted factor structure than the one-dimensional model: Χ2 / gl = 2.03, CFI = 0.95, AGFI = 0.94, RMSEA = 0.08. Cronbach's coefficient for the one-dimensional model and the factors were: 0.95, 0.92 and 0.93. Rasch analysis demonstrated that the use of seven alternatives per item resulted in no increase in the model informativeness. Conclusions MELASQoL-BP showed good psychometric performance and a latent structure of two dimensions. We also identified an oversizing of item alternatives to characterize the aggregate information to each dimension. PMID:27579735

  1. Predictive Inference Using Latent Variables with Covariates*

    PubMed Central

    Schofield, Lynne Steuerle; Junker, Brian; Taylor, Lowell J.; Black, Dan A.

    2014-01-01

    Plausible Values (PVs) are a standard multiple imputation tool for analysis of large education survey data that measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally-generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations (MESE) model of Schofield (2008). PMID:25231627

  2. The latent structure of alcohol misuse in young adults: Do taxometric results differ as a function of prior criminal history?

    PubMed

    Walters, Glenn D

    2015-12-01

    The purpose of this study was to determine whether the latent structure of alcohol misuse is categorical or continuous in male and female adults with and without a history of prior criminal offending. Data from 3452 (1530 male, 1922 female) 27-to-32 year old members of the National Longitudinal Study of Adolescent to Adult Health (Add Health) were subjected to taxometric analysis using three nonredundant taxometric procedures--mean above minus below a cut (MAMBAC), maximum covariance (MAXCOV), and latent mode factor analysis (L-Mode). Analyses produced results consistent with categorical latent structure in males with a previous history of criminal offending but not in males without a previous history of criminal offending or females with or without a history of criminal offending. The findings from the other groups were indeterminate for the most part (i.e., neither categorical nor continuous). The presumptive taxon was validated by testing differences in age of onset and frequency of criminal arrest and drunkenness between the putative taxon and the upper portion of the complement. As predicted, all four validation outcomes were significantly worse in the taxon group. On the basis of these results it is concluded that alcohol misuse in young adults may have features of both categorical and continuous latent structure and that the categorical aspects are more prominent in males with a history of offending behavior. Additional research is required to determine which aspects and features of alcohol misuse are categorical and which aspects and features are continuous. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Estimating and Interpreting Latent Variable Interactions: A Tutorial for Applying the Latent Moderated Structural Equations Method

    ERIC Educational Resources Information Center

    Maslowsky, Julie; Jager, Justin; Hemken, Douglas

    2015-01-01

    Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…

  4. The Latent Classes of Subclinical ADHD Symptoms: Convergences of Multiple Informant Reports

    ERIC Educational Resources Information Center

    Kobor, Andrea; Takacs, Adam; Urban, Robert; Csepe, Valeria

    2012-01-01

    The purpose of the present study was to conduct latent class analysis on the Hyperactivity scale of the Strengths and Difficulties Questionnaire in order to identify distinct subgroups of subclinical ADHD in a multi-informant framework. We hypothesized a similar structure between teachers and parents, and differences in symptom severity across…

  5. Phenotypic factor analysis of psychopathology reveals a new body-related transdiagnostic factor.

    PubMed

    Pezzoli, Patrizia; Antfolk, Jan; Santtila, Pekka

    2017-01-01

    Comorbidity challenges the notion of mental disorders as discrete categories. An increasing body of literature shows that symptoms cut across traditional diagnostic boundaries and interact in shaping the latent structure of psychopathology. Using exploratory and confirmatory factor analysis, we reveal the latent sources of covariation among nine measures of psychopathological functioning in a population-based sample of 13024 Finnish twins and their siblings. By implementing unidimensional, multidimensional, second-order, and bifactor models, we illustrate the relationships between observed variables, specific, and general latent factors. We also provide the first investigation to date of measurement invariance of the bifactor model of psychopathology across gender and age groups. Our main result is the identification of a distinct "Body" factor, alongside the previously identified Internalizing and Externalizing factors. We also report relevant cross-disorder associations, especially between body-related psychopathology and trait anger, as well as substantial sex and age differences in observed and latent means. The findings expand the meta-structure of psychopathology, with implications for empirical and clinical practice, and demonstrate shared mechanisms underlying attitudes towards nutrition, self-image, sexuality and anger, with gender- and age-specific features.

  6. Post-traumatic stress symptoms and structure among orphan and vulnerable children and adolescents in Zambia

    PubMed Central

    Familiar, Itziar; Murray, Laura; Gross, Alden; Skavenski, Stephanie; Jere, Elizabeth; Bass, Judith

    2014-01-01

    Background Scant information exists on PTSD symptoms and structure in youth from developing countries. Methods We describe the symptom profile and exposure to trauma experiences among 343 orphan and vulnerable children and adolescents from Zambia. We distinguished profiles of post-traumatic stress symptoms using latent class analysis. Results Average number of trauma-related symptoms (21.6; range 0-38) was similar across sex and age. Latent class model suggested 3 classes varying by level of severity: low (31% of the sample), medium (45% of the sample), and high (24% of the sample) symptomatology. Conclusions Results suggest that PTSD is a continuously distributed latent trait. PMID:25382359

  7. Do recognizable lifetime eating disorder phenotypes naturally occur in a culturally asian population? A combined latent profile and taxometric approach.

    PubMed

    Thomas, Jennifer J; Eddy, Kamryn T; Ruscio, John; Ng, King Lam; Casale, Kristen E; Becker, Anne E; Lee, Sing

    2015-05-01

    We examined whether empirically derived eating disorder (ED) categories in Hong Kong Chinese patients (N = 454) would be consistent with recognizable lifetime ED phenotypes derived from latent structure models of European and American samples. We performed latent profile analysis (LPA) using indicator variables from data collected during routine assessment, and then applied taxometric analysis to determine whether latent classes were qualitatively versus quantitatively distinct. Latent profile analysis identified four classes: (i) binge/purge (47%); (ii) non-fat-phobic low-weight (34%); (iii) fat-phobic low-weight (12%); and (iv) overweight disordered eating (6%). Taxometric analysis identified qualitative (categorical) distinctions between the binge/purge and non-fat-phobic low-weight classes, and also between the fat-phobic and non-fat-phobic low-weight classes. Distinctions between the fat-phobic low-weight and binge/purge classes were indeterminate. Empirically derived categories in Hong Kong showed recognizable correspondence with recognizable lifetime ED phenotypes. Although taxometric findings support two distinct classes of low weight EDs, LPA findings also support heterogeneity among non-fat-phobic individuals. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  8. The Coach-Athlete Relationship Questionnaire (CART-Q): development and initial validation.

    PubMed

    Jowett, Sophia; Ntoumanis, Nikos

    2004-08-01

    The purpose of the present study was to develop and validate a self-report instrument that measures the nature of the coach-athlete relationship. Jowett et al.'s (Jowett & Meek, 2000; Jowett, in press) qualitative case studies and relevant literature were used to generate items for an instrument that measures affective, cognitive, and behavioral aspects of the coach-athlete relationship. Two studies were carried out in an attempt to assess content, predictive, and construct validity, as well as internal consistency, of the Coach-Athlete Relationship Questionnaire (CART-Q), using two independent British samples. Principal component analysis and confirmatory factor analysis were used to reduce the number of items, identify principal components, and confirm the latent structure of the CART-Q. Results supported the multidimensional nature of the coach-athlete relationship. The latent structure of the CART-Q was underlined by the latent variables of coaches' and athletes' Closeness (emotions), Commitment (cognitions), and Complementarity (behaviors).

  9. A taxometric investigation of agoraphobia in a clinical and a community sample.

    PubMed

    Slade, Tim; Grisham, Jessica R

    2009-08-01

    The nosological status of agoraphobia is controversial. Agoraphobia may be a distinct diagnostic entity or a marker of avoidance severity. The current study examines the latent structure of agoraphobia through the use of taxometric analysis. The latent structure of agoraphobia was examined in two independent samples, one comprising outpatients presenting for treatment for panic disorder (PD) with or without agoraphobia (n=365), and the other comprising community volunteers to a national mental health survey who experienced fear or avoidance of at least one prototypic agoraphobic situation (n=640). Two taxometric procedures were carried out - maximum eigenvalue (MAXEIG) and mean above minus below a cut (MAMBAC) - using indicators derived from questionnaire measures of, and structured diagnostic interviews for, agoraphobia. Results show consistent evidence of dimensional latent structure in both samples. It is concluded that scores on measures of agoraphobia best represent an agoraphobic severity dimension.

  10. Two-Year Predictive Validity of Conduct Disorder Subtypes in Early Adolescence: A Latent Class Analysis of a Canadian Longitudinal Sample

    ERIC Educational Resources Information Center

    Lacourse, Eric; Baillargeon, Raymond; Dupere, Veronique; Vitaro, Frank; Romano, Elisa; Tremblay, Richard

    2010-01-01

    Background: Investigating the latent structure of conduct disorder (CD) can help clarify how symptoms related to aggression, property destruction, theft, and serious violations of rules cluster in individuals with this disorder. Discovering homogeneous subtypes can be useful for etiologic, treatment, and prevention purposes depending on the…

  11. The Structure of Student Satisfaction with College Services: A Latent Class Model

    ERIC Educational Resources Information Center

    Adwere-Boamah, Joseph

    2011-01-01

    Latent Class Analysis (LCA) was used to identify distinct groups of Community college students based on their self-ratings of satisfaction with student service programs. The programs were counseling, financial aid, health center, student programs and student government. The best fitting model to describe the data was a two Discrete-Factor model…

  12. Bayesian Semiparametric Structural Equation Models with Latent Variables

    ERIC Educational Resources Information Center

    Yang, Mingan; Dunson, David B.

    2010-01-01

    Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…

  13. Multilevel structural equation models for assessing moderation within and across levels of analysis.

    PubMed

    Preacher, Kristopher J; Zhang, Zhen; Zyphur, Michael J

    2016-06-01

    Social scientists are increasingly interested in multilevel hypotheses, data, and statistical models as well as moderation or interactions among predictors. The result is a focus on hypotheses and tests of multilevel moderation within and across levels of analysis. Unfortunately, existing approaches to multilevel moderation have a variety of shortcomings, including conflated effects across levels of analysis and bias due to using observed cluster averages instead of latent variables (i.e., "random intercepts") to represent higher-level constructs. To overcome these problems and elucidate the nature of multilevel moderation effects, we introduce a multilevel structural equation modeling (MSEM) logic that clarifies the nature of the problems with existing practices and remedies them with latent variable interactions. This remedy uses random coefficients and/or latent moderated structural equations (LMS) for unbiased tests of multilevel moderation. We describe our approach and provide an example using the publicly available High School and Beyond data with Mplus syntax in Appendix. Our MSEM method eliminates problems of conflated multilevel effects and reduces bias in parameter estimates while offering a coherent framework for conceptualizing and testing multilevel moderation effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models

    ERIC Educational Resources Information Center

    Park, Jungkyu; Yu, Hsiu-Ting

    2016-01-01

    The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…

  15. General practitioners' knowledge and concern about electromagnetic fields.

    PubMed

    Berg-Beckhoff, Gabriele; Breckenkamp, Jürgen; Larsen, Pia Veldt; Kowall, Bernd

    2014-12-01

    Our aim is to explore general practitioners' (GPs') knowledge about EMF, and to assess whether different knowledge structures are related to the GPs' concern about EMF. Random samples were drawn from lists of GPs in Germany in 2008. Knowledge about EMF was assessed by seven items. A latent class analysis was conducted to identify latent structures in GPs' knowledge. Further, the GPs' concern about EMF health risk was measured using a score comprising six items. The association between GPs' concern about EMF and their knowledge was analysed using multiple linear regression. In total 435 (response rate 23.3%) GPs participated in the study. Four groups were identified by the latent class analysis: 43.1% of the GPs gave mainly correct answers; 23.7% of the GPs answered low frequency EMF questions correctly; 19.2% answered only the questions relating EMF with health risks, and 14.0% answered mostly "don't know". There was no association between GPs' latent knowledge classes or between the number of correct answers given by the GPs and their EMF concern, whereas the number of incorrect answers was associated with EMF concern. Greater EMF concern in subjects with more incorrect answers suggests paying particular attention to misconceptions regarding EMF in risk communication.

  16. Etiological Beliefs, Treatments, Stigmatizing Attitudes toward Schizophrenia. What Do Italians and Israelis Think?

    PubMed

    Mannarini, Stefania; Boffo, Marilisa; Rossi, Alessandro; Balottin, Laura

    2017-01-01

    Background: Although scientific research on the etiology of mental disorders has improved the knowledge of biogenetic and psychosocial aspects related to the onset of mental illness, stigmatizing attitudes and behaviors are still very prevalent and pose a significant social problem. Aim: The aim of this study was to deepen the knowledge of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics, such as culture and religion of the perceiver. More precisely, the main purpose is the definition of a structure of variables, namely perceived dangerousness, social closeness, and avoidance of the ill person, together with the beliefs about the best treatment to be undertaken and the sick person' gender, capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned. Method: The study involved 305 university students, 183 from the University of Padua, Italy, and 122 from the University of Haifa, Israel. For the analyses, a latent class analysis (LCA) approach was chosen to identify a latent categorical structure accounting for the covariance between the observed variables. Such a latent structure was expected to be moderated by cultural background (Italy versus Israel) and religious beliefs, whereas causal beliefs, recommended treatment, dangerousness, social closeness, and public avoidance were the manifest variables, namely the observed indicators of the latent variable. Results: Two sets of results were obtained. First, the relevance of the manifest variables as indicators of the hypothesized latent variable was highlighted. Second, a two-latent-class categorical dimension represented by prejudicial attitudes, causal beliefs, and treatments concerning schizophrenia was found. Specifically, the differential effects of the two cultures and the religious beliefs on the latent structure and their relations highlighted the relevance of the observed variables as indicators of the expected latent variable. Conclusion: The present study contributes to the improvement of the understanding of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics of the perceiver. The definition of a structure of variables capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned was achieved from a cross-cultural perspective.

  17. Flexible Modeling of Latent Task Structures in Multitask Learning

    DTIC Science & Technology

    2012-06-26

    Flexible Modeling of Latent Task Structures in Multitask Learning Alexandre Passos† apassos@cs.umass.edu Computer Science Department, University of...of Maryland, College Park, MD USA Abstract Multitask learning algorithms are typically designed assuming some fixed, a priori known latent structure...shared by all the tasks. However, it is usually unclear what type of latent task structure is the most ap- propriate for a given multitask learning prob

  18. The Latent Class Structure of Chinese Patients with Eating Disorders in Shanghai.

    PubMed

    Zheng, Yuchen; Kang, Qing; Huang, Jiabin; Jiang, Wenhui; Liu, Qiang; Chen, Han; Fan, Qing; Wang, Zhen; Chen, Jue; Xiao, Zeping

    2017-08-25

    Eating disorder is culture related, and the clinical symptoms are different between eastern and western patients. So the validity of feeding and eating disorders in the upcoming ICD-11 guide for Chinese patients is unclear. To explore the latent class structure of Chinese patients with eating disorder and the cross-cultural validity of the eating disorder section of the new ICD-11 guide in China. A total of 379 patients with eating disorders at Shanghai Mental Health Center were evaluated using the EDI questionnaire and a questionnaire developed by researchers from 2010 to 2016. SPSS 20.0 was used to enter data and analyze demographic data, and Latent GOLD was employed to conduct latent profile analysis. According to the results of latent profile analysis, patients with eating disorder were divided into five classes: low-weight fasting class (23.1%), non-fat-phobic binge/purge class (21.54%), low-fat-phobic binge class (19.27%), fat-phobic binge class (19.27%), and non-fat-phobic low-weight class (16.76%). Among the clinical symptoms extracted, there were significant differences in Body Mass Index (BMI), binge eating behavior, self-induced vomiting, laxative use and fat-phobic opinion; while there was no significant difference in restrictive food intake. Based on the clinical symptoms, there are five latent classes in Chinese patients with eating disorder, which is in accordance with the diagnostic categories of feeding and eating disorder in ICD-11. However, further work is needed in improving the fat-phobic opinion of patients with eating disorder and clarifying the BMI standard of thinness in the Chinese population.

  19. Demographic analysis from summaries of an age-structured population

    USGS Publications Warehouse

    Link, William A.; Royle, J. Andrew; Hatfield, Jeff S.

    2003-01-01

    Demographic analyses of age-structured populations typically rely on life history data for individuals, or when individual animals are not identified, on information about the numbers of individuals in each age class through time. While it is usually difficult to determine the age class of a randomly encountered individual, it is often the case that the individual can be readily and reliably assigned to one of a set of age classes. For example, it is often possible to distinguish first-year from older birds. In such cases, the population age structure can be regarded as a latent variable governed by a process prior, and the data as summaries of this latent structure. In this article, we consider the problem of uncovering the latent structure and estimating process parameters from summaries of age class information. We present a demographic analysis for the critically endangered migratory population of whooping cranes (Grus americana), based only on counts of first-year birds and of older birds. We estimate age and year-specific survival rates. We address the controversial issue of whether management action on the breeding grounds has influenced recruitment, relating recruitment rates to the number of seventh-year and older birds, and examining the pattern of variation through time in this rate.

  20. The Importance of Isomorphism for Conclusions about Homology: A Bayesian Multilevel Structural Equation Modeling Approach with Ordinal Indicators.

    PubMed

    Guenole, Nigel

    2016-01-01

    We describe a Monte Carlo study examining the impact of assuming item isomorphism (i.e., equivalent construct meaning across levels of analysis) on conclusions about homology (i.e., equivalent structural relations across levels of analysis) under varying degrees of non-isomorphism in the context of ordinal indicator multilevel structural equation models (MSEMs). We focus on the condition where one or more loadings are higher on the between level than on the within level to show that while much past research on homology has ignored the issue of psychometric isomorphism, psychometric isomorphism is in fact critical to valid conclusions about homology. More specifically, when a measurement model with non-isomorphic items occupies an exogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the within level exogenous latent variance is under-estimated leading to over-estimation of the within level structural coefficient, while the between level exogenous latent variance is overestimated leading to underestimation of the between structural coefficient. When a measurement model with non-isomorphic items occupies an endogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the endogenous within level latent variance is under-estimated leading to under-estimation of the within level structural coefficient while the endogenous between level latent variance is over-estimated leading to over-estimation of the between level structural coefficient. The innovative aspect of this article is demonstrating that even minor violations of psychometric isomorphism render claims of homology untenable. We also show that posterior predictive p-values for ordinal indicator Bayesian MSEMs are insensitive to violations of isomorphism even when they lead to severely biased within and between level structural parameters. We highlight conditions where poor estimation of even correctly specified models rules out empirical examination of isomorphism and homology without taking precautions, for instance, larger Level-2 sample sizes, or using informative priors.

  1. The Importance of Isomorphism for Conclusions about Homology: A Bayesian Multilevel Structural Equation Modeling Approach with Ordinal Indicators

    PubMed Central

    Guenole, Nigel

    2016-01-01

    We describe a Monte Carlo study examining the impact of assuming item isomorphism (i.e., equivalent construct meaning across levels of analysis) on conclusions about homology (i.e., equivalent structural relations across levels of analysis) under varying degrees of non-isomorphism in the context of ordinal indicator multilevel structural equation models (MSEMs). We focus on the condition where one or more loadings are higher on the between level than on the within level to show that while much past research on homology has ignored the issue of psychometric isomorphism, psychometric isomorphism is in fact critical to valid conclusions about homology. More specifically, when a measurement model with non-isomorphic items occupies an exogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the within level exogenous latent variance is under-estimated leading to over-estimation of the within level structural coefficient, while the between level exogenous latent variance is overestimated leading to underestimation of the between structural coefficient. When a measurement model with non-isomorphic items occupies an endogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the endogenous within level latent variance is under-estimated leading to under-estimation of the within level structural coefficient while the endogenous between level latent variance is over-estimated leading to over-estimation of the between level structural coefficient. The innovative aspect of this article is demonstrating that even minor violations of psychometric isomorphism render claims of homology untenable. We also show that posterior predictive p-values for ordinal indicator Bayesian MSEMs are insensitive to violations of isomorphism even when they lead to severely biased within and between level structural parameters. We highlight conditions where poor estimation of even correctly specified models rules out empirical examination of isomorphism and homology without taking precautions, for instance, larger Level-2 sample sizes, or using informative priors. PMID:26973580

  2. A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Fiaz; Schumacher, Courtney; Feng, Zhe

    Traditionally, radar-based latent heating retrievals use rainfall to estimate the total column-integrated latent heating and then distribute that heating in the vertical using a model-based look-up table (LUT). In this study, we develop a new method that uses size characteristics of radar-observed precipitating echo (i.e., area and mean echo-top height) to estimate the vertical structure of latent heating. This technique (named the Convective-Stratiform Area [CSA] algorithm) builds on the fact that the shape and magnitude of latent heating profiles are dependent on the organization of convective systems and aims to avoid some of the pitfalls involved in retrieving accurate rainfallmore » amounts and microphysical information from radars and models. The CSA LUTs are based on a high-resolution Weather Research and Forecasting model (WRF) simulation whose domain spans much of the near-equatorial Indian Ocean. When applied to S-PolKa radar observations collected during the DYNAMO/CINDY2011/AMIE field campaign, the CSA retrieval compares well to heating profiles from a sounding-based budget analysis and improves upon a simple rain-based latent heating retrieval. The CSA LUTs also highlight the fact that convective latent heating increases in magnitude and height as cluster area and echo-top heights grow, with a notable congestus signature of cooling at mid levels. Stratiform latent heating is less dependent on echo-top height, but is strongly linked to area. Unrealistic latent heating profiles in the stratiform LUT, viz., a low-level heating spike, an elevated melting layer, and net column cooling were identified and corrected for. These issues highlight the need for improvement in model parameterizations, particularly in linking microphysical phase changes to larger mesoscale processes.« less

  3. Illustration of Step-Wise Latent Class Modeling With Covariates and Taxometric Analysis in Research Probing Children's Mental Models in Learning Sciences

    PubMed Central

    Stamovlasis, Dimitrios; Papageorgiou, George; Tsitsipis, Georgios; Tsikalas, Themistoklis; Vaiopoulou, Julie

    2018-01-01

    This paper illustrates two psychometric methods, latent class analysis (LCA) and taxometric analysis (TA) using empirical data from research probing children's mental representation in science learning. LCA is used to obtain a typology based on observed variables and to further investigate how the encountered classes might be related to external variables, where the effectiveness of classification process and the unbiased estimations of parameters become the main concern. In the step-wise LCA, the class membership is assigned and subsequently its relationship with covariates is established. This leading-edge modeling approach suffers from severe downward-biased estimations. The illustration of LCA is focused on alternative bias correction approaches and demonstrates the effect of modal and proportional class-membership assignment along with BCH and ML correction procedures. The illustration of LCA is presented with three covariates, which are psychometric variables operationalizing formal reasoning, divergent thinking and field dependence-independence, respectively. Moreover, taxometric analysis, a method designed to detect the type of the latent structural model, categorical or dimensional, is introduced, along with the relevant basic concepts and tools. TA was applied complementarily in the same data sets to answer the fundamental hypothesis about children's naïve knowledge on the matters under study and it comprises an additional asset in building theory which is fundamental for educational practices. Taxometric analysis provided results that were ambiguous as far as the type of the latent structure. This finding initiates further discussion and sets a problematization within this framework rethinking fundamental assumptions and epistemological issues. PMID:29713300

  4. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    NASA Astrophysics Data System (ADS)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  5. A systematic literature review of PTSD's latent structure in the Diagnostic and Statistical Manual of Mental Disorders: DSM-IV to DSM-5.

    PubMed

    Armour, Cherie; Műllerová, Jana; Elhai, Jon D

    2016-03-01

    The factor structure of posttraumatic stress disorder (PTSD) has been widely researched, but consensus regarding the exact number and nature of factors is yet to be reached. The aim of the current study was to systematically review the extant literature on PTSD's latent structure in the Diagnostic and Statistical Manual of Mental Disorders (DSM) in order to identify the best-fitting model. One hundred and twelve research papers published after 1994 using confirmatory factor analysis and DSM-based measures of PTSD were included in the review. In the DSM-IV literature, four-factor models received substantial support, but the five-factor Dysphoric arousal model demonstrated the best fit, regardless of gender, measurement instrument or trauma type. The recently proposed DSM-5 PTSD model was found to be a good representation of PTSD's latent structure, but studies analysing the six- and seven-factor models suggest that the DSM-5 PTSD factor structure may need further alterations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A comparison of latent class, K-means, and K-median methods for clustering dichotomous data.

    PubMed

    Brusco, Michael J; Shireman, Emilie; Steinley, Douglas

    2017-09-01

    The problem of partitioning a collection of objects based on their measurements on a set of dichotomous variables is a well-established problem in psychological research, with applications including clinical diagnosis, educational testing, cognitive categorization, and choice analysis. Latent class analysis and K-means clustering are popular methods for partitioning objects based on dichotomous measures in the psychological literature. The K-median clustering method has recently been touted as a potentially useful tool for psychological data and might be preferable to its close neighbor, K-means, when the variable measures are dichotomous. We conducted simulation-based comparisons of the latent class, K-means, and K-median approaches for partitioning dichotomous data. Although all 3 methods proved capable of recovering cluster structure, K-median clustering yielded the best average performance, followed closely by latent class analysis. We also report results for the 3 methods within the context of an application to transitive reasoning data, in which it was found that the 3 approaches can exhibit profound differences when applied to real data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. The spatial pattern of suicide in the US in relation to deprivation, fragmentation and rurality.

    PubMed

    Congdon, Peter

    2011-01-01

    Analysis of geographical patterns of suicide and psychiatric morbidity has demonstrated the impact of latent ecological variables (such as deprivation, rurality). Such latent variables may be derived by conventional multivariate techniques from sets of observed indices (for example, by principal components), by composite variable methods or by methods which explicitly consider the spatial framework of areas and, in particular, the spatial clustering of latent risks and outcomes. This article considers a latent random variable approach to explaining geographical contrasts in suicide in the US; and it develops a spatial structural equation model incorporating deprivation, social fragmentation and rurality. The approach allows for such latent spatial constructs to be correlated both within and between areas. Potential effects of area ethnic mix are also included. The model is applied to male and female suicide deaths over 2002–06 in 3142 US counties.

  8. The latent structure of the functional dyspepsia symptom complex: a taxometric analysis.

    PubMed

    Van Oudenhove, L; Jasper, F; Walentynowicz, M; Witthöft, M; Van den Bergh, O; Tack, J

    2016-07-01

    Rome III introduced a subdivision of functional dyspepsia (FD) into postprandial distress syndrome and epigastric pain syndrome, characterized by early satiation/postprandial fullness, and epigastric pain/burning, respectively. However, evidence on their degree of overlap is mixed. We aimed to investigate the latent structure of FD to test whether distinguishable symptom-based subgroups exist. Consecutive tertiary care Rome II FD patients completed the dyspepsia symptom severity scale. Confirmatory factor analysis (CFA) was used to compare the fit of a single factor model, a correlated three-factor model based on Rome III subgroups and a bifactor model consisting of a general FD factor and orthogonal subgroup factors. Taxometric analyses were subsequently used to investigate the latent structure of FD. Nine hundred and fifty-seven FD patients (71.1% women, age 41 ± 14.8) participated. In CFA, the bifactor model yielded a significantly better fit than the two other models (χ² difference tests both p < 0.001). All symptoms had significant loadings on both the general and the subgroup-specific factors (all p < 0.05). Somatization was associated with the general (r = 0.72, p < 0.01), but not the subgroup-specific factors (all r < 0.13, p > 0.05). Taxometric analyses supported a dimensional structure of FD (all CCFI<0.38). We found a dimensional rather than categorical latent structure of the FD symptom complex in tertiary care. A combination of a general dyspepsia symptom reporting factor, which was associated with somatization, and symptom-specific factors reflecting the Rome III subdivision fitted the data best. This has implications for classification, pathophysiology, and treatment of FD. © 2016 John Wiley & Sons Ltd.

  9. Structural identifiability of cyclic graphical models of biological networks with latent variables.

    PubMed

    Wang, Yulin; Lu, Na; Miao, Hongyu

    2016-06-13

    Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and is thus of higher resolution in comparison with many existing approaches. Overall, this study provides a basis for systematic examination and refinement of graphical models of biological networks from the identifiability point of view, and it has a significant potential to be extended to more complex network structures or high-dimensional systems.

  10. Latent Structure of Motor Abilities in Pre-School Children

    ERIC Educational Resources Information Center

    Vatroslav, Horvat

    2011-01-01

    The theoretical and practical knowledge which have so far been acquired through work with pre-school children pointed to the conclusion that the structures of the latent dimensions of the motor abilities differ greatly from such a structure, in pre-school children and adults alike. Establishing the latent structure of the motor abilities in…

  11. Enhanced Thermal Properties of Novel Latent Heat Thermal Storage Material Through Confinement of Stearic Acid in Meso-Structured Onion-Like Silica

    NASA Astrophysics Data System (ADS)

    Gao, Junkai; Lv, Mengjiao; Lu, Jinshu; Chen, Yan; Zhang, Zijun; Zhang, Xiongjie; Zhu, Yingying

    2017-12-01

    Meso-structured onion-like silica (MOS), which had a highly ordered, onion-like multilayer; large surface area and pore volume; and highly curved mesopores, were synthesized as a support for stearic acid (SA) to develop a novel shape-stabilized phase change material (SA/MOS). The characterizations of SA/MOS were studied by the analysis technique of scanning electron microscope, infrared spectroscopy, x-ray diffraction, differential scanning calorimeter (DSC), and thermal gravimetry analysis (TGA). The results showed that the interaction between the SA and the MOS was physical adsorption and that the MOS had no effect on the crystal structure of the SA. The DSC results suggested that the melting and solidifying temperature of the SA/MOS were 72.7°C and 63.9°C with a melting latent heat of 108.0 J/g and a solidifying latent heat of 126.0 J/g, respectively, and the TGA results indicated that the SA/MOS had a good thermal stability. All of the results demonstrated that the SA/MOS was a promising thermal energy storage material candidate for practical applications.

  12. Applying Longitudinal Mean and Covariance Structures (LMACS) Analysis to Assess Construct Stability Over Two Time Points: An Example Using Psychological Entitlement

    ERIC Educational Resources Information Center

    Bashkov, Bozhidar M.; Finney, Sara J.

    2013-01-01

    Traditional methods of assessing construct stability are reviewed and longitudinal mean and covariance structures (LMACS) analysis, a modern approach, is didactically illustrated using psychological entitlement data. Measurement invariance and latent variable stability results are interpreted, emphasizing substantive implications for educators and…

  13. The use of fault reporting of medical equipment to identify latent design flaws.

    PubMed

    Flewwelling, C J; Easty, A C; Vicente, K J; Cafazzo, J A

    2014-10-01

    Poor device design that fails to adequately account for user needs, cognition, and behavior is often responsible for use errors resulting in adverse events. This poor device design is also often latent, and could be responsible for "No Fault Found" (NFF) reporting, in which medical devices sent for repair by clinical users are found to be operating as intended. Unresolved NFF reports may contribute to incident under reporting, clinical user frustration, and biomedical engineering technologist inefficacy. This study uses human factors engineering methods to investigate the relationship between NFF reporting frequency and device usability. An analysis of medical equipment maintenance data was conducted to identify devices with a high NFF reporting frequency. Subsequently, semi-structured interviews and heuristic evaluations were performed in order to identify potential usability issues. Finally, usability testing was conducted in order to validate that latent usability related design faults result in a higher frequency of NFF reporting. The analysis of medical equipment maintenance data identified six devices with a high NFF reporting frequency. Semi-structured interviews, heuristic evaluations and usability testing revealed that usability issues caused a significant portion of the NFF reports. Other factors suspected to contribute to increased NFF reporting include accessory issues, intermittent faults and environmental issues. Usability testing conducted on three of the devices revealed 23 latent usability related design faults. These findings demonstrate that latent usability related design faults manifest themselves as an increase in NFF reporting and that devices containing usability related design faults can be identified through an analysis of medical equipment maintenance data. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Direct and conceptual replications of the taxometric analysis of type a behavior.

    PubMed

    Wilmot, Michael P; Haslam, Nick; Tian, Jingyuan; Ones, Deniz S

    2018-05-17

    We present direct and conceptual replications of the influential taxometric analysis of Type A Behavior (TAB; Strube, 1989), which reported evidence for the latent typology of the construct. Study 1, the direct replication (N = 2,373), duplicated sampling and methodological procedures of the original study, but results showed that the item indicators used in the original study lacked sufficient validity to unambiguously determine latent structure. Using improved factorial subscale indicators to further test the question, multiple taxometric procedures, in combination with parallel analyses of simulated data, failed to replicate the original typological finding. Study 2, the conceptual replication, tested the latent structure of the wider construct of TAB using the sample from the Caerphilly Prospective Study (N = 2,254), which contains responses to the three most widely used self-report measures of TAB: the Jenkins Activity Survey, Bortner scale, and Framingham scale. Factorial subscale indicators were derived from the measures and submitted to multiple taxometric procedures. Results of Study 2 converged with those of Study 1, providing clear evidence of latent dimensional structure. Overall, results suggest there is no evidence for the type in TAB. Findings imply that theoretical models of TAB, assessment practices, and data analytic procedures that assume a typology should be replaced by dimensional models, factorial subscale measures, and corresponding statistical approaches. Specific subscale measures that tap multiple Big Five trait domains, and show evidence of predictive utility, are also recommended. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. The Integration of Continuous and Discrete Latent Variable Models: Potential Problems and Promising Opportunities

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Curran, Patrick J.

    2004-01-01

    Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…

  16. Study on TCM Syndrome Differentiation of Primary Liver Cancer Based on the Analysis of Latent Structural Model.

    PubMed

    Gu, Zhan; Qi, Xiuzhong; Zhai, Xiaofeng; Lang, Qingbo; Lu, Jianying; Ma, Changping; Liu, Long; Yue, Xiaoqiang

    2015-01-01

    Primary liver cancer (PLC) is one of the most common malignant tumors because of its high incidence and high mortality. Traditional Chinese medicine (TCM) plays an active role in the treatment of PLC. As the most important part in the TCM system, syndrome differentiation based on the clinical manifestations from traditional four diagnostic methods has met great challenges and questions with the lack of statistical validation support. In this study, we provided evidences for TCM syndrome differentiation of PLC using the method of analysis of latent structural model from clinic data, thus providing basis for establishing TCM syndrome criteria. And also we obtain the common syndromes of PLC as well as their typical clinical manifestations, respectively.

  17. Using SAS PROC CALIS to fit Level-1 error covariance structures of latent growth models.

    PubMed

    Ding, Cherng G; Jane, Ten-Der

    2012-09-01

    In the present article, we demonstrates the use of SAS PROC CALIS to fit various types of Level-1 error covariance structures of latent growth models (LGM). Advantages of the SEM approach, on which PROC CALIS is based, include the capabilities of modeling the change over time for latent constructs, measured by multiple indicators; embedding LGM into a larger latent variable model; incorporating measurement models for latent predictors; and better assessing model fit and the flexibility in specifying error covariance structures. The strength of PROC CALIS is always accompanied with technical coding work, which needs to be specifically addressed. We provide a tutorial on the SAS syntax for modeling the growth of a manifest variable and the growth of a latent construct, focusing the documentation on the specification of Level-1 error covariance structures. Illustrations are conducted with the data generated from two given latent growth models. The coding provided is helpful when the growth model has been well determined and the Level-1 error covariance structure is to be identified.

  18. Structural Equation Model Trees

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2015-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789

  19. Further insights on the French WISC-IV factor structure through Bayesian structural equation modeling.

    PubMed

    Golay, Philippe; Reverte, Isabelle; Rossier, Jérôme; Favez, Nicolas; Lecerf, Thierry

    2013-06-01

    The interpretation of the Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all cross-loadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  20. Detecting Mixtures from Structural Model Differences Using Latent Variable Mixture Modeling: A Comparison of Relative Model Fit Statistics

    ERIC Educational Resources Information Center

    Henson, James M.; Reise, Steven P.; Kim, Kevin H.

    2007-01-01

    The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…

  1. Mixture IRT Model with a Higher-Order Structure for Latent Traits

    ERIC Educational Resources Information Center

    Huang, Hung-Yu

    2017-01-01

    Mixture item response theory (IRT) models have been suggested as an efficient method of detecting the different response patterns derived from latent classes when developing a test. In testing situations, multiple latent traits measured by a battery of tests can exhibit a higher-order structure, and mixtures of latent classes may occur on…

  2. Medical University admission test: a confirmatory factor analysis of the results.

    PubMed

    Luschin-Ebengreuth, Marion; Dimai, Hans P; Ithaler, Daniel; Neges, Heide M; Reibnegger, Gilbert

    2016-05-01

    The Graz Admission Test has been applied since the academic year 2006/2007. The validity of the Test was demonstrated by a significant improvement of study success and a significant reduction of dropout rate. The purpose of this study was a detailed analysis of the internal correlation structure of the various components of the Graz Admission Test. In particular, the question investigated was whether or not the various test parts constitute a suitable construct which might be designated as "Basic Knowledge in Natural Science." This study is an observational investigation, analyzing the results of the Graz Admission Test for the study of human medicine and dentistry. A total of 4741 applicants were included in the analysis. Principal component factor analysis (PCFA) as well as techniques from structural equation modeling, specifically confirmatory factor analysis (CFA), were employed to detect potential underlying latent variables governing the behavior of the measured variables. PCFA showed good clustering of the science test parts, including also text comprehension. A putative latent variable "Basic Knowledge in Natural Science," investigated by CFA, was indeed shown to govern the response behavior of the applicants in biology, chemistry, physics, and mathematics as well as text comprehension. The analysis of the correlation structure of the various test parts confirmed that the science test parts together with text comprehension constitute a satisfactory instrument for measuring a latent construct variable "Basic Knowledge in Natural Science." The present results suggest the fundamental importance of basic science knowledge for results obtained in the framework of the admission process for medical universities.

  3. The job content questionnaire in various occupational contexts: applying a latent class model

    PubMed Central

    Santos, Kionna Oliveira Bernardes; de Araújo, Tânia Maria; Karasek, Robert

    2017-01-01

    Objective To evaluate Job Content Questionnaire(JCQ) performance using the latent class model. Methods We analysed cross-sectional studies conducted in Brazil and examined three occupational categories: petroleum industry workers (n=489), teachers (n=4392) and primary healthcare workers (3078)and 1552 urban workers from a representative sample of the city of Feira de Santana in Bahia, Brazil. An appropriate number of latent classes was extracted and described each occupational category using latent class analysis, a multivariate method that evaluates constructs and takes into account the latent characteristics underlying the structure of measurement scales. The conditional probabilities of workers belonging to each class were then analysed graphically. Results Initially, the latent class analysis extracted four classes corresponding to the four job types (active, passive, low strain and high strain) proposed by the Job-Strain model (JSM) and operationalised by the JCQ. However, after taking into consideration the adequacy criteria to evaluate the number of extracted classes, three classes (active, low strain and high strain) were extracted from the studies of urban workers and teachers and four classes (active, passive, low strain and high strain) from the study of primary healthcare and petroleum industry workers. Conclusion The four job types proposed by the JSM were identified among primary healthcare and petroleum industry workers—groups with relatively high levels of skill discretion and decision authority. Three job types were identified for teachers and urban workers; however, passive job situations were not found within these groups. The latent class analysis enabled us to describe the conditional standard responses of the job types proposed by the model, particularly in relation to active jobs and high and low strain situations. PMID:28515185

  4. Rapid Exploitation and Analysis of Documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttler, D J; Andrzejewski, D; Stevens, K D

    Analysts are overwhelmed with information. They have large archives of historical data, both structured and unstructured, and continuous streams of relevant messages and documents that they need to match to current tasks, digest, and incorporate into their analysis. The purpose of the READ project is to develop technologies to make it easier to catalog, classify, and locate relevant information. We approached this task from multiple angles. First, we tackle the issue of processing large quantities of information in reasonable time. Second, we provide mechanisms that allow users to customize their queries based on latent topics exposed from corpus statistics. Third,more » we assist users in organizing query results, adding localized expert structure over results. Forth, we use word sense disambiguation techniques to increase the precision of matching user generated keyword lists with terms and concepts in the corpus. Fifth, we enhance co-occurrence statistics with latent topic attribution, to aid entity relationship discovery. Finally we quantitatively analyze the quality of three popular latent modeling techniques to examine under which circumstances each is useful.« less

  5. The Depression Anxiety Stress Scales (DASS): normative data and latent structure in a large non-clinical sample.

    PubMed

    Crawford, John R; Henry, Julie D

    2003-06-01

    To provide UK normative data for the Depression Anxiety and Stress Scale (DASS) and test its convergent, discriminant and construct validity. Cross-sectional, correlational and confirmatory factor analysis (CFA). The DASS was administered to a non-clinical sample, broadly representative of the general adult UK population (N = 1,771) in terms of demographic variables. Competing models of the latent structure of the DASS were derived from theoretical and empirical sources and evaluated using confirmatory factor analysis. Correlational analysis was used to determine the influence of demographic variables on DASS scores. The convergent and discriminant validity of the measure was examined through correlating the measure with two other measures of depression and anxiety (the HADS and the sAD), and a measure of positive and negative affectivity (the PANAS). The best fitting model (CFI =.93) of the latent structure of the DASS consisted of three correlated factors corresponding to the depression, anxiety and stress scales with correlated error permitted between items comprising the DASS subscales. Demographic variables had only very modest influences on DASS scores. The reliability of the DASS was excellent, and the measure possessed adequate convergent and discriminant validity Conclusions: The DASS is a reliable and valid measure of the constructs it was intended to assess. The utility of this measure for UK clinicians is enhanced by the provision of large sample normative data.

  6. Exploring context and content links in social media: a latent space method.

    PubMed

    Qi, Guo-Jun; Aggarwal, Charu; Tian, Qi; Ji, Heng; Huang, Thomas S

    2012-05-01

    Social media networks contain both content and context-specific information. Most existing methods work with either of the two for the purpose of multimedia mining and retrieval. In reality, both content and context information are rich sources of information for mining, and the full power of mining and processing algorithms can be realized only with the use of a combination of the two. This paper proposes a new algorithm which mines both context and content links in social media networks to discover the underlying latent semantic space. This mapping of the multimedia objects into latent feature vectors enables the use of any off-the-shelf multimedia retrieval algorithms. Compared to the state-of-the-art latent methods in multimedia analysis, this algorithm effectively solves the problem of sparse context links by mining the geometric structure underlying the content links between multimedia objects. Specifically for multimedia annotation, we show that an effective algorithm can be developed to directly construct annotation models by simultaneously leveraging both context and content information based on latent structure between correlated semantic concepts. We conduct experiments on the Flickr data set, which contains user tags linked with images. We illustrate the advantages of our approach over the state-of-the-art multimedia retrieval techniques.

  7. pong: fast analysis and visualization of latent clusters in population genetic data.

    PubMed

    Behr, Aaron A; Liu, Katherine Z; Liu-Fang, Gracie; Nakka, Priyanka; Ramachandran, Sohini

    2016-09-15

    A series of methods in population genetics use multilocus genotype data to assign individuals membership in latent clusters. These methods belong to a broad class of mixed-membership models, such as latent Dirichlet allocation used to analyze text corpora. Inference from mixed-membership models can produce different output matrices when repeatedly applied to the same inputs, and the number of latent clusters is a parameter that is often varied in the analysis pipeline. For these reasons, quantifying, visualizing, and annotating the output from mixed-membership models are bottlenecks for investigators across multiple disciplines from ecology to text data mining. We introduce pong, a network-graphical approach for analyzing and visualizing membership in latent clusters with a native interactive D3.js visualization. pong leverages efficient algorithms for solving the Assignment Problem to dramatically reduce runtime while increasing accuracy compared with other methods that process output from mixed-membership models. We apply pong to 225 705 unlinked genome-wide single-nucleotide variants from 2426 unrelated individuals in the 1000 Genomes Project, and identify previously overlooked aspects of global human population structure. We show that pong outpaces current solutions by more than an order of magnitude in runtime while providing a customizable and interactive visualization of population structure that is more accurate than those produced by current tools. pong is freely available and can be installed using the Python package management system pip. pong's source code is available at https://github.com/abehr/pong aaron_behr@alumni.brown.edu or sramachandran@brown.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  8. Latent Growth and Dynamic Structural Equation Models.

    PubMed

    Grimm, Kevin J; Ram, Nilam

    2018-05-07

    Latent growth models make up a class of methods to study within-person change-how it progresses, how it differs across individuals, what are its determinants, and what are its consequences. Latent growth methods have been applied in many domains to examine average and differential responses to interventions and treatments. In this review, we introduce the growth modeling approach to studying change by presenting different models of change and interpretations of their model parameters. We then apply these methods to examining sex differences in the development of binge drinking behavior through adolescence and into adulthood. Advances in growth modeling methods are then discussed and include inherently nonlinear growth models, derivative specification of growth models, and latent change score models to study stochastic change processes. We conclude with relevant design issues of longitudinal studies and considerations for the analysis of longitudinal data.

  9. TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS

    PubMed Central

    Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.

    2017-01-01

    Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971

  10. Evidence for the Continuous Latent Structure of Mania in the Epidemiologic Catchment Area from Multiple Latent Structure and Construct Validation Methodologies

    PubMed Central

    Prisciandaro, James J.; Roberts, John E.

    2011-01-01

    Background Although psychiatric diagnostic systems have conceptualized mania as a discrete phenomenon, appropriate latent structure investigations testing this conceptualization are lacking. In contrast to these diagnostic systems, several influential theories of mania have suggested a continuous conceptualization. The present study examined whether mania has a continuous or discrete latent structure using a comprehensive approach including taxometric, information-theoretic latent distribution modeling (ITLDM), and predictive validity methodologies in the Epidemiologic Catchment Area (ECA) study. Methods Eight dichotomous manic symptom items were submitted to a variety of latent structural analyses; including factor analyses, taxometric procedures, and ITLDM; in 10,105 ECA community participants. Additionally, a variety of continuous and discrete models of mania were compared in terms of their relative abilities to predict outcomes (i.e., health service utilization, internalizing and externalizing disorders, and suicidal behavior). Results Taxometric and ITLDM analyses consistently supported a continuous conceptualization of mania. In ITLDM analyses, a continuous model of mania demonstrated 6:52:1 odds over the best fitting latent class model of mania. Factor analyses suggested that the continuous structure of mania was best represented by a single latent factor. Predictive validity analyses demonstrated a consistent superior ability of continuous models of mania relative to discrete models. Conclusions The present study provided three independent lines of support for a continuous conceptualization of mania. The implications of a continuous model of mania are discussed. PMID:20507671

  11. The Latent Structure of Dietary Restraint, Body Dissatisfaction, and Drive for Thinness: A Series of Taxometric Analyses

    ERIC Educational Resources Information Center

    Holm-Denoma, Jill M.; Richey, J. Anthony; Joiner, Thomas E., Jr.

    2010-01-01

    Although the latent structure of various eating disorders has been explored in previous studies, no published studies have examined the latent structure of theoretically relevant variables that have been shown to cut across eating disorder diagnoses. The current study examined 3 such variables (dietary restraint, body dissatisfaction, and drive…

  12. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  13. A lattice protein with an amyloidogenic latent state: stability and folding kinetics.

