Sample records for latent structures pls

  1. Application of Fourier transform infrared spectroscopy and orthogonal projections to latent structures/partial least squares regression for estimation of procyanidins average degree of polymerisation.

    PubMed

    Passos, Cláudia P; Cardoso, Susana M; Barros, António S; Silva, Carlos M; Coimbra, Manuel A

    2010-02-28

    Fourier transform infrared (FTIR) spectroscopy has being emphasised as a widespread technique in the quick assess of food components. In this work, procyanidins were extracted with methanol and acetone/water from the seeds of white and red grape varieties. A fractionation by graded methanol/chloroform precipitations allowed to obtain 26 samples that were characterised using thiolysis as pre-treatment followed by HPLC-UV and MS detection. The average degree of polymerisation (DPn) of the procyanidins in the samples ranged from 2 to 11 flavan-3-ol residues. FTIR spectroscopy within the wavenumbers region of 1800-700 cm(-1) allowed to build a partial least squares (PLS1) regression model with 8 latent variables (LVs) for the estimation of the DPn, giving a RMSECV of 11.7%, with a R(2) of 0.91 and a RMSEP of 2.58. The application of orthogonal projection to latent structures (O-PLS1) clarifies the interpretation of the regression model vectors. Moreover, the O-PLS procedure has removed 88% of non-correlated variations with the DPn, allowing to relate the increase of the absorbance peaks at 1203 and 1099 cm(-1) with the increase of the DPn due to the higher proportion of substitutions in the aromatic ring of the polymerised procyanidin molecules. Copyright 2009 Elsevier B.V. All rights reserved.

  2. The Role of Safety Culture in Influencing Provider Perceptions of Patient Safety.

    PubMed

    Bishop, Andrea C; Boyle, Todd A

    2016-12-01

    To determine how provider perceptions of safety culture influence their involvement in patient safety practices. Health-care providers were surveyed in 2 tertiary hospitals located in Atlantic Canada, composed of 4 units in total. The partial least squares (PLS) approach to structural equation modeling was used to analyze the data. Latent variables provider PLS model encompassed the hypothesized relationships between provider characteristics, safety culture, perceptions of patient safety practices, and actual performance of patient safety practices, using the Health Belief Model (HBM) as a guide. Data analysis was conducted using SmartPLS. A total of 113 health-care providers completed a survey out of an eligible 318, representing a response rate of 35.5%. The final PLS model showed acceptable internal consistency with all four latent variables having a composite reliability score above the recommended 0.70 cutoff value (safety culture = 0.86, threat = 0.76, expectations = 0.83, PS practices = 0.75). Discriminant validity was established, and all path coefficients were found to be significant at the α = 0.05 level using nonparametric bootstrapping. The survey results show that safety culture accounted for 34% of the variance in perceptions of threat and 42% of the variance in expectations. This research supports the role that safety culture plays in the promotion and maintenance of patient safety activities for health-care providers. As such, it is recommended that the introduction of new patient safety strategies follow a thorough exploration of an organization's safety culture.

  3. Use of Advanced Spectroscopic Techniques for Predicting the Mechanical Properties of Wood Composites

    Treesearch

    Timothy G. Rials; Stephen S. Kelley; Chi-Leung So

    2002-01-01

    Near infrared (NIR) spectroscopy was used to characterize a set of medium-density fiberboard (MDF) samples. This spectroscopic technique, in combination with projection to latent structures (PLS) modeling, effectively predicted the mechanical strength of MDF samples with a wide range of physical properties. The stiffness, strength, and internal bond properties of the...

  4. A preliminary MTD-PLS study for androgen receptor binding of steroid compounds

    NASA Astrophysics Data System (ADS)

    Bora, Alina; Seclaman, E.; Kurunczi, L.; Funar-Timofei, Simona

    The relative binding affinities (RBA) of a series of 30 steroids for Human Androgen Receptor (AR) were used to initiate a MTD-PLS study. The 3D structures of all the compounds were obtained through geometry optimization in the framework of AM1 semiempirical quantum chemical method. The MTD hypermolecule (HM) was constructed, superposing these structures on the AR-bonded dihydrotestosterone (DHT) skeleton obtained from PDB (AR complex, ID 1I37). The parameters characterizing the HM vertices were collected using: AM1 charges, XlogP fragmental values, calculated fragmental polarizabilities (from refractivities), volumes, and H-bond parameters (Raevsky's thermodynamic originated scale). The resulted QSAR data matrix was submitted to PCA (Principal Component Analysis) and PLS (Projections in Latent Structures) procedure (SIMCA P 9.0); five compounds were selected as test set, and the remaining 25 molecules were used as training set. In the PLS procedure supplementary chemical information was introduced, i.e. the steric effect was always considered detrimental, and the hydrophobic and van der Waals interactions were imposed to be beneficial. The initial PLS model using the entire training set has the following characteristics: R2Y = 0.584, Q2 = 0.344. Based on distances to the model criterions (DMODX and DMODY), five compounds were eliminated and the obtained final model had the following characteristics: R2Y D 0.891, Q2 D 0.591. For this the external predictivity on the test set was unsatisfactory. A tentative explanation for these behaviors is the weak information content of the input QSAR matrix for the present series comparatively with other successful MTD-PLS modeling published elsewhere.

  5. A Comparison of Approaches for the Analysis of Interaction Effects between Latent Variables Using Partial Least Squares Path Modeling

    ERIC Educational Resources Information Center

    Henseler, Jorg; Chin, Wynne W.

    2010-01-01

    In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…

  6. Consistent Partial Least Squares Path Modeling via Regularization.

    PubMed

    Jung, Sunho; Park, JaeHong

    2018-01-01

    Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.

  7. The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part II: Indication of peaks related to the inhibition of butyrylcholinesterase and monoamine oxidase-A.

    PubMed

    Klein-Júnior, Luiz C; Viaene, Johan; Tuenter, Emmy; Salton, Juliana; Gasper, André L; Apers, Sandra; Andries, Jan P M; Pieters, Luc; Henriques, Amélia T; Vander Heyden, Yvan

    2016-09-09

    Psychotria nemorosa is chemically characterized by indole alkaloids and displays significant inhibitory activity on butyrylcholinesterase (BChE) and monoamine oxidase-A (MAO-A), both enzymes related to neurodegenerative disorders. In the present study, 43 samples of P. nemorosa leaves were extracted and fractionated in accordance to previously optimized methods (see Part I). These fractions were analyzed by means of UPLC-DAD and assayed for their BChE and MAO-A inhibitory potencies. The chromatographic fingerprint data was first aligned using correlation optimized warping and Principal Component Analysis to explore the data structure was performed. Multivariate calibration techniques, namely Partial Least Squares (PLS1), PLS2 and Orthogonal Projections to Latent Structure (O-PLS1), were evaluated for modelling the activities as a function of the fingerprints. Since the best results were obtained with O-PLS1 model (RMSECV=9.3 and 3.3 for BChE and MAO-A, respectively), the regression coefficients of the model were analyzed and plotted relative to the original fingerprints. Four peaks were indicated as multifunctional compounds, with the capacity to impair both BChE and MAO-A activities. In order to confirm these results, a semi-prep HPLC technique was used and a fraction containing the four peaks was purified and evaluated in vitro. It was observed that the fraction exhibited an IC50 of 2.12μgmL(-1) for BChE and 1.07μgmL(-1) for MAO-A. These results reinforce the prediction obtained by O-PLS1 modelling. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Consistent Partial Least Squares Path Modeling via Regularization

    PubMed Central

    Jung, Sunho; Park, JaeHong

    2018-01-01

    Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present. PMID:29515491

  9. The extraction of simple relationships in growth factor-specific multiple-input and multiple-output systems in cell-fate decisions by backward elimination PLS regression.

    PubMed

    Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya

    2013-01-01

    Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.

  10. Decision-making in healthcare: a practical application of partial least square path modelling to coverage of newborn screening programmes

    PubMed Central

    2012-01-01

    Background Decision-making in healthcare is complex. Research on coverage decision-making has focused on comparative studies for several countries, statistical analyses for single decision-makers, the decision outcome and appraisal criteria. Accounting for decision processes extends the complexity, as they are multidimensional and process elements need to be regarded as latent constructs (composites) that are not observed directly. The objective of this study was to present a practical application of partial least square path modelling (PLS-PM) to evaluate how it offers a method for empirical analysis of decision-making in healthcare. Methods Empirical approaches that applied PLS-PM to decision-making in healthcare were identified through a systematic literature search. PLS-PM was used as an estimation technique for a structural equation model that specified hypotheses between the components of decision processes and the reasonableness of decision-making in terms of medical, economic and other ethical criteria. The model was estimated for a sample of 55 coverage decisions on the extension of newborn screening programmes in Europe. Results were evaluated by standard reliability and validity measures for PLS-PM. Results After modification by dropping two indicators that showed poor measures in the measurement models’ quality assessment and were not meaningful for newborn screening, the structural equation model estimation produced plausible results. The presence of three influences was supported: the links between both stakeholder participation or transparency and the reasonableness of decision-making; and the effect of transparency on the degree of scientific rigour of assessment. Reliable and valid measurement models were obtained to describe the composites of ‘transparency’, ‘participation’, ‘scientific rigour’ and ‘reasonableness’. Conclusions The structural equation model was among the first applications of PLS-PM to coverage decision-making. It allowed testing of hypotheses in situations where there are links between several non-observable constructs. PLS-PM was compatible in accounting for the complexity of coverage decisions to obtain a more realistic perspective for empirical analysis. The model specification can be used for hypothesis testing by using larger sample sizes and for data in the full domain of health technologies. PMID:22856325

  11. Decision-making in healthcare: a practical application of partial least square path modelling to coverage of newborn screening programmes.

    PubMed

    Fischer, Katharina E

    2012-08-02

    Decision-making in healthcare is complex. Research on coverage decision-making has focused on comparative studies for several countries, statistical analyses for single decision-makers, the decision outcome and appraisal criteria. Accounting for decision processes extends the complexity, as they are multidimensional and process elements need to be regarded as latent constructs (composites) that are not observed directly. The objective of this study was to present a practical application of partial least square path modelling (PLS-PM) to evaluate how it offers a method for empirical analysis of decision-making in healthcare. Empirical approaches that applied PLS-PM to decision-making in healthcare were identified through a systematic literature search. PLS-PM was used as an estimation technique for a structural equation model that specified hypotheses between the components of decision processes and the reasonableness of decision-making in terms of medical, economic and other ethical criteria. The model was estimated for a sample of 55 coverage decisions on the extension of newborn screening programmes in Europe. Results were evaluated by standard reliability and validity measures for PLS-PM. After modification by dropping two indicators that showed poor measures in the measurement models' quality assessment and were not meaningful for newborn screening, the structural equation model estimation produced plausible results. The presence of three influences was supported: the links between both stakeholder participation or transparency and the reasonableness of decision-making; and the effect of transparency on the degree of scientific rigour of assessment. Reliable and valid measurement models were obtained to describe the composites of 'transparency', 'participation', 'scientific rigour' and 'reasonableness'. The structural equation model was among the first applications of PLS-PM to coverage decision-making. It allowed testing of hypotheses in situations where there are links between several non-observable constructs. PLS-PM was compatible in accounting for the complexity of coverage decisions to obtain a more realistic perspective for empirical analysis. The model specification can be used for hypothesis testing by using larger sample sizes and for data in the full domain of health technologies.

  12. A PLS-based extractive spectrophotometric method for simultaneous determination of carbamazepine and carbamazepine-10,11-epoxide in plasma and comparison with HPLC

    NASA Astrophysics Data System (ADS)

    Hemmateenejad, Bahram; Rezaei, Zahra; Khabnadideh, Soghra; Saffari, Maryam

    2007-11-01

    Carbamazepine (CBZ) undergoes enzyme biotransformation through epoxidation with the formation of its metabolite, carbamazepine-10,11-epoxide (CBZE). A simple chemometrics-assisted spectrophotometric method has been proposed for simultaneous determination of CBZ and CBZE in plasma. A liquid extraction procedure was operated to separate the analytes from plasma, and the UV absorbance spectra of the resultant solutions were subjected to partial least squares (PLS) regression. The optimum number of PLS latent variables was selected according to the PRESS values of leave-one-out cross-validation. A HPLC method was also employed for comparison. The respective mean recoveries for analysis of CBZ and CBZE in synthetic mixtures were 102.57 (±0.25)% and 103.00 (±0.09)% for PLS and 99.40 (±0.15)% and 102.20 (±0.02)%. The concentrations of CBZ and CBZE were also determined in five patients using the PLS and HPLC methods. The results showed that the data obtained by PLS were comparable with those obtained by HPLC method.

  13. Nearest clusters based partial least squares discriminant analysis for the classification of spectral data.

    PubMed

    Song, Weiran; Wang, Hui; Maguire, Paul; Nibouche, Omar

    2018-06-07

    Partial Least Squares Discriminant Analysis (PLS-DA) is one of the most effective multivariate analysis methods for spectral data analysis, which extracts latent variables and uses them to predict responses. In particular, it is an effective method for handling high-dimensional and collinear spectral data. However, PLS-DA does not explicitly address data multimodality, i.e., within-class multimodal distribution of data. In this paper, we present a novel method termed nearest clusters based PLS-DA (NCPLS-DA) for addressing the multimodality and nonlinearity issues explicitly and improving the performance of PLS-DA on spectral data classification. The new method applies hierarchical clustering to divide samples into clusters and calculates the corresponding centre of every cluster. For a given query point, only clusters whose centres are nearest to such a query point are used for PLS-DA. Such a method can provide a simple and effective tool for separating multimodal and nonlinear classes into clusters which are locally linear and unimodal. Experimental results on 17 datasets, including 12 UCI and 5 spectral datasets, show that NCPLS-DA can outperform 4 baseline methods, namely, PLS-DA, kernel PLS-DA, local PLS-DA and k-NN, achieving the highest classification accuracy most of the time. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-04-29

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Relationship between Composition and Toxicity of Motor Vehicle Emission Samples

    PubMed Central

    McDonald, Jacob D.; Eide, Ingvar; Seagrave, JeanClare; Zielinska, Barbara; Whitney, Kevin; Lawson, Douglas R.; Mauderly, Joe L.

    2004-01-01

    In this study we investigated the statistical relationship between particle and semivolatile organic chemical constituents in gasoline and diesel vehicle exhaust samples, and toxicity as measured by inflammation and tissue damage in rat lungs and mutagenicity in bacteria. Exhaust samples were collected from “normal” and “high-emitting” gasoline and diesel light-duty vehicles. We employed a combination of principal component analysis (PCA) and partial least-squares regression (PLS; also known as projection to latent structures) to evaluate the relationships between chemical composition of vehicle exhaust and toxicity. The PLS analysis revealed the chemical constituents covarying most strongly with toxicity and produced models predicting the relative toxicity of the samples with good accuracy. The specific nitro-polycyclic aromatic hydrocarbons important for mutagenicity were the same chemicals that have been implicated by decades of bioassay-directed fractionation. These chemicals were not related to lung toxicity, which was associated with organic carbon and select organic compounds that are present in lubricating oil. The results demonstrate the utility of the PCA/PLS approach for evaluating composition–response relationships in complex mixture exposures and also provide a starting point for confirming causality and determining the mechanisms of the lung effects. PMID:15531438

  16. Error propagation of partial least squares for parameters optimization in NIR modeling.

    PubMed

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-05

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models. Copyright © 2017. Published by Elsevier B.V.

  17. Error propagation of partial least squares for parameters optimization in NIR modeling

    NASA Astrophysics Data System (ADS)

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-01

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.

  18. Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors.

    PubMed

    Burgués, Javier; Marco, Santiago

    2018-08-17

    Metal oxide semiconductor (MOX) sensors are usually temperature-modulated and calibrated with multivariate models such as partial least squares (PLS) to increase the inherent low selectivity of this technology. The multivariate sensor response patterns exhibit heteroscedastic and correlated noise, which suggests that maximum likelihood methods should outperform PLS. One contribution of this paper is the comparison between PLS and maximum likelihood principal components regression (MLPCR) in MOX sensors. PLS is often criticized by the lack of interpretability when the model complexity increases beyond the chemical rank of the problem. This happens in MOX sensors due to cross-sensitivities to interferences, such as temperature or humidity and non-linearity. Additionally, the estimation of fundamental figures of merit, such as the limit of detection (LOD), is still not standardized in multivariate models. Orthogonalization methods, such as orthogonal projection to latent structures (O-PLS), have been successfully applied in other fields to reduce the complexity of PLS models. In this work, we propose a LOD estimation method based on applying the well-accepted univariate LOD formulas to the scores of the first component of an orthogonal PLS model. The resulting LOD is compared to the multivariate LOD range derived from error-propagation. The methodology is applied to data extracted from temperature-modulated MOX sensors (FIS SB-500-12 and Figaro TGS 3870-A04), aiming at the detection of low concentrations of carbon monoxide in the presence of uncontrolled humidity (chemical noise). We found that PLS models were simpler and more accurate than MLPCR models. Average LOD values of 0.79 ppm (FIS) and 1.06 ppm (Figaro) were found using the approach described in this paper. These values were contained within the LOD ranges obtained with the error-propagation approach. The mean LOD increased to 1.13 ppm (FIS) and 1.59 ppm (Figaro) when considering validation samples collected two weeks after calibration, which represents a 43% and 46% degradation, respectively. The orthogonal score-plot was a very convenient tool to visualize MOX sensor data and to validate the LOD estimates. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Determination of total phenolic compounds in compost by infrared spectroscopy.

    PubMed

    Cascant, M M; Sisouane, M; Tahiri, S; Krati, M El; Cervera, M L; Garrigues, S; de la Guardia, M

    2016-06-01

    Middle and near infrared (MIR and NIR) were applied to determine the total phenolic compounds (TPC) content in compost samples based on models built by using partial least squares (PLS) regression. The multiplicative scatter correction, standard normal variate and first derivative were employed as spectra pretreatment, and the number of latent variable were optimized by leave-one-out cross-validation. The performance of PLS-ATR-MIR and PLS-DR-NIR models was evaluated according to root mean square error of cross validation and prediction (RMSECV and RMSEP), the coefficient of determination for prediction (Rpred(2)) and residual predictive deviation (RPD) being obtained for this latter values of 5.83 and 8.26 for MIR and NIR, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Associations between complex OHC mixtures and thyroid and cortisol hormone levels in East Greenland polar bears

    PubMed Central

    TØ, Bechshøft; Sonne, C; Dietz, R; Born, EW; Muir, DCG; Letcher, RJ; Novak, MA; Henchey, E; Meyer, JS; Jenssen, BM; Villanger, GD

    2012-01-01

    The multivariate relationship between hair cortisol, whole blood thyroid hormones, and the complex mixtures of organohalogen contaminant (OHC) levels measured in subcutaneous adipose of 23 East Greenland polar bears (eight males and 15 females, all sampled between the years 1999 and 2001) was analyzed using projection to latent structure (PLS) regression modeling. In the resulting PLS model, most important variables with a negative influence on cortisol levels were particularly BDE-99, but also CB-180, -201, BDE-153, and CB-170/190. The most important variables with a positive influence on cortisol were CB-66/95, α-HCH, TT3, as well as heptachlor epoxide, dieldrin, BDE-47, p,p′-DDD. Although statistical modeling does not necessarily fully explain biological cause-effect relationships, relationships indicate that (1) the hypothalamic-pituitary-adrenal (HPA) axis in East Greenland polar bears is likely to be affected by OHC-contaminants and (2) the association between OHCs and cortisol may be linked with the hypothalamus-pituitary-thyroid (HPT) axis. PMID:22575327

  1. Forensic Discrimination of Latent Fingerprints Using Laser-Induced Breakdown Spectroscopy (LIBS) and Chemometric Approaches.

    PubMed

    Yang, Jun-Ho; Yoh, Jack J

    2018-01-01

    A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.

  2. Associations between complex OHC mixtures and thyroid and cortisol hormone levels in East Greenland polar bears.

    PubMed

    Bechshøft, T Ø; Sonne, C; Dietz, R; Born, E W; Muir, D C G; Letcher, R J; Novak, M A; Henchey, E; Meyer, J S; Jenssen, B M; Villanger, G D

    2012-07-01

    The multivariate relationship between hair cortisol, whole blood thyroid hormones, and the complex mixtures of organohalogen contaminant (OHC) levels measured in subcutaneous adipose of 23 East Greenland polar bears (eight males and 15 females, all sampled between the years 1999 and 2001) was analyzed using projection to latent structure (PLS) regression modeling. In the resulting PLS model, most important variables with a negative influence on cortisol levels were particularly BDE-99, but also CB-180, -201, BDE-153, and CB-170/190. The most important variables with a positive influence on cortisol were CB-66/95, α-HCH, TT3, as well as heptachlor epoxide, dieldrin, BDE-47, p,p'-DDD. Although statistical modeling does not necessarily fully explain biological cause-effect relationships, relationships indicate that (1) the hypothalamic-pituitary-adrenal (HPA) axis in East Greenland polar bears is likely to be affected by OHC-contaminants and (2) the association between OHCs and cortisol may be linked with the hypothalamus-pituitary-thyroid (HPT) axis. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Characterization of oils and fats by 1H NMR and GC/MS fingerprinting: classification, prediction and detection of adulteration.

    PubMed

    Fang, Guihua; Goh, Jing Yeen; Tay, Manjun; Lau, Hiu Fung; Li, Sam Fong Yau

    2013-06-01

    The correct identification of oils and fats is important to consumers from both commercial and health perspectives. Proton nuclear magnetic resonance ((1)H NMR) spectroscopy, gas chromatography-mass spectrometry (GC/MS) fingerprinting and chemometrics were employed successfully for the quality control of oils and fats. Principal component analysis (PCA) of both techniques showed group clustering of 14 types of oils and fats. Partial least squares discriminant analysis (PLS-DA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) using GC/MS data had excellent classification sensitivity and specificity compared to models using NMR data. Depending on the availability of the instruments, data from either technique can effectively be applied for the establishment of an oils and fats database to identify unknown samples. Partial least squares (PLS) models were successfully established for the detection of as low as 5% of lard and beef tallow spiked into canola oil, thus illustrating possible applications in Islamic and Jewish countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. [Spectral quantitative analysis by nonlinear partial least squares based on neural network internal model for flue gas of thermal power plant].

    PubMed

    Cao, Hui; Li, Yao-Jiang; Zhou, Yan; Wang, Yan-Xia

    2014-11-01

    To deal with nonlinear characteristics of spectra data for the thermal power plant flue, a nonlinear partial least square (PLS) analysis method with internal model based on neural network is adopted in the paper. The latent variables of the independent variables and the dependent variables are extracted by PLS regression firstly, and then they are used as the inputs and outputs of neural network respectively to build the nonlinear internal model by train process. For spectra data of flue gases of the thermal power plant, PLS, the nonlinear PLS with the internal model of back propagation neural network (BP-NPLS), the non-linear PLS with the internal model of radial basis function neural network (RBF-NPLS) and the nonlinear PLS with the internal model of adaptive fuzzy inference system (ANFIS-NPLS) are compared. The root mean square error of prediction (RMSEP) of sulfur dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 16.96%, 16.60% and 19.55% than that of PLS, respectively. The RMSEP of nitric oxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 8.60%, 8.47% and 10.09% than that of PLS, respectively. The RMSEP of nitrogen dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 2.11%, 3.91% and 3.97% than that of PLS, respectively. Experimental results show that the nonlinear PLS is more suitable for the quantitative analysis of glue gas than PLS. Moreover, by using neural network function which can realize high approximation of nonlinear characteristics, the nonlinear partial least squares method with internal model mentioned in this paper have well predictive capabilities and robustness, and could deal with the limitations of nonlinear partial least squares method with other internal model such as polynomial and spline functions themselves under a certain extent. ANFIS-NPLS has the best performance with the internal model of adaptive fuzzy inference system having ability to learn more and reduce the residuals effectively. Hence, ANFIS-NPLS is an accurate and useful quantitative thermal power plant flue gas analysis method.

  5. Modelling by partial least squares the relationship between the HPLC mobile phases and analytes on phenyl column.

    PubMed

    Markopoulou, Catherine K; Kouskoura, Maria G; Koundourellis, John E

    2011-06-01

    Twenty-five descriptors and 61 structurally different analytes have been used on a partial least squares (PLS) to latent structure technique in order to study chromatographically their interaction mechanism on a phenyl column. According to the model, 240 different retention times of the analytes, expressed as Y variable (log k), at different % MeOH mobile-phase concentrations have been correlated with their theoretical most important structural or molecular descriptors. The goodness-of-fit was estimated by the coefficient of multiple determinations r(2) (0.919), and the root mean square error of estimation (RMSEE=0.1283) values with a predictive ability (Q(2)) of 0.901. The model was further validated using cross-validation (CV), validated by 20 response permutations r(2) (0.0, 0.0146), Q(2) (0.0, -0.136) and validated by external prediction. The contribution of certain mechanism interactions between the analytes, the mobile phase and the column, proportional or counterbalancing is also studied. Trying to evaluate the influence on Y of every variable in a PLS model, VIP (variables importance in the projection) plot provides evidence that lipophilicity (expressed as Log D, Log P), polarizability, refractivity and the eluting power of the mobile phase are dominant in the retention mechanism on a phenyl column. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of a NIR-based blend uniformity method for a drug product containing multiple structurally similar actives by using the quality by design principles.

    PubMed

    Lin, Yiqing; Li, Weiyong; Xu, Jin; Boulas, Pierre

    2015-07-05

    The aim of this study is to develop an at-line near infrared (NIR) method for the rapid and simultaneous determination of four structurally similar active pharmaceutical ingredients (APIs) in powder blends intended for the manufacturing of tablets. Two of the four APIs in the formula are present in relatively small amounts, one at 0.95% and the other at 0.57%. Such small amounts in addition to the similarity in structures add significant complexity to the blend uniformity analysis. The NIR method is developed using spectra from six laboratory-created calibration samples augmented by a small set of spectra from a large-scale blending sample. Applying the quality by design (QbD) principles, the calibration design included concentration variations of the four APIs and a main excipient, microcrystalline cellulose. A bench-top FT-NIR instrument was used to acquire the spectra. The obtained NIR spectra were analyzed by applying principal component analysis (PCA) before calibration model development. Score patterns from the PCA were analyzed to reveal relationship between latent variables and concentration variations of the APIs. In calibration model development, both PLS-1 and PLS-2 models were created and evaluated for their effectiveness in predicting API concentrations in the blending samples. The final NIR method shows satisfactory specificity and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Design of experiments-based monitoring of critical quality attributes for the spray-drying process of insulin by NIR spectroscopy.

    PubMed

    Maltesen, Morten Jonas; van de Weert, Marco; Grohganz, Holger

    2012-09-01

    Moisture content and aerodynamic particle size are critical quality attributes for spray-dried protein formulations. In this study, spray-dried insulin powders intended for pulmonary delivery were produced applying design of experiments methodology. Near infrared spectroscopy (NIR) in combination with preprocessing and multivariate analysis in the form of partial least squares projections to latent structures (PLS) were used to correlate the spectral data with moisture content and aerodynamic particle size measured by a time of flight principle. PLS models predicting the moisture content were based on the chemical information of the water molecules in the NIR spectrum. Models yielded prediction errors (RMSEP) between 0.39% and 0.48% with thermal gravimetric analysis used as reference method. The PLS models predicting the aerodynamic particle size were based on baseline offset in the NIR spectra and yielded prediction errors between 0.27 and 0.48 μm. The morphology of the spray-dried particles had a significant impact on the predictive ability of the models. Good predictive models could be obtained for spherical particles with a calibration error (RMSECV) of 0.22 μm, whereas wrinkled particles resulted in much less robust models with a Q (2) of 0.69. Based on the results in this study, NIR is a suitable tool for process analysis of the spray-drying process and for control of moisture content and particle size, in particular for smooth and spherical particles.

  8. A novel exploratory chemometric approach to environmental monitorring by combining block clustering with Partial Least Square (PLS) analysis

    PubMed Central

    2013-01-01

    Background Given the serious threats posed to terrestrial ecosystems by industrial contamination, environmental monitoring is a standard procedure used for assessing the current status of an environment or trends in environmental parameters. Measurement of metal concentrations at different trophic levels followed by their statistical analysis using exploratory multivariate methods can provide meaningful information on the status of environmental quality. In this context, the present paper proposes a novel chemometric approach to standard statistical methods by combining the Block clustering with Partial least square (PLS) analysis to investigate the accumulation patterns of metals in anthropized terrestrial ecosystems. The present study focused on copper, zinc, manganese, iron, cobalt, cadmium, nickel, and lead transfer along a soil-plant-snai food chain, and the hepatopancreas of the Roman snail (Helix pomatia) was used as a biological end-point of metal accumulation. Results Block clustering deliniates between the areas exposed to industrial and vehicular contamination. The toxic metals have similar distributions in the nettle leaves and snail hepatopancreas. PLS analysis showed that (1) zinc and copper concentrations at the lower trophic levels are the most important latent factors that contribute to metal accumulation in land snails; (2) cadmium and lead are the main determinants of pollution pattern in areas exposed to industrial contamination; (3) at the sites located near roads lead is the most threatfull metal for terrestrial ecosystems. Conclusion There were three major benefits by applying block clustering with PLS for processing the obtained data: firstly, it helped in grouping sites depending on the type of contamination. Secondly, it was valuable for identifying the latent factors that contribute the most to metal accumulation in land snails. Finally, it optimized the number and type of data that are best for monitoring the status of metallic contamination in terrestrial ecosystems exposed to different kinds of anthropic polution. PMID:23987502

  9. Highly sensitive quantitation of pesticides in fruit juice samples by modeling four-way data gathered with high-performance liquid chromatography with fluorescence excitation-emission detection.

    PubMed

    Montemurro, Milagros; Pinto, Licarion; Véras, Germano; de Araújo Gomes, Adriano; Culzoni, María J; Ugulino de Araújo, Mário C; Goicoechea, Héctor C

    2016-07-01

    A study regarding the acquisition and analytical utilization of four-way data acquired by monitoring excitation-emission fluorescence matrices at different elution time points in a fast HPLC procedure is presented. The data were modeled with three well-known algorithms: PARAFAC, U-PLS/RTL and MCR-ALS, the latter conveniently adapted to model third-order data. The second-order advantage was exploited when analyzing samples containing uncalibrated components. The best results were furnished with the algorithm U-PLS/RTL. This fact is indicative of both no peak time shifts occurrence among samples and high colinearity among spectra. Besides, this latent-variable structured algorithm is capable of better handle the need of achieving high sensitivity for the analysis of one of the analytes. In addition, a significant enhancement in both predictions and analytical figures of merit was observed for carbendazim, thiabendazole, fuberidazole, carbofuran, carbaryl and 1-naphtol, when going from second- to third-order data. LODs obtained were ranged between 0.02 and 2.4μgL(-1). Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Determinants of caregivers' awareness of Universal Newborn Hearing Screening in Malaysia.

    PubMed

    Abdul Majid, Abdul Halim; Zakaria, Mohd Normani; Abdullah, Nor Azimah Chew; Hamzah, Sulaiman; Mukari, Siti Zamratol-Mai Sarah

    2017-10-01

    This paper aims to investigate the effects of perceived attitude and anxiety on awareness of UNHS among caregivers in Malaysia. Using cross sectional research approach, data were collected and some 46 out of 87 questionnaires distributed to caregivers attending UNHS programs at selected public hospitals were usable for analysis (response rate of 52.8%). Partial Least Squares Method (PLS) algorithm and bootstrapping technique were employed to test the hypotheses of the study. R square value is 0.205, and it implies that exogenous latent variables explained 21% of the variance of the endogenous latent variable. This value indicates moderate and acceptable level of R-squared values. Findings from PLS structural model evaluation revealed that anxiety has no significant influence (β = -0.091, t = 0.753, p > 0.10) on caregivers' awareness; but perceived attitude has significant effect (β = -0.444, t = 3.434, p < 0.01) on caregivers' awareness. Caregivers' awareness of UNHS is influenced by their perceived attitude while anxiety is not associated with caregivers' awareness. This implies that caregivers may not believe in early detection of hearing impairment in children, thinking that their babies are too young to be tested for hearing loss. Moreover, socio-economic situation of the caregivers may have contributed to their failure to honor UNHS screening appointments as some of them may need to work to earn a living while some may perceive it a waste of time honoring such appointments. Non-significant relationship between anxiety and caregivers' awareness may be due to religious beliefs of caregivers. Limitations and suggestions were discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Latent Variable Analysis of Continuing Professional Development Constructs Using PLS-SEM Modeling

    ERIC Educational Resources Information Center

    Yazdi, Mona Tabatabaee; Motallebzadeh, Khalil; Ashraf, Hamid; Baghaei, Purya

    2017-01-01

    Continuing Professional Development (CPD), in the area of teacher education, refers to the procedures, programs or strategies that help teachers encounter the challenges of their work and accomplish their own and their learning center's goals. To this aim, the purpose of this study is to propose and validate an appropriate model of EFL teachers'…

  12. Modelling the Success of Learning Management Systems: Application of Latent Class Segmentation Using FIMIX-PLS

    ERIC Educational Resources Information Center

    Arenas-Gaitán, Jorge; Rondán-Cataluña, Francisco Javier; Ramírez-Correa, Patricio E.

    2018-01-01

    There is not a unique attitude towards the implementation of digital technology in educational sceneries. This paper aims to validate an adaptation of the DeLone and McLean information systems success model in the context of a learning management system. Furthermore, this study means to prove (1) the necessity of segmenting students in order to…

  13. Exposure to mixtures of organohalogen contaminants and associative interactions with thyroid hormones in East Greenland polar bears (Ursus maritimus).

    PubMed

    Villanger, Gro D; Jenssen, Bjørn M; Fjeldberg, Rita R; Letcher, Robert J; Muir, Derek C G; Kirkegaard, Maja; Sonne, Christian; Dietz, Rune

    2011-05-01

    We investigated the multivariate relationships between adipose tissue residue levels of 48 individual organohalogen contaminants (OHCs) and circulating thyroid hormone (TH) levels in polar bears (Ursus maritimus) from East Greenland (1999-2001, n=62), using projection to latent structure (PLS) regression for four groupings of polar bears; subadults (SubA), adult females with cubs (AdF_N), adult females without cubs (AdF_S) and adult males (AdM). In the resulting significant PLS models for SubA, AdF_N and AdF_S, some OHCs were especially important in explaining variations in circulating TH levels: polybrominated diphenylether (PBDE)-99, PBDE-100, PBDE-153, polychlorinated biphenyl (PCB)-52, PCB-118, cis-nonachlor, trans-nonachlor, trichlorobenzene (TCB) and pentachlorobenzene (QCB), and both negative and positive relationships with THs were found. In addition, the models revealed that DDTs had a positive influence on total 3,5,3'-triiodothyronine (TT3) in AdF_S, and that a group of 17 higher chlorinated ortho-PCBs had a positive influence on total 3,5,3',5'-tetraiodothyronine (thyroxine, TT4) in AdF_N. TH levels in AdM seemed less influenced by OHCs because of non-significant PLS models. TH levels were also influenced by biological factors such as age, sex, body size, lipid content of adipose tissue and sampling date. When controlling for biological variables, the major relationships from the PLS models for SubA, AdF_N and AdF_S were found significant in partial correlations. The most important OHCs that influenced TH levels in the significant PLS models may potentially act through similar mechanisms on the hypothalamic-pituitary-thyroid (HPT) axis, suggesting that both combined effects by dose and response addition and perhaps synergistic potentiation may be a possibility in these polar bears. Statistical associations are not evidence per se of biological cause-effect relationships. Still, the results of the present study indicate that OHCs may affect circulating TH levels in East Greenland polar bears, adding to the "weight of evidence" suggesting that OHCs might interfere with thyroid homeostasis in polar bears. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Improving University Ranking to Achieve University Competitiveness by Management Information System

    NASA Astrophysics Data System (ADS)

    Dachyar, M.; Dewi, F.

    2015-05-01

    One way to increase university competitiveness is through information system management. A literature review was done to find information system factors that affect university performance in Quacquarelli Symonds (QS) University Ranking: Asia evaluation. Information system factors were then eliminated using Delphi method through consensus of 7 experts. Result from Delphi method was used as measured variables in PLS-SEM. Estimation with PLS-SEM method through 72 respondents shows that the latent variable academic reputation and citation per paper have significant correlation to university competitiveness. In University of Indonesia (UI) the priority to increase university competitiveness as follow: (i) network building in international conference, (ii) availability of research data to public, (iii) international conference information, (iv) information on achievements and accreditations of each major, (v) ease of employment for alumni.

  15. Domain-Invariant Partial-Least-Squares Regression.

    PubMed

    Nikzad-Langerodi, Ramin; Zellinger, Werner; Lughofer, Edwin; Saminger-Platz, Susanne

    2018-05-11

    Multivariate calibration models often fail to extrapolate beyond the calibration samples because of changes associated with the instrumental response, environmental condition, or sample matrix. Most of the current methods used to adapt a source calibration model to a target domain exclusively apply to calibration transfer between similar analytical devices, while generic methods for calibration-model adaptation are largely missing. To fill this gap, we here introduce domain-invariant partial-least-squares (di-PLS) regression, which extends ordinary PLS by a domain regularizer in order to align the source and target distributions in the latent-variable space. We show that a domain-invariant weight vector can be derived in closed form, which allows the integration of (partially) labeled data from the source and target domains as well as entirely unlabeled data from the latter. We test our approach on a simulated data set where the aim is to desensitize a source calibration model to an unknown interfering agent in the target domain (i.e., unsupervised model adaptation). In addition, we demonstrate unsupervised, semisupervised, and supervised model adaptation by di-PLS on two real-world near-infrared (NIR) spectroscopic data sets.

  16. Multivariate Analysis of Ladle Vibration

    NASA Astrophysics Data System (ADS)

    Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle

    2016-08-01

    The homogeneity of composition and uniformity of temperature of the steel melt before it is transferred to the tundish are crucial in making high-quality steel product. The homogenization process is performed by stirring the melt using inert gas in ladles. Continuous monitoring of this process is important to make sure the action of stirring is constant throughout the ladle. Currently, the stirring process is monitored by process operators who largely rely on visual and acoustic phenomena from the ladle. However, due to lack of measurable signals, the accuracy and suitability of this manual monitoring are problematic. The actual flow of argon gas to the ladle may not be same as the flow gage reading due to leakage along the gas line components. As a result, the actual degree of stirring may not be correctly known. Various researchers have used one-dimensional vibration, and sound and image signals measured from the ladle to predict the degree of stirring inside. They developed online sensors which are indeed to monitor the online stirring phenomena. In this investigation, triaxial vibration signals have been measured from a cold water model which is a model of an industrial ladle. Three flow rate ranges and varying bath heights were used to collect vibration signals. The Fast Fourier Transform was applied to the dataset before it has been analyzed using principal component analysis (PCA) and partial least squares (PLS). PCA was used to unveil the structure in the experimental data. PLS was mainly applied to predict the stirring from the vibration response. It was found that for each flow rate range considered in this study, the informative signals reside in different frequency ranges. The first latent variables in these frequency ranges explain more than 95 pct of the variation in the stirring process for the entire single layer and the double layer data collected from the cold model. PLS analysis in these identified frequency ranges demonstrated that the latent variables of the response and predictor variables are highly correlated. The predicted variable has shown linear relationship with the stirring energy and bath recirculation speed. This outcome can improve the predictability of the mixing status in ladle metallurgy and make the online control of the process easier. Industrial testing of this input will follow.

  17. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

    PubMed

    Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi

    2012-01-01

    The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

  18. Structure-activity relationships of an antimicrobial peptide plantaricin s from two-peptide class IIb bacteriocins.

    PubMed

    Soliman, Wael; Wang, Liru; Bhattacharjee, Subir; Kaur, Kamaljit

    2011-04-14

    Class IIb bacteriocins are ribosomally synthesized antimicrobial peptides comprising two different peptides synergistically acting in equal amounts for optimal potency. In this study, we demonstrate for the first time potent (nanomolar) antimicrobial activity of a representative class IIb bacteriocin, plantaricin S (Pls), against four pathogenic gram-positive bacteria, including Listeria monocytogenes. The structure-activity relationships for Pls were studied using activity assays, circular dichroism (CD), and molecular dynamics (MD) simulations. The two Pls peptides and five Pls derived fragments were synthesized. The CD spectra of the Pls and selected fragments revealed helical conformations in aqueous 2,2,2-trifluoroethanol. The MD simulations showed that when the two Pls peptides are in antiparallel orientation, the helical regions interact and align, mediated by strong attraction between conserved GxxxG/AxxxA motifs. The results strongly correlate with the antimicrobial activity suggesting that helix-helix alignment of the two Pls peptides and interaction between the conserved motifs are crucial for interaction with the target cell membrane.

  19. 6C.04: INTEGRATED SNP ANALYSIS AND METABOLOMIC PROFILES OF METABOLIC SYNDROME.

    PubMed

    Marrachelli, V; Monleon, D; Morales, J M; Rentero, P; Martínez, F; Chaves, F J; Martin-Escudero, J C; Redon, J

    2015-06-01

    Metabolic syndrome (MS) has become a health and financial burden worldwide. Susceptibility of genetically determined metabotype of MS has not yet been investigated. We aimed to identify a distinctive metabolic profile of blood serum which might correlates to the early detection of the development of MS associated to genetic polymorphism. We applied high resolution NMR spectroscopy to profile blood serum from patients without MS (n = 945) or with (n = 291). Principal component analysis (PCA) and projection to latent structures for discriminant analysis (PLS-DA) were applied to NMR spectral datasets. Results were cross-validated using the Venetian Blinds approach. Additionally, five SNPs previously associated with MS were genotyped with SNPlex and tested for associations between the metabolic profiles and the genetic variants. Statistical analysis was performed using in-house MATLAB scripts and the PLS Toolbox statistical multivariate analysis library. Our analysis provided a PLS-DA Metabolic Syndrome discrimination model based on NMR metabolic profile (AUC = 0.86) with 84% of sensitivity and 72% specificity. The model identified 11 metabolites differentially regulated in patients with MS. Among others, fatty acids, glucose, alanine, hydroxyisovalerate, acetone, trimethylamine, 2-phenylpropionate, isobutyrate and valine, significantly contributed to the model. The combined analysis of metabolomics and SNP data revealed an association between the metabolic profile of MS and genes polymorphism involved in the adiposity regulation and fatty acids metabolism: rs2272903_TT (TFAP2B), rs3803_TT (GATA2), rs174589_CC (FADS2) and rs174577_AA (FADS2). In addition, individuals with the rs2272903-TT genotype seem to develop MS earlier than general population. Our study provides new insights on the metabolic alterations associated with a MS high-risk genotype. These results could help in future development of risk assessment and predictive models for subclinical cardiovascular disease.

  20. Calibration model maintenance in melamine resin production: Integrating drift detection, smart sample selection and model adaptation.

    PubMed

    Nikzad-Langerodi, Ramin; Lughofer, Edwin; Cernuda, Carlos; Reischer, Thomas; Kantner, Wolfgang; Pawliczek, Marcin; Brandstetter, Markus

    2018-07-12

    The physico-chemical properties of Melamine Formaldehyde (MF) based thermosets are largely influenced by the degree of polymerization (DP) in the underlying resin. On-line supervision of the turbidity point by means of vibrational spectroscopy has recently emerged as a promising technique to monitor the DP of MF resins. However, spectroscopic determination of the DP relies on chemometric models, which are usually sensitive to drifts caused by instrumental and/or sample-associated changes occurring over time. In order to detect the time point when drifts start causing prediction bias, we here explore a universal drift detector based on a faded version of the Page-Hinkley (PH) statistic, which we test in three data streams from an industrial MF resin production process. We employ committee disagreement (CD), computed as the variance of model predictions from an ensemble of partial least squares (PLS) models, as a measure for sample-wise prediction uncertainty and use the PH statistic to detect changes in this quantity. We further explore supervised and unsupervised strategies for (semi-)automatic model adaptation upon detection of a drift. For the former, manual reference measurements are requested whenever statistical thresholds on Hotelling's T 2 and/or Q-Residuals are violated. Models are subsequently re-calibrated using weighted partial least squares in order to increase the influence of newer samples, which increases the flexibility when adapting to new (drifted) states. Unsupervised model adaptation is carried out exploiting the dual antecedent-consequent structure of a recently developed fuzzy systems variant of PLS termed FLEXFIS-PLS. In particular, antecedent parts are updated while maintaining the internal structure of the local linear predictors (i.e. the consequents). We found improved drift detection capability of the CD compared to Hotelling's T 2 and Q-Residuals when used in combination with the proposed PH test. Furthermore, we found that active selection of samples by active learning (AL) used for subsequent model adaptation is advantageous compared to passive (random) selection in case that a drift leads to persistent prediction bias allowing more rapid adaptation at lower reference measurement rates. Fully unsupervised adaptation using FLEXFIS-PLS could improve predictive accuracy significantly for light drifts but was not able to fully compensate for prediction bias in case of significant lack of fit w.r.t. the latent variable space. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Mentalizing in schizophrenia: A multivariate functional MRI study.