    PubMed

    Palyanov, Andrey Yu; Krivov, Sergei V; Karplus, Martin; Chekmarev, Sergei F

    2007-03-15

    We have designed a model lattice protein that has two stable folded states, the lower free energy native state and a latent state of somewhat higher energy. The two states have a sizable part of their structures in common (two "alpha-helices") and differ in the content of "alpha-helices" and "beta-strands" in the rest of their structures; i.e. for the native state, this part is alpha-helical, and for the latent state it is composed of beta-strands. Thus, the lattice protein free energy surface mimics that of amyloidogenic proteins that form well organized fibrils under appropriate conditions. A Go-like potential was used and the folding process was simulated with a Monte Carlo method. To gain insight into the equilibrium free energy surface and the folding kinetics, we have combined standard approaches (reduced free energy surfaces, contact maps, time-dependent populations of the characteristic states, and folding time distributions) with a new approach. The latter is based on a principal coordinate analysis of the entire set of contacts, which makes possible the introduction of unbiased reaction coordinates and the construction of a kinetic network for the folding process. The system is found to have four characteristic basins, namely a semicompact globule, an on-pathway intermediate (the bifurcation basin), and the native and latent states. The bifurcation basin is shallow and consists of the structure common to the native and latent states, with the rest disorganized. On the basis of the simulation results, a simple kinetic model describing the transitions between the characteristic states was developed, and the rate constants for the essential transitions were estimated. During the folding process the system dwells in the bifurcation basin for a relatively short time before it proceeds to the native or latent state. We suggest that such a bifurcation may occur generally for proteins in which native and latent states have a sizable part of their structures in common. Moreover, there is the possibility of introducing changes in the system (e.g., mutations), which guide the system toward the native or misfolded state.

  14. A Taxonomy of Latent Structure Assumptions for Probability Matrix Decomposition Models.

    ERIC Educational Resources Information Center

    Meulders, Michel; De Boeck, Paul; Van Mechelen, Iven

    2003-01-01

    Proposed a taxonomy of latent structure assumptions for probability matrix decomposition (PMD) that includes the original PMD model and a three-way extension of the multiple classification latent class model. Simulation study results show the usefulness of the taxonomy. (SLD)

  15. Exploring the Latent Structure of the Luria Model for the KABC-II at School Age: Further Insights from Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    McGill, Ryan J.

    2017-01-01

    The present study examined the factor structure of the Luria interpretive model for the Kaufman Assessment Battery for Children-Second Edition (KABC-II) with normative sample participants aged 7-18 (N = 2,025) using confirmatory factor analysis with maximum-likelihood estimation. For the eight subtest Luria configuration, an alternative…

  16. Multiple-Group Analysis Using the sem Package in the R System

    ERIC Educational Resources Information Center

    Evermann, Joerg

    2010-01-01

    Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…

  17. Constraints of recreational sport participation: measurement invariance and latent mean differences across sex and physical activity status.

    PubMed

    Liu, Jing Dong; Chung, Pak Kwong; Chen, Wing Ping

    2014-10-01

    The purpose of the current study was to (a) examine the measurement invariance of the Constraint Scale of Sport Participation across sex and physical activity status among the undergraduate students (N = 630) in Hong Kong and (b) compare the latent mean differences across groups. Measurement invariance of the Constraint Scale of Sport Participation across sex of and physical activity status of the participants was examined first. With receiving support on the measurement invariance across groups, latent mean differences of the scores across groups were examined. Multi-group confirmatory factor analysis revealed that the configural, metric, scalar, and structural invariance of the scale was supported across groups. The results of latent mean differences suggested that the women reported significantly higher constraints on time, partner, psychology, knowledge, and interest than the men. The physically inactive participants reported significantly higher scores on all constraints except for accessibility than the physically active participants.

  18. Much Ado about Nothing--Or at Best, Very Little

    ERIC Educational Resources Information Center

    Widaman, Keith F.

    2014-01-01

    Latent variable structural equation modeling has become the analytic method of choice in many domains of research in psychology and allied social sciences. One important aspect of a latent variable model concerns the relations hypothesized to hold between latent variables and their indicators. The most common specification of structural equation…

  19. Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan

    2005-01-01

    In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…

  20. Measurement Invariance and Latent Mean Differences in the Reynolds Intellectual Assessment Scales (RIAS): Does the German Version of the RIAS Allow a Valid Assessment of Individuals with a Migration Background?

    PubMed Central

    Gygi, Jasmin T.; Fux, Elodie; Grob, Alexander; Hagmann-von Arx, Priska

    2016-01-01

    This study examined measurement invariance and latent mean differences in the German version of the Reynolds Intellectual Assessment Scales (RIAS) for 316 individuals with a migration background (defined as speaking German as a second language) and 316 sex- and age-matched natives. The RIAS measures general intelligence (single-factor structure) and its two components, verbal and nonverbal intelligence (two-factor structure). Results of a multi-group confirmatory factor analysis showed scalar invariance for the two-factor and partial scalar invariance for the single-factor structure. We conclude that the two-factor structure of the RIAS is comparable across groups. Hence, verbal and nonverbal intelligence but not general intelligence should be considered when comparing RIAS test results of individuals with and without a migration background. Further, latent mean differences especially on the verbal, but also on the nonverbal intelligence index indicate language barriers for individuals with a migration background, as subtests corresponding to verbal intelligence require higher skills in German language. Moreover, cultural, environmental, and social factors that have to be taken into account when assessing individuals with a migration background are discussed. PMID:27846270

  1. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  2. Using Mixed-Effects Structural Equation Models to Study Student Academic Development.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1992-01-01

    A study at the University of Tennessee Knoxville used mixed-effect structural equation models incorporating latent variables as an alternative to conventional methods of analyzing college students' (n=722) first-year-to-senior academic gains. Results indicate, contrary to previous analysis, that coursework and student characteristics interact to…

  3. Local Influence Analysis of Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  4. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  5. Generalized reduced rank latent factor regression for high dimensional tensor fields, and neuroimaging-genetic applications

    PubMed Central

    Tao, Chenyang; Nichols, Thomas E.; Hua, Xue; Ching, Christopher R.K.; Rolls, Edmund T.; Thompson, Paul M.; Feng, Jianfeng

    2017-01-01

    We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches. PMID:27666385

  6. Analysis of the Empathic Concern Subscale of the Emotional Response Questionnaire in a Study Evaluating the Impact of a 3D Cultural Simulation.

    PubMed

    Everson, Naleya; Levett-Jones, Tracy; Pitt, Victoria; Lapkin, Samuel; Van Der Riet, Pamela; Rossiter, Rachel; Jones, Donovan; Gilligan, Conor; Courtney Pratt, Helen

    2018-04-25

    Abstract Background Empathic concern has been found to decline in health professional students. Few effective educational programs and a lack of validated scales are reported. Previous analysis of the Empathic Concern scale of the Emotional Response Questionnaire has reported both one and two latent constructs. Aim To evaluate the impact of simulation on nursing students' empathic concern and test the psychometric properties of the Empathic Concern scale. Methods The study used a one group pre-test post-test design with a convenience sample of 460 nursing students. Empathic concern was measured pre-post simulation with the Empathic Concern scale. Factor Analysis was undertaken to investigate the structure of the scale. Results There was a statistically significant increase in Empathic Concern scores between pre-simulation 5.57 (SD = 1.04) and post-simulation 6.10 (SD = 0.95). Factor analysis of the Empathic Concern scale identified one latent dimension. Conclusion Immersive simulation may promote empathic concern. The Empathic Concern scale measured a single latent construct in this cohort.

  7. Amatchmethod Based on Latent Semantic Analysis for Earthquakehazard Emergency Plan

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zhao, S.; Zhang, Z.; Shi, X.

    2017-09-01

    The structure of the emergency plan on earthquake is complex, and it's difficult for decision maker to make a decision in a short time. To solve the problem, this paper presents a match method based on Latent Semantic Analysis (LSA). After the word segmentation preprocessing of emergency plan, we carry out keywords extraction according to the part-of-speech and the frequency of words. Then through LSA, we map the documents and query information to the semantic space, and calculate the correlation of documents and queries by the relation between vectors. The experiments results indicate that the LSA can improve the accuracy of emergency plan retrieval efficiently.

  8. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    ERIC Educational Resources Information Center

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth…

  9. Causal mediation analysis with a latent mediator.

    PubMed

    Albert, Jeffrey M; Geng, Cuiyu; Nelson, Suchitra

    2016-05-01

    Health researchers are often interested in assessing the direct effect of a treatment or exposure on an outcome variable, as well as its indirect (or mediation) effect through an intermediate variable (or mediator). For an outcome following a nonlinear model, the mediation formula may be used to estimate causally interpretable mediation effects. This method, like others, assumes that the mediator is observed. However, as is common in structural equations modeling, we may wish to consider a latent (unobserved) mediator. We follow a potential outcomes framework and assume a generalized structural equations model (GSEM). We provide maximum-likelihood estimation of GSEM parameters using an approximate Monte Carlo EM algorithm, coupled with a mediation formula approach to estimate natural direct and indirect effects. The method relies on an untestable sequential ignorability assumption; we assess robustness to this assumption by adapting a recently proposed method for sensitivity analysis. Simulation studies show good properties of the proposed estimators in plausible scenarios. Our method is applied to a study of the effect of mother education on occurrence of adolescent dental caries, in which we examine possible mediation through latent oral health behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Latent Structure of Attention Deficit/Hyperactivity Disorder in an Adult Sample

    PubMed Central

    Marcus, David K.; Norris, Alyssa L.; Coccaro, Emil F.

    2012-01-01

    The vast majority of studies that have examined the latent structure of attention deficit/hyperactivity disorder (ADHD) in children and adolescents have concluded that ADHD has a dimensional latent structure. In other words, ADHD symptomatology exists along a continuum and there is no natural boundary or qualitative distinction (i.e., taxon) separating youth with ADHD from those with subclinical inattention or hyperactivity/impulsivity problems. Although adult ADHD appears to be less prevalent than ADHD in youth (which could suggest a more severe adult ADHD taxon), researchers have yet to examine the latent structure of ADHD in adults. The present study used a sample (N = 600) of adults who completed a self-report measure of ADHD symptoms. The taxometric analyses revealed a dimensional latent structure for inattention, hyperactivity/impulsivity, and ADHD. These findings are consistent with previous taxometric studies that examined ADHD in children and adolescents, and with contemporary polygenic and multifactorial models of ADHD. PMID:22480749

  11. The latent structure of attention deficit/hyperactivity disorder in an adult sample.

    PubMed

    Marcus, David K; Norris, Alyssa L; Coccaro, Emil F

    2012-06-01

    The vast majority of studies that have examined the latent structure of attention deficit/hyperactivity disorder (ADHD) in children and adolescents have concluded that ADHD has a dimensional latent structure. In other words, ADHD symptomatology exists along a continuum and there is no natural boundary or qualitative distinction (i.e., taxon) separating youth with ADHD from those with subclinical inattention or hyperactivity/impulsivity problems. Although adult ADHD appears to be less prevalent than ADHD in youth (which could suggest a more severe adult ADHD taxon), researchers have yet to examine the latent structure of ADHD in adults. The present study used a sample (N = 600) of adults who completed a self-report measure of ADHD symptoms. The taxometric analyses revealed a dimensional latent structure for inattention, hyperactivity/impulsivity, and ADHD. These findings are consistent with previous taxometric studies that examined ADHD in children and adolescents, and with contemporary polygenic and multifactorial models of ADHD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Pre-clinical cognitive phenotypes for Alzheimer disease: a latent profile approach.

    PubMed

    Hayden, Kathleen M; Kuchibhatla, Maragatha; Romero, Heather R; Plassman, Brenda L; Burke, James R; Browndyke, Jeffrey N; Welsh-Bohmer, Kathleen A

    2014-11-01

    Cognitive profiles for pre-clinical Alzheimer disease (AD) can be used to identify groups of individuals at risk for disease and better characterize pre-clinical disease. Profiles or patterns of performance as pre-clinical phenotypes may be more useful than individual test scores or measures of global decline. To evaluate patterns of cognitive performance in cognitively normal individuals to derive latent profiles associated with later onset of disease using a combination of factor analysis and latent profile analysis. The National Alzheimer Coordinating Centers collect data, including a battery of neuropsychological tests, from participants at 29 National Institute on Aging-funded Alzheimer Disease Centers across the United States. Prior factor analyses of this battery demonstrated a four-factor structure comprising memory, attention, language, and executive function. Factor scores from these analyses were used in a latent profile approach to characterize cognition among a group of cognitively normal participants (N = 3,911). Associations between latent profiles and disease outcomes an average of 3 years later were evaluated with multinomial regression models. Similar analyses were used to determine predictors of profile membership. Four groups were identified; each with distinct characteristics and significantly associated with later disease outcomes. Two groups were significantly associated with development of cognitive impairment. In post hoc analyses, both the Trail Making Test Part B, and a contrast score (Delayed Recall - Trails B), significantly predicted group membership and later cognitive impairment. Latent profile analysis is a useful method to evaluate patterns of cognition in large samples for the identification of preclinical AD phenotypes; comparable results, however, can be achieved with very sensitive tests and contrast scores. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Discontinuous Patterns of Cigarette Smoking From Ages 18 to 50 in the United States: A Repeated-Measures Latent Class Analysis.

    PubMed

    Terry-McElrath, Yvonne M; O'Malley, Patrick M; Johnston, Lloyd D

    2017-12-13

    Effective cigarette smoking prevention and intervention programming is enhanced by accurate understanding of developmental smoking pathways across the life span. This study investigated within-person patterns of cigarette smoking from ages 18 to 50 among a US national sample of high school graduates, focusing on identifying ages of particular importance for smoking involvement change. Using data from approximately 15,000 individuals participating in the longitudinal Monitoring the Future study, trichotomous measures of past 30-day smoking obtained at 11 time points were modeled using repeated-measures latent class analyses. Sex differences in latent class structure and membership were examined. Twelve latent classes were identified: three characterized by consistent smoking patterns across age (no smoking; smoking < pack per day; smoking pack + per day); three showing uptake to a higher category of smoking across age; four reflecting successful quit behavior by age 50; and two defined by discontinuous shifts between smoking categories. The same latent class structure was found for both males and females, but membership probabilities differed between sexes. Although evidence of increases or decreases in smoking behavior was observed at virtually all ages through 35, 21/22 and 29/30 appeared to be particularly key for smoking category change within class. This examination of latent classes of cigarette smoking among a national US longitudinal sample of high school graduates from ages 18 to 50 identified unique patterns and critical ages of susceptibility to change in smoking category within class. Such information may be of particular use in developing effective smoking prevention and intervention programming. This study examined cigarette smoking among a national longitudinal US sample of high school graduates from ages 18 to 50 and identified distinct latent classes characterized by patterns of movement between no cigarette use, light-to-moderate smoking, and the conventional definition of heavy smoking at 11 time points via repeated-measures latent class analysis. Membership probabilities for each smoking class were estimated, and critical ages of susceptibility to change in smoking behaviors were identified. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Latent transition models with latent class predictors: attention deficit hyperactivity disorder subtypes and high school marijuana use

    PubMed Central

    Reboussin, Beth A.; Ialongo, Nicholas S.

    2011-01-01

    Summary Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder which is most often diagnosed in childhood with symptoms often persisting into adulthood. Elevated rates of substance use disorders have been evidenced among those with ADHD, but recent research focusing on the relationship between subtypes of ADHD and specific drugs is inconsistent. We propose a latent transition model (LTM) to guide our understanding of how drug use progresses, in particular marijuana use, while accounting for the measurement error that is often found in self-reported substance use data. We extend the LTM to include a latent class predictor to represent empirically derived ADHD subtypes that do not rely on meeting specific diagnostic criteria. We begin by fitting two separate latent class analysis (LCA) models by using second-order estimating equations: a longitudinal LCA model to define stages of marijuana use, and a cross-sectional LCA model to define ADHD subtypes. The LTM model parameters describing the probability of transitioning between the LCA-defined stages of marijuana use and the influence of the LCA-defined ADHD subtypes on these transition rates are then estimated by using a set of first-order estimating equations given the LCA parameter estimates. A robust estimate of the LTM parameter variance that accounts for the variation due to the estimation of the two sets of LCA parameters is proposed. Solving three sets of estimating equations enables us to determine the underlying latent class structures independently of the model for the transition rates and simplifying assumptions about the correlation structure at each stage reduces the computational complexity. PMID:21461139

  15. The job content questionnaire in various occupational contexts: applying a latent class model.

    PubMed

    Santos, Kionna Oliveira Bernardes; Araújo, Tânia Maria de; Carvalho, Fernando Martins; Karasek, Robert

    2017-05-17

    To evaluate Job Content Questionnaire(JCQ) performance using the latent class model. We analysed cross-sectional studies conducted in Brazil and examined three occupational categories: petroleum industry workers (n=489), teachers (n=4392) and primary healthcare workers (3078)and 1552 urban workers from a representative sample of the city of Feira de Santana in Bahia, Brazil. An appropriate number of latent classes was extracted and described each occupational category using latent class analysis, a multivariate method that evaluates constructs and takes into accountthe latent characteristics underlying the structure of measurement scales. The conditional probabilities of workers belonging to each class were then analysed graphically. Initially, the latent class analysis extracted four classes corresponding to the four job types (active, passive, low strain and high strain) proposed by the Job-Strain model (JSM) and operationalised by the JCQ. However, after taking into consideration the adequacy criteria to evaluate the number of extracted classes, three classes (active, low strain and high strain) were extracted from the studies of urban workers and teachers and four classes (active, passive, low strain and high strain) from the study of primary healthcare and petroleum industry workers. The four job types proposed by the JSM were identified among primary healthcare and petroleum industry workers-groups with relatively high levels of skill discretion and decision authority. Three job types were identified for teachers and urban workers; however, passive job situations were not found within these groups. The latent class analysis enabled us to describe the conditional standard responses of the job types proposed by the model, particularly in relation to active jobs and high and low strain situations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. A Latent Heat Retrieval and its Effects on the Intensity and Structure Change of Hurricane Guillermo (1997). Part I: The Algorithm and Observations.

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Bourassa, mark A.; Reasor, Paul D.

    2011-01-01

    The release of latent heat in clouds is an essential part of the formation and I intensification ohurricanes. The community knows very little about the intensity and structure of latent heating due largely to inadequate observations. In this paper, a new method for retrieving the latent heating field in hurricanes from airborne Dopple radar is presented and fields from rapidly intensifying Hurricane Guillermo (1997) are shown.

  17. Latent structure analysis of the process variables and pharmaceutical responses of an orally disintegrating tablet.

    PubMed

    Hayashi, Yoshihiro; Oshima, Etsuko; Maeda, Jin; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2012-01-01

    A multivariate statistical technique was applied to the design of an orally disintegrating tablet and to clarify the causal correlation among variables of the manufacturing process and pharmaceutical responses. Orally disintegrating tablets (ODTs) composed mainly of mannitol were prepared via the wet-granulation method using crystal transition from the δ to the β form of mannitol. Process parameters (water amounts (X(1)), kneading time (X(2)), compression force (X(3)), and amounts of magnesium stearate (X(4))) were optimized using a nonlinear response surface method (RSM) incorporating a thin plate spline interpolation (RSM-S). The results of a verification study revealed that the experimental responses, such as tensile strength and disintegration time, coincided well with the predictions. A latent structure analysis of the pharmaceutical formulations of the tablet performed using a Bayesian network led to the clear visualization of a causal connection among variables of the manufacturing process and tablet characteristics. The quantity of β-mannitol in the granules (Q(β)) was affected by X(2) and influenced all granule properties. The specific surface area of the granules was affected by X(1) and Q(β) and had an effect on all tablet characteristics. Moreover, the causal relationships among the variables were clarified by inferring conditional probability distributions. These techniques provide a better understanding of the complicated latent structure among variables of the manufacturing process and tablet characteristics.

  18. Latent Transition Analysis with a Mixture Item Response Theory Measurement Model

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian

    2010-01-01

    A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…

  19. Differentiating Categories and Dimensions: Evaluating the Robustness of Taxometric Analyses

    ERIC Educational Resources Information Center

    Ruscio, John; Kaczetow, Walter

    2009-01-01

    Interest in modeling the structure of latent variables is gaining momentum, and many simulation studies suggest that taxometric analysis can validly assess the relative fit of categorical and dimensional models. The generation and parallel analysis of categorical and dimensional comparison data sets reduces the subjectivity required to interpret…

  20. The Relations Among Inhibition and Interference Control Functions: A Latent-Variable Analysis

    ERIC Educational Resources Information Center

    Friedman, Naomi P.; Miyake, Akira

    2004-01-01

    This study used data from 220 adults to examine the relations among 3 inhibition-related functions. Confirmatory factor analysis suggested that Prepotent Response Inhibition and Resistance to Distractor Interference were closely related, but both were unrelated to Resistance to Proactive Interference. Structural equation modeling, which combined…

  1. Three Approaches to Using Lengthy Ordinal Scales in Structural Equation Models: Parceling, Latent Scoring, and Shortening Scales

    ERIC Educational Resources Information Center

    Yang, Chongming; Nay, Sandra; Hoyle, Rick H.

    2010-01-01

    Lengthy scales or testlets pose certain challenges for structural equation modeling (SEM) if all the items are included as indicators of a latent construct. Three general approaches to modeling lengthy scales in SEM (parceling, latent scoring, and shortening) have been reviewed and evaluated. A hypothetical population model is simulated containing…

  2. Dimensionality of the Latent Structure and Item Selection via Latent Class Multidimensional IRT Models

    ERIC Educational Resources Information Center

    Bartolucci, F.; Montanari, G. E.; Pandolfi, S.

    2012-01-01

    With reference to a questionnaire aimed at assessing the performance of Italian nursing homes on the basis of the health conditions of their patients, we investigate two relevant issues: dimensionality of the latent structure and discriminating power of the items composing the questionnaire. The approach is based on a multidimensional item…

  3. Young Children's Psychological Selves: Convergence with Maternal Reports of Child Personality

    ERIC Educational Resources Information Center

    Brown, Geoffrey L.; Mangelsdorf, Sarah C.; Agathen, Jean M.; Ho, Moon-Ho

    2008-01-01

    The present research examined five-year-old children's psychological self-concepts. Non-linear factor analysis was used to model the latent structure of the children's self-view questionnaire (CSVQ; Eder, 1990), a measure of children's self-concepts. The coherence and reliability of the emerging factor structure indicated that young children are…

  4. A Multilevel CFA-MTMM Model for Nested Structurally Different Methods

    ERIC Educational Resources Information Center

    Koch, Tobias; Schultze, Martin; Burrus, Jeremy; Roberts, Richard D.; Eid, Michael

    2015-01-01

    The numerous advantages of structural equation modeling (SEM) for the analysis of multitrait-multimethod (MTMM) data are well known. MTMM-SEMs allow researchers to explicitly model the measurement error, to examine the true convergent and discriminant validity of the given measures, and to relate external variables to the latent trait as well as…

  5. A Hierarchical Bayesian Multidimensional Scaling Methodology for Accommodating Both Structural and Preference Heterogeneity

    ERIC Educational Resources Information Center

    Park, Joonwook; Desarbo, Wayne S.; Liechty, John

    2008-01-01

    Multidimensional scaling (MDS) models for the analysis of dominance data have been developed in the psychometric and classification literature to simultaneously capture subjects' "preference heterogeneity" and the underlying dimentional structure for a set of designated stimuli in a parsimonious manner. There are two major types of latent utility…

  6. Identifying the latent failures underpinning medication administration errors: an exploratory study.

    PubMed

    Lawton, Rebecca; Carruthers, Sam; Gardner, Peter; Wright, John; McEachan, Rosie R C

    2012-08-01

    The primary aim of this article was to identify the latent failures that are perceived to underpin medication errors. The study was conducted within three medical wards in a hospital in the United Kingdom. The study employed a cross-sectional qualitative design. Interviews were conducted with 12 nurses and eight managers. Interviews were transcribed and subject to thematic content analysis. A two-step inter-rater comparison tested the reliability of the themes. Ten latent failures were identified based on the analysis of the interviews. These were ward climate, local working environment, workload, human resources, team communication, routine procedures, bed management, written policies and procedures, supervision and leadership, and training. The discussion focuses on ward climate, the most prevalent theme, which is conceptualized here as interacting with failures in the nine other organizational structures and processes. This study is the first of its kind to identify the latent failures perceived to underpin medication errors in a systematic way. The findings can be used as a platform for researchers to test the impact of organization-level patient safety interventions and to design proactive error management tools and incident reporting systems in hospitals. © Health Research and Educational Trust.

  7. Latent structure modeling underlying theophylline tablet formulations using a Bayesian network based on a self-organizing map clustering.

    PubMed

    Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2015-01-01

    The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.

  8. Avoiding and Correcting Bias in Score-Based Latent Variable Regression with Discrete Manifest Items

    ERIC Educational Resources Information Center

    Lu, Irene R. R.; Thomas, D. Roland

    2008-01-01

    This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…

  9. Estimation and Model Selection for Finite Mixtures of Latent Interaction Models

    ERIC Educational Resources Information Center

    Hsu, Jui-Chen

    2011-01-01

    Latent interaction models and mixture models have received considerable attention in social science research recently, but little is known about how to handle if unobserved population heterogeneity exists in the endogenous latent variables of the nonlinear structural equation models. The current study estimates a mixture of latent interaction…

  10. Adolescent cigarette smoking: health-related behavior or normative transgression?

    PubMed

    Turbin, M S; Jessor, R; Costa, F M

    2000-09-01

    Relations among measures of adolescent behavior were examined to determine whether cigarette smoking fits into a structure of problem behaviors-behaviors that involve normative transgression-or a structure of health-related behaviors, or both. In an ethnically and socioeconomically diverse sample of 1782 male and female high school adolescents, four first-order problem behavior latent variables-sexual intercourse experience, alcohol abuse, illicit drug use, and delinquency-were established and together were shown to reflect a second-order latent variable of problem behavior. Four first-order latent variables of health-related behaviors-unhealthy dietary habits, sedentary behavior, unsafe behavior, and poor dental hygiene-were also established and together were shown to reflect a second-order latent variable of health-compromising behavior. The structure of relations among those latent variables was modeled. Cigarette smoking had a significant and substantial loading only on the problem-behavior latent variable; its loading on the health-compromising behavior latent variable was essentially zero. Adolescent cigarette smoking relates strongly and directly to problem behaviors and only indirectly, if at all, to health-compromising behaviors. Interventions to prevent or reduce adolescent smoking should attend more to factors that influence problem behaviors.

  11. PTSD's latent structure in Malaysian tsunami victims: assessing the newly proposed Dysphoric Arousal model.

    PubMed

    Armour, Cherie; Raudzah Ghazali, Siti; Elklit, Ask

    2013-03-30

    The underlying latent structure of Posttraumatic Stress Disorder (PTSD) is widely researched. However, despite a plethora of factor analytic studies, no single model has consistently been shown as superior to alternative models. The two most often supported models are the Emotional Numbing and the Dysphoria models. However, a recently proposed five-factor Dysphoric Arousal model has been gathering support over and above existing models. Data for the current study were gathered from Malaysian Tsunami survivors (N=250). Three competing models (Emotional Numbing/Dysphoria/Dysphoric Arousal) were specified and estimated using Confirmatory Factor Analysis (CFA). The Dysphoria model provided superior fit to the data compared to the Emotional Numbing model. However, using chi-square difference tests, the Dysphoric Arousal model showed a superior fit compared to both the Emotional Numbing and Dysphoria models. In conclusion, the current results suggest that the Dysphoric Arousal model better represents PTSD's latent structure and that items measuring sleeping difficulties, irritability/anger and concentration difficulties form a separate, unique PTSD factor. These results are discussed in relation to the role of Hyperarousal in PTSD's on-going symptom maintenance and in relation to the DSM-5. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. "Social Anxiety Disorder Carved at its Joints": evidence for the taxonicity of social anxiety disorder.

    PubMed

    Weeks, Justin W; Carleton, R Nicholas; Asmundson, Gordon J G; McCabe, Randi E; Antony, Martin M

    2010-10-01

    Previous findings suggest that social anxiety disorder may be best characterized as having a dimensional latent structure (Kollman et al., 2006; Weeks et al., 2009). We attempted to extend previous taxometric investigations of social anxiety by examining the latent structure of social anxiety disorder symptoms in a large sample comprised of social anxiety disorder patients (i.e., putative taxon members) and community residents/undergraduate respondents (i.e., putative complement class members). MAXEIG and MAMBAC were performed with indicator sets drawn from a self-report measure of social anxiety symptoms, the Social Interaction Phobia Scale (Carleton et al., 2009). MAXEIG and MAMBAC analyses, as well as comparison analyses utilizing simulated taxonic and dimensional datasets, yielded converging evidence that social anxiety disorder has a taxonic latent structure. Moreover, 100% of the confirmed social anxiety disorder patients in our overall sample were correctly assigned to the identified taxon class, providing strong support for the external validity of the identified taxon; and k-means cluster analysis results corroborated our taxometric base-rate estimates. Implications regarding the conceptualization, diagnosis, and assessment of social anxiety disorder are discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Analyzing latent state-trait and multiple-indicator latent growth curve models as multilevel structural equation models

    PubMed Central

    Geiser, Christian; Bishop, Jacob; Lockhart, Ginger; Shiffman, Saul; Grenard, Jerry L.

    2013-01-01

    Latent state-trait (LST) and latent growth curve (LGC) models are frequently used in the analysis of longitudinal data. Although it is well-known that standard single-indicator LGC models can be analyzed within either the structural equation modeling (SEM) or multilevel (ML; hierarchical linear modeling) frameworks, few researchers realize that LST and multivariate LGC models, which use multiple indicators at each time point, can also be specified as ML models. In the present paper, we demonstrate that using the ML-SEM rather than the SL-SEM framework to estimate the parameters of these models can be practical when the study involves (1) a large number of time points, (2) individually-varying times of observation, (3) unequally spaced time intervals, and/or (4) incomplete data. Despite the practical advantages of the ML-SEM approach under these circumstances, there are also some limitations that researchers should consider. We present an application to an ecological momentary assessment study (N = 158 youths with an average of 23.49 observations of positive mood per person) using the software Mplus (Muthén and Muthén, 1998–2012) and discuss advantages and disadvantages of using the ML-SEM approach to estimate the parameters of LST and multiple-indicator LGC models. PMID:24416023

  14. Multivariate analysis of fears in dental phobic patients according to a reduced FSS-II scale.

    PubMed

    Hakeberg, M; Gustafsson, J E; Berggren, U; Carlsson, S G

    1995-10-01

    This study analyzed and assessed dimensions of a questionnaire developed to measure general fears and phobias. A previous factor analysis among 109 dental phobics had revealed a five-factor structure with 22 items and an explained total variance of 54%. The present study analyzed the same material using a multivariate statistical procedure (LISREL) to reveal structural latent variables. The LISREL analysis, based on the correlation matrix, yielded a chi-square of 216.6 with 195 degrees of freedom (P = 0.138) and showed a model with seven latent variables. One was a general fear factor correlated to all 22 items. The other six factors concerned "Illness & Death" (5 items), "Failures & Embarrassment" (5 items), "Social situations" (5 items), "Physical injuries" (4 items), "Animals & Natural phenomena" (4 items). One item (opposite sex) was included in both "Failures & Embarrassment" and "Social situations". The last factor, "Social interaction", combined all the items in "Failures & Embarrassment" and "Social situations" (9 items). In conclusion, this multivariate statistical analysis (LISREL) revealed and confirmed a factor structure similar to our previous study, but added two important dimensions not shown with a traditional factor analysis. This reduced FSS-II version measures general fears and phobias and may be used on a routine clinical basis as well as in dental phobia research.

  15. A Note on Cluster Effects in Latent Class Analysis

    ERIC Educational Resources Information Center

    Kaplan, David; Keller, Bryan

    2011-01-01

    This article examines the effects of clustering in latent class analysis. A comprehensive simulation study is conducted, which begins by specifying a true multilevel latent class model with varying within- and between-cluster sample sizes, varying latent class proportions, and varying intraclass correlations. These models are then estimated under…

  16. Do gender and directness of trauma exposure moderate PTSD's latent structure?

    PubMed

    Frankfurt, Sheila B; Armour, Cherie; Contractor, Ateka A; Elhai, Jon D

    2016-11-30

    The PTSD diagnosis and latent structure were substantially revised in the transition from DSM-IV to DSM-5. However, three alternative models (i.e., anhedonia model, externalizing behavior model, and hybrid model) of PTSD fit the DSM-5 symptom criteria better than the DSM-5 factor model. Thus, the psychometric performance of the DSM-5 and alternative models' PTSD factor structure needs to be critically evaluated. The current study examined whether gender or trauma directness (i.e., direct or indirect trauma exposure) moderates the PTSD latent structure when using the DSM-5 or alternative models. Model performance was evaluated with measurement invariance testing procedures on a large undergraduate sample (n=455). Gender and trauma directness moderated the DSM-5 PTSD and externalizing behavior model and did not moderate the anhedonia and hybrid models' latent structure. Clinical implications and directions for future research are discussed. Published by Elsevier Ireland Ltd.

  17. The algebraic theory of latent projectors in lambda matrices

    NASA Technical Reports Server (NTRS)

    Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.

    1981-01-01

    Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.

  18. Use of Item Parceling in Structural Equation Modeling with Missing Data

    ERIC Educational Resources Information Center

    Orcan, Fatih

    2013-01-01

    Parceling is referred to as a procedure for computing sums or average scores across multiple items. Parcels instead of individual items are then used as indicators of latent factors in the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, & Hoyle, 2010). Item parceling may be applied to alleviate some…

  19. The Theory of Planned Behavior within the Stages of the Transtheoretical Model: Latent Structural Modeling of Stage-Specific Prediction Patterns in Physical Activity

    ERIC Educational Resources Information Center

    Lippke, Sonia; Nigg, Claudio R.; Maddock, Jay E.

    2007-01-01

    This is the first study to test whether the stages of change of the transtheoretical model are qualitatively different through exploring discontinuity patterns in theory of planned behavior (TPB) variables using latent multigroup structural equation modeling (MSEM) with AMOS. Discontinuity patterns in terms of latent means and prediction patterns…

  20. Examining Factor Score Distributions to Determine the Nature of Latent Spaces

    ERIC Educational Resources Information Center

    Steinley, Douglas; McDonald, Roderick P.

    2007-01-01

    Similarities between latent class models with K classes and linear factor models with K-1 factors are investigated. Specifically, the mathematical equivalence between the covariance structure of the two models is discussed, and a Monte Carlo simulation is performed using generated data that represents both latent factors and latent classes with…

  1. Sensitivity of Latent Heating Profiles to Environmental Conditions: Implications for TRMM and Climate Research

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) as a part of NASA's Earth System Enterprise is the first mission dedicated to measuring tropical rainfall through microwave and visible sensors, and includes the first spaceborne rain radar. Tropical rainfall comprises two-thirds of global rainfall. It is also the primary distributor of heat through the atmosphere's circulation. It is this circulation that defines Earth's weather and climate. Understanding rainfall and its variability is crucial to understanding and predicting global climate change. Weather and climate models need an accurate assessment of the latent heating released as tropical rainfall occurs. Currently, cloud model-based algorithms are used to derive latent heating based on rainfall structure. Ultimately, these algorithms can be applied to actual data from TRMM. This study investigates key underlying assumptions used in developing the latent heating algorithms. For example, the standard algorithm is highly dependent on a system's rainfall amount and structure. It also depends on an a priori database of model-derived latent heating profiles based on the aforementioned rainfall characteristics. Unanswered questions remain concerning the sensitivity of latent heating profiles to environmental conditions (both thermodynamic and kinematic), regionality, and seasonality. This study investigates and quantifies such sensitivities and seeks to determine the optimal latent heating profile database based on the results. Ultimately, the study seeks to produce an optimized latent heating algorithm based not only on rainfall structure but also hydrometeor profiles.

  2. Using latent class analysis to model prescription medications in the measurement of falling among a community elderly population

    PubMed Central

    2013-01-01

    Background Falls among the elderly are a major public health concern. Therefore, the possibility of a modeling technique which could better estimate fall probability is both timely and needed. Using biomedical, pharmacological and demographic variables as predictors, latent class analysis (LCA) is demonstrated as a tool for the prediction of falls among community dwelling elderly. Methods Using a retrospective data-set a two-step LCA modeling approach was employed. First, we looked for the optimal number of latent classes for the seven medical indicators, along with the patients’ prescription medication and three covariates (age, gender, and number of medications). Second, the appropriate latent class structure, with the covariates, were modeled on the distal outcome (fall/no fall). The default estimator was maximum likelihood with robust standard errors. The Pearson chi-square, likelihood ratio chi-square, BIC, Lo-Mendell-Rubin Adjusted Likelihood Ratio test and the bootstrap likelihood ratio test were used for model comparisons. Results A review of the model fit indices with covariates shows that a six-class solution was preferred. The predictive probability for latent classes ranged from 84% to 97%. Entropy, a measure of classification accuracy, was good at 90%. Specific prescription medications were found to strongly influence group membership. Conclusions In conclusion the LCA method was effective at finding relevant subgroups within a heterogenous at-risk population for falling. This study demonstrated that LCA offers researchers a valuable tool to model medical data. PMID:23705639

  3. Forensic Discrimination of Latent Fingerprints Using Laser-Induced Breakdown Spectroscopy (LIBS) and Chemometric Approaches.

    PubMed

    Yang, Jun-Ho; Yoh, Jack J

    2018-01-01

    A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.

  4. Multimethod latent class analysis

    PubMed Central

    Nussbeck, Fridtjof W.; Eid, Michael

    2015-01-01

    Correct and, hence, valid classifications of individuals are of high importance in the social sciences as these classifications are the basis for diagnoses and/or the assignment to a treatment. The via regia to inspect the validity of psychological ratings is the multitrait-multimethod (MTMM) approach. First, a latent variable model for the analysis of rater agreement (latent rater agreement model) will be presented that allows for the analysis of convergent validity between different measurement approaches (e.g., raters). Models of rater agreement are transferred to the level of latent variables. Second, the latent rater agreement model will be extended to a more informative MTMM latent class model. This model allows for estimating (i) the convergence of ratings, (ii) method biases in terms of differential latent distributions of raters and differential associations of categorizations within raters (specific rater bias), and (iii) the distinguishability of categories indicating if categories are satisfyingly distinct from each other. Finally, an empirical application is presented to exemplify the interpretation of the MTMM latent class model. PMID:26441714

  5. A Co-Citation Network of Young Children's Learning with Technology

    ERIC Educational Resources Information Center

    Tang, Kai-Yu; Li, Ming-Chaun; Hsin, Ching-Ting; Tsai, Chin-Chung

    2016-01-01

    This paper used a novel literature review approach--co-citation network analysis--to illuminate the latent structure of 87 empirical papers in the field of young children's learning with technology (YCLT). Based on the document co-citation analysis, a total of 206 co-citation relationships among the 87 papers were identified and then graphically…

  6. The Beck Depression Inventory, Second Edition (BDI-II): A Cross-Sample Structural Analysis

    ERIC Educational Resources Information Center

    Strunk, Kamden K.; Lane, Forrest C.

    2017-01-01

    A common concern about the Beck Depression Inventory, Second edition (BDI-II) among researchers in the area of depression has long been the single-factor scoring scheme. Methods exist for making cross-sample comparisons of latent structure but tend to rely on estimation methods that can be imprecise and unnecessarily complex. This study presents a…

  7. The Learning and Study Strategies Inventory-High School Version: Issues of Factorial Invariance Across Gender and Ethnicity

    ERIC Educational Resources Information Center

    Stevens, Tara; Tallent-Runnels, Mary K.

    2004-01-01

    The purpose of this study was to investigate the latent structure of the Learning and Study Strategies Inventory-High School (LASSI-HS) through confirmatory factor analysis and factorial invariance models. A simple modification of the three-factor structure was considered. Using a larger sample, cross-validation was completed and the equality of…

  8. Development of a new multidimensional individual and interpersonal resilience measure for older adults.

    PubMed

    Martin, A'verria Sirkin; Distelberg, Brian; Palmer, Barton W; Jeste, Dilip V

    2015-01-01

    Develop an empirically grounded measure that can be used to assess family and individual resilience in a population of older adults (aged 50-99). Cross-sectional, self-report data from 1006 older adults were analyzed in two steps. The total sample was split into two subsamples and the first step identified the underlying latent structure through principal component exploratory factor analysis (EFA). The second step utilized the second half of the sample to validate the derived latent structure through confirmatory factor analysis (CFA). EFA produced an eight-factor structure that appeared clinically relevant for measuring the multidimensional nature of resilience. Factors included self-efficacy, access to social support network, optimism, perceived economic and social resources, spirituality and religiosity, relational accord, emotional expression and communication, and emotional regulation. CFA confirmed the eight-factor structure previously achieved with covariance between each of the factors. Based on these analyses we developed the multidimensional individual and interpersonal resilience measure, a broad assessment of resilience for older adults. This study highlights the multidimensional nature of resilience and introduces an individual and interpersonal resilience measure developed for older adults which is grounded in the individual and family resilience literature.

  9. Development of a New Multidimensional Individual and Interpersonal Resilience Measure for Older Adults

    PubMed Central

    Martin, A’verria Sirkin; Distelberg, Brian; Palmer, Barton W.; Jeste, Dilip V.

    2015-01-01

    Objectives Develop an empirically grounded measure that can be used to assess family and individual resilience in a population of older adults (aged 50-99). Methods Cross-sectional, self-report data from 1,006 older adults were analyzed in two steps. The total sample was split into two sub-samples and the first step identified the underlying latent structure through principal component Exploratory Factor Analysis (EFA). The second step utilized the second half of the sample to validate the derived latent structure through Confirmatory Factor Analysis (CFA). Results EFA produced an eight-factor structure that appeared clinically relevant for measuring the multidimensional nature of resilience. Factors included self-efficacy, access to social support network, optimism, perceived economic and social resources, spirituality and religiosity, relational accord, emotional expression and communication, and emotional regulation. CFA confirmed the eight-factor structure previously achieved with covariance between each of the factors. Based on these analyses we developed the Multidimensional Individual and Interpersonal Resilience Measure (MIIRM), a broad assessment of resilience for older adults. Conclusion This study highlights the multidimensional nature of resilience and introduces an individual and interpersonal resilience measure developed for older adults which is grounded in the individual and family resilience literature. PMID:24787701

  10. Do gamblers eat more salt? Testing a latent trait model of covariance in consumption

    PubMed Central

    Goodwin, Belinda C.; Browne, Matthew; Rockloff, Matthew; Donaldson, Phillip

    2015-01-01

    A diverse class of stimuli, including certain foods, substances, media, and economic behaviours, may be described as ‘reward-oriented’ in that they provide immediate reinforcement with little initial investment. Neurophysiological and personality concepts, including dopaminergic dysfunction, reward sensitivity and rash impulsivity, each predict the existence of a latent behavioural trait that leads to increased consumption of all stimuli in this class. Whilst bivariate relationships (co-morbidities) are often reported in the literature, to our knowledge, a multivariate investigation of this possible trait has not been done. We surveyed 1,194 participants (550 male) on their typical weekly consumption of 11 types of reward-oriented stimuli, including fast food, salt, caffeine, television, gambling products, and illicit drugs. Confirmatory factor analysis was used to compare models in a 3×3 structure, based on the definition of a single latent factor (none, fixed loadings, or estimated loadings), and assumed residual covariance structure (none, a-priori / literature based, or post-hoc / data-driven). The inclusion of a single latent behavioural ‘consumption’ factor significantly improved model fit in all cases. Also confirming theoretical predictions, estimated factor loadings on reward-oriented indicators were uniformly positive, regardless of assumptions regarding residual covariances. Additionally, the latent trait was found to be negatively correlated with the non-reward-oriented indicators of fruit and vegetable consumption. The findings support the notion of a single behavioural trait leading to increased consumption of reward-oriented stimuli across multiple modalities. We discuss implications regarding the concentration of negative lifestyle-related health behaviours. PMID:26551907

  11. Do gamblers eat more salt? Testing a latent trait model of covariance in consumption.

    PubMed

    Goodwin, Belinda C; Browne, Matthew; Rockloff, Matthew; Donaldson, Phillip

    2015-09-01

    A diverse class of stimuli, including certain foods, substances, media, and economic behaviours, may be described as 'reward-oriented' in that they provide immediate reinforcement with little initial investment. Neurophysiological and personality concepts, including dopaminergic dysfunction, reward sensitivity and rash impulsivity, each predict the existence of a latent behavioural trait that leads to increased consumption of all stimuli in this class. Whilst bivariate relationships (co-morbidities) are often reported in the literature, to our knowledge, a multivariate investigation of this possible trait has not been done. We surveyed 1,194 participants (550 male) on their typical weekly consumption of 11 types of reward-oriented stimuli, including fast food, salt, caffeine, television, gambling products, and illicit drugs. Confirmatory factor analysis was used to compare models in a 3×3 structure, based on the definition of a single latent factor (none, fixed loadings, or estimated loadings), and assumed residual covariance structure (none, a-priori / literature based, or post-hoc / data-driven). The inclusion of a single latent behavioural 'consumption' factor significantly improved model fit in all cases. Also confirming theoretical predictions, estimated factor loadings on reward-oriented indicators were uniformly positive, regardless of assumptions regarding residual covariances. Additionally, the latent trait was found to be negatively correlated with the non-reward-oriented indicators of fruit and vegetable consumption. The findings support the notion of a single behavioural trait leading to increased consumption of reward-oriented stimuli across multiple modalities. We discuss implications regarding the concentration of negative lifestyle-related health behaviours.

  12. Measuring psychosocial environments using individual responses: an application of multilevel factor analysis to examining students in schools.

    PubMed

    Dunn, Erin C; Masyn, Katherine E; Jones, Stephanie M; Subramanian, S V; Koenen, Karestan C

    2015-07-01

    Interest in understanding how psychosocial environments shape youth outcomes has grown considerably. School environments are of particular interest to prevention scientists as many prevention interventions are school-based. Therefore, effective conceptualization and operationalization of the school environment is critical. This paper presents an illustration of an emerging analytic method called multilevel factor analysis (MLFA) that provides an alternative strategy to conceptualize, measure, and model environments. MLFA decomposes the total sample variance-covariance matrix for variables measured at the individual level into within-cluster (e.g., student level) and between-cluster (e.g., school level) matrices and simultaneously models potentially distinct latent factor structures at each level. Using data from 79,362 students from 126 schools in the National Longitudinal Study of Adolescent to Adult Health (formerly known as the National Longitudinal Study of Adolescent Health), we use MLFA to show how 20 items capturing student self-reported behaviors and emotions provide information about both students (within level) and their school environment (between level). We identified four latent factors at the within level: (1) school adjustment, (2) externalizing problems, (3) internalizing problems, and (4) self-esteem. Three factors were identified at the between level: (1) collective school adjustment, (2) psychosocial environment, and (3) collective self-esteem. The finding of different and substantively distinct latent factor structures at each level emphasizes the need for prevention theory and practice to separately consider and measure constructs at each level of analysis. The MLFA method can be applied to other nested relationships, such as youth in neighborhoods, and extended to a multilevel structural equation model to better understand associations between environments and individual outcomes and therefore how to best implement preventive interventions.

  13. A Bayesian Model for the Estimation of Latent Interaction and Quadratic Effects When Latent Variables Are Non-Normally Distributed

    ERIC Educational Resources Information Center

    Kelava, Augustin; Nagengast, Benjamin

    2012-01-01

    Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…

  14. An NCME Instructional Module on Latent DIF Analysis Using Mixture Item Response Models

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Suh, Youngsuk; Lee, Woo-yeol

    2016-01-01

    The purpose of this ITEMS module is to provide an introduction to differential item functioning (DIF) analysis using mixture item response models. The mixture item response models for DIF analysis involve comparing item profiles across latent groups, instead of manifest groups. First, an overview of DIF analysis based on latent groups, called…

  15. Latent Transition Analysis of Pre-Service Teachers' Efficacy in Mathematics and Science

    ERIC Educational Resources Information Center

    Ward, Elizabeth Kennedy

    2009-01-01

    This study modeled changes in pre-service teacher efficacy in mathematics and science over the course of the final year of teacher preparation using latent transition analysis (LTA), a longitudinal form of analysis that builds on two modeling traditions (latent class analysis (LCA) and auto-regressive modeling). Data were collected using the…

  16. Electronic effects on melting: Comparison of aluminum cluster anions and cations

    NASA Astrophysics Data System (ADS)

    Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.

    2009-07-01

    Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35-70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered" roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts.

  17. Disgust proneness predicts obsessive-compulsive disorder symptom severity in a clinical sample of youth: Distinctions from negative affect.

    PubMed

    Olatunji, Bunmi O; Ebesutani, Chad; Kim, Jingu; Riemann, Bradley C; Jacobi, David M

    2017-04-15

    Although studies have linked disgust proneness to the etiology and maintenance of obsessive-compulsive disorder (OCD) in adults, there remains a paucity of research examining the specificity of this association among youth. The present study employed structural equation modeling to examine the association between disgust proneness, negative affect, and OCD symptom severity in a clinical sample of youth admitted to a residential treatment facility (N =471). Results indicate that disgust proneness and negative affect latent factors independently predicted an OCD symptom severity latent factor. However, when both variables were modeled as predictors simultaneously, latent disgust proneness remained significantly associated with OCD symptom severity, whereas the association between latent negative affect and OCD symptom severity became nonsignificant. Tests of mediation converged in support of disgust proneness as a significant intervening variable between negative affect and OCD symptom severity. Subsequent analysis showed that the path from disgust proneness to OCD symptom severity in the structural model was significantly stronger among those without a primary diagnosis of OCD compared to those with a primary diagnosis of OCD. Given the cross-sectional design, the causal inferences that can be made are limited. The present study is also limited by the exclusive reliance on self-report measures. Disgust proneness may play a uniquely important role in OCD among youth. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. MULTIVARIATE LINEAR MIXED MODELS FOR MULTIPLE OUTCOMES. (R824757)

    EPA Science Inventory

    We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of ...

  19. Modeling Psychological Attributes in Psychology – An Epistemological Discussion: Network Analysis vs. Latent Variables

    PubMed Central

    Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc

    2017-01-01

    Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780

  20. Invariance of parent ratings of the ADHD symptoms in Australian and Malaysian, and north European Australian and Malay Malaysia children: a mean and covariance structures analysis approach.

    PubMed

    Gomez, Rapson

    2009-03-01

    This study used the mean and covariance structures analysis approach to examine the equality or invariance of ratings of the 18 ADHD symptoms. 783 Australian and 928 Malaysian parents provided ratings for an ADHD rating scale. Invariance was tested across these groups (Comparison 1), and North European Australian (n = 623) and Malay Malaysian (n = 571, Comparison 2) groups. Results indicate support for form and item factor loading invariance; more than half the total number of symptoms showed item intercept invariance, and 14 symptoms showed invariance for error variances. There was invariance for both the factor variances and the covariance, and the latent mean scores for hyperactivity/impulsivity. For inattention latent scores, the Malaysian (Comparison 1) and Malay Malaysian (Comparison 2) groups had higher scores. These results indicate fairly good support for invariance for parent ratings of the ADHD symptoms across the groups compared.

  1. Simulating Expert Clinical Comprehension: Adapting Latent Semantic Analysis to Accurately Extract Clinical Concepts from Psychiatric Narrative

    PubMed Central

    Cohen, Trevor; Blatter, Brett; Patel, Vimla

    2008-01-01

    Cognitive studies reveal that less-than-expert clinicians are less able to recognize meaningful patterns of data in clinical narratives. Accordingly, psychiatric residents early in training fail to attend to information that is relevant to diagnosis and the assessment of dangerousness. This manuscript presents cognitively motivated methodology for the simulation of expert ability to organize relevant findings supporting intermediate diagnostic hypotheses. Latent Semantic Analysis is used to generate a semantic space from which meaningful associations between psychiatric terms are derived. Diagnostically meaningful clusters are modeled as geometric structures within this space and compared to elements of psychiatric narrative text using semantic distance measures. A learning algorithm is defined that alters components of these geometric structures in response to labeled training data. Extraction and classification of relevant text segments is evaluated against expert annotation, with system-rater agreement approximating rater-rater agreement. A range of biomedical informatics applications for these methods are suggested. PMID:18455483

  2. High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics

    PubMed Central

    Carvalho, Carlos M.; Chang, Jeffrey; Lucas, Joseph E.; Nevins, Joseph R.; Wang, Quanli; West, Mike

    2010-01-01

    We describe studies in molecular profiling and biological pathway analysis that use sparse latent factor and regression models for microarray gene expression data. We discuss breast cancer applications and key aspects of the modeling and computational methodology. Our case studies aim to investigate and characterize heterogeneity of structure related to specific oncogenic pathways, as well as links between aggregate patterns in gene expression profiles and clinical biomarkers. Based on the metaphor of statistically derived “factors” as representing biological “subpathway” structure, we explore the decomposition of fitted sparse factor models into pathway subcomponents and investigate how these components overlay multiple aspects of known biological activity. Our methodology is based on sparsity modeling of multivariate regression, ANOVA, and latent factor models, as well as a class of models that combines all components. Hierarchical sparsity priors address questions of dimension reduction and multiple comparisons, as well as scalability of the methodology. The models include practically relevant non-Gaussian/nonparametric components for latent structure, underlying often quite complex non-Gaussianity in multivariate expression patterns. Model search and fitting are addressed through stochastic simulation and evolutionary stochastic search methods that are exemplified in the oncogenic pathway studies. Supplementary supporting material provides more details of the applications, as well as examples of the use of freely available software tools for implementing the methodology. PMID:21218139

  3. Assessing the fit of the Dysphoric Arousal model across two nationally representative epidemiological surveys: The Australian NSMHWB and the United States NESARC.

    PubMed

    Armour, Cherie; Carragher, Natacha; Elhai, Jon D

    2013-01-01

    Since the initial inclusion of PTSD in the DSM nomenclature, PTSD symptomatology has been distributed across three symptom clusters. However, a wealth of empirical research has concluded that PTSD's latent structure is best represented by one of two four-factor models: Numbing or Dysphoria. Recently, a newly proposed five-factor Dysphoric Arousal model, which separates the DSM-IV's Arousal cluster into two factors of Anxious Arousal and Dysphoric Arousal, has gathered support across a variety of trauma samples. To date, the Dysphoric Arousal model has not been assessed using nationally representative epidemiological data. We employed confirmatory factor analysis to examine PTSD's latent structure in two independent population based surveys from American (NESARC) and Australia (NSWHWB). We specified and estimated the Numbing model, the Dysphoria model, and the Dysphoric Arousal model in both samples. Results revealed that the Dysphoric Arousal model provided superior fit to the data compared to the alternative models. In conclusion, these findings suggest that items D1-D3 (sleeping difficulties; irritability; concentration difficulties) represent a separate, fifth factor within PTSD's latent structure using nationally representative epidemiological data in addition to single trauma specific samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Exploration and confirmation of the latent variable structure of the Jefferson scale of empathy

    PubMed Central

    LaNoue, Marianna

    2014-01-01

    Objectives: To reaffirm the underlying components of the JSE by using exploratory factor analysis (EFA), and to confirm its latent variable structure by using confirmatory factor analysis (CFA). Methods Research participants included 2,612 medical students who entered Jefferson Medical College between 2002 and 2012. This sample was divided into two groups: Matriculants between 2002 and 2007 (n=1,380) and between 2008 and 2012 (n=1,232). Data for 2002-2007 matriculants were subjected to EFA (principal component factor extraction), and data for matriculants of 2008-2012 were used for CFA (structural equation modeling, and root mean square error for approximation). Results The EFA resulted in three factors: “perspective-taking,” “compassionate care” and “walking in patient’s shoes” replicating the 3-factor model reported in most of the previous studies. The CFA showed that the 3-factor model was an acceptable fit, thus confirming the latent variable structure emerged in the EFA. Corrected item-total score correlations for the total sample were all positive and statistically significant, ranging from 0.13 to 0.61 with a median of 0.44 (p<0.01). The item discrimination effect size indices (contrasting item mean scores for the top-third versus bottom-third JSE scorers) ranged from 0.50 to 1.4 indicating that the differences in item mean scores between top and bottom scorers on the JSE were of practical importance. Cronbach’s alpha coefficient of the JSE for the total sample was 0.80, ranging from 0.75 to 0.84 for matriculatnts of different years. Conclusions Findings provided further support for underlying constructs of the JSE, adding to its credibility. PMID:25341215

  5. Validation of Diagnostic Measures Based on Latent Class Analysis: A Step Forward in Response Bias Research

    ERIC Educational Resources Information Center

    Thomas, Michael L.; Lanyon, Richard I.; Millsap, Roger E.

    2009-01-01

    The use of criterion group validation is hindered by the difficulty of classifying individuals on latent constructs. Latent class analysis (LCA) is a method that can be used for determining the validity of scales meant to assess latent constructs without such a priori classifications. The authors used this method to examine the ability of the L…

  6. Substance Use, Violence, and Antiretroviral Adherence: A Latent Class Analysis of Women Living with HIV in Canada.

    PubMed

    Carter, Allison; Roth, Eric Abella; Ding, Erin; Milloy, M-J; Kestler, Mary; Jabbari, Shahab; Webster, Kath; de Pokomandy, Alexandra; Loutfy, Mona; Kaida, Angela

    2018-03-01

    We used latent class analysis to identify substance use patterns for 1363 women living with HIV in Canada and assessed associations with socio-economic marginalization, violence, and sub-optimal adherence to combination antiretroviral therapy (cART). A six-class model was identified consisting of: abstainers (26.3%), Tobacco Users (8.81%), Alcohol Users (31.9%), 'Socially Acceptable' Poly-substance Users (13.9%), Illicit Poly-substance Users (9.81%) and Illicit Poly-substance Users of All Types (9.27%). Multinomial logistic regression showed that women experiencing recent violence had significantly higher odds of membership in all substance use latent classes, relative to Abstainers, while those reporting sub-optimal cART adherence had higher odds of being members of the poly-substance use classes only. Factors significantly associated with Illicit Poly-substance Users of All Types were sexual minority status, lower income, and lower resiliency. Findings underline a need for increased social and structural supports for women who use substances to support them in leading safe and healthy lives with HIV.

  7. Latent Class Analysis of Antisocial Behavior: Interaction of Serotonin Transporter Genotype and Maltreatment

    PubMed Central

    Li, James J.

    2010-01-01

    To improve understanding about genetic and environmental influences on antisocial behavior (ASB), we tested the association of the 44-base pair polymorphism of the serotonin transporter gene (5-HTTLPR) and maltreatment using latent class analysis in 2,488 boys and girls from Wave 1 of the National Longitudinal Study of Adolescent Health. In boys, ASB was defined by three classes (Exclusive Covert, Mixed Covert and Overt, and No Problems) whereas in girls, ASB was defined by two classes (Exclusive Covert, No Problems). In boys, 5-HTTLPR and maltreatment were not significantly related to ASB. However, in girls, maltreatment, but not 5-HTTLPR, was significantly associated with ASB. A significant interaction between 5-HTTLPR and maltreatment was also observed, where maltreated girls homozygous for the short allele were 12 times more likely to be classified in the Exclusive Covert group than in the No Problems group. Structural differences in the latent structure of ASB at Wave 2 and Wave 3 prevented repeat LCA modeling. However, using counts of ASB, 5-HTTLPR, maltreatment, and its interaction were unrelated to overt and covert ASB at Wave 2 and only maltreatment was related to covert ASB at Wave 3. We discuss these findings within the context of sex differences in ASB and relevant models of gene-environment interplay across developmental periods. PMID:20405199

  8. LSAT Dimensionality Analysis for the December 1991, June 1992, and October 1992 Administrations. Statistical Report. LSAC Research Report Series.

    ERIC Educational Resources Information Center

    Douglas, Jeff; Kim, Hae-Rim; Roussos, Louis; Stout, William; Zhang, Jinming

    An extensive nonparametric dimensionality analysis of latent structure was conducted on three forms of the Law School Admission Test (LSAT) (December 1991, June 1992, and October 1992) using the DIMTEST model in confirmatory analyses and using DIMTEST, FAC, DETECT, HCA, PROX, and a genetic algorithm in exploratory analyses. Results indicate that…

  9. A simple low cost latent fingerprint sensor based on deflectometry and WFT analysis

    NASA Astrophysics Data System (ADS)

    Dhanotia, Jitendra; Chatterjee, Amit; Bhatia, Vimal; Prakash, Shashi

    2018-02-01

    In criminal investigations, latent fingerprints are one of the most significant forms of evidence and most commonly used forensic investigation tool worldwide. The existing non-contact latent fingerprint detection systems are bulky, expensive and require environment which is shock and vibration resistant, thereby limiting their usability outside the laboratory. In this article, a compact, full field, low cost technique for profiling of fingerprints using deflectometry is proposed. Using inexpensive mobile phone screen based structured illumination, and windowed Fourier transform (WFT) based phase retrieval mechanism, the 2D and 3D phase plots reconstruct the profile information of the fingerprint. The phase information is also used to confirm a match between two fingerprints in real time. Since the proposed technique is non-interferometric, the measurements are least affected by environmental perturbations. Using the proposed technique, a portable sensor capable of field deployment has been realized.

  10. Lay Americans' views of why scientists disagree with each other.

    PubMed

    Johnson, Branden B; Dieckmann, Nathan F

    2017-10-01

    A survey experiment assessed response to five explanations of scientific disputes: problem complexity, self-interest, values, competence, and process choices (e.g. theories and methods). A US lay sample ( n = 453) did not distinguish interests from values, nor competence from process, as explanations of disputes. Process/competence was rated most likely and interests/values least; all, on average, were deemed likely to explain scientific disputes. Latent class analysis revealed distinct subgroups varying in their explanation preferences, with a more complex latent class structure for participants who had heard of scientific disputes in the past. Scientific positivism and judgments of science's credibility were the strongest predictors of latent class membership, controlling for scientific reasoning, political ideology, confidence in choice, scenario, education, gender, age, and ethnicity. The lack of distinction observed overall between different explanations, as well as within classes, raises challenges for further research on explanations of scientific disputes people find credible and why.

  11. Latent Heating Structures Derived from TRMM

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R.; Hou, A.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.; Olson, W.; Satoh, S.

    2004-01-01

    Rainfall is the fundamental variable within the Earth's hydrological cycle because it is both the main forcing term leading to variations in continental and oceanic surface water budgets. The vertical distribution of latent heat release, which is accompanied with rain, modulates large-scale meridional and zonal circulations within the tropics as well as modifying the energetic efficiency of mid-latitude weather systems. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water.This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission 0. The TRMM observatory, whose development was a joint US-Japan space endeavor, was launched in November 1997. TRMM measurements provide an accurate account of rainfall over the global tropics, information which can be .used to estimate the four-dimensional structure of latent heating across the entire tropical and sub-tropical regions. Various algorithm methodologies for estimating latent heating based on rain rate measurements from TRMM observations are described. The strengths and weaknesses of these algorithms, as well as the latent heating products generated by these algorithms, are also discussed along with validation analyses of the products. The investigation paper provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, and concludes with remarks designed to stimulate further research on latent heating retrieval

  12. Data on the interexaminer variation of minutia markup on latent fingerprints.

    PubMed

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2016-09-01

    The data in this article supports the research paper entitled "Interexaminer variation of minutia markup on latent fingerprints" [1]. The data in this article describes the variability in minutia markup during both analysis of the latents and comparison between latents and exemplars. The data was collected in the "White Box Latent Print Examiner Study," in which each of 170 volunteer latent print examiners provided detailed markup documenting their examinations of latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. Each examiner examined 22 latent-exemplar pairs; an average of 12 examiners marked each latent.

  13. Mixture Factor Analysis for Approximating a Nonnormally Distributed Continuous Latent Factor with Continuous and Dichotomous Observed Variables

    ERIC Educational Resources Information Center

    Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo

    2012-01-01

    Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…

  14. Prevalence Estimation and Validation of New Instruments in Psychiatric Research: An Application of Latent Class Analysis and Sensitivity Analysis

    ERIC Educational Resources Information Center

    Pence, Brian Wells; Miller, William C.; Gaynes, Bradley N.

    2009-01-01

    Prevalence and validation studies rely on imperfect reference standard (RS) diagnostic instruments that can bias prevalence and test characteristic estimates. The authors illustrate 2 methods to account for RS misclassification. Latent class analysis (LCA) combines information from multiple imperfect measures of an unmeasurable latent condition to…

  15. Clinical Insight Into Latent Variables of Psychiatric Questionnaires for Mood Symptom Self-Assessment

    PubMed Central

    Saunders, Kate; Bilderbeck, Amy; Palmius, Niclas; Goodwin, Guy; De Vos, Maarten

    2017-01-01

    Background We recently described a new questionnaire to monitor mood called mood zoom (MZ). MZ comprises 6 items assessing mood symptoms on a 7-point Likert scale; we had previously used standard principal component analysis (PCA) to tentatively understand its properties, but the presence of multiple nonzero loadings obstructed the interpretation of its latent variables. Objective The aim of this study was to rigorously investigate the internal properties and latent variables of MZ using an algorithmic approach which may lead to more interpretable results than PCA. Additionally, we explored three other widely used psychiatric questionnaires to investigate latent variable structure similarities with MZ: (1) Altman self-rating mania scale (ASRM), assessing mania; (2) quick inventory of depressive symptomatology (QIDS) self-report, assessing depression; and (3) generalized anxiety disorder (7-item) (GAD-7), assessing anxiety. Methods We elicited responses from 131 participants: 48 bipolar disorder (BD), 32 borderline personality disorder (BPD), and 51 healthy controls (HC), collected longitudinally (median [interquartile range, IQR]: 363 [276] days). Participants were requested to complete ASRM, QIDS, and GAD-7 weekly (all 3 questionnaires were completed on the Web) and MZ daily (using a custom-based smartphone app). We applied sparse PCA (SPCA) to determine the latent variables for the four questionnaires, where a small subset of the original items contributes toward each latent variable. Results We found that MZ had great consistency across the three cohorts studied. Three main principal components were derived using SPCA, which can be tentatively interpreted as (1) anxiety and sadness, (2) positive affect, and (3) irritability. The MZ principal component comprising anxiety and sadness explains most of the variance in BD and BPD, whereas the positive affect of MZ explains most of the variance in HC. The latent variables in ASRM were identical for the patient groups but different for HC; nevertheless, the latent variables shared common items across both the patient group and HC. On the contrary, QIDS had overall very different principal components across groups; sleep was a key element in HC and BD but was absent in BPD. In GAD-7, nervousness was the principal component explaining most of the variance in BD and HC. Conclusions This study has important implications for understanding self-reported mood. MZ has a consistent, intuitively interpretable latent variable structure and hence may be a good instrument for generic mood assessment. Irritability appears to be the key distinguishing latent variable between BD and BPD and might be useful for differential diagnosis. Anxiety and sadness are closely interlinked, a finding that might inform treatment effects to jointly address these covarying symptoms. Anxiety and nervousness appear to be amongst the cardinal latent variable symptoms in BD and merit close attention in clinical practice. PMID:28546141

  16. Investigating the Latent Structure of the Teacher Efficacy Scale

    ERIC Educational Resources Information Center

    Wagler, Amy; Wagler, Ron

    2013-01-01

    This article reevaluates the latent structure of the Teacher Efficacy Scale using confirmatory factor analyses (CFAs) on a sample of preservice teachers from a public university in the U.S. Southwest. The fit of a proposed two-factor CFA model with an error correlation structure consistent with internal/ external locus of control is compared to…

  17. A Systematic Approach for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling

    ERIC Educational Resources Information Center

    Ding, Cherng G.; Jane, Ten-Der; Wu, Chiu-Hui; Lin, Hang-Rung; Shen, Chih-Kang

    2017-01-01

    It has been pointed out in the literature that misspecification of the level-1 error covariance structure in latent growth modeling (LGM) has detrimental impacts on the inferences about growth parameters. Since correct covariance structure is difficult to specify by theory, the identification needs to rely on a specification search, which,…

  18. Latent Constructs in Psychosocial Factors Associated with Cardiovascular Disease: An Examination by Race and Sex

    PubMed Central

    Clark, Cari Jo; Henderson, Kimberly M.; de Leon, Carlos F. Mendes; Guo, Hongfei; Lunos, Scott; Evans, Denis A.; Everson-Rose, Susan A.

    2012-01-01

    This study examines race and sex differences in the latent structure of 10 psychosocial measures and the association of identified factors with self-reported history of coronary heart disease (CHD). Participants were 4,128 older adults from the Chicago Health and Aging Project. Exploratory factor analysis (EFA) with oblique geomin rotation was used to identify latent factors among the psychosocial measures. Multi-group comparisons of the EFA model were conducted using exploratory structural equation modeling to test for measurement invariance across race and sex subgroups. A factor-based scale score was created for invariant factor(s). Logistic regression was used to test the relationship between the factor score(s) and CHD adjusting for relevant confounders. Effect modification of the relationship by race–sex subgroup was tested. A two-factor model fit the data well (comparative fit index = 0.986; Tucker–Lewis index = 0.969; root mean square error of approximation = 0.039). Depressive symptoms, neuroticism, perceived stress, and low life satisfaction loaded on Factor I. Social engagement, spirituality, social networks, and extraversion loaded on Factor II. Only Factor I, re-named distress, showed measurement invariance across subgroups. Distress was associated with a 37% increased odds of self-reported CHD (odds ratio: 1.37; 95% confidence intervals: 1.25, 1.50; p-value < 0.0001). This effect did not differ by race or sex (interaction p-value = 0.43). This study identified two underlying latent constructs among a large range of psychosocial variables; only one, distress, was validly measured across race–sex subgroups. This construct was robustly related to prevalent CHD, highlighting the potential importance of latent constructs as predictors of cardiovascular disease. PMID:22347196

  19. Multilevel Higher-Order Item Response Theory Models

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung

    2014-01-01

    In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…

  20. Confidence Intervals for a Semiparametric Approach to Modeling Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Losardo, Diane; Bauer, Daniel J.

    2011-01-01

    Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…

  1. Estimating Latent Variable Interactions with Nonnormal Observed Data: A Comparison of Four Approaches

    ERIC Educational Resources Information Center

    Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.

    2012-01-01

    A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…

  2. The Impact of Noninvariant Intercepts in Latent Means Models

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.

    2013-01-01

    Latent means methods such as multiple-indicator multiple-cause (MIMIC) and structured means modeling (SMM) allow researchers to determine whether or not a significant difference exists between groups' factor means. Strong invariance is typically recommended when interpreting latent mean differences. The extent of the impact of noninvariant…

  3. Dynamic Latent Trait Models with Mixed Hidden Markov Structure for Mixed Longitudinal Outcomes.

    PubMed

    Zhang, Yue; Berhane, Kiros

    2016-01-01

    We propose a general Bayesian joint modeling approach to model mixed longitudinal outcomes from the exponential family for taking into account any differential misclassification that may exist among categorical outcomes. Under this framework, outcomes observed without measurement error are related to latent trait variables through generalized linear mixed effect models. The misclassified outcomes are related to the latent class variables, which represent unobserved real states, using mixed hidden Markov models (MHMM). In addition to enabling the estimation of parameters in prevalence, transition and misclassification probabilities, MHMMs capture cluster level heterogeneity. A transition modeling structure allows the latent trait and latent class variables to depend on observed predictors at the same time period and also on latent trait and latent class variables at previous time periods for each individual. Simulation studies are conducted to make comparisons with traditional models in order to illustrate the gains from the proposed approach. The new approach is applied to data from the Southern California Children Health Study (CHS) to jointly model questionnaire based asthma state and multiple lung function measurements in order to gain better insight about the underlying biological mechanism that governs the inter-relationship between asthma state and lung function development.

  4. Statistical Methods of Latent Structure Discovery in Child-Directed Speech

    ERIC Educational Resources Information Center

    Panteleyeva, Natalya B.

    2010-01-01

    This dissertation investigates how distributional information in the speech stream can assist infants in the initial stages of acquisition of their native language phonology. An exploratory statistical analysis derives this information from the adult speech data in the corpus of conversations between adults and young children in Russian. Because…

  5. Does Teachers' Pedagogical Content Knowledge Affect Their Fluency Instruction?

    ERIC Educational Resources Information Center

    Van den Hurk, H. T. G.; Houtveen, A. A. M.; Van de Grift, W. J. C. M.

    2017-01-01

    The relation is studied between teachers' pedagogical content knowledge of reading and the quality of their subsequent classroom behaviour in teaching fluent reading. A confirmatory factor analysis model with two latent variables is tested and shows adequate goodness-of-fit indices. Contrary to our expectations, the results of structural equation…

  6. The Latent Structure of Child Depression: A Taxometric Analysis

    ERIC Educational Resources Information Center

    Richey, J. Anthony; Schmidt, Norman B.; Lonigan, Christopher J.; Phillips, Beth M.; Catanzaro, Salvatore J.; Laurent, Jeff; Gerhardstein, Rebecca R.; Kotov, Roman

    2009-01-01

    Background: The current study examined the categorical versus continuous nature of child and adolescent depression among three samples of children and adolescents ranging from 5 to 19 years. Methods: Depression was measured using the Children's Depression Inventory (CDI). Indicators derived from the CDI were based on factor analytic research on…

  7. Latent Factor Structure of the Das-Naglieri Cognitive Assessment System: A Confirmatory Factor Analysis in a Chinese Setting

    ERIC Educational Resources Information Center

    Deng, Ci-ping; Liu, Ming; Wei, Wei; Chan, Raymond C. K.; Das, J. P.

    2011-01-01

    This study aims to measure the psychometric properties of the Das-Naglieri Cognitive Assessment System (D-N CAS) and to determine its clinical utility in a Chinese context. Confirmatory factor analysis (CFA) was conducted to examine the construct validity of the Chinese version of the D-N CAS among a group of 567, normally developed children.…

  8. Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.

    2003-01-01

    The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…

  9. A Model of Young Children's Social Cognition: Linkages Between Latent Structures and Discrete Processing

    ERIC Educational Resources Information Center

    Meece, Darrell

    1999-01-01

    This study proposes a model of associations between young children's social cognition and their social behavior with peers. In this model, two latent structures -children's representations of peer relationships and emotion regulation -- predict children's competent, prosocial, withdrawn, and aggressive behavior. Moreover, the model proposes that…

  10. The Latent Structure of Secure Base Script Knowledge

    ERIC Educational Resources Information Center

    Waters, Theodore E. A.; Fraley, R. Chris; Groh, Ashley M.; Steele, Ryan D.; Vaughn, Brian E.; Bost, Kelly K.; Veríssimo, Manuela; Coppola, Gabrielle; Roisman, Glenn I.

    2015-01-01

    There is increasing evidence that attachment representations abstracted from childhood experiences with primary caregivers are organized as a cognitive script describing secure base use and support (i.e., the "secure base script"). To date, however, the latent structure of secure base script knowledge has gone unexamined--this despite…

  11. Nonlinear Structured Growth Mixture Models in M"plus" and OpenMx

    ERIC Educational Resources Information Center

    Grimm, Kevin J.; Ram, Nilam; Estabrook, Ryne

    2010-01-01

    Growth mixture models (GMMs; B. O. Muthen & Muthen, 2000; B. O. Muthen & Shedden, 1999) are a combination of latent curve models (LCMs) and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. GMMs are often fit with linear, latent basis, multiphase, or polynomial change models…

  12. Software for the Application of Discrete Latent Structure Models to Item Response Data.

    ERIC Educational Resources Information Center

    Haertel, Edward H.

    These FORTRAN programs and MATHEMATICA routines were developed in the course of a research project titled "Achievement and Assessment in School Science: Modeling and Mapping Ability and Performance." Their use is described in other publications from that project, including "Latent Traits or Latent States? The Role of Discrete Models…

  13. Higher-Order Item Response Models for Hierarchical Latent Traits

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming

    2013-01-01

    Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…

  14. Comparing the Performance of Improved Classify-Analyze Approaches For Distal Outcomes in Latent Profile Analysis

    PubMed Central

    Dziak, John J.; Bray, Bethany C.; Zhang, Jieting; Zhang, Minqiang; Lanza, Stephanie T.

    2016-01-01

    Several approaches are available for estimating the relationship of latent class membership to distal outcomes in latent profile analysis (LPA). A three-step approach is commonly used, but has problems with estimation bias and confidence interval coverage. Proposed improvements include the correction method of Bolck, Croon, and Hagenaars (BCH; 2004), Vermunt’s (2010) maximum likelihood (ML) approach, and the inclusive three-step approach of Bray, Lanza, & Tan (2015). These methods have been studied in the related case of latent class analysis (LCA) with categorical indicators, but not as well studied for LPA with continuous indicators. We investigated the performance of these approaches in LPA with normally distributed indicators, under different conditions of distal outcome distribution, class measurement quality, relative latent class size, and strength of association between latent class and the distal outcome. The modified BCH implemented in Latent GOLD had excellent performance. The maximum likelihood and inclusive approaches were not robust to violations of distributional assumptions. These findings broadly agree with and extend the results presented by Bakk and Vermunt (2016) in the context of LCA with categorical indicators. PMID:28630602

  15. Uncovering a latent multinomial: Analysis of mark-recapture data with misidentification

    USGS Publications Warehouse

    Link, W.A.; Yoshizaki, J.; Bailey, L.L.; Pollock, K.H.

    2010-01-01

    Natural tags based on DNA fingerprints or natural features of animals are now becoming very widely used in wildlife population biology. However, classic capture-recapture models do not allow for misidentification of animals which is a potentially very serious problem with natural tags. Statistical analysis of misidentification processes is extremely difficult using traditional likelihood methods but is easily handled using Bayesian methods. We present a general framework for Bayesian analysis of categorical data arising from a latent multinomial distribution. Although our work is motivated by a specific model for misidentification in closed population capture-recapture analyses, with crucial assumptions which may not always be appropriate, the methods we develop extend naturally to a variety of other models with similar structure. Suppose that observed frequencies f are a known linear transformation f = A???x of a latent multinomial variable x with cell probability vector ?? = ??(??). Given that full conditional distributions [?? | x] can be sampled, implementation of Gibbs sampling requires only that we can sample from the full conditional distribution [x | f, ??], which is made possible by knowledge of the null space of A???. We illustrate the approach using two data sets with individual misidentification, one simulated, the other summarizing recapture data for salamanders based on natural marks. ?? 2009, The International Biometric Society.

  16. Uncovering a Latent Multinomial: Analysis of Mark-Recapture Data with Misidentification

    USGS Publications Warehouse

    Link, W.A.; Yoshizaki, J.; Bailey, L.L.; Pollock, K.H.

    2009-01-01

    Natural tags based on DNA fingerprints or natural features of animals are now becoming very widely used in wildlife population biology. However, classic capture-recapture models do not allow for misidentification of animals which is a potentially very serious problem with natural tags. Statistical analysis of misidentification processes is extremely difficult using traditional likelihood methods but is easily handled using Bayesian methods. We present a general framework for Bayesian analysis of categorical data arising from a latent multinomial distribution. Although our work is motivated by a specific model for misidentification in closed population capture-recapture analyses, with crucial assumptions which may not always be appropriate, the methods we develop extend naturally to a variety of other models with similar structure. Suppose that observed frequencies f are a known linear transformation f=A'x of a latent multinomial variable x with cell probability vector pi= pi(theta). Given that full conditional distributions [theta | x] can be sampled, implementation of Gibbs sampling requires only that we can sample from the full conditional distribution [x | f, theta], which is made possible by knowledge of the null space of A'. We illustrate the approach using two data sets with individual misidentification, one simulated, the other summarizing recapture data for salamanders based on natural marks.

  17. Aggressiveness as a latent personality trait of domestic dogs: Testing local independence and measurement invariance.

    PubMed

    Goold, Conor; Newberry, Ruth C

    2017-01-01

    Studies of animal personality attempt to uncover underlying or "latent" personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4-10 months, 10 months-3 years, 3-6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate "aggressive personality" trait attributions can be costly to dogs, recipients of aggression and society in general.

  18. Introduction to Latent Class Analysis with Applications

    ERIC Educational Resources Information Center

    Porcu, Mariano; Giambona, Francesca

    2017-01-01

    Latent class analysis (LCA) is a statistical method used to group individuals (cases, units) into classes (categories) of an unobserved (latent) variable on the basis of the responses made on a set of nominal, ordinal, or continuous observed variables. In this article, we introduce LCA in order to demonstrate its usefulness to early adolescence…

  19. Friendship Group Composition and Juvenile Institutional Misconduct.

    PubMed

    Reid, Shannon E

    2017-02-01

    The present study examines both the patterns of friendship networks and how these network characteristics relate to the risk factors of institutional misconduct for incarcerated youth. Using friendship networks collected from males incarcerated with California's Division of Juvenile Justice (DJJ), latent profile analysis was utilized to create homogeneous groups of friendship patterns based on alter attributes and network structure. The incarcerated youth provided 144 egocentric networks reporting 558 social network relationships. Latent profile analysis identified three network profiles: expected group (67%), new breed group (20%), and model citizen group (13%). The three network profiles were integrated into a multiple group analysis framework to examine the relative influence of individual-level risk factors on their rate of institutional misconduct. The analysis finds variation in predictors of institutional misconduct across profile types. These findings suggest that the close friendships of incarcerated youth are patterned across the individual characteristics of the youth's friends and that the friendship network can act as a moderator for individual risk factors for institutional misconduct.

  20. Principal elementary mode analysis (PEMA).

    PubMed

    Folch-Fortuny, Abel; Marques, Rodolfo; Isidro, Inês A; Oliveira, Rui; Ferrer, Alberto

    2016-03-01

    Principal component analysis (PCA) has been widely applied in fluxomics to compress data into a few latent structures in order to simplify the identification of metabolic patterns. These latent structures lack a direct biological interpretation due to the intrinsic constraints associated with a PCA model. Here we introduce a new method that significantly improves the interpretability of the principal components with a direct link to metabolic pathways. This method, called principal elementary mode analysis (PEMA), establishes a bridge between a PCA-like model, aimed at explaining the maximum variance in flux data, and the set of elementary modes (EMs) of a metabolic network. It provides an easy way to identify metabolic patterns in large fluxomics datasets in terms of the simplest pathways of the organism metabolism. The results using a real metabolic model of Escherichia coli show the ability of PEMA to identify the EMs that generated the different simulated flux distributions. Actual flux data of E. coli and Pichia pastoris cultures confirm the results observed in the simulated study, providing a biologically meaningful model to explain flux data of both organisms in terms of the EM activation. The PEMA toolbox is freely available for non-commercial purposes on http://mseg.webs.upv.es.

  1. Paths to tobacco abstinence: A repeated-measures latent class analysis.

    PubMed

    McCarthy, Danielle E; Ebssa, Lemma; Witkiewitz, Katie; Shiffman, Saul

    2015-08-01

    Knowledge of smoking change processes may be enhanced by identifying pathways to stable abstinence. We sought to identify latent classes of smokers based on their day-to-day smoking status in the first weeks of a cessation attempt. We examined treatment effects on class membership and compared classes on baseline individual differences and 6-month abstinence rates. In this secondary analysis of a double-blind randomized placebo-controlled clinical trial (N = 1,433) of 5 smoking cessation pharmacotherapies (nicotine patch, nicotine lozenge, bupropion SR, patch and lozenge, or bupropion SR and lozenge), we conducted repeated-measures latent class analysis of daily smoking status (any smoking vs. none) for the first 27 days of a quit attempt. Treatment and covariate relations with latent class membership were examined. Distal outcome analysis compared confirmed 6-month abstinence rates among the latent classes. A 5-class solution was selected. Three-quarters of smokers were in stable smoking or abstinent classes, but 25% were in classes with unstable abstinence probabilities over time. Active treatment (compared to placebo), and particularly the patch and lozenge combination, promoted early quitting. Latent classes differed in 6-month abstinence rates and on several baseline variables, including nicotine dependence, quitting history, self-efficacy, sleep disturbance, and minority status. Repeated-measures latent class analysis identified latent classes of smoking change patterns affected by treatment, related to known risk factors, and predictive of distal outcomes. Tracking behavior early in a change attempt may identify prognostic patterns of change and facilitate adaptive treatment planning. (c) 2015 APA, all rights reserved).

  2. Comparing Factor, Class, and Mixture Models of Cannabis Initiation and DSM Cannabis Use Disorder Criteria, Including Craving, in the Brisbane Longitudinal Twin Study

    PubMed Central

    Kubarych, Thomas S.; Kendler, Kenneth S.; Aggen, Steven H.; Estabrook, Ryne; Edwards, Alexis C.; Clark, Shaunna L.; Martin, Nicholas G.; Hickie, Ian B.; Neale, Michael C.; Gillespie, Nathan A.

    2014-01-01

    Accumulating evidence suggests that the Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnostic criteria for cannabis abuse and dependence are best represented by a single underlying factor. However, it remains possible that models with additional factors, or latent class models or hybrid models, may better explain the data. Using structured interviews, 626 adult male and female twins provided complete data on symptoms of cannabis abuse and dependence, plus a craving criterion. We compared latent factor analysis, latent class analysis, and factor mixture modeling using normal theory marginal maximum likelihood for ordinal data. Our aim was to derive a parsimonious, best-fitting cannabis use disorder (CUD) phenotype based on DSM-IV criteria and determine whether DSM-5 craving loads onto a general factor. When compared with latent class and mixture models, factor models provided a better fit to the data. When conditioned on initiation and cannabis use, the association between criteria for abuse, dependence, withdrawal, and craving were best explained by two correlated latent factors for males and females: a general risk factor to CUD and a factor capturing the symptoms of social and occupational impairment as a consequence of frequent use. Secondary analyses revealed a modest increase in the prevalence of DSM-5 CUD compared with DSM-IV cannabis abuse or dependence. It is concluded that, in addition to a general factor with loadings on cannabis use and symptoms of abuse, dependence, withdrawal, and craving, a second clinically relevant factor defined by features of social and occupational impairment was also found for frequent cannabis use. PMID:24588857

  3. Testing for measurement invariance and latent mean differences across methods: interesting incremental information from multitrait-multimethod studies

    PubMed Central

    Geiser, Christian; Burns, G. Leonard; Servera, Mateu

    2014-01-01

    Models of confirmatory factor analysis (CFA) are frequently applied to examine the convergent validity of scores obtained from multiple raters or methods in so-called multitrait-multimethod (MTMM) investigations. We show that interesting incremental information about method effects can be gained from including mean structures and tests of MI across methods in MTMM models. We present a modeling framework for testing MI in the first step of a CFA-MTMM analysis. We also discuss the relevance of MI in the context of four more complex CFA-MTMM models with method factors. We focus on three recently developed multiple-indicator CFA-MTMM models for structurally different methods [the correlated traits-correlated (methods – 1), latent difference, and latent means models; Geiser et al., 2014a; Pohl and Steyer, 2010; Pohl et al., 2008] and one model for interchangeable methods (Eid et al., 2008). We demonstrate that some of these models require or imply MI by definition for a proper interpretation of trait or method factors, whereas others do not, and explain why MI may or may not be required in each model. We show that in the model for interchangeable methods, testing for MI is critical for determining whether methods can truly be seen as interchangeable. We illustrate the theoretical issues in an empirical application to an MTMM study of attention deficit and hyperactivity disorder (ADHD) with mother, father, and teacher ratings as methods. PMID:25400603

  4. Thermal impact of magmatism in subduction zones

    NASA Astrophysics Data System (ADS)

    Rees Jones, David W.; Katz, Richard F.; Tian, Meng; Rudge, John F.

    2018-01-01

    Magmatism in subduction zones builds continental crust and causes most of Earth's subaerial volcanism. The production rate and composition of magmas are controlled by the thermal structure of subduction zones. A range of geochemical and heat flow evidence has recently converged to indicate that subduction zones are hotter at lithospheric depths beneath the arc than predicted by canonical thermomechanical models, which neglect magmatism. We show that this discrepancy can be resolved by consideration of the heat transported by magma. In our one- and two-dimensional numerical models and scaling analysis, magmatic transport of sensible and latent heat locally alters the thermal structure of canonical models by ∼300 K, increasing predicted surface heat flow and mid-lithospheric temperatures to observed values. We find the advection of sensible heat to be larger than the deposition of latent heat. Based on these results we conclude that thermal transport by magma migration affects the chemistry and the location of arc volcanoes.

  5. Assessing the heterogeneity of aggressive behavior traits: exploratory and confirmatory analyses of the reactive and instrumental aggression Personality Assessment Inventory (PAI) scales.

    PubMed

    Antonius, Daniel; Sinclair, Samuel Justin; Shiva, Andrew A; Messinger, Julie W; Maile, Jordan; Siefert, Caleb J; Belfi, Brian; Malaspina, Dolores; Blais, Mark A

    2013-01-01

    The heterogeneity of violent behavior is often overlooked in risk assessment despite its importance in the management and treatment of psychiatric and forensic patients. In this study, items from the Personality Assessment Inventory (PAI) were first evaluated and rated by experts in terms of how well they assessed personality features associated with reactive and instrumental aggression. Exploratory principal component analyses (PCA) were then conducted on select items using a sample of psychiatric and forensic inpatients (n = 479) to examine the latent structure and construct validity of these reactive and instrumental aggression factors. Finally, a confirmatory factor analysis (CFA) was conducted on a separate sample of psychiatric inpatients (n = 503) to evaluate whether these factors yielded acceptable model fit. Overall, the exploratory and confirmatory analyses supported the existence of two latent PAI factor structures, which delineate personality traits related to reactive and instrumental aggression.

  6. Bayesian Adaptive Lasso for Ordinal Regression with Latent Variables

    ERIC Educational Resources Information Center

    Feng, Xiang-Nan; Wu, Hao-Tian; Song, Xin-Yuan

    2017-01-01

    We consider an ordinal regression model with latent variables to investigate the effects of observable and latent explanatory variables on the ordinal responses of interest. Each latent variable is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a Bayesian adaptive lasso procedure to conduct…

  7. A Critical Comparison of Psychometric Models for Measuring Achievement. Methodology Project.

    ERIC Educational Resources Information Center

    Choppin, Bruce; And Others

    A detailed description of five latent structure models of achievement measurement is presented. The first project paper, by David L. McArthur, analyzes the history of mental testing to show how conventional item analysis procedures were developed, and how dissatisfaction with them has led to fragmentation. The range of distinct conceptual and…

  8. School Climate: The Controllable and the Uncontrollable

    ERIC Educational Resources Information Center

    Sulak, Tracey N.

    2018-01-01

    A positive school climate impacts students by promoting positive relations among students, staff and faculty of the school. The current study used latent class analysis and multinomial regression with R3STEP to analyse patterns of negative behaviours in schools and test the association of these patterns with structural variables like school size,…

  9. Bayesian Finite Mixtures for Nonlinear Modeling of Educational Data.

    ERIC Educational Resources Information Center

    Tirri, Henry; And Others

    A Bayesian approach for finding latent classes in data is discussed. The approach uses finite mixture models to describe the underlying structure in the data and demonstrate that the possibility of using full joint probability models raises interesting new prospects for exploratory data analysis. The concepts and methods discussed are illustrated…

  10. Incorporating Measurement Nonequivalence in a Cross-Study Latent Growth Curve Analysis

    ERIC Educational Resources Information Center

    Flora, David B.; Curran, Patrick J.; Hussong, Andrea M.; Edwards, Michael C.

    2008-01-01

    A large literature emphasizes the importance of testing for measurement equivalence in scales that may be used as observed variables in structural equation modeling applications. When the same construct is measured across more than one developmental period, as in a longitudinal study, it can be especially critical to establish measurement…

  11. Mind Wandering and Online Learning: A Latent Variable Analysis

    ERIC Educational Resources Information Center

    Hollis, R. Benjamin

    2013-01-01

    Thoughts drift in everyday life and in the classroom. The goal of this study was to investigate how often students reported off-task thinking while watching online lectures. These findings were related to working memory capacity, topic interest, and achievement goal orientations. Structural equation modeling was used to evaluate how all of these…

  12. Unconstrained Structural Equation Models of Latent Interactions: Contrasting Residual- and Mean-Centered Approaches

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Wen, Zhonglin; Hau, Kit-Tai; Little, Todd D.; Bovaird, James A.; Widaman, Keith F.

    2007-01-01

    Little, Bovaird and Widaman (2006) proposed an unconstrained approach with residual centering for estimating latent interaction effects as an alternative to the mean-centered approach proposed by Marsh, Wen, and Hau (2004, 2006). Little et al. also differed from Marsh et al. in the number of indicators used to infer the latent interaction factor…

  13. A Taxometric Study of the Latent Structure of Disgust Sensitivity: Converging Evidence for Dimensionality

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Broman-Fulks, Joshua J.

    2007-01-01

    Disgust sensitivity has recently been implicated as a specific vulnerability factor for several anxiety-related disorders. However, it is not clear whether disgust sensitivity is a dimensional or categorical phenomenon. The present study examined the latent structure of disgust by applying three taxometric procedures (maximum eigenvalue, mean…

  14. Some Factor Analytic Approximations to Latent Class Structure.

    ERIC Educational Resources Information Center

    Dziuban, Charles D.; Denton, William T.

    Three procedures, alpha, image, and uniqueness rescaling, were applied to a joint occurrence probability matrix. That matrix was the basis of a well-known latent class structure. The values of the recurring subscript elements were varied as follows: Case 1 - The known elements were input; Case 2 - The upper bounds to the recurring subscript…

  15. The Latent Structure of Psychopathy in Youth: A Taxometric Investigation

    ERIC Educational Resources Information Center

    Vasey, Michael W.; Kotov, Roman; Frick, Paul J.; Loney, Bryan R.

    2005-01-01

    Using taxometric procedures, the latent structure of psychopathy was investigated in two studies of children and adolescents. Prior studies have identified a taxon (i.e., a natural category) associated with antisocial behavior in adults as well as children and adolescents. However, features of this taxon suggest that it is not psychopathy but…

  16. Heterogeneity in the Latent Structure of PTSD Symptoms among Canadian Veterans

    ERIC Educational Resources Information Center

    Naifeh, James A.; Richardson, J. Don; Del Ben, Kevin S.; Elhai, Jon D.