    PubMed

    Martin, Andrew K; Dzafic, Ilvana; Robinson, Gail A; Reutens, David; Mowry, Bryan

    2016-12-01

    Schizophrenia is associated with mentalizing deficits that impact on social functioning and quality of life. Recently, schizophrenia has been conceptualized as a disorder of neural dysconnectivity and network level analyses offers a means of understanding the underlying deficits leading to mentalizing difficulty. Using an established mentalizing task (The Triangles Task), functional magnetic resonance images (fMRI) were acquired from 19 patients with schizophrenia and 17 age- and sex-matched healthy controls (HCs). Participants were required to watch short animations of two triangles interacting with each other with the interactions either random (no interaction), physical (patterned movement), or mental (intentional movement). Task-based Partial Least Squares (PLS) was used to analyze activation differences and commonalities between the three conditions and the two groups. Seed-based PLS was used to assess functional connectivity with peaks identified in the task-based PLS. Behavioural PLS was then performed using the accuracy from the mental conditions. Patients with schizophrenia performed worse on the mentalizing condition compared to HCs. Task-based PLS revealed one significant latent variable (LV) that explained 42.9% of the variance in the task, with theLV separating the mental condition from the physical and random conditions in patients with schizophrenia, but only the mental from physical in healthy controls. The mental animations were associated with increased modulation of the inferior frontal gyri bilaterally, left superior temporal gyrus, right postcentral gyrus, and left caudate nucleus. The physical/random animations were associated with increased modulation of the right medial frontal gyrus and left superior frontal gyrus. Seed-based PLS identified increased functional connectivity with the left inferior frontal gyrus (liFG) and caudate nucleus in patients with schizophrenia, during the mental and physical interactions, with functional connectivity with the liFG associated with increased performance on the mental animations. The results suggest that mentalizing deficits in schizophrenia may arise due to inefficient social brain networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression

    PubMed Central

    Shimizu, Yu; Yoshimoto, Junichiro; Takamura, Masahiro; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji

    2017-01-01

    In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area. PMID:28700672

  3. Simultaneous quantification of Aroclor mixtures in soil samples by gas chromatography/mass spectrometry with solid phase microextraction using partial least-squares regression.

    PubMed

    Zhang, Mengliang; Harrington, Peter de B

    2015-01-01

    Multivariate partial least-squares (PLS) method was applied to the quantification of two complex polychlorinated biphenyls (PCBs) commercial mixtures, Aroclor 1254 and 1260, in a soil matrix. PCBs in soil samples were extracted by headspace solid phase microextraction (SPME) and determined by gas chromatography/mass spectrometry (GC/MS). Decachlorinated biphenyl (deca-CB) was used as internal standard. After the baseline correction was applied, four data representations including extracted ion chromatograms (EIC) for Aroclor 1254, EIC for Aroclor 1260, EIC for both Aroclors and two-way data sets were constructed for PLS-1 and PLS-2 calibrations and evaluated with respect to quantitative prediction accuracy. The PLS model was optimized with respect to the number of latent variables using cross validation of the calibration data set. The validation of the method was performed with certified soil samples and real field soil samples and the predicted concentrations for both Aroclors using EIC data sets agreed with the certified values. The linear range of the method was from 10μgkg(-1) to 1000μgkg(-1) for both Aroclor 1254 and 1260 in soil matrices and the detection limit was 4μgkg(-1) for Aroclor 1254 and 6μgkg(-1) for Aroclor 1260. This holistic approach for the determination of mixtures of complex samples has broad application to environmental forensics and modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The assessment of the performance of covariance-based structural equation modeling and partial least square path modeling

    NASA Astrophysics Data System (ADS)

    Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin

    2017-05-01

    Structural equation modeling (SEM) is the second generation statistical analysis technique developed for analyzing the inter-relationships among multiple variables in a model. Previous studies have shown that there seemed to be at least an implicit agreement about the factors that should drive the choice between covariance-based structural equation modeling (CB-SEM) and partial least square path modeling (PLS-PM). PLS-PM appears to be the preferred method by previous scholars because of its less stringent assumption and the need to avoid the perceived difficulties in CB-SEM. Along with this issue has been the increasing debate among researchers on the use of CB-SEM and PLS-PM in studies. The present study intends to assess the performance of CB-SEM and PLS-PM as a confirmatory study in which the findings will contribute to the body of knowledge of SEM. Maximum likelihood (ML) was chosen as the estimator for CB-SEM and was expected to be more powerful than PLS-PM. Based on the balanced experimental design, the multivariate normal data with specified population parameter and sample sizes were generated using Pro-Active Monte Carlo simulation, and the data were analyzed using AMOS for CB-SEM and SmartPLS for PLS-PM. Comparative Bias Index (CBI), construct relationship, average variance extracted (AVE), composite reliability (CR), and Fornell-Larcker criterion were used to study the consequence of each estimator. The findings conclude that CB-SEM performed notably better than PLS-PM in estimation for large sample size (100 and above), particularly in terms of estimations accuracy and consistency.

  5. Identification and topographical characterisation of microbial nanowires in Nostoc punctiforme.

    PubMed

    Sure, Sandeep; Torriero, Angel A J; Gaur, Aditya; Li, Lu Hua; Chen, Ying; Tripathi, Chandrakant; Adholeya, Alok; Ackland, M Leigh; Kochar, Mandira

    2016-03-01

    Extracellular pili-like structures (PLS) produced by cyanobacteria have been poorly explored. We have done detailed topographical and electrical characterisation of PLS in Nostoc punctiforme PCC 73120 using transmission electron microscopy (TEM) and conductive atomic force microscopy (CAFM). TEM analysis showed that N. punctiforme produces two separate types of PLS differing in their length and diameter. The first type of PLS are 6-7.5 nm in diameter and 0.5-2 µm in length (short/thin PLS) while the second type of PLS are ~20-40 nm in diameter and more than 10 µm long (long/thick PLS). This is the first study to report long/thick PLS in N. punctiforme. Electrical characterisation of these two different PLS by CAFM showed that both are electrically conductive and can act as microbial nanowires. This is the first report to show two distinct PLS and also identifies microbial nanowires in N. punctiforme. This study paves the way for more detailed investigation of N. punctiforme nanowires and their potential role in cell physiology and symbiosis with plants.

  6. The development of comparative bias index

    NASA Astrophysics Data System (ADS)

    Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin

    2017-08-01

    Structural Equation Modeling (SEM) is a second generation statistical analysis techniques developed for analyzing the inter-relationships among multiple variables in a model simultaneously. There are two most common used methods in SEM namely Covariance-Based Structural Equation Modeling (CB-SEM) and Partial Least Square Path Modeling (PLS-PM). There have been continuous debates among researchers in the use of PLS-PM over CB-SEM. While there is few studies were conducted to test the performance of CB-SEM and PLS-PM bias in estimating simulation data. This study intends to patch this problem by a) developing the Comparative Bias Index and b) testing the performance of CB-SEM and PLS-PM using developed index. Based on balanced experimental design, two multivariate normal simulation data with of distinct specifications of size 50, 100, 200 and 500 are generated and analyzed using CB-SEM and PLS-PM.

  7. Generation and Biological Activities of Oxidized Phospholipids

    PubMed Central

    Oskolkova, Olga V.; Birukov, Konstantin G.; Levonen, Anna-Liisa; Binder, Christoph J.; Stöckl, Johannes

    2010-01-01

    Abstract Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of “modified-self” type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators. Antioxid. Redox Signal. 12, 1009–1059. PMID:19686040

  8. Partial Least Squares with Structured Output for Modelling the Metabolomics Data Obtained from Complex Experimental Designs: A Study into the Y-Block Coding.

    PubMed

    Xu, Yun; Muhamadali, Howbeer; Sayqal, Ali; Dixon, Neil; Goodacre, Royston

    2016-10-28

    Partial least squares (PLS) is one of the most commonly used supervised modelling approaches for analysing multivariate metabolomics data. PLS is typically employed as either a regression model (PLS-R) or a classification model (PLS-DA). However, in metabolomics studies it is common to investigate multiple, potentially interacting, factors simultaneously following a specific experimental design. Such data often cannot be considered as a "pure" regression or a classification problem. Nevertheless, these data have often still been treated as a regression or classification problem and this could lead to ambiguous results. In this study, we investigated the feasibility of designing a hybrid target matrix Y that better reflects the experimental design than simple regression or binary class membership coding commonly used in PLS modelling. The new design of Y coding was based on the same principle used by structural modelling in machine learning techniques. Two real metabolomics datasets were used as examples to illustrate how the new Y coding can improve the interpretability of the PLS model compared to classic regression/classification coding.

  9. [Rapid determination of COD in aquaculture water based on LS-SVM with ultraviolet/visible spectroscopy].

    PubMed

    Liu, Xue-Mei; Zhang, Hai-Liang

    2014-10-01

    Ultraviolet/visible (UV/Vis) spectroscopy was studied for the rapid determination of chemical oxygen demand (COD), which was an indicator to measure the concentration of organic matter in aquaculture water. In order to reduce the influence of the absolute noises of the spectra, the extracted 135 absorbance spectra were preprocessed by Savitzky-Golay smoothing (SG), EMD, and wavelet transform (WT) methods. The preprocessed spectra were then used to select latent variables (LVs) by partial least squares (PLS) methods. Partial least squares (PLS) was used to build models with the full spectra, and back- propagation neural network (BPNN) and least square support vector machine (LS-SVM) were applied to build models with the selected LVs. The overall results showed that BPNN and LS-SVM models performed better than PLS models, and the LS-SVM models with LVs based on WT preprocessed spectra obtained the best results with the determination coefficient (r2) and RMSE being 0. 83 and 14. 78 mg · L(-1) for calibration set, and 0.82 and 14.82 mg · L(-1) for the prediction set respectively. The method showed the best performance in LS-SVM model. The results indicated that it was feasible to use UV/Vis with LVs which were obtained by PLS method, combined with LS-SVM calibration could be applied to the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  10. Modelling mercury accumulation in minerogenic peat combining FTIR-ATR spectroscopy and partial least squares (PLS)

    NASA Astrophysics Data System (ADS)

    Pérez-Rodríguez, Marta; Horák-Terra, Ingrid; Rodríguez-Lado, Luis; Martínez Cortizas, Antonio

    2016-11-01

    Despite its potential, infrared spectroscopy combined with multivariate statistics has been seldom used to model peat properties with environmental value, such us the concentration of potentially toxic metals. In this research, we applied attenuated total reflectance (ATR) Fourier-Transform Infrared (FTIR) spectroscopy to evaluate the ability of the technique to predict mercury concentrations in late-Pleistocene/Holocene peat from a minerogenic peatland from Minas Gerais (Brazil). Mercury concentrations were analysed using a Milestone DMA-80 analyzer and attenuated total reflectance FTIR-ATR was performed using a Gladi-ATR (Pike Technologies) in the mid IR spectrum (4000-400 cm- 1). Concentrations were modelled using principal components (PCR) and partial least squares regression (PLS). The performance of the models varied between moderate and very good (R2 0.67-0.90), with low RMSD values (0.35-1.06). A PLS model based on three latent vectors (LV1 to LV3) provided the best (R2 0.90, RMSD 0.35) results. LV1 reflected total organic matter content versus mineral matter (mainly quartz from local fluxes), LV2 was related to dust deposition from regional sources, and LV3 reflected peat organic matter decomposition. Compared to a previous investigation based on geochemical data, the spectroscopy-based PLS model performed better, but it has to be complemented with additional data (as δ13 C ratios) to reliably reproduce the changes of the factors controlling mercury accumulation over time. This, time- and cost-effective, methodology may help to develop multi-core approaches to study the within and between mire (of a similar type and area) variability in mercury accumulation, and probably also other peat properties. Fig. S2 Loadings weights of the three and two significant components from the direct (dPCR) and transposed (trPCR) PCR models. Fig. S3 Depth records of the cumulative effects of the factors involved in the variation of mercury concentrations. Left, MIR-PLS model; centre, MIR-PLS + δ13 C data model; right, geochemical model from Pérez-Rodríguez et al. [44].

  11. Liquid chromatography coupled to quadrupole-time of flight tandem mass spectrometry based quantitative structure-retention relationships of amino acid analogues derivatized via n-propyl chloroformate mediated reaction.

    PubMed

    Kritikos, Nikolaos; Tsantili-Kakoulidou, Anna; Loukas, Yannis L; Dotsikas, Yannis

    2015-07-17

    In the current study, quantitative structure-retention relationships (QSRR) were constructed based on data obtained by a LC-(ESI)-QTOF-MS/MS method for the determination of amino acid analogues, following their derivatization via chloroformate esters. Molecules were derivatized via n-propyl chloroformate/n-propanol mediated reaction. Derivatives were acquired through a liquid-liquid extraction procedure. Chromatographic separation is based on gradient elution using methanol/water mixtures from a 70/30% composition to an 85/15% final one, maintaining a constant rate of change. The group of examined molecules was diverse, including mainly α-amino acids, yet also β- and γ-amino acids, γ-amino acid analogues, decarboxylated and phosphorylated analogues and dipeptides. Projection to latent structures (PLS) method was selected for the formation of QSRRs, resulting in a total of three PLS models with high cross-validated coefficients of determination Q(2)Y. For this reason, molecular structures were previously described through the use of descriptors. Through stratified random sampling procedures, 57 compounds were split to a training set and a test set. Model creation was based on multiple criteria including principal component significance and eigenvalue, variable importance, form of residuals, etc. Validation was based on statistical metrics Rpred(2),QextF2(2),QextF3(2) for the test set and Roy's metrics rm(Av)(2) and rm(δ)(2), assessing both predictive stability and internal validity. Based on aforementioned models, simplified equivalent were then created using a multi-linear regression (MLR) method. MLR models were also validated with the same metrics. The suggested models are considered useful for the estimation of retention times of amino acid analogues for a series of applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  13. A preliminary study on postmortem interval estimation of suffocated rats by GC-MS/MS-based plasma metabolic profiling.

    PubMed

    Sato, Takako; Zaitsu, Kei; Tsuboi, Kento; Nomura, Masakatsu; Kusano, Maiko; Shima, Noriaki; Abe, Shuntaro; Ishii, Akira; Tsuchihashi, Hitoshi; Suzuki, Koichi

    2015-05-01

    Estimation of postmortem interval (PMI) is an important goal in judicial autopsy. Although many approaches can estimate PMI through physical findings and biochemical tests, accurate PMI calculation by these conventional methods remains difficult because PMI is readily affected by surrounding conditions, such as ambient temperature and humidity. In this study, Sprague-Dawley (SD) rats (10 weeks) were sacrificed by suffocation, and blood was collected by dissection at various time intervals (0, 3, 6, 12, 24, and 48 h; n = 6) after death. A total of 70 endogenous metabolites were detected in plasma by gas chromatography-tandem mass spectrometry (GC-MS/MS). Each time group was separated from each other on the principal component analysis (PCA) score plot, suggesting that the various endogenous metabolites changed with time after death. To prepare a prediction model of a PMI, a partial least squares (or projection to latent structure, PLS) regression model was constructed using the levels of significantly different metabolites determined by variable importance in the projection (VIP) score and the Kruskal-Wallis test (P < 0.05). Because the constructed PLS regression model could successfully predict each PMI, this model was validated with another validation set (n = 3). In conclusion, plasma metabolic profiling demonstrated its ability to successfully estimate PMI under a certain condition. This result can be considered to be the first step for using the metabolomics method in future forensic casework.

  14. Variation of metabolic profiles in developing maize kernels up- and down-regulated for the hda101 gene

    PubMed Central

    Castro, Cecilia; Motto, Mario; Rossi, Vincenzo; Manetti, Cesare

    2008-01-01

    To shed light on the specific contribution of HDA101 in modulating metabolic pathways in the maize seed, changes in the metabolic profiles of kernels obtained from hda101 mutant plants have been investigated by a metabonomic approach. Dynamic properties of chromatin folding can be mediated by enzymes that modify DNA and histones. The enzymes responsible for the steady-state of histone acetylation are histone acetyltransferase and histone deacetylase (HDA). Therefore, it is interesting to evaluate the effects of up- and down-regulation of a Rpd-3 type HDA on the development of maize seeds in terms of metabolic changes. This has been reached by analysing nuclear magnetic resonance spectra by different chemometrician approaches, such as Orthogonal Projection to Latent Structure-Discriminant Analysis, Parallel Factors Analysis, and Multi-way Partial Least Squares-Discriminant Analysis (N-PLS-DA). In particular, the latter approaches were chosen because they explicitly take time into account, organizing data into a set of slices that refer to different steps of the developing process. The results show the good discriminating capabilities of the N-PLS-DA approach, even if the number of samples ought be increased to obtain better predictive capabilities. However, using this approach, it was possible to show differences in the accumulation of metabolites during development and to highlight the changes occuring in the modified seeds. In particular, the results confirm the role of this gene in cell cycle control. PMID:18836140

  15. Evaluation of 1H NMR metabolic profiling using biofluid mixture design.

    PubMed

    Athersuch, Toby J; Malik, Shahid; Weljie, Aalim; Newton, Jack; Keun, Hector C

    2013-07-16

    A strategy for evaluating the performance of quantitative spectral analysis tools in conditions that better approximate background variation in a metabonomics experiment is presented. Three different urine samples were mixed in known proportions according to a {3, 3} simplex lattice experimental design and analyzed in triplicate by 1D (1)H NMR spectroscopy. Fifty-four urinary metabolites were subsequently quantified from the sample spectra using two methods common in metabolic profiling studies: (1) targeted spectral fitting and (2) targeted spectral integration. Multivariate analysis using partial least-squares (PLS) regression showed the latent structure of the spectral set recapitulated the experimental mixture design. The goodness-of-prediction statistic (Q(2)) of each metabolite variable in a PLS model was calculated as a metric for the reliability of measurement, across the sample compositional space. Several metabolites were observed to have low Q(2) values, largely as a consequence of their spectral resonances having low s/n or strong overlap with other sample components. This strategy has the potential to allow evaluation of spectral features obtained from metabolic profiling platforms in the context of the compositional background found in real biological sample sets, which may be subject to considerable variation. We suggest that it be incorporated into metabolic profiling studies to improve the estimation of matrix effects that confound accurate metabolite measurement. This novel method provides a rational basis for exploiting information from several samples in an efficient manner and avoids the use of multiple spike-in authentic standards, which may be difficult to obtain.

  16. Structure, Antimicrobial Activities and Mode of Interaction with Membranes of Bovel Phylloseptins from the Painted-Belly Leaf Frog, Phyllomedusa sauvagii

    PubMed Central

    Raja, Zahid; André, Sonia; Piesse, Christophe; Sereno, Denis; Nicolas, Pierre; Foulon, Thierry

    2013-01-01

    Transcriptomic and peptidomic analysis of skin secretions from the Painted-belly leaf frog Phyllomedusa sauvagii led to the identification of 5 novel phylloseptins (PLS-S2 to -S6) and also of phylloseptin-1 (PSN-1, here renamed PLS-S1), the only member of this family previously isolated in this frog. Synthesis and characterization of these phylloseptins revealed differences in their antimicrobial activities. PLS-S1, -S2, and -S4 (79–95% amino acid sequence identity; net charge  = +2) were highly potent and cidal against Gram-positive bacteria, including multidrug resistant S. aureus strains, and killed the promastigote stage of Leishmania infantum, L. braziliensis and L. major. By contrast, PLS-S3 (95% amino acid identity with PLS-S2; net charge  = +1) and -S5 (net charge  = +2) were found to be almost inactive against bacteria and protozoa. PLS-S6 was not studied as this peptide was closely related to PLS-S1. Differential scanning calorimetry on anionic and zwitterionic multilamellar vesicles combined with circular dichroism spectroscopy and membrane permeabilization assays on bacterial cells indicated that PLS-S1, -S2, and -S4 are structured in an amphipathic α-helix that disrupts the acyl chain packing of anionic lipid bilayers. As a result, regions of two coexisting phases could be formed, one phase rich in peptide and the other lipid-rich. After reaching a threshold peptide concentration, the disruption of lipid packing within the bilayer may lead to local cracks and disintegration of the microbial membrane. Differences in the net charge, α-helical folding propensity, and/or degree of amphipathicity between PLS-S1, -S2 and -S4, and between PLS-S3 and -S5 appear to be responsible for their marked differences in their antimicrobial activities. In addition to the detailed characterization of novel phylloseptins from P. sauvagii, our study provides additional data on the previously isolated PLS-S1 and on the mechanism of action of phylloseptins. PMID:23967105

  17. Gas density field imaging in shock dominated flows using planar laser scattering

    NASA Astrophysics Data System (ADS)

    Pickles, Joshua D.; Mettu, Balachandra R.; Subbareddy, Pramod K.; Narayanaswamy, Venkateswaran

    2018-07-01

    Planar laser scattering (PLS) imaging of ice particulates present in a supersonic stream is demonstrated to measure 2D gas density fields of shock dominated flows in low enthalpy test facilities. The technique involves mapping the PLS signal to gas density using a calibration curve that accounts for the seed particulate size distribution change across the shock wave. The PLS technique is demonstrated in a shock boundary layer interaction generated by a sharp fin placed on a cylindrical surface in Mach 2.5 flow. The shock structure generated in this configuration has complicating effects from the finite height of the fin as well as the 3D relief offered by the cylindrical surface, which result in steep spatial gradients as well as a wide range of density jumps across different locations of the shock structure. Instantaneous and mean PLS fields delineated the inviscid, separation, and reattachment shock structures at various downstream locations. The inviscid shock assumed increasingly larger curvature with downstream distance; concomitantly, the separation shock wrapped around the cylinder and the separation shock foot missed the cylinder surface entirely. The density fields obtained from the PLS technique were evaluated using RANS simulations of the same flowfield. Comparisons between the computed and measured density fields showed excellent agreement over the entire measurable region that encompassed the flow processed by inviscid, separation, and reattachment shocks away from viscous regions. The PLS approach demonstrated in this work is also shown to be largely independent of the seed particulates, which lends the extension of this approach to a wide range of test facilities.

  18. An In Silico Method for Screening Nicotine Derivatives as Cytochrome P450 2A6 Selective Inhibitors Based on Kernel Partial Least Squares

    PubMed Central

    Wang, Yonghua; Li, Yan; Wang, Bin

    2007-01-01

    Nicotine and a variety of other drugs and toxins are metabolized by cytochrome P450 (CYP) 2A6. The aim of the present study was to build a quantitative structure-activity relationship (QSAR) model to predict the activities of nicotine analogues on CYP2A6. Kernel partial least squares (K-PLS) regression was employed with the electro-topological descriptors to build the computational models. Both the internal and external predictabilities of the models were evaluated with test sets to ensure their validity and reliability. As a comparison to K-PLS, a standard PLS algorithm was also applied on the same training and test sets. Our results show that the K-PLS produced reasonable results that outperformed the PLS model on the datasets. The obtained K-PLS model will be helpful for the design of novel nicotine-like selective CYP2A6 inhibitors.

  19. Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: potential for ammunition determination.

    PubMed

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2013-08-06

    The ability to link a suspect to a particular shooting incident is a principal task for many forensic investigators. Here, we attempt to achieve this goal by analysis of gunshot residue (GSR) through the use of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR) combined with statistical analysis. The firearm discharge process is analogous to a complex chemical process. Therefore, the products of this process (GSR) will vary based upon numerous factors, including the specific combination of the firearm and ammunition which was discharged. Differentiation of FT-IR data, collected from GSR particles originating from three different firearm-ammunition combinations (0.38 in., 0.40 in., and 9 mm calibers), was achieved using projection to latent structures discriminant analysis (PLS-DA). The technique was cross (leave-one-out), both internally and externally, validated. External validation was achieved via assignment (caliber identification) of unknown FT-IR spectra from unknown GSR particles. The results demonstrate great potential for ATR-FT-IR spectroscopic analysis of GSR for forensic purposes.

  20. Characterisation of volatile profile and sensory analysis of fresh-cut "Radicchio di Chioggia" stored in air or modified atmosphere.

    PubMed

    Cozzolino, Rosaria; Martignetti, Antonella; Pellicano, Mario Paolo; Stocchero, Matteo; Cefola, Maria; Pace, Bernardo; De Giulio, Beatrice

    2016-02-01

    The volatile profile of two hybrids of "Radicchio di Chioggia", Corelli and Botticelli, stored in air or passive modified atmosphere (MAP) during 12 days of cold storage, was monitored by solid phase micro-extraction (SPME) GC-MS. Botticelli samples were also subjected to sensory analysis. Totally, 61 volatile organic compounds (VOCs) were identified in the headspace of radicchio samples. Principal component analysis (PCA) showed that fresh product possessed a metabolic content similar to that of the MAP samples after 5 and 8 days of storage. Projection to latent structures by partial least squares (PLS) regression analysis showed the volatiles content of the samples varied depending only on the packaging conditions. Specifically, 12 metabolites describing the time evolution and explaining the effects of the different storage conditions were highlighted. Finally, a PCA analysis revealed that VOCs profile significantly correlated with sensory attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Dealing with gene expression missing data.

    PubMed

    Brás, L P; Menezes, J C

    2006-05-01

    Compared evaluation of different methods is presented for estimating missing values in microarray data: weighted K-nearest neighbours imputation (KNNimpute), regression-based methods such as local least squares imputation (LLSimpute) and partial least squares imputation (PLSimpute) and Bayesian principal component analysis (BPCA). The influence in prediction accuracy of some factors, such as methods' parameters, type of data relationships used in the estimation process (i.e. row-wise, column-wise or both), missing rate and pattern and type of experiment [time series (TS), non-time series (NTS) or mixed (MIX) experiments] is elucidated. Improvements based on the iterative use of data (iterative LLS and PLS imputation--ILLSimpute and IPLSimpute), the need to perform initial imputations (modified PLS and Helland PLS imputation--MPLSimpute and HPLSimpute) and the type of relationships employed (KNNarray, LLSarray, HPLSarray and alternating PLS--APLSimpute) are proposed. Overall, it is shown that data set properties (type of experiment, missing rate and pattern) affect the data similarity structure, therefore influencing the methods' performance. LLSimpute and ILLSimpute are preferable in the presence of data with a stronger similarity structure (TS and MIX experiments), whereas PLS-based methods (MPLSimpute, IPLSimpute and APLSimpute) are preferable when estimating NTS missing data.

  2. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy.

    PubMed

    Gupta, Abhay; Peck, Garnet E; Miller, Ronald W; Morris, Kenneth R

    2005-10-01

    This study evaluates the effect of variation in the ambient moisture on the compaction behavior of microcrystalline cellulose (MCC) powder. The study was conducted by comparing the physico-mechanical properties of, and the near infrared (NIR) spectra collected on, compacts prepared by roller compaction with those collected on simulated ribbons, that is, compacts prepared under uni-axial compression. Relative density, moisture content, tensile strength (TS), and Young modulus were used as key sample attributes for comparison. Samples prepared at constant roller compactor settings and feed mass showed constant density and a decrease in TS with increasing moisture content. Compacts prepared under uni-axial compression at constant pressure and compact mass showed the opposite effect, that is, density increased while TS remained almost constant with increasing moisture content. This suggests difference in the influence of moisture on the material under roller compaction, in which the roll gap (i.e., thickness and therefore density) remains almost constant, vs. under uni-axial compression, in which the thickness is free to change in response to the applied pressure. Key sample attributes were also related to the NIR spectra using multivariate data analysis by the partial least squares projection to latent structures (PLS). Good agreement was observed between the measured and the NIR-PLS predicted values for all key attributes for both, the roller compacted samples as well as the simulated ribbons. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association

  3. PLS modelling of structure—activity relationships of catechol O-methyltransferase inhibitors

    NASA Astrophysics Data System (ADS)

    Lotta, Timo; Taskinen, Jyrki; Bäckström, Reijo; Nissinen, Erkki

    1992-06-01

    Quantitative structure-activity analysis was carried out for in vitro inhibition of rat brain soluble catechol O-methyltransferase by a series (N=99) of 1,5-substituted-3,4-dihydroxybenzenes using computational chemistry and multivariate PLS modelling of data sets. The molecular structural descriptors (N=19) associated with the electronics of the catecholic ring and sizes of substituents were derived theoretically. For the whole set of molecules two separate PLS models have to be used. A PLS model with two significant (crossvalidated) model dimensions describing 82.2% of the variance in inhibition activity data was capable of predicting all molecules except those having the largest R1 substituent or having a large R5 substituent compared to the NO2 group. The other PLS model with three significant (crossvalidated) model dimensions described 83.3% of the variance in inhibition activity data. This model could not handle compounds having a small R5 substituent, compared to the NO2 group, or the largest R1 substituent. The predictive capability of these PLS models was good. The models reveal that inhibition activity is nonlinearly related to the size of the R5 substituent. The analysis of the PLS models also shows that the binding affinity is greatly dependent on the electronic nature of both R1 and R5 substituents. The electron-withdrawing nature of the substituents enhances inhibition activity. In addition, the size of the R1 substituent and its lipophilicity are important in the binding of inhibitors. The size of the R1 substituent has an upper limit. On the other hand, ionized R1 substituents decrease inhibition activity.

  4. Towards molecular design using 2D-molecular contour maps obtained from PLS regression coefficients

    NASA Astrophysics Data System (ADS)

    Borges, Cleber N.; Barigye, Stephen J.; Freitas, Matheus P.

    2017-12-01

    The multivariate image analysis descriptors used in quantitative structure-activity relationships are direct representations of chemical structures as they are simply numerical decodifications of pixels forming the 2D chemical images. These MDs have found great utility in the modeling of diverse properties of organic molecules. Given the multicollinearity and high dimensionality of the data matrices generated with the MIA-QSAR approach, modeling techniques that involve the projection of the data space onto orthogonal components e.g. Partial Least Squares (PLS) have been generally used. However, the chemical interpretation of the PLS-based MIA-QSAR models, in terms of the structural moieties affecting the modeled bioactivity has not been straightforward. This work describes the 2D-contour maps based on the PLS regression coefficients, as a means of assessing the relevance of single MIA predictors to the response variable, and thus allowing for the structural, electronic and physicochemical interpretation of the MIA-QSAR models. A sample study to demonstrate the utility of the 2D-contour maps to design novel drug-like molecules is performed using a dataset of some anti-HIV-1 2-amino-6-arylsulfonylbenzonitriles and derivatives, and the inferences obtained are consistent with other reports in the literature. In addition, the different schemes for encoding atomic properties in molecules are discussed and evaluated.

  5. Molecular descriptor subset selection in theoretical peptide quantitative structure-retention relationship model development using nature-inspired optimization algorithms.

    PubMed

    Žuvela, Petar; Liu, J Jay; Macur, Katarzyna; Bączek, Tomasz

    2015-10-06

    In this work, performance of five nature-inspired optimization algorithms, genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC), firefly algorithm (FA), and flower pollination algorithm (FPA), was compared in molecular descriptor selection for development of quantitative structure-retention relationship (QSRR) models for 83 peptides that originate from eight model proteins. The matrix with 423 descriptors was used as input, and QSRR models based on selected descriptors were built using partial least squares (PLS), whereas root mean square error of prediction (RMSEP) was used as a fitness function for their selection. Three performance criteria, prediction accuracy, computational cost, and the number of selected descriptors, were used to evaluate the developed QSRR models. The results show that all five variable selection methods outperform interval PLS (iPLS), sparse PLS (sPLS), and the full PLS model, whereas GA is superior because of its lowest computational cost and higher accuracy (RMSEP of 5.534%) with a smaller number of variables (nine descriptors). The GA-QSRR model was validated initially through Y-randomization. In addition, it was successfully validated with an external testing set out of 102 peptides originating from Bacillus subtilis proteomes (RMSEP of 22.030%). Its applicability domain was defined, from which it was evident that the developed GA-QSRR exhibited strong robustness. All the sources of the model's error were identified, thus allowing for further application of the developed methodology in proteomics.

  6. The crucial role of the Pls1 tetraspanin during ascospore germination in Podospora anserina provides an example of the convergent evolution of morphogenetic processes in fungal plant pathogens and saprobes.

    PubMed

    Lambou, Karine; Malagnac, Fabienne; Barbisan, Crystel; Tharreau, Didier; Lebrun, Marc-Henri; Silar, Philippe

    2008-10-01

    Pls1 tetraspanins were shown for some pathogenic fungi to be essential for appressorium-mediated penetration into their host plants. We show here that Podospora anserina, a saprobic fungus lacking appressorium, contains PaPls1, a gene orthologous to known PLS1 genes. Inactivation of PaPls1 demonstrates that this gene is specifically required for the germination of ascospores in P. anserina. These ascospores are heavily melanized cells that germinate under inducing conditions through a specific pore. On the contrary, MgPLS1, which fully complements a DeltaPaPls1 ascospore germination defect, has no role in the germination of Magnaporthe grisea nonmelanized ascospores but is required for the formation of the penetration peg at the pore of its melanized appressorium. P. anserina mutants with mutation of PaNox2, which encodes the NADPH oxidase of the NOX2 family, display the same ascospore-specific germination defect as the DeltaPaPls1 mutant. Both mutant phenotypes are suppressed by the inhibition of melanin biosynthesis, suggesting that they are involved in the same cellular process required for the germination of P. anserina melanized ascospores. The analysis of the distribution of PLS1 and NOX2 genes in fungal genomes shows that they are either both present or both absent. These results indicate that the germination of P. anserina ascospores and the formation of the M. grisea appressorium penetration peg use the same molecular machinery that includes Pls1 and Nox2. This machinery is specifically required for the emergence of polarized hyphae from reinforced structures such as appressoria and ascospores. Its recurrent recruitment during fungal evolution may account for some of the morphogenetic convergence observed in fungi.

  7. QSAR Study of p56lck Protein Tyrosine Kinase Inhibitory Activity of Flavonoid Derivatives Using MLR and GA-PLS

    PubMed Central

    Fassihi, Afshin; Sabet, Razieh

    2008-01-01

    Quantitative relationships between molecular structure and p56lck protein tyrosine kinase inhibitory activity of 50 flavonoid derivatives are discovered by MLR and GA-PLS methods. Different QSAR models revealed that substituent electronic descriptors (SED) parameters have significant impact on protein tyrosine kinase inhibitory activity of the compounds. Between the two statistical methods employed, GA-PLS gave superior results. The resultant GA-PLS model had a high statistical quality (R2 = 0.74 and Q2 = 0.61) for predicting the activity of the inhibitors. The models proposed in the present work are more useful in describing QSAR of flavonoid derivatives as p56lck protein tyrosine kinase inhibitors than those provided previously. PMID:19325836

  8. Interval ridge regression (iRR) as a fast and robust method for quantitative prediction and variable selection applied to edible oil adulteration.

    PubMed

    Jović, Ozren; Smrečki, Neven; Popović, Zora

    2016-04-01

    A novel quantitative prediction and variable selection method called interval ridge regression (iRR) is studied in this work. The method is performed on six data sets of FTIR, two data sets of UV-vis and one data set of DSC. The obtained results show that models built with ridge regression on optimal variables selected with iRR significantly outperfom models built with ridge regression on all variables in both calibration (6 out of 9 cases) and validation (2 out of 9 cases). In this study, iRR is also compared with interval partial least squares regression (iPLS). iRR outperfomed iPLS in validation (insignificantly in 6 out of 9 cases and significantly in one out of 9 cases for p<0.05). Also, iRR can be a fast alternative to iPLS, especially in case of unknown degree of complexity of analyzed system, i.e. if upper limit of number of latent variables is not easily estimated for iPLS. Adulteration of hempseed (H) oil, a well known health beneficial nutrient, is studied in this work by mixing it with cheap and widely used oils such as soybean (So) oil, rapeseed (R) oil and sunflower (Su) oil. Binary mixture sets of hempseed oil with these three oils (HSo, HR and HSu) and a ternary mixture set of H oil, R oil and Su oil (HRSu) were considered. The obtained accuracy indicates that using iRR on FTIR and UV-vis data, each particular oil can be very successfully quantified (in all 8 cases RMSEP<1.2%). This means that FTIR-ATR coupled with iRR can very rapidly and effectively determine the level of adulteration in the adulterated hempseed oil (R(2)>0.99). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Determination of total flavonoids content in fresh Ginkgo biloba leaf with different colors using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shi, Ji-yong; Zou, Xiao-bo; Zhao, Jie-wen; Mel, Holmes; Wang, Kai-liang; Wang, Xue; Chen, Hong

    Total flavonoids content is often considered an important quality index of Ginkgo biloba leaf. The feasibility of using near infrared (NIR) spectra at the wavelength range of 10,000-4000 cm-1 for rapid and nondestructive determination of total flavonoids content in G. biloba leaf was investigated. 120 fresh G. biloba leaves in different colors (green, green-yellowish and yellow) were used to spectra acquisition and total flavonoids determination. Partial least squares (PLS), interval partial least squares (iPLS) and synergy interval partial least squares (SiPLS) were used to develop calibration models for total flavonoids content in two colors leaves (green-yellowish and yellow) and three colors leaves (green, green-yellowish and yellow), respectively. The level of total flavonoids content for green, green-yellowish and yellow leaves was in an increasing order. Two characteristic wavelength regions (5840-6090 cm-1 and 6620-6880 cm-1), which corresponded to the absorptions of two aromatic rings in basic flavonoid structure, were selected by SiPLS. The optimal SiPLS model for total flavonoids content in the two colors leaves (r2 = 0.82, RMSEP = 2.62 mg g-1) had better performance than PLS and iPLS models. It could be concluded that NIR spectroscopy has significant potential in the nondestructive determination of total flavonoids content in fresh G. biloba leaf.

  10. Enhancing prediction power of chemometric models through manipulation of the fed spectrophotometric data: A comparative study

    NASA Astrophysics Data System (ADS)

    Saad, Ahmed S.; Hamdy, Abdallah M.; Salama, Fathy M.; Abdelkawy, Mohamed

    2016-10-01

    Effect of data manipulation in preprocessing step proceeding construction of chemometric models was assessed. The same set of UV spectral data was used for construction of PLS and PCR models directly and after mathematically manipulation as per well known first and second derivatives of the absorption spectra, ratio spectra and first and second derivatives of the ratio spectra spectrophotometric methods, meanwhile the optimal working wavelength ranges were carefully selected for each model and the models were constructed. Unexpectedly, number of latent variables used for models' construction varied among the different methods. The prediction power of the different models was compared using a validation set of 8 mixtures prepared as per the multilevel multifactor design and results were statistically compared using two-way ANOVA test. Root mean squares error of prediction (RMSEP) was used for further comparison of the predictability among different constructed models. Although no significant difference was found between results obtained using Partial Least Squares (PLS) and Principal Component Regression (PCR) models, however, discrepancies among results was found to be attributed to the variation in the discrimination power of adopted spectrophotometric methods on spectral data.

  11. The Crucial Role of the Pls1 Tetraspanin during Ascospore Germination in Podospora anserina Provides an Example of the Convergent Evolution of Morphogenetic Processes in Fungal Plant Pathogens and Saprobes▿ †

    PubMed Central

    Lambou, Karine; Malagnac, Fabienne; Barbisan, Crystel; Tharreau, Didier; Lebrun, Marc-Henri; Silar, Philippe

    2008-01-01

    Pls1 tetraspanins were shown for some pathogenic fungi to be essential for appressorium-mediated penetration into their host plants. We show here that Podospora anserina, a saprobic fungus lacking appressorium, contains PaPls1, a gene orthologous to known PLS1 genes. Inactivation of PaPls1 demonstrates that this gene is specifically required for the germination of ascospores in P. anserina. These ascospores are heavily melanized cells that germinate under inducing conditions through a specific pore. On the contrary, MgPLS1, which fully complements a ΔPaPls1 ascospore germination defect, has no role in the germination of Magnaporthe grisea nonmelanized ascospores but is required for the formation of the penetration peg at the pore of its melanized appressorium. P. anserina mutants with mutation of PaNox2, which encodes the NADPH oxidase of the NOX2 family, display the same ascospore-specific germination defect as the ΔPaPls1 mutant. Both mutant phenotypes are suppressed by the inhibition of melanin biosynthesis, suggesting that they are involved in the same cellular process required for the germination of P. anserina melanized ascospores. The analysis of the distribution of PLS1 and NOX2 genes in fungal genomes shows that they are either both present or both absent. These results indicate that the germination of P. anserina ascospores and the formation of the M. grisea appressorium penetration peg use the same molecular machinery that includes Pls1 and Nox2. This machinery is specifically required for the emergence of polarized hyphae from reinforced structures such as appressoria and ascospores. Its recurrent recruitment during fungal evolution may account for some of the morphogenetic convergence observed in fungi. PMID:18757568

  12. Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong

    2015-04-01

    Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-715 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the selection of SWs, and the Vis/NIR combined with LS-SVM models had the capability to predict the different breeds (mutant M1, mutant M2 and their parent) of tomatoes from leafs and fruits.

  13. Reconstructing vegetation past: Pre-Euro-American vegetation for the midwest driftless area, USA

    Treesearch

    Monika E. Shea; Lisa A. Schulte; Brian J. Palik

    2014-01-01

    Historical reference conditions provide important context for creating ecological restoration and management plans. The U.S. 19th Century Public Land Survey (PLS) records provide extensive ecological information for constructing such reference conditions. We used PLS records to reconstruct pre-Euro-American tree species cover class and vegetation structure types for...

  14. Structural Equation Modelling with Three Schemes Estimation of Score Factors on Partial Least Square (Case Study: The Quality Of Education Level SMA/MA in Sumenep Regency)

    NASA Astrophysics Data System (ADS)

    Anekawati, Anik; Widjanarko Otok, Bambang; Purhadi; Sutikno

    2017-06-01

    Research in education often involves a latent variable. Statistical analysis technique that has the ability to analyze the pattern of relationship among latent variables as well as between latent variables and their indicators is Structural Equation Modeling (SEM). SEM partial least square (PLS) was developed as an alternative if these conditions are met: the theory that underlying the design of the model is weak, does not assume a certain scale measurement, the sample size should not be large and the data does not have the multivariate normal distribution. The purpose of this paper is to compare the results of modeling of the educational quality in high school level (SMA/MA) in Sumenep Regency with structural equation modeling approach partial least square with three schemes estimation of score factors. This paper is a result of explanatory research using secondary data from Sumenep Education Department and Badan Pusat Statistik (BPS) Sumenep which was data of Sumenep in the Figures and the District of Sumenep in the Figures for the year 2015. The unit of observation in this study were districts in Sumenep that consists of 18 districts on the mainland and 9 districts in the islands. There were two endogenous variables and one exogenous variable. Endogenous variables are the quality of education level of SMA/MA (Y1) and school infrastructure (Y2), whereas exogenous variable is socio-economic condition (X1). In this study, There is one improved model which represented by model from path scheme because this model is a consistent, all of its indicators are valid and its the value of R-square increased which is: Y1=0.651Y2. In this model, the quality of education influenced only by the school infrastructure (0.651). The socio-economic condition did not affect neither the school infrastructure nor the quality of education. If the school infrastructure increased 1 point, then the quality of education increased 0.651 point. The quality of education had an R2 of 0.418, which indicates that 41.8 percent of variance in the quality of education is explained by the school infrastructure, the remaining 58.2% is explained by the other factors which were not investigated in this work.

  15. Hyphopodium-Specific VdNoxB/VdPls1-Dependent ROS-Ca2+ Signaling Is Required for Plant Infection by Verticillium dahliae.

    PubMed

    Zhao, Yun-Long; Zhou, Ting-Ting; Guo, Hui-Shan

    2016-07-01

    Verticillium dahliae is a phytopathogenic fungus obligate in root infection. A few hyphopodia differentiate from large numbers of hyphae after conidia germination on the root surface for further infection. However, the molecular features and role of hyphopodia in the pathogenicity of V. dahliae remain elusive. In this study, we found that the VdPls1, a tetraspanin, and the VdNoxB, a catalytic subunit of membrane-bound NADPH oxidases for reactive oxygen species (ROS) production, were specifically expressed in hyphopodia. VdPls1 and VdNoxB highly co-localize with the plasma membrane at the base of hyphopodia, where ROS and penetration pegs are generated. Mutant strains, VdΔnoxb and VdΔpls1, in which VdPls1 and VdNoxB were deleted, respectively, developed defective hyphpodia incapable of producing ROS and penetration pegs. Defective plasma membrane localization of VdNoxB in VdΔpls1 demonstrates that VdPls1 functions as an adaptor protein for the recruitment and activation of the VdNoxB. Furthermore, in VdΔnoxb and VdΔpls1, tip-high Ca2+ accumulation was impaired in hyphopodia, but not in vegetative hyphal tips. Moreover, nuclear targeting of VdCrz1 and activation of calcineurin-Crz1 signaling upon hyphopodium induction in wild-type V. dahliae was impaired in both knockout mutants, indicating that VdPls1/VdNoxB-dependent ROS was specifically required for tip-high Ca2+ elevation in hyphopodia to activate the transcription factor VdCrz1 in the regulation of penetration peg formation. Together with the loss of virulence of VdΔnoxb and VdΔpls1, which are unable to initiate colonization in cotton plants, our data demonstrate that VdNoxB/VdPls1-mediated ROS production activates VdCrz1 signaling through Ca2+ elevation in hyphopodia, infectious structures of V. dahliae, to regulate penetration peg formation during the initial colonization of cotton roots.