    2010-01-01

    The current study used factor mixture modeling to identify heterogeneity (i.e., latent classes) in 2 well-supported models of posttraumatic stress disorder's (PTSD) factor structure. Data were analyzed from a clinical sample of 405 Canadian veterans evaluated for PTSD. Results were consistent with our hypotheses. Each PTSD factor model was best…

  17. Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein

    PubMed Central

    1995-01-01

    The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation. PMID:7593177

  18. Evaluating Measurement of Dynamic Constructs: Defining a Measurement Model of Derivatives

    PubMed Central

    Estabrook, Ryne

    2015-01-01

    While measurement evaluation has been embraced as an important step in psychological research, evaluating measurement structures with longitudinal data is fraught with limitations. This paper defines and tests a measurement model of derivatives (MMOD), which is designed to assess the measurement structure of latent constructs both for analyses of between-person differences and for the analysis of change. Simulation results indicate that MMOD outperforms existing models for multivariate analysis and provides equivalent fit to data generation models. Additional simulations show MMOD capable of detecting differences in between-person and within-person factor structures. Model features, applications and future directions are discussed. PMID:24364383

  19. A Latent Transition Analysis Model for Assessing Change in Cognitive Skills

    ERIC Educational Resources Information Center

    Li, Feiming; Cohen, Allan; Bottge, Brian; Templin, Jonathan

    2016-01-01

    Latent transition analysis (LTA) was initially developed to provide a means of measuring change in dynamic latent variables. In this article, we illustrate the use of a cognitive diagnostic model, the DINA model, as the measurement model in a LTA, thereby demonstrating a means of analyzing change in cognitive skills over time. An example is…

  20. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. Additional information is included in the original extended abstract.

  1. Building Coherent Validation Arguments for the Measurement of Latent Constructs with Unified Statistical Frameworks

    ERIC Educational Resources Information Center

    Rupp, Andre A.

    2012-01-01

    In the focus article of this issue, von Davier, Naemi, and Roberts essentially coupled: (1) a short methodological review of structural similarities of latent variable models with discrete and continuous latent variables; and (2) 2 short empirical case studies that show how these models can be applied to real, rather than simulated, large-scale…

  2. The Longitudinal Structure of General and Specific Anxiety Dimensions in Children: Testing a Latent Trait-State-Occasion Model

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Cole, David A.

    2009-01-01

    In an 8-wave, 4-year longitudinal study, 787 children (Grades 3-6) completed the Revised Children's Manifest Anxiety Scale (C. R. Reynolds & B. O. Richmond, 1985), a measure of the Physiological Reactivity, Worry-Oversensitivity, and Social Alienation dimensions of anxiety. A latent variable (trait-state-occasion) model and a latent growth curve…

  3. Sex Differences in Latent Cognitive Abilities Ages 6 to 59: Evidence from the Woodcock-Johnson III Tests of Cognitive Abilities

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; Reynolds, Matthew R.; Patel, Puja G.; Ridley, Kristen P.

    2008-01-01

    Sex differences in the latent general and broad cognitive abilities underlying the Woodcock-Johnson Tests of Cognitive Abilities were investigated for children, youth, and adults ages 6 through 59. A developmental, multiple indicator-multiple cause, structural equation model was used to investigate sex differences in latent cognitive abilities as…

  4. Sex Differences in Latent Cognitive Abilities Ages 5 to 17: Evidence from the Differential Ability Scales--Second Edition

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; Reynolds, Matthew R.; Roberts, Lisa G.; Winter, Amanda L.; Austin, Cynthia A.

    2011-01-01

    Sex differences in the latent general and broad cognitive abilities underlying the Differential Ability Scales, Second Edition were investigated for children and youth ages 5 through 17. Multi-group mean and covariance structural equation modeling was used to investigate sex differences in latent cognitive abilities as well as changes in these…

  5. An Assessment of Character and Leadership Development Latent Factor Structures through Confirmatory Factor, Item Response Theory, and Latent Class Analyses

    ERIC Educational Resources Information Center

    Higginbotham, David L.

    2013-01-01

    This study leveraged the complementary nature of confirmatory factor (CFA), item response theory (IRT), and latent class (LCA) analyses to strengthen the rigor and sophistication of evaluation of two new measures of the Air Force Academy's "leader of character" definition--the Character Mosaic Virtues (CMV) and the Leadership Mosaic…

  6. The Log-Linear Cognitive Diagnostic Model (LCDM) as a Special Case of The General Diagnostic Model (GDM). Research Report. ETS RR-14-40

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2014-01-01

    Diagnostic models combine multiple binary latent variables in an attempt to produce a latent structure that provides more information about test takers' performance than do unidimensional latent variable models. Recent developments in diagnostic modeling emphasize the possibility that multiple skills may interact in a conjunctive way within the…

  7. Precipitation Processes Derived from TRMM Satellite Data, Cloud Resolving Model and Field Campaigns

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid. and solid water. Present large-scale weather and climate models can simulate cloud latent heat release only crudely thus reducing their confidence in predictions on both global and regional scales. In this paper, NASA Tropical Rainfall Measuring (TRMM) precipitation radar (PR) derived rainfall information and the Goddard Convective and Stratiform Heating (CSH) algorithm used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to October 2000. Rainfall latent heating and radar reflectively structure between ENSO (1997-1998 winter) and non-ENSO (1998-1999 winter) periods are examined and compared. The seasonal variation of heating over various geographic locations (i.e. Indian ocean vs west Pacific; Africa vs S. America) are also analyzed. In addition, the relationship between rainfall latent heating maximum heating level), radar reflectively and SST are examined.

  8. Structural basis for the development of SARS 3CL protease inhibitors from a peptide mimic to an aza-decaline scaffold.

    PubMed

    Teruya, Kenta; Hattori, Yasunao; Shimamoto, Yasuhiro; Kobayashi, Kazuya; Sanjoh, Akira; Nakagawa, Atsushi; Yamashita, Eiki; Akaji, Kenichi

    2016-11-04

    Design of inhibitors against severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL(pro) ) is a potentially important approach to fight against SARS. We have developed several synthetic inhibitors by structure-based drug design. In this report, we reveal two crystal structures of SARS 3CL(pro) complexed with two new inhibitors based on our previous work. These structures combined with six crystal structures complexed with a series of related ligands reported by us are collectively analyzed. To these eight complexes, the structural basis for inhibitor binding was analyzed by the COMBINE method, which is a chemometrical analysis optimized for the protein-ligand complex. The analysis revealed that the first two latent variables gave a cumulative contribution ratio of r(2)  = 0.971. Interestingly, scores using the second latent variables for each complex were strongly correlated with root mean square deviations (RMSDs) of side-chain heavy atoms of Met(49) from those of the intact crystal structure of SARS-3CL(pro) (r = 0.77) enlarging the S2 pocket. The substantial contribution of this side chain (∼10%) for the explanation of pIC50 s was dependent on stereochemistry and the chemical structure of the ligand adapted to the S2 pocket of the protease. Thus, starting from a substrate mimic inhibitor, a design for a central scaffold for a low molecular weight inhibitor was evaluated to develop a further potent inhibitor. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 391-403, 2016. © 2015 Wiley Periodicals, Inc.

  9. A Comparison of Approaches for the Analysis of Interaction Effects between Latent Variables Using Partial Least Squares Path Modeling

    ERIC Educational Resources Information Center

    Henseler, Jorg; Chin, Wynne W.

    2010-01-01

    In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…

  10. Modeling Latent Interactions at Level 2 in Multilevel Structural Equation Models: An Evaluation of Mean-Centered and Residual-Centered Unconstrained Approaches

    ERIC Educational Resources Information Center

    Leite, Walter L.; Zuo, Youzhen

    2011-01-01

    Among the many methods currently available for estimating latent variable interactions, the unconstrained approach is attractive to applied researchers because of its relatively easy implementation with any structural equation modeling (SEM) software. Using a Monte Carlo simulation study, we extended and evaluated the unconstrained approach to…

  11. Taxometric and Factor Analytic Models of Anxiety Sensitivity among Youth: Exploring the Latent Structure of Anxiety Psychopathology Vulnerability

    ERIC Educational Resources Information Center

    Bernstein, Amit; Zvolensky, Michael J.; Stewart, Sherry; Comeau, Nancy

    2007-01-01

    This study represents an effort to better understand the latent structure of anxiety sensitivity (AS), a well-established affect-sensitivity individual difference factor, among youth by employing taxometric and factor analytic approaches in an integrative manner. Taxometric analyses indicated that AS, as indexed by the Child Anxiety Sensitivity…

  12. Introduction to the special section on mixture modeling in personality assessment.

    PubMed

    Wright, Aidan G C; Hallquist, Michael N

    2014-01-01

    Latent variable models offer a conceptual and statistical framework for evaluating the underlying structure of psychological constructs, including personality and psychopathology. Complex structures that combine or compare categorical and dimensional latent variables can be accommodated using mixture modeling approaches, which provide a powerful framework for testing nuanced theories about psychological structure. This special series includes introductory primers on cross-sectional and longitudinal mixture modeling, in addition to empirical examples applying these techniques to real-world data collected in clinical settings. This group of articles is designed to introduce personality assessment scientists and practitioners to a general latent variable framework that we hope will stimulate new research and application of mixture models to the assessment of personality and its pathology.

  13. Application of Generative Autoencoder in De Novo Molecular Design.

    PubMed

    Blaschke, Thomas; Olivecrona, Marcus; Engkvist, Ola; Bajorath, Jürgen; Chen, Hongming

    2018-01-01

    A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. On the explaining-away phenomenon in multivariate latent variable models.

    PubMed

    van Rijn, Peter; Rijmen, Frank

    2015-02-01

    Many probabilistic models for psychological and educational measurements contain latent variables. Well-known examples are factor analysis, item response theory, and latent class model families. We discuss what is referred to as the 'explaining-away' phenomenon in the context of such latent variable models. This phenomenon can occur when multiple latent variables are related to the same observed variable, and can elicit seemingly counterintuitive conditional dependencies between latent variables given observed variables. We illustrate the implications of explaining away for a number of well-known latent variable models by using both theoretical and real data examples. © 2014 The British Psychological Society.

  15. School Refusal Assessment Scale-Revised: Factorial Invariance and Latent Means Differences across Gender and Age in Spanish Children

    PubMed Central

    Gonzálvez, Carolina; Inglés, Cándido J.; Kearney, Christopher A.; Vicent, María; Sanmartín, Ricardo; García-Fernández, José M.

    2016-01-01

    The aim of this study was to analyze the factorial invariance and latent means differences of the Spanish version of the School Refusal Assessment Scale-Revised for Children (SRAS-R-C) in a sample of 1,078 students (50.8% boys) aged 8–11 years (M = 9.63, SD = 1.12). The results revealed that the proposed model in this study, with a structure of 18 items divided into four factors (Negative Affective, Social Aversion and/or Evaluation, To Pursue Attention and Tangible Reinforcements), was the best-fit model with a tetra-factorial structure, remaining invariant across gender and age. Analysis of latent means differences indicated that boys and 11-year-old students scored highest on the Tangible Reinforcements subscale compared with their 8- and 9-year-old peers. On the contrary, for the subscales of Social Aversion and/or Evaluation and to Pursue Attention, the differences were significant and higher in younger age groups compared to 11-year-olds. Appropriate indexes of reliability were obtained for SRAS-R-C subscales (0.70, 0.79, 0.87, and 0.72). Finally, the founded correlation coefficients of scores of the SRAS-R-C revealed a predictable pattern between school refusal and positive/negative affect and optimism/pessimism. PMID:28082938

  16. Latent-Trait Latent-Class Analysis of Self-Disclosure in the Work Environment

    ERIC Educational Resources Information Center

    Maij-de Meij, Annette M.; Kelderman, Henk; van der Flier, Henk

    2005-01-01

    Based on the literature about self-disclosure, it was hypothesized that different groups of subjects differ in their pattern of self-disclosure with respect to different areas of social interaction. An extended latent-trait latent-class model was proposed to describe these general patterns of self-disclosure. The model was used to analyze the data…

  17. On the Estimation of Disease Prevalence by Latent Class Models for Screening Studies Using Two Screening Tests with Categorical Disease Status Verified in Test Positives Only

    PubMed Central

    Chu, Haitao; Zhou, Yijie; Cole, Stephen R.; Ibrahim, Joseph G.

    2010-01-01

    Summary To evaluate the probabilities of a disease state, ideally all subjects in a study should be diagnosed by a definitive diagnostic or gold standard test. However, since definitive diagnostic tests are often invasive and expensive, it is generally unethical to apply them to subjects whose screening tests are negative. In this article, we consider latent class models for screening studies with two imperfect binary diagnostic tests and a definitive categorical disease status measured only for those with at least one positive screening test. Specifically, we discuss a conditional independent and three homogeneous conditional dependent latent class models and assess the impact of misspecification of the dependence structure on the estimation of disease category probabilities using frequentist and Bayesian approaches. Interestingly, the three homogeneous dependent models can provide identical goodness-of-fit but substantively different estimates for a given study. However, the parametric form of the assumed dependence structure itself is not “testable” from the data, and thus the dependence structure modeling considered here can only be viewed as a sensitivity analysis concerning a more complicated non-identifiable model potentially involving heterogeneous dependence structure. Furthermore, we discuss Bayesian model averaging together with its limitations as an alternative way to partially address this particularly challenging problem. The methods are applied to two cancer screening studies, and simulations are conducted to evaluate the performance of these methods. In summary, further research is needed to reduce the impact of model misspecification on the estimation of disease prevalence in such settings. PMID:20191614

  18. Accounting for standard errors of vision-specific latent trait in regression models.

    PubMed

    Wong, Wan Ling; Li, Xiang; Li, Jialiang; Wong, Tien Yin; Cheng, Ching-Yu; Lamoureux, Ecosse L

    2014-07-11

    To demonstrate the effectiveness of Hierarchical Bayesian (HB) approach in a modeling framework for association effects that accounts for SEs of vision-specific latent traits assessed using Rasch analysis. A systematic literature review was conducted in four major ophthalmic journals to evaluate Rasch analysis performed on vision-specific instruments. The HB approach was used to synthesize the Rasch model and multiple linear regression model for the assessment of the association effects related to vision-specific latent traits. The effectiveness of this novel HB one-stage "joint-analysis" approach allows all model parameters to be estimated simultaneously and was compared with the frequently used two-stage "separate-analysis" approach in our simulation study (Rasch analysis followed by traditional statistical analyses without adjustment for SE of latent trait). Sixty-six reviewed articles performed evaluation and validation of vision-specific instruments using Rasch analysis, and 86.4% (n = 57) performed further statistical analyses on the Rasch-scaled data using traditional statistical methods; none took into consideration SEs of the estimated Rasch-scaled scores. The two models on real data differed for effect size estimations and the identification of "independent risk factors." Simulation results showed that our proposed HB one-stage "joint-analysis" approach produces greater accuracy (average of 5-fold decrease in bias) with comparable power and precision in estimation of associations when compared with the frequently used two-stage "separate-analysis" procedure despite accounting for greater uncertainty due to the latent trait. Patient-reported data, using Rasch analysis techniques, do not take into account the SE of latent trait in association analyses. The HB one-stage "joint-analysis" is a better approach, producing accurate effect size estimations and information about the independent association of exposure variables with vision-specific latent traits. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  19. What to do When Scalar Invariance Fails: The Extended Alignment Method for Multi-Group Factor Analysis Comparison of Latent Means Across Many Groups.

    PubMed

    Marsh, Herbert W; Guo, Jiesi; Parker, Philip D; Nagengast, Benjamin; Asparouhov, Tihomir; Muthén, Bengt; Dicke, Theresa

    2017-01-12

    Scalar invariance is an unachievable ideal that in practice can only be approximated; often using potentially questionable approaches such as partial invariance based on a stepwise selection of parameter estimates with large modification indices. Study 1 demonstrates an extension of the power and flexibility of the alignment approach for comparing latent factor means in large-scale studies (30 OECD countries, 8 factors, 44 items, N = 249,840), for which scalar invariance is typically not supported in the traditional confirmatory factor analysis approach to measurement invariance (CFA-MI). Importantly, we introduce an alignment-within-CFA (AwC) approach, transforming alignment from a largely exploratory tool into a confirmatory tool, and enabling analyses that previously have not been possible with alignment (testing the invariance of uniquenesses and factor variances/covariances; multiple-group MIMIC models; contrasts on latent means) and structural equation models more generally. Specifically, it also allowed a comparison of gender differences in a 30-country MIMIC AwC (i.e., a SEM with gender as a covariate) and a 60-group AwC CFA (i.e., 30 countries × 2 genders) analysis. Study 2, a simulation study following up issues raised in Study 1, showed that latent means were more accurately estimated with alignment than with the scalar CFA-MI, and particularly with partial invariance scalar models based on the heavily criticized stepwise selection strategy. In summary, alignment augmented by AwC provides applied researchers from diverse disciplines considerable flexibility to address substantively important issues when the traditional CFA-MI scalar model does not fit the data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. The Latent Structure of Memory: A Confirmatory Factor-Analytic Study of Memory Distinctions.

    ERIC Educational Resources Information Center

    Herrman, Douglas J.; Schooler, Carmi; Caplan, Leslie J.; Lipman, Paula Darby; Grafman, Jordan; Schoenbach, Carrie; Schwab, Karen; Johnson, Marnie L.

    2001-01-01

    Used confirmatory factor analysis to study the nature of memory distinctions underlying the performance of two samples of Vietnam veterans. One sample (n=96) had received head injuries resulting in relatively small lesions; the other (n=85) had not. A four-component model with verbal-episodic, visual-episodic, semantic, and short-term memory…

  1. Using Confirmatory Factor Analysis to Understand Executive Control in Preschool Children: Sources of Variation in Emergent Mathematic Achievement

    ERIC Educational Resources Information Center

    Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A.; Sheffield, Tiffany D.; Nelson, Jennifer Mize

    2011-01-01

    Latent variable modeling methods have demonstrated utility for understanding the structure of executive control (EC) across development. These methods are utilized to better characterize the relation between EC and mathematics achievement in the preschool period, and to understand contributing sources of individual variation. Using the sample and…

  2. A Latent Variable Analysis of Working Memory Capacity, Short-Term Memory Capacity, Processing Speed, and General Fluid Intelligence.

    ERIC Educational Resources Information Center

    Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.

    2002-01-01

    Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…

  3. DIF Analysis with Multilevel Data: A Simulation Study Using the Latent Variable Approach

    ERIC Educational Resources Information Center

    Jin, Ying; Eason, Hershel

    2016-01-01

    The effects of mean ability difference (MAD) and short tests on the performance of various DIF methods have been studied extensively in previous simulation studies. Their effects, however, have not been studied under multilevel data structure. MAD was frequently observed in large-scale cross-country comparison studies where the primary sampling…

  4. The Counseling Opportunity Structure: Examining Correlates of Four-Year College-Going Rates

    ERIC Educational Resources Information Center

    Engberg, Mark E.; Gilbert, Aliza J.

    2014-01-01

    This study examines the relationships between the normative and resource dimensions of a high school counseling department and four-year college-going rates. Utilizing data from the High School Longitudinal Study of 2009 (HSLS: 09), we employ multiple regression and latent class analysis to identify salient factors related to the college-going…

  5. The Structure of Intergenerational Relations in Rural China: A Latent Class Analysis

    ERIC Educational Resources Information Center

    Guo, Man; Chi, Iris; Silverstein, Merril

    2012-01-01

    Most existing typology studies of intergenerational relations have used samples in North America and Europe. The present study expands on previous research by determining whether similar family relation typologies could be found using a sample of Chinese rural elders. The data were derived from a survey of 1,224 older adults in China's rural Anhui…

  6. Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level

    ERIC Educational Resources Information Center

    Savalei, Victoria; Rhemtulla, Mijke

    2017-01-01

    In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately…

  7. Assessing semantic similarity of texts - Methods and algorithms

    NASA Astrophysics Data System (ADS)

    Rozeva, Anna; Zerkova, Silvia

    2017-12-01

    Assessing the semantic similarity of texts is an important part of different text-related applications like educational systems, information retrieval, text summarization, etc. This task is performed by sophisticated analysis, which implements text-mining techniques. Text mining involves several pre-processing steps, which provide for obtaining structured representative model of the documents in a corpus by means of extracting and selecting the features, characterizing their content. Generally the model is vector-based and enables further analysis with knowledge discovery approaches. Algorithms and measures are used for assessing texts at syntactical and semantic level. An important text-mining method and similarity measure is latent semantic analysis (LSA). It provides for reducing the dimensionality of the document vector space and better capturing the text semantics. The mathematical background of LSA for deriving the meaning of the words in a given text by exploring their co-occurrence is examined. The algorithm for obtaining the vector representation of words and their corresponding latent concepts in a reduced multidimensional space as well as similarity calculation are presented.

  8. Incorporating Measurement Non-Equivalence in a Cross-Study Latent Growth Curve Analysis

    PubMed Central

    Flora, David B.; Curran, Patrick J.; Hussong, Andrea M.; Edwards, Michael C.

    2009-01-01

    A large literature emphasizes the importance of testing for measurement equivalence in scales that may be used as observed variables in structural equation modeling applications. When the same construct is measured across more than one developmental period, as in a longitudinal study, it can be especially critical to establish measurement equivalence, or invariance, across the developmental periods. Similarly, when data from more than one study are combined into a single analysis, it is again important to assess measurement equivalence across the data sources. Yet, how to incorporate non-equivalence when it is discovered is not well described for applied researchers. Here, we present an item response theory approach that can be used to create scale scores from measures while explicitly accounting for non-equivalence. We demonstrate these methods in the context of a latent curve analysis in which data from two separate studies are combined to create a single longitudinal model spanning several developmental periods. PMID:19890440

  9. Anxiety, Depression and Hopelessness in Adolescents: A Structural Equation Model

    PubMed Central

    Cunningham, Shaylyn; Gunn, Thelma; Alladin, Assen; Cawthorpe, David

    2008-01-01

    Objective This study tested a structural model, examining the relationship between a latent variable termed demoralization and measured variables (anxiety, depression and hopelessness) in a community sample of Canadian youth. Methods The combined sample consisted of data collected from four independent studies from 2001 to 2005. Nine hundred and seventy one (n=971) participants were high school students (grades 10–12) from three geographic locations: Calgary, Saskatchewan and Lethbridge. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory-Revised (BDI-II), Beck Hopelessness Scale (BHS), and demographic survey. Structural equation modeling was used for statistical analysis. Results The analysis revealed that the final model, including depression, anxiety and hopelessness and one latent variable demoralization, fit the data (chi-square value, X2 (2) = 7.25, p< .001, goodness of fit indices (CFI=0.99, NFI=0.98) and standardized error (0.05). Overall, the findings suggest that close relationships exist among depression, anxiety, hopelessness and demoralization that is stable across demographic variables. Further, the model explains the relationship between sub-clinical anxiety, depression and hopelessness. Conclusion These findings contribute to a theoretical framework, which has implications for educational and clinical intervention. The present findings will help guide further preventative research on examining demoralization as a precursor to sub-clinical anxiety and depression. PMID:18769644

  10. Assessing a dysphoric arousal model of acute stress disorder symptoms in a clinical sample of rape and bank robbery victims

    PubMed Central

    Hansen, Maj; Armour, Cherie; Elklit, Ask

    2012-01-01

    Background Since the introduction of Acute Stress Disorder (ASD) into the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) research has focused on the ability of ASD to predict PTSD rather than focusing on addressing ASD's underlying latent structure. The few existing confirmatory factor analytic (CFA) studies of ASD have failed to reach a clear consensus regarding ASD's underlying dimensionality. Although, the discrepancy in the results may be due to varying ASD prevalence rates, it remains possible that the model capturing the latent structure of ASD has not yet been put forward. One such model may be a replication of a new five-factor model of PTSD, which separates the arousal symptom cluster into Dysphoric and Anxious Arousal. Given the pending DSM-5, uncovering ASD's latent structure is more pertinent than ever. Objective Using CFA, four different models of the latent structure of ASD were specified and tested: the proposed DSM-5 model, the DSM-IV model, a three factor model, and a five factor model separating the arousal symptom cluster. Method The analyses were based on a combined sample of rape and bank robbery victims, who all met the diagnostic criteria for ASD (N = 404) using the Acute Stress Disorder Scale. Results The results showed that the five factor model provided the best fit to the data. Conclusions The results of the present study suggest that the dimensionality of ASD may be best characterized as a five factor structure which separates dysphoric and anxious arousal items into two separate factors, akin to recent research on PTSD's latent structure. Thus, the current study adds to the debate about how ASD should be conceptualized in the pending DSM-5. PMID:22893845

  11. Assessing a dysphoric arousal model of acute stress disorder symptoms in a clinical sample of rape and bank robbery victims.

    PubMed

    Hansen, Maj; Armour, Cherie; Elklit, Ask

    2012-01-01

    Since the introduction of Acute Stress Disorder (ASD) into the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) research has focused on the ability of ASD to predict PTSD rather than focusing on addressing ASD's underlying latent structure. The few existing confirmatory factor analytic (CFA) studies of ASD have failed to reach a clear consensus regarding ASD's underlying dimensionality. Although, the discrepancy in the results may be due to varying ASD prevalence rates, it remains possible that the model capturing the latent structure of ASD has not yet been put forward. One such model may be a replication of a new five-factor model of PTSD, which separates the arousal symptom cluster into Dysphoric and Anxious Arousal. Given the pending DSM-5, uncovering ASD's latent structure is more pertinent than ever. USING CFA, FOUR DIFFERENT MODELS OF THE LATENT STRUCTURE OF ASD WERE SPECIFIED AND TESTED: the proposed DSM-5 model, the DSM-IV model, a three factor model, and a five factor model separating the arousal symptom cluster. The analyses were based on a combined sample of rape and bank robbery victims, who all met the diagnostic criteria for ASD (N = 404) using the Acute Stress Disorder Scale. The results showed that the five factor model provided the best fit to the data. The results of the present study suggest that the dimensionality of ASD may be best characterized as a five factor structure which separates dysphoric and anxious arousal items into two separate factors, akin to recent research on PTSD's latent structure. Thus, the current study adds to the debate about how ASD should be conceptualized in the pending DSM-5.

  12. Latent Class Analysis of Differential Item Functioning on the Peabody Picture Vocabulary Test-III

    ERIC Educational Resources Information Center

    Webb, Mi-young Lee; Cohen, Allan S.; Schwanenflugel, Paula J.

    2008-01-01

    This study investigated the use of latent class analysis for the detection of differences in item functioning on the Peabody Picture Vocabulary Test-Third Edition (PPVT-III). A two-class solution for a latent class model appeared to be defined in part by ability because Class 1 was lower in ability than Class 2 on both the PPVT-III and the…

  13. Anxiety, bulimia, drug and alcohol addiction, depression, and schizophrenia: what do you think about their aetiology, dangerousness, social distance, and treatment? A latent class analysis approach.

    PubMed

    Mannarini, Stefania; Boffo, Marilisa

    2015-01-01

    Mental illness stigma is a serious societal problem and a critical impediment to treatment seeking for mentally ill people. To improve the understanding of mental illness stigma, this study focuses on the simultaneous analysis of people's aetiological beliefs, attitudes (i.e. perceived dangerousness and social distance), and recommended treatments related to several mental disorders by devising an over-arching latent structure that could explain the relations among these variables. Three hundred and sixty university students randomly received an unlabelled vignette depicting one of six mental disorders to be evaluated on the four variables on a Likert-type scale. A one-factor Latent Class Analysis (LCA) model was hypothesized, which comprised the four manifest variables as indicators and the mental disorder as external variable. The main findings were the following: (a) a one-factor LCA model was retrieved; (b) alcohol and drug addictions are the most strongly stigmatized; (c) a realistic opinion about the causes and treatment of schizophrenia, anxiety, bulimia, and depression was associated to lower prejudicial attitudes and social rejection. Beyond the general appraisal of mental illness an individual might have, the results generally point to the acknowledgement of the specific features of different diagnostic categories. The implications of the present results are discussed in the framework of a better understanding of mental illness stigma.

  14. Psychometric properties and a latent class analysis of the 12-item World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) in a pooled dataset of community samples.

    PubMed

    MacLeod, Melissa A; Tremblay, Paul F; Graham, Kathryn; Bernards, Sharon; Rehm, Jürgen; Wells, Samantha

    2016-12-01

    The 12-item World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) is a brief measurement tool used cross-culturally to capture the multi-dimensional nature of disablement through six domains, including: understanding and interacting with the world; moving and getting around; self-care; getting on with people; life activities; and participation in society. Previous psychometric research supports that the WHODAS 2.0 functions as a general factor of disablement. In a pooled dataset from community samples of adults (N = 447) we used confirmatory factor analysis to confirm a one-factor structure. Latent class analysis was used to identify subgroups of individuals based on their patterns of responses. We identified four distinct classes, or patterns of disablement: (1) pervasive disability; (2) physical disability; (3) emotional, cognitive, or interpersonal disability; (4) no/low disability. Convergent validity of the latent class subgroups was found with respect to socio-demographic characteristics, number of days affected by disabilities, stress, mental health, and substance use. These classes offer a simple and meaningful way to classify people with disabilities based on the 12-item WHODAS 2.0. Focusing on individuals with a high probability of being in the first three classes may help guide interventions. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Students' Views on Mathematics in Single-Sex and Coed Classrooms in Ghana

    ERIC Educational Resources Information Center

    Bofah, Emmanuel Adu-tutu; Hannula, Markku S.

    2016-01-01

    In this study, we investigated students' views on themselves as learners of mathematics as a function of school-by-sex (N = 2034, MAge = 18.49, SDAge = 1.25; 12th-grade; 58.2% girls). Using latent variable Structural Equation Modeling (SEM), the measurement and structural equivalence as well as the equality of latent means of scores across…

  16. The Information a Test Provides on an Ability Parameter. Research Report. ETS RR-07-18

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2007-01-01

    In item-response theory, if a latent-structure model has an ability variable, then elementary information theory may be employed to provide a criterion for evaluation of the information the test provides concerning ability. This criterion may be considered even in cases in which the latent-structure model is not valid, although interpretation of…

  17. The NEO Five-Factor Inventory: Latent Structure and Relationships with Dimensions of Anxiety and Depressive Disorders in a Large Clinical Sample

    ERIC Educational Resources Information Center

    Rosellini, Anthony J.; Brown, Timothy A.

    2011-01-01

    The present study evaluated the latent structure of the NEO Five-Factor Inventory (NEO FFI) and relations between the five-factor model (FFM) of personality and dimensions of "DSM-IV" anxiety and depressive disorders (panic disorder, generalized anxiety disorder [GAD], obsessive-compulsive disorder, social phobia [SOC], major depressive disorder…

  18. Taxometric and Factor Analytic Models of Anxiety Sensitivity: Integrating Approaches to Latent Structural Research

    ERIC Educational Resources Information Center

    Bernstein, Amit; Zvolensky, Michael J.; Norton, Peter J.; Schmidt, Norman B.; Taylor, Steven; Forsyth, John P.; Lewis, Sarah F.; Feldner, Matthew T.; Leen-Feldner, Ellen W.; Stewart, Sherry H.; Cox, Brian

    2007-01-01

    This study represents an effort to better understand the latent structure of anxiety sensitivity (AS), as indexed by the 16-item Anxiety Sensitivity Index (ASI; S. Reiss, R. A. Peterson, M. Gursky, & R. J. McNally, 1986), by using taxometric and factor-analytic approaches in an integrative manner. Taxometric analyses indicated that AS has a…

  19. Using Instrumental Variable (IV) Tests to Evaluate Model Specification in Latent Variable Structural Equation Models*

    PubMed Central

    Kirby, James B.; Bollen, Kenneth A.

    2009-01-01

    Structural Equation Modeling with latent variables (SEM) is a powerful tool for social and behavioral scientists, combining many of the strengths of psychometrics and econometrics into a single framework. The most common estimator for SEM is the full-information maximum likelihood estimator (ML), but there is continuing interest in limited information estimators because of their distributional robustness and their greater resistance to structural specification errors. However, the literature discussing model fit for limited information estimators for latent variable models is sparse compared to that for full information estimators. We address this shortcoming by providing several specification tests based on the 2SLS estimator for latent variable structural equation models developed by Bollen (1996). We explain how these tests can be used to not only identify a misspecified model, but to help diagnose the source of misspecification within a model. We present and discuss results from a Monte Carlo experiment designed to evaluate the finite sample properties of these tests. Our findings suggest that the 2SLS tests successfully identify most misspecified models, even those with modest misspecification, and that they provide researchers with information that can help diagnose the source of misspecification. PMID:20419054

  20. Dissociative Experiences are Associated with Obsessive-Compulsive Symptoms in a Non-clinical Sample: A Latent Profile Analysis

    PubMed Central

    BOYSAN, Murat

    2014-01-01

    Introduction There has been a burgeoning literature considering the significant associations between obsessive-compulsive symptoms and dissociative experiences. In this study, the relationsips between dissociative symtomotology and dimensions of obsessive-compulsive symptoms were examined in homogeneous sub-groups obtained with latent class algorithm in an undergraduate Turkish sample. Method Latent profile analysis, a recently developed classification method based on latent class analysis, was applied to the Dissociative Experiences Scale (DES) item-response data from 2976 undergraduates. Differences in severity of obsessive-compulsive symptoms, anxiety and depression across groups were evaluated by running multinomial logistic regression analyses. Associations between latent class probabilities and psychological variables in terms of obsessive-compulsive sub-types, anxiety, and depression were assessed by computing Pearson’s product-moment correlation coefficients. Results The findings of the latent profile analysis supported further evidence for discontinuity model of dissociative experiences. The analysis empirically justified the distinction among three sub-groups based on the DES items. A marked proportion of the sample (42%) was assigned to the high dissociative class. In the further analyses, all sub-types of obsessive-compulsive symptoms significantly differed across latent classes. Regarding the relationships between obsessive-compulsive symptoms and dissociative symptomatology, low dissociation appeared to be a buffering factor dealing with obsessive-compulsive symptoms; whereas high dissociation appeared to be significantly associated with high levels of obsessive-compulsive symptoms. Conclusion It is concluded that the concept of dissociation can be best understood in a typological approach that dissociative symptomatology not only exacerbates obsessive-compulsive symptoms but also serves as an adaptive coping mechanism. PMID:28360635

  1. Dissociative Experiences are Associated with Obsessive-Compulsive Symptoms in a Non-clinical Sample: A Latent Profile Analysis.

    PubMed

    Boysan, Murat

    2014-09-01

    There has been a burgeoning literature considering the significant associations between obsessive-compulsive symptoms and dissociative experiences. In this study, the relationsips between dissociative symtomotology and dimensions of obsessive-compulsive symptoms were examined in homogeneous sub-groups obtained with latent class algorithm in an undergraduate Turkish sample. Latent profile analysis, a recently developed classification method based on latent class analysis, was applied to the Dissociative Experiences Scale (DES) item-response data from 2976 undergraduates. Differences in severity of obsessive-compulsive symptoms, anxiety and depression across groups were evaluated by running multinomial logistic regression analyses. Associations between latent class probabilities and psychological variables in terms of obsessive-compulsive sub-types, anxiety, and depression were assessed by computing Pearson's product-moment correlation coefficients. The findings of the latent profile analysis supported further evidence for discontinuity model of dissociative experiences. The analysis empirically justified the distinction among three sub-groups based on the DES items. A marked proportion of the sample (42%) was assigned to the high dissociative class. In the further analyses, all sub-types of obsessive-compulsive symptoms significantly differed across latent classes. Regarding the relationships between obsessive-compulsive symptoms and dissociative symptomatology, low dissociation appeared to be a buffering factor dealing with obsessive-compulsive symptoms; whereas high dissociation appeared to be significantly associated with high levels of obsessive-compulsive symptoms. It is concluded that the concept of dissociation can be best understood in a typological approach that dissociative symptomatology not only exacerbates obsessive-compulsive symptoms but also serves as an adaptive coping mechanism.

  2. Better latent heat and specific heat of stearic acid with magnetite/graphene nanocomposite addition for thermal storage application

    NASA Astrophysics Data System (ADS)

    Andiarto, R.; Nuryadin, M. K.; Taufik, A.; Saleh, R.

    2017-04-01

    In our previous study, the addition of Magnetite (Fe3O4) into Stearic acid (Sa) as an organic phase change material (PCM) shows an enhancement in the latent heat for thermal energy storage applications. The latent heat of the PCM can also be increased by adding graphene material. Therefore, in this research, the thermal properties of Sa have been studied by the sonication method for several different concentrations of Fe3O4/Graphene nanocomposite additions. The structural properties of all of the samples were observed by X-Ray diffraction (XRD). Melting-solidifying behavior and specific heat value were measured by differential scanning calorimetry (DSC). The thermal degradation process of all samples was investigated by thermogravimetric analysis (TGA). Based on the DSC results, the presence of Fe3O4/Graphene in the Sa enhances the latent heat up to 20%. The specific heat value of the mixture was also found to be increased as the concentration of Fe3O4/Graphene to Sa increased. The TGA results show a lowered thermal degradation process of the Sa by the addition of the Fe3O4/Graphene which indicates a higher thermal stability of the mixture. In conclusion, the results demonstrate that the addition of Fe3O4/Graphene to Sa improves both the sensible heat and the latent heat of the mixture which are very important for thermal energy storage applications

  3. Application of core-shell-structured CdTe@SiO2 quantum dots synthesized via a facile solution method for improving latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Han, Jiaxing; Lv, Caifeng; Wang, Qin; Zhang, Jun; Li, Qun; Bao, Liru; Li, Xin

    2012-10-01

    Fingerprint detection is important in criminal investigation. This paper reports a facile powder brushing technique for improving latent fingerprint detection using core-shell-structured CdTe@SiO2 quantum dots (QDs) as fluorescent labeling marks. Core-shell-structured CdTe@SiO2 QDs are prepared via a simple solution-based approach using NH2NH2·H2O as pH adjustor and stabilizer, and their application for improving latent fingerprint detection is explored. The obtained CdTe@SiO2 QDs show spherical shapes with well-defined core-shell structures encapsulating different amounts of QDs depending on the type of the pH adjustor and stabilizer. Moreover, the fluorescence of CdTe@SiO2 QDs is largely enhanced by surface modification of the SiO2 shell. The CdTe@SiO2 QDs overcome the oxidation problem of pure CdTe QDs in air, thus affording better variability with strong adhesive ability, better resolution, and bright emission colors for practical application in latent fingerprint detection. In comparison with the conventional fluorescence powders, silver powders, and others, the effectiveness of CdTe@SiO2 QD powders for detection of latent fingerprints present on a large variety of object surfaces is greatly improved. The synthesis method for CdTe@SiO2 QDs is simple, cheap, and easy for large-scale production, and thus offers many advantages in the practical application of fingerprint detection.

  4. Nucleotide sequence and proposed secondary structure of Columnea latent viroid: a natural mosaic of viroid sequences.

    PubMed Central

    Hammond, R; Smith, D R; Diener, T O

    1989-01-01

    The Columnea latent viroid (CLV) occurs latently in certain Columnea erythrophae plants grown commercially. In potato and tomato, CLV causes potato spindle tuber viroid (PSTV)-like symptoms. Its nucleotide sequence and proposed secondary structure reveal that CLV consists of a single-stranded circular RNA of 370 nucleotides which can assume a rod-like structure with extensive base-pairing characteristic of all known viroids. The electrophoretic mobility of circular CLV under nondenaturing conditions suggests a potential tertiary structure. CLV contains extensive sequence homologies to the PSTV group of viroids but contains a central conserved region identical to that of hop stunt viroid (HSV). CLV also shares some biological properties with each of the two types of viroids. Most probably, CLV is the result of intracellular RNA recombination between an HSV-type and one or more PSTV-type viroids replicating in the same plant. Images PMID:2602114

  5. An Evaluation of the Texas Functional Living Scale's Latent Structure and Subscales.

    PubMed

    González, David Andrés; Soble, Jason R; Marceaux, Janice C; McCoy, Karin J M

    2017-02-01

    Performance-based functional assessment is a critical component of neuropsychological practice. The Texas Functional Living Scale (TFLS) has promise given its brevity, nationally representative norms, and co-norming with Wechsler scales. However, its subscale structure has not been evaluated. The purpose of this study was to evaluate the TFLS in a mixed clinical sample (n = 197). Reliability and convergent and discriminant validity coefficients were calculated with neurocognitive testing and collateral reports and factor analysis was performed. The Money and Calculation subscale had the best psychometric properties of the subscales. The evidence did not support solitary interpretation of the Time subscale. A three-factor latent structure emerged representing memory and semantic retrieval, performance and visual scanning, and financial calculation. This study added psychometric support for interpretation of the TFLS total score and some of its subscales. Study limitations included sample characteristics (e.g., gender ratio) and low power for collateral report analyses. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Exploring heterogeneity in clinical trials with latent class analysis

    PubMed Central

    Abarda, Abdallah; Contractor, Ateka A.; Wang, Juan; Dayton, C. Mitchell

    2018-01-01

    Case-mix is common in clinical trials and treatment effect can vary across different subgroups. Conventionally, a subgroup analysis is performed by dividing the overall study population by one or two grouping variables. It is usually impossible to explore complex high-order intersections among confounding variables. Latent class analysis (LCA) provides a framework to identify latent classes by observed manifest variables. Distal clinical outcomes and treatment effect can be different across these classes. This paper provides a step-by-step tutorial on how to perform LCA with R. A simulated dataset is generated to illustrate the process. In the example, the classify-analyze approach is employed to explore the differential treatment effects on distal outcomes across latent classes. PMID:29955579

  7. Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.

    PubMed

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang

    2018-03-12

    Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.

  8. Aggressiveness as a latent personality trait of domestic dogs: Testing local independence and measurement invariance

    PubMed Central

    2017-01-01

    Studies of animal personality attempt to uncover underlying or “latent” personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4–10 months, 10 months–3 years, 3–6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate “aggressive personality” trait attributions can be costly to dogs, recipients of aggression and society in general. PMID:28854267

  9. Development of lifetime comorbidity in the WHO World Mental Health (WMH) Surveys

    PubMed Central

    Kessler, Ronald C.; Ormel, Johan; Petukhova, Maria; McLaughlin, Katie A.; Green, Jennifer Greif; Russo, Leo J.; Stein, Dan J.; Zaslavsky, Alan M; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Andrade, Laura; Benjet, Corina; de Girolamo, Giovanni; de Graaf, Ron; Demyttenaere, Koen; Fayyad, John; Haro, Josep Maria; Hu, Chi yi; Karam, Aimee; Lee, Sing; Lepine, Jean-Pierre; Matchsinger, Herbert; Mihaescu-Pintia, Constanta; Posada-Villa, Jose; Sagar, Rajesh; Üstün, T. Bedirhan

    2010-01-01

    CONTEXT Although numerous studies have examined the role of latent variables in the structure of comorbidity among mental disorders, none has examined their role in the development of comorbidity. OBJECTIVE To study the role of latent variables in the development of comorbidity among 18 lifetime DSM-IV disorders in the WHO World Mental Health (WMH) surveys. SETTING/PARTICIPANTS Nationally or regionally representative community surveys in 14 countries with a total of 21,229 respondents. MAIN OUTCOME MEASURES First onset of 18 lifetime DSM-IV anxiety, mood, behavior, and substance disorders assessed retrospectively in the WHO Composite International Diagnostic Interview (CIDI). RESULTS Separate internalizing (anxiety and mood disorders) and externalizing (behavior and substance disorders) factors were found in exploratory factor analysis of lifetime disorders. Consistently significant positive time-lagged associations were found in survival analyses for virtually all temporally primary lifetime disorders predicting subsequent onset of other disorders. Within-domain (i.e., internalizing or externalizing) associations were generally stronger than between-domain associations. The vast majority of time-lagged associations were explained by a model that assumed the existence of mediating latent internalizing and externalizing variables. Specific phobia and obsessive-compulsive disorder (internalizing) and hyperactivity disorder and oppositional-defiant disorder (externalizing) were the most important predictors. A small number of residual associations remained significant after controlling the latent variables. CONCLUSIONS The good fit of the latent variable model suggests that common causal pathways account for most of the comorbidity among the disorders considered here. These common pathways should be the focus of future research on the development of comorbidity, although several important pair-wise associations that cannot be accounted for by latent variables also exist that warrant further focused study. PMID:21199968

  10. A Bayesian Approach to a Multiple-Group Latent Class-Profile Analysis: The Timing of Drinking Onset and Subsequent Drinking Behaviors among U.S. Adolescents

    ERIC Educational Resources Information Center

    Chung, Hwan; Anthony, James C.

    2013-01-01

    This article presents a multiple-group latent class-profile analysis (LCPA) by taking a Bayesian approach in which a Markov chain Monte Carlo simulation is employed to achieve more robust estimates for latent growth patterns. This article describes and addresses a label-switching problem that involves the LCPA likelihood function, which has…

  11. Latent constructs of the autobiographical memory questionnaire: a recollection-belief model of autobiographical experience.

    PubMed

    Fitzgerald, Joseph M; Broadbridge, Carissa L

    2013-01-01

    Many researchers employ single-item scales of subjective experiences such as imagery and confidence to assess autobiographical memory. We tested the hypothesis that four latent constructs, recollection, belief, impact, and rehearsal, account for the variance in commonly used scales across four different types of autobiographical memory: earliest childhood memory, cue word memory of personal experience, highly vivid memory, and most stressful memory. Participants rated each memory on scales hypothesised to be indicators of one of four latent constructs. Multi-group confirmatory factor analyses and structural analyses confirmed the similarity of the latent constructs of recollection, belief, impact, and rehearsal, as well as the similarity of the structural relationships among those constructs across memory type. The observed pattern of mean differences between the varieties of autobiographical experiences was consistent with prior research and theory in the study of autobiographical memory.

  12. Environmental risk perception, environmental concern and propensity to participate in organic farming programmes.

    PubMed

    Toma, Luiza; Mathijs, Erik

    2007-04-01

    This paper aims to identify the factors underlying farmers' propensity to participate in organic farming programmes in a Romanian rural region that confronts non-point source pollution. For this, we employ structural equation modelling with latent variables using a specific data set collected through an agri-environmental farm survey in 2001. The model includes one 'behavioural intention' latent variable ('propensity to participate in organic farming programmes') and five 'attitude' and 'socio-economic' latent variables ('socio-demographic characteristics', 'economic characteristics', 'agri-environmental information access', 'environmental risk perception' and 'general environmental concern'). The results indicate that, overall, the model has an adequate fit to the data. All loadings are statistically significant, supporting the theoretical basis for assignment of indicators for each latent variable. The significance tests for the structural model parameters show 'environmental risk perception' as the strongest determinant of farmers' propensity to participate in organic farming programmes.

  13. The development of the Problematic Online Gaming Questionnaire (POGQ).

    PubMed

    Demetrovics, Zsolt; Urbán, Róbert; Nagygyörgy, Katalin; Farkas, Judit; Griffiths, Mark D; Pápay, Orsolya; Kökönyei, Gyöngyi; Felvinczi, Katalin; Oláh, Attila

    2012-01-01

    Online gaming has become increasingly popular. However, this has led to concerns that these games might induce serious problems and/or lead to dependence for a minority of players. The aim of this study was to uncover and operationalize the components of problematic online gaming. A total of 3415 gamers (90% males; mean age 21 years), were recruited through online gaming websites. A combined method of exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) was applied. Latent profile analysis was applied to identify persons at-risk. EFA revealed a six-factor structure in the background of problematic online gaming that was also confirmed by a CFA. For the assessment of the identified six dimensions--preoccupation, overuse, immersion, social isolation, interpersonal conflicts, and withdrawal--the 18-item Problematic Online Gaming Questionnaire (POGQ) proved to be exceedingly suitable. Based on the latent profile analysis, 3.4% of the gamer population was considered to be at high risk, while another 15.2% was moderately problematic. The POGQ seems to be an adequate measurement tool for the differentiated assessment of gaming related problems on six subscales.

  14. Modeling Latent Growth Curves With Incomplete Data Using Different Types of Structural Equation Modeling and Multilevel Software

    ERIC Educational Resources Information Center

    Ferrer, Emilio; Hamagami, Fumiaki; McArdle, John J.

    2004-01-01

    This article offers different examples of how to fit latent growth curve (LGC) models to longitudinal data using a variety of different software programs (i.e., LISREL, Mx, Mplus, AMOS, SAS). The article shows how the same model can be fitted using both structural equation modeling and multilevel software, with nearly identical results, even in…

  15. A Taxometric Investigation of the Latent Structure of Worry: Dimensionality and Associations with Depression, Anxiety, and Stress

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Broman-Fulks, Joshua J.; Bergman, Shawn M.; Green, Bradley A.; Zlomke, Kimberly R.

    2010-01-01

    Worry has been described as a core feature of several disorders, particularly generalized anxiety disorder (GAD). The present study examined the latent structure of worry by applying 3 taxometric procedures (MAXEIG, MAMBAC, and L-Mode) to data collected from 2 large samples. Worry in the first sample (Study 1) of community participants (n = 1,355)…

  16. Optical properties of drug metabolites in latent fingermarks

    PubMed Central

    Shen, Yao; Ai, Qing

    2016-01-01

    Drug metabolites usually have structures of split-ring resonators (SRRs), which might lead to negative permittivity and permeability in electromagnetic field. As a result, in the UV-vis region, the latent fingermarks images of drug addicts and non drug users are inverse. The optical properties of latent fingermarks are quite different between drug addicts and non-drug users. This is a technic superiority for crime scene investigation to distinguish them. In this paper, we calculate the permittivity and permeability of drug metabolites using tight-binding model. The latent fingermarks of smokers and non-smokers are given as an example. PMID:26838730

  17. Influence of WFIKKN1 on BMP1-mediated activation of latent myostatin.

    PubMed

    Szláma, György; Vásárhelyi, Viktor; Trexler, Mária; Patthy, László

    2016-12-01

    The NTR domain of WFIKKN1 protein has been shown to have significant affinity for the prodomain regions of promyostatin and latent myostatin but the biological significance of these interactions remained unclear. In view of its role as a myostatin antagonist, we tested the assumption that WFIKKN1 inhibits the release of myostatin from promyostatin and/or latent myostatin. WFIKKN1 was found to have no effect on processing of promyostatin by furin, the rate of cleavage of latent myostatin by BMP1, however, was significantly enhanced in the presence of WFIKKN1 and this enhancer activity was superstimulated by heparin. Unexpectedly, WFIKKN1 was also cleaved by BMP1 and our studies have shown that the KKN1 fragment generated by BMP1-cleavage of WFIKKN1 contributes most significantly to the observed enhancer activity. Analysis of a pro-TGF-β -based homology model of homodimeric latent myostatin revealed that the BMP1-cleavage sites are buried and not readily accessible to BMP1. In view of this observation, the most plausible explanation for the BMP1-enhancer activity of the KKN1 fragment is that it shifts a conformational equilibrium of latent myostatin from the closed circular structure of the homodimer to a more open form, making the cleavage sites more accessible to BMP1. On the other hand, the observation that the enhancer activity of KKN1 is superstimulated in the presence of heparin is explained by the fact KKN1, latent myostatin, and BMP1 have affinity for heparin and these interactions with heparin increase the local concentrations of the reactants thereby facilitating the action of BMP1. Furin: EC 3.4.21.75; BMP1, bone morphogentic protein 1 or procollagen C-endopeptidase: EC 3.4.24.19. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  18. Refining the tobacco dependence phenotype using the Wisconsin Inventory of Smoking Dependence Motives (WISDM)

    PubMed Central

    Piper, Megan E.; Bolt, Daniel M.; Kim, Su-Young; Japuntich, Sandra J.; Smith, Stevens S.; Niederdeppe, Jeff; Cannon, Dale S.; Baker, Timothy B.

    2008-01-01

    The construct of tobacco dependence is important from both scientific and public health perspectives, but it is poorly understood. The current research integrates person-centered analyses (e.g., latent profile analysis) and variable-centered analyses (e.g., exploratory factor analysis) to understand better the latent structure of dependence and to guide distillation of the phenotype. Using data from four samples of smokers (including treatment and non-treatment samples), latent profiles were derived using the Wisconsin Inventory of Smoking Dependence Motives (WISDM) subscale scores. Across all four samples, results revealed a unique latent profile that had relative elevations on four dependence motive subscales (Automaticity, Craving, Loss of Control, and Tolerance). Variable-centered analyses supported the uniqueness of these four subscales both as measures of a common factor distinct from that underlying the other nine subscales, and as the strongest predictors of relapse, withdrawal and other dependence criteria. Conversely, the remaining nine motives carried little unique predictive validity regarding dependence. Applications of a factor mixture model further support the presence of a unique class of smokers in relation to a common factor underlying the four subscales. The results illustrate how person-centered analyses may be useful as a supplement to variable-centered analyses for uncovering variables that are necessary and/or sufficient predictors of disorder criteria, as they may uncover small segments of a population in which the variables are uniquely distributed. The results also suggest that severe dependence is associated with a pattern of smoking that is heavy, pervasive, automatic and relatively unresponsive to instrumental contingencies. PMID:19025223

  19. A Latent Profile Analysis and Structural Equation Modeling of the Instructional Quality of Mathematics Classrooms Based on the PISA 2012 Results of Korea and Singapore

    ERIC Educational Resources Information Center

    Yi, Hyun Sook; Lee, Yuree

    2017-01-01

    Teachers' classroom behaviors and their effects on student learning have received significant attention from educators, because the quality of instruction is a critical factor closely tied to students' learning experiences. Based on a theoretical model conceptualizing the quality of instruction, this study examined the characteristics of…

  20. The Double ABCX Model of Family Stress and Adaptation: An Empirical Test by Analysis of Structural Equations with Latent Variables.

    ERIC Educational Resources Information Center

    Lavee, Yoav; And Others

    1985-01-01

    Examined relationships among major variables of the Double ABCX model of family stress and adaptation using data on Army families' adaptation to the crisis of relocation overseas. Results support the notion of pile-up of demands. Family system resources and social support are both found to facilitate adaptation. (Author/BL)

  1. Are Teachers' Implicit Theories of Creativity Related to the Recognition of Their Students' Creativity?

    ERIC Educational Resources Information Center

    Gralewski, Jacek; Karwowski, Maciej

    2018-01-01

    We examine the structure of implicit theories of creativity among Polish high schools teachers and the role those theories play for the accuracy of teachers' assessment of their students' creativity. Latent class analysis revealed the existence of four classes of teachers, whose perception of a creative student differed: two of these classes…

  2. A Confirmatory Factor Analysis of the California Verbal Learning Test-Second Edition (CVLT-II) in the Standardization Sample

    ERIC Educational Resources Information Center

    Donders, Jacobus

    2008-01-01

    The purpose of this study is to determine the latent structure of the California Verbal Learning Test-Second Edition (CVLT-II; Delis, Kramer, Kaplan, & Ober, 2000) at three different age levels, using the standardization sample. Maximum likelihood confirmatory factor analyses are performed to test four competing hypothetical models for fit and…

  3. Multidimensional Self-Concept Structure for Preadolescents with Mild Intellectual Disabilities: A Hybrid Multigroup?MIMC Approach to Factorial Invariance and Latent Mean Differences

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Tracey, Danielle K.; Craven, Rhonda G.

    2006-01-01

    Confirmatory factor analysis of responses by 211 preadolescents (M age = 10.25 years,SD = 1.48) with mild intellectual disabilities (MIDs) to the individually administered Self Description Questionnaire I-Individual Administration (SDQI-IA) counters widely cited claims that these children cannot differentiate multiple self-concept factors. Results…

  4. A Latent Variable Approach to Determining the Structure of Executive Function in Preschool Children

    ERIC Educational Resources Information Center

    Miller, Michael R.; Giesbrecht, Gerald F.; Muller, Ulrich; McInerney, Robert J.; Kerns, Kimberly A.

    2012-01-01

    The composition of executive function (EF) in preschool children was examined using confirmatory factor analysis (CFA). A sample of 129 children between 3 and 5 years of age completed a battery of EF tasks. Using performance indicators of working memory and inhibition similar to previous CFA studies with preschoolers, we replicated a unitary EF…

  5. Career Decision Self-Efficacy Scale-Short Form: A Rasch Analysis of the Portuguese Version

    ERIC Educational Resources Information Center

    Miguel, Jose P.; Silva, Jose T.; Prieto, Gerardo

    2013-01-01

    The present study analyzes the psychometric properties of the Career Decision Self-Efficacy Scale-Short Form (CDSE-SF) in a sample of Portuguese secondary education students using the Rasch model. The results indicate that the 25 items of the CDSE-SF are well fitted to a latent unidimensional structure, as required by Rasch modeling. The response…

  6. The Latent Structure of Psychopathy: A Taxometric Investigation of the Psychopathy Checklist-Revised in a Heterogeneous Sample of Male Prison Inmates

    ERIC Educational Resources Information Center

    Walters, Glenn D.; Duncan, Scott A.; Mitchell-Perez, Kari

    2007-01-01

    A taxometric analysis of the Psychopathy Checklist-Revised (PCL-R) is conducted on a group of 409 male maximum-, medium-, and minimum-security federal prison inmates using the four PCL-R facet scores (interpersonal, affective, impulsive lifestyle, and antisocial behavior) as indicators. Results obtained from three quasi-independent taxometric…

  7. A Confirmatory Factor Analysis of the California Verbal Learning Test-Second Edition (CVLT-II) in a Traumatic Brain Injury Sample

    ERIC Educational Resources Information Center

    DeJong, Joy; Donders, Jacobus

    2009-01-01

    The latent structure of the California Verbal Learning Test-Second Edition (CVLT-II) was examined in a clinical sample of 223 persons with traumatic brain injury that had been screened to remove individuals with complicating premorbid (e.g., psychiatric) or comorbid (e.g., financial compensation seeking) histories. Analyses incorporated the…

  8. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  9. Exploring dangerous neighborhoods: Latent Semantic Analysis and computing beyond the bounds of the familiar

    PubMed Central

    Cohen, Trevor; Blatter, Brett; Patel, Vimla

    2005-01-01

    Certain applications require computer systems to approximate intended human meaning. This is achievable in constrained domains with a finite number of concepts. Areas such as psychiatry, however, draw on concepts from the world-at-large. A knowledge structure with broad scope is required to comprehend such domains. Latent Semantic Analysis (LSA) is an unsupervised corpus-based statistical method that derives quantitative estimates of the similarity between words and documents from their contextual usage statistics. The aim of this research was to evaluate the ability of LSA to derive meaningful associations between concepts relevant to the assessment of dangerousness in psychiatry. An expert reference model of dangerousness was used to guide the construction of a relevant corpus. Derived associations between words in the corpus were evaluated qualitatively. A similarity-based scoring function was used to assign dangerousness categories to discharge summaries. LSA was shown to derive intuitive relationships between concepts and correlated significantly better than random with human categorization of psychiatric discharge summaries according to dangerousness. The use of LSA to derive a simulated knowledge structure can extend the scope of computer systems beyond the boundaries of constrained conceptual domains. PMID:16779020

  10. Preparation of fine powdered composite for latent heat storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fořt, Jan, E-mail: jan.fort.1@fsv.cvut.cz; Trník, Anton, E-mail: anton.trnik@fsv.cvut.cz; Pavlíková, Milena, E-mail: milena.pavlikova@fsv.cvut.cz

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particlemore » size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.« less

  11. Alexithymia and psychosocial problems among Italian preadolescents. A latent class analysis approach.

    PubMed

    Mannarini, Stefania; Balottin, Laura; Toldo, Irene; Gatta, Michela

    2016-10-01

    The study, conducted on Italian preadolscents aged 11 to 13 belonging to the general population, aims to investigate the relationship between the emotional functioning, namely, alexithymia, and the risk of developing behavioral and emotional problems measured using the Strength and Difficulty Questionnaire. The latent class analysis approach allowed to identify two latent variables, accounting for the internalizing (emotional symptoms and difficulties in emotional awareness) and for the externalizing problems (conduct problems and hyperactivity, problematic relationships with peers, poor prosocial behaviors and externally oriented thinking). The two latent variables featured two latent classes: the difficulty in dealing with problems and the strength to face problems that was representative of most of the healthy participants with specific gender differences. Along with the analysis of psychopathological behaviors, the study of resilience and strengths can prove to be a key step in order to develop valuable preventive approaches to tackle psychiatric disorders. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  12. Bifactor latent structure of attention-deficit/hyperactivity disorder (ADHD)/oppositional defiant disorder (ODD) symptoms and first-order latent structure of sluggish cognitive tempo symptoms.

    PubMed

    Lee, SoYean; Burns, G Leonard; Beauchaine, Theodore P; Becker, Stephen P

    2016-08-01

    The objective was to determine if the latent structure of attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) symptoms is best explained by a general disruptive behavior factor along with specific inattention (IN), hyperactivity/impulsivity (HI), and ODD factors (a bifactor model) whereas the latent structure of sluggish cognitive tempo (SCT) symptoms is best explained by a first-order factor independent of the bifactor model of ADHD/ODD. Parents' (n = 703) and teachers' (n = 366) ratings of SCT, ADHD-IN, ADHD-HI, and ODD symptoms on the Child and Adolescent Disruptive Behavior Inventory (CADBI) in a community sample of children (ages 5-13; 55% girls) were used to evaluate 4 models of symptom organization. Results indicated that a bifactor model of ADHD/ODD symptoms, in conjunction with a separate first-order SCT factor, was the best model for both parent and teacher ratings. The first-order SCT factor showed discriminant validity with the general disruptive behavior and specific IN factors in the bifactor model. In addition, higher scores on the SCT factor predicted greater academic and social impairment, even after controlling for the general disruptive behavior and 3 specific factors. Consistent with predictions from the trait-impulsivity etiological model of externalizing liability, a single, general disruptive behavior factor accounted for nearly all common variance in ADHD/ODD symptoms, whereas SCT symptoms represented a factor different from the general disruptive behavior and specific IN factor. These results provide additional support for distinguishing between SCT and ADHD-IN. The study also demonstrates how etiological models can be used to predict specific latent structures of symptom organization. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. The Nature of Coping in Treatment for Marijuana Dependence: Latent Structure and Validation of the Coping Strategies Scale

    PubMed Central

    Litt, Mark D.; Kadden, Ronald M; Tennen, Howard

    2012-01-01

    The Coping Strategies Scale (CSS) was designed to assess adaptive changes in substance-use specific coping that result from treatment. The present study sought to examine the latent structure of the CSS in the hope that it might shed light on the coping processes of drug users, and guide the development of a brief version of the CSS. Respondents on the CSS were 751 men and women treated in three clinical trials for marijuana dependence. Posttreatment CSS data were analyzed to determine the nature of coping responses in patients who have been trained to use specific strategies to deal with substance use disorders. Exploratory factor analysis yielded two factors, categorized as problem-focused and emotion-focused coping, but confirmatory factor analysis did not support this structure. When infrequently endorsed items were removed, however, confirmatory factor analysis revealed a good fit to the data. Contrary to expectations, practical strategies that often form the basis for coping skills training, such as avoiding those who smoke, were not frequently endorsed. Problem focused items reflected cognitive commitments to change. Emotion-focused items included cognitive reinterpretations of emotions, to help manage emotional reactions. Brief versions of the CSS based on these factors showed good convergent and discriminant validity. The CSS, and the brief versions of the CSS, may prove useful in future treatment trials to evaluate effects of treatment on coping skills acquisition and utilization in substance dependent individuals. PMID:22082345

  14. Confirmatory factor analysis reveals a latent cognitive structure common to bipolar disorder, schizophrenia, and normal controls.

    PubMed

    Schretlen, David J; Peña, Javier; Aretouli, Eleni; Orue, Izaskun; Cascella, Nicola G; Pearlson, Godfrey D; Ojeda, Natalia

    2013-06-01

    We sought to determine whether a single hypothesized latent factor structure would characterize cognitive functioning in three distinct groups. We assessed 576 adults (340 community controls, 126 adults with bipolar disorder, and 110 adults with schizophrenia) using 15 measures derived from nine cognitive tests. Confirmatory factor analysis (CFA) was conducted to examine the fit of a hypothesized six-factor model. The hypothesized factors included attention, psychomotor speed, verbal memory, visual memory, ideational fluency, and executive functioning. The six-factor model provided an excellent fit for all three groups [for community controls, root mean square error of approximation (RMSEA) <0.048 and comparative fit index (CFI) = 0.99; for adults with bipolar disorder, RMSEA = 0.071 and CFI = 0.99; and for adults with schizophrenia, RMSEA = 0.06 and CFI = 0.98]. Alternate models that combined fluency with processing speed or verbal and visual memory reduced the goodness of fit. Multi-group CFA results supported factor invariance across the three groups. Confirmatory factor analysis supported a single six-factor structure of cognitive functioning among patients with schizophrenia or bipolar disorder and community controls. While the three groups clearly differ in level of performance, they share a common underlying architecture of information processing abilities. These cognitive factors could provide useful targets for clinical trials of treatments that aim to enhance information processing in persons with neurological and neuropsychiatric disorders. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Comparison of Internet-based and paper-based questionnaires in Taiwan using multisample invariance approach.

    PubMed

    Yu, Sen-Chi; Yu, Min-Ning

    2007-08-01

    This study examines whether the Internet-based questionnaire is psychometrically equivalent to the paper-based questionnaire. A random sample of 2,400 teachers in Taiwan was divided into experimental and control groups. The experimental group was invited to complete the electronic form of the Chinese version of Center for Epidemiologic Studies Depression Scale (CES-D) placed on the Internet, whereas the control group was invited to complete the paper-based CES-D, which they received by mail. The multisample invariance approach, derived from structural equation modeling (SEM), was applied to analyze the collected data. The analytical results show that the two groups have equivalent factor structures in the CES-D. That is, the items in CES-D function equivalently in the two groups. Then the equality of latent mean test was performed. The latent means of "depressed mood," "positive affect," and "interpersonal problems" in CES-D are not significantly different between these two groups. However, the difference in the "somatic symptoms" latent means between these two groups is statistically significant at alpha = 0.01. But the Cohen's d statistics indicates that such differences in latent means do not apparently lead to a meaningful effect size in practice. Both CES-D questionnaires exhibit equal validity, reliability, and factor structures and exhibit a little difference in latent means. Therefore, the Internet-based questionnaire represents a promising alternative to the paper-based questionnaire.

  16. Exploring the Factor Structure of Neurocognitive Measures in Older Individuals

    PubMed Central

    Santos, Nadine Correia; Costa, Patrício Soares; Amorim, Liliana; Moreira, Pedro Silva; Cunha, Pedro; Cotter, Jorge; Sousa, Nuno

    2015-01-01

    Here we focus on factor analysis from a best practices point of view, by investigating the factor structure of neuropsychological tests and using the results obtained to illustrate on choosing a reasonable solution. The sample (n=1051 individuals) was randomly divided into two groups: one for exploratory factor analysis (EFA) and principal component analysis (PCA), to investigate the number of factors underlying the neurocognitive variables; the second to test the “best fit” model via confirmatory factor analysis (CFA). For the exploratory step, three extraction (maximum likelihood, principal axis factoring and principal components) and two rotation (orthogonal and oblique) methods were used. The analysis methodology allowed exploring how different cognitive/psychological tests correlated/discriminated between dimensions, indicating that to capture latent structures in similar sample sizes and measures, with approximately normal data distribution, reflective models with oblimin rotation might prove the most adequate. PMID:25880732

  17. Latent Heating Retrievals Using the TRMM Precipitation Radar: A Multi-Seasonal Study

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, S.; Meneghini, R.; Halverson, J.; Johnson, R.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. Present largescale weather and climate models can simulate latent heat release only crudely, thus reducing their confidence in predictions on both global and regional scales. This paper represents the first attempt to use NASA Tropical Rainfall Measuring Mission (TRMM) rainfall information to estimate the four-dimensional structure of global monthly latent heating profiles over the global tropics from December 1997 to October 2000. The Goddard Convective-Stratiform. Heating (CSH) algorithm and TRMM precipitation radar data are used for this study. We will examine and compare the latent heating structures between 1997-1998 (winter) ENSO and 1998-2000 (non-ENSO). We will also examine over the tropics. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental; Indian oceans vs west Pacific; Africa vs S. America) will be also examined and compared. In addition, we will examine the relationship between latent heating (max heating level) and SST. The period of interest also coincides with several TRMM field campaigns that recently occurred over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and in the central Pacific in 1999 (KWAJEX). Sounding diagnosed Q1 budgets from these experiments could provide a means of validating the retrieved profiles of latent heating from the CSH algorithm.

  18. Measuring Latent Quantities

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2011-01-01

    A distinction is proposed between measures and predictors of latent variables. The discussion addresses the consequences of the distinction for the true-score model, the linear factor model, Structural Equation Models, longitudinal and multilevel models, and item-response models. A distribution-free treatment of calibration and…

  19. Discriminative latent models for recognizing contextual group activities.

    PubMed

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N; Mori, Greg

    2012-08-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities.

  20. Discriminative Latent Models for Recognizing Contextual Group Activities

    PubMed Central

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N.; Mori, Greg

    2012-01-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities. PMID:22144516

  1. An Item Response Theory Analysis of DSM–IV Diagnostic Criteria for Personality Disorders: Findings From the National Epidemiologic Survey on Alcohol and Related Conditions

    PubMed Central

    Harford, Thomas C.; Chen, Chiung M.; Saha, Tulshi D.; Smith, Sharon M.; Hasin, Deborah S.; Grant, Bridget F.

    2013-01-01

    The purpose of this study was to evaluate the psychometric properties of DSM–IV symptom criteria for assessing personality disorders (PDs) in a national population and to compare variations in proposed symptom coding for social and/or occupational dysfunction. Data were obtained from a total sample of 34,653 respondents from Waves 1 and 2 of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). For each personality disorder, confirmatory factor analysis (CFA) established a 1-factor latent factor structure for the respective symptom criteria. A 2-parameter item response theory (IRT) model was applied to the symptom criteria for each PD to assess the probabilities of symptom item endorsements across different values of the underlying trait (latent factor). Findings were compared with a separate IRT model using an alternative coding of symptom criteria that requires distress/impairment to be related to each criterion. The CFAs yielded a good fit for a single underlying latent dimension for each PD. Findings from the IRT indicated that DSM–IV PD symptom criteria are clustered in the moderate to severe range of the underlying latent dimension for each PD and are peaked, indicating high measurement precision only within a narrow range of the underlying trait and lower measurement precision at lower and higher levels of severity. Compared with the NESARC symptom coding, the IRT results for the alternative symptom coding are shifted toward the more severe range of the latent trait but generally have lower measurement precision for each PD. The IRT findings provide support for a reliable assessment of each PD for both NESARC and alternative coding for distress/impairment. The use of symptom dysfunction for each criterion, however, raises a number of issues and implications for the DSM-5 revision currently proposed for Axis II disorders (American Psychiatric Association, 2010). PMID:22449066

  2. Multivariate Analysis of Genotype-Phenotype Association.

    PubMed

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.

  3. Longitudinal Models of Reliability and Validity: A Latent Curve Approach.

    ERIC Educational Resources Information Center

    Tisak, John; Tisak, Marie S.

    1996-01-01

    Dynamic generalizations of reliability and validity that will incorporate longitudinal or developmental models, using latent curve analysis, are discussed. A latent curve model formulated to depict change is incorporated into the classical definitions of reliability and validity. The approach is illustrated with sociological and psychological…

  4. Toward a Model-Based Approach to the Clinical Assessment of Personality Psychopathology

    PubMed Central

    Eaton, Nicholas R.; Krueger, Robert F.; Docherty, Anna R.; Sponheim, Scott R.

    2015-01-01

    Recent years have witnessed tremendous growth in the scope and sophistication of statistical methods available to explore the latent structure of psychopathology, involving continuous, discrete, and hybrid latent variables. The availability of such methods has fostered optimism that they can facilitate movement from classification primarily crafted through expert consensus to classification derived from empirically-based models of psychopathological variation. The explication of diagnostic constructs with empirically supported structures can then facilitate the development of assessment tools that appropriately characterize these constructs. Our goal in this paper is to illustrate how new statistical methods can inform conceptualization of personality psychopathology and therefore its assessment. We use magical thinking as example, because both theory and earlier empirical work suggested the possibility of discrete aspects to the latent structure of personality psychopathology, particularly forms of psychopathology involving distortions of reality testing, yet other data suggest that personality psychopathology is generally continuous in nature. We directly compared the fit of a variety of latent variable models to magical thinking data from a sample enriched with clinically significant variation in psychotic symptomatology for explanatory purposes. Findings generally suggested a continuous latent variable model best represented magical thinking, but results varied somewhat depending on different indices of model fit. We discuss the implications of the findings for classification and applied personality assessment. We also highlight some limitations of this type of approach that are illustrated by these data, including the importance of substantive interpretation, in addition to use of model fit indices, when evaluating competing structural models. PMID:24007309

  5. Synergistic Effects of Expectancy and Value on Homework Engagement: The Case for a Within-Person Perspective.

    PubMed

    Nagengast, Benjamin; Trautwein, Ulrich; Kelava, Augustin; Lüdtke, Oliver

    2013-05-01

    Historically, expectancy-value models of motivation assumed a synergistic relation between expectancy and value: motivation is high only when both expectancy and value are high. Motivational processes were studied from a within-person perspective, with expectancies and values being assessed or experimentally manipulated across multiple domains and the focus being placed on intraindividual differences. In contrast, contemporary expectancy-value models in educational psychology concentrate almost exclusively on linear effects of expectancy and value on motivational outcomes, with a focus on between-person differences. Recent advances in latent variable methodology allow both issues to be addressed in observational studies. Using the expectancy-value model of homework motivation as a theoretical framework, this study estimated multilevel structural equation models with latent interactions in a sample of 511 secondary school students and found synergistic effects between domain-specific homework expectancy and homework value in predicting homework engagement in 6 subjects. This approach not only brings the "×" back into expectancy-value theory but also reestablishes the within-person perspective as the appropriate level of analysis for latent expectancy-value models.

  6. Older Parent – Child Relationships in Six Developed Nations: Comparisons at the Intersection of Affection and Conflict

    PubMed Central

    Silverstein, Merril; Gans, Daphna; Lowenstein, Ariela; Giarrusso, Roseann; Bengtson, Vern L.

    2014-01-01

    Intergenerational solidarity and ambivalence paradigms suggest that emotional relationships between generations consist of both positive and negative sentiments. We applied latent class analysis to measures of affection and conflict in 2,698 older parent – child relationships in 6 developed nations: England, Germany, Israel, Norway, Spain, and the United States (Southern California). The best fitting model consisted of 4 latent classes distributed differently across nations but with a cross-nationally invariant measurement structure. After controlling for demographics, health, coresidence, contact, and support, the following classes were overrepresented in corresponding nations: amicable (England), detached (Germany and Spain), disharmonious (United States), ambivalent (Israel). We discuss policy and cultural differences across societies that may explain why the prevalence of particular emotional types varied by nation. PMID:26203197

  7. Older Parent - Child Relationships in Six Developed Nations: Comparisons at the Intersection of Affection and Conflict.

    PubMed

    Silverstein, Merril; Gans, Daphna; Lowenstein, Ariela; Giarrusso, Roseann; Bengtson, Vern L

    2010-08-01

    Intergenerational solidarity and ambivalence paradigms suggest that emotional relationships between generations consist of both positive and negative sentiments. We applied latent class analysis to measures of affection and conflict in 2,698 older parent - child relationships in 6 developed nations: England, Germany, Israel, Norway, Spain, and the United States (Southern California). The best fitting model consisted of 4 latent classes distributed differently across nations but with a cross-nationally invariant measurement structure. After controlling for demographics, health, coresidence, contact, and support, the following classes were overrepresented in corresponding nations: amicable (England), detached (Germany and Spain), disharmonious (United States), ambivalent (Israel). We discuss policy and cultural differences across societies that may explain why the prevalence of particular emotional types varied by nation.

  8. Forensic applications of chemical imaging: latent fingerprint detection using visible absorption and luminescence.

    PubMed

    Exline, David L; Wallace, Christie; Roux, Claude; Lennard, Chris; Nelson, Matthew P; Treado, Patrick J

    2003-09-01

    Chemical imaging technology is a rapid examination technique that combines molecular spectroscopy and digital imaging, providing information on morphology, composition, structure, and concentration of a material. Among many other applications, chemical imaging offers an array of novel analytical testing methods, which limits sample preparation and provides high-quality imaging data essential in the detection of latent fingerprints. Luminescence chemical imaging and visible absorbance chemical imaging have been successfully applied to ninhydrin, DFO, cyanoacrylate, and luminescent dye-treated latent fingerprints, demonstrating the potential of this technology to aid forensic investigations. In addition, visible absorption chemical imaging has been applied successfully to visualize untreated latent fingerprints.

  9. Structures and Evolutions of Explosive Cyclones over the Northwestern and Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Shuqin; Fu, Gang

    2018-06-01

    In this study, the structures and evolutions of moderate (MO) explosive cyclones (ECs) over the Northwestern Pacific (NWP) and Northeastern Pacific (NEP) are investigated and compared using composite analysis with cyclone-relative coordinates. Final Operational Global Analysis data gathered during the cold seasons (October-April) of the 15 years from 2000 to 2015 are used. The results indicate that MO NWP ECs have strong baroclinicity and abundant latent heat release at low levels and strong upper-level forcing, which favors explosive cyclogenesis. The rapid development of MO NEP ECs results from their interaction with a northern cyclone and a large middle-level advection of cyclonic vorticity. The structural differences between MO NWP ECs and MO NEP ECs are significant. This results from their specific large-scale atmospheric and oceanic environments. MO NWP ECs usually develop rapidly in the east and southeast of the Japan Islands; the intrusion of cold dry air from the East Asian continent leads to strong baroclinicity, and the Kuroshio/Kuroshio Extension provides abundant latent heat release at low levels. The East Asian subtropical westerly jet stream supplies strong upper-level forcing. While MO NEP ECs mainly occur over the NEP, the low-level baroclinicity, upper-level jet stream, and warm ocean currents are relatively weaker. The merged cyclone associated with a strong middle-level trough transports large cyclonic vorticity to MO NEP ECs, which favors their rapid development.

  10. Construct validity evidence for the Male Role Norms Inventory-Short Form: A structural equation modeling approach using the bifactor model.

    PubMed

    Levant, Ronald F; Hall, Rosalie J; Weigold, Ingrid K; McCurdy, Eric R

    2016-10-01

    The construct validity of the Male Role Norms Inventory-Short Form (MRNI-SF) was assessed using a latent variable approach implemented with structural equation modeling (SEM). The MRNI-SF was specified as having a bifactor structure, and validation scales were also specified as latent variables. The latent variable approach had the advantages of separating effects of general and specific factors and controlling for some sources of measurement error. Data (N = 484) were from a diverse sample (38.8% men of color, 22.3% men of diverse sexualities) of community-dwelling and college men who responded to an online survey. The construct validity of the MRNI-SF General Traditional Masculinity Ideology factor was supported for all 4 of the proposed latent correlations with: (a) Male Role Attitudes Scale; (b) general factor of Conformity to Masculine Norms Inventory-46; (c) higher-order factor of Gender Role Conflict Scale; and (d) Personal Attributes Questionnaire-Masculinity Scale. Significant correlations with relevant other latent factors provided concurrent validity evidence for the MRNI-SF specific factors of Negativity toward Sexual Minorities, Importance of Sex, Restrictive Emotionality, and Toughness, with all 8 of the hypothesized relationships supported. However, 3 relationships concerning Dominance were not supported. (The construct validity of the remaining 2 MRNI-SF specific factors-Avoidance of Femininity and Self-Reliance through Mechanical Skills was not assessed.) Comparisons were made, and meaningful differences noted, between the latent correlations emphasized in this study and their raw variable counterparts. Results are discussed in terms of the advantages of an SEM approach and the unique characteristics of the bifactor model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Psychometric analysis of the Swedish version of the General Medical Council's multi source feedback questionnaires.

    PubMed

    Olsson, Jan-Eric; Wallentin, Fan Yang; Toth-Pal, Eva; Ekblad, Solvig; Bertilson, Bo Christer

    2017-07-10

    To determine the internal consistency and the underlying components of our translated and adapted Swedish version of the General Medical Council's multisource feedback questionnaires (GMC questionnaires) for physicians and to confirm which aspects of good medical practice the latent variable structure reflected. From October 2015 to March 2016, residents in family medicine in Sweden were invited to participate in the study and to use the Swedish version to perform self-evaluations and acquire feedback from both their patients and colleagues. The validation focused on internal consistency and construct validity. Main outcome measures were Cronbach's alpha coefficients, Principal Component Analysis, and Confirmatory Factor Analysis indices. A total of 752 completed questionnaires from patients, colleagues, and residents were analysed. Of these, 213 comprised resident self-evaluations, 336 were feedback from residents' patients, and 203 were feedback from residents' colleagues. Cronbach's alpha coefficients of the scores were 0.88 from patients, 0.93 from colleagues, and 0.84 in the self-evaluations. The Confirmatory Factor Analysis validated two models that fit the data reasonably well and reflected important aspects of good medical practice. The first model had two latent factors for patient-related items concerning empathy and consultation management, and the second model had five latent factors for colleague-related items, including knowledge and skills, attitude and approach, reflection and development, teaching, and trust. The current Swedish version seems to be a reliable and valid tool for formative assessment for resident physicians and their supervisors. This needs to be verified in larger samples.

  12. Psychometric analysis of the Swedish version of the General Medical Council's multi source feedback questionnaires

    PubMed Central

    Wallentin, Fan Yang; Toth-Pal, Eva; Ekblad, Solvig; Bertilson, Bo Christer

    2017-01-01

    Objectives To determine the internal consistency and the underlying components of our translated and adapted Swedish version of the General Medical Council's multisource feedback questionnaires (GMC questionnaires) for physicians and to confirm which aspects of good medical practice the latent variable structure reflected. Methods From October 2015 to March 2016, residents in family medicine in Sweden were invited to participate in the study and to use the Swedish version to perform self-evaluations and acquire feedback from both their patients and colleagues. The validation focused on internal consistency and construct validity. Main outcome measures were Cronbach’s alpha coefficients, Principal Component Analysis, and Confirmatory Factor Analysis indices. Results A total of 752 completed questionnaires from patients, colleagues, and residents were analysed. Of these, 213 comprised resident self-evaluations, 336 were feedback from residents’ patients, and 203 were feedback from residents’ colleagues. Cronbach’s alpha coefficients of the scores were 0.88 from patients, 0.93 from colleagues, and 0.84 in the self-evaluations. The Confirmatory Factor Analysis validated two models that fit the data reasonably well and reflected important aspects of good medical practice. The first model had two latent factors for patient-related items concerning empathy and consultation management, and the second model had five latent factors for colleague-related items, including knowledge and skills, attitude and approach, reflection and development, teaching, and trust. Conclusions The current Swedish version seems to be a reliable and valid tool for formative assessment for resident physicians and their supervisors. This needs to be verified in larger samples. PMID:28704204

  13. A Latent Variable Investigation of the Phonological Awareness Literacy Screening-Kindergarten Assessment: Construct Identification and Multigroup Comparisons between Spanish-Speaking English-Language Learners (ELLs) and Non-ELL Students

    ERIC Educational Resources Information Center

    Huang, Francis L.; Konold, Timothy R.

    2014-01-01

    Psychometric properties of the Phonological Awareness Literacy Screening for Kindergarten (PALS-K) instrument were investigated in a sample of 2844 first-time public school kindergarteners. PALS-K is a widely used English literacy screening assessment. Exploratory factor analysis revealed a theoretically defensible measurement structure that was…

  14. Integrative Lifecourse and Genetic Analysis of Military Working Dogs

    DTIC Science & Technology

    2015-12-01

    done as the samples are collected in order to avoid experimental variability and batch effects . Detailed description and discussion of this task...associated loss of power to detect all associations but those of large effect sizes) and latent variables (e.g., population structure – addressed in...processes associated with tissue development and maintenance are thus grouped with external environmental effects . This in turn suggests how those

  15. Using Latent Class Analysis to Model Temperament Types.

    PubMed

    Loken, Eric

    2004-10-01

    Mixture models are appropriate for data that arise from a set of qualitatively different subpopulations. In this study, latent class analysis was applied to observational data from a laboratory assessment of infant temperament at four months of age. The EM algorithm was used to fit the models, and the Bayesian method of posterior predictive checks was used for model selection. Results show at least three types of infant temperament, with patterns consistent with those identified by previous researchers who classified the infants using a theoretically based system. Multiple imputation of group memberships is proposed as an alternative to assigning subjects to the latent class with maximum posterior probability in order to reflect variance due to uncertainty in the parameter estimation. Latent class membership at four months of age predicted longitudinal outcomes at four years of age. The example illustrates issues relevant to all mixture models, including estimation, multi-modality, model selection, and comparisons based on the latent group indicators.

  16. Using structural equation modeling for network meta-analysis.

    PubMed

    Tu, Yu-Kang; Wu, Yun-Chun

    2017-07-14

    Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison. SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a powerful tool for advanced meta-analysis is still to be explored.

  17. What is the latent structure of alcohol use disorders? A taxometric analysis of the Personality Assessment Inventory Alcohol Problems Scale in male and female prison inmates.

    PubMed

    Walters, Glenn D; Diamond, Pamela M; Magaletta, Philip R

    2010-03-01

    Three indicators derived from the Personality Assessment Inventory (PAI) Alcohol Problems scale (ALC)-tolerance/high consumption, loss of control, and negative social and psychological consequences-were subjected to taxometric analysis-mean above minus below a cut (MAMBAC), maximum covariance (MAXCOV), and latent mode factor analysis (L-Mode)-in 1,374 federal prison inmates (905 males, 469 females). Whereas the total sample yielded ambiguous results, the male subsample produced dimensional results, and the female subsample produced taxonic results. Interpreting these findings in light of previous taxometric research on alcohol abuse and dependence it is speculated that while alcohol use disorders may be taxonic in female offenders, they are probably both taxonic and dimensional in male offenders. Two models of male alcohol use disorder in males are considered, one in which the diagnostic features are categorical and the severity of symptomatology is dimensional, and one in which some diagnostic features (e.g., withdrawal) are taxonic and other features (e.g., social problems) are dimensional.

  18. Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error

    PubMed Central

    Hwang, Heungsun; Takane, Yoshio; Jung, Kwanghee

    2017-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling (SEM), where latent variables are approximated by weighted composites of indicators. It has no formal mechanism to incorporate errors in indicators, which in turn renders components prone to the errors as well. We propose to extend GSCA to account for errors in indicators explicitly. This extension, called GSCAM, considers both common and unique parts of indicators, as postulated in common factor analysis, and estimates a weighted composite of indicators with their unique parts removed. Adding such unique parts or uniqueness terms serves to account for measurement errors in indicators in a manner similar to common factor analysis. Simulation studies are conducted to compare parameter recovery of GSCAM and existing methods. These methods are also applied to fit a substantively well-established model to real data. PMID:29270146

  19. Development of Fraction Comparison Strategies: A Latent Transition Analysis

    ERIC Educational Resources Information Center

    Rinne, Luke F.; Ye, Ai; Jordan, Nancy C.

    2017-01-01

    The present study investigated the development of fraction comparison strategies through a longitudinal analysis of children's responses to a fraction comparison task in 4th through 6th grades (N = 394). Participants were asked to choose the larger value for 24 fraction pairs blocked by fraction type. Latent class analysis of performance over item…

  20. A general class of multinomial mixture models for anuran calling survey data

    USGS Publications Warehouse

    Royle, J. Andrew; Link, W.A.

    2005-01-01

    We propose a general framework for modeling anuran abundance using data collected from commonly used calling surveys. The data generated from calling surveys are indices of calling intensity (vocalization of males) that do not have a precise link to actual population size and are sensitive to factors that influence anuran behavior. We formulate a model for calling-index data in terms of the maximum potential calling index that could be observed at a site (the 'latent abundance class'), given its underlying breeding population, and we focus attention on estimating the distribution of this latent abundance class. A critical consideration in estimating the latent structure is imperfect detection, which causes the observed abundance index to be less than or equal to the latent abundance class. We specify a multinomial sampling model for the observed abundance index that is conditional on the latent abundance class. Estimation of the latent abundance class distribution is based on the marginal likelihood of the index data, having integrated over the latent class distribution. We apply the proposed modeling framework to data collected as part of the North American Amphibian Monitoring Program (NAAMP).

  1. What Do You Think You Are Measuring? A Mixed-Methods Procedure for Assessing the Content Validity of Test Items and Theory-Based Scaling

    PubMed Central

    Koller, Ingrid; Levenson, Michael R.; Glück, Judith

    2017-01-01

    The valid measurement of latent constructs is crucial for psychological research. Here, we present a mixed-methods procedure for improving the precision of construct definitions, determining the content validity of items, evaluating the representativeness of items for the target construct, generating test items, and analyzing items on a theoretical basis. To illustrate the mixed-methods content-scaling-structure (CSS) procedure, we analyze the Adult Self-Transcendence Inventory, a self-report measure of wisdom (ASTI, Levenson et al., 2005). A content-validity analysis of the ASTI items was used as the basis of psychometric analyses using multidimensional item response models (N = 1215). We found that the new procedure produced important suggestions concerning five subdimensions of the ASTI that were not identifiable using exploratory methods. The study shows that the application of the suggested procedure leads to a deeper understanding of latent constructs. It also demonstrates the advantages of theory-based item analysis. PMID:28270777

  2. The mechanisms mediating the effects of poverty on children's intellectual development.

    PubMed

    Guo, G; Harris, K M

    2000-11-01

    Although adverse consequences of poverty for children are documented widely, little is understood about the mechanisms through which the effects of poverty disadvantage young children. In this analysis we investigate multiple mechanisms through which poverty affects a child's intellectual development. Using data from the NLSY and structural equation models, we have constructed five latent factors (cognitive stimulation, parenting style, physical environment, child's ill health at birth, and ill health in childhood) and have allowed these factors, along with child care, to mediate the effects of poverty and other exogenous variables. We produce two main findings. First, the influence of family poverty on children's intellectual development is mediated completely by the intervening mechanisms measured by our latent factors. Second, our analysis points to cognitive stimulation in the home, and (to a lesser extent) to parenting style, physical environment of the home, and poor child health at birth, as mediating factors that are affected by lack of income and that influence children's intellectual development.

  3. Latent Semantic Analysis.

    ERIC Educational Resources Information Center

    Dumais, Susan T.

    2004-01-01

    Presents a literature review that covers the following topics related to Latent Semantic Analysis (LSA): (1) LSA overview; (2) applications of LSA, including information retrieval (IR), information filtering, cross-language retrieval, and other IR-related LSA applications; (3) modeling human memory, including the relationship of LSA to other…

  4. Application of Latent Class Analysis to Identify Behavioral Patterns of Response to Behavioral Lifestyle Interventions in Overweight and Obese Adults

    PubMed Central

    Fitzpatrick, Stephanie L.; Coughlin, Janelle W.; Appel, Lawrence J.; Tyson, Crystal; Stevens, Victor J.; Jerome, Gerald J.; Dalcin, Arlene; Brantley, Phillip J.; Hill-Briggs, Felicia

    2016-01-01

    Background Examining responders and non-responders to behavioral lifestyle interventions among overweight/obese adults with additional comorbidities may aid in refining and tailoring obesity treatment. Purpose The purpose of this study is to demonstrate the use of latent class analysis to identify patterns of response to behavioral lifestyle interventions based on adherence to diet and exercise recommendations. Method Repeated measures latent class analysis was applied to two clinical trial datasets, combination of two active interventions in the PREMIER Trial (n=501) and phase 1 of the Weight Loss Maintenance Trial (WLM; n=1685), to identify patterns of response to behavioral lifestyle interventions. Treatment response was based on adherence to daily recommendations for fruit/vegetable, fat, saturated fat, sodium, and exercise at baseline and 6 months. Results In PREMIER, three distinct latent classes emerged: responders (45.9 %), non-responders (23.6 %), and early adherers (30.5 %). Responders and Early Adherers had greater weight loss at 6 and 18 months and were more likely to meet behavioral recommendations at 18 months than Non-responders. For WLM, there were four latent classes: partial responders (16 %), non-responders (40 %), early adherers (2 %), and fruit/veggie only responders (41 %). Non-responders in WLM had significantly less weight loss at 6 months compared to that of the other three latent classes. Conclusion Latent class analysis is a useful method to apply to clinical trial data to identify distinct patterns of response to behavioral interventions. Overweight/ obese participants who respond to behavioral lifestyle treatment (i.e., meet behavioral recommendations) have significantly greater weight loss than that of participants who do not make behavioral changes. PMID:25331853

  5. Application of Latent Class Analysis to Identify Behavioral Patterns of Response to Behavioral Lifestyle Interventions in Overweight and Obese Adults.

    PubMed

    Fitzpatrick, Stephanie L; Coughlin, Janelle W; Appel, Lawrence J; Tyson, Crystal; Stevens, Victor J; Jerome, Gerald J; Dalcin, Arlene; Brantley, Phillip J; Hill-Briggs, Felicia

    2015-08-01

    Examining responders and non-responders to behavioral lifestyle interventions among overweight/obese adults with additional comorbidities may aid in refining and tailoring obesity treatment. The purpose of this study is to demonstrate the use of latent class analysis to identify patterns of response to behavioral lifestyle interventions based on adherence to diet and exercise recommendations. Repeated measures latent class analysis was applied to two clinical trial datasets, combination of two active interventions in the PREMIER Trial (n = 501) and phase 1 of the Weight Loss Maintenance Trial (WLM; n = 1685), to identify patterns of response to behavioral lifestyle interventions. Treatment response was based on adherence to daily recommendations for fruit/vegetable, fat, saturated fat, sodium, and exercise at baseline and 6 months. In PREMIER, three distinct latent classes emerged: responders (45.9%), non-responders (23.6%), and early adherers (30.5%). Responders and Early Adherers had greater weight loss at 6 and 18 months and were more likely to meet behavioral recommendations at 18 months than Non-responders. For WLM, there were four latent classes: partial responders (16%), non-responders (40%), early adherers (2%), and fruit/veggie only responders (41%). Non-responders in WLM had significantly less weight loss at 6 months compared to that of the other three latent classes. Latent class analysis is a useful method to apply to clinical trial data to identify distinct patterns of response to behavioral interventions. Overweight/ obese participants who respond to behavioral lifestyle treatment (i.e., meet behavioral recommendations) have significantly greater weight loss than that of participants who do not make behavioral changes.

  6. A Latent Class Regression Analysis of Men's Conformity to Masculine Norms and Psychological Distress

    ERIC Educational Resources Information Center

    Wong, Y. Joel; Owen, Jesse; Shea, Munyi

    2012-01-01

    How are specific dimensions of masculinity related to psychological distress in specific groups of men? To address this question, the authors used latent class regression to assess the optimal number of latent classes that explained differential relationships between conformity to masculine norms and psychological distress in a racially diverse…

  7. Mixture Distribution Latent State-Trait Analysis: Basic Ideas and Applications

    ERIC Educational Resources Information Center

    Courvoisier, Delphine S.; Eid, Michael; Nussbeck, Fridtjof W.