  16. Comparison of the meat metabolite composition of Linwu and Pekin ducks using 600 MHz 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Wang, Xiangrong; Fang, Chengkun; He, Jianhua; Dai, Qiuzhong; Fang, Rejun

    2017-01-01

    In an effort to further understand of the differences of meat flavor and texture between Linwu ducks and Pekin ducks at market age, we investigated the meat metabolite composition of the two breeds of ducks using 600 MHz 1 H nuclear magnetic resonance (NMR) spectroscopy. Comprehensive multivariate data analysis including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) were applied to analyze the 1 H-NMR profiling data to identify the distinguishing metabolites of breast meat between two breeds of ducks. Compared with 42-d-old Pekin duck meat, breast from 72-d-old Linwu duck has higher concentration of anserine, carnosine, homocarnosine, and nicotinamide, but significantly lower concentration of succinate, creatine, and myo-inositol. These results contribute to a better understanding of the differences in meat metabolite composition between 72-d-old Linwu and 42-d-old Pekin ducks, which could be used to help assess the quality of duck meat as a food. © 2016 Poultry Science Association Inc.

  17. Metabolomic profiling of doxycycline treatment in chronic obstructive pulmonary disease.

    PubMed

    Singh, Brajesh; Jana, Saikat K; Ghosh, Nilanjana; Das, Soumen K; Joshi, Mamata; Bhattacharyya, Parthasarathi; Chaudhury, Koel

    2017-01-05

    Serum metabolic profiling can identify the metabolites responsible for discrimination between doxycycline treated and untreated chronic obstructive pulmonary disease (COPD) and explain the possible effect of doxycycline in improving the disease conditions. 1 H nuclear magnetic resonance (NMR)-based metabolomics was used to obtain serum metabolic profiles of 60 add-on doxycycline treated COPD patients and 40 patients receiving standard therapy. The acquired data were analyzed using multivariate principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and orthogonal projection to latent structure with discriminant analysis (OPLS-DA). A clear metabolic differentiation was apparent between the pre and post doxycycline treated group. The distinguishing metabolites lactate and fatty acids were significantly down-regulated and formate, citrate, imidazole and l-arginine upregulated. Lactate and folate are further validated biochemically. Metabolic changes, such as decreased lactate level, inhibited arginase activity and lowered fatty acid level observed in COPD patients in response to add-on doxycycline treatment, reflect the anti-inflammatory action of the drug. Doxycycline as a possible therapeutic option for COPD seems promising. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Imaging of glia activation in people with primary lateral sclerosis.

    PubMed

    Paganoni, Sabrina; Alshikho, Mohamad J; Zürcher, Nicole R; Cernasov, Paul; Babu, Suma; Loggia, Marco L; Chan, James; Chonde, Daniel B; Garcia, David Izquierdo; Catana, Ciprian; Mainero, Caterina; Rosen, Bruce R; Cudkowicz, Merit E; Hooker, Jacob M; Atassi, Nazem

    2018-01-01

    Glia activation is thought to contribute to neuronal damage in several neurodegenerative diseases based on preclinical and human post - mortem studies, but its role in primary lateral sclerosis (PLS) is unknown. To localize and measure glia activation in people with PLS compared to healthy controls (HC). Ten participants with PLS and ten age-matched HCs underwent simultaneous magnetic resonance (MR) and proton emission tomography (PET). The radiotracer [ 11 C]-PBR28 was used to obtain PET-based measures of 18 kDa translocator protein (TSPO) expression, a marker of activated glial cells. MR techniques included a structural sequence to measure cortical thickness and diffusion tensor imaging (DTI) to assess white matter integrity. PET data showed increased [ 11 C]-PBR28 uptake in anatomically-relevant motor regions which co-localized with areas of regional gray matter atrophy and decreased subcortical fractional anisotropy. This study supports a link between glia activation and neuronal degeneration in PLS, and suggests that these disease mechanisms can be measured in vivo in PLS. Future studies are needed to determine the longitudinal changes of these imaging measures and to clarify if MR-PET with [ 11 C]-PBR28 can be used as a biomarker for drug development in the context of clinical trials for PLS.

  19. Concentration determination of collagen and proteoglycan in bovine nasal cartilage by Fourier transform infrared imaging and PLS

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexi; Xiao, Zhi-Yan; Yin, Jianhua; Xia, Yang

    2014-09-01

    Fourier transform infrared imaging (FTIRI) combined with chemometrics can be used to detect the structure of bio-macromolecule, measure the concentrations of some components, and so on. In this study, FTIRI with Partial Least-Squares (PLS) regression was applied to study the concentration of two main components in bovine nasal cartilage (BNC), collagen and proteoglycan. An infrared spectrum library was built by mixing the collagen and chondroitin 6-sulfate (main of proteoglycan) at different ratios. Some pretreatments are needed for building PLS model. FTIR images were collected from BNC sections at 6.25μm and 25μm pixel size. The spectra extracted from BNC-FTIR images were imported into the PLS regression program to predict the concentrations of collagen and proteoglycan. These PLS-determined concentrations are agreed with the result in our previous work and biochemical analytical results. The prediction shows that the concentrations of collagen and proteoglycan in BNC are comparative on the whole. However, the concentration of proteoglycan is a litter higher than that of collagen, to some extent.

  20. HL-20 structural design comparison - Conformal shell versus cylindrical crew compartment

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.; Wahls, Deborah M.; Robinson, James C.

    1993-01-01

    Extensive studies have been performed at NASA Langley Research Center (LaRC) on personnel launch systems (PLS) concepts. The primary mission of a PLS is the transport of Space Station crew members from Earth to the Space Station and return. The NASA LaRC PLS studies have led to the design of a lifting body configuration named the HL-20. In this study, two different HL-20 structural configurations are evaluated. The two configurations are deemed the conformal shell and the cylindrical crew compartment. The configurations are based on two different concerns for maintenance and operations. One configuration allows for access to subsystems while on-orbit from the interior, while the other allows for easy access to the subsystems during ground maintenance and operations. For each concept, the total structural weight required to sustain the applied loads is quantified through a structural evaluation. Structural weight for both configurations is compared along with the particular attributes of each. Analyses of both configurations indicate no appreciable weight or load relief advantage of one concept over the other. Maintainability and operability, therefore become the primary discriminator, leading to a choice of a crew compartment configuration.

  1. Use of Partial Least Squares improves the efficacy of removing unwanted variability in differential expression analyses based on RNA-Seq data.

    PubMed

    Chakraborty, Sutirtha

    2018-05-26

    RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package 'SVAPLSseq') to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques. Copyright © 2017. Published by Elsevier Inc.

  2. Rapid and quantitative detection of the microbial spoilage in chicken meat by diffuse reflectance spectroscopy (600-1100 nm).

    PubMed

    Lin, M; Al-Holy, M; Mousavi-Hesary, M; Al-Qadiri, H; Cavinato, A G; Rasco, B A

    2004-01-01

    To evaluate the feasibility of visible and short-wavelength near-infrared (SW-NIR) diffuse reflectance spectroscopy (600-1100 nm) to quantify the microbial loads in chicken meat and to develop a rapid methodology for monitoring the onset of spoilage. Twenty-four prepackaged fresh chicken breast muscle samples were prepared and stored at 21 degrees C for 24 h. Visible and SW-NIR was used to detect and quantify the microbial loads in chicken breast muscle at time intervals of 0, 2, 4, 6, 8, 10, 12 and 24 h. Spectra were collected in the diffuse reflectance mode (600-1100 nm). Total aerobic plate count (APC) of each sample was determined by the spread plate method at 32 degrees C for 48 h. Principal component analysis (PCA) and partial least squares (PLS) based prediction models were developed. PCA analysis showed clear segregation of samples held 8 h or longer compared with 0-h control. An optimum PLS model required eight latent variables for chicken muscle (R = 0.91, SEP = 0.48 log CFU g(-1)). Visible and SW-NIR combined with PCA is capable of perceiving the change of the microbial loads in chicken muscle once the APC increases slightly above 1 log cycle. Accurate quantification of the bacterial loads in chicken muscle can be calculated from the PLS-based prediction method. Visible and SW-NIR spectroscopy is a technique with a considerable potential for monitoring food safety and food spoilage. Visible and SW-NIR can acquire a metabolic snapshot and quantify the microbial loads of food samples rapidly, accurately, and noninvasively. This method would allow for more expeditious applications of quality control in food industries.

  3. Platelets and Plasma Proteins Are Both Required to Stimulate Collagen Gene Expression by Anterior Cruciate Ligament Cells in Three-Dimensional Culture

    PubMed Central

    Cheng, Mingyu; Wang, Hao; Yoshida, Ryu

    2010-01-01

    Collagen–platelet (PL)-rich plasma composites have shown in vivo potential to stimulate anterior cruciate ligament (ACL) healing at early time points in large animal models. However, little is known about the cellular mechanisms by which the plasma component of these composites may stimulate healing. We hypothesized that the components of PL-rich plasma (PRP), namely the PLs and PL-poor plasma (PPP), would independently significantly influence ACL cell viability and metabolic activity, including collagen gene expression. To test this hypothesis, ACL cells were cultured in a collagen type I hydrogel with PLs, PPP, or the combination of the two (PRP) for 14 days. The inclusion of PLs, PPP, and PRP all significantly reduced the rate of cell apoptosis and enhanced the metabolic activity of fibroblasts in the collagen hydrogel. PLs promoted fibroblast-mediated collagen scaffold contraction, whereas PPP inhibited this contraction. PPP and PRP both promoted cell elongation and the formation of wavy fibrous structure in the scaffolds. The addition of only PLs or only plasma proteins did not significantly enhance gene expression of collagen types I and III but the combination, as PRP, did. Our findings suggest that the addition of both PLs and plasma proteins to collagen hydrogel may be useful in stimulating ACL healing by enhancing ACL cell viability, metabolic activity, and collagen synthesis. PMID:19958169

  4. Assessing statistical differences between parameters estimates in Partial Least Squares path modeling.

    PubMed

    Rodríguez-Entrena, Macario; Schuberth, Florian; Gelhard, Carsten

    2018-01-01

    Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.

  5. Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel †

    PubMed Central

    Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf

    2018-01-01

    We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e−/s at 60 °C. PMID:29370146

  6. Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel.

    PubMed

    Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf

    2018-01-25

    Abstract : We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e - /s at 60 °C.

  7. Uronic polysaccharide degrading enzymes.

    PubMed

    Garron, Marie-Line; Cygler, Miroslaw

    2014-10-01

    In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis.

    PubMed

    Meoded, Avner; Morrissette, Arthur E; Katipally, Rohan; Schanz, Olivia; Gotts, Stephen J; Floeter, Mary Kay

    2015-01-01

    Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS), a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.

  9. Pigmented striae of the anterior lens capsule and age-associated pigment dispersion of variable degree in a group of older African-Americans: an age, race, and gender matched study.

    PubMed

    Roberts, D K; Winters, J E; Castells, D D; Clark, C A; Teitelbaum, B A

    2001-01-01

    To investigate pigmented striae of the anterior lens capsule in African-Americans, a potential indicator of significant anterior segment pigment dispersion. A group of 40 African-American subjects who exhibited pigmented lens striae (PLS) were identified from a non-referred, primary eye care population in Chicago, IL, USA. These subjects were then compared to an age, race, and gender matched control group relative to refractive error and the presence or absence of diabetes and hypertension. The PLS subjects (mean age = 65.4 +/- 8.8 years, range = 50-87 years) consisted of 36 females and 4 males. PLS were bilateral in 36 (85%) of the 40 subjects. Among the eyes with PLS, 21 (55%) of 38 right eyes and 22 (61%) of 36 left eyes also had significant corneal endothelial pigment dusting, commonly in the shape of a Krukenberg's spindle. Ten (25%) of the PLS subjects had either glaucoma or ocular hypertension (7 bilateral, 3 unilateral). The presence of trabecular meshwork pigment varied from minimal to heavy. The mean +/- SD (range) refractive error of the PLS right eyes was +1.61 +/- 1.43D (-1.50 to +5.00D) and +1.77 +/- 1.37D (-1.00 to +5.00D) for the left eyes. Based on these data, the PLS right eyes were +1.63D (Student's t, p = 0.0001; 95% CI = +0.82 to +2.44D) more hyperopic on average than the control right eyes, and the PLS left eyes were +1.77D (p = 0.0001; 95% CI = +0.92 to +2.63D) more hyperopic on average than the control left eyes. Trend analysis showed a gradually increasing likelihood of PLS with increasing magnitude of hyperopia in both eyes (Mantel-Haenszel chi-square, p = 0.001). Among PLS subjects, 24 (60%) of 40 were hypertensive and 9 (23%) of 40 were diabetic. However, these proportions were not significantly different (two-tailed Fisher's exact test; hypertension: p = 0.30; diabetes: p = 0.70) from the randomly selected controls. Among our African-American group, which consisted predominately of females >50 years of age, the likelihood of PLS increased with increasing hyperopic refractive error. This finding is consistent with the possibility that PLS may, in some circumstances, indicate a significant pigment dispersal process due to iris-lens rubbing that may be associated with crowding of anterior segment structures. Additional study is warranted to further assess the nature of PLS, their precise relationship with an age-related pigment dispersal process, and their true significance as a risk factor for development of glaucoma.

  10. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems.

    PubMed

    Lê Cao, Kim-Anh; Boitard, Simon; Besse, Philippe

    2011-06-22

    Variable selection on high throughput biological data, such as gene expression or single nucleotide polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize diseases or assess genetic structure. There are different ways to perform variable selection in large data sets. Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas Machine Learning wrapper approaches can be used for predictive purposes. In the case of multiple highly correlated variables, another option is to use multivariate exploratory approaches to give more insight into cell biology, biological pathways or complex traits. A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a multiclass classification framework. sPLS-DA has a classification performance similar to other wrapper or sparse discriminant analysis approaches on public microarray and SNP data sets. More importantly, sPLS-DA is clearly competitive in terms of computational efficiency and superior in terms of interpretability of the results via valuable graphical outputs. sPLS-DA is available in the R package mixOmics, which is dedicated to the analysis of large biological data sets.

  11. Total anthocyanin content determination in intact açaí (Euterpe oleracea Mart.) and palmitero-juçara (Euterpe edulis Mart.) fruit using near infrared spectroscopy (NIR) and multivariate calibration.

    PubMed

    Inácio, Maria Raquel Cavalcanti; de Lima, Kássio Michell Gomes; Lopes, Valquiria Garcia; Pessoa, José Dalton Cruz; de Almeida Teixeira, Gustavo Henrique

    2013-02-15

    The aim of this study was to evaluate near-infrared reflectance spectroscopy (NIR), and multivariate calibration potential as a rapid method to determinate anthocyanin content in intact fruit (açaí and palmitero-juçara). Several multivariate calibration techniques, including partial least squares (PLS), interval partial least squares, genetic algorithm, successive projections algorithm, and net analyte signal were compared and validated by establishing figures of merit. Suitable results were obtained with the PLS model (four latent variables and 5-point smoothing) with a detection limit of 6.2 g kg(-1), limit of quantification of 20.7 g kg(-1), accuracy estimated as root mean square error of prediction of 4.8 g kg(-1), mean selectivity of 0.79 g kg(-1), sensitivity of 5.04×10(-3) g kg(-1), precision of 27.8 g kg(-1), and signal-to-noise ratio of 1.04×10(-3) g kg(-1). These results suggest NIR spectroscopy and multivariate calibration can be effectively used to determine anthocyanin content in intact açaí and palmitero-juçara fruit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. [Based on the LS-SVM modeling method determination of soil available N and available K by using near-infrared spectroscopy].

    PubMed

    Liu, Xue-Mei; Liu, Jian-She

    2012-11-01

    Visible infrared spectroscopy (Vis/SW-NIRS) was investigated in the present study for measurement accuracy of soil properties,namely, available nitrogen(N) and available potassium(K). Three types of pretreatments including standard normal variate (SNV), multiplicative scattering correction (MSC) and Savitzky-Golay smoothing+first derivative were adopted to eliminate the system noises and external disturbances. Then partial least squares (PLS) and least squares-support vector machine (LS-SVM) models analysis were implemented for calibration models. Simultaneously, the performance of least squares-support vector machine (LS-SVM) models was compared with three kinds of inputs, including PCA(PCs), latent variables (LVs), and effective wavelengths (EWs). The results indicated that all LS-SVM models outperformed PLS models. The performance of the model was evaluated by the correlation coefficient (r2) and RMSEP. The optimal EWs-LS-SVM models were achieved, and the correlation coefficient (r2) and RMSEP were 0.82 and 17.2 for N and 0.72 and 15.0 for K, respectively. The results indicated that visible and short wave-near infrared spectroscopy (Vis/SW-NIRS)(325-1 075 nm) combined with LS-SVM could be utilized as a precision method for the determination of soil properties.

  13. At-line monitoring of key parameters of nisin fermentation by near infrared spectroscopy, chemometric modeling and model improvement.

    PubMed

    Guo, Wei-Liang; Du, Yi-Ping; Zhou, Yong-Can; Yang, Shuang; Lu, Jia-Hui; Zhao, Hong-Yu; Wang, Yao; Teng, Li-Rong

    2012-03-01

    An analytical procedure has been developed for at-line (fast off-line) monitoring of 4 key parameters including nisin titer (NT), the concentration of reducing sugars, cell concentration and pH during a nisin fermentation process. This procedure is based on near infrared (NIR) spectroscopy and Partial Least Squares (PLS). Samples without any preprocessing were collected at intervals of 1 h during fifteen batch of fermentations. These fermentation processes were implemented in 3 different 5 l fermentors at various conditions. NIR spectra of the samples were collected in 10 min. And then, PLS was used for modeling the relationship between NIR spectra and the key parameters which were determined by reference methods. Monte Carlo Partial Least Squares (MCPLS) was applied to identify the outliers and select the most efficacious methods for preprocessing spectra, wavelengths and the suitable number of latent variables (n (LV)). Then, the optimum models for determining NT, concentration of reducing sugars, cell concentration and pH were established. The correlation coefficients of calibration set (R (c)) were 0.8255, 0.9000, 0.9883 and 0.9581, respectively. These results demonstrated that this method can be successfully applied to at-line monitor of NT, concentration of reducing sugars, cell concentration and pH during nisin fermentation processes.

  14. Estimating and Interpreting Latent Variable Interactions: A Tutorial for Applying the Latent Moderated Structural Equations Method

    ERIC Educational Resources Information Center

    Maslowsky, Julie; Jager, Justin; Hemken, Douglas

    2015-01-01

    Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…

  15. Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics.

    PubMed

    Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong

    2015-04-05

    Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-71 5 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the selection of SWs, and the Vis/NIR combined with LS-SVM models had the capability to predict the different breeds (mutant M1, mutant M2 and their parent) of tomatoes from leafs and fruits. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A Personnel Launch System for safe and efficient manned operations

    NASA Astrophysics Data System (ADS)

    Petro, Andrew J.; Andrews, Dana G.; Wetzel, Eric D.

    1990-10-01

    Several Conceptual designs for a simple, rugged Personnel Launch System (PLS) are presented. This system could transport people to and from Low Earth Orbit (LEO) starting in the late 1990's using a new modular Advanced Launch System (ALS) developed for the Space Exploration Initiative (SEI). The PLS is designed to be one element of a new space transportation architecture including heavy-lift cargo vehicles, lunar transfer vehicles, and multiple-role spcecraft such as the current Space Shuttle. The primary role of the PLS would be to deliver crews embarking on lunar or planetary missions to the Space Station, but it would also be used for earth-orbit sortie missions, space rescue missions, and some satellite servicing missions. The PLS design takes advantage of emerging electronic and structures technologies to offer a robust vehicle with autonomous operating and quick turnaround capabilities. Key features include an intact abort capability anywhere in the operating envelope, and elimination of all toxic propellants to streamline ground operations.

  17. Ultrastructural markers of lymph nodes in patients with acquired immune deficiency syndrome and in homosexual males with unexplained persistent lymphadenopathy. A quantitative study.

    PubMed

    Onerheim, R M; Wang, N S; Gilmore, N; Jothy, S

    1984-09-01

    To determine if vesicular rosettes (VR), tubuloreticular structures (TRS), and "test-tube and ring-shaped forms" (TRF) are characteristic ultrastructural features of the syndromes of acquired immune deficiency (AIDS) or of unexplained persistent lymphadenopathy (PLS), the authors studied lymph nodes from nine patients with PLS, two patients with AIDS, and seven controls by electron microscopy. An average of 122 lymphocytes per case were photographed. VR were present in only 0.37% of lymphocytes in 4 of 11 index cases and were mimicked by grouped vesicles and degenerating multivesicular bodies (MVB). TRS were found in 10 of 11 index cases, compared with only one of seven controls (P less than 0.01). In the index cases, they were more frequent in AIDS (mean 21%) than in PLS lymphocytes (mean 4%) (P less than 0.05). MVB were found in all index cases and five of seven controls and were more frequent in index lymphocytes (mean 19%) than in controls (mean 5%) (P less than 0.01). TRF were found in one Haitian male with AIDS, where they were present in 4% of lymphocytes. VR are infrequent and indistinct. MVB probably reflect the reactivity of the lymphocytes. TRF is not a feature of PLS. The authors conclude that there are no pathognomonic ultrastructural markers of AIDS or PLS but that TRS are characteristic of both syndromes and occur frequently enough to be supportive to the diagnosis of AIDS and PLS.

  18. Involvement of PlsX and the acyl-phosphate dependent sn-glycerol-3-phosphate acyltransferase PlsY in the initial stage of glycerolipid synthesis in Bacillus subtilis.

    PubMed

    Hara, Yoshinori; Seki, Masahide; Matsuoka, Satoshi; Hara, Hiroshi; Yamashita, Atsushi; Matsumoto, Kouji

    2008-12-01

    The gene responsible for the first acylation of sn-glycerol-3-phosphate (G3P) in Bacillus subtilis has not yet been determined with certainty. The product of this first acylation, lysophosphatidic acid (LPA), is subsequently acylated again to form phosphatidic acid (PA), the primary precursor to membrane glycerolipids. A novel G3P acyltransferase (GPAT), the gene product of plsY, which uses acyl-phosphate formed by the plsX gene product, has recently been found to synthesize LPA in Streptococcus pneumoniae. We found that in B. subtilis growth arrests after repression of either a plsY homologue or a plsX homologue were overcome by expression of E. coli plsB, which encodes an acyl-acylcarrier protein (acyl-ACP)-dependent GPAT, although in the case of plsX repression a high level of plsB expression was required. B. subtilis has, therefore, a capability to use the acyl-ACP dependent GPAT of PlsB. Simultaneous expression of plsY and plsX suppressed the glycerol requirement of a strict glycerol auxotrophic derivative of the E. coli plsB26 mutant, although either one alone did not. Membrane fractions from B. subtilis cells catalyzed palmitoylphosphate-dependent acylation of [14C]-labeled G3P to synthesize [14C]-labeled LPA, whereas those from DeltaplsY cells did not. The results indicate unequivocally that PlsY is an acyl-phosphate dependent GPAT. Expression of plsX corrected the glycerol auxotrophy of a DeltaygiH (the deleted allele of an E. coli homologue of plsY) derivative of BB26-36 (plsB26 plsX50), suggesting an essential role of plsX other than substrate supply for acyl-phosphate dependent LPA synthesis. Two-hybrid examinations suggested that PlsY is associated with PlsX and that each may exist in multimeric form.

  19. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of streptococcus pneumontae

    DOEpatents

    Lacks, Sanford A.

    1990-01-01

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252.

  20. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of Streptococcus pneumontae

    DOEpatents

    Lacks, S.A.

    1990-10-02

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252. 9 figs.

  1. Bayesian Semiparametric Structural Equation Models with Latent Variables

    ERIC Educational Resources Information Center

    Yang, Mingan; Dunson, David B.

    2010-01-01

    Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…

  2. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography.

    PubMed

    Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto

    2016-06-10

    The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fingerprinting of egg and oil binders in painted artworks by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of lipid oxidation by-products.

    PubMed

    Calvano, C D; van der Werf, I D; Palmisano, F; Sabbatini, L

    2011-06-01

    A matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based approach was applied for the detection of various lipid classes, such as triacylglycerols (TAGs) and phospholipids (PLs), and their oxidation by-products in extracts of small (50-100 μg) samples obtained from painted artworks. Ageing of test specimens under various conditions, including the presence of different pigments, was preliminarily investigated. During ageing, the TAGs and PLs content decreased, whereas the amount of diglycerides, short-chain oxidative products arising from TAGs and PLs, and oxidized TAGs and PLs components increased. The examination of a series of model paint samples gave a clear indication that specific ions produced by oxidative cleavage of PLs and/or TAGs may be used as markers for egg and drying oil-based binders. Their elemental composition and hypothetical structure are also tentatively proposed. Moreover, the simultaneous presence of egg and oil binders can be easily and unambiguously ascertained through the simultaneous occurrence of the relevant specific markers. The potential of the proposed approach was demonstrated for the first time by the analysis of real samples from a polyptych of Bartolomeo Vivarini (fifteenth century) and a "French school" canvas painting (seventeenth century).

  4. Characterization of the replication region of the Bacillus subtilis plasmid pLS20: a novel type of replicon.

    PubMed Central

    Meijer, W J; de Boer, A J; van Tongeren, S; Venema, G; Bron, S

    1995-01-01

    A 3.1 kb fragment of the large (approximately 55 kb) Bacillus subtilis plasmid pLS20 containing all the information for autonomous replication was cloned and sequenced. In contrast to the parental plasmid, derived minireplicons were unstably maintained. Using deletion analysis the fragment essential and sufficient for replication was delineated to 1.1 kb. This 1.1 kb fragment is located between two divergently transcribed genes, denoted orfA and orfB, neither of which is required for replication. orfA shows homology to the B.subtilis chromosomal genes rapA (spoOL, gsiA) and rapB (spoOP). The 1.1 kb fragment, which is characterized by the presence of several regions of dyad symmetry, contains no open reading frames of more than 85 codons and shows no similarity with other known plasmid replicons. The structural organization of the pLS20 minimal replicon is entirely different from that of typical rolling circle plasmids from Gram-positive bacteria. The pLS20 minireplicons replicate in polA5 and recA4 B.subtilis strains. Taken together, these results strongly suggest that pLS20 belongs to a new class of theta replicons. PMID:7667098

  5. Solid-phase cadmium speciation in soil using L3-edge XANES spectroscopy with partial least-squares regression.

    PubMed

    Siebers, Nina; Kruse, Jens; Eckhardt, Kai-Uwe; Hu, Yongfeng; Leinweber, Peter

    2012-07-01

    Cadmium (Cd) has a high toxicity and resolving its speciation in soil is challenging but essential for estimating the environmental risk. In this study partial least-square (PLS) regression was tested for its capability to deconvolute Cd L(3)-edge X-ray absorption near-edge structure (XANES) spectra of multi-compound mixtures. For this, a library of Cd reference compound spectra and a spectrum of a soil sample were acquired. A good coefficient of determination (R(2)) of Cd compounds in mixtures was obtained for the PLS model using binary and ternary mixtures of various Cd reference compounds proving the validity of this approach. In order to describe complex systems like soil, multi-compound mixtures of a variety of Cd compounds must be included in the PLS model. The obtained PLS regression model was then applied to a highly Cd-contaminated soil revealing Cd(3)(PO(4))(2) (36.1%), Cd(NO(3))(2)·4H(2)O (24.5%), Cd(OH)(2) (21.7%), CdCO(3) (17.1%) and CdCl(2) (0.4%). These preliminary results proved that PLS regression is a promising approach for a direct determination of Cd speciation in the solid phase of a soil sample.

  6. The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models

    ERIC Educational Resources Information Center

    Park, Jungkyu; Yu, Hsiu-Ting

    2016-01-01

    The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…

  7. Selection of molecular descriptors with artificial intelligence for the understanding of HIV-1 protease peptidomimetic inhibitors-activity.

    PubMed

    Sirois, S; Tsoukas, C M; Chou, Kuo-Chen; Wei, Dongqing; Boucher, C; Hatzakis, G E

    2005-03-01

    Quantitative Structure Activity Relationship (QSAR) techniques are used routinely by computational chemists in drug discovery and development to analyze datasets of compounds. Quantitative numerical methods like Partial Least Squares (PLS) and Artificial Neural Networks (ANN) have been used on QSAR to establish correlations between molecular properties and bioactivity. However, ANN may be advantageous over PLS because it considers the interrelations of the modeled variables. This study focused on the HIV-1 Protease (HIV-1 Pr) inhibitors belonging to the peptidomimetic class of compounds. The main objective was to select molecular descriptors with the best predictive value for antiviral potency (Ki). PLS and ANN were used to predict Ki activity of HIV-1 Pr inhibitors and the results were compared. To address the issue of dimensionality reduction, Genetic Algorithms (GA) were used for variable selection and their performance was compared against that of ANN. Finally, the structure of the optimum ANN achieving the highest Pearson's-R coefficient was determined. On the basis of Pearson's-R, PLS and ANN were compared to determine which exhibits maximum performance. Training and validation of models was performed on 15 random split sets of the master dataset consisted of 231 compounds. For each compound 192 molecular descriptors were considered. The molecular structure and constant of inhibition (Ki) were selected from the NIAID database. Study findings suggested that non-covalent interactions such as hydrophobicity, shape and hydrogen bonding describe well the antiviral activity of the HIV-1 Pr compounds. The significance of lipophilicity and relationship to HIV-1 associated hyperlipidemia and lipodystrophy syndrome warrant further investigation.

  8. Partial least square method for modelling ergonomic risks factors on express bus accidents in the east coast of peninsular west Malaysia

    NASA Astrophysics Data System (ADS)

    Hashim, Yusof bin; Taha, Zahari bin

    2015-02-01

    Public, stake holders and authorities in Malaysian government show great concern towards high numbers of passenger's injuries and passengers fatalities in express bus accident. This paper studies the underlying factors involved in determining ergonomics risk factors towards human error as the reasons in express bus accidents in order to develop an integrated analytical framework. Reliable information about drivers towards bus accident should lead to the design of strategies intended to make the public feel safe in public transport services. In addition there is an analysis of ergonomics risk factors to determine highly ergonomic risk factors which led to accidents. The research was performed in east coast of peninsular Malaysia using variance-based structural equation modeling namely the Partial Least Squares (PLS) regression techniques. A questionnaire survey was carried out at random among 65 express bus drivers operating from the city of Kuantan in Pahang and among 49 express bus drivers operating from the city of Kuala Terengganu in Terengganu to all towns in the east coast of peninsular west Malaysia. The ergonomic risks factors questionnaire is based on demographic information, occupational information, organizational safety climate, ergonomic workplace, physiological factors, stress at workplace, physical fatigue and near miss accidents. The correlation and significant values between latent constructs (near miss accident) were analyzed using SEM SmartPLS, 3M. The finding shows that the correlated ergonomic risks factors (occupational information, t=2.04, stress at workplace, t = 2.81, physiological factor, t=2.08) are significant to physical fatigue and as the mediator to near miss accident at t = 2.14 at p<0.05and T-statistics, t>1.96. The results shows that the effects of physical fatigue due to ergonomic risks factors influence the human error as the reasons in express bus accidents.

  9. Partial least square method for modelling ergonomic risks factors on express bus accidents in the east coast of peninsular west Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashim, Yusof bin; Taha, Zahari bin

    Public, stake holders and authorities in Malaysian government show great concern towards high numbers of passenger’s injuries and passengers fatalities in express bus accident. This paper studies the underlying factors involved in determining ergonomics risk factors towards human error as the reasons in express bus accidents in order to develop an integrated analytical framework. Reliable information about drivers towards bus accident should lead to the design of strategies intended to make the public feel safe in public transport services. In addition there is an analysis of ergonomics risk factors to determine highly ergonomic risk factors which led to accidents. Themore » research was performed in east coast of peninsular Malaysia using variance-based structural equation modeling namely the Partial Least Squares (PLS) regression techniques. A questionnaire survey was carried out at random among 65 express bus drivers operating from the city of Kuantan in Pahang and among 49 express bus drivers operating from the city of Kuala Terengganu in Terengganu to all towns in the east coast of peninsular west Malaysia. The ergonomic risks factors questionnaire is based on demographic information, occupational information, organizational safety climate, ergonomic workplace, physiological factors, stress at workplace, physical fatigue and near miss accidents. The correlation and significant values between latent constructs (near miss accident) were analyzed using SEM SmartPLS, 3M. The finding shows that the correlated ergonomic risks factors (occupational information, t=2.04, stress at workplace, t = 2.81, physiological factor, t=2.08) are significant to physical fatigue and as the mediator to near miss accident at t = 2.14 at p<0.05and T-statistics, t>1.96. The results shows that the effects of physical fatigue due to ergonomic risks factors influence the human error as the reasons in express bus accidents.« less

  10. Phosphatidic Acid Synthesis in Bacteria

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2012-01-01

    Membrane phospholipid synthesis is a vital facet of bacterial physiology. Although the spectrum of phospholipid headgroup structures produced by bacteria is large, the key precursor to all of these molecules is phosphatidic acid (PtdOH). Glycerol-3-phosphate derived from the glycolysis via glycerol-phosphate synthase is the universal source for the glycerol backbone of PtdOH. There are two distinct families of enzymes responsible for the acylation of the 1-position of glycerol-3-phosphate. The PlsB acyltransferase was discovered in Escherichia coli, and homologs are present in many eukaryotes. This protein family primarily uses acyl-acyl carrier protein (ACP) endproducts of fatty acid synthesis as acyl donors, but may also use acyl-CoA derived from exogenous fatty acids. The second protein family, PlsY, is more widely distributed in bacteria and utilizes the unique acyl donor, acyl-phosphate, which is produced from acyl-ACP by the enzyme PlsX. The acylation of the 2-position is carried out by members of the PlsC protein family. All PlsCs use acyl-ACP as the acyl donor, although the PlsCs of the γ-proteobacteria also may use acyl-CoA. Phospholipid headgroups are precursors in the biosynthesis of other membrane-associated molecules and the diacylglycerol product of these reactions is converted to PtdOH by one of two distinct families of lipid kinases. The central importance of the de novo and recycling pathways to PtdOH in cell physiology suggest these enzymes are suitable targets for the development of antibacterial therapeutics in Gram-positive pathogens. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:22981714

  11. Micro-spectroscopy on silicon wafers and solar cells

    PubMed Central

    2011-01-01

    Micro-Raman (μRS) and micro-photoluminescence spectroscopy (μPLS) are demonstrated as valuable characterization techniques for fundamental research on silicon as well as for technological issues in the photovoltaic production. We measure the quantitative carrier recombination lifetime and the doping density with submicron resolution by μPLS and μRS. μPLS utilizes the carrier diffusion from a point excitation source and μRS the hole density-dependent Fano resonances of the first order Raman peak. This is demonstrated on micro defects in multicrystalline silicon. In comparison with the stress measurement by μRS, these measurements reveal the influence of stress on the recombination activity of metal precipitates. This can be attributed to the strong stress dependence of the carrier mobility (piezoresistance) of silicon. With the aim of evaluating technological process steps, Fano resonances in μRS measurements are analyzed for the determination of the doping density and the carrier lifetime in selective emitters, laser fired doping structures, and back surface fields, while μPLS can show the micron-sized damage induced by the respective processes. PMID:21711723

  12. A two-helix motif positions the active site of lysophosphatidic acid acyltransferase for catalysis within the membrane bilayer

    PubMed Central

    Robertson, Rosanna M.; Yao, Jiangwei; Gajewski, Stefan; Kumar, Gyanendra; Martin, Erik W.; Rock, Charles O.; White, Stephen W.

    2017-01-01

    Phosphatidic acid is the central intermediate in membrane phospholipid synthesis and is generated by two acyltransferases in a pathway conserved in all life forms. The second step in this pathway is catalyzed by 1-acyl-sn-glycero-3-phosphate acyltransferase, called PlsC in bacteria. The crystal structure of PlsC from Thermotoga maritima reveals an unusual hydrophobic/aromatic N-terminal two-helix motif linked to an acyltransferase αβ domain that contains the catalytic HX4D motif. PlsC dictates the acyl chain composition of the 2-position of phospholipids, and the acyl chain selectivity ‘ruler’ is an appropriately placed and closed hydrophobic tunnel. This was confirmed by site-directed mutagenesis and membrane composition analysis of Escherichia coli cells expressing the mutated proteins. MD simulations reveal that the two-helix motif represents a novel substructure that firmly anchors the protein to one leaflet of the membrane. This binding mode allows the PlsC active site to acylate lysophospholipids within the membrane bilayer using soluble acyl donors. PMID:28714993

  13. Flexible Modeling of Latent Task Structures in Multitask Learning

    DTIC Science & Technology

    2012-06-26

    Flexible Modeling of Latent Task Structures in Multitask Learning Alexandre Passos† apassos@cs.umass.edu Computer Science Department, University of...of Maryland, College Park, MD USA Abstract Multitask learning algorithms are typically designed assuming some fixed, a priori known latent structure...shared by all the tasks. However, it is usually unclear what type of latent task structure is the most ap- propriate for a given multitask learning prob

  14. Asteroid families - An initial search

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1992-01-01

    A stereo examination was conducted for clusters in three-dimensional proper element space within a sample of both numbered and faint Palomar-Leiden Survey (PLS) asteroids. The clusters were then objectively filtered for small Poisson probability of chance occurrence; 104 were accepted as families with 4- to 12-member populations, and are interpreted as impact-generated. Structure is common in the well-populated families: the better-sampled families are accordingly discussed in terms of their geometry and taxonomy. Some families are very rich in faint PLS members.

  15. Fourier transform infrared reflectance spectra of latent fingerprints: a biometric gauge for the age of an individual.

    PubMed

    Hemmila, April; McGill, Jim; Ritter, David

    2008-03-01

    To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.

  16. An exploratory NMR nutri-metabonomic investigation reveals dimethyl sulfone as a dietary biomarker for onion intake.

    PubMed

    Winning, Hanne; Roldán-Marín, Eduvigis; Dragsted, Lars O; Viereck, Nanna; Poulsen, Morten; Sánchez-Moreno, Concepción; Cano, M Pilar; Engelsen, Søren B

    2009-11-01

    The metabolome following intake of onion by-products is evaluated. Thirty-two rats were fed a diet containing an onion by-product or one of the two derived onion by-product fractions: an ethanol extract and the residue. A 24 hour urine sample was analyzed using (1)H NMR spectroscopy in order to investigate the effects of onion intake on the rat metabolism. Application of interval extended canonical variates analysis (ECVA) proved to be able to distinguish between the metabolomic profiles from rats consuming normal feed and rats fed with an onion diet. Two dietary biomarkers for onion intake were identified as dimethyl sulfone and 3-hydroxyphenylacetic acid. The same two dietary biomarkers were subsequently revealed by interval partial least squares regression (PLS) to be perfect quantitative markers for onion intake. The best PLS calibration model yielded a root mean square error of cross-validation (RMSECV) of 0.97% (w/w) with only 1 latent variable and a squared correlation coefficient of 0.94. This indicates that urine from rats on the by-product diet, the extract diet, and the residue diet all contain the same dietary biomarkers and it is concluded that dimethyl sulfone and 3-hydroxyphenylacetic acid are dietary biomarkers for onion intake. Being able to detect specific dietary biomarkers is highly beneficial in the control of nutritionally enhanced functional foods.

  17. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression.

    PubMed

    Delwiche, Stephen R; Reeves, James B

    2010-01-01

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various types of spectroscopy data.

  18. Testing Specific Hypotheses Concerning Latent Group Differences in Multi-group Covariance Structure Analysis with Structured Means.

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Molenaar, Peter C. M.

    1994-01-01

    In multigroup covariance structure analysis with structured means, the traditional latent selection model is formulated as a special case of phenotypic selection. Illustrations with real and simulated data demonstrate how one can test specific hypotheses concerning selection on latent variables. (SLD)

  19. Peculiarities of energy trapping of the UHF elastic waves in diamond-based piezoelectric layered structure. I. Waveguide criterion.

    PubMed

    Kvashnin, G M; Sorokin, B P; Novoselov, A S

    2018-03-01

    Finite Element Modeling of the peculiarities of the trapping energy phenomenon in application to the piezoelectric layered structure (PLS) "Al/(0 0 1) AlN/Mo/(1 0 0) diamond" has been fulfilled. The resonant properties of longitudinal bulk acoustic waves (BAW) as well as frequency dependence of impedance within the 1 - 6 GHz band have been studied. The investigation of distribution of elastic energy flow and elastic displacements in a PLS cross-section allowed us to obtain an important information on energy trapping (ET) in PLS. Experimentally and as a result of modeling, it has been found that Q minimums are observed in PLS at quarter-wave resonance in the thin-film piezoelectric transducer (TFPT). Maximal Q value was observed at half-wave resonance in TFPT. It has been established that the ET-effect depends considerably on the mutual location of the n-th overtone's antiresonant frequency f a , n and cut-off frequencies of substrate f s , n-k- 1 and f s , n-k where f s , n-k- 1 f s , n-k , when the BAW energy excites the symmetrical or antisymmetrical Lamb waves. Copyright © 2017. Published by Elsevier B.V.

  20. Characterizing the proton loading site in cytochrome c oxidase.

    PubMed

    Lu, Jianxun; Gunner, M R

    2014-08-26

    Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, Cu(B), Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1-4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded.

  1. Characterizing the proton loading site in cytochrome c oxidase

    PubMed Central

    Lu, Jianxun; Gunner, M. R.

    2014-01-01

    Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, CuB, Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1–4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded. PMID:25114210

  2. Structural, biological and biophysical properties of glycated and glycoxidized phosphatidylethanolamines

    PubMed Central

    Annibal, Andrea; Riemer, Thomas; Jovanovic, Olga; Westphal, Dennis; Griesser, Eva; Pohl, Elena E.; Schiller, Jürgen; Hoffmann, Ralf; Fedorova, Maria

    2018-01-01

    Glycation and glycoxidation of proteins and peptides have been intensively studied and are considered as reliable diagnostic biomarkers of hyperglycemia and early stages of type II diabetes. However, glucose can also react with primary amino groups present in other cellular components, such as aminophospholipids (aminoPLs). Although it is proposed that glycated aminoPLs can induce many cellular responses and contribute to the development and progression of diabetes, the routes of their formation and their biological roles are only partially revealed. The same is true for the influence of glucose-derived modifications on the biophysical properties of PLs. Here we studied structural, signaling, and biophysical properties of glycated and glycoxidized phosphatidylethanolamines (PEs). By combining high resolution mass spectrometry and nuclear magnetic resonance spectroscopy it was possible to deduce the structures of several intermediates indicating an oxidative cleavage of the Amadori product yielding glycoxidized PEs including advanced glycation end products, such as carboxyethyl- and carboxymethyl-ethanolamines. The pro-oxidative role of glycated PEs was demonstrated and further associated with several cellular responses including activation of NFκB signaling pathways. Label free proteomics indicated significant alterations in proteins regulating cellular metabolisms. Finally, the biophysical properties of PL membranes changed significantly upon PE glycation, such as melting temperature (Tm), membrane surface charge, and ion transport across the phospholipid bilayer. PMID:27012418

  3. On-line monitoring of extraction process of Flos Lonicerae Japonicae using near infrared spectroscopy combined with synergy interval PLS and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Wang, Lei; Wu, Yongjiang; Liu, Xuesong; Bi, Yuan; Xiao, Wei; Chen, Yong

    2017-07-01

    There is a growing need for the effective on-line process monitoring during the manufacture of traditional Chinese medicine to ensure quality consistency. In this study, the potential of near infrared (NIR) spectroscopy technique to monitor the extraction process of Flos Lonicerae Japonicae was investigated. A new algorithm of synergy interval PLS with genetic algorithm (Si-GA-PLS) was proposed for modeling. Four different PLS models, namely Full-PLS, Si-PLS, GA-PLS, and Si-GA-PLS, were established, and their performances in predicting two quality parameters (viz. total acid and soluble solid contents) were compared. In conclusion, Si-GA-PLS model got the best results due to the combination of superiority of Si-PLS and GA. For Si-GA-PLS, the determination coefficient (Rp2) and root-mean-square error for the prediction set (RMSEP) were 0.9561 and 147.6544 μg/ml for total acid, 0.9062 and 0.1078% for soluble solid contents, correspondingly. The overall results demonstrated that the NIR spectroscopy technique combined with Si-GA-PLS calibration is a reliable and non-destructive alternative method for on-line monitoring of the extraction process of TCM on the production scale.

  4. Latent Structure of Motor Abilities in Pre-School Children

    ERIC Educational Resources Information Center

    Vatroslav, Horvat

    2011-01-01

    The theoretical and practical knowledge which have so far been acquired through work with pre-school children pointed to the conclusion that the structures of the latent dimensions of the motor abilities differ greatly from such a structure, in pre-school children and adults alike. Establishing the latent structure of the motor abilities in…

  5. Fast and nondestructive determination of protein content in rapeseeds (Brassica napus L.) using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS).

    PubMed

    Lu, Yuzhen; Du, Changwen; Yu, Changbing; Zhou, Jianmin

    2014-08-01

    Fast and non-destructive determination of rapeseed protein content carries significant implications in rapeseed production. This study presented the first attempt of using Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) to quantify protein content of rapeseed. The full-spectrum model was first built using partial least squares (PLS). Interval selection methods including interval partial least squares (iPLS), synergy interval partial least squares (siPLS), backward elimination interval partial least squares (biPLS) and dynamic backward elimination interval partial least squares (dyn-biPLS) were then employed to select the relevant band or band combination for PLS modeling. The full-spectrum PLS model achieved an ratio of prediction to deviation (RPD) of 2.047. In comparison, all interval selection methods produced better results than full-spectrum modeling. siPLS achieved the best predictive accuracy with an RPD of 3.215 when the spectrum was sectioned into 25 intervals, and two intervals (1198-1335 and 1614-1753 cm(-1) ) were selected. iPLS excelled biPLS and dyn-biPLS, and dyn-biPLS performed slightly better than biPLS. FTIR-PAS was verified as a promising analytical tool to quantify rapeseed protein content. Interval selection could extract the relevant individual band or synergy band associated with the sample constituent of interest, and then improve the prediction accuracy of the full-spectrum model. © 2013 Society of Chemical Industry.

  6. The Integration of Continuous and Discrete Latent Variable Models: Potential Problems and Promising Opportunities

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Curran, Patrick J.

    2004-01-01

    Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…

  7. Intra-isolate genome variation in arbuscular mycorrhizal fungi persists in the transcriptome.

    PubMed

    Boon, E; Zimmerman, E; Lang, B F; Hijri, M

    2010-07-01

    Arbuscular mycorrhizal fungi (AMF) are heterokaryotes with an unusual genetic makeup. Substantial genetic variation occurs among nuclei within a single mycelium or isolate. AMF reproduce through spores that contain varying fractions of this heterogeneous population of nuclei. It is not clear whether this genetic variation on the genome level actually contributes to the AMF phenotype. To investigate the extent to which polymorphisms in nuclear genes are transcribed, we analysed the intra-isolate genomic and cDNA sequence variation of two genes, the large subunit ribosomal RNA (LSU rDNA) of Glomus sp. DAOM-197198 (previously known as G. intraradices) and the POL1-like sequence (PLS) of Glomus etunicatum. For both genes, we find high sequence variation at the genome and transcriptome level. Reconstruction of LSU rDNA secondary structure shows that all variants are functional. Patterns of PLS sequence polymorphism indicate that there is one functional gene copy, PLS2, which is preferentially transcribed, and one gene copy, PLS1, which is a pseudogene. This is the first study that investigates AMF intra-isolate variation at the transcriptome level. In conclusion, it is possible that, in AMF, multiple nuclear genomes contribute to a single phenotype.

  8. Free variable selection QSPR study to predict 19F chemical shifts of some fluorinated organic compounds using Random Forest and RBF-PLS methods

    NASA Astrophysics Data System (ADS)

    Goudarzi, Nasser

    2016-04-01

    In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the 19F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the 19F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.

  9. Using SAS PROC CALIS to fit Level-1 error covariance structures of latent growth models.

    PubMed

    Ding, Cherng G; Jane, Ten-Der

    2012-09-01

    In the present article, we demonstrates the use of SAS PROC CALIS to fit various types of Level-1 error covariance structures of latent growth models (LGM). Advantages of the SEM approach, on which PROC CALIS is based, include the capabilities of modeling the change over time for latent constructs, measured by multiple indicators; embedding LGM into a larger latent variable model; incorporating measurement models for latent predictors; and better assessing model fit and the flexibility in specifying error covariance structures. The strength of PROC CALIS is always accompanied with technical coding work, which needs to be specifically addressed. We provide a tutorial on the SAS syntax for modeling the growth of a manifest variable and the growth of a latent construct, focusing the documentation on the specification of Level-1 error covariance structures. Illustrations are conducted with the data generated from two given latent growth models. The coding provided is helpful when the growth model has been well determined and the Level-1 error covariance structure is to be identified.

  10. Variable selection based on clustering analysis for improvement of polyphenols prediction in green tea using synchronous fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi

    2018-04-01

    Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.

  11. Variable selection based on clustering analysis for improvement of polyphenols prediction in green tea using synchronous fluorescence spectra.

    PubMed

    Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi

    2018-03-13

    Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.

  12. Development of a direct in-matrix extraction (DIME) protocol for MALDI-TOF-MS detection of glycated phospholipids in heat-treated food samples.

    PubMed

    Calvano, Cosima D; De Ceglie, Cristina; Zambonin, Carlo G

    2014-09-01

    In foodstuffs, one of the main factors inducing modifications in phospholipids (PLs) structure is the heat treatment. Among PLs, only phosphatidylethanolamines and phosphatidylserines, due to their free amino group, can be involved in Maillard reaction and can form adducts with reducing sugars, besides other by-products called advanced glycation end-products. To date, glycated lipid products are less characterized in comparison to proteins. The aim of this work was to develop a novel, rapid and sensitive extraction protocol for the detection and characterization of modified PLs (glycated and oxidized) by means of matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). At first, to investigate the formation of glycated and/or short chain by-products in different classes of PLs, representative standards were heated with or without sugar (lactose or glucose) and subjected to traditional lipid extraction methods as Bligh and Dyer and to the novel direct in matrix extraction (DIME) using 1,8-bis(dimethylamino)naphthalene as preconcentrating matrix. MALDI-MS analysis in negative ion mode allowed detecting glycation and oxidation products both on fatty acid and glucose moieties. Then, the procedure was successfully applied to different heat-treated and powdered samples (milk powders, pasteurized milk, ultra-high-temperature milk and soy flour) for the detection of modified PLs in complex foods. The currently developed DIME protocol could be a powerful tool for understanding lipid glycation also in biological samples. Copyright © 2014 John Wiley & Sons, Ltd.

  13. GTM-Based QSAR Models and Their Applicability Domains.

    PubMed

    Gaspar, H A; Baskin, I I; Marcou, G; Horvath, D; Varnek, A

    2015-06-01

    In this paper we demonstrate that Generative Topographic Mapping (GTM), a machine learning method traditionally used for data visualisation, can be efficiently applied to QSAR modelling using probability distribution functions (PDF) computed in the latent 2-dimensional space. Several different scenarios of the activity assessment were considered: (i) the "activity landscape" approach based on direct use of PDF, (ii) QSAR models involving GTM-generated on descriptors derived from PDF, and, (iii) the k-Nearest Neighbours approach in 2D latent space. Benchmarking calculations were performed on five different datasets: stability constants of metal cations Ca(2+) , Gd(3+) and Lu(3+) complexes with organic ligands in water, aqueous solubility and activity of thrombin inhibitors. It has been shown that the performance of GTM-based regression models is similar to that obtained with some popular machine-learning methods (random forest, k-NN, M5P regression tree and PLS) and ISIDA fragment descriptors. By comparing GTM activity landscapes built both on predicted and experimental activities, we may visually assess the model's performance and identify the areas in the chemical space corresponding to reliable predictions. The applicability domain used in this work is based on data likelihood. Its application has significantly improved the model performances for 4 out of 5 datasets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Detecting Mixtures from Structural Model Differences Using Latent Variable Mixture Modeling: A Comparison of Relative Model Fit Statistics

    ERIC Educational Resources Information Center

    Henson, James M.; Reise, Steven P.; Kim, Kevin H.

    2007-01-01

    The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…

  15. Mixture IRT Model with a Higher-Order Structure for Latent Traits

    ERIC Educational Resources Information Center

    Huang, Hung-Yu

    2017-01-01

    Mixture item response theory (IRT) models have been suggested as an efficient method of detecting the different response patterns derived from latent classes when developing a test. In testing situations, multiple latent traits measured by a battery of tests can exhibit a higher-order structure, and mixtures of latent classes may occur on…

  16. Reexamining competitive priorities: Empirical study in service sector

    NASA Astrophysics Data System (ADS)

    Idris, Fazli; Mohammad, Jihad

    2015-02-01

    The general objective of this study is to validate the multi-level concept of competitive priorities using reflective-formative model at a higher order for service industries. An empirical study of 228 firms from 9 different service industries is conducted to answer the objective of this study. Partial least square analysis with SmartPLS 2.0 was used to perform the analysis. Finding revealed six priorities: cost, flexibility, delivery, quality talent management, quality tangibility, and innovativeness. It emerges that quality are expanded into two types; one is related to managing talent for process improvement and the second one is the physical appearance and tangibility of the service quality. This study has confirmed competitive priorities as formative second-order hierarchical latent construct by using rigorous empirical evidence. Implications, limitation and suggestion for future research are accordingly discussed in this paper.

  17. Bayesian latent structure modeling of walking behavior in a physical activity intervention

    PubMed Central

    Lawson, Andrew B; Ellerbe, Caitlyn; Carroll, Rachel; Alia, Kassandra; Coulon, Sandra; Wilson, Dawn K; VanHorn, M Lee; St George, Sara M

    2017-01-01

    The analysis of walking behavior in a physical activity intervention is considered. A Bayesian latent structure modeling approach is proposed whereby the ability and willingness of participants is modeled via latent effects. The dropout process is jointly modeled via a linked survival model. Computational issues are addressed via posterior sampling and a simulated evaluation of the longitudinal model’s ability to recover latent structure and predictor effects is considered. We evaluate the effect of a variety of socio-psychological and spatial neighborhood predictors on the propensity to walk and the estimation of latent ability and willingness in the full study. PMID:24741000

  18. Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data

    NASA Astrophysics Data System (ADS)

    Ogulei, David; Hopke, Philip K.; Zhou, Liming; Patrick Pancras, J.; Nair, Narayanan; Ondov, John M.

    Several multivariate data analysis methods have been applied to a combination of particle size and composition measurements made at the Baltimore Supersite. Partial least squares (PLS) was used to investigate the relationship (linearity) between number concentrations and the measured PM2.5 mass concentrations of chemical species. The data were obtained at the Ponca Street site and consisted of six days' measurements: 6, 7, 8, 18, 19 July, and 21 August 2002. The PLS analysis showed that the covariance between the data could be explained by 10 latent variables (LVs), but only the first four of these were sufficient to establish the linear relationship between the two data sets. More LVs could not make the model better. The four LVs were found to better explain the covariance between the large sized particles and the chemical species. A bilinear receptor model, PMF2, was then used to simultaneously analyze the size distribution and chemical composition data sets. The resolved sources were identified using information from number and mass contributions from each source (source profiles) as well as meteorological data. Twelve sources were identified: oil-fired power plant emissions, secondary nitrate I, local gasoline traffic, coal-fired power plant, secondary nitrate II, secondary sulfate, diesel emissions/bus maintenance, Quebec wildfire episode, nucleation, incinerator, airborne soil/road-way dust, and steel plant emissions. Local sources were mostly characterized by bi-modal number distributions. Regional sources were characterized by transport mode particles (0.2- 0.5μm).

  19. Determination of benzo[a]pyrene in cigarette mainstream smoke by using mid-infrared spectroscopy associated with a novel chemometric algorithm.

    PubMed

    Zhang, Yan; Zou, Hong-Yan; Shi, Pei; Yang, Qin; Tang, Li-Juan; Jiang, Jian-Hui; Wu, Hai-Long; Yu, Ru-Qin

    2016-01-01

    Determination of benzo[a]pyrene (BaP) in cigarette smoke can be very important for the tobacco quality control and the assessment of its harm to human health. In this study, mid-infrared spectroscopy (MIR) coupled to chemometric algorithm (DPSO-WPT-PLS), which was based on the wavelet packet transform (WPT), discrete particle swarm optimization algorithm (DPSO) and partial least squares regression (PLS), was used to quantify harmful ingredient benzo[a]pyrene in the cigarette mainstream smoke with promising result. Furthermore, the proposed method provided better performance compared to several other chemometric models, i.e., PLS, radial basis function-based PLS (RBF-PLS), PLS with stepwise regression variable selection (Stepwise-PLS) as well as WPT-PLS with informative wavelet coefficients selected by correlation coefficient test (rtest-WPT-PLS). It can be expected that the proposed strategy could become a new effective, rapid quantitative analysis technique in analyzing the harmful ingredient BaP in cigarette mainstream smoke. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Evidence for the Continuous Latent Structure of Mania in the Epidemiologic Catchment Area from Multiple Latent Structure and Construct Validation Methodologies

    PubMed Central

    Prisciandaro, James J.; Roberts, John E.

    2011-01-01

    Background Although psychiatric diagnostic systems have conceptualized mania as a discrete phenomenon, appropriate latent structure investigations testing this conceptualization are lacking. In contrast to these diagnostic systems, several influential theories of mania have suggested a continuous conceptualization. The present study examined whether mania has a continuous or discrete latent structure using a comprehensive approach including taxometric, information-theoretic latent distribution modeling (ITLDM), and predictive validity methodologies in the Epidemiologic Catchment Area (ECA) study. Methods Eight dichotomous manic symptom items were submitted to a variety of latent structural analyses; including factor analyses, taxometric procedures, and ITLDM; in 10,105 ECA community participants. Additionally, a variety of continuous and discrete models of mania were compared in terms of their relative abilities to predict outcomes (i.e., health service utilization, internalizing and externalizing disorders, and suicidal behavior). Results Taxometric and ITLDM analyses consistently supported a continuous conceptualization of mania. In ITLDM analyses, a continuous model of mania demonstrated 6:52:1 odds over the best fitting latent class model of mania. Factor analyses suggested that the continuous structure of mania was best represented by a single latent factor. Predictive validity analyses demonstrated a consistent superior ability of continuous models of mania relative to discrete models. Conclusions The present study provided three independent lines of support for a continuous conceptualization of mania. The implications of a continuous model of mania are discussed. PMID:20507671

  1. The Latent Structure of Dietary Restraint, Body Dissatisfaction, and Drive for Thinness: A Series of Taxometric Analyses

    ERIC Educational Resources Information Center

    Holm-Denoma, Jill M.; Richey, J. Anthony; Joiner, Thomas E., Jr.

    2010-01-01

    Although the latent structure of various eating disorders has been explored in previous studies, no published studies have examined the latent structure of theoretically relevant variables that have been shown to cut across eating disorder diagnoses. The current study examined 3 such variables (dietary restraint, body dissatisfaction, and drive…

  2. Simultaneous determination of penicillin G salts by infrared spectroscopy: Evaluation of combining orthogonal signal correction with radial basis function-partial least squares regression

    NASA Astrophysics Data System (ADS)

    Talebpour, Zahra; Tavallaie, Roya; Ahmadi, Seyyed Hamid; Abdollahpour, Assem

    2010-09-01

    In this study, a new method for the simultaneous determination of penicillin G salts in pharmaceutical mixture via FT-IR spectroscopy combined with chemometrics was investigated. The mixture of penicillin G salts is a complex system due to similar analytical characteristics of components. Partial least squares (PLS) and radial basis function-partial least squares (RBF-PLS) were used to develop the linear and nonlinear relation between spectra and components, respectively. The orthogonal signal correction (OSC) preprocessing method was used to correct unexpected information, such as spectral overlapping and scattering effects. In order to compare the influence of OSC on PLS and RBF-PLS models, the optimal linear (PLS) and nonlinear (RBF-PLS) models based on conventional and OSC preprocessed spectra were established and compared. The obtained results demonstrated that OSC clearly enhanced the performance of both RBF-PLS and PLS calibration models. Also in the case of some nonlinear relation between spectra and component, OSC-RBF-PLS gave satisfactory results than OSC-PLS model which indicated that the OSC was helpful to remove extrinsic deviations from linearity without elimination of nonlinear information related to component. The chemometric models were tested on an external dataset and finally applied to the analysis commercialized injection product of penicillin G salts.

  3. A Taxonomy of Latent Structure Assumptions for Probability Matrix Decomposition Models.

    ERIC Educational Resources Information Center

    Meulders, Michel; De Boeck, Paul; Van Mechelen, Iven

    2003-01-01

    Proposed a taxonomy of latent structure assumptions for probability matrix decomposition (PMD) that includes the original PMD model and a three-way extension of the multiple classification latent class model. Simulation study results show the usefulness of the taxonomy. (SLD)

  4. Prediction of the distillation temperatures of crude oils using ¹H NMR and support vector regression with estimated confidence intervals.

    PubMed

    Filgueiras, Paulo R; Terra, Luciana A; Castro, Eustáquio V R; Oliveira, Lize M S L; Dias, Júlio C M; Poppi, Ronei J

    2015-09-01

    This paper aims to estimate the temperature equivalent to 10% (T10%), 50% (T50%) and 90% (T90%) of distilled volume in crude oils using (1)H NMR and support vector regression (SVR). Confidence intervals for the predicted values were calculated using a boosting-type ensemble method in a procedure called ensemble support vector regression (eSVR). The estimated confidence intervals obtained by eSVR were compared with previously accepted calculations from partial least squares (PLS) models and a boosting-type ensemble applied in the PLS method (ePLS). By using the proposed boosting strategy, it was possible to identify outliers in the T10% property dataset. The eSVR procedure improved the accuracy of the distillation temperature predictions in relation to standard PLS, ePLS and SVR. For T10%, a root mean square error of prediction (RMSEP) of 11.6°C was obtained in comparison with 15.6°C for PLS, 15.1°C for ePLS and 28.4°C for SVR. The RMSEPs for T50% were 24.2°C, 23.4°C, 22.8°C and 14.4°C for PLS, ePLS, SVR and eSVR, respectively. For T90%, the values of RMSEP were 39.0°C, 39.9°C and 39.9°C for PLS, ePLS, SVR and eSVR, respectively. The confidence intervals calculated by the proposed boosting methodology presented acceptable values for the three properties analyzed; however, they were lower than those calculated by the standard methodology for PLS. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Partial Least Squares for Discrimination in fMRI Data

    PubMed Central

    Andersen, Anders H.; Rayens, William S.; Liu, Yushu; Smith, Charles D.

    2011-01-01

    Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using either principal component analysis (PCA), partial least squares (PLS), or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contains more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using fMRI as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk. PMID:22227352

  6. Experiences of stigma and discrimination of people with schizophrenia in India

    PubMed Central

    Koschorke, Mirja; Padmavati, R.; Kumar, Shuba; Cohen, Alex; Weiss, Helen A.; Chatterjee, Sudipto; Pereira, Jesina; Naik, Smita; John, Sujit; Dabholkar, Hamid; Balaji, Madhumitha; Chavan, Animish; Varghese, Mathew; Thara, R.; Thornicroft, Graham; Patel, Vikram

    2014-01-01

    Stigma contributes greatly to the burden of schizophrenia and is a major obstacle to recovery, yet, little is known about the subjective experiences of those directly affected in low and middle income countries. This paper aims to describe the experiences of stigma and discrimination of people living with schizophrenia (PLS) in three sites in India and to identify factors influencing negative discrimination. The study used mixed methods and was nested in a randomised controlled trial of community care for schizophrenia. Between November 2009 and October 2010, data on four aspects of stigma experienced by PLS and several clinical variables were collected from 282 PLS and 282 caregivers and analysed using multivariate regression. In addition, in-depth-interviews with PLS and caregivers (36 each) were carried out and analysed using thematic analysis. Quantitative findings indicate that experiences of negative discrimination were reported less commonly (42%) than more internalised forms of stigma experience such as a sense of alienation (79%) and significantly less often than in studies carried out elsewhere. Experiences of negative discrimination were independently predicted by higher levels of positive symptoms of schizophrenia, lower levels of negative symptoms of schizophrenia, higher caregiver knowledge about symptomatology, lower PLS age and not having a source of drinking water in the home. Qualitative findings illustrate the major impact of stigma on ‘what matters most’ in the lives of PLS and highlight three key domains influencing the themes of 'negative reactions' and ‘negative views and feelings about the self’, i.e., ‘others finding out’, ‘behaviours and manifestations of the illness’ and ‘reduced ability to meet role expectations’. Findings have implications for conceptualising and measuring stigma and add to the rationale for enhancing psycho-social interventions to support those facing discrimination. Findings also highlight the importance of addressing public stigma and achieving higher level social and political structural change. PMID:25462616

  7. Human Milk Plasmalogens Are Highly Enriched in Long-Chain PUFAs.

    PubMed

    Moukarzel, Sara; Dyer, Roger A; Keller, Bernd O; Elango, Rajavel; Innis, Sheila M

    2016-11-01

    Human milk contains unique glycerophospholipids, including ethanolamine-containing plasmalogens (Pls-PEs) in the milk fat globule membrane, which have been implicated in infant brain development. Brain Pls-PEs accumulate postnatally and are enriched in long-chain polyunsaturated fatty acids (LC-PUFAs), particularly docosahexaenoic acid (DHA). Fatty acid (FA) composition of Pls-PEs in milk is poorly understood because of the analytical challenges in separating Pls-PEs from other phospholipids in the predominating presence of triacylglycerols. The variability of Pls-PE FAs and the potential role of maternal diet remain unknown. Our primary objectives were to establish improved methodology for extracting Pls-PEs from human milk, enabling FA analysis, and to compare FA composition between Pls-PEs and 2 major milk phospholipids, phosphatidylcholine and phosphatidylethanolamine. Our secondary objective was to explore associations between maternal DHA intake and DHA in milk phospholipids and variability in phospholipid-DHA within a woman. Mature milk was collected from 25 women, with 4 providing 3 milk samples on 3 separate days. Lipids were extracted, and phospholipids were removed by solid phase extraction. Pls-PEs were separated by using normal-phase HPLC, recovered and analyzed for FAs by GLC. Diet was assessed by using a validated food-frequency questionnaire. Pls-PE concentration in human milk was significantly higher in LC-PUFAs than phosphatidylethanolamine and phosphatidylcholine, including arachidonic acid (AA) and DHA. The mean ± SD concentration of AAs in Pls-PEs was ∼2.5-fold higher than in phosphatidylethanolamine (10.5 ± 1.71 and 3.82 ± 0.92 g/100 g, respectively). DHA in Pls-PEs varied across women (0.95-6.51 g/100 g), likely independent of maternal DHA intake. Pls-PE DHA also varied within a woman across days (CV ranged from 9.8% to 28%). Human milk provides the infant with LC-PUFAs from multiple lipid pools, including a source from Pls-PEs. The biological determinants of Pls-PE FAs and physiological relevance to the breastfed infant remain to be elucidated. © 2016 American Society for Nutrition.

  8. Simultaneous quantitative determination of paracetamol and tramadol in tablet formulation using UV spectrophotometry and chemometric methods

    NASA Astrophysics Data System (ADS)

    Glavanović, Siniša; Glavanović, Marija; Tomišić, Vladislav

    2016-03-01

    The UV spectrophotometric methods for simultaneous quantitative determination of paracetamol and tramadol in paracetamol-tramadol tablets were developed. The spectrophotometric data obtained were processed by means of partial least squares (PLS) and genetic algorithm coupled with PLS (GA-PLS) methods in order to determine the content of active substances in the tablets. The results gained by chemometric processing of the spectroscopic data were statistically compared with those obtained by means of validated ultra-high performance liquid chromatographic (UHPLC) method. The accuracy and precision of data obtained by the developed chemometric models were verified by analysing the synthetic mixture of drugs, and by calculating recovery as well as relative standard error (RSE). A statistically good agreement was found between the amounts of paracetamol determined using PLS and GA-PLS algorithms, and that obtained by UHPLC analysis, whereas for tramadol GA-PLS results were proven to be more reliable compared to those of PLS. The simplest and the most accurate and precise models were constructed by using the PLS method for paracetamol (mean recovery 99.5%, RSE 0.89%) and the GA-PLS method for tramadol (mean recovery 99.4%, RSE 1.69%).

  9. Much Ado about Nothing--Or at Best, Very Little

    ERIC Educational Resources Information Center

    Widaman, Keith F.

    2014-01-01

    Latent variable structural equation modeling has become the analytic method of choice in many domains of research in psychology and allied social sciences. One important aspect of a latent variable model concerns the relations hypothesized to hold between latent variables and their indicators. The most common specification of structural equation…

  10. Evaluation of Classifier Performance for Multiclass Phenotype Discrimination in Untargeted Metabolomics.

    PubMed

    Trainor, Patrick J; DeFilippis, Andrew P; Rai, Shesh N

    2017-06-21

    Statistical classification is a critical component of utilizing metabolomics data for examining the molecular determinants of phenotypes. Despite this, a comprehensive and rigorous evaluation of the accuracy of classification techniques for phenotype discrimination given metabolomics data has not been conducted. We conducted such an evaluation using both simulated and real metabolomics datasets, comparing Partial Least Squares-Discriminant Analysis (PLS-DA), Sparse PLS-DA, Random Forests, Support Vector Machines (SVM), Artificial Neural Network, k -Nearest Neighbors ( k -NN), and Naïve Bayes classification techniques for discrimination. We evaluated the techniques on simulated data generated to mimic global untargeted metabolomics data by incorporating realistic block-wise correlation and partial correlation structures for mimicking the correlations and metabolite clustering generated by biological processes. Over the simulation studies, covariance structures, means, and effect sizes were stochastically varied to provide consistent estimates of classifier performance over a wide range of possible scenarios. The effects of the presence of non-normal error distributions, the introduction of biological and technical outliers, unbalanced phenotype allocation, missing values due to abundances below a limit of detection, and the effect of prior-significance filtering (dimension reduction) were evaluated via simulation. In each simulation, classifier parameters, such as the number of hidden nodes in a Neural Network, were optimized by cross-validation to minimize the probability of detecting spurious results due to poorly tuned classifiers. Classifier performance was then evaluated using real metabolomics datasets of varying sample medium, sample size, and experimental design. We report that in the most realistic simulation studies that incorporated non-normal error distributions, unbalanced phenotype allocation, outliers, missing values, and dimension reduction, classifier performance (least to greatest error) was ranked as follows: SVM, Random Forest, Naïve Bayes, sPLS-DA, Neural Networks, PLS-DA and k -NN classifiers. When non-normal error distributions were introduced, the performance of PLS-DA and k -NN classifiers deteriorated further relative to the remaining techniques. Over the real datasets, a trend of better performance of SVM and Random Forest classifier performance was observed.

  11. Novel, customizable scoring functions, parameterized using N-PLS, for structure-based drug discovery.

    PubMed

    Catana, Cornel; Stouten, Pieter F W

    2007-01-01

    The ability to accurately predict biological affinity on the basis of in silico docking to a protein target remains a challenging goal in the CADD arena. Typically, "standard" scoring functions have been employed that use the calculated docking result and a set of empirical parameters to calculate a predicted binding affinity. To improve on this, we are exploring novel strategies for rapidly developing and tuning "customized" scoring functions tailored to a specific need. In the present work, three such customized scoring functions were developed using a set of 129 high-resolution protein-ligand crystal structures with measured Ki values. The functions were parametrized using N-PLS (N-way partial least squares), a multivariate technique well-known in the 3D quantitative structure-activity relationship field. A modest correlation between observed and calculated pKi values using a standard scoring function (r2 = 0.5) could be improved to 0.8 when a customized scoring function was applied. To mimic a more realistic scenario, a second scoring function was developed, not based on crystal structures but exclusively on several binding poses generated with the Flo+ docking program. Finally, a validation study was conducted by generating a third scoring function with 99 randomly selected complexes from the 129 as a training set and predicting pKi values for a test set that comprised the remaining 30 complexes. Training and test set r2 values were 0.77 and 0.78, respectively. These results indicate that, even without direct structural information, predictive customized scoring functions can be developed using N-PLS, and this approach holds significant potential as a general procedure for predicting binding affinity on the basis of in silico docking.

  12. Neuroanatomical Differences between Men and Women in Help-Seeking Coping Strategy

    PubMed Central

    Li, Hai-Jiang; Sun, Jiang-Zhou; Zhang, Qing-Lin; Wei, Dong-Tao; Li, Wen-Fu; Jackson, Todd; Hitchman, Glenn; Qiu, Jiang

    2014-01-01

    Help seeking (HS) is a core coping strategy that is directed towards obtaining support, advice, or assistance as means of managing stress. Women have been found to use more HS than men. Neural correlates of sex differences have also been reported in prefrontal-limbic system (PLS) regions that are linked to stress and coping, yet structural differences between men and women relating to HS in the PLS are still unknown. Thus, the association between gray matter volume (GMV) and HS was investigated using voxel-based morphometry (VBM) in a large healthy sample (126 men and 156 women). Results indicated women reported more HS than men did. VBM results showed that the relation between HS scores and GMV differed between men and women in regions of the bilateral orbitofrontal cortex extending to the subgenual anterior cingulate cortex(OFC/sgACC). Among women, higher HS scores were associated with smaller GMV in these areas while a positive correlation between GMV and HS scores was observed among men. These results remained significant after controlling for general intelligence, stress, anxiety and depression. Thus, this study suggested that structural differences between men and women are correlated to characteristic brain regions known to be involved in the PLS which is considered critical in stress regulation. PMID:25027617

  13. Statistical analysis of fragmentation patterns of electron ionization mass spectra of enolized-trimethylsilylated anabolic androgenic steroids

    NASA Astrophysics Data System (ADS)

    Fragkaki, A. G.; Angelis, Y. S.; Tsantili-Kakoulidou, A.; Koupparis, M.; Georgakopoulos, C.

    2009-08-01

    Anabolic androgenic steroids (AAS) are included in the List of prohibited substances of the World Anti-Doping Agency (WADA) as substances abused to enhance athletic performance. Gas chromatography coupled to mass spectrometry (GC-MS) plays an important role in doping control analyses identifying AAS as their enolized-trimethylsilyl (TMS)-derivatives using the electron ionization (EI) mode. This paper explores the suitability of complementary GC-MS mass spectra and statistical analysis (principal component analysis, PCA and partial least squares-discriminant analysis, PLS-DA) to differentiate AAS as a function of their structural and conformational features expressed by their fragment ions. The results obtained showed that the application of PCA yielded a classification among the AAS molecules which became more apparent after applying PLS-DA to the dataset. The application of PLS-DA yielded a clear separation among the AAS molecules which were, thus, classified as: 1-ene-3-keto, 3-hydroxyl with saturated A-ring, 1-ene-3-hydroxyl, 4-ene-3-keto, 1,4-diene-3-keto and 3-keto with saturated A-ring anabolic steroids. The study of this paper also presents structurally diagnostic fragment ions and dissociation routes providing evidence for the presence of unknown AAS or chemically modified molecules known as designer steroids.

  14. Disruptive effects of persistent organohalogen contaminants on thyroid function in white whales (Delphinapterus leucas) from Svalbard.

    PubMed

    Villanger, G D; Lydersen, C; Kovacs, K M; Lie, E; Skaare, J U; Jenssen, B M

    2011-06-01

    We analysed levels of 56 organohalogen contaminants (OHCs) including brominated flame retardants, polychlorinated biphenyls (PCBs), and organochlorine pesticides in the blubber of white (beluga) whales (Delphinapterus leucas) from Svalbard, Norway (N=12; 6 adults [5 males and 1 female] and 6 subadults [4 males and 2 females]) collected in 1996-2001. We also measured circulating levels of thyroid hormones (THs) and thyroid stimulating hormone (TSH) in the whales. The results confirm that OHC levels in these white whales are among the highest levels recorded in wildlife from Svalbard, and at the high end of the range when compared to white whales from the North American Arctic. A projection to latent structure (PLS) model (subadults and adult males grouped together) revealed that known or suspected thyroid disruptive contaminants (polybrominated diphenylether [PBDE]-28, -47, -99, -100, and -154, hexachlorobenzene [HCB], and PCB-105) were negatively correlated with circulating levels of total thyroxin (TT4), free T4 (FT4) and free triiodothyronine (FT3). Most of these negative relationships were also confirmed using partial correlations controlling for length (and thus age) of the whales. The positive correlations of TT4, FT4 and FT3 with hexabromocyclododecane (HBCD), α-hexachlorocyclohexane (α-HCH), chlorinated bornanes CHB-40 and CHB-62 revealed by the PLS model were not confirmed by partial correlations. TH levels in the present study appeared to be somewhat lower than levels measured in beluga whales from the Canadian Arctic. However, we were not able to determine if this was caused by different levels of OHCs, or differences in biological factors (e.g. age, sex, moulting status, and season) and analytical methods between the studies. Although the sample sizes were low and statistical models cannot depict the biological cause-effect relationships, this study suggests negative influences of specific OHCs, particularly PBDEs, on thyroid hormone levels in white whales. The impact this might have on individual and population health is unknown. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Modified multiblock partial least squares path modeling algorithm with backpropagation neural networks approach

    NASA Astrophysics Data System (ADS)

    Yuniarto, Budi; Kurniawan, Robert

    2017-03-01

    PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.

  16. Lactoferrin-modified PEGylated liposomes loaded with doxorubicin for targeting delivery to hepatocellular carcinoma

    PubMed Central

    Wei, Minyan; Guo, Xiucai; Tu, Liuxiao; Zou, Qi; Li, Qi; Tang, Chenyi; Chen, Bao; Xu, Yuehong; Wu, Chuanbin

    2015-01-01

    Lactoferrin (Lf) is a potential-targeting ligand for hepatocellular carcinoma (HCC) cells because of its specific binding with asialoglycoprotein receptor (ASGPR). In this present work, a doxorubicin (DOX)-loaded, Lf-modified, polyethylene glycol (PEG)ylated liposome (Lf-PLS) system was developed, and its targeting effect and antitumor efficacy to HCC was also explored. The DOX-loaded Lf-PLS system had spherical or oval vesicles, with mean particle size approximately 100 nm, and had an encapsulation efficiency of 97%. The confocal microscopy and flow cytometry indicated that the cellular uptake of Lf-PLS was significantly higher than that of PEGylated liposome (PLS) in ASGPR-positive cells (P<0.05) but not in ASGPR-negative cells (P>0.05). Cytotoxicity assay by MTT demonstrated that DOX-loaded Lf-PLS showed significantly stronger antiproliferative effects on ASGPR-positive HCC cells than did PLS without the Lf modification (P<0.05). The in vivo antitumor studies on male BALB/c nude mice bearing HepG2 xenografts demonstrated that DOX-loaded Lf-PLS had significantly stronger antitumor efficacy compared with PLS (P<0.05) and free DOX (P<0.05). All these results demonstrated that a DOX-loaded Lf-PLS might have great potential application for HCC-targeting therapy. PMID:26316745

  17. A Thioesterase Bypasses the Requirement for Exogenous Fatty Acids in the plsX Deletion of Streptococcus pneumoniae

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Eleveld, Marc J.; Schalkwijk, Joost; Broussard, Tyler C.; de Jonge, Marien I.; Rock, Charles O.

    2015-01-01

    Summary PlsX is an acyl-acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram-positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid biosynthesis. Deletion of plsX (SP0037) in Streptococcus pneumoniae did not result in an auxotrophic phenotype. The ΔplsX S. pneumoniae strain was refractory to myristic acid-dependent growth arrest, and unlike the wild-type strain, was susceptible to fatty acid synthesis inhibitors in the presence of exogenous oleate. The ΔplsX strain contained longer-chain saturated fatty acids imparting a distinctly altered phospholipid molecular species profile. An elevated pool of 18- and 20-carbon saturated fatty acids was detected in the ΔplsX strain. A S. pneumoniae thioesterase (TesS, SP1408) hydrolyzed acyl-ACP in vitro, and the ΔtesS ΔplsX double knockout strain was a fatty acid auxotroph. Thus, the TesS thioesterase hydrolyzed the accumulating acyl-ACP in the ΔplsX strain to liberate fatty acids that were activated by fatty acid kinase to bypass a requirement for extracellular fatty acid. This work identifies tesS as the gene responsible for the difference in exogenous fatty acid growth requirement of the ΔplsX strains of S. aureus and S. pneumoniae. PMID:25534847

  18. New strategy for determination of anthocyanins, polyphenols and antioxidant capacity of Brassica oleracea liquid extract using infrared spectroscopies and multivariate regression

    NASA Astrophysics Data System (ADS)

    de Oliveira, Isadora R. N.; Roque, Jussara V.; Maia, Mariza P.; Stringheta, Paulo C.; Teófilo, Reinaldo F.

    2018-04-01

    A new method was developed to determine the antioxidant properties of red cabbage extract (Brassica oleracea) by mid (MID) and near (NIR) infrared spectroscopies and partial least squares (PLS) regression. A 70% (v/v) ethanolic extract of red cabbage was concentrated to 9° Brix and further diluted (12 to 100%) in water. The dilutions were used as external standards for the building of PLS models. For the first time, this strategy was applied for building multivariate regression models. Reference analyses and spectral data were obtained from diluted extracts. The determinate properties were total and monomeric anthocyanins, total polyphenols and antioxidant capacity by ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonate)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. Ordered predictors selection (OPS) and genetic algorithm (GA) were used for feature selection before PLS regression (PLS-1). In addition, a PLS-2 regression was applied to all properties simultaneously. PLS-1 models provided more predictive models than did PLS-2 regression. PLS-OPS and PLS-GA models presented excellent prediction results with a correlation coefficient higher than 0.98. However, the best models were obtained using PLS and variable selection with the OPS algorithm and the models based on NIR spectra were considered more predictive for all properties. Then, these models provided a simple, rapid and accurate method for determination of red cabbage extract antioxidant properties and its suitability for use in the food industry.

  19. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    ERIC Educational Resources Information Center

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth…

  20. Structure of Full-length Drosophila Cryptochrome

    PubMed Central

    Zoltowski, Brian D.; Vaidya, Anand T.; Top, Deniz; Widom, Joanne; Young, Michael W.; Crane, Brian R.

    2011-01-01

    The Cryptochrome/Photolyase (CRY/PL) family of photoreceptors mediates adaptive responses to UV and blue light exposure in all kingdoms of life 1; 2; 3; 4; 5. Whereas PLs function predominantly in DNA repair of cyclobutane pyrimidine dimers (CPDs)and 6-4 photolesions caused by UV radiation, CRYs transduce signals important for growth, development, magnetosensitivity and circadian clocks1; 2; 3; 4; 5. Despite these diverse functions, PLs/CRYs preserve a common structural fold, a dependence on flavin adenine dinucleotide (FAD) and an internal photoactivation mechanism3; 6. However, members of the CRY/PL family differ in the substrates recognized (protein or DNA), photochemical reactions catalyzed and involvement of an antenna cofactor. It is largely unknown how the animal CRYs that regulate circadian rhythms act on their substrates. CRYs contain a variable C-terminal tail that appends the conserved PL homology domain (PHD) and is important for function 7; 8; 9; 10; 11; 12. Herein, we report a 2.3 Å resolution crystal structure of Drosophila CRY with an intact C-terminus. The C-terminal helix docks in the analogous groove that binds DNA substrates in PLs. Conserved Trp536 juts into the CRY catalytic center to mimic PL recognition of DNA photolesions. The FAD anionic semiquinone found in the crystals assumes a conformation to facilitate restructuring of the tail helix. These results help reconcile the diverse functions of the CRY/PL family by demonstrating how conserved protein architecture, and photochemistry can be elaborated into a range of light-driven functions. PMID:22080955

  1. Seminal, clinical and colour-Doppler ultrasound correlations of prostatitis-like symptoms in males of infertile couples.

    PubMed

    Lotti, F; Corona, G; Mondaini, N; Maseroli, E; Rossi, M; Filimberti, E; Noci, I; Forti, G; Maggi, M

    2014-01-01

    'Prostatitis-like symptoms' (PLS) are a cluster of bothersome conditions defined as 'perineal and/or ejaculatory pain or discomfort and National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) pain subdomain score ≥4' (Nickel's criteria). PLS may originate from the prostate or from other portions of the male genital tract. Although PLS could be associated with 'prostatitis', they should not be confused. The NIH-CPSI is considered the gold-standard for assessing PLS severity. Although previous studies investigated the impact of prostatitis, vesiculitis or epididymitis on semen parameters, correlations between their related symptoms and seminal or scrotal/transrectal colour-Doppler ultrasound (CDU) characteristics have not been carefully determined. And no previous study evaluated the CDU features of PLS in infertile men. This study was aimed at investigating possible associations among NIH-CPSI (total and subdomain) scores and PLS, with seminal, clinical and scrotal/transrectal CDU parameters in a cohort of males of infertile couples. PLS of 400 men (35.8 ± 7.2 years) with a suspected male factor were assessed by the NIH-CPSI. All patients underwent, during the same day, semen analysis, seminal plasma interleukin 8 (sIL-8, a marker of male genital tract inflammation), biochemical evaluation, urine/seminal cultures, scrotal/transrectal CDU. PLS was detected in 39 (9.8%) subjects. After adjusting for age, waist and total testosterone (TT), no association among NIH-CPSI (total or subdomain) scores or PLS and sperm parameters was observed. However, we found a positive association with current positive urine and/or seminal cultures, sIL-8 levels and CDU features suggestive of inflammation of the epididymis, seminal vesicles, prostate, but not of the testis. The aforementioned significant associations of PLS were further confirmed by comparing PLS patients with age-, waist- and TT-matched PLS-free patients (1 : 3 ratio). In conclusion, NIH-CPSI scores and PLS evaluated in males of infertile couples, are not related to sperm parameters, but mainly to clinical and CDU signs of infection/inflammation. © 2013 American Society of Andrology and European Academy of Andrology.

  2. The Latent Structure of Attention Deficit/Hyperactivity Disorder in an Adult Sample

    PubMed Central

    Marcus, David K.; Norris, Alyssa L.; Coccaro, Emil F.

    2012-01-01

    The vast majority of studies that have examined the latent structure of attention deficit/hyperactivity disorder (ADHD) in children and adolescents have concluded that ADHD has a dimensional latent structure. In other words, ADHD symptomatology exists along a continuum and there is no natural boundary or qualitative distinction (i.e., taxon) separating youth with ADHD from those with subclinical inattention or hyperactivity/impulsivity problems. Although adult ADHD appears to be less prevalent than ADHD in youth (which could suggest a more severe adult ADHD taxon), researchers have yet to examine the latent structure of ADHD in adults. The present study used a sample (N = 600) of adults who completed a self-report measure of ADHD symptoms. The taxometric analyses revealed a dimensional latent structure for inattention, hyperactivity/impulsivity, and ADHD. These findings are consistent with previous taxometric studies that examined ADHD in children and adolescents, and with contemporary polygenic and multifactorial models of ADHD. PMID:22480749

  3. The latent structure of attention deficit/hyperactivity disorder in an adult sample.

    PubMed

    Marcus, David K; Norris, Alyssa L; Coccaro, Emil F

    2012-06-01

    The vast majority of studies that have examined the latent structure of attention deficit/hyperactivity disorder (ADHD) in children and adolescents have concluded that ADHD has a dimensional latent structure. In other words, ADHD symptomatology exists along a continuum and there is no natural boundary or qualitative distinction (i.e., taxon) separating youth with ADHD from those with subclinical inattention or hyperactivity/impulsivity problems. Although adult ADHD appears to be less prevalent than ADHD in youth (which could suggest a more severe adult ADHD taxon), researchers have yet to examine the latent structure of ADHD in adults. The present study used a sample (N = 600) of adults who completed a self-report measure of ADHD symptoms. The taxometric analyses revealed a dimensional latent structure for inattention, hyperactivity/impulsivity, and ADHD. These findings are consistent with previous taxometric studies that examined ADHD in children and adolescents, and with contemporary polygenic and multifactorial models of ADHD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Application of Local Linear Embedding to Nonlinear Exploratory Latent Structure Analysis

    ERIC Educational Resources Information Center

    Wang, Haonan; Iyer, Hari

    2007-01-01

    In this paper we discuss the use of a recent dimension reduction technique called Locally Linear Embedding, introduced by Roweis and Saul, for performing an exploratory latent structure analysis. The coordinate variables from the locally linear embedding describing the manifold on which the data reside serve as the latent variable scores. We…

  5. Imaging Findings Associated with Cognitive Performance in Primary Lateral Sclerosis and Amyotrophic Lateral Sclerosis

    PubMed Central

    Meoded, Avner; Kwan, Justin Y.; Peters, Tracy L.; Huey, Edward D.; Danielian, Laura E.; Wiggs, Edythe; Morrissette, Arthur; Wu, Tianxia; Russell, James W.; Bayat, Elham; Grafman, Jordan; Floeter, Mary Kay

    2013-01-01

    Introduction Executive dysfunction occurs in many patients with amyotrophic lateral sclerosis (ALS), but it has not been well studied in primary lateral sclerosis (PLS). The aims of this study were to (1) compare cognitive function in PLS to that in ALS patients, (2) explore the relationship between performance on specific cognitive tests and diffusion tensor imaging (DTI) metrics of white matter tracts and gray matter volumes, and (3) compare DTI metrics in patients with and without cognitive and behavioral changes. Methods The Delis-Kaplan Executive Function System (D-KEFS), the Mattis Dementia Rating Scale (DRS-2), and other behavior and mood scales were administered to 25 ALS patients and 25 PLS patients. Seventeen of the PLS patients, 13 of the ALS patients, and 17 healthy controls underwent structural magnetic resonance imaging (MRI) and DTI. Atlas-based analysis using MRI Studio software was used to measure fractional anisotropy, and axial and radial diffusivity of selected white matter tracts. Voxel-based morphometry was used to assess gray matter volumes. The relationship between diffusion properties of selected association and commissural white matter and performance on executive function and memory tests was explored using a linear regression model. Results More ALS than PLS patients had abnormal scores on the DRS-2. DRS-2 and D-KEFS scores were related to DTI metrics in several long association tracts and the callosum. Reduced gray matter volumes in motor and perirolandic areas were not associated with cognitive scores. Conclusion The changes in diffusion metrics of white matter long association tracts suggest that the loss of integrity of the networks connecting fronto-temporal areas to parietal and occipital areas contributes to cognitive impairment. PMID:24052798

  6. LQTA-QSAR: a new 4D-QSAR methodology.

    PubMed

    Martins, João Paulo A; Barbosa, Euzébio G; Pasqualoto, Kerly F M; Ferreira, Márcia M C

    2009-06-01

    A novel 4D-QSAR approach which makes use of the molecular dynamics (MD) trajectories and topology information retrieved from the GROMACS package is presented in this study. This new methodology, named LQTA-QSAR (LQTA, Laboratório de Quimiometria Teórica e Aplicada), has a module (LQTAgrid) that calculates intermolecular interaction energies at each grid point considering probes and all aligned conformations resulting from MD simulations. These interaction energies are the independent variables or descriptors employed in a QSAR analysis. The comparison of the proposed methodology to other 4D-QSAR and CoMFA formalisms was performed using a set of forty-seven glycogen phosphorylase b inhibitors (data set 1) and a set of forty-four MAP p38 kinase inhibitors (data set 2). The QSAR models for both data sets were built using the ordered predictor selection (OPS) algorithm for variable selection. Model validation was carried out applying y-randomization and leave-N-out cross-validation in addition to the external validation. PLS models for data set 1 and 2 provided the following statistics: q(2) = 0.72, r(2) = 0.81 for 12 variables selected and 2 latent variables and q(2) = 0.82, r(2) = 0.90 for 10 variables selected and 5 latent variables, respectively. Visualization of the descriptors in 3D space was successfully interpreted from the chemical point of view, supporting the applicability of this new approach in rational drug design.