    2007-01-01

    Extensions of latent state-trait models for continuous observed variables to mixture latent state-trait models with and without covariates of change are presented that can separate individuals differing in their occasion-specific variability. An empirical application to the repeated measurement of mood states (N = 501) revealed that a model with 2…

  8. Investigating Subtypes of Child Development: A Comparison of Cluster Analysis and Latent Class Cluster Analysis in Typology Creation

    ERIC Educational Resources Information Center

    DiStefano, Christine; Kamphaus, R. W.

    2006-01-01

    Two classification methods, latent class cluster analysis and cluster analysis, are used to identify groups of child behavioral adjustment underlying a sample of elementary school children aged 6 to 11 years. Behavioral rating information across 14 subscales was obtained from classroom teachers and used as input for analyses. Both the procedures…

  9. Modeling Bivariate Change in Individual Differences: Prospective Associations Between Personality and Life Satisfaction.

    PubMed

    Hounkpatin, Hilda Osafo; Boyce, Christopher J; Dunn, Graham; Wood, Alex M

    2017-09-18

    A number of structural equation models have been developed to examine change in 1 variable or the longitudinal association between 2 variables. The most common of these are the latent growth model, the autoregressive cross-lagged model, the autoregressive latent trajectory model, and the latent change score model. The authors first overview each of these models through evaluating their different assumptions surrounding the nature of change and how these assumptions may result in different data interpretations. They then, to elucidate these issues in an empirical example, examine the longitudinal association between personality traits and life satisfaction. In a representative Dutch sample (N = 8,320), with participants providing data on both personality and life satisfaction measures every 2 years over an 8-year period, the authors reproduce findings from previous research. However, some of the structural equation models overviewed have not previously been applied to the personality-life satisfaction relation. The extended empirical examination suggests intraindividual changes in life satisfaction predict subsequent intraindividual changes in personality traits. The availability of data sets with 3 or more assessment waves allows the application of more advanced structural equation models such as the autoregressive latent trajectory or the extended latent change score model, which accounts for the complex dynamic nature of change processes and allows stronger inferences on the nature of the association between variables. However, the choice of model should be determined by theories of change processes in the variables being studied. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Test-retest reliability of the underlying latent factor structure of alcohol subjective response.

    PubMed

    Lutz, Joseph A; Childs, Emma

    2017-04-01

    Alcohol subjective experiences are multi-dimensional and demonstrate wide inter-individual variability. Recent efforts have sought to establish a clearer understanding of subjective alcohol responses by identifying core constructs derived from multiple measurement instruments. The aim of this study was to evaluate the temporal stability of this approach to conceptualizing alcohol subjective experiences across successive alcohol administrations in the same individuals. Healthy moderate alcohol drinkers (n = 104) completed six experimental sessions each, three with alcohol (0.8 g/kg), and three with a non-alcoholic control beverage. Participants reported subjective mood and drug effects using standardized questionnaires before and at repeated times after beverage consumption. We explored the underlying latent structure of subjective responses for all alcohol administrations using exploratory factor analysis and then tested measurement invariance over the three successive administrations using multi-group confirmatory factor analyses. Exploratory factor analyses on responses to alcohol across all administrations yielded four factors representing "Positive mood," "Sedation," "Stimulation/Euphoria," and "Drug effects and Urges." A confirmatory factor analysis on the separate administrations indicated acceptable configural and metric invariance and moderate scalar invariance. In this study, we demonstrate temporal stability of the underlying constructs of subjective alcohol responses derived from factor analysis. These findings strengthen the utility of this approach to conceptualizing subjective alcohol responses especially for use in prospective and longitudinal alcohol challenge studies relating subjective response to alcohol use disorder risk.

  11. Measurement Model Specification Error in LISREL Structural Equation Models.

    ERIC Educational Resources Information Center

    Baldwin, Beatrice; Lomax, Richard

    This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…

  12. A Framework for Estimating Causal Effects in Latent Class Analysis: Is There a Causal Link Between Early Sex and Subsequent Profiles of Delinquency?

    PubMed Central

    Lanza, Stephanie T.; Coffman, Donna L.

    2013-01-01

    Prevention scientists use latent class analysis (LCA) with increasing frequency to characterize complex behavior patterns and profiles of risk. Often, the most important research questions in these studies involve establishing characteristics that predict membership in the latent classes, thus describing the composition of the subgroups and suggesting possible points of intervention. More recently, prevention scientists have begun to adopt modern methods for drawing causal inference from observational data because of the bias that can be introduced by confounders. This same issue of confounding exists in any analysis of observational data, including prediction of latent class membership. This study demonstrates a straightforward approach to causal inference in LCA that builds on propensity score methods. We demonstrate this approach by examining the causal effect of early sex on subsequent delinquency latent classes using data from 1,890 adolescents in 11th and 12th grade from wave I of the National Longitudinal Study of Adolescent Health. Prior to the statistical adjustment for potential confounders, early sex was significantly associated with delinquency latent class membership for both genders (p=0.02). However, the propensity score adjusted analysis indicated no evidence for a causal effect of early sex on delinquency class membership (p=0.76) for either gender. Sample R and SAS code is included in an Appendix in the ESM so that prevention scientists may adopt this approach to causal inference in LCA in their own work. PMID:23839479

  13. A framework for estimating causal effects in latent class analysis: is there a causal link between early sex and subsequent profiles of delinquency?

    PubMed

    Butera, Nicole M; Lanza, Stephanie T; Coffman, Donna L

    2014-06-01

    Prevention scientists use latent class analysis (LCA) with increasing frequency to characterize complex behavior patterns and profiles of risk. Often, the most important research questions in these studies involve establishing characteristics that predict membership in the latent classes, thus describing the composition of the subgroups and suggesting possible points of intervention. More recently, prevention scientists have begun to adopt modern methods for drawing causal inference from observational data because of the bias that can be introduced by confounders. This same issue of confounding exists in any analysis of observational data, including prediction of latent class membership. This study demonstrates a straightforward approach to causal inference in LCA that builds on propensity score methods. We demonstrate this approach by examining the causal effect of early sex on subsequent delinquency latent classes using data from 1,890 adolescents in 11th and 12th grade from wave I of the National Longitudinal Study of Adolescent Health. Prior to the statistical adjustment for potential confounders, early sex was significantly associated with delinquency latent class membership for both genders (p = 0.02). However, the propensity score adjusted analysis indicated no evidence for a causal effect of early sex on delinquency class membership (p = 0.76) for either gender. Sample R and SAS code is included in an Appendix in the ESM so that prevention scientists may adopt this approach to causal inference in LCA in their own work.

  14. The Attitudes to Ageing Questionnaire: Mokken Scaling Analysis

    PubMed Central

    Shenkin, Susan D.; Watson, Roger; Laidlaw, Ken; Starr, John M.; Deary, Ian J.

    2014-01-01

    Background Hierarchical scales are useful in understanding the structure of underlying latent traits in many questionnaires. The Attitudes to Ageing Questionnaire (AAQ) explored the attitudes to ageing of older people themselves, and originally described three distinct subscales: (1) Psychosocial Loss (2) Physical Change and (3) Psychological Growth. This study aimed to use Mokken analysis, a method of Item Response Theory, to test for hierarchies within the AAQ and to explore how these relate to underlying latent traits. Methods Participants in a longitudinal cohort study, the Lothian Birth Cohort 1936, completed a cross-sectional postal survey. Data from 802 participants were analysed using Mokken Scaling analysis. These results were compared with factor analysis using exploratory structural equation modelling. Results Participants were 51.6% male, mean age 74.0 years (SD 0.28). Three scales were identified from 18 of the 24 items: two weak Mokken scales and one moderate Mokken scale. (1) ‘Vitality’ contained a combination of items from all three previously determined factors of the AAQ, with a hierarchy from physical to psychosocial; (2) ‘Legacy’ contained items exclusively from the Psychological Growth scale, with a hierarchy from individual contributions to passing things on; (3) ‘Exclusion’ contained items from the Psychosocial Loss scale, with a hierarchy from general to specific instances. All of the scales were reliable and statistically significant with ‘Legacy’ showing invariant item ordering. The scales correlate as expected with personality, anxiety and depression. Exploratory SEM mostly confirmed the original factor structure. Conclusions The concurrent use of factor analysis and Mokken scaling provides additional information about the AAQ. The previously-described factor structure is mostly confirmed. Mokken scaling identifies a new factor relating to vitality, and a hierarchy of responses within three separate scales, referring to vitality, legacy and exclusion. This shows what older people themselves consider important regarding their own ageing. PMID:24892302

  15. A longitudinal multilevel CFA-MTMM model for interchangeable and structurally different methods

    PubMed Central

    Koch, Tobias; Schultze, Martin; Eid, Michael; Geiser, Christian

    2014-01-01

    One of the key interests in the social sciences is the investigation of change and stability of a given attribute. Although numerous models have been proposed in the past for analyzing longitudinal data including multilevel and/or latent variable modeling approaches, only few modeling approaches have been developed for studying the construct validity in longitudinal multitrait-multimethod (MTMM) measurement designs. The aim of the present study was to extend the spectrum of current longitudinal modeling approaches for MTMM analysis. Specifically, a new longitudinal multilevel CFA-MTMM model for measurement designs with structurally different and interchangeable methods (called Latent-State-Combination-Of-Methods model, LS-COM) is presented. Interchangeable methods are methods that are randomly sampled from a set of equivalent methods (e.g., multiple student ratings for teaching quality), whereas structurally different methods are methods that cannot be easily replaced by one another (e.g., teacher, self-ratings, principle ratings). Results of a simulation study indicate that the parameters and standard errors in the LS-COM model are well recovered even in conditions with only five observations per estimated model parameter. The advantages and limitations of the LS-COM model relative to other longitudinal MTMM modeling approaches are discussed. PMID:24860515

  16. Evaluating Mixture Modeling for Clustering: Recommendations and Cautions

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.

    2011-01-01

    This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…

  17. Latent human error analysis and efficient improvement strategies by fuzzy TOPSIS in aviation maintenance tasks.

    PubMed

    Chiu, Ming-Chuan; Hsieh, Min-Chih

    2016-05-01

    The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. The Role of Religiousness/Spirituality in Health-Related Quality of Life Among Adolescents with HIV: A Latent Profile Analysis

    PubMed Central

    Kimmel, Allison L.; Cheng, Yao Iris; Wang, Jichuan

    2016-01-01

    The purpose of this study was to determine whether distinct latent profiles of religiousness/spirituality exist for ALWH, and if so, are latent profile memberships associated with health-related quality of life (HRQoL). Latent profile analysis of religiosity identified four profiles/groups. Compared to the other three groups, higher levels of emotional well-being were found among young perinatally infected adolescents who attended religious services, but who did not pray privately, feel God's presence or identify as religious or spiritual. Social HRQoL was significantly higher among the highest overall religious/spiritual group. Understanding adolescent profiles of religiousness/spirituality on HRQoL could inform faith-based interventions. PMID:27071797

  19. The Role of Religiousness/Spirituality in Health-Related Quality of Life Among Adolescents with HIV: A Latent Profile Analysis.

    PubMed

    Lyon, Maureen E; Kimmel, Allison L; Cheng, Yao Iris; Wang, Jichuan

    2016-10-01

    The purpose of this study was to determine whether distinct latent profiles of religiousness/spirituality exist for ALWH, and if so, are latent profile memberships associated with health-related quality of life (HRQoL). Latent profile analysis of religiosity identified four profiles/groups. Compared to the other three groups, higher levels of emotional well-being were found among young perinatally infected adolescents who attended religious services, but who did not pray privately, feel God's presence or identify as religious or spiritual. Social HRQoL was significantly higher among the highest overall religious/spiritual group. Understanding adolescent profiles of religiousness/spirituality on HRQoL could inform faith-based interventions. Trial registration NCT01289444.

  20. Analysis and Visualization of Relations in eLearning

    NASA Astrophysics Data System (ADS)

    Dráždilová, Pavla; Obadi, Gamila; Slaninová, Kateřina; Martinovič, Jan; Snášel, Václav

    The popularity of eLearning systems is growing rapidly; this growth is enabled by the consecutive development in Internet and multimedia technologies. Web-based education became wide spread in the past few years. Various types of learning management systems facilitate development of Web-based courses. Users of these courses form social networks through the different activities performed by them. This chapter focuses on searching the latent social networks in eLearning systems data. These data consist of students activity records wherein latent ties among actors are embedded. The social network studied in this chapter is represented by groups of students who have similar contacts and interact in similar social circles. Different methods of data clustering analysis can be applied to these groups, and the findings show the existence of latent ties among the group members. The second part of this chapter focuses on social network visualization. Graphical representation of social network can describe its structure very efficiently. It can enable social network analysts to determine the network degree of connectivity. Analysts can easily determine individuals with a small or large amount of relationships as well as the amount of independent groups in a given network. When applied to the field of eLearning, data visualization simplifies the process of monitoring the study activities of individuals or groups, as well as the planning of educational curriculum, the evaluation of study processes, etc.

  1. Implicit measurement of the latent heat in a magnetocaloric NiMnIn Heusler alloy

    NASA Astrophysics Data System (ADS)

    Ghahremani, Mohammadreza; ElBidweihy, Hatem; Bennett, Lawrence H.; Della Torre, Edward; Zou, Min; Johnson, Francis

    2013-05-01

    The latent heat linked with the first-order transformation of a NiMnIn Heusler alloy has been studied through direct measurements of the adiabatic temperature change, ΔTad, during magnetization process. The experimental procedure used guarantees independent data points and negates any contribution of hysteretic losses to the magnetocaloric effect. Thus, the differences between the magnitudes of ΔTad measurements during the magnetization with the initial temperature change directions from low-to-high and high-to-low are solely attributed to the latent heat exchange, which accompanies the irreversible structural first-order transformation. An estimate of the latent heat inducing such differences is about 0.292 J/g.

  2. The Development of the Problematic Online Gaming Questionnaire (POGQ)

    PubMed Central

    Demetrovics, Zsolt; Urbán, Róbert; Nagygyörgy, Katalin; Farkas, Judit; Griffiths, Mark D.; Pápay, Orsolya; Kökönyei, Gyöngyi; Felvinczi, Katalin; Oláh, Attila

    2012-01-01

    Background Online gaming has become increasingly popular. However, this has led to concerns that these games might induce serious problems and/or lead to dependence for a minority of players. Aim: The aim of this study was to uncover and operationalize the components of problematic online gaming. Methods A total of 3415 gamers (90% males; mean age 21 years), were recruited through online gaming websites. A combined method of exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) was applied. Latent profile analysis was applied to identify persons at-risk. Results EFA revealed a six-factor structure in the background of problematic online gaming that was also confirmed by a CFA. For the assessment of the identified six dimensions – preoccupation, overuse, immersion, social isolation, interpersonal conflicts, and withdrawal – the 18-item Problematic Online Gaming Questionnaire (POGQ) proved to be exceedingly suitable. Based on the latent profile analysis, 3.4% of the gamer population was considered to be at high risk, while another 15.2% was moderately problematic. Conclusions The POGQ seems to be an adequate measurement tool for the differentiated assessment of gaming related problems on six subscales. PMID:22590541

  3. Examining Combinations of Social Physique Anxiety and Motivation Regulations Using Latent Profile Analysis

    ERIC Educational Resources Information Center

    Ullrich-French, Sarah; Cox, Anne E.; Cooper, Brittany Rhoades

    2016-01-01

    Previous research has used cluster analysis to examine how social physique anxiety (SPA) combines with motivation in physical education. This study utilized a more advanced analytic approach, latent profile analysis (LPA), to identify profiles of SPA and motivation regulations. Students in grades 9-12 (N = 298) completed questionnaires at two time…

  4. Trajectories of Multidimensional Caregiver Burden in Chinese Informal Caregivers for Dementia: Evidence from Exploratory and Confirmatory Factor Analysis of the Zarit Burden Interview.

    PubMed

    Li, Dan; Hu, Nan; Yu, Yueyi; Zhou, Aihong; Li, Fangyu; Jia, Jianping

    2017-01-01

    Despite its popularity, the latent structure of 22-item Zarit Burden Interview (ZBI) remains unclear. There has been no study exploring how caregiver multidimensional burden changed. The aim of the work was to validate the latent structure of ZBI and to investigate how multidimensional burden evolves with increasing global burden. We studied 1,132 dyads of dementia patients and their informal caregivers. The caregivers completed the ZBI and a questionnaire regarding caregiving. The total sample was randomly split into two equal subsamples. Exploratory factor analysis (EFA) was performed in the first subsample. In the second subsample, confirmatory factor analysis (CFA) was conducted to validate models generated from EFA. The mean of weighted factor score was calculated to assess the change of dimension burden against the increasing ZBI total score. The result of EFA and CFA supported that a five-factor structure, including role strain, personal strain, incompetency, dependency, and guilt, had the best goodness-of-fit. The trajectories of multidimensional burden suggested that three different dimensions (guilt, role strain and personal strain) became the main subtype of burden in sequence as the ZBI total score increased from mild to moderate. Factor dependency contributed prominently to the total burden in severe stage. The five-factor ZBI is a psychometrically robust measure for assessing multidimensional burden in Chinese caregivers. The changes of multidimensional burden have deepened our understanding of the psychological characteristics of caregiving beyond a single total score and may be useful for developing interventions to reduce caregiver burden.

  5. Behavioral Scale Reliability and Measurement Invariance Evaluation Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2004-01-01

    A latent variable modeling approach to reliability and measurement invariance evaluation for multiple-component measuring instruments is outlined. An initial discussion deals with the limitations of coefficient alpha, a frequently used index of composite reliability. A widely and readily applicable structural modeling framework is next described…

  6. Working Memory Tasks Differ in Factor Structure across Age Cohorts: Implications for Dedifferentiation

    ERIC Educational Resources Information Center

    Johnson, Wendy; Logie, Robert H.; Brockmole, James R.

    2010-01-01

    Researchers interested in working memory have debated whether it should be considered a single latent cognitive ability or a set of essentially independent latent abilities distinguished by domain-specific memory and/or processing resources. Simultaneously, researchers interested in cognitive aging have established that there are substantial…

  7. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  8. Diagnostic Procedures for Detecting Nonlinear Relationships between Latent Variables

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Baldasaro, Ruth E.; Gottfredson, Nisha C.

    2012-01-01

    Structural equation models are commonly used to estimate relationships between latent variables. Almost universally, the fitted models specify that these relationships are linear in form. This assumption is rarely checked empirically, largely for lack of appropriate diagnostic techniques. This article presents and evaluates two procedures that can…

  9. A Multidimensional Item Response Model: Constrained Latent Class Analysis Using the Gibbs Sampler and Posterior Predictive Checks.

    ERIC Educational Resources Information Center

    Hoijtink, Herbert; Molenaar, Ivo W.

    1997-01-01

    This paper shows that a certain class of constrained latent class models may be interpreted as a special case of nonparametric multidimensional item response models. Parameters of this latent class model are estimated using an application of the Gibbs sampler, and model fit is investigated using posterior predictive checks. (SLD)

  10. A Vernacular for Linear Latent Growth Models

    ERIC Educational Resources Information Center

    Hancock, Gregory R.; Choi, Jaehwa

    2006-01-01

    In its most basic form, latent growth modeling (latent curve analysis) allows an assessment of individuals' change in a measured variable X over time. For simple linear models, as with other growth models, parameter estimates associated with the a construct (amount of X at a chosen temporal reference point) and b construct (growth in X per unit…

  11. An Overview of Markov Chain Methods for the Study of Stage-Sequential Developmental Processes

    ERIC Educational Resources Information Center

    Kapland, David

    2008-01-01

    This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model.…

  12. A Latent Transition Analysis of Academic Intrinsic Motivation from Childhood through Adolescence

    ERIC Educational Resources Information Center

    Marcoulides, George A.; Gottfried, Adele Eskeles; Gottfried, Allen W.; Oliver, Pamella H.

    2008-01-01

    A longitudinal modeling approach was utilized to determine the existence of latent classes with regard to academic intrinsic motivation and the points of stability and transition of individuals between and within classes. A special type of latent Markov Chain model using "Mplus" was fit to data from the Fullerton Longitudinal Study, with…

  13. Combined Patterns of Risk for Problem and Obesogenic Behaviors in Adolescents: A Latent Class Analysis Approach

    ERIC Educational Resources Information Center

    Fleary, Sasha A.

    2017-01-01

    Background: Several studies have used latent class analyses to explore obesogenic behaviors and substance use in adolescents independently. We explored a variety of health risks jointly to identify distinct patterns of risk behaviors among adolescents. Methods: Latent class models were estimated using Youth Risk Behavior Surveillance System…

  14. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E.; Olson, W.

    2005-01-01

    Rainfall production is a fundamental process within the Earth;s hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations with the Tropics - as well as modify the energetic efficiencies of mid-latitude weather systems. This paper highlights the retrieval of observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional amount of rainfall over the global Tropics and sub-tropics - information which can be used to estimate the spacetime structure of latent heating across the Earth's low latitudes. A set of algorithm methodologies has and continues to be developed to estimate latent heating based on rain rate profile retrievals obtained from TRMM measurements. These algorithms are briefly described followed by a discussion of the foremost latent heating products that can be generate from them. The investigation then provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  15. A Latent Profile Analysis of University Students' Self-Regulated Learning Strategies

    ERIC Educational Resources Information Center

    Ning, Hoi Kwan; Downing, Kevin

    2015-01-01

    Based on self-reported cognitive, metacognitive, and behavioural strategy measures obtained from 828 final-year students from a university in Hong Kong, latent profile analysis (LPA) identified four distinct types of students with differential self-regulated learning strategy orientations: "competent self-regulated learners",…

  16. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  17. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  18. Vertical Profiles of Latent Heat Release over the Global Tropics Using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in straitform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMXX), Brazil in 1999 (TRMM- LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  19. Heterogeneity of sleep quality in relation to circadian preferences and depressive symptomatology among major depressive patients.

    PubMed

    Selvi, Yavuz; Boysan, Murat; Kandeger, Ali; Uygur, Omer F; Sayin, Ayca A; Akbaba, Nursel; Koc, Basak

    2018-08-01

    The current study aimed at investigating the latent dimensional structure of sleep quality as indexed by the seven components of the Pittsburgh Sleep Quality Index (PSQI), as well as latent covariance structure between sleep quality, circadian preferences and depressive symptoms. Two hundred twenty-five patients with major depressive disorder (MDD), with an average age of 29.92 ± 10.49 years (aged between 17 and 63), participated in the study. The PSQI, Morningness-Eveningness Questionnaire (MEQ) and Beck Depression Inventory (BDI) were administered to participants. Four sets of latent class analyses were subsequently run to obtain optimal number of latent classes best fit to the data. Mixture models revealed that sleep quality is multifaceted in MDD. The data best fit to four-latent-class model: Poor Habitual Sleep Quality (PHSQ), Poor Subjective Sleep Quality (PSSQ), Intermediate Sleep Quality (ISQ), and Good Sleep Quality (GSQ). MDD patients classified into GSQ latent class (23.6%) reported the lowest depressive symptoms and were more prone to morningness diurnal preferences compared to other three homogenous sub-groups. Finally, the significant association between eveningness diurnal preferences and depressive symptomatology was significantly mediated by poor sleep quality. The cross-sectional nature of the study and the lack of an objective measurement of sleep such as polysomnography recordings was the most striking limitation of the study. We concluded sleep quality in relation to circadian preferences and depressive symptoms has a heterogeneous nature in MDD. Copyright © 2018. Published by Elsevier B.V.

  20. Latent geometry of bipartite networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2017-03-01

    Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.

  1. Assets as a Socioeconomic Status Index: Categorical Principal Components Analysis vs. Latent Class Analysis.

    PubMed

    Sartipi, Majid; Nedjat, Saharnaz; Mansournia, Mohammad Ali; Baigi, Vali; Fotouhi, Akbar

    2016-11-01

    Some variables like Socioeconomic Status (SES) cannot be directly measured, instead, so-called 'latent variables' are measured indirectly through calculating tangible items. There are different methods for measuring latent variables such as data reduction methods e.g. Principal Components Analysis (PCA) and Latent Class Analysis (LCA). The purpose of our study was to measure assets index- as a representative of SES- through two methods of Non-Linear PCA (NLPCA) and LCA, and to compare them for choosing the most appropriate model. This was a cross sectional study in which 1995 respondents filled the questionnaires about their assets in Tehran. The data were analyzed by SPSS 19 (CATPCA command) and SAS 9.2 (PROC LCA command) to estimate their socioeconomic status. The results were compared based on the Intra-class Correlation Coefficient (ICC). The 6 derived classes from LCA based on BIC, were highly consistent with the 6 classes from CATPCA (Categorical PCA) (ICC = 0.87, 95%CI: 0.86 - 0.88). There is no gold standard to measure SES. Therefore, it is not possible to definitely say that a specific method is better than another one. LCA is a complicated method that presents detailed information about latent variables and required one assumption (local independency), while NLPCA is a simple method, which requires more assumptions. Generally, NLPCA seems to be an acceptable method of analysis because of its simplicity and high agreement with LCA.

  2. Changes in latent fingerprint examiners' markup between analysis and comparison.

    PubMed

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2015-02-01

    After the initial analysis of a latent print, an examiner will sometimes revise the assessment during comparison with an exemplar. Changes between analysis and comparison may indicate that the initial analysis of the latent was inadequate, or that confirmation bias may have affected the comparison. 170 volunteer latent print examiners, each randomly assigned 22 pairs of prints from a pool of 320 total pairs, provided detailed markup documenting their interpretations of the prints and the bases for their comparison conclusions. We describe changes in value assessments and markup of features and clarity. When examiners individualized, they almost always added or deleted minutiae (90.3% of individualizations); every examiner revised at least some markups. For inconclusive and exclusion determinations, changes were less common, and features were added more frequently when the image pair was mated (same source). Even when individualizations were based on eight or fewer corresponding minutiae, in most cases some of those minutiae had been added during comparison. One erroneous individualization was observed: the markup changes were notably extreme, and almost all of the corresponding minutiae had been added during comparison. Latents assessed to be of value for exclusion only (VEO) during analysis were often individualized when compared to a mated exemplar (26%); in our previous work, where examiners were not required to provide markup of features, VEO individualizations were much less common (1.8%). Published by Elsevier Ireland Ltd.

  3. An enhanced feature set for pattern recognition based contrast enhancement of contact-less captured latent fingerprints in digitized crime scene forensics

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2014-02-01

    In crime scene forensics latent fingerprints are found on various substrates. Nowadays primarily physical or chemical preprocessing techniques are applied for enhancing the visibility of the fingerprint trace. In order to avoid altering the trace it has been shown that contact-less sensors offer a non-destructive acquisition approach. Here, the exploitation of fingerprint or substrate properties and the utilization of signal processing techniques are an essential requirement to enhance the fingerprint visibility. However, especially the optimal sensory is often substrate-dependent. An enhanced generic pattern recognition based contrast enhancement approach for scans of a chromatic white light sensor is introduced in Hildebrandt et al.1 using statistical, structural and Benford's law2 features for blocks of 50 micron. This approach achieves very good results for latent fingerprints on cooperative, non-textured, smooth substrates. However, on textured and structured substrates the error rates are very high and the approach thus unsuitable for forensic use cases. We propose the extension of the feature set with semantic features derived from known Gabor filter based exemplar fingerprint enhancement techniques by suggesting an Epsilon-neighborhood of each block in order to achieve an improved accuracy (called fingerprint ridge orientation semantics). Furthermore, we use rotation invariant Hu moments as an extension of the structural features and two additional preprocessing methods (separate X- and Y Sobel operators). This results in a 408-dimensional feature space. In our experiments we investigate and report the recognition accuracy for eight substrates, each with ten latent fingerprints: white furniture surface, veneered plywood, brushed stainless steel, aluminum foil, "Golden-Oak" veneer, non-metallic matte car body finish, metallic car body finish and blued metal. In comparison to Hildebrandt et al.,1 our evaluation shows a significant reduction of the error rates by 15.8 percent points on brushed stainless steel using the same classifier. This also allows for a successful biometric matching of 3 of the 8 latent fingerprint samples with the corresponding exemplar fingerprint on this particular substrate. For contrast enhancement analysis of classification results we suggest to use known Visual Quality Indexes (VQI)3 as a contrast enhancement quality indicator and discuss our first preliminary results using the exemplary chosen VQI Edge Similarity Score (ESS),4 showing a tendency that higher image differences between a substrate containing a fingerprint and a substrate with a blank surface correlate with a higher recognition accuracy between a latent fingerprint and an exemplar fingerprint. Those first preliminary results support further research into VQIs as contrast enhancement quality indicator for a given feature space.

  4. Role of resilient personality on lower achieving first grade students' current and future achievement

    PubMed Central

    Kwok, Oi-man; Hughes, Jan N.; Luo, Wen

    2007-01-01

    This study investigated a measurement model of personality resilience and the contribution of personality resilience to lower achieving first grade students' academic achievement. Participants were 445 ethnically diverse children who at entrance to first grade scored below their school district median on a test of literacy. Participants were administered an individual achievement test in first grade and 1 year later. Confirmatory factor analysis confirmed a second-order latent construct of resilient personality defined by teacher-rated conscientiousness, agreeableness, and ego-resiliency that was distinct from measures of externalizing behaviors and IQ. Using latent structural equation modeling and controlling for baseline economic adversity, IQ, and externalizing symptoms, resilient personality predicted children's concurrent and future achievement (controlling also for baseline achievement in the prospective analyses). Model fit was invariant across gender. PMID:18084626

  5. The Shame and Guilt Scales of the Test of Self-Conscious Affect-Adolescent (TOSCA-A): Factor Structure, Concurrent and Discriminant Validity, and Measurement and Structural Invariance Across Ratings of Males and Females.

    PubMed

    Watson, Shaun; Gomez, Rapson; Gullone, Eleonora

    2017-06-01

    This study examined various psychometric properties of the items comprising the shame and guilt scales of the Test of Self-Conscious Affect-Adolescent. A total of 563 adolescents (321 females and 242 males) completed these scales, and also measures of depression and empathy. Confirmatory factor analysis provided support for an oblique two-factor model, with the originally proposed shame and guilt items comprising shame and guilt factors, respectively. Also, shame correlated with depression positively and had no relation with empathy. Guilt correlated with depression negatively and with empathy positively. Thus, there was support for the convergent and discriminant validity of the shame and guilt factors. Multiple-group confirmatory factor analysis comparing females and males, based on the chi-square difference test, supported full metric invariance, the intercept invariance of 26 of the 30 shame and guilt items, and higher latent mean scores among females for both shame and guilt. Comparisons based on the difference in root mean squared error of approximation values supported full measurement invariance and no gender difference for latent mean scores. The psychometric and practical implications of the findings are discussed.

  6. Substance Use Profiles of Urban American Indian Adolescents: A Latent Class Analysis.

    PubMed

    Kulis, Stephen S; Jager, Justin; Ayers, Stephanie L; Lateef, Husain; Kiehne, Elizabeth

    2016-07-28

    A growing majority of American Indian adolescents now live in cities and are at high risk of early and problematic substance use and its negative health effects. This study used latent class analysis to empirically derive heterogeneous patterns of substance use among urban American Indian adolescents, examined demographic correlates of the resulting latent classes, and tested for differences among the latent classes in other risk behavior and prosocial outcomes. The study employed a representative sample of 8th, 10th, and 12th grade American Indian adolescents (n = 2,407) in public or charter schools in metropolitan areas of Arizona in 2012. Latent class analysis examined eight types of last 30 day substance use. Four latent classes emerged: a large group of "nonusers" (69%); a substantial minority using alcohol, tobacco, and/or marijuana [ATM] (17%); a smaller group of polysubstance users consuming, alcohol, tobacco, marijuana, other illicit drugs, and prescription or OTC drugs in combination (6%); and a "not alcohol" group reporting combinations of tobacco, marijuana, and prescription drug use, but rarely alcohol use (4%). The latent classes varied by age and grade level, but not by other demographic characteristics, and aligned in highly consistent patterns on other non-substance use outcomes. Polysubstance users reported the most problematic and nonusers the least problematic outcomes, with ATM and "not alcohol" users in the middle. Urban AI adolescent substance use occurs in three somewhat distinctive patterns of combinations of recent alcohol and drug consumption, covarying in systematic ways with other problematic risk behaviors and attitudes.

  7. Short-term memory development: differences in serial position curves between age groups and latent classes.

    PubMed

    Koppenol-Gonzalez, Gabriela V; Bouwmeester, Samantha; Vermunt, Jeroen K

    2014-10-01

    In studies on the development of cognitive processes, children are often grouped based on their ages before analyzing the data. After the analysis, the differences between age groups are interpreted as developmental differences. We argue that this approach is problematic because the variance in cognitive performance within an age group is considered to be measurement error. However, if a part of this variance is systematic, it can provide very useful information about the cognitive processes used by some children of a certain age but not others. In the current study, we presented 210 children aged 5 to 12 years with serial order short-term memory tasks. First we analyze our data according to the approach using age groups, and then we apply latent class analysis to form latent classes of children based on their performance instead of their ages. We display the results of the age groups and the latent classes in terms of serial position curves, and we discuss the differences in results. Our findings show that there are considerable differences in performance between the age groups and the latent classes. We interpret our findings as indicating that the latent class analysis yielded a much more meaningful way of grouping children in terms of cognitive processes than the a priori grouping of children based on their ages. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Olson, W. S.; Meneghini, R.; Yang, S.; Simpson, J.; Kummerow, C.; Smith, E.

    2000-01-01

    This paper represents the first attempt to use TRMM rainfall information to estimate the four dimensional latent heating structure over the global tropics for February 1998. The mean latent heating profiles over six oceanic regions (TOGA COARE IFA, Central Pacific, S. Pacific Convergence Zone, East Pacific, Indian Ocean and Atlantic Ocean) and three continental regions (S. America, Central Africa and Australia) are estimated and studied. The heating profiles obtained from the results of diagnostic budget studies over a broad range of geographic locations are used to provide comparisons and indirect validation for the heating algorithm estimated heating profiles. Three different latent heating algorithms, the Goddard Convective-Stratiform (CSH) heating, the Goddard Profiling (GPROF) heating, and the Hydrometeor heating (HH) are used and their results are intercompared. The horizontal distribution or patterns of latent heat release from the three different heating retrieval methods are quite similar. They all can identify the areas of major convective activity (i.e., a well defined ITCZ in the Pacific, a distinct SPCZ) in the global tropics. The magnitude of their estimated latent heating release is also not in bad agreement with each other and with those determined from diagnostic budget studies. However, the major difference among these three heating retrieval algorithms is the altitude of the maximum heating level. The CSH algorithm estimated heating profiles only show one maximum heating level, and the level varies between convective activity from various geographic locations. These features are in good agreement with diagnostic budget studies. By contrast, two maximum heating levels were found using the GPROF heating and HH algorithms. The latent heating profiles estimated from all three methods can not show cooling between active convective events. We also examined the impact of different TMI (Multi-channel Passive Microwave Sensor) and PR (Precipitation Radar) rainfall information on latent heating structures.

  9. Deep and Structured Robust Information Theoretic Learning for Image Analysis.

    PubMed

    Deng, Yue; Bao, Feng; Deng, Xuesong; Wang, Ruiping; Kong, Youyong; Dai, Qionghai

    2016-07-07

    This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e. missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier that maximize the mutual information of data and their labels in the latent space. In this general paradigm, we respectively discuss three types of the RIT implementations with linear subspace embedding, deep transformation and structured sparse learning. In practice, the RIT and deep RIT are exploited to solve the image categorization task whose performances will be verified on various benchmark datasets. The structured sparse RIT is further applied to a medical image analysis task for brain MRI segmentation that allows group-level feature selections on the brain tissues.

  10. The use of cognitive ability measures as explanatory variables in regression analysis.

    PubMed

    Junker, Brian; Schofield, Lynne Steuerle; Taylor, Lowell J

    2012-12-01

    Cognitive ability measures are often taken as explanatory variables in regression analysis, e.g., as a factor affecting a market outcome such as an individual's wage, or a decision such as an individual's education acquisition. Cognitive ability is a latent construct; its true value is unobserved. Nonetheless, researchers often assume that a test score , constructed via standard psychometric practice from individuals' responses to test items, can be safely used in regression analysis. We examine problems that can arise, and suggest that an alternative approach, a "mixed effects structural equations" (MESE) model, may be more appropriate in many circumstances.

  11. Peplau's Theory of Interpersonal Relations: An Alternate Factor Structure for Patient Experience Data?

    PubMed

    Hagerty, Thomas A; Samuels, William; Norcini-Pala, Andrea; Gigliotti, Eileen

    2017-04-01

    A confirmatory factor analysis of data from the responses of 12,436 patients to 16 items on the Consumer Assessment of Healthcare Providers and Systems-Hospital survey was used to test a latent factor structure based on Peplau's middle-range theory of interpersonal relations. A two-factor model based on Peplau's theory fit these data well, whereas a three-factor model also based on Peplau's theory fit them excellently and provided a suitable alternate factor structure for the data. Though neither the two- nor three-factor model fit as well as the original factor structure, these results support using Peplau's theory to demonstrate nursing's extensive contribution to the experiences of hospitalized patients.

  12. Meta-Analysis of Scale Reliability Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2013-01-01

    A latent variable modeling approach is outlined that can be used for meta-analysis of reliability coefficients of multicomponent measuring instruments. Important limitations of efforts to combine composite reliability findings across multiple studies are initially pointed out. A reliability synthesis procedure is discussed that is based on…

  13. Comparisons of Mathematics Intervention Effects in Resource and Inclusive Classrooms

    ERIC Educational Resources Information Center

    Bottge, Brian A.; Cohen, Allan S.; Choi, Hye-Jeong

    2018-01-01

    In this article, we describe results of a reanalysis of two randomized studies that tested the effects of enhanced anchored instruction (EAI) on the fractions computation performance of students in special education resource rooms and inclusive mathematics classrooms. Latent class analysis and latent transition analysis classified students…

  14. A Latent Class Analysis of Dyadic Perfectionism in a College Sample

    ERIC Educational Resources Information Center

    Lopez, Frederick G.; Fons-Scheyd, Alia; Bush-King, Imelda; McDermott, Ryon C.

    2011-01-01

    A latent class analysis of dyadic perfectionism scores within a college sample (N = 369) identified four classes of participants. Controlling for gender and current dating status, class membership was associated with significant differences on several measures of relationship attitudes. Gender and class membership also significantly interacted in…

  15. Modeling the Trajectory of Analgesic Demand Over Time After Total Knee Arthroplasty Using the Latent Curve Analysis.

    PubMed

    Lo, Po-Han; Tsou, Mei-Yung; Chang, Kuang-Yi

    2015-09-01

    Patient-controlled epidural analgesia (PCEA) is commonly used for pain relief after total knee arthroplasty (TKA). This study aimed to model the trajectory of analgesic demand over time after TKA and explore its influential factors using latent curve analysis. Data were retrospectively collected from 916 patients receiving unilateral or bilateral TKA and postoperative PCEA. PCEA demands during 12-hour intervals for 48 hours were directly retrieved from infusion pumps. Potentially influential factors of PCEA demand, including age, height, weight, body mass index, sex, and infusion pump settings, were also collected. A latent curve analysis with 2 latent variables, the intercept (baseline) and slope (trend), was applied to model the changes in PCEA demand over time. The effects of influential factors on these 2 latent variables were estimated to examine how these factors interacted with time to alter the trajectory of PCEA demand over time. On average, the difference in analgesic demand between the first and second 12-hour intervals was only 15% of that between the first and third 12-hour intervals. No significant difference in PCEA demand was noted between the third and fourth 12-hour intervals. Aging tended to decrease the baseline PCEA demand but body mass index and infusion rate were positively correlated with the baseline. Only sex significantly affected the trend parameter and male individuals tended to have a smoother decreasing trend of analgesic demands over time. Patients receiving bilateral procedures did not consume more analgesics than their unilateral counterparts. Goodness of fit analysis indicated acceptable model fit to the observed data. Latent curve analysis provided valuable information about how analgesic demand after TKA changed over time and how patient characteristics affected its trajectory.

  16. The effect of job insecurity on employee health complaints: A within-person analysis of the explanatory role of threats to the manifest and latent benefits of work.

    PubMed

    Vander Elst, Tinne; Näswall, Katharina; Bernhard-Oettel, Claudia; De Witte, Hans; Sverke, Magnus

    2016-01-01

    The current study contributes to the literature on job insecurity by highlighting threat to the benefits of work as an explanation of the effect of job insecurity on health complaints. Building on the latent deprivation model, we predicted that threats to both manifest (i.e., financial income) and latent benefits of work (i.e., collective purpose, social contacts, status, time structure, activity) mediate the relationships from job insecurity to subsequent mental and physical health complaints. In addition, in line with the conservation of resources theory, we proposed that financial resources buffer the indirect effect of job insecurity on health complaints through threat to the manifest benefit. Hypotheses were tested using a multilevel design, in which 3 measurements (time lag of 6 months between subsequent measurements) were clustered within 1,994 employees (in Flanders, Belgium). This allowed for the investigation of within-person processes, while controlling for variance at the between-person level. The results demonstrate that job insecurity was related to subsequent threats to both manifest and latent benefits, and that these threats in turn were related to subsequent health complaints (with an exception for threat to the manifest benefit that did not predict mental health complaints). Three significant indirect effects were found: threat to the latent benefits mediated the relationships between job insecurity and both mental and physical health complaints, and threat to the manifest benefit mediated the relationship between job insecurity and physical health complaints. Unexpectedly, the latter indirect effect was exacerbated by financial resources. (c) 2016 APA, all rights reserved).

  17. Studying Psychosocial Barriers to Drug Treatment Among Chinese Methamphetamine Users Using A 3-Step Latent Class Analysis.

    PubMed

    Wang, Jichuan; Kelly, Brian C; Liu, Tieqiao; Hao, Wei

    2016-03-01

    Given the growth in methamphetamine use in China during the 21st century, we assessed perceived psychosocial barriers to drug treatment among this population. Using a sample of 303 methamphetamine users recruited via Respondent Driven Sampling, we use Latent Class Analysis (LCA) to identify possible distinct latent groups among Chinese methamphetamine users on the basis of their perceptions of psychosocial barriers to drug treatment. After covariates were included to predict latent class membership, the 3-step modeling approach was applied. Our findings indicate that the Chinese methamphetamine using population was heterogeneous on perceptions of drug treatment barriers; four distinct latent classes (subpopulations) were identified--Unsupported Deniers, Deniers, Privacy Anxious, and Low Barriers--and individual characteristics shaped the probability of class membership. Efforts to link Chinese methamphetamine users to treatment may require a multi-faceted approach that attends to differing perceptions about impediments to drug treatment. Copyright © 2015. Published by Elsevier Inc.

  18. Blind image quality assessment via probabilistic latent semantic analysis.

    PubMed

    Yang, Xichen; Sun, Quansen; Wang, Tianshu

    2016-01-01

    We propose a blind image quality assessment that is highly unsupervised and training free. The new method is based on the hypothesis that the effect caused by distortion can be expressed by certain latent characteristics. Combined with probabilistic latent semantic analysis, the latent characteristics can be discovered by applying a topic model over a visual word dictionary. Four distortion-affected features are extracted to form the visual words in the dictionary: (1) the block-based local histogram; (2) the block-based local mean value; (3) the mean value of contrast within a block; (4) the variance of contrast within a block. Based on the dictionary, the latent topics in the images can be discovered. The discrepancy between the frequency of the topics in an unfamiliar image and a large number of pristine images is applied to measure the image quality. Experimental results for four open databases show that the newly proposed method correlates well with human subjective judgments of diversely distorted images.

  19. The Latent Structure of Impulsivity: Impulsive Choice, Impulsive Action, and Impulsive Personality Traits

    PubMed Central

    MacKillop, James; Weafer, Jessica; Gray, Joshua; Oshri, Assaf; Palmer, Abraham; de Wit, Harriet

    2016-01-01

    Rationale Impulsivity has been strongly linked to addictive behaviors, but can be operationalized in a number of ways that vary considerably in overlap, suggesting multidimensionality. Objective This study tested the hypothesis that the latent structure among multiple measures of impulsivity would reflect three broad categories: impulsive choice, reflecting discounting of delayed rewards; impulsive action, reflecting ability to inhibit a prepotent motor response; and impulsive personality traits, reflecting self-reported attributions of self-regulatory capacity. Methods The study used a cross-sectional confirmatory factor analysis of multiple impulsivity assessments. Participants were 1252 young adults (62% female) with low levels of addictive behavior who were assessed in individual laboratory rooms at the University of Chicago and the University of Georgia. The battery comprised a delay discounting task, Monetary Choice Questionnaire, Conners Continuous Performance Test, Go/NoGo Task, Stop Signal Task, Barratt Impulsivity Scale, and the UPPS-P Impulsive Behavior Scale. Results The hypothesized three-factor model provided the best fit to the data, although Sensation Seeking was excluded from the final model. The three latent factors were largely unrelated to each other and were variably associated with substance use. Conclusions These findings support the hypothesis that diverse measures of impulsivity can broadly be organized into three categories that are largely distinct from one another. These findings warrant investigation among individuals with clinical levels of addictive behavior and may be applied to understanding the underlying biological mechanisms of these categories. PMID:27449350

  20. A Typology of Child School Behavior: Investigation Using Latent Profile Analysis and Cluster Analysis

    ERIC Educational Resources Information Center

    Mindrila, Diana L.

    2016-01-01

    To describe and facilitate the identification of child school behavior patterns, we developed a typology of child school behavior (ages 6-11 years) using the norming data (N = 2,338) for the second edition of the Behavior Assessment System for Children Teacher Rating-Child form). Latent profile analysis was conducted with the entire data set,…

  1. Latent factor structure of a behavioral economic cigarette demand curve in adolescent smokers

    PubMed Central

    Bidwell, L. Cinnamon; MacKillop, James; Murphy, James G.; Tidey, Jennifer W.; Colby, Suzanne M.

    2012-01-01

    Behavioral economic demand curves, or quantitative representations of drug consumption across a range of prices, have been used to assess motivation for a variety of drugs. Such curves generate multiple measures of drug demand that are associated with cigarette consumption and nicotine dependence. However, little is known about the relationships among these facets of demand. The aim of the study was to quantify these relationships in adolescent smokers by using exploratory factor analysis to examine the underlying structure of the facets of nicotine incentive value generated from a demand curve measure. Participants were 138 adolescent smokers who completed a hypothetical cigarette purchase task, which assessed estimated cigarette consumption at escalating levels of price/cigarette. Demand curves and five facets of demand were generated from the measure: Elasticity (i.e., 1/α or proportionate price sensitivity); Intensity (i.e., consumption at zero price); Omax (i.e., maximum financial expenditure on cigarettes); Pmax (i.e., price at which expenditure is maximized); and Breakpoint (i.e., the price that suppresses consumption to zero). Principal components analysis was used to examine the latent structure among the variables. The results revealed a two-factor solution, which were interpreted as “Persistence,” reflecting insensitivity to escalating price, and “Amplitude,” reflecting the absolute levels of consumption and price. These findings suggest a two factor structure of nicotine incentive value as measured via a demand curve. If supported, these findings have implications for understanding the relationships among individual demand indices in future behavioral economic studies and may further contribute to understanding of the nature of cigarette reinforcement. PMID:22727784

  2. Refining the Measurement of Distress Intolerance

    PubMed Central

    McHugh, R. Kathryn; Otto, Michael W.