  7. A Latent Heat Retrieval and its Effects on the Intensity and Structure Change of Hurricane Guillermo (1997). Part I: The Algorithm and Observations.

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Bourassa, mark A.; Reasor, Paul D.

    2011-01-01

    The release of latent heat in clouds is an essential part of the formation and I intensification ohurricanes. The community knows very little about the intensity and structure of latent heating due largely to inadequate observations. In this paper, a new method for retrieving the latent heating field in hurricanes from airborne Dopple radar is presented and fields from rapidly intensifying Hurricane Guillermo (1997) are shown.

  8. Multimodal Classification of Mild Cognitive Impairment Based on Partial Least Squares.

    PubMed

    Wang, Pingyue; Chen, Kewei; Yao, Li; Hu, Bin; Wu, Xia; Zhang, Jiacai; Ye, Qing; Guo, Xiaojuan

    2016-08-10

    In recent years, increasing attention has been given to the identification of the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). Brain neuroimaging techniques have been widely used to support the classification or prediction of MCI. The present study combined magnetic resonance imaging (MRI), 18F-fluorodeoxyglucose PET (FDG-PET), and 18F-florbetapir PET (florbetapir-PET) to discriminate MCI converters (MCI-c, individuals with MCI who convert to AD) from MCI non-converters (MCI-nc, individuals with MCI who have not converted to AD in the follow-up period) based on the partial least squares (PLS) method. Two types of PLS models (informed PLS and agnostic PLS) were built based on 64 MCI-c and 65 MCI-nc from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The results showed that the three-modality informed PLS model achieved better classification accuracy of 81.40%, sensitivity of 79.69%, and specificity of 83.08% compared with the single-modality model, and the three-modality agnostic PLS model also achieved better classification compared with the two-modality model. Moreover, combining the three modalities with clinical test score (ADAS-cog), the agnostic PLS model (independent data: florbetapir-PET; dependent data: FDG-PET and MRI) achieved optimal accuracy of 86.05%, sensitivity of 81.25%, and specificity of 90.77%. In addition, the comparison of PLS, support vector machine (SVM), and random forest (RF) showed greater diagnostic power of PLS. These results suggested that our multimodal PLS model has the potential to discriminate MCI-c from the MCI-nc and may therefore be helpful in the early diagnosis of AD.

  9. Three-dimensional displacement measurement of image point by point-diffraction interferometry

    NASA Astrophysics Data System (ADS)

    He, Xiao; Chen, Lingfeng; Meng, Xiaojie; Yu, Lei

    2018-01-01

    This paper presents a method for measuring the three-dimensional (3-D) displacement of an image point based on point-diffraction interferometry. An object Point-light-source (PLS) interferes with a fixed PLS and its interferograms are captured by an exit pupil. When the image point of the object PLS is slightly shifted to a new position, the wavefront of the image PLS changes. And its interferograms also change. Processing these figures (captured before and after the movement), the wavefront difference of the image PLS can be obtained and it contains the information of three-dimensional (3-D) displacement of the image PLS. However, the information of its three-dimensional (3-D) displacement cannot be calculated until the distance between the image PLS and the exit pupil is calibrated. Therefore, we use a plane-parallel-plate with a known refractive index and thickness to determine this distance, which is based on the Snell's law for small angle of incidence. Thus, since the distance between the exit pupil and the image PLS is a known quantity, the 3-D displacement of the image PLS can be simultaneously calculated through two interference measurements. Preliminary experimental results indicate that its relative error is below 0.3%. With the ability to accurately locate an image point (whatever it is real or virtual), a fiber point-light-source can act as the reticle by itself in optical measurement.

  10. A Cultural Diffusion Model for the Rise and Fall of Programming Languages.

    PubMed

    Valverde, Sergi; Solé, Ricard V

    2015-07-01

    Our interaction with complex computing machines is mediated by programming languages (PLs), which constitute one of the major innovations in the evolution of technology. PLs allow flexible, scalable, and fast use of hardware and are largely responsible for shaping the history of information technology since the rise of computers in the 1950s. The rapid growth and impact of computers were followed closely by the development of PLs. As occurs with natural, human languages, PLs have emerged and gone extinct. There has been always a diversity of coexisting PLs that compete somewhat while occupying special niches. Here we show that the statistical patterns of language adoption, rise, and fall can be accounted for by a simple model in which a set of programmers can use several PLs, decide to use existing PLs used by other programmers, or decide not to use them. Our results highlight the influence of strong communities of practice in the diffusion of PL innovations.

  11. Three Approaches to Using Lengthy Ordinal Scales in Structural Equation Models: Parceling, Latent Scoring, and Shortening Scales

    ERIC Educational Resources Information Center

    Yang, Chongming; Nay, Sandra; Hoyle, Rick H.

    2010-01-01

    Lengthy scales or testlets pose certain challenges for structural equation modeling (SEM) if all the items are included as indicators of a latent construct. Three general approaches to modeling lengthy scales in SEM (parceling, latent scoring, and shortening) have been reviewed and evaluated. A hypothetical population model is simulated containing…

  12. Dimensionality of the Latent Structure and Item Selection via Latent Class Multidimensional IRT Models

    ERIC Educational Resources Information Center

    Bartolucci, F.; Montanari, G. E.; Pandolfi, S.

    2012-01-01

    With reference to a questionnaire aimed at assessing the performance of Italian nursing homes on the basis of the health conditions of their patients, we investigate two relevant issues: dimensionality of the latent structure and discriminating power of the items composing the questionnaire. The approach is based on a multidimensional item…

  13. Latent structure modeling underlying theophylline tablet formulations using a Bayesian network based on a self-organizing map clustering.

    PubMed

    Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2015-01-01

    The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.

  14. Avoiding and Correcting Bias in Score-Based Latent Variable Regression with Discrete Manifest Items

    ERIC Educational Resources Information Center

    Lu, Irene R. R.; Thomas, D. Roland

    2008-01-01

    This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…

  15. Metabolite profiling of soy sauce using gas chromatography with time-of-flight mass spectrometry and analysis of correlation with quantitative descriptive analysis.

    PubMed

    Yamamoto, Shinya; Bamba, Takeshi; Sano, Atsushi; Kodama, Yukako; Imamura, Miho; Obata, Akio; Fukusaki, Eiichiro

    2012-08-01

    Soy sauces, produced from different ingredients and brewing processes, have variations in components and quality. Therefore, it is extremely important to comprehend the relationship between components and the sensory attributes of soy sauces. The current study sought to perform metabolite profiling in order to devise a method of assessing the attributes of soy sauces. Quantitative descriptive analysis (QDA) data for 24 soy sauce samples were obtained from well selected sensory panelists. Metabolite profiles primarily concerning low-molecular-weight hydrophilic components were based on gas chromatography with time-of-flightmass spectrometry (GC/TOFMS). QDA data for soy sauces were accurately predicted by projection to latent structure (PLS), with metabolite profiles serving as explanatory variables and QDA data set serving as a response variable. Moreover, analysis of correlation between matrices of metabolite profiles and QDA data indicated contributing compounds that were highly correlated with QDA data. Especially, it was indicated that sugars are important components of the tastes of soy sauces. This new approach which combines metabolite profiling with QDA is applicable to analysis of sensory attributes of food as a result of the complex interaction between its components. This approach is effective to search important compounds that contribute to the attributes. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Quality assurance in the pre-analytical phase of human urine samples by (1)H NMR spectroscopy.

    PubMed

    Budde, Kathrin; Gök, Ömer-Necmi; Pietzner, Maik; Meisinger, Christine; Leitzmann, Michael; Nauck, Matthias; Köttgen, Anna; Friedrich, Nele

    2016-01-01

    Metabolomic approaches investigate changes in metabolite profiles, which may reflect changes in metabolic pathways and provide information correlated with a specific biological process or pathophysiology. High-resolution (1)H NMR spectroscopy is used to identify metabolites in biofluids and tissue samples qualitatively and quantitatively. This pre-analytical study evaluated the effects of storage time and temperature on (1)H NMR spectra from human urine in two settings. Firstly, to evaluate short time effects probably due to acute delay in sample handling and secondly, the effect of prolonged storage up to one month to find markers of sample miss-handling. A number of statistical procedures were used to assess the differences between samples stored under different conditions, including Projection to Latent Structure Discriminant Analysis (PLS-DA), non-parametric testing as well as mixed effect linear regression analysis. The results indicate that human urine samples can be stored at 10 °C for 24 h or at -80 °C for 1 month, as no relevant changes in (1)H NMR fingerprints were observed during these time periods and temperature conditions. However, some metabolites most likely of microbial origin showed alterations during prolonged storage but without facilitating classification. In conclusion, the presented protocol for urine sample handling and semi-automatic metabolite quantification is suitable for large-scale epidemiological studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Determination of urine ionic composition with potentiometric multisensor system.

    PubMed

    Yaroshenko, Irina; Kirsanov, Dmitry; Kartsova, Lyudmila; Sidorova, Alla; Borisova, Irina; Legin, Andrey

    2015-01-01

    The ionic composition of urine is a good indicator of patient's general condition and allows for diagnostics of certain medical problems such as e.g., urolithiasis. Due to environmental factors and malnutrition the number of registered urinary tract cases continuously increases. Most of the methods currently used for urine analysis are expensive, quite laborious and require skilled personnel. The present work deals with feasibility study of potentiometric multisensor system of 18 ion-selective and cross-sensitive sensors as an analytical tool for determination of urine ionic composition. In total 136 samples from patients of Urolithiasis Laboratory and healthy people were analyzed by the multisensor system as well as by capillary electrophoresis as a reference method. Various chemometric approaches were implemented to relate the data from electrochemical measurements with the reference data. Logistic regression (LR) was applied for classification of samples into healthy and unhealthy producing reasonable misclassification rates. Projection on Latent Structures (PLS) regression was applied for quantitative analysis of ionic composition from potentiometric data. Mean relative errors of simultaneous prediction of sodium, potassium, ammonium, calcium, magnesium, chloride, sulfate, phosphate, urate and creatinine from multisensor system response were in the range 3-13% for independent test sets. This shows a good promise for development of a fast and inexpensive alternative method for urine analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The Plasmin-Sensitive Protein Pls in Methicillin-Resistant Staphylococcus aureus (MRSA) Is a Glycoprotein.

    PubMed

    Bleiziffer, Isabelle; Eikmeier, Julian; Pohlentz, Gottfried; McAulay, Kathryn; Xia, Guoqing; Hussain, Muzaffar; Peschel, Andreas; Foster, Simon; Peters, Georg; Heilmann, Christine

    2017-01-01

    Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff's staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl residues can stimulate biofilm formation. Thus, sugar modifications may represent promising new targets for novel therapeutic or prophylactic measures against life-threatening S. aureus infections.

  19. Partial least squares methods for spectrally estimating lunar soil FeO abundance: A stratified approach to revealing nonlinear effect and qualitative interpretation

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2008-12-01

    Partial least squares (PLS) regressions were applied to lunar highland and mare soil data characterized by the Lunar Soil Characterization Consortium (LSCC) for spectral estimation of the abundance of lunar soil chemical constituents FeO and Al2O3. The LSCC data set was split into a number of subsets including the total highland, Apollo 16, Apollo 14, and total mare soils, and then PLS was applied to each to investigate the effect of nonlinearity on the performance of the PLS method. The weight-loading vectors resulting from PLS were analyzed to identify mineral species responsible for spectral estimation of the soil chemicals. The results from PLS modeling indicate that the PLS performance depends on the correlation of constituents of interest to their major mineral carriers, and the Apollo 16 soils are responsible for the large errors of FeO and Al2O3 estimates when the soils were modeled along with other types of soils. These large errors are primarily attributed to the degraded correlation FeO to pyroxene for the relatively mature Apollo 16 soils as a result of space weathering and secondary to the interference of olivine. PLS consistently yields very accurate fits to the two soil chemicals when applied to mare soils. Although Al2O3 has no spectrally diagnostic characteristics, this chemical can be predicted for all subset data by PLS modeling at high accuracies because of its correlation to FeO. This correlation is reflected in the symmetry of the PLS weight-loading vectors for FeO and Al2O3, which prove to be very useful for qualitative interpretation of the PLS results. However, this qualitative interpretation of PLS modeling cannot be achieved using principal component regression loading vectors.

  20. Analyses of direct and indirect impacts of a positive list system on pharmaceutical R&D investments.

    PubMed

    Han, Euna; Kim, Tae Hyun; Jeung, Myung Jin; Lee, Eui-Kyung

    2013-07-01

    The South Korean government recently enacted a Positive List System (PLS) as a major change of the national formulary listing system and reimbursed prices for pharmaceutical products. Regardless of the primary goal of the PLS, its implementation might have spillover effects by influencing the pharmaceutical industry's research and development (R&D), potentially leading to a variety of responses by firms in relation to their R&D activities. We investigated the spillover effect of the PLS on R&D investments of the pharmaceutical industry in Korea through both direct and indirect channels, examining the influence of the PLS on sales profit and cash flow. Data from 9 years (5 before and 4 after PLS implementation) were drawn from the financial statements of firms whose stocks were exchanged in 2 official stock markets in Korea (526 firms) and additional pharmaceutical firms whose financial performance was officially audited by external reviewers (263 firms). Longitudinal analyses were conducted, using the panel nature of the data to control for permanent unobserved firm heterogeneity. Our results showed that the PLS was directly associated with R&D investments. In contrast, its indirect impacts stemming from the influence on sales profit and cash flow were minimal and statistically nonsignificant. The gross impact of the PLS on R&D investments increased moving further from the enactment year; R&D investments were reduced by 18.3% to 25.8% in 2009-2010 (compared with before PLS implementation) in the firm fixed-effects model. We also found that such negative direct and gross impacts of the PLS on R&D investments were significant only in firms without newly developed chemical entities. Considering the gross negative impact of the PLS on R&D investments of pharmaceutical firms and the heterogeneous response of these firms by the R&D activities, governmental efforts of cost-containment may need to consider the spillover impact of the PLS on pharmaceutical innovation. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.

  1. Xylella taiwanensis sp. nov., causing pear leaf scorch disease.

    PubMed

    Su, C-C; Deng, W-L; Jan, F-J; Chang, C-J; Huang, H; Shih, H-T; Chen, J

    2016-11-01

    A Gram-stain-negative, nutritionally fastidious bacterium (PLS229T) causing pear leaf scorch was identified in Taiwan and previously grouped into Xylella fastidiosa. Yet, significant variations between PLS229T and Xylellafastidiosa were noted. In this study, PLS229T was evaluated phenotypically and genotypically against representative strains of Xylellafastidiosa, including strains of the currently known subspecies of Xylellafastidiosa, Xylella fastidiosa subsp. multiplex and 'Xylella fastidiosasubsp.pauca'. Because of the difficulty of in vitro culture characterization, emphases were made to utilize the available whole-genome sequence information. The average nucleotide identity (ANI) values, an alternative for DNA-DNA hybridization relatedness, between PLS229T and Xylellafastidiosa were 83.4-83.9 %, significantly lower than the bacterial species threshold of 95 %. In contrast, sequence similarity of 16S rRNA genes was greater than 98 %, higher than the 97 % threshold to justify if two bacterial strains belong to different species. The uniqueness of PLS229T was also evident by observing only about 87 % similarity in the sequence of the 16S-23S internal transcribed spacer (ITS) between PLS229T and strains of Xylellafastidiosa, discovering significant single nucleotide polymorphisms at 18 randomly selected housekeeping gene loci, observing a distinct fatty acid profile for PLS229T compared with Xylellafastidiosa, and PLS229T having different observable phenotypes, such as different susceptibility to antibiotics. A phylogenetic tree derived from 16S rRNA gene sequences showed a distinct PLS229T phyletic lineage positioning it between Xylellafastidiosa and members of the genus Xanthomonas. On the basis of these data, a novel species, Xylella taiwanensis sp. nov. is proposed. The type strain is PLS229T (=BCRC 80915T=JCM 31187T).

  2. Long-term change of disease behavior in Papillon-Lefèvre syndrome: seven years follow-up.

    PubMed

    Wang, Xinwen; Liu, Yang; Liu, Yuan; Dong, Guangying; Kenney, E Barrie; Liu, Qing; Ma, Zhiwei; Wang, Qingtao

    2015-03-01

    Papillon-Lefèvre syndrome (PLS) is an autosomal recessive disease, characterized by severe periodontitis and palmoplantar hyperkeratosis. Mutations in the cathepsin C (CTSC) gene are the causative genetic factor. PLS starts at very early age, however, the age associated change of PLS has never been characterized. In this report, four PLS patients with CTSC mutations were followed up for seven years, periodontal condition and serum immunoglobulins (Igs) were recorded. Results showed that periodontal inflammation of PLS peaked at teenage years, but declined with time. At the same time the serum IgE change was consistent with the change, suggesting the possibility of using IgE as a monitoring index for PLS inflammation level, or to develop new target for therapy. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. On-line monitoring the extract process of Fu-fang Shuanghua oral solution using near infrared spectroscopy and different PLS algorithms

    NASA Astrophysics Data System (ADS)

    Kang, Qian; Ru, Qingguo; Liu, Yan; Xu, Lingyan; Liu, Jia; Wang, Yifei; Zhang, Yewen; Li, Hui; Zhang, Qing; Wu, Qing

    2016-01-01

    An on-line near infrared (NIR) spectroscopy monitoring method with an appropriate multivariate calibration method was developed for the extraction process of Fu-fang Shuanghua oral solution (FSOS). On-line NIR spectra were collected through two fiber optic probes, which were designed to transmit NIR radiation by a 2 mm flange. Partial least squares (PLS), interval PLS (iPLS) and synergy interval PLS (siPLS) algorithms were used comparatively for building the calibration regression models. During the extraction process, the feasibility of NIR spectroscopy was employed to determine the concentrations of chlorogenic acid (CA) content, total phenolic acids contents (TPC), total flavonoids contents (TFC) and soluble solid contents (SSC). High performance liquid chromatography (HPLC), ultraviolet spectrophotometric method (UV) and loss on drying methods were employed as reference methods. Experiment results showed that the performance of siPLS model is the best compared with PLS and iPLS. The calibration models for AC, TPC, TFC and SSC had high values of determination coefficients of (R2) (0.9948, 0.9992, 0.9950 and 0.9832) and low root mean square error of cross validation (RMSECV) (0.0113, 0.0341, 0.1787 and 1.2158), which indicate a good correlation between reference values and NIR predicted values. The overall results show that the on line detection method could be feasible in real application and would be of great value for monitoring the mixed decoction process of FSOS and other Chinese patent medicines.

  4. Exclusion of phospholipases (PLs)-producing bacteria in raw milk flushed with nitrogen gas (N(2)).

    PubMed

    Munsch-Alatossava, Patricia; Gursoy, Oguz; Alatossava, Tapani

    2010-01-01

    Prolonged cold storage of raw milks favors the growth of psychrotrophs, which produce heat-resistant exoenzymes of considerable spoilage potential; the bacterial proteases and lipases affect raw milk quality; among them phospholipases (PLs) may target the milk fat globule. More importantly, bacterial PLs are key virulence factors for numerous species. Two studies examined the use of nitrogen (N(2)) gas and examined its effect on psychrotrophs, proteases and lipase producers when the milk was stored in closed vessels; however, the effect on PLs producers is unknown. Here we show that by considering an open system the PLs producers were sooner or later excluded in raw milk (whereas the PLs producers in the non-treated controls culminated at 10(8)CFU/ml), by effective gas treatments that bring oxygen (O(2)) levels in milk lower than 0.1ppm. No increase of the PLs producers among the anaerobes was noticed during the course of the experiments. In the experiments performed at 6.0 degrees C, the delay after which the PLs producers were no longer detectable seemed independent of the initial level of PLs producers in raw milk (lower than 10(3)CFU/ml). We anticipate that flushing pure N(2) gas in raw milk tanks, considered as open systems, along the cold chain of raw milk storage and transportation, may be an additional technique to control psychrotrophs, and may also constitute an interesting perspective for limiting their spoilage and pathogenic potential in food materials in general.

  5. Nurses' Own Birth Experiences Influence Labor Support Attitudes and Behaviors.

    PubMed

    Aschenbrenner, Ann P; Hanson, Lisa; Johnson, Teresa S; Kelber, Sheryl T

    2016-01-01

    To describe the attitudes of intrapartum nurses about the importance of and intent to provide professional labor support (PLS); barriers to PLS, such as perceived subjective norms and perceived behavioral control; and relationships among attitudes, behaviors, and nurse and site characteristics. A cross-sectional, mixed-methods, descriptive design was guided by the Theory of Planned Behavior. Three hospital sites in one region of a single Midwestern state. Sixty intrapartum nurses participated. The Labor Support Questionnaire and demographic questionnaire were administered online. The Labor Support Questionnaire is used to measure attitudes about the importance of and intended behaviors associated with labor support. Nurse Caring Behaviors was the highest rated PLS dimension. Participants' own personal birth experiences and length of current intrapartum experience were positively correlated with attitudes about and intent to provide PLS. Barriers to PLS included staffing, documentation, physicians, use of epidural analgesia, doulas, and birth plans. Personal birth and work experience influenced attitudes about and intent to provide PLS and demonstrated the relationships described in the Theory of Planned Behavior. Intrapartum nurses may benefit from an examination of their personal experiences to see how they might influence attitudes about PLS. Enhanced training and expanded labor and birth experience for novice nurses or students may improve attitudes and intended behavior with regard to PLS. Further investigations of the factors that affect integration of PLS into care are important to promote healthy birth outcomes. Copyright © 2016 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  6. Estimation and Model Selection for Finite Mixtures of Latent Interaction Models

    ERIC Educational Resources Information Center

    Hsu, Jui-Chen

    2011-01-01

    Latent interaction models and mixture models have received considerable attention in social science research recently, but little is known about how to handle if unobserved population heterogeneity exists in the endogenous latent variables of the nonlinear structural equation models. The current study estimates a mixture of latent interaction…

  7. Adolescent cigarette smoking: health-related behavior or normative transgression?

    PubMed

    Turbin, M S; Jessor, R; Costa, F M

    2000-09-01

    Relations among measures of adolescent behavior were examined to determine whether cigarette smoking fits into a structure of problem behaviors-behaviors that involve normative transgression-or a structure of health-related behaviors, or both. In an ethnically and socioeconomically diverse sample of 1782 male and female high school adolescents, four first-order problem behavior latent variables-sexual intercourse experience, alcohol abuse, illicit drug use, and delinquency-were established and together were shown to reflect a second-order latent variable of problem behavior. Four first-order latent variables of health-related behaviors-unhealthy dietary habits, sedentary behavior, unsafe behavior, and poor dental hygiene-were also established and together were shown to reflect a second-order latent variable of health-compromising behavior. The structure of relations among those latent variables was modeled. Cigarette smoking had a significant and substantial loading only on the problem-behavior latent variable; its loading on the health-compromising behavior latent variable was essentially zero. Adolescent cigarette smoking relates strongly and directly to problem behaviors and only indirectly, if at all, to health-compromising behaviors. Interventions to prevent or reduce adolescent smoking should attend more to factors that influence problem behaviors.

  8. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Coexistence of antiphospholipid antibodies and cephalalgia.

    PubMed

    Islam, Md Asiful; Alam, Fahmida; Gan, Siew Hua; Cavestro, Cinzia; Wong, Kah Keng

    2018-03-01

    Background The occurrence of antiphospholipid antibodies (aPLs) and headache comorbidity in the presence or absence of underlying autoimmune diseases remains unclear. Aim The aim of this review was to summarize the relationship between headache and aPLs based on evidences from cohort studies and case reports, in addition to examining the treatment strategies that resolved headache in aPLs-positive individuals. Methods A comprehensive literature search was conducted through PubMed, ISI Web of Science and Google Scholar. A total of 559 articles were screened and the appropriate articles were selected based on quality and level of evidence. Results Cohort studies (n = 27) from Europe, North America and Asia demonstrated comorbidity of aPLs and headache in antiphospholipid syndrome, systemic lupus erythematosus (SLE) and neuropsychiatric SLE patients. Significantly higher association between migraine and aPLs was observed (n = 170/779; p < 0.0001) in individuals without any underlying diseases. Our analysis of shortlisted case reports (n = 17) showed that a higher frequency of anticardiolipin antibodies were present in subjects with different autoimmune disorders (70.6%). Corticosteroids were highly effective in resolving headache in aPLs-positive individuals. Conclusion Higher frequency of comorbidity between aPLs and headache was observed in healthy individuals and patient cases. Therefore, experimental studies are warranted to evaluate the aPLs-induced pathogenic mechanism of headache.

  10. Pyogenic liver abscess and peritonitis due to Rhizopus oryzae in a child with Papillon-Lefevre syndrome.

    PubMed

    Dalgic, Buket; Bukulmez, Aysegul; Sari, Sinan

    2011-06-01

    Papillon-Lefevre syndrome (PLS) is an autosomal recessive disease that is characterized by symmetric palmoplantar keratodermatitis and severe periodontal destruction. Mutations in the cathepsin C gene (CTSC) have recently been detected in PLS. Immune dysregulation, due to a mutation in CTSC, increases the risk of pyogenic infections in PLS patients. A child with PLS is presented here with liver abscesses and peritonitis caused by Rhizopus oryzae. His liver abscess and peritonitis were cured with amphotericin B without surgical care. This is the first case in the literature liver abscess due to Rhizopus oryzae in a child with PLS.

  11. Taxometric Analysis as a General Strategy for Distinguishing Categorical from Dimensional Latent Structure

    ERIC Educational Resources Information Center

    McGrath, Robert E.; Walters, Glenn D.

    2012-01-01

    Statistical analyses investigating latent structure can be divided into those that estimate structural model parameters and those that detect the structural model type. The most basic distinction among structure types is between categorical (discrete) and dimensional (continuous) models. It is a common, and potentially misleading, practice to…

  12. Robust PLS approach for KPI-related prediction and diagnosis against outliers and missing data

    NASA Astrophysics Data System (ADS)

    Yin, Shen; Wang, Guang; Yang, Xu

    2014-07-01

    In practical industrial applications, the key performance indicator (KPI)-related prediction and diagnosis are quite important for the product quality and economic benefits. To meet these requirements, many advanced prediction and monitoring approaches have been developed which can be classified into model-based or data-driven techniques. Among these approaches, partial least squares (PLS) is one of the most popular data-driven methods due to its simplicity and easy implementation in large-scale industrial process. As PLS is totally based on the measured process data, the characteristics of the process data are critical for the success of PLS. Outliers and missing values are two common characteristics of the measured data which can severely affect the effectiveness of PLS. To ensure the applicability of PLS in practical industrial applications, this paper introduces a robust version of PLS to deal with outliers and missing values, simultaneously. The effectiveness of the proposed method is finally demonstrated by the application results of the KPI-related prediction and diagnosis on an industrial benchmark of Tennessee Eastman process.

  13. [Research on partial least squares for determination of impurities in the presence of high concentration of matrix by ICP-AES].

    PubMed

    Wang, Yan-peng; Gong, Qi; Yu, Sheng-rong; Liu, You-yan

    2012-04-01

    A method for detecting trace impurities in high concentration matrix by ICP-AES based on partial least squares (PLS) was established. The research showed that PLS could effectively correct the interference caused by high level of matrix concentration error and could withstand higher concentrations of matrix than multicomponent spectral fitting (MSF). When the mass ratios of matrix to impurities were from 1 000 : 1 to 20 000 : 1, the recoveries of standard addition were between 95% and 105% by PLS. For the system in which interference effect has nonlinear correlation with the matrix concentrations, the prediction accuracy of normal PLS method was poor, but it can be improved greatly by using LIN-PPLS, which was based on matrix transformation of sample concentration. The contents of Co, Pb and Ga in stream sediment (GBW07312) were detected by MSF, PLS and LIN-PPLS respectively. The results showed that the prediction accuracy of LIN-PPLS was better than PLS, and the prediction accuracy of PLS was better than MSF.

  14. External characteristic determination of eggs and cracked eggs identification using spectral signature

    PubMed Central

    Xie, Chuanqi; He, Yong

    2016-01-01

    This study was carried out to use hyperspectral imaging technique for determining color (L*, a* and b*) and eggshell strength and identifying cracked chicken eggs. Partial least squares (PLS) models based on full and selected wavelengths suggested by regression coefficient (RC) method were established to predict the four parameters, respectively. Partial least squares-discriminant analysis (PLS-DA) and RC-partial least squares-discriminant analysis (RC-PLS-DA) models were applied to identify cracked eggs. PLS models performed well with the correlation coefficient (rp) of 0.788 for L*, 0.810 for a*, 0.766 for b* and 0.835 for eggshell strength. RC-PLS models also obtained the rp of 0.771 for L*, 0.806 for a*, 0.767 for b* and 0.841 for eggshell strength. The classification results were 97.06% in PLS-DA model and 88.24% in RC-PLS-DA model. It demonstrated that hyperspectral imaging technique has the potential to be used to detect color and eggshell strength values and identify cracked chicken eggs. PMID:26882990

  15. 4D-Fingerprint Categorical QSAR Models for Skin Sensitization Based on Classification Local Lymph Node Assay Measures

    PubMed Central

    Li, Yi; Tseng, Yufeng J.; Pan, Dahua; Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Hopfinger, Anton J.

    2008-01-01

    Currently, the only validated methods to identify skin sensitization effects are in vivo models, such as the Local Lymph Node Assay (LLNA) and guinea pig studies. There is a tremendous need, in particular due to novel legislation, to develop animal alternatives, eg. Quantitative Structure-Activity Relationship (QSAR) models. Here, QSAR models for skin sensitization using LLNA data have been constructed. The descriptors used to generate these models are derived from the 4D-molecular similarity paradigm and are referred to as universal 4D-fingerprints. A training set of 132 structurally diverse compounds and a test set of 15 structurally diverse compounds were used in this study. The statistical methodologies used to build the models are logistic regression (LR), and partial least square coupled logistic regression (PLS-LR), which prove to be effective tools for studying skin sensitization measures expressed in the two categorical terms of sensitizer and non-sensitizer. QSAR models with low values of the Hosmer-Lemeshow goodness-of-fit statistic, χHL2, are significant and predictive. For the training set, the cross-validated prediction accuracy of the logistic regression models ranges from 77.3% to 78.0%, while that of PLS-logistic regression models ranges from 87.1% to 89.4%. For the test set, the prediction accuracy of logistic regression models ranges from 80.0%-86.7%, while that of PLS-logistic regression models ranges from 73.3%-80.0%. The QSAR models are made up of 4D-fingerprints related to aromatic atoms, hydrogen bond acceptors and negatively partially charged atoms. PMID:17226934

  16. Do gender and directness of trauma exposure moderate PTSD's latent structure?

    PubMed

    Frankfurt, Sheila B; Armour, Cherie; Contractor, Ateka A; Elhai, Jon D

    2016-11-30

    The PTSD diagnosis and latent structure were substantially revised in the transition from DSM-IV to DSM-5. However, three alternative models (i.e., anhedonia model, externalizing behavior model, and hybrid model) of PTSD fit the DSM-5 symptom criteria better than the DSM-5 factor model. Thus, the psychometric performance of the DSM-5 and alternative models' PTSD factor structure needs to be critically evaluated. The current study examined whether gender or trauma directness (i.e., direct or indirect trauma exposure) moderates the PTSD latent structure when using the DSM-5 or alternative models. Model performance was evaluated with measurement invariance testing procedures on a large undergraduate sample (n=455). Gender and trauma directness moderated the DSM-5 PTSD and externalizing behavior model and did not moderate the anhedonia and hybrid models' latent structure. Clinical implications and directions for future research are discussed. Published by Elsevier Ireland Ltd.

  17. Mokken scaling analysis of the Hospital Anxiety and Depression Scale in individuals with cardiovascular disease.

    PubMed

    Cosco, Theodore D; Doyle, Frank; Watson, Roger; Ward, Mark; McGee, Hannah

    2012-01-01

    The Hospital Anxiety and Depression Scale (HADS) is a prolifically used scale of anxiety and depression. The original bidimensional anxiety-depression latent structure of the HADS has come under significant scrutiny, with previous studies revealing one-, two-, three- and four-dimensional structures. The current study examines the latent structure of the HADS using a non-parametric item response theory method. Using data conglomerated from four independent studies of cardiovascular disease employing the HADS (n=893), Mokken scaling procedure was conducted to assess the latent structure of the HADS. A single scale consisting of 12 of 14 HADS items was revealed, indicating a unidimensional latent HADS structure. The HADS was initially intended to measure mutually exclusive levels of anxiety and depression; however, the current study indicates that a single dimension of general psychological distress is captured. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. The algebraic theory of latent projectors in lambda matrices

    NASA Technical Reports Server (NTRS)

    Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.

    1981-01-01

    Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.

  19. Kernel Partial Least Squares for Nonlinear Regression and Discrimination

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.

  20. Characterising the latent structure and organisation of self-reported thoughts, feelings and behaviours in adolescents and young adults

    PubMed Central

    Neufeld, Sharon; Jones, Peter B.; Fonagy, Peter; Bullmore, Edward T.; Dolan, Raymond J.; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M.

    2017-01-01

    Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed ‘distress’ and five ‘distress independent’ specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits. PMID:28403164

  1. Characterising the latent structure and organisation of self-reported thoughts, feelings and behaviours in adolescents and young adults.

    PubMed

    St Clair, Michelle C; Neufeld, Sharon; Jones, Peter B; Fonagy, Peter; Bullmore, Edward T; Dolan, Raymond J; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M

    2017-01-01

    Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed 'distress' and five 'distress independent' specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits.

  2. The Theory of Planned Behavior within the Stages of the Transtheoretical Model: Latent Structural Modeling of Stage-Specific Prediction Patterns in Physical Activity

    ERIC Educational Resources Information Center

    Lippke, Sonia; Nigg, Claudio R.; Maddock, Jay E.

    2007-01-01

    This is the first study to test whether the stages of change of the transtheoretical model are qualitatively different through exploring discontinuity patterns in theory of planned behavior (TPB) variables using latent multigroup structural equation modeling (MSEM) with AMOS. Discontinuity patterns in terms of latent means and prediction patterns…

  3. Examining Factor Score Distributions to Determine the Nature of Latent Spaces

    ERIC Educational Resources Information Center

    Steinley, Douglas; McDonald, Roderick P.

    2007-01-01

    Similarities between latent class models with K classes and linear factor models with K-1 factors are investigated. Specifically, the mathematical equivalence between the covariance structure of the two models is discussed, and a Monte Carlo simulation is performed using generated data that represents both latent factors and latent classes with…

  4. Sensitivity of Latent Heating Profiles to Environmental Conditions: Implications for TRMM and Climate Research

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) as a part of NASA's Earth System Enterprise is the first mission dedicated to measuring tropical rainfall through microwave and visible sensors, and includes the first spaceborne rain radar. Tropical rainfall comprises two-thirds of global rainfall. It is also the primary distributor of heat through the atmosphere's circulation. It is this circulation that defines Earth's weather and climate. Understanding rainfall and its variability is crucial to understanding and predicting global climate change. Weather and climate models need an accurate assessment of the latent heating released as tropical rainfall occurs. Currently, cloud model-based algorithms are used to derive latent heating based on rainfall structure. Ultimately, these algorithms can be applied to actual data from TRMM. This study investigates key underlying assumptions used in developing the latent heating algorithms. For example, the standard algorithm is highly dependent on a system's rainfall amount and structure. It also depends on an a priori database of model-derived latent heating profiles based on the aforementioned rainfall characteristics. Unanswered questions remain concerning the sensitivity of latent heating profiles to environmental conditions (both thermodynamic and kinematic), regionality, and seasonality. This study investigates and quantifies such sensitivities and seeks to determine the optimal latent heating profile database based on the results. Ultimately, the study seeks to produce an optimized latent heating algorithm based not only on rainfall structure but also hydrometeor profiles.

  5. Sample classification for improved performance of PLS models applied to the quality control of deep-frying oils of different botanic origins analyzed using ATR-FTIR spectroscopy.

    PubMed

    Kuligowski, Julia; Carrión, David; Quintás, Guillermo; Garrigues, Salvador; de la Guardia, Miguel

    2011-01-01

    The selection of an appropriate calibration set is a critical step in multivariate method development. In this work, the effect of using different calibration sets, based on a previous classification of unknown samples, on the partial least squares (PLS) regression model performance has been discussed. As an example, attenuated total reflection (ATR) mid-infrared spectra of deep-fried vegetable oil samples from three botanical origins (olive, sunflower, and corn oil), with increasing polymerized triacylglyceride (PTG) content induced by a deep-frying process were employed. The use of a one-class-classifier partial least squares-discriminant analysis (PLS-DA) and a rooted binary directed acyclic graph tree provided accurate oil classification. Oil samples fried without foodstuff could be classified correctly, independent of their PTG content. However, class separation of oil samples fried with foodstuff, was less evident. The combined use of double-cross model validation with permutation testing was used to validate the obtained PLS-DA classification models, confirming the results. To discuss the usefulness of the selection of an appropriate PLS calibration set, the PTG content was determined by calculating a PLS model based on the previously selected classes. In comparison to a PLS model calculated using a pooled calibration set containing samples from all classes, the root mean square error of prediction could be improved significantly using PLS models based on the selected calibration sets using PLS-DA, ranging between 1.06 and 2.91% (w/w).

  6. Residual Structures in Latent Growth Curve Modeling

    ERIC Educational Resources Information Center

    Grimm, Kevin J.; Widaman, Keith F.

    2010-01-01

    Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…

  7. Status of PLS-II Upgrade Program

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Ryul; Wiedemann, Helmut; Park, Sung-Ju; Kim, Dong-Eon; Park, Chong-Do; Park, Sung-Soo; Kim, Seong-Hwan; Kim, Bongsoo; Namkung, Won; Nam, Sanghoon; Ree, Moonhor

    2010-06-01

    The Pohang Light Source (PLS) at the Pohang Accelerator Laboratory has been operated first at 2.0 GeV since 1995, and later was upgraded to 2.5 GeV. During this time, 6 insertion devices like undulators and multipole wigglers have been put into operation to produce special photon beams, with a total of 27 beamlines installed and 3 beamlines under construction. Recently, Korea synchrotron user's community is demanding high beam stability, higher photon energies as well as more straight sections for insertion devices in the PLS. To meet the user requirements, the PLS-II upgrade program has been launched in January, 2009, incorporating a modified chromatic version of Double Bend Achromat (DBA) to achieve almost twice as many straight sections as the current PLS with a design goal of the relatively low emittance, ɛ, of 5.9 nmṡrad. In the PLS-II, the top-up injection using full energy linac is planned for much higher stable beam as well and thus the production of hard x-ray undulator radiation of 8 to 13 keV is anticipated to allow for the successful research program namely Protein Crystallography. The PLS-II machine components of storage ring, linear accelerator and photon beamlines will be partly dismantled and reinstalled in a 6-months shutdown beginning January, 2011 and then the PLS-II upgrade be started the initial commissioning with a 100 mA beam current from July in 2011.

  8. Improved Quantitative Analysis of Ion Mobility Spectrometry by Chemometric Multivariate Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Kerr, Dayle; Atkinson, David A.

    2009-09-01

    Traditional peak-area calibration and the multivariate calibration methods of principle component regression (PCR) and partial least squares (PLS), including unfolded PLS (U-PLS) and multi-way PLS (N-PLS), were evaluated for the quantification of 2,4,6-trinitrotoluene (TNT) and cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) in Composition B samples analyzed by temperature step desorption ion mobility spectrometry (TSD-IMS). The true TNT and RDX concentrations of eight Composition B samples were determined by high performance liquid chromatography with UV absorbance detection. Most of the Composition B samples were found to have distinct TNT and RDX concentrations. Applying PCR and PLS on the exact same IMS spectra used for themore » peak-area study improved quantitative accuracy and precision approximately 3 to 5 fold and 2 to 4 fold, respectively. This in turn improved the probability of correctly identifying Composition B samples based upon the estimated RDX and TNT concentrations from 11% with peak area to 44% and 89% with PLS. This improvement increases the potential of obtaining forensic information from IMS analyzers by providing some ability to differentiate or match Composition B samples based on their TNT and RDX concentrations.« less

  9. Multivariate analysis applied to the study of spatial distributions found in drug-eluting stent coatings by confocal Raman microscopy.

    PubMed

    Balss, Karin M; Long, Frederick H; Veselov, Vladimir; Orana, Argjenta; Akerman-Revis, Eugena; Papandreou, George; Maryanoff, Cynthia A

    2008-07-01

    Multivariate data analysis was applied to confocal Raman measurements on stents coated with the polymers and drug used in the CYPHER Sirolimus-eluting Coronary Stents. Partial least-squares (PLS) regression was used to establish three independent calibration curves for the coating constituents: sirolimus, poly(n-butyl methacrylate) [PBMA], and poly(ethylene-co-vinyl acetate) [PEVA]. The PLS calibrations were based on average spectra generated from each spatial location profiled. The PLS models were tested on six unknown stent samples to assess accuracy and precision. The wt % difference between PLS predictions and laboratory assay values for sirolimus was less than 1 wt % for the composite of the six unknowns, while the polymer models were estimated to be less than 0.5 wt % difference for the combined samples. The linearity and specificity of the three PLS models were also demonstrated with the three PLS models. In contrast to earlier univariate models, the PLS models achieved mass balance with better accuracy. This analysis was extended to evaluate the spatial distribution of the three constituents. Quantitative bitmap images of drug-eluting stent coatings are presented for the first time to assess the local distribution of components.