    2012-01-01

    Distress intolerance is an important transdiagnostic variable that has long been implicated in the development and maintenance of psychological disorders. Self-report measurement strategies for distress intolerance have emerged from several different models of psychopathology and these measures have been applied inconsistently in the literature in the absence of a clear gold standard. The absence of a consistent assessment strategy has limited the ability to compare across studies and samples, thus hampering the advancement of this research agenda. This study evaluated the latent factor structure of existing measures of DI to examine the degree to which they are capturing the same construct. Results of confirmatory factor analysis in 3 samples totaling 400 participants provided support for a single factor latent structure. Individual items of these four scales were then correlated with this factor to identify those that best capture the core construct. Results provided consistent supported for 10 items that demonstrated the strongest concordance with this factor. The use of these 10 items as a unifying measure in the study of DI and future directions for the evaluation of its utility are discussed. PMID:22697451

  3. The Behavioral Approach System (BAS) Model of Vulnerability to Bipolar Disorder: Evidence of a Continuum in BAS Sensitivity across Adolescence.

    PubMed

    Liu, Richard T; Burke, Taylor A; Abramson, Lyn Y; Alloy, Lauren B

    2017-11-04

    Behavioral Approach System (BAS) sensitivity has been implicated in the development of a variety of different psychiatric disorders. Prominent among these in the empirical literature are bipolar spectrum disorders (BSDs). Given that adolescence represents a critical developmental stage of risk for the onset of BSDs, it is important to clarify the latent structure of BAS sensitivity in this period of development. A statistical approach especially well-suited for delineating the latent structure of BAS sensitivity is taxometric analysis, which is designed to evaluate whether the latent structure of a construct is taxonic (i.e., categorical) or dimensional (i.e., continuous) in nature. The current study applied three mathematically non-redundant taxometric procedures (i.e., MAMBAC, MAXEIG, and L-Mode) to a large community sample of adolescents (n = 12,494) who completed two separate measures of BAS sensitivity: the BIS/BAS Scales Carver and White (Journal of Personality and Social Psychology, 67, 319-333. 1994) and the Sensitivity to Reward and Sensitivity to Punishment Questionnaire (Torrubia et al. Personality and Individual Differences, 31, 837-862. 2001). Given the significant developmental changes in reward sensitivity that occur across adolescence, the current investigation aimed to provide a fine-grained evaluation of the data by performing taxometric analyses at an age-by-age level (14-19 years; n for each age ≥ 883). Results derived from taxometric procedures, across all ages tested, were highly consistent, providing strong evidence that BAS sensitivity is best conceptualized as dimensional in nature. Thus, the findings suggest that BAS-related vulnerability to BSDs exists along a continuum of severity, with no natural cut-point qualitatively differentiating high- and low-risk adolescents. Clinical and research implications for the assessment of BSD-related vulnerability are discussed.

  4. A Unified Latent Curve, Latent State-Trait Analysis of the Developmental Trajectories and Correlates of Positive Orientation

    ERIC Educational Resources Information Center

    Alessandri, Guido; Caprara, Gian Vittorio; Tisak, John

    2012-01-01

    Literature documents that the judgments people hold about themselves, their life, and their future are important ingredients of their psychological functioning and well-being and are commonly related to each other. In this article, results from a longitudinal study (N = 298, 45% males) are presented. Using an integrative Latent Curve, Latent…

  5. Longitudinal Physical Activity Patterns Among Older Adults: A Latent Transition Analysis.

    PubMed

    Mooney, Stephen J; Joshi, Spruha; Cerdá, Magdalena; Kennedy, Gary J; Beard, John R; Rundle, Andrew G

    2018-05-14

    Most epidemiologic studies of physical activity measure either total energy expenditure or engagement in a single activity type, such as walking. These approaches may gloss over important nuances in activity patterns. We performed a latent transition analysis to identify patterns of activity types as well as neighborhood and individual determinants of changes in those activity patterns over two years in a cohort of 2,023 older adult residents of New York City, NY, surveyed between 2011 and 2013. We identified seven latent classes: 1) Mostly Inactive, 2) Walking, 3) Exercise, 4) Household Activities and Walking, 5) Household Activities and Exercise, 6) Gardening and Household Activities, and 7) Gardening, Household Activities, and Exercise. The majority of subjects retained the same activity patterns between waves (54% unchanged between waves 1 and 2, 66% unchanged between waves 2 and 3).Most latent class transitions were between classes distinguished only by one form of activity, and only neighborhood unemployment was consistently associated with changing between activity latent classes. Future latent transition analyses of physical activity would benefit from larger cohorts and longer follow-up periods to assess predictors of and long-term impacts of changes in activity patterns.

  6. Accuracy of latent-variable estimation in Bayesian semi-supervised learning.

    PubMed

    Yamazaki, Keisuke

    2015-09-01

    Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Extracting latent brain states--Towards true labels in cognitive neuroscience experiments.

    PubMed

    Porbadnigk, Anne K; Görnitz, Nico; Sannelli, Claudia; Binder, Alexander; Braun, Mikio; Kloft, Marius; Müller, Klaus-Robert

    2015-10-15

    Neuroscientific data is typically analyzed based on the behavioral response of the participant. However, the errors made may or may not be in line with the neural processing. In particular in experiments with time pressure or studies where the threshold of perception is measured, the error distribution deviates from uniformity due to the structure in the underlying experimental set-up. When we base our analysis on the behavioral labels as usually done, then we ignore this problem of systematic and structured (non-uniform) label noise and are likely to arrive at wrong conclusions in our data analysis. This paper contributes a remedy to this important scenario: we present a novel approach for a) measuring label noise and b) removing structured label noise. We demonstrate its usefulness for EEG data analysis using a standard d2 test for visual attention (N=20 participants). Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Topic Model for Graph Mining.

    PubMed

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng

    2015-12-01

    Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.

  9. Latent topic discovery of clinical concepts from hospital discharge summaries of a heterogeneous patient cohort.

    PubMed

    Lehman, Li-Wei; Long, William; Saeed, Mohammed; Mark, Roger

    2014-01-01

    Patients in critical care often exhibit complex disease patterns. A fundamental challenge in clinical research is to identify clinical features that may be characteristic of adverse patient outcomes. In this work, we propose a data-driven approach for phenotype discovery of patients in critical care. We used Hierarchical Dirichlet Process (HDP) as a non-parametric topic modeling technique to automatically discover the latent "topic" structure of diseases, symptoms, and findings documented in hospital discharge summaries. We show that the latent topic structure can be used to reveal phenotypic patterns of diseases and symptoms shared across subgroups of a patient cohort, and may contain prognostic value in stratifying patients' post hospital discharge mortality risks. Using discharge summaries of a large patient cohort from the MIMIC II database, we evaluate the clinical utility of the discovered topic structure in identifying patients who are at high risk of mortality within one year post hospital discharge. We demonstrate that the learned topic structure has statistically significant associations with mortality post hospital discharge, and may provide valuable insights in defining new feature sets for predicting patient outcomes.

  10. The Four-Factor Model of Depressive Symptoms in Dementia Caregivers: A Structural Equation Model of Ethnic Differences

    PubMed Central

    Roth, David L.; Ackerman, Michelle L.; Okonkwo, Ozioma C.; Burgio, Louis D.

    2008-01-01

    Previous studies have suggested that 4 latent constructs (depressed affect, well-being, interpersonal problems, somatic symptoms) underlie the item responses on the Center for Epidemiological Studies Depression (CES-D) Scale. This instrument has been widely used in dementia caregiving research, but the fit of this multifactor model and the explanatory contributions of multifactor models have not been sufficiently examined for caregiving samples. The authors subjected CES-D data (N = 1,183) from the initial Resources for Enhancing Alzheimer’s Caregiver Health Study to confirmatory factor analysis methods and found that the 4-factor model provided excellent fit to the observed data. Invariance analyses suggested only minimal item-loading differences across race subgroups and supported the validity of race comparisons on the latent factors. Significant race differences were found on 3 of the 4 latent factors both before and after controlling for demographic covariates. African Americans reported less depressed affect and better well-being than White caregivers, who reported better well-being and fewer interpersonal problems than Hispanic caregivers. These findings clarify and extend previous studies of race differences in depression among diverse samples of dementia caregivers. PMID:18808246

  11. Why aren’t they happy? An analysis of end-user satisfaction with Electronic health records

    PubMed Central

    Unni, Prasad; Staes, Catherine; Weeks, Howard; Kramer, Heidi; Borbolla, Damion; Slager, Stacey; Taft, Teresa; Chidambaram, Valliammai; Weir, Charlene

    2016-01-01

    Introduction. Implementations of electronic health records (EHR) have been met with mixed outcome reviews. Complaints about these systems have led to many attempts to have useful measures of end-user satisfaction. However, most user satisfaction assessments do not focus on high-level reasoning, despite the complaints of many physicians. Our study attempts to identify some of these determinants. Method. We developed a user satisfaction survey instrument, based on pre-identified and important clinical and non-clinical clinician tasks. We surveyed a sample of in-patient physicians and focused on using exploratory factor analyses to identify underlying high-level cognitive tasks. We used the results to create unique, orthogonal variables representative of latent structure predictive of user satisfaction. Results. Our findings identified 3 latent high-level tasks that were associated with end-user satisfaction: a) High- level clinical reasoning b) Communicate/coordinate care and c) Follow the rules/compliance. Conclusion: We were able to successfully identify latent variables associated with satisfaction. Identification of communicability and high-level clinical reasoning as important factors determining user satisfaction can lead to development and design of more usable electronic health records with higher user satisfaction. PMID:28269962

  12. Using latent semantic analysis and the predication algorithm to improve extraction of meanings from a diagnostic corpus.

    PubMed

    Jorge-Botana, Guillermo; Olmos, Ricardo; León, José Antonio

    2009-11-01

    There is currently a widespread interest in indexing and extracting taxonomic information from large text collections. An example is the automatic categorization of informally written medical or psychological diagnoses, followed by the extraction of epidemiological information or even terms and structures needed to formulate guiding questions as an heuristic tool for helping doctors. Vector space models have been successfully used to this end (Lee, Cimino, Zhu, Sable, Shanker, Ely & Yu, 2006; Pakhomov, Buntrock & Chute, 2006). In this study we use a computational model known as Latent Semantic Analysis (LSA) on a diagnostic corpus with the aim of retrieving definitions (in the form of lists of semantic neighbors) of common structures it contains (e.g. "storm phobia", "dog phobia") or less common structures that might be formed by logical combinations of categories and diagnostic symptoms (e.g. "gun personality" or "germ personality"). In the quest to bring definitions into line with the meaning of structures and make them in some way representative, various problems commonly arise while recovering content using vector space models. We propose some approaches which bypass these problems, such as Kintsch's (2001) predication algorithm and some corrections to the way lists of neighbors are obtained, which have already been tested on semantic spaces in a non-specific domain (Jorge-Botana, León, Olmos & Hassan-Montero, under review). The results support the idea that the predication algorithm may also be useful for extracting more precise meanings of certain structures from scientific corpora, and that the introduction of some corrections based on vector length may increases its efficiency on non-representative terms.

  13. Factor Structure and Stability of Smoking-Related Health Beliefs in the National Lung Screening Trial

    PubMed Central

    Koblitz, Amber R.; Persoskie, Alexander; Ferrer, Rebecca A.; Klein, William M. P.; Dwyer, Laura A.; Park, Elyse R.

    2016-01-01

    Introduction: Absolute and comparative risk perceptions, worry, perceived severity, perceived benefits, and self-efficacy are important theoretical determinants of tobacco use, but no measures have been validated to ensure the discriminant validity as well as test-retest reliability of these measures in the tobacco context. The purpose of the current study is to examine the reliability and factor structure of a measure assessing smoking-related health cognitions and emotions in a national sample of current and former heavy smokers in the National Lung Screening Trial. Methods: A sub-study of the National Lung Screening Trial assessed current and former smokers’ (age 55–74; N = 4379) self-reported health cognitions and emotions at trial enrollment and at 12-month follow-up. Items were derived from the Health Belief Model and Self-Regulation Model. Results: An exploratory factor analysis of baseline responses revealed a five-factor structure for former smokers (risk perceptions, worry, perceived severity, perceived benefits, and self-efficacy) and a six-factor structure for current smokers, such that absolute risk and comparative risk perceptions emerged as separate factors. A confirmatory factor analysis of 12-month follow-up responses revealed a good fit for the five latent constructs for former smokers and six latent constructs for current smokers. Longitudinal stability of these constructs was also demonstrated. Conclusions: This is the first study to examine tobacco-related health cognition and emotional constructs over time in current and former heavy smokers undergoing lung screening. This study found that the theoretical constructs were stable across time and that the factor structure differed based on smoking status (current vs. former). PMID:25964503

  14. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  15. Applying the Mixed Rasch Model to the Runco Ideational Behavior Scale

    ERIC Educational Resources Information Center

    Sen, Sedat

    2016-01-01

    Previous research using creativity assessments has used latent class models and identified multiple classes (a 3-class solution) associated with various domains. This study explored the latent class structure of the Runco Ideational Behavior Scale, which was designed to quantify ideational capacity. A robust state-of the-art technique called the…

  16. Comparing Latent Structures of the Grade of Membership, Rasch, and Latent Class Models

    ERIC Educational Resources Information Center

    Erosheva, Elena A.

    2005-01-01

    This paper focuses on model interpretation issues and employs a geometric approach to compare the potential value of using the Grade of Membership (GoM) model in representing population heterogeneity. We consider population heterogeneity manifolds generated by letting subject specific parameters vary over their natural range, while keeping other…

  17. A Latent Variable Approach to Executive Control in Healthy Ageing

    ERIC Educational Resources Information Center

    Adrover-Roig, Daniel; Sese, Albert; Barcelo, Francisco; Palmer, Alfonso

    2012-01-01

    It is a well-established finding that the central executive is fractionated in at least three separable component processes: Updating, Shifting, and Inhibition of information (Miyake et al., 2000). However, the fractionation of the central executive among the elderly has been less well explored, and Miyake's et al. latent structure has not yet…

  18. A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen

    2012-01-01

    Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…

  19. What If We Took Our Models Seriously? Estimating Latent Scores in Individuals

    ERIC Educational Resources Information Center

    Schneider, W. Joel

    2013-01-01

    Researchers often argue that the structural models of the constructs they study are relevant to clinicians. Unfortunately, few clinicians are able to translate the mathematically precise relationships between latent constructs and observed scores into information that can be usefully applied to individuals. Typically this means that when a new…

  20. Heating Structures Derived from Satellite

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Haddad, Z.; Hou, A.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C.; Lang, S.; Meneghini, R.; Olson, W.

    2004-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. The Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, was launched in November 1997. It provides an accurate measurement of rainfall over the global tropics which can be used to estimate the four-dimensional structure of latent heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. This paper describes several different algorithms for estimating latent heating using TRMM observations. The strengths and weaknesses of each algorithm as well as the heating products are also discussed. The validation of heating products will be exhibited. Finally, the application of this heating information to global circulation and climate models is presented.

  1. Longitudinal analysis of latent classes of psychopathology and patterns of class migration in survivors of severe injury.

    PubMed

    Forbes, David; Nickerson, Angela; Alkemade, Nathan; Bryant, Richard A; Creamer, Mark; Silove, Derrick; McFarlane, Alexander C; Van Hooff, Miranda; Fletcher, Susan L; O'Donnell, Meaghan

    2015-09-01

    Little research to date has explored the typologies of psychopathology following trauma, beyond development of particular diagnoses such as posttraumatic stress disorder (PTSD). The objective of this study was to determine the longitudinal patterns of these typologies, especially the movement of persons across clusters of psychopathology. In this 6-year longitudinal study, 1,167 hospitalized severe injury patients who were recruited between April 2004-February 2006 were analyzed, with repeated measures at baseline, 3 months, 12 months, and 72 months after injury. All patients met the DSM-IV criterion A1 for PTSD. Structured clinical interviews were used to assess psychiatric disorders at each follow-up point. Latent class analysis and latent transition analysis were applied to assess clusters of individuals determined by psychopathology. The Mini International Neuropsychiatric Interview (MINI) and Clinician-Administered PTSD Scale (CAPS) were employed to complete diagnoses. Four latent classes were identified at each time point: (1) Alcohol/Depression class (3 months, 2.1%; 12 months, 1.3%; and 72 months, 1.1%), (2) Alcohol class (3 months, 3.3%; 12 months, 3.7%; and 72 months, 5.4%), (3) PTSD/Depression class (3 months, 10.3%; 12 months, 11.5%; and 72 months, 6.4%), and (4) No Disorder class (3 months, 84.2%; 12 months, 83.5%; and 72 months, 87.1%). Latent transition analyses conducted across the 2 transition points (12 months and 72 months) found consistently high levels of stability in the No Disorder class (90.9%, 93.0%, respectively) but lower and reducing levels of consistency in the PTSD/Depression class (81.3%, 46.6%), the Alcohol/Depression class (59.7%, 21.5%), and the Alcohol class (61.0%, 36.5%), demonstrating high levels of between-class migration. Despite the array of psychiatric disorders that may develop following severe injury, a 4-class model best described the data with excellent classification certainty. The high levels of migration across classes indicate a complex pattern of psychopathology expression over time. The findings have considerable implications for tailoring multifocused interventions to class type, as well as flexible stepped care models, and for the potential development and delivery of transdiagnostic interventions targeting underlying mechanisms. © Copyright 2015 Physicians Postgraduate Press, Inc.

  2. Spatial path models with multiple indicators and multiple causes: mental health in US counties.

    PubMed

    Congdon, Peter

    2011-06-01

    This paper considers a structural model for the impact on area mental health outcomes (poor mental health, suicide) of spatially structured latent constructs: deprivation, social capital, social fragmentation and rurality. These constructs are measured by multiple observed effect indicators, with the constructs allowed to be correlated both between and within areas. However, in the scheme developed here, particular latent constructs may also be influenced by known variables, or, via path sequences, by other constructs, possibly nonlinearly. For example, area social capital may be measured by effect indicators (e.g. associational density, charitable activity), but influenced as causes by other constructs (e.g. area deprivation), and by observed features of the socio-ethnic structure of areas. A model incorporating these features is applied to suicide mortality and the prevalence of poor mental health in 3141 US counties, which are related to the latent spatial constructs and to observed variables (e.g. county ethnic mix). Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A Person-Centered Perspective on Multidimensional Perfectionism in Canadian and Chinese University Students: A Multigroup Latent Profile Analysis

    ERIC Educational Resources Information Center

    Smith, Martin M.; Saklofske, Donald H.; Yan, Gonggu; Sherry, Simon B.

    2016-01-01

    This study investigated the generalizability of the tripartite model of perfectionism across Canadian and Chinese university students. Using latent profile analysis and indicators of perfectionistic strivings, perfectionistic concerns, and neuroticism in both groups, the authors derived a 3-profile solution: adaptive perfectionists, maladaptive…

  4. Classes in the Balance: Latent Class Analysis and the Balance Scale Task

    ERIC Educational Resources Information Center

    Boom, Jan; ter Laak, Jan

    2007-01-01

    Latent class analysis (LCA) has been successfully applied to tasks measuring higher cognitive functioning, suggesting the existence of distinct strategies used in such tasks. With LCA it became possible to classify post hoc. This important step forward in modeling and analyzing cognitive strategies is relevant to the overlapping waves model for…

  5. Evaluation of Reliability Coefficients for Two-Level Models via Latent Variable Analysis

    ERIC Educational Resources Information Center

    Raykov, Tenko; Penev, Spiridon

    2010-01-01

    A latent variable analysis procedure for evaluation of reliability coefficients for 2-level models is outlined. The method provides point and interval estimates of group means' reliability, overall reliability of means, and conditional reliability. In addition, the approach can be used to test simple hypotheses about these parameters. The…

  6. Further Examining Berry's Model: The Applicability of Latent Profile Analysis to Acculturation

    ERIC Educational Resources Information Center

    Fox, Rina S.; Merz, Erin L.; Solórzano, Martha T.; Roesch, Scott C.

    2013-01-01

    This study used latent profile analysis (LPA) to identify acculturation profiles. A three-profile solution fit the data best, and comparisons on demographic and psychosocial outcomes as a function of profile yielded expected results. The findings support using LPA as a parsimonious way to model acculturation without anticipating profiles in…

  7. Using Latent Class Analysis to Model Temperament Types

    ERIC Educational Resources Information Center

    Loken, Eric

    2004-01-01

    Mixture models are appropriate for data that arise from a set of qualitatively different subpopulations. In this study, latent class analysis was applied to observational data from a laboratory assessment of infant temperament at four months of age. The EM algorithm was used to fit the models, and the Bayesian method of posterior predictive checks…

  8. Effectiveness of Automated Chinese Sentence Scoring with Latent Semantic Analysis

    ERIC Educational Resources Information Center

    Liao, Chen-Huei; Kuo, Bor-Chen; Pai, Kai-Chih

    2012-01-01

    Automated scoring by means of Latent Semantic Analysis (LSA) has been introduced lately to improve the traditional human scoring system. The purposes of the present study were to develop a LSA-based assessment system to evaluate children's Chinese sentence construction skills and to examine the effectiveness of LSA-based automated scoring function…

  9. Children's Task Oriented Patterns in Early Childhood: A Latent Transition Analysis

    ERIC Educational Resources Information Center

    Wang, Feihong; Algina, James; Snyder, Patricia; Cox, Martha; Vernon-Feagans, Lynne; Cox, Martha; Blair, Clancy; Burchinal, Margaret; Burton, Linda; Crnic, Keith; Crouter, Ann; Garrett-Peters, Patricia; Greenberg, Mark; Lanza, Stephanie; Mills-Koonce, Roger; Werner, Emily; Willoughby, Michael

    2017-01-01

    We examined individual differences and predictions of children's patterns in behavioral, emotional and attentional efforts toward challenging puzzle tasks at 24 and 35 months using data from a large longitudinal rural representative sample. Using latent transition analysis, we found four distinct task-oriented patterns in problem-solving tasks…

  10. Latent Class Analysis of Conduct Problems of Elementary Students Receiving Special Education Services

    ERIC Educational Resources Information Center

    Toupin, Jean; Déry, Michèle; Verlaan, Pierrette; Lemelin, Jean-Pascal; Lecocq, Aurélie; Jagiellowicz, Jadwiga

    2016-01-01

    Students with conduct problems (CPs) may present heterogeneity in terms of behavioral manifestations and service needs. Previous studies using Latent Class Analysis (LCA) to capture this heterogeneity have been conducted mostly with community samples and have often applied a narrow definition of CP. Considering this context, this study…

  11. Exploring Different Types of Academic Delayers: A Latent Profile Analysis

    ERIC Educational Resources Information Center

    Grunschel, Carola; Patrzek, Justine; Fries, Stefan

    2013-01-01

    In this study, we explored whether there are different types of academic delayers (i.e., types of students who delay academic tasks). Latent profile analysis based on 554 university students' reasons for academic delay revealed four distinct types: inconspicuous, successful pressure-seeking, worried/anxious, and discontent with studies. The types…

  12. Multilevel Latent Class Analysis: Parametric and Nonparametric Models

    ERIC Educational Resources Information Center

    Finch, W. Holmes; French, Brian F.

    2014-01-01

    Latent class analysis is an analytic technique often used in educational and psychological research to identify meaningful groups of individuals within a larger heterogeneous population based on a set of variables. This technique is flexible, encompassing not only a static set of variables but also longitudinal data in the form of growth mixture…

  13. Optimal Scaling of HIV-Related Sexual Risk Behaviors in Ethnically Diverse Homosexually Active Men.

    ERIC Educational Resources Information Center

    Cochran, Susan D.; And Others

    1995-01-01

    Used homogeneity analysis and latent class analysis to analyze sexual behavior patterns in two samples of homosexually active men. Results support the existence of a single, nonlinear, latent dimension underlying male homosexual behaviors consistent with HIV-related risk taking, providing an efficient means to scale sexual behavior patterns. (RJM)

  14. Latent Class Analysis of Peer Conformity: Who Is Yielding to Pressure and Why?

    ERIC Educational Resources Information Center

    Kosten, Paul A.; Scheier, Lawrence M.; Grenard, Jerry L.

    2013-01-01

    This study used latent class analysis to examine typologies of peer conformity in a community sample of middle school students. Students responded to 31 items assessing diverse facets of conformity dispositions. The most parsimonious model produced three qualitatively distinct classes that differed on the basis of conformity to recreational…

  15. GARP regulates the bioavailability and activation of TGFβ.

    PubMed

    Wang, Rui; Zhu, Jianghai; Dong, Xianchi; Shi, Minlong; Lu, Chafen; Springer, Timothy A

    2012-03-01

    Glycoprotein-A repetitions predominant protein (GARP) associates with latent transforming growth factor-β (proTGFβ) on the surface of T regulatory cells and platelets; however, whether GARP functions in latent TGFβ activation and the structural basis of coassociation remain unknown. We find that Cys-192 and Cys-331 of GARP disulfide link to the TGFβ1 prodomain and that GARP with C192A and C331A mutations can also noncovalently associate with proTGFβ1. Noncovalent association is sufficiently strong for GARP to outcompete latent TGFβ-binding protein for binding to proTGFβ1. Association between GARP and proTGFβ1 prevents the secretion of TGFβ1. Integrin α(V)β(6) and to a lesser extent α(V)β(8) are able to activate TGFβ from the GARP-proTGFβ1 complex. Activation requires the RGD motif of latent TGFβ, disulfide linkage between GARP and latent TGFβ, and membrane association of GARP. Our results show that GARP is a latent TGFβ-binding protein that functions in regulating the bioavailability and activation of TGFβ.

  16. Estimating Latent Variable Interactions With Non-Normal Observed Data: A Comparison of Four Approaches

    PubMed Central

    Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.

    2012-01-01

    A Monte Carlo simulation was conducted to investigate the robustness of four latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of non-normality of the observed exogenous variables. Results showed that the CPI and LMS approaches yielded biased estimates of the interaction effect when the exogenous variables were highly non-normal. When the violation of non-normality was not severe (normal; symmetric with excess kurtosis < 1), the LMS approach yielded the most efficient estimates of the latent interaction effect with the highest statistical power. In highly non-normal conditions, the GAPI and UPI approaches with ML estimation yielded unbiased latent interaction effect estimates, with acceptable actual Type-I error rates for both the Wald and likelihood ratio tests of interaction effect at N ≥ 500. An empirical example illustrated the use of the four approaches in testing a latent variable interaction between academic self-efficacy and positive family role models in the prediction of academic performance. PMID:23457417

  17. Flexible body stability analysis of Space Shuttle ascent flight control system by using lambda matrix solution techniques

    NASA Technical Reports Server (NTRS)

    Bown, R. L.; Christofferson, A.; Lardas, M.; Flanders, H.

    1980-01-01

    A lambda matrix solution technique is being developed to perform an open loop frequency analysis of a high order dynamic system. The procedure evaluates the right and left latent vectors corresponding to the respective latent roots. The latent vectors are used to evaluate the partial fraction expansion formulation required to compute the flexible body open loop feedback gains for the Space Shuttle Digital Ascent Flight Control System. The algorithm is in the final stages of development and will be used to insure that the feedback gains meet the design specification.

  18. Structural Similarities between Brain and Linguistic Data Provide Evidence of Semantic Relations in the Brain

    PubMed Central

    Crangle, Colleen E.; Perreau-Guimaraes, Marcos; Suppes, Patrick

    2013-01-01

    This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA), which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG) recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model. PMID:23799009

  19. Development of a scale to measure adherence to self-monitoring of blood glucose with latent variable measurement.

    PubMed

    Wagner, J A; Schnoll, R A; Gipson, M T

    1998-07-01

    Adherence to self-monitoring of blood glucose (SMBG) is problematic for many people with diabetes. Self-reports of adherence have been found to be unreliable, and existing paper-and-pencil measures have limitations. This study developed a brief measure of SMBG adherence with good psychometric properties and a useful factor structure that can be used in research and in practice. A total of 216 adults with diabetes responded to 30 items rated on a 9-point Likert scale that asked about blood monitoring habits. In part I of the study, items were evaluated and retained based on their psychometric properties. The sample was divided into exploratory and confirmatory halves. Using the exploratory half, items with acceptable psychometric properties were subjected to a principal components analysis. In part II of the study, structural equation modeling was used to confirm the component solution with the entire sample. Structural modeling was also used to test the relationship between these components. It was hypothesized that the scale would produce four correlated factors. Principal components analysis suggested a two-component solution, and confirmatory factor analysis confirmed this solution. The first factor measures the degree to which patients rely on others to help them test and thus was named "social influence." The second component measures the degree to which patients use physical symptoms of blood glucose levels to help them test and thus was named "physical influence." Results of the structural model show that the components are correlated and make up the higher-order latent variable adherence. The resulting 15-item scale provides a short, reliable way to assess patient adherence to SMBG. Despite the existence of several aspects of adherence, this study indicates that the construct consists of only two components. This scale is an improvement on previous measures of adherence because of its good psychometric properties, its interpretable factor structure, and its rigorous empirical development.

  20. A latent transition analysis of bullying and victimization in Chinese primary school students

    PubMed Central

    Lau, Puiyi; Luo, Fang

    2017-01-01

    Bullying is a social phenomenon that impacts a large number of children and young people, worldwide. This study aimed to longitudinally examine the development of bullying and victimization in Chinese students in grades 4, 5, and 6. We used latent class analysis to empirically identify groups of youth with different bullying and victimization patterns, and then used latent transition analysis to explore the movement of children between these latent classes over time. Results showed that: (1) across the three time points, students could be classified into four classes: bullies, victims, bully-victims, and non-involved children; and (2) students in the non-involved class tended to remain in that class when moving to higher grades, students in the bully and victims classes tended to transition to the non-involved class, while students in the bully-victims class tended to transition to the bullies class. Thus, future intervention should be implemented to prevent bully-victims from bullying behaviors. PMID:28837571

  1. Optimal study design with identical power: an application of power equivalence to latent growth curve models.

    PubMed

    von Oertzen, Timo; Brandmaier, Andreas M

    2013-06-01

    Structural equation models have become a broadly applied data-analytic framework. Among them, latent growth curve models have become a standard method in longitudinal research. However, researchers often rely solely on rules of thumb about statistical power in their study designs. The theory of power equivalence provides an analytical answer to the question of how design factors, for example, the number of observed indicators and the number of time points assessed in repeated measures, trade off against each other while holding the power for likelihood-ratio tests on the latent structure constant. In this article, we present applications of power-equivalent transformations on a model with data from a previously published study on cognitive aging, and highlight consequences of participant attrition on power. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  2. The computational nature of memory modification.

    PubMed

    Gershman, Samuel J; Monfils, Marie-H; Norman, Kenneth A; Niv, Yael

    2017-03-15

    Retrieving a memory can modify its influence on subsequent behavior. We develop a computational theory of memory modification, according to which modification of a memory trace occurs through classical associative learning, but which memory trace is eligible for modification depends on a structure learning mechanism that discovers the units of association by segmenting the stream of experience into statistically distinct clusters (latent causes). New memories are formed when the structure learning mechanism infers that a new latent cause underlies current sensory observations. By the same token, old memories are modified when old and new sensory observations are inferred to have been generated by the same latent cause. We derive this framework from probabilistic principles, and present a computational implementation. Simulations demonstrate that our model can reproduce the major experimental findings from studies of memory modification in the Pavlovian conditioning literature.

  3. Infrared Spectroscopic Imaging of Latent Fingerprints and Associated Forensic Evidence

    PubMed Central

    Chen, Tsoching; Schultz, Zachary D.; Levin, Ira W.

    2011-01-01

    Fingerprints reflecting a specific chemical history, such as exposure to explosives, are clearly distinguished from overlapping, and interfering latent fingerprints using infrared spectroscopic imaging techniques and multivariate analysis. PMID:19684917

  4. Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo

    2004-01-01

    In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.

  5. Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis.

    PubMed

    Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary

    2014-11-01

    Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Mixture modeling methods for the assessment of normal and abnormal personality, part I: cross-sectional models.

    PubMed

    Hallquist, Michael N; Wright, Aidan G C

    2014-01-01

    Over the past 75 years, the study of personality and personality disorders has been informed considerably by an impressive array of psychometric instruments. Many of these tests draw on the perspective that personality features can be conceptualized in terms of latent traits that vary dimensionally across the population. A purely trait-oriented approach to personality, however, might overlook heterogeneity that is related to similarities among subgroups of people. This article describes how factor mixture modeling (FMM), which incorporates both categories and dimensions, can be used to represent person-oriented and trait-oriented variability in the latent structure of personality. We provide an overview of different forms of FMM that vary in the degree to which they emphasize trait- versus person-oriented variability. We also provide practical guidelines for applying FMM to personality data, and we illustrate model fitting and interpretation using an empirical analysis of general personality dysfunction.

  7. Classification and Short-Term Course of DSM-IV Cannabis, Hallucinogen, Cocaine, and Opioid Disorders in Treated Adolescents

    ERIC Educational Resources Information Center

    Chung, Tammy; Martin, Christoper S.

    2005-01-01

    This study examined the latent class structure of Diagnostic and Statistical Manual of Mental Disorders (text rev.; DSM-IV; American Psychiatric Association, 2000) symptoms used to diagnose cannabis, hallucinogen, cocaine, and opiate disorders among 501 adolescents recruited from addictions treatment. Latent class results were compared with the…

  8. A Note on the Specification of Error Structures in Latent Interaction Models

    ERIC Educational Resources Information Center

    Mao, Xiulin; Harring, Jeffrey R.; Hancock, Gregory R.

    2015-01-01

    Latent interaction models have motivated a great deal of methodological research, mainly in the area of estimating such models. Product-indicator methods have been shown to be competitive with other methods of estimation in terms of parameter bias and standard error accuracy, and their continued popularity in empirical studies is due, in part, to…

  9. The Benefits of Latent Variable Modeling to Develop Norms for a Translated Version of a Standardized Scale

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Shaw, Leslie A.; Shogren, Karrie A.; Lang, Kyle M.; Little, Todd D.

    2017-01-01

    This article demonstrates the use of structural equation modeling to develop norms for a translated version of a standardized scale, the Supports Intensity Scale-Children's Version (SIS-C). The latent variable norming method proposed is useful when the standardization sample for a translated version is relatively small to derive norms…

  10. Positive Adult Support and Depression Symptoms in Adolescent Females: The Partially Mediating Role of Eating Disturbances

    ERIC Educational Resources Information Center

    Linville, Deanna; O'Neil, Maya; Huebner, Angela

    2011-01-01

    This study examined linkages between depression symptoms (DEP) and positive adult support (PAS) in female adolescents and the partially mediating influence of eating disturbances (ED). Structural equation modeling was used to establish measurement models for each of the latent constructs, determine the relationships among the latent constructs,…

  11. Measurement Equivalence of Teachers' Sense of Efficacy Scale Using Latent Growth Methods

    ERIC Educational Resources Information Center

    Basokçu, T. Oguz; Ögretmen, T.

    2016-01-01

    This study is based on the application of latent growth modeling, which is one of structural equation models on real data. Teachers' Sense of Efficacy Scale (TSES), which was previously adapted into Turkish was administered to 200 preservice teachers at different time intervals for three times and study data was collected. Measurement equivalence…

  12. Latent Variable Regression 4-Level Hierarchical Model Using Multisite Multiple-Cohorts Longitudinal Data. CRESST Report 801

    ERIC Educational Resources Information Center

    Choi, Kilchan

    2011-01-01

    This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…

  13. Unfinished Business in Clarifying Causal Measurement: Commentary on Bainter and Bollen

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2014-01-01

    In a series of articles and comments, Kenneth Bollen and his collaborators have incrementally refined an account of structural equation models that (a) model a latent variable as the effect of several observed variables and (b) carry an interpretation of the observed variables as, in some sense, measures of the latent variable that they cause.…

  14. Analysis of the impact path on factors of China's energy-related CO2 emissions: a path analysis with latent variables.

    PubMed

    Chen, Wenhui; Lei, Yalin

    2017-02-01

    Identifying the impact path on factors of CO 2 emissions is crucial for the government to take effective measures to reduce carbon emissions. The most existing research focuses on the total influence of factors on CO 2 emissions without differentiating between the direct and indirect influence. Moreover, scholars have addressed the relationships among energy consumption, economic growth, and CO 2 emissions rather than estimating all the causal relationships simultaneously. To fill this research gaps and explore overall driving factors' influence mechanism on CO 2 emissions, this paper utilizes a path analysis model with latent variables (PA-LV) to estimate the direct and indirect effect of factors on China's energy-related carbon emissions and to investigate the causal relationships among variables. Three key findings emanate from the analysis: (1) The change in the economic growth pattern inhibits the growth rate of CO 2 emissions by reducing the energy intensity; (2) adjustment of industrial structure contributes to energy conservation and CO 2 emission reduction by raising the proportion of the tertiary industry; and (3) the growth of CO 2 emissions impacts energy consumption and energy intensity negatively, which results in a negative impact indirectly on itself. To further control CO 2 emissions, the Chinese government should (1) adjust the industrial structure and actively develop its tertiary industry to improve energy efficiency and develop low-carbon economy, (2) optimize population shifts to avoid excessive population growth and reduce energy consumption, and (3) promote urbanization steadily to avoid high energy consumption and low energy efficiency.

  15. Remote sensing image segmentation using local sparse structure constrained latent low rank representation

    NASA Astrophysics Data System (ADS)

    Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping

    2016-09-01

    Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  16. A personality-based latent class typology of outpatients with major depressive disorder: association with symptomatology, prescription pattern and social function.

    PubMed

    Hori, Hiroaki; Teraishi, Toshiya; Nagashima, Anna; Koga, Norie; Ota, Miho; Hattori, Kotaro; Kim, Yoshiharu; Higuchi, Teruhiko; Kunugi, Hiroshi

    2017-08-01

    While major depressive disorder (MDD) is considered to be a heterogeneous disorder, the nature of the heterogeneity remains unclear. Studies have attempted to classify patients with MDD using latent variable techniques, yet the empirical approaches to symptom-based subtyping of MDD have not provided conclusive evidence. Here we aimed to identify homogeneous classes of MDD based on personality traits, using a latent profile analysis. We studied 238 outpatients with DSM-IV MDD recruited from our specialized depression outpatient clinic and assessed their dimensional personality traits with the Temperament and Character Inventory. Latent profile analysis was conducted with 7 dimensions of the Temperament and Character Inventory as indicators. Relationships of the identified classes with symptomatology, prescription pattern, and social function were then examined. The latent profile analysis indicated that a 3-class solution best fit the data. Of the sample, 46.2% was classified into a "neurotic" group characterized by high harm avoidance and low self-directedness; 30.3% into an "adaptive" group characterized by high self-directedness and cooperativeness; and 23.5% into a "socially-detached" group characterized by low reward dependence and cooperativeness and high self-transcendence. The 2 maladaptive groups, namely neurotic and socially-detached groups, demonstrated unique patterns of symptom expression, different classes of psychotropic medication use, and lower social functioning. Generalizability of the findings was limited since our patients were recruited from the specialized depression outpatient clinic. Our personality-based latent profile analysis identified clinically meaningful 3 MDD groups that were markedly different in their personality profiles associated with distinct symptomatology and functioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Stability of alcohol use and teen dating violence for female youth: A latent transition analysis.

    PubMed

    Choi, Hye Jeong; Elmquist, JoAnna; Shorey, Ryan C; Rothman, Emily F; Stuart, Gregory L; Temple, Jeff R

    2017-01-01

    Alcohol use is one of the most widely accepted and studied risk factors for teen dating violence (TDV). Too little research has explored longitudinally if it is true that an adolescent's alcohol use and TDV involvement simultaneously occur. In the current study, we examined whether there were latent status based on past-year TDV and alcohol use and whether female adolescents changed their statuses of TDV and alcohol use over time. The sample consisted of 583 female youths in seven public high schools in Texas. Three waves of longitudinal data collected from 2011 to 2013 were utilised in this study. Participants completed self-report assessments of alcohol use (past-year alcohol use, number of drinks in the past month and episodic heavy drinking within the past month) and psychological and physical TDV victimisation and perpetration. Latent transition analysis was used to examine if the latent status based on TDV and alcohol use changed over time. Five separate latent statuses were identified: (i) no violence, no alcohol; (ii) alcohol; (iii) psychological violence, no alcohol; (iv) psychological violence, alcohol; and (v) physical and psychological violence, alcohol. Latent transition analysis indicated that adolescents generally remained in the same subgroup across time. This study provides evidence on the co-occurrence of alcohol use and teen dating violence, and whether teens' status based on dating violence and alcohol use are stable over time. Findings from the current study highlight the importance of targeting both TDV and substance use in intervention and prevention programs. [Choi HJ, Elmquist J, Shorey RC, Rothman EF, Stuart GL,Temple JR. Stability of alcohol use and teen dating violence for female youth: Alatent transition analysis. Drug Alcohol Rev 2017;36:80-87]. © 2017 Australasian Professional Society on Alcohol and other Drugs.

  18. Latent Impulsivity Subtypes in Substance Use Disorders and Interactions with Internalizing and Externalizing Co-Occurring Disorders

    PubMed Central

    Marín-Navarrete, Rodrigo; Toledo-Fernández, Aldebarán; Villalobos-Gallegos, Luis; Roncero, Carlos; Szerman, Nestor; Medina-Mora, María Elena

    2018-01-01

    This study explored the clinical importance of latent impulsivity subtypes within a sample of individuals with substance use disorders (SUDs) and high rates of co-occurring disorders (CODs) receiving residential treatment, aiming to assess the heterogeneity of the associations between SUDs and CODs across such impulsivity subtypes. The abbreviated Barratt impulsiveness scale was used to assess motor and cognitive (attentional and nonplanning) impulsivity, a structured interview for diagnosis of SUD and CODs, and other clinimetric measures for severity of substance use. Latent class analysis was conducted to extract subgroups of impulsivity subtypes and Poisson regression to analyze effects of interactions of classes by CODs on severity of substance use. 568 participants were evaluated. Results featured a four-class model as the best-fitted solution: overall high impulsivity (OHI); overall low impulsivity; high cognitive-low motor impulsivity; and moderate cognitive-low motor impulsivity (MC-LMI). OHI and MC-LMI concentrated on most of the individuals with CODs, and individuals within OHI and MC-LMI showed more severity of substance use. The expression of this severity relative to the impulsivity subtypes was modified by their interaction with internalizing and externalizing CODs in very heterogeneous ways. Our findings suggest that knowing either the presence of trait-based subtypes or CODs in individuals with SUDs is not enough to characterize clinical outcomes, and that the analysis of interactions between psychiatric categories and behavioral traits is necessary to better understand the expressions of psychiatric disorders. PMID:29479323

  19. Variations in Care Quality Outcomes of Dying People: Latent Class Analysis of an Adult National Register Population.

    PubMed

    Öhlén, Joakim; Russell, Lara; Håkanson, Cecilia; Alvariza, Anette; Fürst, Carl Johan; Årestedt, Kristofer; Sawatzky, Richard

    2017-01-01

    Symptom relief is a key goal of palliative care. There is a need to consider complexities in symptom relief patterns for groups of people to understand and evaluate symptom relief as an indicator of quality of care at end of life. The aims of this study were to distinguish classes of patients who have different symptom relief patterns during the last week of life and to identify predictors of these classes in an adult register population. In a cross-sectional retrospective design, data were used from 87,026 decedents with expected deaths registered in the Swedish Register of Palliative Care in 2011 and 2012. Study variables were structured into patient characteristics, and processes and outcomes of quality of care. A latent class analysis was used to identify symptom relief patterns. Multivariate multinomial regression analyses were used to identify predictors of class membership. Five latent classes were generated: "relieved pain," "relieved pain and rattles," "relieved pain and anxiety," "partly relieved shortness of breath, rattles and anxiety," and "partly relieved pain, anxiety and confusion." Important predictors of class membership were age, sex, cause of death, and having someone present at death, individual prescriptions as needed (PRN) and expert consultations. Interindividual variability and complexity in symptom relief patterns may inform quality of care and its evaluation for dying people across care settings. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  20. Latent change models of adult cognition: are changes in processing speed and working memory associated with changes in episodic memory?

    PubMed

    Hertzog, Christopher; Dixon, Roger A; Hultsch, David F; MacDonald, Stuart W S

    2003-12-01

    The authors used 6-year longitudinal data from the Victoria Longitudinal Study (VLS) to investigate individual differences in amount of episodic memory change. Latent change models revealed reliable individual differences in cognitive change. Changes in episodic memory were significantly correlated with changes in other cognitive variables, including speed and working memory. A structural equation model for the latent change scores showed that changes in speed and working memory predicted changes in episodic memory, as expected by processing resource theory. However, these effects were best modeled as being mediated by changes in induction and fact retrieval. Dissociations were detected between cross-sectional ability correlations and longitudinal changes. Shuffling the tasks used to define the Working Memory latent variable altered patterns of change correlations.

  1. Who Are Truant Youth? Examining Distinctive Profiles of Truant Youth Using Latent Profile Analysis

    ERIC Educational Resources Information Center

    Maynard, Brandy R.; Salas-Wright, Christopher P.; Vaughn, Michael G.; Peters, Kristen E.

    2012-01-01

    The present study explored the heterogeneity of truant youth to provide a more nuanced examination of the nature of adolescent truancy and examine distinct profiles of truant youth as they relate to externalizing behaviors. Latent profile analysis was employed to examine the heterogeneity of truant youth by using a nationally representative sample…

  2. A Latent Profile Analysis of Math Achievement, Numerosity, and Math Anxiety in Twins

    ERIC Educational Resources Information Center

    Hart, Sara A.; Logan, Jessica A. R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.

    2016-01-01

    Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity, and math anxiety. Latent profile analysis indicated 5 groupings of…

  3. Environmental Influences on Well-Being: A Dyadic Latent Panel Analysis of Spousal Similarity

    ERIC Educational Resources Information Center

    Schimmack, Ulrich; Lucas, Richard E.

    2010-01-01

    This article uses dyadic latent panel analysis (DLPA) to examine environmental influences on well-being. DLPA requires longitudinal dyadic data. It decomposes the observed variance of both members of a dyad into a trait, state, and an error component. Furthermore, state variance is decomposed into initial and new state variance. Total observed…

  4. Refining the Classification of Children with Selective Mutism: A Latent Profile Analysis

    ERIC Educational Resources Information Center

    Cohan, Sharon L.; Chavira, Denise A.; Shipon-Blum, Elisa; Hitchcock, Carla; Roesch, Scott C.; Stein, Murray B.

    2008-01-01

    The goal of this study was to develop an empirically derived classification system for selective mutism (SM) using parent-report measures of social anxiety, behavior problems, and communication delays. The sample consisted of parents of 130 children (ages 5-12) with SM. Results from latent profile analysis supported a 3-class solution made up of…

  5. A Latent Class Analysis of Adolescent Gambling: Application of Resilience Theory

    ERIC Educational Resources Information Center

    Goldstein, Abby L.; Faulkner, Breanne; Cunningham, Rebecca M.; Zimmerman, Marc A.; Chermack, Stephen; Walton, Maureen A.