  10. Genetic and Physiological Studies of Bacillus anthracis Related to Development of an Improved Vaccine

    DTIC Science & Technology

    1987-07-01

    nontransformable Bacillus species such as B. anthracis. Our results suggest that plasmid pLS20 of Bacillus subtilis ( natto ), which promotes transfer of the...mobilizing pBC16, pLS20 mediates transfer of the B. subtills ( natto ) plasmid pLS19 and the Staphylococcus aureus plasmid pUB110. To facilitate direct...and (v) transformation of B. cereus and B. anthracis with plasmid DNA. The 55-kb plasmid, pLS20, of Bacillus subtilis ( natto ) 3335 promotes tr msfer

  11. Effective apatinib treatment of pleomorphic liposarcoma: A case report.

    PubMed

    Yan, Peng; Sun, Mei-Li; Sun, Yu-Ping; Liu, Chuan-Yong

    2017-08-01

    Pleomorphic liposarcoma (PLS) is a rare and aggressive malignant tumor, and both radiation and conventional cytotoxic chemotherapy remain controversial for metastatic or unresectable disease. We presented an 81-year-old Chinese woman with advanced PLS who received apatinib after failure chemotherapy. The patient was diagnosed as having PLS by biopsy. After a failed chemotherapy, apatinib started to be taken orally 425 mg per day. This patient achieved 3-month progression-free survival (PFS) and a higher quality of life. Meanwhile, this patient suffered grade 2 hypertension and grade 3 hand-foot syndrome (HFS). In this case, apatinib presented good efficacy and safety to treat PLS. Randomized clinical studies are required to confirm the efficacy and safety of apatinib in the treatment of PLS.

  12. A Database Approach for Predicting and Monitoring Baked Anode Properties

    NASA Astrophysics Data System (ADS)

    Lauzon-Gauthier, Julien; Duchesne, Carl; Tessier, Jayson

    2012-11-01

    The baked anode quality control strategy currently used by most carbon plants based on testing anode core samples in the laboratory is inadequate for facing increased raw material variability. The low core sampling rate limited by lab capacity and the common practice of reporting averaged properties based on some anode population mask a significant amount of individual anode variability. In addition, lab results are typically available a few weeks after production and the anodes are often already set in the reduction cells preventing early remedial actions when necessary. A database approach is proposed in this work to develop a soft-sensor for predicting individual baked anode properties at the end of baking cycle. A large historical database including raw material properties, process operating parameters and anode core data was collected from a modern Alcoa plant. A multivariate latent variable PLS regression method was used for analyzing the large database and building the soft-sensor model. It is shown that the general low frequency trends in most anode physical and mechanical properties driven by raw material changes are very well captured by the model. Improvements in the data infrastructure (instrumentation, sampling frequency and location) will be necessary for predicting higher frequency variations in individual baked anode properties. This paper also demonstrates how multivariate latent variable models can be interpreted against process knowledge and used for real-time process monitoring of carbon plants, and detection of faults and abnormal operation.

  13. Does Attention-Deficit/Hyperactivity Disorder Have a Dimensional Latent Structure? A Taxometric Analysis

    PubMed Central

    Marcus, David K.; Barry, Tammy D.

    2010-01-01

    An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667–1078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators, for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD. PMID:20973595

  14. Does attention-deficit/hyperactivity disorder have a dimensional latent structure? A taxometric analysis.

    PubMed

    Marcus, David K; Barry, Tammy D

    2011-05-01

    An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667 and 1,078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD.

  15. A transverse bunch by bunch feedback system for Pohang Light Source upgrade

    NASA Astrophysics Data System (ADS)

    Lee, E.-H.; Kim, D.-T.; Huang, J.-Y.; Shin, S.; Nakamura, T.; Kobayashi, K.

    2014-12-01

    The Pohang Light Source upgrade (PLS-II) project has successfully upgraded the Pohang Light Source (PLS). The main goals of the PLS-II project are to increase the beam energy to 3 GeV, increase the number of insertion devices by a factor of two (20 IDs), increase the beam current to 400 mA, and at the same time reduce the beam emittance to below 10 nm by using the existing PLS tunnel and injection system. Among 20 insertion devices, 10 narrow gap in-vacuum undulators are in operation now and two more in-vacuum undulators are to be installed later. Since these narrow gap in-vacuum undulators are most likely to produce coupled bunch instability by the resistive wall impedance and limit the stored beam current, a bunch by bunch feedback system is implemented to suppress coupled bunch instability in the PLS-II. This paper describes the scheme and performance of the PLS-II bunch by bunch feedback system.

  16. Generalized Structured Component Analysis with Latent Interactions

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan

    2010-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…

  17. Caffeine's influence on gambling behavior and other types of impulsivity.

    PubMed

    Grant, Jon E; Chamberlain, Samuel R

    2018-01-01

    Young adulthood is a developmental period frequently associated with occurrence of impulsive behaviors including gambling. It is estimated that 73% of children and 87% of adults in the United States regularly use caffeine. Questions remain, however, concerning the role of caffeine in the development and maintenance of impulsive behaviors such as gambling. Sixty-one young adults with at least some degree of disordered gambling were recruited from two Mid-Western university communities in the United States using media advertisements. Caffeine intake over the preceding month was quantified using the Caffeine Use Questionnaire. Clinician rating scales, questionnaires, and cognitive tests germane to impulsivity were completed. Relationships between caffeine intake and demographic, gambling symptom, and neurocognitive measures were evaluated using the statistical technique of partial least squares (PLS). Average weekly caffeine intake in the gamblers was 1218.5mg (a figure higher than previously reported in the general population). PLS yielded an optimal model with one latent factor, which explained 14.8% of variation in demographic/clinical/cognitive measures and 32.3% of variation in caffeine intake. In this model, higher caffeine intake was significantly associated with earlier age at first gambling, higher personality-related impulsiveness, more nicotine consumption, older age, and more impulsive decision-making. These data suggest a particularly strong relationship between caffeine intake, earlier age of first gambling, and certain types of impulsivity in gamblers. Providing education about healthy caffeine use may be especially valuable in gamblers. Future work should explore whether the relationship between caffeine use and gambling is due to a common predisposing factor (impulsive tendencies) or, rather, constitutes a form of self-medication in gamblers (or a means of sustaining gambling habits for longer). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Patterns of Circulating Inflammatory Biomarkers in Older Persons with Varying Levels of Physical Performance: A Partial Least Squares-Discriminant Analysis Approach

    PubMed Central

    Marzetti, Emanuele; Landi, Francesco; Marini, Federico; Cesari, Matteo; Buford, Thomas W.; Manini, Todd M.; Onder, Graziano; Pahor, Marco; Bernabei, Roberto; Leeuwenburgh, Christiaan; Calvani, Riccardo

    2014-01-01

    Background: Chronic, low-grade inflammation and declining physical function are hallmarks of the aging process. However, previous attempts to correlate individual inflammatory biomarkers with physical performance in older people have produced mixed results. Given the complexity of the inflammatory response, the simultaneous analysis of an array of inflammatory mediators may provide more insights into the relationship between inflammation and age-related physical function decline. This study was designed to explore the association between a panel of inflammatory markers and physical performance in older adults through a multivariate statistical approach. Methods: Community-dwelling older persons were categorized into “normal walkers” (NWs; n = 27) or “slow walkers” (SWs; n = 11) groups using 0.8 m s−1 as the 4-m gait speed cutoff. A panel of 14 circulating inflammatory biomarkers was assayed by multiplex analysis. Partial least squares-discriminant analysis (PLS-DA) was used to identify patterns of inflammatory mediators associated with gait speed categories. Results: The optimal complexity of the PLS-DA model was found to be five latent variables. The proportion of correct classification was 88.9% for NW subjects (74.1% in cross-validation) and 90.9% for SW individuals (81.8% in cross-validation). Discriminant biomarkers in the model were interleukin 8, myeloperoxidase, and tumor necrosis factor alpha (all higher in the SW group), and P-selectin, interferon gamma, and granulocyte–macrophage colony-stimulating factor (all higher in the NW group). Conclusion: Distinct profiles of circulating inflammatory biomarkers characterize older subjects with different levels of physical performance. The dissection of these patterns may provide novel insights into the role played by inflammation in the disabling cascade and possible new targets for interventions. PMID:25593902

  19. A Bayesian Model for the Estimation of Latent Interaction and Quadratic Effects When Latent Variables Are Non-Normally Distributed

    ERIC Educational Resources Information Center

    Kelava, Augustin; Nagengast, Benjamin

    2012-01-01

    Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…

  20. Quantitative methods for structural characterization of proteins based on deep UV resonance Raman spectroscopy.

    PubMed

    Shashilov, Victor A; Sikirzhytski, Vitali; Popova, Ludmila A; Lednev, Igor K

    2010-09-01

    Here we report on novel quantitative approaches for protein structural characterization using deep UV resonance Raman (DUVRR) spectroscopy. Specifically, we propose a new method combining hydrogen-deuterium (HD) exchange and Bayesian source separation for extracting the DUVRR signatures of various structural elements of aggregated proteins including the cross-beta core and unordered parts of amyloid fibrils. The proposed method is demonstrated using the set of DUVRR spectra of hen egg white lysozyme acquired at various stages of HD exchange. Prior information about the concentration matrix and the spectral features of the individual components was incorporated into the Bayesian equation to eliminate the ill-conditioning of the problem caused by 100% correlation of the concentration profiles of protonated and deuterated species. Secondary structure fractions obtained by partial least squares (PLS) and least squares support vector machines (LS-SVMs) were used as the initial guess for the Bayessian source separation. Advantages of the PLS and LS-SVMs methods over the classical least squares calibration (CLSC) are discussed and illustrated using the DUVRR data of the prion protein in its native and aggregated forms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Development of a non-destructive method for determining protein nitrogen in a yellow fever vaccine by near infrared spectroscopy and multivariate calibration.

    PubMed

    Dabkiewicz, Vanessa Emídio; de Mello Pereira Abrantes, Shirley; Cassella, Ricardo Jorgensen

    2018-08-05

    Near infrared spectroscopy (NIR) with diffuse reflectance associated to multivariate calibration has as main advantage the replacement of the physical separation of interferents by the mathematical separation of their signals, rapidly with no need for reagent consumption, chemical waste production or sample manipulation. Seeking to optimize quality control analyses, this spectroscopic analytical method was shown to be a viable alternative to the classical Kjeldahl method for the determination of protein nitrogen in yellow fever vaccine. The most suitable multivariate calibration was achieved by the partial least squares method (PLS) with multiplicative signal correction (MSC) treatment and data mean centering (MC), using a minimum number of latent variables (LV) equal to 1, with the lower value of the square root of the mean squared prediction error (0.00330) associated with the highest percentage value (91%) of samples. Accuracy ranged 95 to 105% recovery in the 4000-5184 cm -1 region. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics.

    PubMed

    Ribeiro, J S; Augusto, F; Salva, T J G; Ferreira, M M C

    2012-11-15

    In this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial least squares (PLS) regression method was used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the compounds for the regression model of each sensory attribute in order to take only significant chromatographic peaks into account. The prediction errors of these models, using 4 or 5 latent variables, were equal to 0.28, 0.33, 0.35, 0.33, 0.34 and 0.41, for each of the attributes and compatible with the errors of the mean scores of the experts. Thus, the results proved the feasibility of using a similar methodology in on-line or routine applications to predict the sensory quality of Brazilian Arabica coffee. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Electronic effects on melting: Comparison of aluminum cluster anions and cations

    NASA Astrophysics Data System (ADS)

    Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.

    2009-07-01

    Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35-70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered" roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts.

  4. Kernel PLS-SVC for Linear and Nonlinear Discrimination

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Trejo, Leonard J.; Matthews, Bryan

    2003-01-01

    A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.

  5. Effective apatinib treatment of pleomorphic liposarcoma

    PubMed Central

    Yan, Peng; Sun, Mei-Li; Sun, Yu-Ping; Liu, Chuan-Yong

    2017-01-01

    Abstract Rationale: Pleomorphic liposarcoma (PLS) is a rare and aggressive malignant tumor, and both radiation and conventional cytotoxic chemotherapy remain controversial for metastatic or unresectable disease. Patient Concerns: We presented an 81-year-old Chinese woman with advanced PLS who received apatinib after failure chemotherapy. Diagnoses: The patient was diagnosed as having PLS by biopsy. Interventions: After a failed chemotherapy, apatinib started to be taken orally 425 mg per day. Outcomes: This patient achieved 3-month progression-free survival (PFS) and a higher quality of life. Meanwhile, this patient suffered grade 2 hypertension and grade 3 hand–foot syndrome (HFS). Lessons: In this case, apatinib presented good efficacy and safety to treat PLS. Randomized clinical studies are required to confirm the efficacy and safety of apatinib in the treatment of PLS. PMID:28816958

  6. Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures: a comparative study.

    PubMed

    Divya, O; Mishra, Ashok K

    2007-05-29

    Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values.

  7. Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis.

    PubMed

    Nespeca, Maurilio Gustavo; Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2018-01-01

    Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000-650 cm -1 . The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time.

  8. Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis

    PubMed Central

    Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2018-01-01

    Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000–650 cm−1. The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time. PMID:29629209

  9. Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan

    2012-11-01

    The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV = 0.0776, Rc = 0.9777, RMSEP = 0.0963, and Rp = 0.9686 for pH model; RMSECV = 1.3544% w/w, Rc = 0.8871, RMSEP = 1.4946% w/w, and Rp = 0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry.

  10. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.

    PubMed

    Möltgen, C-V; Puchert, T; Menezes, J C; Lochmann, D; Reich, G

    2012-04-15

    Film coating of tablets is a multivariate pharmaceutical unit operation. In this study an innovative in-line Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS) application is described which enables real-time monitoring of a full industrial scale pan coating process of heart-shaped tablets. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film of up to approx. 28 μm on the tablet face as determined by SEM, corresponding to a weight gain of 2.26%. For a better understanding of the aqueous coating process the NIR probe was positioned inside the rotating tablet bed. Five full scale experimental runs have been performed to evaluate the impact of process variables such as pan rotation, exhaust air temperature, spray rate and pan load and elaborate robust and selective quantitative calibration models for the real-time determination of both coating growth and tablet moisture content. Principal Component (PC) score plots allowed each coating step, namely preheating, spraying and drying to be distinguished and the dominating factors and their spectral effects to be identified (e.g. temperature, moisture, coating growth, change of tablet bed density, and core/coat interactions). The distinct separation of HPMC coating growth and tablet moisture in different PCs enabled a real-time in-line monitoring of both attributes. A PLS calibration model based on Karl Fischer reference values allowed the tablet moisture trajectory to be determined throughout the entire coating process. A 1-latent variable iPLS weight gain calibration model with calibration samples from process stages dominated by the coating growth (i.e. ≥ 30% of the theoretically applied amount of coating) was sufficiently selective and accurate to predict the progress of the thin HPMC coating layer. At-line NIR Chemical Imaging (NIR-CI) in combination with PLS Discriminant Analysis (PLSDA) verified the HPMC coating growth and physical changes at the core/coat interface during the initial stages of the coating process. In addition, inter- and intra-tablet coating variability throughout the process could be assessed. These results clearly demonstrate that in-line NIRS and at-line NIR-CI can be applied as complimentary PAT tools to monitor a challenging pan coating process. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…

  12. The Picmonic(®) Learning System: enhancing memory retention of medical sciences, using an audiovisual mnemonic Web-based learning platform.

    PubMed

    Yang, Adeel; Goel, Hersh; Bryan, Matthew; Robertson, Ron; Lim, Jane; Islam, Shehran; Speicher, Mark R

    2014-01-01

    Medical students are required to retain vast amounts of medical knowledge on the path to becoming physicians. To address this challenge, multimedia Web-based learning resources have been developed to supplement traditional text-based materials. The Picmonic(®) Learning System (PLS; Picmonic, Phoenix, AZ, USA) is a novel multimedia Web-based learning platform that delivers audiovisual mnemonics designed to improve memory retention of medical sciences. A single-center, randomized, subject-blinded, controlled study was conducted to compare the PLS with traditional text-based material for retention of medical science topics. Subjects were randomly assigned to use two different types of study materials covering several diseases. Subjects randomly assigned to the PLS group were given audiovisual mnemonics along with text-based materials, whereas subjects in the control group were given the same text-based materials with key terms highlighted. The primary endpoints were the differences in performance on immediate, 1 week, and 1 month delayed free-recall and paired-matching tests. The secondary endpoints were the difference in performance on a 1 week delayed multiple-choice test and self-reported satisfaction with the study materials. Differences were calculated using unpaired two-tailed t-tests. PLS group subjects demonstrated improvements of 65%, 161%, and 208% compared with control group subjects on free-recall tests conducted immediately, 1 week, and 1 month after study of materials, respectively. The results of performance on paired-matching tests showed an improvement of up to 331% for PLS group subjects. PLS group subjects also performed 55% greater than control group subjects on a 1 week delayed multiple choice test requiring higher-order thinking. The differences in test performance between the PLS group subjects and the control group subjects were statistically significant (P<0.001), and the PLS group subjects reported higher overall satisfaction with the material. The data of this pilot site demonstrate marked improvements in the retention of disease topics when using the PLS compared with traditional text-based materials. The use of the PLS in medical education is supported.

  13. [NIR Assignment of Magnolol by 2D-COS Technology and Model Application Huoxiangzhengqi Oral Liduid].

    PubMed

    Pei, Yan-ling; Wu, Zhi-sheng; Shi, Xin-yuan; Pan, Xiao-ning; Peng, Yan-fang; Qiao, Yan-jiang

    2015-08-01

    Near infrared (NIR) spectroscopy assignment of Magnolol was performed using deuterated chloroform solvent and two-dimensional correlation spectroscopy (2D-COS) technology. According to the synchronous spectra of deuterated chloroform solvent and Magnolol, 1365~1455, 1600~1720, 2000~2181 and 2275~2465 nm were the characteristic absorption of Magnolol. Connected with the structure of Magnolol, 1440 nm was the stretching vibration of phenolic group O-H, 1679 nm was the stretching vibration of aryl and methyl which connected with aryl, 2117, 2304, 2339 and 2370 nm were the combination of the stretching vibration, bending vibration and deformation vibration for aryl C-H, 2445 nm were the bending vibration of methyl which linked with aryl group, these bands attribut to the characteristics of Magnolol. Huoxiangzhengqi Oral Liduid was adopted to study the Magnolol, the characteristic band by spectral assignment and the band by interval Partial Least Squares (iPLS) and Synergy interval Partial Least Squares (SiPLS) were used to establish Partial Least Squares (PLS) quantitative model, the coefficient of determination Rcal(2) and Rpre(2) were greater than 0.99, the Root Mean of Square Error of Calibration (RM-SEC), Root Mean of Square Error of Cross Validation (RMSECV) and Root Mean of Square Error of Prediction (RMSEP) were very small. It indicated that the characteristic band by spectral assignment has the same results with the Chemometrics in PLS model. It provided a reference for NIR spectral assignment of chemical compositions in Chinese Materia Medica, and the band filters of NIR were interpreted.

  14. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    NASA Astrophysics Data System (ADS)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  15. Protein differences between human trapezius and vastus lateralis muscles determined with a proteomic approach.

    PubMed

    Hadrévi, Jenny; Hellström, Fredrik; Kieselbach, Thomas; Malm, Christer; Pedrosa-Domellöf, Fatima

    2011-08-10

    The trapezius muscle is a neck muscle that is susceptible to chronic pain conditions associated with repetitive tasks, commonly referred to as chronic work-related myalgia, hence making the trapezius a muscle of clinical interest. To provide a basis for further investigations of the proteomic traits of the trapezius muscle in disease, two-dimensional difference gel electrophoresis (2D-DIGE) was performed on the healthy trapezius using vastus lateralis as a reference. To obtain as much information as possible from the vast proteomic data set, both one-way ANOVA, with and without false discovery rate (FDR) correlation, and partial least square projection to latent structures with discriminant analysis (PLS-DA) were combined to compare the outcome of the analysis. The trapezius and vastus lateralis showed significant differences in metabolic, contractile and regulatory proteins, with different results depending on choice of statistical approach and pre-processing technique. Using the standard method, FDR correlated one-way ANOVA, 42 protein spots differed significantly in abundance between the two muscles. Complementary analysis using immunohistochemistry and western blot confirmed the results from the 2D-DIGE analysis. The proteomic approach used in the present study combining 2D-DIGE and multivariate modelling provided a more comprehensive comparison of the protein profiles of the human trapezius and vastus lateralis muscle, than previously possible to obtain with immunohistochemistry or SDS-PAGE alone. Although 2D-DIGE has inherent limitations it is particularly useful to comprehensively screen for important structural and metabolic proteins, and appears to be a promising tool for future studies of patients suffering from chronic work related myalgia or other muscle diseases.

  16. Evaluating measurement models in clinical research: covariance structure analysis of latent variable models of self-conception.

    PubMed

    Hoyle, R H

    1991-02-01

    Indirect measures of psychological constructs are vital to clinical research. On occasion, however, the meaning of indirect measures of psychological constructs is obfuscated by statistical procedures that do not account for the complex relations between items and latent variables and among latent variables. Covariance structure analysis (CSA) is a statistical procedure for testing hypotheses about the relations among items that indirectly measure a psychological construct and relations among psychological constructs. This article introduces clinical researchers to the strengths and limitations of CSA as a statistical procedure for conceiving and testing structural hypotheses that are not tested adequately with other statistical procedures. The article is organized around two empirical examples that illustrate the use of CSA for evaluating measurement models with correlated error terms, higher-order factors, and measured and latent variables.

  17. Metabolomic Analysis in Severe Childhood Pneumonia in The Gambia, West Africa: Findings from a Pilot Study

    PubMed Central

    Laiakis, Evagelia C.; Morris, Gerard A. J.; Fornace, Albert J.; Howie, Stephen R. C.

    2010-01-01

    Background Pneumonia remains the leading cause of death in young children globally and improved diagnostics are needed to better identify cases and reduce case fatality. Metabolomics, a rapidly evolving field aimed at characterizing metabolites in biofluids, has the potential to improve diagnostics in a range of diseases. The objective of this pilot study is to apply metabolomic analysis to childhood pneumonia to explore its potential to improve pneumonia diagnosis in a high-burden setting. Methodology/Principal Findings Eleven children with World Health Organization (WHO)-defined severe pneumonia of non-homogeneous aetiology were selected in The Gambia, West Africa, along with community controls. Metabolomic analysis of matched plasma and urine samples was undertaken using Ultra Performance Liquid Chromatography (UPLC) coupled to Time-of-Flight Mass Spectrometry (TOFMS). Biomarker extraction was done using SIMCA-P+ and Random Forests (RF). ‘Unsupervised’ (blinded) data were analyzed by Principal Component Analysis (PCA), while ‘supervised’ (unblinded) analysis was by Partial Least Squares-Discriminant Analysis (PLS-DA) and Orthogonal Projection to Latent Structures (OPLS). Potential markers were extracted from S-plots constructed following analysis with OPLS, and markers were chosen based on their contribution to the variation and correlation within the data set. The dataset was additionally analyzed with the machine-learning algorithm RF in order to address issues of model overfitting and markers were selected based on their variable importance ranking. Unsupervised PCA analysis revealed good separation of pneumonia and control groups, with even clearer separation of the groups with PLS-DA and OPLS analysis. Statistically significant differences (p<0.05) between groups were seen with the following metabolites: uric acid, hypoxanthine and glutamic acid were higher in plasma from cases, while L-tryptophan and adenosine-5′-diphosphate (ADP) were lower; uric acid and L-histidine were lower in urine from cases. The key limitation of this study is its small size. Conclusions/Significance Metabolomic analysis clearly distinguished severe pneumonia patients from community controls. The metabolites identified are important for the host response to infection through antioxidant, inflammatory and antimicrobial pathways, and energy metabolism. Larger studies are needed to determine whether these findings are pneumonia-specific and to distinguish organism-specific responses. Metabolomics has considerable potential to improve diagnostics for childhood pneumonia. PMID:20844590

  18. Metabolomic analysis in severe childhood pneumonia in the Gambia, West Africa: findings from a pilot study.

    PubMed

    Laiakis, Evagelia C; Morris, Gerard A J; Fornace, Albert J; Howie, Stephen R C

    2010-09-09

    Pneumonia remains the leading cause of death in young children globally and improved diagnostics are needed to better identify cases and reduce case fatality. Metabolomics, a rapidly evolving field aimed at characterizing metabolites in biofluids, has the potential to improve diagnostics in a range of diseases. The objective of this pilot study is to apply metabolomic analysis to childhood pneumonia to explore its potential to improve pneumonia diagnosis in a high-burden setting. Eleven children with World Health Organization (WHO)-defined severe pneumonia of non-homogeneous aetiology were selected in The Gambia, West Africa, along with community controls. Metabolomic analysis of matched plasma and urine samples was undertaken using Ultra Performance Liquid Chromatography (UPLC) coupled to Time-of-Flight Mass Spectrometry (TOFMS). Biomarker extraction was done using SIMCA-P+ and Random Forests (RF). 'Unsupervised' (blinded) data were analyzed by Principal Component Analysis (PCA), while 'supervised' (unblinded) analysis was by Partial Least Squares-Discriminant Analysis (PLS-DA) and Orthogonal Projection to Latent Structures (OPLS). Potential markers were extracted from S-plots constructed following analysis with OPLS, and markers were chosen based on their contribution to the variation and correlation within the data set. The dataset was additionally analyzed with the machine-learning algorithm RF in order to address issues of model overfitting and markers were selected based on their variable importance ranking. Unsupervised PCA analysis revealed good separation of pneumonia and control groups, with even clearer separation of the groups with PLS-DA and OPLS analysis. Statistically significant differences (p<0.05) between groups were seen with the following metabolites: uric acid, hypoxanthine and glutamic acid were higher in plasma from cases, while L-tryptophan and adenosine-5'-diphosphate (ADP) were lower; uric acid and L-histidine were lower in urine from cases. The key limitation of this study is its small size. Metabolomic analysis clearly distinguished severe pneumonia patients from community controls. The metabolites identified are important for the host response to infection through antioxidant, inflammatory and antimicrobial pathways, and energy metabolism. Larger studies are needed to determine whether these findings are pneumonia-specific and to distinguish organism-specific responses. Metabolomics has considerable potential to improve diagnostics for childhood pneumonia.

  19. Polar lows in the Labrador Sea based on the Moravian historical collection of meteorological data in Labrador and Greenland since the mid-18th century

    NASA Astrophysics Data System (ADS)

    Matiu, Michael; Lüdecke, Cornelia; Newell, Dianne; Menzel, Annette

    2017-04-01

    Systematically recorded daily instrumental meteorological data from the Moravian Brethern mission stations located on the east coast of Labrador and southwest coast of Greenland during the 18th, 19th and 20th centuries provide a most valuable source of historical climatological data in the Subarctic region. Although the collections of original data themselves are both scattered in physical location and fragmented in their coverage of time and place, and large amounts still need to be digitized, this data provides large potential for studying climate extreme events in this remote region. In this paper, we study polar lows (PLs). They are high-latitude intense maritime cyclones with only 200 to 1000 km in diameter, a short life-time of only two days, mostly occurring in wintertime, e.g. in the Norwegian, Barents, but also Labrador and Greenland seas. Due to high wind speeds exceeding 30 m s-1, high ocean waves and heavy snow showers, they constitute a major hazard risk difficult to forecast. Published papers indicate that with future climate warming, the frequency of PLs is predicted to decrease; however, climatologies of PLs for the last 7 decades (1948-2009) based on reanalysis data and satellite remote sensing products did not indicate any change in their mean annual frequency. In our digitized long-term dataset (1846-2015) for one Moravian station at Nain, Labrador, we identified PLs as follows: If there was a drop in air pressure of at least 30hPa during 48 hours, we marked it as a preliminary event. Then, each preliminary event was checked manually to see whether additional changes in air pressure, air temperature, wind direction and wind speed matched the known textbook example. If more than two variables showed the required pattern, the preliminary event was identified as PL. Our analysis revealed an average frequency of 5.6 PLs yr-1 for 1846-1853, 5.2 PLs yr-1(1882-1913), and 4.4 PLs yr-1 (1926-1939), largely confirming long-term averages for the more recent periods 1948-2005 (4.9 PLs yr-1) as well as 1977-1994 (4.4 PLs yr-1) reported in the literature. Once more data from the historical Moravian collection is digitized, it may be checked whether there is a stable tendency of more annual PLs in the mid-19th century compared to recent numbers of this extreme event. With respect of the boundary conditions in which PLs are developing, our data from the mid-19th century cannot confirm recent findings that the occurrence of PLs is mainly associated with NAO+ phases. Due to additional concurrently operating Moravian climate stations at the eastern Labrador and southwestern Greenland coasts, the moving of PLs and PL clusters over the Labrador Sea and southern Davis Strait can be confirmed based on this unique historical subarctic climate data.

  20. Is Efficacy of the Anti-Cd20 Antibody Rituximab Preventing Hemolysis Due to Passenger Lymphocyte Syndrome?

    PubMed

    Tsujimura, Kazuma; Ishida, Hideki; Tanabe, Kazunari

    2017-02-01

    Passenger lymphocyte syndrome (PLS) often occurs after ABO-mismatched solid organ and/or bone marrow transplantation between a donor and recipient. Viable donor B-lymphocytes transferred during organ transplantation produce antibodies against recipient red cell antigens, leading to hemolysis. The incidence of PLS has been reported to be around 9% after renal transplantation. A previous report showed that rituximab (Rit) was useful for treatment of PLS in allogeneic stem cell transplantation, bowel transplant and severe cases of hemolysis. However, the effectiveness of Rit in preventing PLS after renal transplantation has not yet been evaluated. The participants in this study were 85 patients who had undergone ABO-mismatched renal transplantation from January 2005 to April 2013. Rit was administered to these patients before transplantation. None of the patients that received Rit treatment developed PLS. Thus administration of Rit before transplantation effectively controlled the production of antibodies by B-lymphocytes, which probably prevented the development of PLS. © 2016 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  1. Latent Heating Structures Derived from TRMM

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R.; Hou, A.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.; Olson, W.; Satoh, S.

    2004-01-01

    Rainfall is the fundamental variable within the Earth's hydrological cycle because it is both the main forcing term leading to variations in continental and oceanic surface water budgets. The vertical distribution of latent heat release, which is accompanied with rain, modulates large-scale meridional and zonal circulations within the tropics as well as modifying the energetic efficiency of mid-latitude weather systems. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water.This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission 0. The TRMM observatory, whose development was a joint US-Japan space endeavor, was launched in November 1997. TRMM measurements provide an accurate account of rainfall over the global tropics, information which can be .used to estimate the four-dimensional structure of latent heating across the entire tropical and sub-tropical regions. Various algorithm methodologies for estimating latent heating based on rain rate measurements from TRMM observations are described. The strengths and weaknesses of these algorithms, as well as the latent heating products generated by these algorithms, are also discussed along with validation analyses of the products. The investigation paper provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, and concludes with remarks designed to stimulate further research on latent heating retrieval

  2. Use of partial least squares regression for the multivariate calibration of hazardous air pollutants in open-path FT-IR spectrometry

    NASA Astrophysics Data System (ADS)

    Hart, Brian K.; Griffiths, Peter R.

    1998-06-01

    Partial least squares (PLS) regression has been evaluated as a robust calibration technique for over 100 hazardous air pollutants (HAPs) measured by open path Fourier transform infrared (OP/FT-IR) spectrometry. PLS has the advantage over the current recommended calibration method of classical least squares (CLS), in that it can look at the whole useable spectrum (700-1300 cm-1, 2000-2150 cm-1, and 2400-3000 cm-1), and detect several analytes simultaneously. Up to one hundred HAPs synthetically added to OP/FT-IR backgrounds have been simultaneously calibrated and detected using PLS. PLS also has the advantage in requiring less preprocessing of spectra than that which is required in CLS calibration schemes, allowing PLS to provide user independent real-time analysis of OP/FT-IR spectra.

  3. Developmental changes in leaf phenolics composition from three artichoke cvs. (Cynara scolymus) as determined via UHPLC-MS and chemometrics.

    PubMed

    El Senousy, Amira S; Farag, Mohamed A; Al-Mahdy, Dalia A; Wessjohann, Ludger A

    2014-12-01

    The metabolomic differences in phenolics from leaves derived from 3 artichoke cultivars (Cynara scolymus): American Green Globe, French Hyrious and Egyptian Baladi, collected at different developmental stages, were assessed using UHPLC-MS coupled to chemometrics. Ontogenic changes were considered as leaves were collected at four different time intervals and positions (top and basal) during artichoke development. Unsupervised principal component analysis (PCA) and supervised orthogonal projection to latent structures-discriminant analysis (O2PLS-DA) were used for comparing and classification of samples harvested from different cultivars at different time points and positions. A clear separation among the three investigated cultivars was revealed, with the American Green Globe samples found most enriched in caffeic acid conjugates and flavonoids vs. other cultivars. Furthermore, these metabolites also showed a marked effect on the discrimination between leaf samples from cultivars harvested at different positions, regardless of the plant age. Metabolite absolute quantifications further confirmed that discrimination was mostly influenced by phenolic compounds, namely caffeoylquinic acids and flavonoids. This study demonstrates an effect of artichoke leaf position, regardless of plant age, on its secondary metabolites composition. To the best of our knowledge, this is the first report for compositional differences among artichoke leaves, based on their positions, via a metabolomic approach and suggesting that top positioned artichoke leaves present a better source of caffeoylquinic acids, compared to basal ones. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Radioecological modelling of Polonium-210 and Caesium-137 in lichen-reindeer-man and top predators.

    PubMed

    Persson, Bertil R R; Gjelsvik, Runhild; Holm, Elis

    2018-06-01

    This work deals with analysis and modelling of the radionuclides 210 Pb and 210 Po in the food-chain lichen-reindeer-man in addition to 210 Po and 137 Cs in top predators. By using the methods of Partial Least Square Regression (PLSR) the atmospheric deposition of 210 Pb and 210 Po is predicted at the sample locations. Dynamic modelling of the activity concentration with differential equations is fitted to the sample data. Reindeer lichen consumption, gastrointestinal absorption, organ distribution and elimination is derived from information in the literature. Dynamic modelling of transfer of 210 Pb and 210 Po to reindeer meat, liver and bone from lichen consumption, fitted well with data from Sweden and Finland from 1966 to 1971. The activity concentration of 210 Pb in the skeleton in man is modelled by using the results of studying the kinetics of lead in skeleton and blood in lead-workers after end of occupational exposure. The result of modelling 210 Pb and 210 Po activity in skeleton matched well with concentrations of 210 Pb and 210 Po in teeth from reindeer-breeders and autopsy bone samples in Finland. The results of 210 Po and 137 Cs in different tissues of wolf, wolverine and lynx previously published, are analysed with multivariate data processing methods such as Principal Component Analysis PCA, and modelled with the method of Projection to Latent Structures, PLS, or Partial Least Square Regression PLSR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Dynamic metabolic response of mice to acute mequindox exposure.

    PubMed

    Zhao, Xiu-Ju; Huang, Chongyang; Lei, Hehua; Nie, Xiu; Tang, Huiru; Wang, Yulan

    2011-11-04

    Mequindox is used as a veterinary antibiotic drug. As part of systematic investigations into mequindox as a veterinary medicine and its subsequent applications in food safety, we conducted the investigation to assess the metabolic response of mice to mequindox using metabonomics, which combines NMR metabolic profiles of biofluids or tissues and pattern recognition data analysis. In this study, we delivered a single dose of mequindox to mice with dosage levels of 15, 75, and 350 mg/kg body weight and collected urine samples over a 7 day period, as well as plasma and liver tissues at 7 days postdose. Principal components analysis (PCA) and orthogonal projection to latent structure discriminant analysis (O-PLS-DA) were performed on (1)H NMR spectra of biofluids and liver, showing that low dose levels of mequindox exposure had no adverse effects, consistent with histological observations of the liver. High and moderate levels of mequindox exposure caused suppression of glycolysis and stimulation of fatty acid oxidation accompanied with increased levels of oxidative stress. Our metabonomic analyses also showed disruption of amino acid metabolism, consistent with liver damage observed from histopathological examinations. Furthermore, mequindox perturbed gut microbial activity manifested in the altered excretion of urinary trimethylamine (TMA), trimethylamine-N-oxide (TMAO), hippurate, phenylacetylglycine (PAG), and phenylacetate. The putative gut microbial function may also contribute to the assembly and secretion of very-low-density lipoproteins from the liver to the plasma. Our work provides important insights on the metabolic responses of mequindox.

  6. Assessment of Various Organic Matter Properties by Infrared Reflectance Spectroscopy of Sediments and Filters

    NASA Astrophysics Data System (ADS)

    Alaoui, G.; Leger, M.; Gagne, J.; Tremblay, L.

    2009-05-01

    The goal of this work was to evaluate the capability of infrared reflectance spectroscopy for a fast quantification of the elemental and molecular compositions of sedimentary and particulate organic matter (OM). A partial least-squares (PLS) regression model was used for analysis and values were compared to those obtained by traditional methods (i.e., elemental, humic and HPLC analyses). PLS tools are readily accessible from software such as GRAMS (Thermo-Fisher) used in spectroscopy. This spectroscopic-chemometric approach has several advantages including its rapidity and use of whole unaltered samples. To predict properties, a set of infrared spectra from representative samples must first be fitted to form a PLS calibration model. In this study, a large set (180) of sediments and particles on GFF filters from the St. Lawrence estuarine system were used. These samples are very heterogenous (e.g., various tributaries, terrigenous vs. marine, events such as landslides and floods) and thus represent a challenging test for PLS prediction. For sediments, the infrared spectra were obtained with a diffuse reflectance, or DRIFT, accessory. Sedimentary carbon, nitrogen, humic substance contents as well as humic substance proportions in OM and N:C ratios were predicted by PLS. The relative root mean square error of prediction (%RMSEP) for these properties were between 5.7% (humin content) and 14.1% (total humic substance yield) using the cross-validation, or leave-one out, approach. The %RMSEP calculated by PLS for carbon content was lower with the PLS model (7.6%) than with an external calibration method (11.7%) (Tremblay and Gagné, 2002, Anal. Chem., 74, 2985). Moreover, the PLS approach does not require the extraction of POM needed in external calibration. Results highlighted the importance of using a PLS calibration set representative of the unknown samples (e.g., same area). For filtered particles, the infrared spectra were obtained using a novel approach based on attenuated total reflectance, or ATR, allowing the direct analysis of the filters. In addition to carbon and nitrogen contents, amino acid and muramic acid (a bacterial biomarker) yields were predicted using PLS. Calculated %RMSEP varied from 6.4% (total amino acid content) to 18.6% (muramic acid content) with cross-validation. PLS regression modeling does not require a priori knowledge of the spectral bands associated with the properties to be predicted. In turn, the spectral regions that give good PLS predictions provided valuable information on band assignment and geochemical processes. For instance, nitrogen and humin contents were greatly determined by an absorption band caused by aluminosilicate OH group. This supports the idea that OM-clay interactions, important in humin formation and OM preservation, are mediated by nitrogen-containing groups.

  7. Investigating the Latent Structure of the Teacher Efficacy Scale

    ERIC Educational Resources Information Center

    Wagler, Amy; Wagler, Ron

    2013-01-01

    This article reevaluates the latent structure of the Teacher Efficacy Scale using confirmatory factor analyses (CFAs) on a sample of preservice teachers from a public university in the U.S. Southwest. The fit of a proposed two-factor CFA model with an error correlation structure consistent with internal/ external locus of control is compared to…

  8. A Systematic Approach for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling

    ERIC Educational Resources Information Center

    Ding, Cherng G.; Jane, Ten-Der; Wu, Chiu-Hui; Lin, Hang-Rung; Shen, Chih-Kang

    2017-01-01

    It has been pointed out in the literature that misspecification of the level-1 error covariance structure in latent growth modeling (LGM) has detrimental impacts on the inferences about growth parameters. Since correct covariance structure is difficult to specify by theory, the identification needs to rely on a specification search, which,…

  9. PREDICTION OF MOLECULAR PROPERTIES WITH MID-INFRARED SPECTRA AND INTERFEROGRAMS

    EPA Science Inventory

    We have built infrared spectroscopy-based partial least squares (PLS) models for molecular polarizabilities using a 97 member training set and a 59 member independent prediction set. These 156 compounds span a very wide range of chemical structure. Our goal was to use this well...

  10. Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm.

    PubMed

    Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan

    2012-11-01

    The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV=0.0776, R(c)=0.9777, RMSEP=0.0963, and R(p)=0.9686 for pH model; RMSECV=1.3544% w/w, R(c)=0.8871, RMSEP=1.4946% w/w, and R(p)=0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Low Cost Synthesis Method of Two-Dimensional Titanium Carbide MXene

    NASA Astrophysics Data System (ADS)

    Rasid, Z. A. M.; Omar, M. F.; Nazeri, M. F. M.; A'ziz, M. A. A.; Szota, M.

    2017-06-01

    A layered MAX phase of Ti3AlC2 was synthesized through pressureless sintering (PLS) the initial powder of TiH2/Al/C without preliminary dehydrogenation under argon atmosphere at 1350°C. An elegant exfoliations approach was used to prepare a two-dimensional (2D) metal carbide Ti3C2 from layered MAX phase by removing A layer by chemical etching. The use of PLS method instead of any pressure assistance method such as hot isostatic press (HIP) and hot press (HP) lowered the cost of synthesis. Recently, some unique potential of Ti3C2 has been discovered leads to the proposal of potential application, mostly on electronic devices. Morphology and structural analysis was used to confirm the successful of this research.

  12. Integrated polarization beam splitter with relaxed fabrication tolerances.

    PubMed

    Pérez-Galacho, D; Halir, R; Ortega-Moñux, A; Alonso-Ramos, C; Zhang, R; Runge, P; Janiak, K; Bach, H-G; Steffan, A G; Molina-Fernández, Í

    2013-06-17

    Polarization handling is a key requirement for the next generation of photonic integrated circuits (PICs). Integrated polarization beam splitters (PBS) are central elements for polarization management, but their use in PICs is hindered by poor fabrication tolerances. In this work we present a fully passive, highly fabrication tolerant polarization beam splitter, based on an asymmetrical Mach-Zehnder interferometer (MZI) with a Si/SiO(2) Periodic Layer Structure (PLS) on top of one of its arms. By engineering the birefringence of the PLS we are able to design the MZI arms so that sensitivities to the most critical fabrication errors are greatly reduced. Our PBS design tolerates waveguide width variations of 400nm maintaining a polarization extinction ratio better than 13dB in the complete C-Band.

  13. Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography.

    PubMed

    D'Archivio, Angelo Antonio; Incani, Angela; Ruggieri, Fabrizio

    2011-01-01

    In this paper, we use a quantitative structure-retention relationship (QSRR) method to predict the retention times of polychlorinated biphenyls (PCBs) in comprehensive two-dimensional gas chromatography (GC×GC). We analyse the GC×GC retention data taken from the literature by comparing predictive capability of different regression methods. The various models are generated using 70 out of 209 PCB congeners in the calibration stage, while their predictive performance is evaluated on the remaining 139 compounds. The two-dimensional chromatogram is initially estimated by separately modelling retention times of PCBs in the first and in the second column ((1) t (R) and (2) t (R), respectively). In particular, multilinear regression (MLR) combined with genetic algorithm (GA) variable selection is performed to extract two small subsets of predictors for (1) t (R) and (2) t (R) from a large set of theoretical molecular descriptors provided by the popular software Dragon, which after removal of highly correlated or almost constant variables consists of 237 structure-related quantities. Based on GA-MLR analysis, a four-dimensional and a five-dimensional relationship modelling (1) t (R) and (2) t (R), respectively, are identified. Single-response partial least square (PLS-1) regression is alternatively applied to independently model (1) t (R) and (2) t (R) without the need for preliminary GA variable selection. Further, we explore the possibility of predicting the two-dimensional chromatogram of PCBs in a single calibration procedure by using a two-response PLS (PLS-2) model or a feed-forward artificial neural network (ANN) with two output neurons. In the first case, regression is carried out on the full set of 237 descriptors, while the variables previously selected by GA-MLR are initially considered as ANN inputs and subjected to a sensitivity analysis to remove the redundant ones. Results show PLS-1 regression exhibits a noticeably better descriptive and predictive performance than the other investigated approaches. The observed values of determination coefficients for (1) t (R) and (2) t (R) in calibration (0.9999 and 0.9993, respectively) and prediction (0.9987 and 0.9793, respectively) provided by PLS-1 demonstrate that GC×GC behaviour of PCBs is properly modelled. In particular, the predicted two-dimensional GC×GC chromatogram of 139 PCBs not involved in the calibration stage closely resembles the experimental one. Based on the above lines of evidence, the proposed approach ensures accurate simulation of the whole GC×GC chromatogram of PCBs using experimental determination of only 1/3 retention data of representative congeners.