    2013-01-01

    The current study examined the application of resilience theory to adolescent gambling using Latent Class Analysis (LCA) to establish subtypes of adolescent gamblers and to explore risk and promotive factors associated with gambling group membership. Participants were a diverse sample of 249 adolescents ages 14 to 18 (30.1 % female, 59.4 % African…

  6. Identifying Students' Expectancy-Value Beliefs: A Latent Class Analysis Approach to Analyzing Middle School Students' Science Self-Perceptions

    ERIC Educational Resources Information Center

    Phelan, Julia; Ing, Marsha; Nylund-Gibson, Karen; Brown, Richard S.

    2017-01-01

    This study extends current research by organizing information about students' expectancy-value achievement motivation, in a way that helps parents and teachers identify specific entry points to encourage and support students' science aspirations. This study uses latent class analysis to describe underlying differences in ability beliefs, task…

  7. Exploring the Relationship between Autism Spectrum Disorder and Epilepsy Using Latent Class Cluster Analysis

    ERIC Educational Resources Information Center

    Cuccaro, Michael L.; Tuchman, Roberto F.; Hamilton, Kara L.; Wright, Harry H.; Abramson, Ruth K.; Haines, Jonathan L.; Gilbert, John R.; Pericak-Vance, Margaret

    2012-01-01

    Epilepsy co-occurs frequently in autism spectrum disorders (ASD). Understanding this co-occurrence requires a better understanding of the ASD-epilepsy phenotype (or phenotypes). To address this, we conducted latent class cluster analysis (LCCA) on an ASD dataset (N = 577) which included 64 individuals with epilepsy. We identified a 5-cluster…

  8. Singapore Primary Students' Pursuit of Multiple Achievement Goals: A Latent Profile Analysis

    ERIC Educational Resources Information Center

    Ning, Hoi Kwan

    2018-01-01

    Based on measures of approach and avoidance mastery and performance goals delineated in the 2 × 2 achievement goal framework, this study utilized a person-centered approach to examine Singapore primary students' (N = 819) multiple goals pursuit in the general school context. Latent profile analysis identified six types of students with distinct…

  9. Developing Coping Typologies of Minority Adolescents: A Latent Profile Analysis

    ERIC Educational Resources Information Center

    Aldridge, Arianna A.; Roesch, Scott C.

    2008-01-01

    Latent profile analysis (LPA) was used to develop a coping typology of minority adolescents (M = 15.5 years). A multiethnic sample (n = 354) was recruited from a program aimed at serving low-income students. LPA revealed three distinct coping profiles. The first comprised adolescents who used a number of specific coping strategies at a low level…

  10. How to Classify the Diversity of Seventh Grade Students' Mathematical Process Skills: An Application of Latent Profile Analysis

    ERIC Educational Resources Information Center

    Kaosa-ard, Chanapat; Erawan, Waraporn; Damrongpanit, Suntonrapot; Suksawang, Poonpong

    2015-01-01

    The researcher applied latent profile analysis to study the difference of the students' mathematical process skill. These skills are problem solving skills, reasoning skills, communication and presentation skills, connection knowledge skills, and creativity skills. Samples were 2,485 seventh-grade students obtained from Multi-stage Random…

  11. Solidarity and Conflict between Adult Children and Parents: A Latent Class Analysis

    ERIC Educational Resources Information Center

    van Gaalen, Ruben I.; Dykstra, Pearl A.

    2006-01-01

    Using multiple dimensions of solidarity and conflict in a latent class analysis, we develop a typology of adult child-parent relationships. The data (N = 4,990) are from the first wave of the Netherlands Kinship Panel Study. In descending order of relationship quality, the 5 types are harmonious (akin to relationships with friends), ambivalent…

  12. Latent Semantic Analysis as a Method of Content-Based Image Retrieval in Medical Applications

    ERIC Educational Resources Information Center

    Makovoz, Gennadiy

    2010-01-01

    The research investigated whether a Latent Semantic Analysis (LSA)-based approach to image retrieval can map pixel intensity into a smaller concept space with good accuracy and reasonable computational cost. From a large set of M computed tomography (CT) images, a retrieval query found all images for a particular patient based on semantic…

  13. Latent Profile Analysis to Determine the Typology of Disinhibited Eating Behaviors in Children and Adolescents

    ERIC Educational Resources Information Center

    Vannucci, Anna; Tanofsky-Kraff, Marian; Crosby, Ross D.; Ranzenhofer, Lisa M.; Shomaker, Lauren B.; Field, Sara E.; Mooreville, Mira; Reina, Samantha A.; Kozlosky, Merel; Yanovski, Susan Z.; Yanovski, Jack A.

    2013-01-01

    Objective: We used latent profile analysis (LPA) to classify children and adolescents into subtypes based on the overlap of disinhibited eating behaviors--eating in the absence of hunger, emotional eating, and subjective and objective binge eating. Method: Participants were 411 youths (8-18 years) from the community who reported on their…

  14. Classical Item Analysis Using Latent Variable Modeling: A Note on a Direct Evaluation Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2011-01-01

    A directly applicable latent variable modeling procedure for classical item analysis is outlined. The method allows one to point and interval estimate item difficulty, item correlations, and item-total correlations for composites consisting of categorical items. The approach is readily employed in empirical research and as a by-product permits…

  15. Using Latent Class Analysis to Identify Academic and Behavioral Risk Status in Elementary Students

    ERIC Educational Resources Information Center

    King, Kathleen R.; Lembke, Erica S.; Reinke, Wendy M.

    2016-01-01

    Identifying classes of children on the basis of academic and behavior risk may have important implications for the allocation of intervention resources within Response to Intervention (RTI) and Multi-Tiered System of Support (MTSS) models. Latent class analysis (LCA) was conducted with a sample of 517 third grade students. Fall screening scores in…

  16. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  17. A Second-Order Confirmatory Factor Analysis of the Moral Distress Scale-Revised for Nurses.

    PubMed

    Sharif Nia, Hamid; Shafipour, Vida; Allen, Kelly-Ann; Heidari, Mohammad Reza; Yazdani-Charati, Jamshid; Zareiyan, Armin

    2017-01-01

    Moral distress is a growing problem for healthcare professionals that may lead to dissatisfaction, resignation, or occupational burnout if left unattended, and nurses experience different levels of this phenomenon. This study aims to investigate the factor structure of the Persian version of the Moral Distress Scale-Revised in intensive care and general nurses. This methodological research was conducted with 771 nurses from eight hospitals in the Mazandaran Province of Iran in 2017. Participants completed the Moral Distress Scale-Revised, data collected, and factor structure assessed using the construct, convergent, and divergent validity methods. The reliability of the scale was assessed using internal consistency (Cronbach's alpha, Theta, and McDonald's omega coefficients) and construct reliability. Ethical considerations: This study was approved by the Ethics Committee of Mazandaran University of Medical Sciences. The exploratory factor analysis ( N = 380) showed that the Moral Distress Scale-Revised has five factors: lack of professional competence at work, ignoring ethical issues and patient conditions, futile care, carrying out the physician's orders without question and unsafe care, and providing care under personal and organizational pressures, which explained 56.62% of the overall variance. The confirmatory factor analysis ( N = 391) supported the five-factor solution and the second-order latent factor model. The first-order model did not show a favorable convergent and divergent validity. Ultimately, the Moral Distress Scale-Revised was found to have a favorable internal consistency and construct reliability. The Moral Distress Scale-Revised was found to be a multidimensional construct. The data obtained confirmed the hypothesis of the factor structure model with a latent second-order variable. Since the convergent and divergent validity of the scale were not confirmed in this study, further assessment is necessary in future studies.

  18. Exploring the effects of attitudinal and perception characteristics on drinking and driving non-compliant behaviour.

    PubMed

    Politis, Ioannis; Basbas, Socrates; Papaioannou, Panagiotis

    2013-11-01

    The objective of this paper is to examine a number of factors (observed and latent) that might have a causal effect on drinking and driving (D&D) behaviour. Face-to-face surveys were conducted among patrons at bars and cafeterias and 305 valid questionnaires were filled. A confirmatory factor analysis was performed so as to identify the latent constructs and a mixed structural equation model was developed. From the analysis it came up that non-compliant behaviour of D&D is limited at older ages, also associated with high levels of income and car availability. Though men are consuming more alcohol, women seem to be more prone in driving under the influence (DUI) of alcohol. Furthermore, it was found that people who strongly support the examined interventions in the study (e.g. better enforcement, more traffic safety campaigns, stricter penalties) are more unlikely to drive after drinking compare to those who have some objections. Finally, it was not found any statistically significant relation between individuals' level of awareness and D&D behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Understanding planning ability measured by the Tower of London: an evaluation of its internal structure by latent variable modeling.

    PubMed

    Koppenol-Gonzalez, Gabriela V; Bouwmeester, Samantha; Boonstra, A Marije

    2010-12-01

    The Tower of London (TOL) is a widely used instrument for assessing planning ability. Inhibition and (spatial) working memory are assumed to contribute to performance on the TOL, but findings about the relationship between these cognitive processes are often inconsistent. Moreover, the influence of specific properties of TOL problems on cognitive processes and difficulty level is often not taken into account. Furthermore, it may be expected that several planning strategies can be distinguished that cannot be extracted from the total score. In this study, a factor analysis and a latent class regression analysis were performed to address these issues. The results showed that 4 strategy groups that differed with respect to preplanning time could be distinguished. The effect of problem properties also differed for the 4 groups. Additional analyses showed that the groups differed on average planning performance but that there were no significant differences between inhibition and spatial working memory performance. Finally, it seemed that multiple factors influence performance on the TOL, the most important ones being the score measurements, the problem properties, and strategy use.

  20. Validity test and its consistency in the construction of patient loyalty model

    NASA Astrophysics Data System (ADS)

    Yanuar, Ferra

    2016-04-01

    The main objective of this present study is to demonstrate the estimation of validity values and its consistency based on structural equation model. The method of estimation was then implemented to an empirical data in case of the construction the patient loyalty model. In the hypothesis model, service quality, patient satisfaction and patient loyalty were determined simultaneously, each factor were measured by any indicator variables. The respondents involved in this study were the patients who ever got healthcare at Puskesmas in Padang, West Sumatera. All 394 respondents who had complete information were included in the analysis. This study found that each construct; service quality, patient satisfaction and patient loyalty were valid. It means that all hypothesized indicator variables were significant to measure their corresponding latent variable. Service quality is the most measured by tangible, patient satisfaction is the most mesured by satisfied on service and patient loyalty is the most measured by good service quality. Meanwhile in structural equation, this study found that patient loyalty was affected by patient satisfaction positively and directly. Service quality affected patient loyalty indirectly with patient satisfaction as mediator variable between both latent variables. Both structural equations were also valid. This study also proved that validity values which obtained here were also consistence based on simulation study using bootstrap approach.

  1. Class Evolution Tree: A Graphical Tool to Support Decisions on the Number of Classes in Exploratory Categorical Latent Variable Modeling for Rehabilitation Research

    ERIC Educational Resources Information Center

    Kriston, Levente; Melchior, Hanne; Hergert, Anika; Bergelt, Corinna; Watzke, Birgit; Schulz, Holger; von Wolff, Alessa

    2011-01-01

    The aim of our study was to develop a graphical tool that can be used in addition to standard statistical criteria to support decisions on the number of classes in explorative categorical latent variable modeling for rehabilitation research. Data from two rehabilitation research projects were used. In the first study, a latent profile analysis was…

  2. An Optimized DNA Analysis Workflow for the Sampling, Extraction, and Concentration of DNA obtained from Archived Latent Fingerprints.

    PubMed

    Solomon, April D; Hytinen, Madison E; McClain, Aryn M; Miller, Marilyn T; Dawson Cruz, Tracey

    2018-01-01

    DNA profiles have been obtained from fingerprints, but there is limited knowledge regarding DNA analysis from archived latent fingerprints-touch DNA "sandwiched" between adhesive and paper. Thus, this study sought to comparatively analyze a variety of collection and analytical methods in an effort to seek an optimized workflow for this specific sample type. Untreated and treated archived latent fingerprints were utilized to compare different biological sampling techniques, swab diluents, DNA extraction systems, DNA concentration practices, and post-amplification purification methods. Archived latent fingerprints disassembled and sampled via direct cutting, followed by DNA extracted using the QIAamp® DNA Investigator Kit, and concentration with Centri-Sep™ columns increased the odds of obtaining an STR profile. Using the recommended DNA workflow, 9 of the 10 samples provided STR profiles, which included 7-100% of the expected STR alleles and two full profiles. Thus, with carefully selected procedures, archived latent fingerprints can be a viable DNA source for criminal investigations including cold/postconviction cases. © 2017 American Academy of Forensic Sciences.

  3. Psychometric properties of the SDM-Q-9 questionnaire for shared decision-making in multiple sclerosis: item response theory modelling and confirmatory factor analysis.

    PubMed

    Ballesteros, Javier; Moral, Ester; Brieva, Luis; Ruiz-Beato, Elena; Prefasi, Daniel; Maurino, Jorge

    2017-04-22

    Shared decision-making is a cornerstone of patient-centred care. The 9-item Shared Decision-Making Questionnaire (SDM-Q-9) is a brief self-assessment tool for measuring patients' perceived level of involvement in decision-making related to their own treatment and care. Information related to the psychometric properties of the SDM-Q-9 for multiple sclerosis (MS) patients is limited. The objective of this study was to assess the performance of the items composing the SDM-Q-9 and its dimensional structure in patients with relapsing-remitting MS. A non-interventional, cross-sectional study in adult patients with relapsing-remitting MS was conducted in 17 MS units throughout Spain. A nonparametric item response theory (IRT) analysis was used to assess the latent construct and dimensional structure underlying the observed responses. A parametric IRT model, General Partial Credit Model, was fitted to obtain estimates of the relationship between the latent construct and item characteristics. The unidimensionality of the SDM-Q-9 instrument was assessed by confirmatory factor analysis. A total of 221 patients were studied (mean age = 42.1 ± 9.9 years, 68.3% female). Median Expanded Disability Status Scale score was 2.5 ± 1.5. Most patients reported taking part in each step of the decision-making process. Internal reliability of the instrument was high (Cronbach's α = 0.91) and the overall scale scalability score was 0.57, indicative of a strong scale. All items, except for the item 1, showed scalability indices higher than 0.30. Four items (items 6 through to 9) conveyed more than half of the SDM-Q-9 overall information (67.3%). The SDM-Q-9 was a good fit for a unidimensional latent structure (comparative fit index = 0.98, root-mean-square error of approximation = 0.07). All freely estimated parameters were statistically significant (P < 0.001). All items presented standardized parameter estimates with salient loadings (>0.40) with the exception of item 1 which presented the lowest loading (0.26). Items 6 through to 8 were the most relevant items for shared decision-making. The SDM-Q-9 presents appropriate psychometric properties and is therefore useful for assessing different aspects of shared decision-making in patients with multiple sclerosis.

  4. Understanding comorbidity among internalizing problems: Integrating latent structural models of psychopathology and risk mechanisms

    PubMed Central

    Hankin, Benjamin L.; Snyder, Hannah R.; Gulley, Lauren D.; Schweizer, Tina H.; Bijttebier, Patricia; Nelis, Sabine; Toh, Gim; Vasey, Michael W.

    2016-01-01

    It is well known that comorbidity is the rule, not the exception, for categorically defined psychiatric disorders, and this is also the case for internalizing disorders of depression and anxiety. This theoretical review paper addresses the ubiquity of comorbidity among internalizing disorders. Our central thesis is that progress in understanding this co-occurrence can be made by employing latent dimensional structural models that organize both psychopathology as well as vulnerabilities and risk mechanisms and by connecting the multiple levels of risk and psychopathology outcomes together. Different vulnerabilities and risk mechanisms are hypothesized to predict different levels of the structural model of psychopathology. We review the present state of knowledge based on concurrent and developmental sequential comorbidity patterns among common discrete psychiatric disorders in youth, and then we advocate for the use of more recent bifactor dimensional models of psychopathology (e.g., p factor, Caspi et al., 2014) that can help to explain the co-occurrence among internalizing symptoms. In support of this relatively novel conceptual perspective, we review six exemplar vulnerabilities and risk mechanisms, including executive function, information processing biases, cognitive vulnerabilities, positive and negative affectivity aspects of temperament, and autonomic dysregulation, along with the developmental occurrence of stressors in different domains, to show how these vulnerabilities can predict the general latent psychopathology factor, a unique latent internalizing dimension, as well as specific symptom syndrome manifestations. PMID:27739389

  5. The use of cognitive ability measures as explanatory variables in regression analysis

    PubMed Central

    Junker, Brian; Schofield, Lynne Steuerle; Taylor, Lowell J

    2015-01-01

    Cognitive ability measures are often taken as explanatory variables in regression analysis, e.g., as a factor affecting a market outcome such as an individual’s wage, or a decision such as an individual’s education acquisition. Cognitive ability is a latent construct; its true value is unobserved. Nonetheless, researchers often assume that a test score, constructed via standard psychometric practice from individuals’ responses to test items, can be safely used in regression analysis. We examine problems that can arise, and suggest that an alternative approach, a “mixed effects structural equations” (MESE) model, may be more appropriate in many circumstances. PMID:26998417

  6. Heterosexual Casual Sex and STI Diagnosis: A Latent Class Analysis

    PubMed Central

    Ann Lyons, Heidi

    2017-01-01

    Casual sex is common during the emerging adult life course stage, but little research has taken a person-centered approach to investigate if casual sexual behavior influences STI rates. Using a nationally representative sample and latent class analysis, results showed three distinctive latent classes. Abstainers were the least likely to have an STI, followed by the casual sex experienced, and then the casual sex risk-takers. Once other covariates were included in the model, there was no significant difference between the abstainers and casual sex experienced classes. These results highlight the need for future research to include diverse samples of emerging adults. PMID:29276549

  7. Semiparametric Time-to-Event Modeling in the Presence of a Latent Progression Event

    PubMed Central

    Rice, John D.; Tsodikov, Alex

    2017-01-01

    Summary In cancer research, interest frequently centers on factors influencing a latent event that must precede a terminal event. In practice it is often impossible to observe the latent event precisely, making inference about this process difficult. To address this problem, we propose a joint model for the unobserved time to the latent and terminal events, with the two events linked by the baseline hazard. Covariates enter the model parametrically as linear combinations that multiply, respectively, the hazard for the latent event and the hazard for the terminal event conditional on the latent one. We derive the partial likelihood estimators for this problem assuming the latent event is observed, and propose a profile likelihood–based method for estimation when the latent event is unobserved. The baseline hazard in this case is estimated nonparametrically using the EM algorithm, which allows for closed-form Breslow-type estimators at each iteration, bringing improved computational efficiency and stability compared with maximizing the marginal likelihood directly. We present simulation studies to illustrate the finite-sample properties of the method; its use in practice is demonstrated in the analysis of a prostate cancer data set. PMID:27556886

  8. Semiparametric time-to-event modeling in the presence of a latent progression event.

    PubMed

    Rice, John D; Tsodikov, Alex

    2017-06-01

    In cancer research, interest frequently centers on factors influencing a latent event that must precede a terminal event. In practice it is often impossible to observe the latent event precisely, making inference about this process difficult. To address this problem, we propose a joint model for the unobserved time to the latent and terminal events, with the two events linked by the baseline hazard. Covariates enter the model parametrically as linear combinations that multiply, respectively, the hazard for the latent event and the hazard for the terminal event conditional on the latent one. We derive the partial likelihood estimators for this problem assuming the latent event is observed, and propose a profile likelihood-based method for estimation when the latent event is unobserved. The baseline hazard in this case is estimated nonparametrically using the EM algorithm, which allows for closed-form Breslow-type estimators at each iteration, bringing improved computational efficiency and stability compared with maximizing the marginal likelihood directly. We present simulation studies to illustrate the finite-sample properties of the method; its use in practice is demonstrated in the analysis of a prostate cancer data set. © 2016, The International Biometric Society.

  9. Sensitivity analysis for linear structural equation models, longitudinal mediation with latent growth models and blended learning in biostatistics education

    NASA Astrophysics Data System (ADS)

    Sullivan, Adam John

    In chapter 1, we consider the biases that may arise when an unmeasured confounder is omitted from a structural equation model (SEM) and sensitivity analysis techniques to correct for such biases. We give an analysis of which effects in an SEM are and are not biased by an unmeasured confounder. It is shown that a single unmeasured confounder will bias not just one but numerous effects in an SEM. We present sensitivity analysis techniques to correct for biases in total, direct, and indirect effects when using SEM analyses, and illustrate these techniques with a study of aging and cognitive function. In chapter 2, we consider longitudinal mediation with latent growth curves. We define the direct and indirect effects using counterfactuals and consider the assumptions needed for identifiability of those effects. We develop models with a binary treatment/exposure followed by a model where treatment/exposure changes with time allowing for treatment/exposure-mediator interaction. We thus formalize mediation analysis with latent growth curve models using counterfactuals, makes clear the assumptions and extends these methods to allow for exposure mediator interactions. We present and illustrate the techniques with a study on Multiple Sclerosis(MS) and depression. In chapter 3, we report on a pilot study in blended learning that took place during the Fall 2013 and Summer 2014 semesters here at Harvard. We blended the traditional BIO 200: Principles of Biostatistics and created ID 200: Principles of Biostatistics and epidemiology. We used materials from the edX course PH207x: Health in Numbers: Quantitative Methods in Clinical & Public Health Research and used. These materials were used as a video textbook in which students would watch a given number of these videos prior to class. Using surveys as well as exam data we informally assess these blended classes from the student's perspective as well as a comparison of these students with students in another course, BIO 201: Introduction to Statistical Methods in Fall 2013 as well as students from BIO 200 in Fall semesters of 1992 and 1993. We then suggest improvements upon our original course designs and follow up with an informal look at how these implemented changes affected the second offering of the newly blended ID 200 in Summer 2014.

  10. The computational nature of memory modification

    PubMed Central

    Gershman, Samuel J; Monfils, Marie-H; Norman, Kenneth A; Niv, Yael

    2017-01-01

    Retrieving a memory can modify its influence on subsequent behavior. We develop a computational theory of memory modification, according to which modification of a memory trace occurs through classical associative learning, but which memory trace is eligible for modification depends on a structure learning mechanism that discovers the units of association by segmenting the stream of experience into statistically distinct clusters (latent causes). New memories are formed when the structure learning mechanism infers that a new latent cause underlies current sensory observations. By the same token, old memories are modified when old and new sensory observations are inferred to have been generated by the same latent cause. We derive this framework from probabilistic principles, and present a computational implementation. Simulations demonstrate that our model can reproduce the major experimental findings from studies of memory modification in the Pavlovian conditioning literature. DOI: http://dx.doi.org/10.7554/eLife.23763.001 PMID:28294944

  11. Many-level multilevel structural equation modeling: An efficient evaluation strategy.

    PubMed

    Pritikin, Joshua N; Hunter, Michael D; von Oertzen, Timo; Brick, Timothy R; Boker, Steven M

    2017-01-01

    Structural equation models are increasingly used for clustered or multilevel data in cases where mixed regression is too inflexible. However, when there are many levels of nesting, these models can become difficult to estimate. We introduce a novel evaluation strategy, Rampart, that applies an orthogonal rotation to the parts of a model that conform to commonly met requirements. This rotation dramatically simplifies fit evaluation in a way that becomes more potent as the size of the data set increases. We validate and evaluate the implementation using a 3-level latent regression simulation study. Then we analyze data from a state-wide child behavioral health measure administered by the Oklahoma Department of Human Services. We demonstrate the efficiency of Rampart compared to other similar software using a latent factor model with a 5-level decomposition of latent variance. Rampart is implemented in OpenMx, a free and open source software.

  12. Māori identity signatures: A latent profile analysis of the types of Māori identity.

    PubMed

    Greaves, Lara M; Houkamau, Carla; Sibley, Chris G

    2015-10-01

    Māori are the indigenous peoples of New Zealand. However, the term 'Māori' can refer to a wide range of people of varying ethnic compositions and cultural identity. We present a statistical model identifying 6 distinct types, or 'Māori Identity Signatures,' and estimate their proportion in the Māori population. The model is tested using a Latent Profile Analysis of a national probability sample of 686 Māori drawn from the New Zealand Attitudes and Values Study. We identify 6 distinct signatures: Traditional Essentialists (22.6%), Traditional Inclusives (16%), High Moderates (31.7%), Low Moderates (18.7%), Spiritually Orientated (4.1%), and Disassociated (6.9%). These distinct Identity Signatures predicted variation in deprivation, age, mixed-ethnic affiliation, and religion. This research presents the first formal statistical model assessing how people's identity as Māori is psychologically structured, documents the relative proportion of these different patterns of structures, and shows that these patterns reliably predict differences in core demographics. We identify a range of patterns of Māori identity far more diverse than has been previously proposed based on qualitative data, and also show that the majority of Māori fit a moderate or traditional identity pattern. The application of our model for studying Māori health and identity development is discussed. (c) 2015 APA, all rights reserved).

  13. Tensor-driven extraction of developmental features from varying paediatric EEG datasets.

    PubMed

    Kinney-Lang, Eli; Spyrou, Loukianos; Ebied, Ahmed; Chin, Richard Fm; Escudero, Javier

    2018-05-21

    Constant changes in developing children's brains can pose a challenge in EEG dependant technologies. Advancing signal processing methods to identify developmental differences in paediatric populations could help improve function and usability of such technologies. Taking advantage of the multi-dimensional structure of EEG data through tensor analysis may offer a framework for extracting relevant developmental features of paediatric datasets. A proof of concept is demonstrated through identifying latent developmental features in resting-state EEG. Approach. Three paediatric datasets (n = 50, 17, 44) were analyzed using a two-step constrained parallel factor (PARAFAC) tensor decomposition. Subject age was used as a proxy measure of development. Classification used support vector machines (SVM) to test if PARAFAC identified features could predict subject age. The results were cross-validated within each dataset. Classification analysis was complemented by visualization of the high-dimensional feature structures using t-distributed Stochastic Neighbour Embedding (t-SNE) maps. Main Results. Development-related features were successfully identified for the developmental conditions of each dataset. SVM classification showed the identified features could accurately predict subject at a significant level above chance for both healthy and impaired populations. t-SNE maps revealed suitable tensor factorization was key in extracting the developmental features. Significance. The described methods are a promising tool for identifying latent developmental features occurring throughout childhood EEG. © 2018 IOP Publishing Ltd.

  14. LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA

    PubMed Central

    Salter-Townshend, Michael; McCormick, Tyler H.

    2018-01-01

    Social relationships consist of interactions along multiple dimensions. In social networks, this means that individuals form multiple types of relationships with the same person (e.g., an individual will not trust all of his/her acquaintances). Statistical models for these data require understanding two related types of dependence structure: (i) structure within each relationship type, or network view, and (ii) the association between views. In this paper, we propose a statistical framework that parsimoniously represents dependence between relationship types while also maintaining enough flexibility to allow individuals to serve different roles in different relationship types. Our approach builds on work on latent space models for networks [see, e.g., J. Amer. Statist. Assoc. 97 (2002) 1090–1098]. These models represent the propensity for two individuals to form edges as conditionally independent given the distance between the individuals in an unobserved social space. Our work departs from previous work in this area by representing dependence structure between network views through a multivariate Bernoulli likelihood, providing a representation of between-view association. This approach infers correlations between views not explained by the latent space model. Using our method, we explore 6 multiview network structures across 75 villages in rural southern Karnataka, India [Banerjee et al. (2013)]. PMID:29721127

  15. LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA.

    PubMed

    Salter-Townshend, Michael; McCormick, Tyler H

    2017-09-01

    Social relationships consist of interactions along multiple dimensions. In social networks, this means that individuals form multiple types of relationships with the same person (e.g., an individual will not trust all of his/her acquaintances). Statistical models for these data require understanding two related types of dependence structure: (i) structure within each relationship type, or network view, and (ii) the association between views. In this paper, we propose a statistical framework that parsimoniously represents dependence between relationship types while also maintaining enough flexibility to allow individuals to serve different roles in different relationship types. Our approach builds on work on latent space models for networks [see, e.g., J. Amer. Statist. Assoc. 97 (2002) 1090-1098]. These models represent the propensity for two individuals to form edges as conditionally independent given the distance between the individuals in an unobserved social space. Our work departs from previous work in this area by representing dependence structure between network views through a multivariate Bernoulli likelihood, providing a representation of between-view association. This approach infers correlations between views not explained by the latent space model. Using our method, we explore 6 multiview network structures across 75 villages in rural southern Karnataka, India [Banerjee et al. (2013)].

  16. Latent variable model for suicide risk in relation to social capital and socio-economic status.

    PubMed

    Congdon, Peter

    2012-08-01

    There is little evidence on the association between suicide outcomes (ideation, attempts, self-harm) and social capital. This paper investigates such associations using a structural equation model based on health survey data, and allowing for both individual and contextual risk factors. Social capital and other major risk factors for suicide, namely socioeconomic status and social isolation, are modelled as latent variables that are proxied (or measured) by observed indicators or question responses for survey subjects. These latent scales predict suicide risk in the structural component of the model. Also relevant to explaining suicide risk are contextual variables, such as area deprivation and region of residence, as well as the subject's demographic status. The analysis is based on the 2007 Adult Psychiatric Morbidity Survey and includes 7,403 English subjects. A Bayesian modelling strategy is used. Models with and without social capital as a predictor of suicide risk are applied. A benefit to statistical fit is demonstrated when social capital is added as a predictor. Social capital varies significantly by geographic context variables (neighbourhood deprivation, region), and this impacts on the direct effects of these contextual variables on suicide risk. In particular, area deprivation is not confirmed as a distinct significant influence. The model develops a suicidality risk score incorporating social capital, and the success of this risk score in predicting actual suicide events is demonstrated. Social capital as reflected in neighbourhood perceptions is a significant factor affecting risks of different types of self-harm and may mediate the effects of other contextual variables such as area deprivation.

  17. Latent factor structure of a behavioral economic cigarette demand curve in adolescent smokers.

    PubMed

    Bidwell, L Cinnamon; MacKillop, James; Murphy, James G; Tidey, Jennifer W; Colby, Suzanne M

    2012-11-01

    Behavioral economic demand curves, or quantitative representations of drug consumption across a range of prices, have been used to assess motivation for a variety of drugs. Such curves generate multiple measures of drug demand that are associated with cigarette consumption and nicotine dependence. However, little is known about the relationships among these facets of demand. The aim of the study was to quantify these relationships in adolescent smokers by using exploratory factor analysis to examine the underlying structure of the facets of nicotine incentive value generated from a demand curve measure. Participants were 138 adolescent smokers who completed a hypothetical cigarette purchase task, which assessed estimated cigarette consumption at escalating levels of price/cigarette. Demand curves and five facets of demand were generated from the measure: Elasticity (i.e., 1/α or proportionate price sensitivity); Intensity (i.e., consumption at zero price); O(max) (i.e., maximum financial expenditure on cigarettes); P(max) (i.e., price at which expenditure is maximized); and Breakpoint (i.e., the price that suppresses consumption to zero). Principal components analysis was used to examine the latent structure among the variables. The results revealed a two-factor solution, which were interpreted as "Persistence," reflecting insensitivity to escalating price, and "Amplitude," reflecting the absolute levels of consumption and price. These findings suggest a two factor structure of nicotine incentive value as measured via a demand curve. If supported, these findings have implications for understanding the relationships among individual demand indices in future behavioral economic studies and may further contribute to understanding of the nature of cigarette reinforcement. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. On the Benefits of Latent Variable Modeling for Norming Scales: The Case of the "Supports Intensity Scale-Children's Version"

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M.

    2016-01-01

    Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…

  19. Matrix completion by deep matrix factorization.

    PubMed

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Managerial performance and cost efficiency of Japanese local public hospitals: a latent class stochastic frontier model.

    PubMed

    Besstremyannaya, Galina

    2011-09-01

    The paper explores the link between managerial performance and cost efficiency of 617 Japanese general local public hospitals in 1999-2007. Treating managerial performance as unobservable heterogeneity, the paper employs a panel data stochastic cost frontier model with latent classes. Financial parameters associated with better managerial performance are found to be positively significant in explaining the probability of belonging to the more efficient latent class. The analysis of latent class membership was consistent with the conjecture that unobservable technological heterogeneity reflected in the existence of the latent classes is related to managerial performance. The findings may support the cause for raising efficiency of Japanese local public hospitals by enhancing the quality of management. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Augmenting Latent Dirichlet Allocation and Rank Threshold Detection with Ontologies

    DTIC Science & Technology

    2010-03-01

    Probabilistic Latent Semantic Indexing (PLSI) is an automated indexing information retrieval model [20]. It is based on a statistical latent class model which is...uses a statistical foundation that is more accurate in finding hidden semantic relationships [20]. The model uses factor analysis of count data, number...principle of statistical infer- ence which asserts that all of the information in a sample is contained in the likelihood function [20]. The statistical

  2. Latent Class Analysis of Antisocial Behavior: Interaction of Serotonin Transporter Genotype and Maltreatment

    ERIC Educational Resources Information Center

    Li, James J.; Lee, Steve S.

    2010-01-01

    To improve understanding about genetic and environmental influences on antisocial behavior (ASB), we tested the association of the 44-base pair polymorphism of the serotonin transporter gene (5-HTTLPR) and maltreatment using latent class analysis in 2,488 boys and girls from Wave 1 of the National Longitudinal Study of Adolescent Health. In boys,…

  3. Multilevel Latent Class Analysis for Large-Scale Educational Assessment Data: Exploring the Relation between the Curriculum and Students' Mathematical Strategies

    ERIC Educational Resources Information Center

    Fagginger Auer, Marije F.; Hickendorff, Marian; Van Putten, Cornelis M.; Béguin, Anton A.; Heiser, Willem J.

    2016-01-01

    A first application of multilevel latent class analysis (MLCA) to educational large-scale assessment data is demonstrated. This statistical technique addresses several of the challenges that assessment data offers. Importantly, MLCA allows modeling of the often ignored teacher effects and of the joint influence of teacher and student variables.…

  4. Clustering Educational Digital Library Usage Data: A Comparison of Latent Class Analysis and K-Means Algorithms

    ERIC Educational Resources Information Center

    Xu, Beijie; Recker, Mimi; Qi, Xiaojun; Flann, Nicholas; Ye, Lei

    2013-01-01

    This article examines clustering as an educational data mining method. In particular, two clustering algorithms, the widely used K-means and the model-based Latent Class Analysis, are compared, using usage data from an educational digital library service, the Instructional Architect (IA.usu.edu). Using a multi-faceted approach and multiple data…

  5. Latent Model Analysis of Substance Use and HIV Risk Behaviors among High-Risk Minority Adults

    ERIC Educational Resources Information Center

    Wang, Min Qi; Matthew, Resa F.; Chiu, Yu-Wen; Yan, Fang; Bellamy, Nikki D.

    2007-01-01

    Objectives: This study evaluated substance use and HIV risk profile using a latent model analysis based on ecological theory, inclusive of a risk and protective factor framework, in sexually active minority adults (N=1,056) who participated in a federally funded substance abuse and HIV prevention health initiative from 2002 to 2006. Methods: Data…

  6. Identifying Students at Risk: An Examination of Computer-Adaptive Measures and Latent Class Growth Analysis

    ERIC Educational Resources Information Center

    Keller-Margulis, Milena; McQuillin, Samuel D.; Castañeda, Juan Javier; Ochs, Sarah; Jones, John H.

    2018-01-01

    Multitiered systems of support depend on screening technology to identify students at risk. The purpose of this study was to examine the use of a computer-adaptive test and latent class growth analysis (LCGA) to identify students at risk in reading with focus on the use of this methodology to characterize student performance in screening.…

  7. Developmental Typologies of Identity Formation and Adjustment in Female Emerging Adults: A Latent Class Growth Analysis Approach

    ERIC Educational Resources Information Center

    Luyckx, Koen; Schwartz, Seth J.; Goossens, Luc; Soenens, Bart; Beyers, Wim

    2008-01-01

    The developmental interplay between identity and adjustment was examined in a seven-wave longitudinal study of 428 European female college students (M[subscript age] = 18.8 years) over a period of 3 years, with semi-annual measurement waves each year. Latent Class Growth Analysis (LCGA) was used to identify developmental typologies of both…

  8. Family Intervention Effects on Co-Occurring Early Childhood Behavioral and Emotional Problems: A Latent Transition Analysis Approach

    ERIC Educational Resources Information Center

    Connell, Arin; Bullock, Bernadette Marie; Dishion, Thomas J.; Shaw, Daniel; Wilson, Melvin; Gardner, Frances

    2008-01-01

    This study used latent transition analysis (LTA) to examine changes in early emotional and behavioral problems in children age 2 to 4 years resulting from participation in a family-centered intervention. A sample of 731 economically disadvantaged families was recruited from among participants in a national food supplement and nutrition program.…

  9. A latent class analysis of dissociation and posttraumatic stress disorder: evidence for a dissociative subtype.

    PubMed

    Wolf, Erika J; Miller, Mark W; Reardon, Annemarie F; Ryabchenko, Karen A; Castillo, Diane; Freund, Rachel

    2012-07-01

    The nature of the relationship of dissociation to posttraumatic stress disorder (PTSD) is controversial and of considerable clinical and nosologic importance. To examine evidence for a dissociative subtype of PTSD and to examine its association with different types of trauma. A latent profile analysis of cross-sectional data from structured clinical interviews indexing DSM-IV symptoms of current PTSD and dissociation. The VA Boston Healthcare System and the New Mexico VA Health Care System. A total of 492 veterans and their intimate partners, all of whom had a history of trauma. Participants reported exposure to a variety of traumatic events, including combat, childhood physical and sexual abuse, partner abuse, motor vehicle accidents, and natural disasters, with most participants reporting exposure to multiple types of traumatic events. Forty-two percent of the sample met the criteria for a current diagnosis of PTSD. Item-level scores on the Clinician-Administered PTSD Scale. A latent profile analysis suggested a 3-class solution: a low PTSD severity subgroup, a high PTSD severity subgroup characterized by elevations across the 17 core symptoms of the disorder, and a small but distinctly dissociative subgroup that composed 12% of individuals with a current diagnosis of PTSD. The latter group was characterized by severe PTSD symptoms combined with marked elevations on items assessing flashbacks, derealization, and depersonalization. Individuals in this subgroup also endorsed greater exposure to childhood and adult sexual trauma compared with the other 2 groups, suggesting a possible etiologic link with the experience of repeated sexual trauma. These results support the subtype hypothesis of the association between PTSD and dissociation and suggest that dissociation is a highly salient facet of posttraumatic psychopathology in a subset of individuals with the disorder.

  10. Transcriptional regulation of latent feline immunodeficiency virus in peripheral CD4+ T-lymphocytes.

    PubMed

    McDonnel, Samantha J; Sparger, Ellen E; Luciw, Paul A; Murphy, Brian G

    2012-05-01

    Feline immunodeficiency virus (FIV), the lentivirus of domestic cats responsible for feline AIDS, establishes a latent infection in peripheral blood CD4+ T-cells approximately eight months after experimental inoculation. In this study, cats experimentally infected with the FIV-C strain in the asymptomatic phase demonstrated an estimated viral load of 1 infected cell per approximately 10(3) CD4+ T-cells, with about 1 copy of viral DNA per cell. Approximately 1 in 10 proviral copies was capable of transcription in the asymptomatic phase. The latent FIV proviral promoter was associated with deacetylated, methylated histones, which is consistent with a condensed chromatin structure. In contrast, the transcriptionally active FIV promoter was associated with histone acetylation and demethylation. In addition, RNA polymerase II appeared to be paused on the latent viral promoter, and short promoter-proximal transcripts were detected. Our findings for the FIV promoter in infected cats are similar to results obtained in studies of human immunodeficiency virus (HIV)-1 latent proviruses in cell culture in vitro studies. Thus, the FIV/cat model may offer insights into in vivo mechanisms of HIV latency and provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus.

  11. Chemical Composition of Latent Fingerprints by Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Hartzell-Baguley, Brittany; Hipp, Rachael E.; Morgan, Neal R.; Morgan, Stephen L.

    2007-01-01

    An experiment in which gas chromatography-mass spectrometry (GC-MS) is used for latent fingerprint extraction and analysis on glass beads or glass slides is conducted. The results determine that the fingerprint residues are gender dependent.

  12. Application of a nanoflare probe specific to a latency associated transcript for isolation of KHV latently infected cells

    PubMed Central

    Reed, Aimee N.; Putman, Timothy; Sullivan, Christopher; Jin, Ling

    2015-01-01

    One of the unique features of herpesvirus infection is latent infection following an initial exposure, which is characterized by viral genome persistence in a small fraction of cells within the latently infected tissue. Investigation of the mechanisms of herpesvirus latency has been very challenging in tissues with only a small fraction of cells that are latently infected. Cyprinid herpesvirus 3, also known as koi herpesvirus (KHV), is an important and deadly pathogen of koi and common carp, Cyprinus carpio. Acute infection can cause up to 100% mortality in exposed fish, and fish that survive the infection become latently infected. KHV becomes latent in a small percentage of B lymphocytes and can reactivate under stressful conditions. During latency, KHV ORF6 transcript is expressed in the latently infected B lymphocytes. In order to study KHV latent infection in cells that are only latently infected, a nanoflare probe specific to ORF6 RNA was used to separate KHV latently infected cells from total peripheral white blood cells (WBC). Using the ORF6 nanoflare probe, less than 1% of peripheral WBC was isolated from KHV latently infected koi. When this enriched population of WBC was examined by real-time PCR specific for KHV, it was estimated that about 1 to 2 copies of viral genome persists in the sorted cells. In addition, KHV ORF6 transcript was shown to be the major transcript expressed during latency by RNA-seq analysis. This study demonstrated that an RNA nanoflare probe could be used to enrich latently infected cells, which can subsequently be used to investigate the molecular mechanisms of KHV latency. PMID:26087404

  13. Cognitive and contextual influences in determination of latent fingerprint suitability for identification judgments.

    PubMed

    Fraser-Mackenzie, Peter A F; Dror, Itiel E; Wertheim, Kasey

    2013-06-01

    We examined forensic fingerprint examiners' suitability determinations of latent fingerprints comparing situations in which the latent is assessed solo (in isolation) versus situations in which it is presented alongside a comparison (matching or non-matching) exemplar print. The presence of a non-matching comparison exemplar led examiners to be more inclined to draw the conclusion that the latent was suitable for comparison compared to when the latent was presented solo. This effect persisted even when the latent presented was highly unsuitable for comparison. The presence of a matching comparison exemplar led examiners to be less likely to decide that the latent was suitable and more likely to decide the latent was questionable compared to solo analysis. This effect persisted even when the latent presented was highly suitable, suggesting a strong main effect. Knowledge of another examiner's previous determination that the latent was unsuitable was found to increase the likelihood that the examiner would conclude that the latent was unsuitable. However, knowledge of a previous "suitable" determination by another examiner did not increase the likelihood of a "suitable" conclusion by examiners. The finding that effects were weaker, although not entirely removed, in those with IAI certification suggests that training may be an appropriate route for reducing the effect of contextual influence and bias in suitability determinations. It was also shown that latent prints that were previously classed as "unsuitable" in a non-biasing context, continued to be judged to be "unsuitable" in a strongly biasing context (a major case in which a previous examiner was purported to have made an Individualization). Copyright © 2013 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Psychological Processes Mediate the Impact of Familial Risk, Social Circumstances and Life Events on Mental Health

    PubMed Central

    Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara

    2013-01-01

    Background Despite widespread acceptance of the ‘biopsychosocial model’, the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Methods and Findings Participants were 32,827 (age 18–85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ2 (3199, N = 23,397) = 126654·8, p<·001; RCFI = ·97; RMSEA = ·04 (·038–·039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. Conclusion These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies. PMID:24146890

  15. Psychological processes mediate the impact of familial risk, social circumstances and life events on mental health.

    PubMed

    Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara

    2013-01-01

    Despite widespread acceptance of the 'biopsychosocial model', the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Participants were 32,827 (age 18-85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ(2) (3199, N = 23,397) = 126654.8, p<.001; RCFI = .97; RMSEA = .04 (.038-.039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies.

  16. Elucidating the association between the self-harm inventory and several borderline personality measures in an inpatient psychiatric sample.

    PubMed

    Sellbom, Martin; Sansone, Randy A; Songer, Douglas A

    2017-09-01

    The current study evaluated the utility of the self-harm inventory (SHI) as a proxy for and screening measure of borderline personality disorder (BPD) using several diagnostic and statistical manual of mental disorders (DSM)-based BPD measures as criteria. We used a sample of 145 psychiatric inpatients, who completed the SHI and a series of well-validated, DSM-based self-report measures of BPD. Using a series of latent trait and latent class analyses, we found that the SHI was substantially associated with a latent construct representing BPD, as well as differentiated latent classes of 'high' vs. 'low' BPD, with good accuracy. The SHI can serve as proxy for and a good screening measure for BPD, but future research needs to replicate these findings using structured interview-based measurement of BPD.

  17. The Relationship of Dairy Farm Eco-Efficiency with Intensification and Self-Sufficiency. Evidence from the French Dairy Sector Using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling.

    PubMed

    Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe

    2016-01-01

    We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm's capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate 'eco-efficiency' score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental 'sustainability' of intensive dairy farming depends on particular farming systems and circumstances, although we note that more self-sufficient farms may be preferable when they may benefit from relatively low land prices and agri-environment schemes aimed at maintaining grasslands.

  18. The Relationship of Dairy Farm Eco-Efficiency with Intensification and Self-Sufficiency. Evidence from the French Dairy Sector Using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling

    PubMed Central

    Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe

    2016-01-01

    We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm’s capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate ‘eco-efficiency’ score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental ‘sustainability’ of intensive dairy farming depends on particular farming systems and circumstances, although we note that more self-sufficient farms may be preferable when they may benefit from relatively low land prices and agri-environment schemes aimed at maintaining grasslands. PMID:27832199

  19. [Factors affecting maternal physical activities: an analysis based on the structural equation modeling].

    PubMed

    Liu, Yi; Luo, Bi-Ru

    2016-11-20

    To analyze the factors affecting maternal physical activities at different stages among pregnant women. Self-designed questionnaires were used to investigate the physical activities of women in different stages, including 650 in the first, 650 in the second, and 750 in the third trimester of pregnancy. The factors affecting maternal physical activities were analyzed using the structural equation model that comprised 4 latent variables (attitude, norm, behavioral attention and behavior) with observed variables that matched the latent variables. The participants ranged from 18 to 35 years of age. The women and their husbands, but not their mothers or mothers-in-law, were all well educated. The caregiver during pregnancy was mostly the mother followed by the husband. For traveling, the women in the first, second and third trimesters preferred walking, bus, and personal escort, respectively; the main physical activity was walking in all trimesters, and the women in different trimester were mostly sedentary, a greater intensity of exercise was associated with less exercise time. Structural equation modeling (SEM) analysis showed that the physical activities of pregnant women was affected by behavioral intention (with standardized regression coefficient of 0.372); attitude and subjective norms affected physical activity by indirectly influencing the behavior intention (standardized regression coefficients of 0.140 and 0.669). The pregnant women in different stages have inappropriate physical activities with insufficient exercise time and intensity. The subjective norms affects the physical activities of the pregnant women by influencing their attitudes and behavior intention indirectly, suggesting the need of health education of the caregivers during pregnancy.

  20. Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies

    NASA Astrophysics Data System (ADS)

    Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu

    2015-09-01

    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.

Top