  14. Grain Oriented Perovskite Layer Structure Ceramics for High-Temperature Piezoelectric Applications

    NASA Astrophysics Data System (ADS)

    Fuierer, Paul Anton

    The perovskite layer structure (PLS) compounds have the general formula (A^{2+}) _2(B^{5+})_2 O_7, or (A^ {3+})_2(B^{4+ })_2O_7, and crystallize in a very anisotropic layered structure consisting of parallel slabs made up of perovskite units. Several of these compounds possess the highest Curie temperatures (T_{rm c} ) of any known ferroelectrics. Two examples are Sr_2Nb_2O _7 with T_{rm c} of 1342^circC, and La_2Ti_2O _7 with T_{rm c} of 1500^circC. This thesis is an investigation of PLS ceramics and their feasibility as a high temperature transducer material. Piezoelectricity in single crystals has been measured, but the containerless float zone apparatus necessary to grow high quality crystals of these refractory compounds is expensive and limited to a small number of research groups. Previous attempts to pole polycrystalline Sr_2Nb _2O_7 have failed, and to this point piezoelectricity has been absent. The initiative taken in this research was to investigate PLS ceramics by way of composition and processing schemes such that polycrystalline bodies could be electrically poled. The ultimate objective then was to demonstrate piezoelectricity in PLS ceramics, especially at high temperatures. Donor-doping of both La_2Ti _2O_7 and Sr_2Nb_2O _7 was found to increase volume resistivities at elevated temperatures, an important parameter to consider during the poling process. Sr_2Ta _2O_7 (T _{rm c} = -107 ^circC) was used to make solid solution compositions with moderately high Curie temperatures, of about 850^circC, and lower coercive fields. A hot-forging technique was employed to produce ceramics with high density (>99% of theoretical) and high degree of grain orientation (>90%). Texturing was characterized by x-ray diffraction and microscopy. Considerable anisotropy was observed in physical and electrical properties, including thermal expansion, resistivity, dielectric constant, and polarization. The direction perpendicular to the forging axis proved to be the ferroelectric "easy" direction, indicating that the polar axis lies in the plane of the plate-like grains. Hot-forged samples were poled at 40 to 50 KV/cm at 200^circC. Several compounds in the La_2Ti_2O _7-Sr_2Nb _2O_7-Sr _2Ta_2O_7 ternary system were shown to be piezoelectric. From appropriately oriented cuts, the dielectric, elastic, and piezoelectric coefficients were determined by the resonance method. Relative to commercial piezoelectric ceramics such as Pb(ZrTi)O_3, hot-forged PLS ceramics were found to have high frequency constants, low compliance, low electromechanical coupling, low piezoelectric coefficients, and high mechanical quality factors. For Sr_2(Nb_{0.5 }Ta_{0.5})_2 O_7, N_{32 } = 2216 Hz-m, s_{32} = 8.37 times 10^ {-12} m^2/N, k _{32} = 3.60%, d _{32} = 2.40 pC/N, and Q _{rm m} = 5290. This material was also shown to resist depoling when exposed to temperatures as high as 650^circC. Hot-forged PLS compounds offer a new family of ferroelectric ceramics that may prove to be useful as high temperature materials for electronic transducers or filters.

  15. Multilevel Higher-Order Item Response Theory Models

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung

    2014-01-01

    In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…

  16. Nonlinear and Quasi-Simplex Patterns in Latent Growth Models

    ERIC Educational Resources Information Center

    Bianconcini, Silvia

    2012-01-01

    In the SEM literature, simplex and latent growth models have always been considered competing approaches for the analysis of longitudinal data, even if they are strongly connected and both of specific importance. General dynamic models, which simultaneously estimate autoregressive structures and latent curves, have been recently proposed in the…

  17. Confidence Intervals for a Semiparametric Approach to Modeling Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Losardo, Diane; Bauer, Daniel J.

    2011-01-01

    Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…

  18. Estimating Latent Variable Interactions with Nonnormal Observed Data: A Comparison of Four Approaches

    ERIC Educational Resources Information Center

    Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.

    2012-01-01

    A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…

  19. The Impact of Noninvariant Intercepts in Latent Means Models

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.

    2013-01-01

    Latent means methods such as multiple-indicator multiple-cause (MIMIC) and structured means modeling (SMM) allow researchers to determine whether or not a significant difference exists between groups' factor means. Strong invariance is typically recommended when interpreting latent mean differences. The extent of the impact of noninvariant…

  20. Dynamic Latent Trait Models with Mixed Hidden Markov Structure for Mixed Longitudinal Outcomes.

    PubMed

    Zhang, Yue; Berhane, Kiros

    2016-01-01

    We propose a general Bayesian joint modeling approach to model mixed longitudinal outcomes from the exponential family for taking into account any differential misclassification that may exist among categorical outcomes. Under this framework, outcomes observed without measurement error are related to latent trait variables through generalized linear mixed effect models. The misclassified outcomes are related to the latent class variables, which represent unobserved real states, using mixed hidden Markov models (MHMM). In addition to enabling the estimation of parameters in prevalence, transition and misclassification probabilities, MHMMs capture cluster level heterogeneity. A transition modeling structure allows the latent trait and latent class variables to depend on observed predictors at the same time period and also on latent trait and latent class variables at previous time periods for each individual. Simulation studies are conducted to make comparisons with traditional models in order to illustrate the gains from the proposed approach. The new approach is applied to data from the Southern California Children Health Study (CHS) to jointly model questionnaire based asthma state and multiple lung function measurements in order to gain better insight about the underlying biological mechanism that governs the inter-relationship between asthma state and lung function development.

  1. Selection of latent variables for multiple mixed-outcome models

    PubMed Central

    ZHOU, LING; LIN, HUAZHEN; SONG, XINYUAN; LI, YI

    2014-01-01

    Latent variable models have been widely used for modeling the dependence structure of multiple outcomes data. However, the formulation of a latent variable model is often unknown a priori, the misspecification will distort the dependence structure and lead to unreliable model inference. Moreover, multiple outcomes with varying types present enormous analytical challenges. In this paper, we present a class of general latent variable models that can accommodate mixed types of outcomes. We propose a novel selection approach that simultaneously selects latent variables and estimates parameters. We show that the proposed estimator is consistent, asymptotically normal and has the oracle property. The practical utility of the methods is confirmed via simulations as well as an application to the analysis of the World Values Survey, a global research project that explores peoples’ values and beliefs and the social and personal characteristics that might influence them. PMID:27642219

  2. Baseline correction combined partial least squares algorithm and its application in on-line Fourier transform infrared quantitative analysis.

    PubMed

    Peng, Jiangtao; Peng, Silong; Xie, Qiong; Wei, Jiping

    2011-04-01

    In order to eliminate the lower order polynomial interferences, a new quantitative calibration algorithm "Baseline Correction Combined Partial Least Squares (BCC-PLS)", which combines baseline correction and conventional PLS, is proposed. By embedding baseline correction constraints into PLS weights selection, the proposed calibration algorithm overcomes the uncertainty in baseline correction and can meet the requirement of on-line attenuated total reflectance Fourier transform infrared (ATR-FTIR) quantitative analysis. The effectiveness of the algorithm is evaluated by the analysis of glucose and marzipan ATR-FTIR spectra. BCC-PLS algorithm shows improved prediction performance over PLS. The root mean square error of cross-validation (RMSECV) on marzipan spectra for the prediction of the moisture is found to be 0.53%, w/w (range 7-19%). The sugar content is predicted with a RMSECV of 2.04%, w/w (range 33-68%). Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Etiological Beliefs, Treatments, Stigmatizing Attitudes toward Schizophrenia. What Do Italians and Israelis Think?

    PubMed

    Mannarini, Stefania; Boffo, Marilisa; Rossi, Alessandro; Balottin, Laura

    2017-01-01

    Background: Although scientific research on the etiology of mental disorders has improved the knowledge of biogenetic and psychosocial aspects related to the onset of mental illness, stigmatizing attitudes and behaviors are still very prevalent and pose a significant social problem. Aim: The aim of this study was to deepen the knowledge of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics, such as culture and religion of the perceiver. More precisely, the main purpose is the definition of a structure of variables, namely perceived dangerousness, social closeness, and avoidance of the ill person, together with the beliefs about the best treatment to be undertaken and the sick person' gender, capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned. Method: The study involved 305 university students, 183 from the University of Padua, Italy, and 122 from the University of Haifa, Israel. For the analyses, a latent class analysis (LCA) approach was chosen to identify a latent categorical structure accounting for the covariance between the observed variables. Such a latent structure was expected to be moderated by cultural background (Italy versus Israel) and religious beliefs, whereas causal beliefs, recommended treatment, dangerousness, social closeness, and public avoidance were the manifest variables, namely the observed indicators of the latent variable. Results: Two sets of results were obtained. First, the relevance of the manifest variables as indicators of the hypothesized latent variable was highlighted. Second, a two-latent-class categorical dimension represented by prejudicial attitudes, causal beliefs, and treatments concerning schizophrenia was found. Specifically, the differential effects of the two cultures and the religious beliefs on the latent structure and their relations highlighted the relevance of the observed variables as indicators of the expected latent variable. Conclusion: The present study contributes to the improvement of the understanding of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics of the perceiver. The definition of a structure of variables capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned was achieved from a cross-cultural perspective.

  4. 45 CFR 303.70 - Procedures for submissions to the State Parent Locator Service (State PLS) or the Federal Parent...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 2 2013-10-01 2012-10-01 true Procedures for submissions to the State Parent Locator Service (State PLS) or the Federal Parent Locator Service (Federal PLS). 303.70 Section 303.70 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT...

  5. 45 CFR 303.70 - Procedures for submissions to the State Parent Locator Service (State PLS) or the Federal Parent...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false Procedures for submissions to the State Parent Locator Service (State PLS) or the Federal Parent Locator Service (Federal PLS). 303.70 Section 303.70 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT...

  6. 45 CFR 303.70 - Procedures for submissions to the State Parent Locator Service (State PLS) or the Federal Parent...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 2 2012-10-01 2012-10-01 false Procedures for submissions to the State Parent Locator Service (State PLS) or the Federal Parent Locator Service (Federal PLS). 303.70 Section 303.70 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT...

  7. 45 CFR 303.70 - Procedures for submissions to the State Parent Locator Service (State PLS) or the Federal Parent...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 2 2014-10-01 2012-10-01 true Procedures for submissions to the State Parent Locator Service (State PLS) or the Federal Parent Locator Service (Federal PLS). 303.70 Section 303.70 Public Welfare Regulations Relating to Public Welfare OFFICE OF CHILD SUPPORT ENFORCEMENT (CHILD SUPPORT...

  8. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS.

    PubMed

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-01-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Late-onset Papillon-Lefèvre syndrome without alteration of the cathepsin C gene.

    PubMed

    Pilger, Ulrike; Hennies, Hans Christian; Truschnegg, Astrid; Aberer, Elisabeth

    2003-11-01

    Mutations in the cathepsin C gene have recently been detected in Papillon-Lefèvre syndrome (PLS). Until now, 5 cases with the late-onset variation of this disease have been reported in the literature. The genetic background of this type of PLS is still unknown. We describe a 46-year-old woman with late-onset transgredient palmar hyperkeratosis and a 10-year history of severe periodontal disease. Histology of skin biopsy specimens revealed a psoriasiform pattern. Dental examination showed severe gingival inflammation with loss of alveolar bone. Dental plaque investigated by a polymerase chain reaction method revealed DNA signals of 5 different dental bacteria. DNA from EDTA blood was investigated for mutations in the cathepsin C gene by polymerase chain reaction analysis and direct sequencing. A silent variation in the codon for proline-459 was detected but interpreted as a polymorphism of this gene. All genetic linkage and mutation studies for PLS performed so far have shown that PLS is genetically homogeneous. Our patient with late-onset variation of PLS, however, did not show a mutation in the cathepsin C gene. Thus, we suspect that there is another genetic cause for the late-onset forms of PLS.

  10. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-10-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.

  11. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging

    NASA Astrophysics Data System (ADS)

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A. C.; Huck, Christian W.; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.

  12. Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.

    2003-01-01

    The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…

  13. A Model of Young Children's Social Cognition: Linkages Between Latent Structures and Discrete Processing

    ERIC Educational Resources Information Center

    Meece, Darrell

    1999-01-01

    This study proposes a model of associations between young children's social cognition and their social behavior with peers. In this model, two latent structures -children's representations of peer relationships and emotion regulation -- predict children's competent, prosocial, withdrawn, and aggressive behavior. Moreover, the model proposes that…

  14. The Latent Structure of Secure Base Script Knowledge

    ERIC Educational Resources Information Center

    Waters, Theodore E. A.; Fraley, R. Chris; Groh, Ashley M.; Steele, Ryan D.; Vaughn, Brian E.; Bost, Kelly K.; Veríssimo, Manuela; Coppola, Gabrielle; Roisman, Glenn I.

    2015-01-01

    There is increasing evidence that attachment representations abstracted from childhood experiences with primary caregivers are organized as a cognitive script describing secure base use and support (i.e., the "secure base script"). To date, however, the latent structure of secure base script knowledge has gone unexamined--this despite…

  15. Nonlinear Structured Growth Mixture Models in M"plus" and OpenMx

    ERIC Educational Resources Information Center

    Grimm, Kevin J.; Ram, Nilam; Estabrook, Ryne

    2010-01-01

    Growth mixture models (GMMs; B. O. Muthen & Muthen, 2000; B. O. Muthen & Shedden, 1999) are a combination of latent curve models (LCMs) and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. GMMs are often fit with linear, latent basis, multiphase, or polynomial change models…

  16. Use of Latent Profile Analysis in Studies of Gifted Students

    ERIC Educational Resources Information Center

    Mammadov, Sakhavat; Ward, Thomas J.; Cross, Jennifer Riedl; Cross, Tracy L.

    2016-01-01

    To date, in gifted education and related fields various conventional factor analytic and clustering techniques have been used extensively for investigation of the underlying structure of data. Latent profile analysis is a relatively new method in the field. In this article, we provide an introduction to latent profile analysis for gifted education…

  17. Software for the Application of Discrete Latent Structure Models to Item Response Data.

    ERIC Educational Resources Information Center

    Haertel, Edward H.

    These FORTRAN programs and MATHEMATICA routines were developed in the course of a research project titled "Achievement and Assessment in School Science: Modeling and Mapping Ability and Performance." Their use is described in other publications from that project, including "Latent Traits or Latent States? The Role of Discrete Models…

  18. Visualizing Confidence Bands for Semiparametrically Estimated Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Chalmers, R. Philip; Kok, Bethany E.; Losardo, Diane

    2015-01-01

    Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural…

  19. Higher-Order Item Response Models for Hierarchical Latent Traits

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming

    2013-01-01

    Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…

  20. Space-time latent component modeling of geo-referenced health data.

    PubMed

    Lawson, Andrew B; Song, Hae-Ryoung; Cai, Bo; Hossain, Md Monir; Huang, Kun

    2010-08-30

    Latent structure models have been proposed in many applications. For space-time health data it is often important to be able to find the underlying trends in time, which are supported by subsets of small areas. Latent structure modeling is one such approach to this analysis. This paper presents a mixture-based approach that can be applied to component selection. The analysis of a Georgia ambulatory asthma county-level data set is presented and a simulation-based evaluation is made. Copyright (c) 2010 John Wiley & Sons, Ltd.

  1. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans.

  2. The effects of rurality on substance use disorder diagnosis: A multiple-groups latent class analysis.

    PubMed

    Brooks, Billy; McBee, Matthew; Pack, Robert; Alamian, Arsham

    2017-05-01

    Rates of accidental overdose mortality from substance use disorder (SUD) have risen dramatically in the United States since 1990. Between 1999 and 2004 alone rates increased 62% nationwide, with rural overdose mortality increasing at a rate 3 times that seen in urban populations. Cultural differences between rural and urban populations (e.g., educational attainment, unemployment rates, social characteristics, etc.) affect the nature of SUD, leading to disparate risk of overdose across these communities. Multiple-groups latent class analysis with covariates was applied to data from the 2011 and 2012 National Survey on Drug Use and Health (n=12.140) to examine potential differences in latent classifications of SUD between rural and urban adult (aged 18years and older) populations. Nine drug categories were used to identify latent classes of SUD defined by probability of diagnosis within these categories. Once the class structures were established for rural and urban samples, posterior membership probabilities were entered into a multinomial regression analysis of socio-demographic predictors' association with the likelihood of SUD latent class membership. Latent class structures differed across the sub-groups, with the rural sample fitting a 3-class structure (Bootstrap Likelihood Ratio Test P value=0.03) and the urban fitting a 6-class model (Bootstrap Likelihood Ratio Test P value<0.0001). Overall the rural class structure exhibited less diversity in class structure and lower prevalence of SUD in multiple drug categories (e.g. cocaine, hallucinogens, and stimulants). This result supports the hypothesis that different underlying elements exist in the two populations that affect SUD patterns, and thus can inform the development of surveillance instruments, clinical services, and prevention programming tailored to specific communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Altered brainstem auditory evoked potentials in a rat central sensitization model are similar to those in migraine

    PubMed Central

    Arakaki, Xianghong; Galbraith, Gary; Pikov, Victor; Fonteh, Alfred N.; Harrington, Michael G.

    2014-01-01

    Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 KHz auditory stimulation. At 8 KHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2 hours after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 KHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2 hours after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research. PMID:24680742

  4. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans

    PubMed Central

    Geng, Weitao; Yang, Chao; Gu, Yanyan; Liu, Ruihua; Guo, Wenbin; Wang, Xiaomeng; Song, Cunjiang; Wang, Shufang

    2014-01-01

    ε-Poly-L-lysine (ε-PL), showing a wide range of antimicrobial activity, is now industrially produced as a food additive by a fermentation process. A new strain capable of producing ε-PL was isolated from a soil sample collected from Gutian, Fujian Province, China. Based on its morphological and biochemical features and phylogenetic similarity with 16S rRNA gene, the strain was identified as Streptomyces albulus and named NK660. The yield of ε-PL in 30 l fed-batch fermentation with pH control was 4.2 g l−1 when using glycerol as the carbon source. The structure of ε-PL was determined by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS). Previous studies have shown that the antimicrobial activity of ε-PL is dependent on its molecular size. In this study, the polymerization degree of the ε-PL produced by strain NK660 ranged from 19 to 33 L-lysine monomers, with the main component consisting of 24–30 L-lysine monomers, which implied that the ε-PL might have higher antimicrobial activity. Furthermore, the ε-PL synthetase gene (pls) was cloned from strain NK660 by genome walking. The pls gene with its native promoter was heterologously expressed in Streptomyces lividans ZX7, and the recombinant strain was capable of synthesizing ε-PL. Here, we demonstrated for the first time heterologous expression of the pls gene in S. lividans. The heterologous expression of pls gene in S. lividans will open new avenues for elucidating the molecular mechanisms of ε-PL synthesis. PMID:24423427

  5. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells.

    PubMed

    Dória, M Luísa; Cotrim, Zita; Macedo, Bárbara; Simões, Cláudia; Domingues, Pedro; Helguero, Luisa; Domingues, M Rosário

    2012-06-01

    Breast cancer is the leading cause of cancer-related deaths in women. Altered cellular functions of cancer cells lead to uncontrolled cellular growth and morphological changes. Cellular biomembranes are intimately involved in the regulation of cell signaling; however, they remain largely understudied. Phospholipids (PLs) are the main constituents of biological membranes and play important functional, structural and metabolic roles. The aim of this study was to establish if patterns in the PL profiles of mammary epithelial cells and breast cancer cells differ in relation to degree of differentiation and metastatic potential. For this purpose, PLs were analyzed using a lipidomic approach. In brief, PLs were extracted using Bligh and Dyer method, followed by a separation of PL classes by thin layer chromatography, and subsequent analysis by mass spectrometry (MS). Differences and similarities were found in the relative levels of PL content between mammary epithelial and breast cancer cells and between breast cancer cells with different levels of aggressiveness. When compared to the total PL content, phosphatidylcholine levels were reduced and lysophosphatydilcholines increased in the more aggressive cancer cells; while phosphatidylserine levels remained unchanged. MS analysis showed alterations in the classes of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, and phosphatidylinositides. In particular, the phosphatidylinositides, which are signaling molecules that affect proliferation, survival, and migration, showed dramatic alterations in their profile, where an increase of phosphatdylinositides saturated fatty acids chains and a decrease in C20 fatty acids in cancer cells compared with mammary epithelial cells was observed. At present, information about PL changes in cancer progression is lacking. Therefore, these data will be useful as a starting point to define possible PLs with prospective as biomarkers and disclose metabolic pathways with potential for therapy.

  6. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  7. Quantitative Differentiation of LV Myocardium with and without Layer-Specific Fibrosis Using MRI in Hypertrophic Cardiomyopathy and Layer-Specific Strain TTE Analysis.

    PubMed

    Funabashi, Nobusada; Takaoka, Hiroyuki; Ozawa, Koya; Kamata, Tomoko; Uehara, Masae; Komuro, Issei; Kobayashi, Yoshio

    2018-05-30

    To achieve further risk stratification in hypertrophic cardiomyopathy (HCM) patients, we localized and quantified layer-specific LVM fibrosis on MRI in HCM patients using regional layer-specific peak longitudinal strain (PLS) and peak circumferential strain (PCS) in LV myocardium (LVM) on speckle tracking transthoracic echocardiography (TTE). A total of 18 HCM patients (14 males; 58 ± 17 years) underwent 1.5T-MRI and TTE. PLS and PCS in each layer of the LVM (endocardium, epicardium, and whole-layer myocardium) were calculated for 17 AHA-defined lesions. MRI assessment showed that fibrosis was classified as endocardial, epicardial, or whole-layer (= either or both of these). Regional PLS was smaller in fibrotic endocardial lesions than in non-fibrotic endocardial lesions (P = 0.004). To detect LV endocardial lesions with fibrosis, ROC curves of regional PLS revealed an area under the curve (AUC) of 0.609 and a best cut-off point of 13.5%, with sensitivity of 65.3% and specificity of 54.3%. Regional PLS was also smaller in fibrotic epicardial lesions than in non-fibrotic epicardial lesions (P < 0.001). To detect LV epicardial lesions with fibrosis, ROC curves of PLS revealed an AUC of 0.684 and a best cut-off point of 9.5%, with sensitivity of 73.5% and specificity of 55.5%. Using whole-layer myocardium analysis, PLS was smaller in fibrotic lesions than in non-fibrotic lesions (P < 0.001). To detect whole-layer LV lesions with fibrosis, ROC curves of regional PLS revealed an AUC of 0.674 and a best cut-off point of 12.5%, with sensitivity of 79.0% and specificity of 50.7%. There were no significant differences in PCS of LV myocardium (endocardium, epicardium, and whole-layer) between fibrotic and non-fibrotic lesions. Quantitative regional PLS but not PCS in LV endocardium, epicardium, and whole-layer myocardium provides useful non-invasive information for layer-specific localization of fibrosis in HCM patients.

  8. Malingering as a Categorical or Dimensional Construct: The Latent Structure of Feigned Psychopathology as Measured by the SIRS and MMPI-2

    ERIC Educational Resources Information Center

    Walters, Glenn D.; Rogers, Richard; Berry, David T. R.; Miller, Holly A.; Duncan, Scott A.; McCusker, Paul J.; Payne, Joshua W.; Granacher, Robert P., Jr.

    2008-01-01

    The 6 nonoverlapping primary scales of the Structured Interview of Reported Symptoms (SIRS) were subjected to taxometric analysis in a group of 1,211 criminal and civil examinees in order to investigate the latent structure of feigned psychopathology. Both taxometric procedures used in this study, mean above minus below a cut (MAMBAC) and maximum…

  9. Statistical variation in progressive scrambling

    NASA Astrophysics Data System (ADS)

    Clark, Robert D.; Fox, Peter C.

    2004-07-01

    The two methods most often used to evaluate the robustness and predictivity of partial least squares (PLS) models are cross-validation and response randomization. Both methods may be overly optimistic for data sets that contain redundant observations, however. The kinds of perturbation analysis widely used for evaluating model stability in the context of ordinary least squares regression are only applicable when the descriptors are independent of each other and errors are independent and normally distributed; neither assumption holds for QSAR in general and for PLS in particular. Progressive scrambling is a novel, non-parametric approach to perturbing models in the response space in a way that does not disturb the underlying covariance structure of the data. Here, we introduce adjustments for two of the characteristic values produced by a progressive scrambling analysis - the deprecated predictivity (Q_s^{ast^2}) and standard error of prediction (SDEP s * ) - that correct for the effect of introduced perturbation. We also explore the statistical behavior of the adjusted values (Q_0^{ast^2} and SDEP 0 * ) and the sensitivity to perturbation (d q 2/d r yy ' 2). It is shown that the three statistics are all robust for stable PLS models, in terms of the stochastic component of their determination and of their variation due to sampling effects involved in training set selection.

  10. Validation of the French version of the Hospital Survey on Patient Safety Culture questionnaire.

    PubMed

    Occelli, P; Quenon, J-L; Kret, M; Domecq, S; Delaperche, F; Claverie, O; Castets-Fontaine, B; Amalberti, R; Auroy, Y; Parneix, P; Michel, P

    2013-09-01

    To assess the psychometric properties of the French version of the Hospital Survey on Patient Safety Culture questionnaire (HSOPSC) and study the hierarchical structure of the measured dimensions. Cross-sectional survey of the safety culture. 18 acute care units of seven hospitals in South-western France. Full- and part-time healthcare providers who worked in the units. None. Item responses measured with 5-point agreement or frequency scales. Data analyses A principal component analysis was used to identify the emerging components. Two structural equation modeling methods [LInear Structural RELations (LISREL) and Partial Least Square (PLS)] were used to verify the model and to study the relative importance of the dimensions. Internal consistency of the retained dimensions was studied. A test-retest was performed to assess reproducibility of the items. Overall response rate was 77% (n = 401). A structure in 40 items grouped in 10 dimensions was proposed. The LISREL approach showed acceptable data fit of the proposed structure. The PLS approach indicated that three dimensions had the most impact on the safety culture: 'Supervisor/manager expectations & actions promoting safety' 'Organizational learning-continuous improvement' and 'Overall perceptions of safety'. Internal consistency was above 0.70 for six dimensions. Reproducibility was considered good for four items. The French HSOPSC questionnaire showed acceptable psychometric properties. Classification of the dimensions should guide future development of safety culture improving action plans.

  11. Locally-Based Kernal PLS Smoothing to Non-Parametric Regression Curve Fitting

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Korsmeyer, David (Technical Monitor)

    2002-01-01

    We present a novel smoothing approach to non-parametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our concern to apply the methodology for smoothing experimental data where some level of knowledge about the approximate shape, local inhomogeneities or points where the desired function changes its curvature is known a priori or can be derived based on the observed noisy data. We propose locally-based kernel PLS regression that extends the previous kernel PLS methodology by incorporating this knowledge. We compare our approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage techniques on two generated data sets.

  12. Unconstrained Structural Equation Models of Latent Interactions: Contrasting Residual- and Mean-Centered Approaches

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Wen, Zhonglin; Hau, Kit-Tai; Little, Todd D.; Bovaird, James A.; Widaman, Keith F.

    2007-01-01

    Little, Bovaird and Widaman (2006) proposed an unconstrained approach with residual centering for estimating latent interaction effects as an alternative to the mean-centered approach proposed by Marsh, Wen, and Hau (2004, 2006). Little et al. also differed from Marsh et al. in the number of indicators used to infer the latent interaction factor…

  13. Using Structural Equation Models with Latent Variables to Study Student Growth and Development.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1991-01-01

    Analysis of data on freshman-to-senior developmental gains in 722 University of Tennessee-Knoxville students provides evidence of the advantages of structural equation modeling with latent variables and suggests that the group differences identified by traditional analysis of variance and covariance techniques may be an artifact of measurement…

  14. A Taxometric Study of the Latent Structure of Disgust Sensitivity: Converging Evidence for Dimensionality

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Broman-Fulks, Joshua J.

    2007-01-01

    Disgust sensitivity has recently been implicated as a specific vulnerability factor for several anxiety-related disorders. However, it is not clear whether disgust sensitivity is a dimensional or categorical phenomenon. The present study examined the latent structure of disgust by applying three taxometric procedures (maximum eigenvalue, mean…

  15. Some Factor Analytic Approximations to Latent Class Structure.

    ERIC Educational Resources Information Center

    Dziuban, Charles D.; Denton, William T.

    Three procedures, alpha, image, and uniqueness rescaling, were applied to a joint occurrence probability matrix. That matrix was the basis of a well-known latent class structure. The values of the recurring subscript elements were varied as follows: Case 1 - The known elements were input; Case 2 - The upper bounds to the recurring subscript…

  16. The Latent Structure of Psychopathy in Youth: A Taxometric Investigation

    ERIC Educational Resources Information Center

    Vasey, Michael W.; Kotov, Roman; Frick, Paul J.; Loney, Bryan R.

    2005-01-01

    Using taxometric procedures, the latent structure of psychopathy was investigated in two studies of children and adolescents. Prior studies have identified a taxon (i.e., a natural category) associated with antisocial behavior in adults as well as children and adolescents. However, features of this taxon suggest that it is not psychopathy but…

  17. Heterogeneity in the Latent Structure of PTSD Symptoms among Canadian Veterans

    ERIC Educational Resources Information Center

    Naifeh, James A.; Richardson, J. Don; Del Ben, Kevin S.; Elhai, Jon D.

    2010-01-01

    The current study used factor mixture modeling to identify heterogeneity (i.e., latent classes) in 2 well-supported models of posttraumatic stress disorder's (PTSD) factor structure. Data were analyzed from a clinical sample of 405 Canadian veterans evaluated for PTSD. Results were consistent with our hypotheses. Each PTSD factor model was best…

  18. Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein

    PubMed Central

    1995-01-01

    The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation. PMID:7593177

  19. Perfusion lung imaging in the adult respiratory distress syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistolesi, M.; Miniati, M.; Di Ricco, G.

    1986-07-01

    In 29 perfusion lung scans (PLS) of 19 patients with ARDS, 20 of which were obtained within six days from the onset of respiratory symptoms, perfusion abnormalities were the rule. These included focal, nonsegmental defects, mostly peripheral and dorsal, and perfusion redistribution away from the dependent lung zones. PLS were scored for the presence and intensity of perfusion abnormalities and the scores of perfusion redistribution were validated against numerical indices of blood flow distribution per unit lung volume. PLS scores were correlated with arterial blood gas values, hemodynamic parameters, and chest radiographic scores of ARDS. Arterial oxygen tension correlated withmore » the scores of both perfusion defects and redistribution. Perfusion defects correlated better with the radiographic score of ARDS, and perfusion redistribution with PAP and vascular resistance. ARDS patients exhibit peculiar patterns of PLS abnormalities not observed in other disorders. Thus, PLS may help considerably in the detection and evaluation of pulmonary vascular injury in ARDS.« less

  20. Evaluation of a peer-led hypertension intervention for veterans: impact on peer leaders.

    PubMed

    Mosack, Katie E; Patterson, Leslie; Brouwer, Amanda M; Wendorf, Angela R; Ertl, Kristyn; Eastwood, Dan; Morzinski, Jeffrey; Fletcher, Kathlyn; Whittle, Jeff

    2013-06-01

    Volunteer peer leaders (PLs) benefit from their involvement in health interventions but we know little about how they compare with other non-PL volunteers or with the intervention recipients themselves. We randomized 58 veterans' service organizations' posts (e.g. VFW) to peer- versus professionally led self-management support interventions. Our primary research questions were whether hypertensive PLs changed over the course of the project, whether they changed more than hypertensive volunteers who were not randomized to such a role [i.e. post representatives (PRs)] and whether they changed more than the intervention recipients with respect to health knowledge, health beliefs and health outcomes from baseline to 12 months. After the intervention, PLs provided open-ended feedback and participated in focus groups designed to explore intervention impact. Hypertensive PLs improved their systolic blood pressure and hypertension knowledge and increased their fruit/vegetable intake and pedometer use. We found no differences between PLs and PRs. PLs improved knowledge and increased fruit/vegetable intake more than intervention recipients did; they provided specific examples of personal health behavior change and knowledge acquisition. Individuals who volunteer to be peer health leaders are likely to receive important benefits even if they do not actually take on such a role.

  1. Irreversible dual inhibitory mode: the novel Btk inhibitor PLS-123 demonstrates promising anti-tumor activity in human B-cell lymphoma.

    PubMed

    Ding, Ning; Li, Xitao; Shi, Yunfei; Ping, Lingyan; Wu, Lina; Fu, Kai; Feng, Lixia; Zheng, Xiaohui; Song, Yuqin; Pan, Zhengying; Zhu, Jun

    2015-06-20

    The B-cell receptor (BCR) signaling pathway has gained significant attention as a therapeutic target in B-cell malignancies. Recently, several drugs that target the BCR signaling pathway, especially the Btk inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicates that pharmacological inhibition of BCR pathway holds promise in B-cell lymphoma treatment. Here we present a novel covalent irreversible Btk inhibitor PLS-123 with more potent anti-proliferative activity compared with ibrutinib in multiple cellular and in vivo models through effective apoptosis induction and dual-action inhibitory mode of Btk activation. The phosphorylation of BCR downstream activating AKT/mTOR and MAPK signal pathways was also more significantly reduced after treatment with PLS-123 than ibrutinib. Gene expression profile analysis further suggested that the different selectivity profile of PLS-123 led to significant downregulation of oncogenic gene PTPN11 expression, which might also offer new opportunities beyond what ibrutinib has achieved. In addition, PLS-123 dose-dependently attenuated BCR- and chemokine-mediated lymphoma cell adhesion and migration. Taken together, Btk inhibitor PLS-123 suggested a new direction to pharmacologically modulate Btk function and develop novel therapeutic drug for B-cell lymphoma treatment.

  2. Irreversible dual inhibitory mode: the novel Btk inhibitor PLS-123 demonstrates promising anti-tumor activity in human B-cell lymphoma

    PubMed Central

    Ding, Ning; Li, Xitao; Shi, Yunfei; Ping, Lingyan; Wu, Lina; Fu, Kai; Feng, Lixia; Zheng, Xiaohui; Song, Yuqin; Pan, Zhengying; Zhu, Jun

    2015-01-01

    The B-cell receptor (BCR) signaling pathway has gained significant attention as a therapeutic target in B-cell malignancies. Recently, several drugs that target the BCR signaling pathway, especially the Btk inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicates that pharmacological inhibition of BCR pathway holds promise in B-cell lymphoma treatment. Here we present a novel covalent irreversible Btk inhibitor PLS-123 with more potent anti-proliferative activity compared with ibrutinib in multiple cellular and in vivo models through effective apoptosis induction and dual-action inhibitory mode of Btk activation. The phosphorylation of BCR downstream activating AKT/mTOR and MAPK signal pathways was also more significantly reduced after treatment with PLS-123 than ibrutinib. Gene expression profile analysis further suggested that the different selectivity profile of PLS-123 led to significant downregulation of oncogenic gene PTPN11 expression, which might also offer new opportunities beyond what ibrutinib has achieved. In addition, PLS-123 dose-dependently attenuated BCR- and chemokine-mediated lymphoma cell adhesion and migration. Taken together, Btk inhibitor PLS-123 suggested a new direction to pharmacologically modulate Btk function and develop novel therapeutic drug for B-cell lymphoma treatment. PMID:25944695

  3. Evaluation of a peer-led hypertension intervention for veterans: impact on peer leaders

    PubMed Central

    Mosack, Katie E.; Patterson, Leslie; Brouwer, Amanda M.; Wendorf, Angela R.; Ertl, Kristyn; Eastwood, Dan; Morzinski, Jeffrey; Fletcher, Kathlyn; Whittle, Jeff

    2013-01-01

    Volunteer peer leaders (PLs) benefit from their involvement in health interventions but we know little about how they compare with other non-PL volunteers or with the intervention recipients themselves. We randomized 58 veterans’ service organizations’ posts (e.g. VFW) to peer- versus professionally led self-management support interventions. Our primary research questions were whether hypertensive PLs changed over the course of the project, whether they changed more than hypertensive volunteers who were not randomized to such a role [i.e. post representatives (PRs)] and whether they changed more than the intervention recipients with respect to health knowledge, health beliefs and health outcomes from baseline to 12 months. After the intervention, PLs provided open-ended feedback and participated in focus groups designed to explore intervention impact. Hypertensive PLs improved their systolic blood pressure and hypertension knowledge and increased their fruit/vegetable intake and pedometer use. We found no differences between PLs and PRs. PLs improved knowledge and increased fruit/vegetable intake more than intervention recipients did; they provided specific examples of personal health behavior change and knowledge acquisition. Individuals who volunteer to be peer health leaders are likely to receive important benefits even if they do not actually take on such a role. PMID:23406721

  4. Additive Partial Least Squares for efficient modelling of independent variance sources demonstrated on practical case studies.

    PubMed

    Luoma, Pekka; Natschläger, Thomas; Malli, Birgit; Pawliczek, Marcin; Brandstetter, Markus

    2018-05-12

    A model recalibration method based on additive Partial Least Squares (PLS) regression is generalized for multi-adjustment scenarios of independent variance sources (referred to as additive PLS - aPLS). aPLS allows for effortless model readjustment under changing measurement conditions and the combination of independent variance sources with the initial model by means of additive modelling. We demonstrate these distinguishing features on two NIR spectroscopic case-studies. In case study 1 aPLS was used as a readjustment method for an emerging offset. The achieved RMS error of prediction (1.91 a.u.) was of similar level as before the offset occurred (2.11 a.u.). In case-study 2 a calibration combining different variance sources was conducted. The achieved performance was of sufficient level with an absolute error being better than 0.8% of the mean concentration, therefore being able to compensate negative effects of two independent variance sources. The presented results show the applicability of the aPLS approach. The main advantages of the method are that the original model stays unadjusted and that the modelling is conducted on concrete changes in the spectra thus supporting efficient (in most cases straightforward) modelling. Additionally, the method is put into context of existing machine learning algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data

    PubMed Central

    Ferragina, A.; de los Campos, G.; Vazquez, A. I.; Cecchinato, A.; Bittante, G.

    2017-01-01

    The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict “difficult-to-predict” dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm−1 were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from calibration to external validation methods, and in moving from PLS and MPLS to Bayesian methods, particularly Bayes A and Bayes B. The maximum R2 value of validation was obtained with Bayes B and Bayes A. For the FA, C10:0 (% of each FA on total FA basis) had the highest R2 (0.75, achieved with Bayes A and Bayes B), and among the technological traits, fresh cheese yield R2 of 0.82 (achieved with Bayes B). These 2 methods have proven to be useful instruments in shrinking and selecting very informative wavelengths and inferring the structure and functions of the analyzed traits. We conclude that Bayesian models are powerful tools for deriving calibration equations, and, importantly, these equations can be easily developed using existing open-source software. As part of our study, we provide scripts based on the open source R software BGLR, which can be used to train customized prediction equations for other traits or populations. PMID:26387015

  6. Prediction of octanol-water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network.

    PubMed

    Golmohammadi, Hassan

    2009-11-30

    A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.

  7. The impact of culture and employee-focused criteria on productivity: A structural equation modelling approach

    NASA Astrophysics Data System (ADS)

    Ab Hamid, Mohd Rashid; Mustafa, Zainol; Mohd Suradi, Nur Riza; Idris, Fazli; Abdullah, Mokhtar

    2013-04-01

    Culture and employee-focused criteria are important factors for the success of any organization. These factors have to be aligned with the productivity initiatives in the organization in order to gear ahead for excellence. Therefore, this article investigated the impact of culture and employee-focused criteria on productivity in Higher Education Institutions (HEIs) in Malaysia using intangible indicators through core values. The hypothesized relationship was tested using Structural Equation Modeling (SEM) with the PLS estimation technique. 429 questionnaires were returned from the target population. The results of the modelling revealed that the PLS estimation confirmed all the hypotheses tested as in the hypothesized model. The results generally support significant relationships between culture values, employee-focused values and productivity-focused values. The study also confirmed the mediating role of employee-focused values for the relationship between culture values and productivity-focused values. In conclusion, the empirically validated results supported the adequacy of the hypothezised model of the impact of culture and employee-focused criteria on productivity in HEI through value-based indicators.

  8. The Successive Projections Algorithm for interval selection in trilinear partial least-squares with residual bilinearization.

    PubMed

    Gomes, Adriano de Araújo; Alcaraz, Mirta Raquel; Goicoechea, Hector C; Araújo, Mario Cesar U

    2014-02-06

    In this work the Successive Projection Algorithm is presented for intervals selection in N-PLS for three-way data modeling. The proposed algorithm combines noise-reduction properties of PLS with the possibility of discarding uninformative variables in SPA. In addition, second-order advantage can be achieved by the residual bilinearization (RBL) procedure when an unexpected constituent is present in a test sample. For this purpose, SPA was modified in order to select intervals for use in trilinear PLS. The ability of the proposed algorithm, namely iSPA-N-PLS, was evaluated on one simulated and two experimental data sets, comparing the results to those obtained by N-PLS. In the simulated system, two analytes were quantitated in two test sets, with and without unexpected constituent. In the first experimental system, the determination of the four fluorophores (l-phenylalanine; l-3,4-dihydroxyphenylalanine; 1,4-dihydroxybenzene and l-tryptophan) was conducted with excitation-emission data matrices. In the second experimental system, quantitation of ofloxacin was performed in water samples containing two other uncalibrated quinolones (ciprofloxacin and danofloxacin) by high performance liquid chromatography with UV-vis diode array detector. For comparison purpose, a GA algorithm coupled with N-PLS/RBL was also used in this work. In most of the studied cases iSPA-N-PLS proved to be a promising tool for selection of variables in second-order calibration, generating models with smaller RMSEP, when compared to both the global model using all of the sensors in two dimensions and GA-NPLS/RBL. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Local classification: Locally weighted-partial least squares-discriminant analysis (LW-PLS-DA).

    PubMed

    Bevilacqua, Marta; Marini, Federico

    2014-08-01

    The possibility of devising a simple, flexible and accurate non-linear classification method, by extending the locally weighted partial least squares (LW-PLS) approach to the cases where the algorithm is used in a discriminant way (partial least squares discriminant analysis, PLS-DA), is presented. In particular, to assess which category an unknown sample belongs to, the proposed algorithm operates by identifying which training objects are most similar to the one to be predicted and building a PLS-DA model using these calibration samples only. Moreover, the influence of the selected training samples on the local model can be further modulated by adopting a not uniform distance-based weighting scheme which allows the farthest calibration objects to have less impact than the closest ones. The performances of the proposed locally weighted-partial least squares-discriminant analysis (LW-PLS-DA) algorithm have been tested on three simulated data sets characterized by a varying degree of non-linearity: in all cases, a classification accuracy higher than 99% on external validation samples was achieved. Moreover, when also applied to a real data set (classification of rice varieties), characterized by a high extent of non-linearity, the proposed method provided an average correct classification rate of about 93% on the test set. By the preliminary results, showed in this paper, the performances of the proposed LW-PLS-DA approach have proved to be comparable and in some cases better than those obtained by other non-linear methods (k nearest neighbors, kernel-PLS-DA and, in the case of rice, counterpropagation neural networks). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. Additional information is included in the original extended abstract.

  11. Building Coherent Validation Arguments for the Measurement of Latent Constructs with Unified Statistical Frameworks

    ERIC Educational Resources Information Center

    Rupp, Andre A.

    2012-01-01

    In the focus article of this issue, von Davier, Naemi, and Roberts essentially coupled: (1) a short methodological review of structural similarities of latent variable models with discrete and continuous latent variables; and (2) 2 short empirical case studies that show how these models can be applied to real, rather than simulated, large-scale…

  12. The Longitudinal Structure of General and Specific Anxiety Dimensions in Children: Testing a Latent Trait-State-Occasion Model

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Cole, David A.

    2009-01-01

    In an 8-wave, 4-year longitudinal study, 787 children (Grades 3-6) completed the Revised Children's Manifest Anxiety Scale (C. R. Reynolds & B. O. Richmond, 1985), a measure of the Physiological Reactivity, Worry-Oversensitivity, and Social Alienation dimensions of anxiety. A latent variable (trait-state-occasion) model and a latent growth curve…

  13. Sex Differences in Latent Cognitive Abilities Ages 6 to 59: Evidence from the Woodcock-Johnson III Tests of Cognitive Abilities

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; Reynolds, Matthew R.; Patel, Puja G.; Ridley, Kristen P.

    2008-01-01

    Sex differences in the latent general and broad cognitive abilities underlying the Woodcock-Johnson Tests of Cognitive Abilities were investigated for children, youth, and adults ages 6 through 59. A developmental, multiple indicator-multiple cause, structural equation model was used to investigate sex differences in latent cognitive abilities as…

  14. Sex Differences in Latent Cognitive Abilities Ages 5 to 17: Evidence from the Differential Ability Scales--Second Edition

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; Reynolds, Matthew R.; Roberts, Lisa G.; Winter, Amanda L.; Austin, Cynthia A.

    2011-01-01

    Sex differences in the latent general and broad cognitive abilities underlying the Differential Ability Scales, Second Edition were investigated for children and youth ages 5 through 17. Multi-group mean and covariance structural equation modeling was used to investigate sex differences in latent cognitive abilities as well as changes in these…

  15. An Assessment of Character and Leadership Development Latent Factor Structures through Confirmatory Factor, Item Response Theory, and Latent Class Analyses

    ERIC Educational Resources Information Center

    Higginbotham, David L.

    2013-01-01

    This study leveraged the complementary nature of confirmatory factor (CFA), item response theory (IRT), and latent class (LCA) analyses to strengthen the rigor and sophistication of evaluation of two new measures of the Air Force Academy's "leader of character" definition--the Character Mosaic Virtues (CMV) and the Leadership Mosaic…

  16. The Log-Linear Cognitive Diagnostic Model (LCDM) as a Special Case of The General Diagnostic Model (GDM). Research Report. ETS RR-14-40

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2014-01-01

    Diagnostic models combine multiple binary latent variables in an attempt to produce a latent structure that provides more information about test takers' performance than do unidimensional latent variable models. Recent developments in diagnostic modeling emphasize the possibility that multiple skills may interact in a conjunctive way within the…

  17. Precipitation Processes Derived from TRMM Satellite Data, Cloud Resolving Model and Field Campaigns

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid. and solid water. Present large-scale weather and climate models can simulate cloud latent heat release only crudely thus reducing their confidence in predictions on both global and regional scales. In this paper, NASA Tropical Rainfall Measuring (TRMM) precipitation radar (PR) derived rainfall information and the Goddard Convective and Stratiform Heating (CSH) algorithm used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to October 2000. Rainfall latent heating and radar reflectively structure between ENSO (1997-1998 winter) and non-ENSO (1998-1999 winter) periods are examined and compared. The seasonal variation of heating over various geographic locations (i.e. Indian ocean vs west Pacific; Africa vs S. America) are also analyzed. In addition, the relationship between rainfall latent heating maximum heating level), radar reflectively and SST are examined.

  18. "If There Is a Job Description I Don't Think I've Read One": A Case Study of Programme Leadership in a UK Pre-1992 University

    ERIC Educational Resources Information Center

    Mitchell, Rafael

    2015-01-01

    This paper reports on an exploratory study of the role of programme leaders (PLs) in a pre-1992 university, based on interviews with PLs (7) and a survey of taught Masters students (54) in a single school. The study elicits PLs' activities, most of which might be categorised as managerial and administrative, with leadership required…

  19. Modeling Latent Interactions at Level 2 in Multilevel Structural Equation Models: An Evaluation of Mean-Centered and Residual-Centered Unconstrained Approaches

    ERIC Educational Resources Information Center

    Leite, Walter L.; Zuo, Youzhen

    2011-01-01

    Among the many methods currently available for estimating latent variable interactions, the unconstrained approach is attractive to applied researchers because of its relatively easy implementation with any structural equation modeling (SEM) software. Using a Monte Carlo simulation study, we extended and evaluated the unconstrained approach to…

  20. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  1. Taxometric and Factor Analytic Models of Anxiety Sensitivity among Youth: Exploring the Latent Structure of Anxiety Psychopathology Vulnerability

    ERIC Educational Resources Information Center

    Bernstein, Amit; Zvolensky, Michael J.; Stewart, Sherry; Comeau, Nancy

    2007-01-01

    This study represents an effort to better understand the latent structure of anxiety sensitivity (AS), a well-established affect-sensitivity individual difference factor, among youth by employing taxometric and factor analytic approaches in an integrative manner. Taxometric analyses indicated that AS, as indexed by the Child Anxiety Sensitivity…

  2. Structural Relationships between Social Activities and Longitudinal Trajectories of Depression among Older Adults

    ERIC Educational Resources Information Center

    Hong, Song-Iee; Hasche, Leslie; Bowland, Sharon

    2009-01-01

    Purpose: This study examines the structural relationships between social activities and trajectories of late-life depression. Design and Methods: Latent class analysis was used with a nationally representative sample of older adults (N = 5,294) from the Longitudinal Study on Aging II to classify patterns of social activities. A latent growth curve…

  3. Factor Structure Invariance of the Kaufman Adolescent and Adult Intelligence Test across Male and Female Samples

    ERIC Educational Resources Information Center

    Immekus, Jason C.; Maller, Susan J.

    2010-01-01

    Multisample confirmatory factor analysis (MCFA) and latent mean structures analysis (LMS) were used to test measurement invariance and latent mean differences on the Kaufman Adolescent and Adult Intelligence Scale[TM] (KAIT) across males and females in the standardization sample. MCFA found that the parameters of the KAIT two-factor model were…

  4. Introduction to the special section on mixture modeling in personality assessment.

    PubMed

    Wright, Aidan G C; Hallquist, Michael N

    2014-01-01

    Latent variable models offer a conceptual and statistical framework for evaluating the underlying structure of psychological constructs, including personality and psychopathology. Complex structures that combine or compare categorical and dimensional latent variables can be accommodated using mixture modeling approaches, which provide a powerful framework for testing nuanced theories about psychological structure. This special series includes introductory primers on cross-sectional and longitudinal mixture modeling, in addition to empirical examples applying these techniques to real-world data collected in clinical settings. This group of articles is designed to introduce personality assessment scientists and practitioners to a general latent variable framework that we hope will stimulate new research and application of mixture models to the assessment of personality and its pathology.

  5. Application of Generative Autoencoder in De Novo Molecular Design.

    PubMed

    Blaschke, Thomas; Olivecrona, Marcus; Engkvist, Ola; Bajorath, Jürgen; Chen, Hongming

    2018-01-01

    A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Research on the application of a decoupling algorithm for structure analysis

    NASA Technical Reports Server (NTRS)

    Denman, E. D.

    1980-01-01

    The mathematical theory for decoupling mth-order matrix differential equations is presented. It is shown that the decoupling precedure can be developed from the algebraic theory of matrix polynomials. The role of eigenprojectors and latent projectors in the decoupling process is discussed and the mathematical relationships between eigenvalues, eigenvectors, latent roots, and latent vectors are developed. It is shown that the eigenvectors of the companion form of a matrix contains the latent vectors as a subset. The spectral decomposition of a matrix and the application to differential equations is given.

  7. Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis

    PubMed Central

    Rahman, Md. Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D. W.; Labrique, Alain B.; Rashid, Mahbubur; Christian, Parul; West, Keith P.

    2017-01-01

    Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 − -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset. PMID:29261760

  8. Random sample consensus combined with partial least squares regression (RANSAC-PLS) for microbial metabolomics data mining and phenotype improvement.

    PubMed

    Teoh, Shao Thing; Kitamura, Miki; Nakayama, Yasumune; Putri, Sastia; Mukai, Yukio; Fukusaki, Eiichiro

    2016-08-01

    In recent years, the advent of high-throughput omics technology has made possible a new class of strain engineering approaches, based on identification of possible gene targets for phenotype improvement from omic-level comparison of different strains or growth conditions. Metabolomics, with its focus on the omic level closest to the phenotype, lends itself naturally to this semi-rational methodology. When a quantitative phenotype such as growth rate under stress is considered, regression modeling using multivariate techniques such as partial least squares (PLS) is often used to identify metabolites correlated with the target phenotype. However, linear modeling techniques such as PLS require a consistent metabolite-phenotype trend across the samples, which may not be the case when outliers or multiple conflicting trends are present in the data. To address this, we proposed a data-mining strategy that utilizes random sample consensus (RANSAC) to select subsets of samples with consistent trends for construction of better regression models. By applying a combination of RANSAC and PLS (RANSAC-PLS) to a dataset from a previous study (gas chromatography/mass spectrometry metabolomics data and 1-butanol tolerance of 19 yeast mutant strains), new metabolites were indicated to be correlated with tolerance within certain subsets of the samples. The relevance of these metabolites to 1-butanol tolerance were then validated from single-deletion strains of corresponding metabolic genes. The results showed that RANSAC-PLS is a promising strategy to identify unique metabolites that provide additional hints for phenotype improvement, which could not be detected by traditional PLS modeling using the entire dataset. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis.

    PubMed

    Kabir, Alamgir; Rahman, Md Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D W; Labrique, Alain B; Rashid, Mahbubur; Christian, Parul; West, Keith P

    2017-01-01

    Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 - -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset.

  10. A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Fiaz; Schumacher, Courtney; Feng, Zhe

    Traditionally, radar-based latent heating retrievals use rainfall to estimate the total column-integrated latent heating and then distribute that heating in the vertical using a model-based look-up table (LUT). In this study, we develop a new method that uses size characteristics of radar-observed precipitating echo (i.e., area and mean echo-top height) to estimate the vertical structure of latent heating. This technique (named the Convective-Stratiform Area [CSA] algorithm) builds on the fact that the shape and magnitude of latent heating profiles are dependent on the organization of convective systems and aims to avoid some of the pitfalls involved in retrieving accurate rainfallmore » amounts and microphysical information from radars and models. The CSA LUTs are based on a high-resolution Weather Research and Forecasting model (WRF) simulation whose domain spans much of the near-equatorial Indian Ocean. When applied to S-PolKa radar observations collected during the DYNAMO/CINDY2011/AMIE field campaign, the CSA retrieval compares well to heating profiles from a sounding-based budget analysis and improves upon a simple rain-based latent heating retrieval. The CSA LUTs also highlight the fact that convective latent heating increases in magnitude and height as cluster area and echo-top heights grow, with a notable congestus signature of cooling at mid levels. Stratiform latent heating is less dependent on echo-top height, but is strongly linked to area. Unrealistic latent heating profiles in the stratiform LUT, viz., a low-level heating spike, an elevated melting layer, and net column cooling were identified and corrected for. These issues highlight the need for improvement in model parameterizations, particularly in linking microphysical phase changes to larger mesoscale processes.« less

  11. Linear and nonlinear methods in modeling the aqueous solubility of organic compounds.

    PubMed

    Catana, Cornel; Gao, Hua; Orrenius, Christian; Stouten, Pieter F W

    2005-01-01

    Solubility data for 930 diverse compounds have been analyzed using linear Partial Least Square (PLS) and nonlinear PLS methods, Continuum Regression (CR), and Neural Networks (NN). 1D and 2D descriptors from MOE package in combination with E-state or ISIS keys have been used. The best model was obtained using linear PLS for a combination between 22 MOE descriptors and 65 ISIS keys. It has a correlation coefficient (r2) of 0.935 and a root-mean-square error (RMSE) of 0.468 log molar solubility (log S(w)). The model validated on a test set of 177 compounds not included in the training set has r2 0.911 and RMSE 0.475 log S(w). The descriptors were ranked according to their importance, and at the top of the list have been found the 22 MOE descriptors. The CR model produced results as good as PLS, and because of the way in which cross-validation has been done it is expected to be a valuable tool in prediction besides PLS model. The statistics obtained using nonlinear methods did not surpass those got with linear ones. The good statistic obtained for linear PLS and CR recommends these models to be used in prediction when it is difficult or impossible to make experimental measurements, for virtual screening, combinatorial library design, and efficient leads optimization.

  12. Incorporation of Extracellular Fatty Acids by a Fatty Acid Kinase-Dependent Pathway in Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Summary Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids. PMID:24673884

  13. Prevalence of Prostatitis-Like Symptoms and Outcomes of NIH-CPSI in Outpatients with Lifelong and Acquired PE: Based on a Large Cross-Sectional Study in China.

    PubMed

    Zhu, Daofang; Dou, Xianming; Tang, Liang; Tang, Dongdong; Liao, Guiyi; Fang, Weihua; Zhang, Xiansheng

    2017-01-01

    Premature ejaculation (PE) is one of the most common sexual dysfunctions, which were associated with prostatitis-like symptoms (PLS). We intended to explore the prevalence of prostatitis-like symptoms and outcomes of National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) scores in outpatients with lifelong (LPE) and acquired premature ejaculation (APE). From December 2013 to December 2015, a total of 498 consecutive heterosexual men with PE and 322 male healthy subjects without PE were enrolled. Each of them completed a detailed questionnaire on demographics information, sexual and medical histories, and the NIH-CPSI. Assessment of NIH-CPSI and definition of PLS and PE were used to measure the PLS and NIH-CPSI scores and ejaculatory function for all subjects. Finally, a total of 820 subjects (including 498 men in PE group and 322 men in control group) were enrolled in our study. The mean ages were significantly different between PE and no PE groups. Men with PE reported worse PLS and higher NIH-CPSI scores ( P < 0.001 for all). Similar findings were also observed between men with LPE and APE. Men with APE also reported higher rates of PLS and scores of NIH-CPSI ( P < 0.001 for all). Multivariate analysis showed that PLS and NIH-CPSI scores were significantly associated with PE.

  14. Green method by diffuse reflectance infrared spectroscopy and spectral region selection for the quantification of sulphamethoxazole and trimethoprim in pharmaceutical formulations.

    PubMed

    da Silva, Fabiana E B; Flores, Érico M M; Parisotto, Graciele; Müller, Edson I; Ferrão, Marco F

    2016-03-01

    An alternative method for the quantification of sulphametoxazole (SMZ) and trimethoprim (TMP) using diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) and partial least square regression (PLS) was developed. Interval Partial Least Square (iPLS) and Synergy Partial Least Square (siPLS) were applied to select a spectral range that provided the lowest prediction error in comparison to the full-spectrum model. Fifteen commercial tablet formulations and forty-nine synthetic samples were used. The ranges of concentration considered were 400 to 900 mg g-1SMZ and 80 to 240 mg g-1 TMP. Spectral data were recorded between 600 and 4000 cm-1 with a 4 cm-1 resolution by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The proposed procedure was compared to high performance liquid chromatography (HPLC). The results obtained from the root mean square error of prediction (RMSEP), during the validation of the models for samples of sulphamethoxazole (SMZ) and trimethoprim (TMP) using siPLS, demonstrate that this approach is a valid technique for use in quantitative analysis of pharmaceutical formulations. The selected interval algorithm allowed building regression models with minor errors when compared to the full spectrum PLS model. A RMSEP of 13.03 mg g-1for SMZ and 4.88 mg g-1 for TMP was obtained after the selection the best spectral regions by siPLS.

  15. Assessing a dysphoric arousal model of acute stress disorder symptoms in a clinical sample of rape and bank robbery victims

    PubMed Central

    Hansen, Maj; Armour, Cherie; Elklit, Ask

    2012-01-01

    Background Since the introduction of Acute Stress Disorder (ASD) into the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) research has focused on the ability of ASD to predict PTSD rather than focusing on addressing ASD's underlying latent structure. The few existing confirmatory factor analytic (CFA) studies of ASD have failed to reach a clear consensus regarding ASD's underlying dimensionality. Although, the discrepancy in the results may be due to varying ASD prevalence rates, it remains possible that the model capturing the latent structure of ASD has not yet been put forward. One such model may be a replication of a new five-factor model of PTSD, which separates the arousal symptom cluster into Dysphoric and Anxious Arousal. Given the pending DSM-5, uncovering ASD's latent structure is more pertinent than ever. Objective Using CFA, four different models of the latent structure of ASD were specified and tested: the proposed DSM-5 model, the DSM-IV model, a three factor model, and a five factor model separating the arousal symptom cluster. Method The analyses were based on a combined sample of rape and bank robbery victims, who all met the diagnostic criteria for ASD (N = 404) using the Acute Stress Disorder Scale. Results The results showed that the five factor model provided the best fit to the data. Conclusions The results of the present study suggest that the dimensionality of ASD may be best characterized as a five factor structure which separates dysphoric and anxious arousal items into two separate factors, akin to recent research on PTSD's latent structure. Thus, the current study adds to the debate about how ASD should be conceptualized in the pending DSM-5. PMID:22893845

  16. Assessing a dysphoric arousal model of acute stress disorder symptoms in a clinical sample of rape and bank robbery victims.

    PubMed

    Hansen, Maj; Armour, Cherie; Elklit, Ask

    2012-01-01

    Since the introduction of Acute Stress Disorder (ASD) into the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) research has focused on the ability of ASD to predict PTSD rather than focusing on addressing ASD's underlying latent structure. The few existing confirmatory factor analytic (CFA) studies of ASD have failed to reach a clear consensus regarding ASD's underlying dimensionality. Although, the discrepancy in the results may be due to varying ASD prevalence rates, it remains possible that the model capturing the latent structure of ASD has not yet been put forward. One such model may be a replication of a new five-factor model of PTSD, which separates the arousal symptom cluster into Dysphoric and Anxious Arousal. Given the pending DSM-5, uncovering ASD's latent structure is more pertinent than ever. USING CFA, FOUR DIFFERENT MODELS OF THE LATENT STRUCTURE OF ASD WERE SPECIFIED AND TESTED: the proposed DSM-5 model, the DSM-IV model, a three factor model, and a five factor model separating the arousal symptom cluster. The analyses were based on a combined sample of rape and bank robbery victims, who all met the diagnostic criteria for ASD (N = 404) using the Acute Stress Disorder Scale. The results showed that the five factor model provided the best fit to the data. The results of the present study suggest that the dimensionality of ASD may be best characterized as a five factor structure which separates dysphoric and anxious arousal items into two separate factors, akin to recent research on PTSD's latent structure. Thus, the current study adds to the debate about how ASD should be conceptualized in the pending DSM-5.

  17. PCA as a practical indicator of OPLS-DA model reliability.

    PubMed

    Worley, Bradley; Powers, Robert

    Principal Component Analysis (PCA) and Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) are powerful statistical modeling tools that provide insights into separations between experimental groups based on high-dimensional spectral measurements from NMR, MS or other analytical instrumentation. However, when used without validation, these tools may lead investigators to statistically unreliable conclusions. This danger is especially real for Partial Least Squares (PLS) and OPLS, which aggressively force separations between experimental groups. As a result, OPLS-DA is often used as an alternative method when PCA fails to expose group separation, but this practice is highly dangerous. Without rigorous validation, OPLS-DA can easily yield statistically unreliable group separation. A Monte Carlo analysis of PCA group separations and OPLS-DA cross-validation metrics was performed on NMR datasets with statistically significant separations in scores-space. A linearly increasing amount of Gaussian noise was added to each data matrix followed by the construction and validation of PCA and OPLS-DA models. With increasing added noise, the PCA scores-space distance between groups rapidly decreased and the OPLS-DA cross-validation statistics simultaneously deteriorated. A decrease in correlation between the estimated loadings (added noise) and the true (original) loadings was also observed. While the validity of the OPLS-DA model diminished with increasing added noise, the group separation in scores-space remained basically unaffected. Supported by the results of Monte Carlo analyses of PCA group separations and OPLS-DA cross-validation metrics, we provide practical guidelines and cross-validatory recommendations for reliable inference from PCA and OPLS-DA models.

  18. Determinants of Health-Related Quality of Life in Taiwanese Middle-Aged Women Stroke Survivors.

    PubMed

    Pai, Hsiang-Chu; Wu, Ming-Hsiu; Chang, Mei-Yueh

    Female stroke victims have a higher survival rate and experience a greater loss of quality of life than do male stroke victims. The aim of this study was to evaluate the determinants of health-related quality of life in middle-aged women stroke survivors. This study is a cross-sectional design. This cross-sectional research uses a descriptive, prospective, and correlational study design to investigate the associations between latent variables. Participants included women stroke survivors, aged 45-65 years, who were patients at a medical center in Taiwan. Participants completed an interview and a six-part questionnaire comprising the Short-Form Health Survey (SF-36), National Institutes of Health Stroke Scale, Modified Rankin Scale, Burden Scale, Chinese Health Questionnaire, and five items that pertain to the survivor's cognitive appraisal of coping. Structural equation modeling (SEM), with the use of the partial least squares (PLS) method, was used to examine the proposed conceptual model. A total of 48 dyad samples (48 female stroke survivors, mean age = 55.29; 48 caregivers, mean age = 42.71) participated in the study. Overall, women's physical functioning (PF; stroke severity), cognitive appraisal of coping, and caregiver's psychosocial functioning were the predictors, explaining 43.3% of the variance in women's health-related quality of life. We found that female stroke survivors' level of stroke severity and negative appraisal-impact of stroke are significant predictors of the stroke survivor's quality of life. In addition to assisting women in their PF rehabilitation, rehabilitation nurses also should help to develop survivors' self-care confidence as a means to avoid the recurrence of stroke.

  19. The Use of a Context-Based Information Retrieval Technique

    DTIC Science & Technology

    2009-07-01

    provided in context. Latent Semantic Analysis (LSA) is a statistical technique for inferring contextual and structural information, and previous studies...WAIS). 10 DSTO-TR-2322 1.4.4 Latent Semantic Analysis LSA, which is also known as latent semantic indexing (LSI), uses a statistical and...1.4.6 Language Models In contrast, natural language models apply algorithms that combine statistical information with semantic information. Semantic

  20. Latent factor structure of a behavioral economic marijuana demand curve.

    PubMed

    Aston, Elizabeth R; Farris, Samantha G; MacKillop, James; Metrik, Jane

    2017-08-01

    Drug demand, or relative value, can be assessed via analysis of behavioral economic purchase task performance. Five demand indices are typically obtained from drug purchase tasks. The goal of this research was to determine whether metrics of marijuana reinforcement from a marijuana purchase task (MPT) exhibit a latent factor structure that efficiently characterizes marijuana demand. Participants were regular marijuana users (n = 99; 37.4% female, 71.5% marijuana use days [5 days/week], 15.2% cannabis dependent) who completed study assessments, including the MPT, during a baseline session. Principal component analysis was used to examine the latent structure underlying MPT indices. Concurrent validity was assessed via examination of relationships between latent factors and marijuana use, past quit attempts, and marijuana expectancies. A two-factor solution was confirmed as the best fitting structure, accounting for 88.5% of the overall variance. Factor 1 (65.8% variance) reflected "Persistence," indicating sensitivity to escalating marijuana price, which comprised four MPT indices (elasticity, O max , P max , and breakpoint). Factor 2 (22.7% variance) reflected "Amplitude," indicating the amount consumed at unrestricted price (intensity). Persistence factor scores were associated with fewer past marijuana quit attempts and lower expectancies of negative use outcomes. Amplitude factor scores were associated with more frequent use, dependence symptoms, craving severity, and positive marijuana outcome expectancies. Consistent with research on alcohol and cigarette purchase tasks, the MPT can be characterized with a latent two-factor structure. Thus, demand for marijuana appears to encompass distinct dimensions of price sensitivity and volumetric consumption, with differential relations to other aspects of marijuana motivation.

  1. [Effect of near infrared spectrum on the precision of PLS model for oil yield from oil shale].

    PubMed

    Wang, Zhi-Hong; Liu, Jie; Chen, Xiao-Chao; Sun, Yu-Yang; Yu, Yang; Lin, Jun

    2012-10-01

    It is impossible to use present measurement methods for the oil yield of oil shale to realize in-situ detection and these methods unable to meet the requirements of the oil shale resources exploration and exploitation. But in-situ oil yield analysis of oil shale can be achieved by the portable near infrared spectroscopy technique. There are different correlativities of NIR spectrum data formats and contents of sample components, and the different absorption specialities of sample components shows in different NIR spectral regions. So with the proportioning samples, the PLS modeling experiments were done by 3 formats (reflectance, absorbance and K-M function) and 4 regions of modeling spectrum, and the effect of NIR spectral format and region to the precision of PLS model for oil yield from oil shale was studied. The results show that the best data format is reflectance and the best modeling region is combination spectral range by PLS model method and proportioning samples. Therefore, the appropriate data format and the proper characteristic spectral region can increase the precision of PLS model for oil yield form oil shale.

  2. A heuristic approach using multiple criteria for environmentally benign 3PLs selection

    NASA Astrophysics Data System (ADS)

    Kongar, Elif

    2005-11-01

    Maintaining competitiveness in an environment where price and quality differences between competing products are disappearing depends on the company's ability to reduce costs and supply time. Timely responses to rapidly changing market conditions require an efficient Supply Chain Management (SCM). Outsourcing logistics to third-party logistics service providers (3PLs) is one commonly used way of increasing the efficiency of logistics operations, while creating a more "core competency focused" business environment. However, this alone may not be sufficient. Due to recent environmental regulations and growing public awareness regarding environmental issues, 3PLs need to be not only efficient but also environmentally benign to maintain companies' competitiveness. Even though an efficient and environmentally benign combination of 3PLs can theoretically be obtained using exhaustive search algorithms, heuristics approaches to the selection process may be superior in terms of the computational complexity. In this paper, a hybrid approach that combines a multiple criteria Genetic Algorithm (GA) with Linear Physical Weighting Algorithm (LPPW) to be used in efficient and environmentally benign 3PLs is proposed. A numerical example is also provided to illustrate the method and the analyses.

  3. Is environmental sustainability a strategic priority for logistics service providers?

    PubMed

    Evangelista, Pietro; Colicchia, Claudia; Creazza, Alessandro

    2017-08-01

    Despite an increasing number of third-party logistics service providers (3PLs) regard environmental sustainability as a key area of management, there is still great uncertainty on how 3PLs implement environmental strategies and on how they translate green efforts into practice. Through a multiple case study analysis, this paper explores the environmental strategies of a sample of medium-sized 3PLs operating in Italy and the UK, in terms of environmental organizational culture, initiatives, and influencing factors. Our analysis shows that, notwithstanding environmental sustainability is generally recognised as a strategic priority, a certain degree of diversity in the deployment of environmental strategies still exists. This paper is original since the extant literature on green strategies of 3PLs provides findings predominantly from a single country perspective and mainly investigates large/multinational organizations. It also provides indications to help managers of medium-sized 3PLs in positioning their business. This is particularly meaningful in the 3PL industry, where medium-sized organizations significantly contribute to the generated turnover and market value. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A Comparison of Multivariate and Pre-Processing Methods for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F., III; Humphries, S. D.; Wiens, R. C.

    2011-01-01

    The ChemCam instrument selected for the Curiosity rover is capable of remote laser-induced breakdown spectroscopy (LIBS).[1] We used a remote LIBS instrument similar to ChemCam to analyze 197 geologic slab samples and 32 pressed-powder geostandards. The slab samples are well-characterized and have been used to validate the calibration of previous instruments on Mars missions, including CRISM [2], OMEGA [3], the MER Pancam [4], Mini-TES [5], and Moessbauer [6] instruments and the Phoenix SSI [7]. The resulting dataset was used to compare multivariate methods for quantitative LIBS and to determine the effect of grain size on calculations. Three multivariate methods - partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs - were used to generate models and extract the quantitative composition of unknown samples. PLS can be used to predict one element (PLS1) or multiple elements (PLS2) at a time, as can the neural network methods. Although MLP and CC ANNs were successful in some cases, PLS generally produced the most accurate and precise results.

  5. Kernel analysis of partial least squares (PLS) regression models.

    PubMed

    Shinzawa, Hideyuki; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro

    2011-05-01

    An analytical technique based on kernel matrix representation is demonstrated to provide further chemically meaningful insight into partial least squares (PLS) regression models. The kernel matrix condenses essential information about scores derived from PLS or principal component analysis (PCA). Thus, it becomes possible to establish the proper interpretation of the scores. A PLS model for the total nitrogen (TN) content in multiple Thai fish sauces is built with a set of near-infrared (NIR) transmittance spectra of the fish sauce samples. The kernel analysis of the scores effectively reveals that the variation of the spectral feature induced by the change in protein content is substantially associated with the total water content and the protein hydration. Kernel analysis is also carried out on a set of time-dependent infrared (IR) spectra representing transient evaporation of ethanol from a binary mixture solution of ethanol and oleic acid. A PLS model to predict the elapsed time is built with the IR spectra and the kernel matrix is derived from the scores. The detailed analysis of the kernel matrix provides penetrating insight into the interaction between the ethanol and the oleic acid.

  6. The Importance of Institutional Image to Student Satisfaction and Loyalty within Higher Education

    ERIC Educational Resources Information Center

    Brown, Robert M.; Mazzarol, Timothy William

    2009-01-01

    This paper outlines the findings of a study employing a partial least squares (PLS) structural equation methodology to test a customer satisfaction model of the drivers of student satisfaction and loyalty in higher education settings. Drawing upon a moderately large sample of students enrolled in four "types" of Australian universities,…

  7. Students' Views on Mathematics in Single-Sex and Coed Classrooms in Ghana

    ERIC Educational Resources Information Center

    Bofah, Emmanuel Adu-tutu; Hannula, Markku S.

    2016-01-01

    In this study, we investigated students' views on themselves as learners of mathematics as a function of school-by-sex (N = 2034, MAge = 18.49, SDAge = 1.25; 12th-grade; 58.2% girls). Using latent variable Structural Equation Modeling (SEM), the measurement and structural equivalence as well as the equality of latent means of scores across…

  8. The Information a Test Provides on an Ability Parameter. Research Report. ETS RR-07-18

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2007-01-01

    In item-response theory, if a latent-structure model has an ability variable, then elementary information theory may be employed to provide a criterion for evaluation of the information the test provides concerning ability. This criterion may be considered even in cases in which the latent-structure model is not valid, although interpretation of…

  9. The NEO Five-Factor Inventory: Latent Structure and Relationships with Dimensions of Anxiety and Depressive Disorders in a Large Clinical Sample

    ERIC Educational Resources Information Center

    Rosellini, Anthony J.; Brown, Timothy A.

    2011-01-01

    The present study evaluated the latent structure of the NEO Five-Factor Inventory (NEO FFI) and relations between the five-factor model (FFM) of personality and dimensions of "DSM-IV" anxiety and depressive disorders (panic disorder, generalized anxiety disorder [GAD], obsessive-compulsive disorder, social phobia [SOC], major depressive disorder…

  10. Taxometric and Factor Analytic Models of Anxiety Sensitivity: Integrating Approaches to Latent Structural Research

    ERIC Educational Resources Information Center

    Bernstein, Amit; Zvolensky, Michael J.; Norton, Peter J.; Schmidt, Norman B.; Taylor, Steven; Forsyth, John P.; Lewis, Sarah F.; Feldner, Matthew T.; Leen-Feldner, Ellen W.; Stewart, Sherry H.; Cox, Brian

    2007-01-01

    This study represents an effort to better understand the latent structure of anxiety sensitivity (AS), as indexed by the 16-item Anxiety Sensitivity Index (ASI; S. Reiss, R. A. Peterson, M. Gursky, & R. J. McNally, 1986), by using taxometric and factor-analytic approaches in an integrative manner. Taxometric analyses indicated that AS has a…

  11. Using Instrumental Variable (IV) Tests to Evaluate Model Specification in Latent Variable Structural Equation Models*

    PubMed Central

    Kirby, James B.; Bollen, Kenneth A.

    2009-01-01

    Structural Equation Modeling with latent variables (SEM) is a powerful tool for social and behavioral scientists, combining many of the strengths of psychometrics and econometrics into a single framework. The most common estimator for SEM is the full-information maximum likelihood estimator (ML), but there is continuing interest in limited information estimators because of their distributional robustness and their greater resistance to structural specification errors. However, the literature discussing model fit for limited information estimators for latent variable models is sparse compared to that for full information estimators. We address this shortcoming by providing several specification tests based on the 2SLS estimator for latent variable structural equation models developed by Bollen (1996). We explain how these tests can be used to not only identify a misspecified model, but to help diagnose the source of misspecification within a model. We present and discuss results from a Monte Carlo experiment designed to evaluate the finite sample properties of these tests. Our findings suggest that the 2SLS tests successfully identify most misspecified models, even those with modest misspecification, and that they provide researchers with information that can help diagnose the source of misspecification. PMID:20419054

  12. Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm.

    PubMed

    de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Héctor Casimiro; Galvão, Roberto Kawakami Harrop; Araújo, Mario Cesar Ugulino

    2018-05-01

    This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions. Published by Elsevier B.V.

  13. Post-traumatic stress symptoms and structure among orphan and vulnerable children and adolescents in Zambia.

    PubMed

    Familiar, Itziar; Murray, Laura; Gross, Alden; Skavenski, Stephanie; Jere, Elizabeth; Bass, Judith

    2014-11-01

    Scant information exists on PTSD symptoms and structure in youth from developing countries. We describe the symptom profile and exposure to trauma experiences among 343 orphan and vulnerable children and adolescents from Zambia. We distinguished profiles of post-traumatic stress symptoms using latent class analysis. Average number of trauma-related symptoms (21.6; range 0-38) was similar across sex and age. Latent class model suggested 3 classes varying by level of severity: low (31% of the sample), medium (45% of the sample), and high (24% of the sample) symptomatology. Results suggest that PTSD is a continuously distributed latent trait.

  14. Application of core-shell-structured CdTe@SiO2 quantum dots synthesized via a facile solution method for improving latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Han, Jiaxing; Lv, Caifeng; Wang, Qin; Zhang, Jun; Li, Qun; Bao, Liru; Li, Xin

    2012-10-01

    Fingerprint detection is important in criminal investigation. This paper reports a facile powder brushing technique for improving latent fingerprint detection using core-shell-structured CdTe@SiO2 quantum dots (QDs) as fluorescent labeling marks. Core-shell-structured CdTe@SiO2 QDs are prepared via a simple solution-based approach using NH2NH2·H2O as pH adjustor and stabilizer, and their application for improving latent fingerprint detection is explored. The obtained CdTe@SiO2 QDs show spherical shapes with well-defined core-shell structures encapsulating different amounts of QDs depending on the type of the pH adjustor and stabilizer. Moreover, the fluorescence of CdTe@SiO2 QDs is largely enhanced by surface modification of the SiO2 shell. The CdTe@SiO2 QDs overcome the oxidation problem of pure CdTe QDs in air, thus affording better variability with strong adhesive ability, better resolution, and bright emission colors for practical application in latent fingerprint detection. In comparison with the conventional fluorescence powders, silver powders, and others, the effectiveness of CdTe@SiO2 QD powders for detection of latent fingerprints present on a large variety of object surfaces is greatly improved. The synthesis method for CdTe@SiO2 QDs is simple, cheap, and easy for large-scale production, and thus offers many advantages in the practical application of fingerprint detection.

  15. A taxometric investigation of agoraphobia in a clinical and a community sample.

    PubMed

    Slade, Tim; Grisham, Jessica R

    2009-08-01

    The nosological status of agoraphobia is controversial. Agoraphobia may be a distinct diagnostic entity or a marker of avoidance severity. The current study examines the latent structure of agoraphobia through the use of taxometric analysis. The latent structure of agoraphobia was examined in two independent samples, one comprising outpatients presenting for treatment for panic disorder (PD) with or without agoraphobia (n=365), and the other comprising community volunteers to a national mental health survey who experienced fear or avoidance of at least one prototypic agoraphobic situation (n=640). Two taxometric procedures were carried out - maximum eigenvalue (MAXEIG) and mean above minus below a cut (MAMBAC) - using indicators derived from questionnaire measures of, and structured diagnostic interviews for, agoraphobia. Results show consistent evidence of dimensional latent structure in both samples. It is concluded that scores on measures of agoraphobia best represent an agoraphobic severity dimension.

  16. Nucleotide sequence and proposed secondary structure of Columnea latent viroid: a natural mosaic of viroid sequences.

    PubMed Central

    Hammond, R; Smith, D R; Diener, T O

    1989-01-01

    The Columnea latent viroid (CLV) occurs latently in certain Columnea erythrophae plants grown commercially. In potato and tomato, CLV causes potato spindle tuber viroid (PSTV)-like symptoms. Its nucleotide sequence and proposed secondary structure reveal that CLV consists of a single-stranded circular RNA of 370 nucleotides which can assume a rod-like structure with extensive base-pairing characteristic of all known viroids. The electrophoretic mobility of circular CLV under nondenaturing conditions suggests a potential tertiary structure. CLV contains extensive sequence homologies to the PSTV group of viroids but contains a central conserved region identical to that of hop stunt viroid (HSV). CLV also shares some biological properties with each of the two types of viroids. Most probably, CLV is the result of intracellular RNA recombination between an HSV-type and one or more PSTV-type viroids replicating in the same plant. Images PMID:2602114

  17. Personnel Launch System (PLS) study

    NASA Technical Reports Server (NTRS)

    Ehrlich, Carl F., Jr.

    1991-01-01

    NASA is currently studying a personnel launch system (PLS) approach to help satisfy the crew rotation requirements for the Space Station Freedom. Several concepts from low L/D capsules to lifting body vehicles are being examined in a series of studies as a potential augmentation to the Space Shuttle launch system. Rockwell International Corporation, under contract to NASA, analyzed a lifting body concept to determine whether the lifting body class of vehicles is appropriate for the PLS function. The results of the study are given.

  18. Importance-Performance Matrix Analysis (IPMA) Of Transport Disadvantage Variables on Social Exclusion in a Rural Context

    NASA Astrophysics Data System (ADS)

    Larasati, Ophilia; Puspita Dirgahayani, Eng., Dr.

    2018-05-01

    Transport services are essential to support daily life. A lack of transport supply leads to the existence of transport disadvantaged (TDA) groups who are vulnerable to social exclusion, which happens when a particular group or individual is having difficulties to access certain activities that are considered normal in society. To tackle this phenomenon, the understanding of the influence of TDA variables on social exclusion is needed. The aim of this study is to analyze the influences of TDA variables on social exclusion in a rural context, with Cibeureum Village (Bandung Barat Regency) and Bunikasih Village (Subang Regency) as the study case. Both case studies provide different characteristics of accessibility. Partial Least Squares (PLS) Structural Equation Modeling (SEM) is chosen as the method to analyze the influences of TDA variables on social exclusion. The PLS-SEM model is developed according to the social exclusion variable and four TDA variables, i.e., accessibility, individual characteristics, private vehicle existence, and travel behavior. IPMA is done after the PLS-SEM model is evaluated. The study reveals that among four of the TDA variables, accessibility has the most influence on social exclusion, hence interventions related to improving accessibility are needed to tackle social exclusion. More specifically, the provision of alternative modes is needed in both study areas, while in Bunikasih Village the cost of travel is also an important variable to consider.

  19. Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.

    PubMed

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang

    2018-03-12

    Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.

  20. Rapid assessment of bioactive phenolics and methylxanthines in spent coffee grounds by FT-NIR spectroscopy.

    PubMed

    Magalhães, Luís M; Machado, Sandia; Segundo, Marcela A; Lopes, João A; Páscoa, Ricardo N M J

    2016-01-15

    Spent coffee grounds (SCGs) are a great source of bioactive compounds with interest to pharmaceutical and cosmetic industries. Phenolics and methylxanthines are the main health related compounds present in SCG samples. Content estimation of these compounds in SCGs is of upmost importance in what concerns their profitable use by waste recovery industries. In the present work, near-infrared spectroscopy (NIRS) was proposed as a rapid and non-destructive technique to assess the content of three main phenolics (caffeic acid, (+)-catechin and chlorogenic acid) and three methylxanthines (caffeine, theobromine and theophylline) in SCG samples obtained from different coffee brands and diverse coffee machines. The content of these compounds was determined for 61 SCG samples by HPLC coupled with diode-array detection. Partial least squares (PLS) regression based models were calibrated to correlate diffuse reflectance NIR spectra against the reference data for the six parameters obtained by HPLC. Spectral wavelength selection and number of latent variables were optimized by minimizing the cross-validation error. PLS models showed good linearity with a coefficient of determination for the prediction set (Rp(2)) of 0.95, 0.92, 0.88, 071 and 0.84 for caffeine, caffeic acid, (+)-catechin, chlorogenic acid and theophylline, respectively. The range error ratio (RER) was higher for caffeine (17.8) when compared to other compounds (12.0, 10.1, 7.6 and 9.2, respectively for caffeic acid, (+)-catechin, chlorogenic acid and theophylline). Moreover, the content of caffeine could be used to predict the antioxidant properties of SCG samples (R=0.808, n=61), despite not presenting this property itself. The results obtained confirmed that NIRS is a suitable technique to screen SCG samples unveiling those with high content of bioactive compounds, which are interesting for subsequent extraction procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: application to the detection of breast cancer.

    PubMed

    Gu, Haiwei; Pan, Zhengzheng; Xi, Bowei; Asiago, Vincent; Musselman, Brian; Raftery, Daniel

    2011-02-07

    Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two most commonly used analytical tools in metabolomics, and their complementary nature makes the combination particularly attractive. A combined analytical approach can improve the potential for providing reliable methods to detect metabolic profile alterations in biofluids or tissues caused by disease, toxicity, etc. In this paper, (1)H NMR spectroscopy and direct analysis in real time (DART)-MS were used for the metabolomics analysis of serum samples from breast cancer patients and healthy controls. Principal component analysis (PCA) of the NMR data showed that the first principal component (PC1) scores could be used to separate cancer from normal samples. However, no such obvious clustering could be observed in the PCA score plot of DART-MS data, even though DART-MS can provide a rich and informative metabolic profile. Using a modified multivariate statistical approach, the DART-MS data were then reevaluated by orthogonal signal correction (OSC) pretreated partial least squares (PLS), in which the Y matrix in the regression was set to the PC1 score values from the NMR data analysis. This approach, and a similar one using the first latent variable from PLS-DA of the NMR data resulted in a significant improvement of the separation between the disease samples and normals, and a metabolic profile related to breast cancer could be extracted from DART-MS. The new approach allows the disease classification to be expressed on a continuum as opposed to a binary scale and thus better represents the disease and healthy classifications. An improved metabolic profile obtained by combining MS and NMR by this approach may be useful to achieve more accurate disease detection and gain more insight regarding disease mechanisms and biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Latent constructs of the autobiographical memory questionnaire: a recollection-belief model of autobiographical experience.

    PubMed

    Fitzgerald, Joseph M; Broadbridge, Carissa L

    2013-01-01

    Many researchers employ single-item scales of subjective experiences such as imagery and confidence to assess autobiographical memory. We tested the hypothesis that four latent constructs, recollection, belief, impact, and rehearsal, account for the variance in commonly used scales across four different types of autobiographical memory: earliest childhood memory, cue word memory of personal experience, highly vivid memory, and most stressful memory. Participants rated each memory on scales hypothesised to be indicators of one of four latent constructs. Multi-group confirmatory factor analyses and structural analyses confirmed the similarity of the latent constructs of recollection, belief, impact, and rehearsal, as well as the similarity of the structural relationships among those constructs across memory type. The observed pattern of mean differences between the varieties of autobiographical experiences was consistent with prior research and theory in the study of autobiographical memory.

  3. Environmental risk perception, environmental concern and propensity to participate in organic farming programmes.

    PubMed

    Toma, Luiza; Mathijs, Erik

    2007-04-01

    This paper aims to identify the factors underlying farmers' propensity to participate in organic farming programmes in a Romanian rural region that confronts non-point source pollution. For this, we employ structural equation modelling with latent variables using a specific data set collected through an agri-environmental farm survey in 2001. The model includes one 'behavioural intention' latent variable ('propensity to participate in organic farming programmes') and five 'attitude' and 'socio-economic' latent variables ('socio-demographic characteristics', 'economic characteristics', 'agri-environmental information access', 'environmental risk perception' and 'general environmental concern'). The results indicate that, overall, the model has an adequate fit to the data. All loadings are statistically significant, supporting the theoretical basis for assignment of indicators for each latent variable. The significance tests for the structural model parameters show 'environmental risk perception' as the strongest determinant of farmers' propensity to participate in organic farming programmes.

  4. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data.

    PubMed

    Ferragina, A; de los Campos, G; Vazquez, A I; Cecchinato, A; Bittante, G

    2015-11-01

    The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict "difficult-to-predict" dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm(-1) were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from calibration to external validation methods, and in moving from PLS and MPLS to Bayesian methods, particularly Bayes A and Bayes B. The maximum R(2) value of validation was obtained with Bayes B and Bayes A. For the FA, C10:0 (% of each FA on total FA basis) had the highest R(2) (0.75, achieved with Bayes A and Bayes B), and among the technological traits, fresh cheese yield R(2) of 0.82 (achieved with Bayes B). These 2 methods have proven to be useful instruments in shrinking and selecting very informative wavelengths and inferring the structure and functions of the analyzed traits. We conclude that Bayesian models are powerful tools for deriving calibration equations, and, importantly, these equations can be easily developed using existing open-source software. As part of our study, we provide scripts based on the open source R software BGLR, which can be used to train customized prediction equations for other traits or populations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Evaluating the Latent Structure of the MMPI-2 F(p) Scale in a Forensic Sample: A Taxometric Analysis

    ERIC Educational Resources Information Center

    Strong, David R.; Glassmire, David M.; Frederick, Richard I.; Greene, Roger L.

    2006-01-01

    P. A. Arbisi and Y. S. Ben-Porath (1995) originally proposed that the Infrequency Psychopathology scale, F(p), be used as the final step in an algorithm to determine the validity of a Minnesota Multiphasic Personality Inventory-2 (MMPI-2) protocol. The current study used taxometric procedures to determine the latent structure of F(p) among…

  6. Modeling Latent Growth Curves With Incomplete Data Using Different Types of Structural Equation Modeling and Multilevel Software

    ERIC Educational Resources Information Center

    Ferrer, Emilio; Hamagami, Fumiaki; McArdle, John J.

    2004-01-01

    This article offers different examples of how to fit latent growth curve (LGC) models to longitudinal data using a variety of different software programs (i.e., LISREL, Mx, Mplus, AMOS, SAS). The article shows how the same model can be fitted using both structural equation modeling and multilevel software, with nearly identical results, even in…

  7. The Latent Structures of the Learning and Study Strategies Inventory (LASSI): A Comparative Analysis.

    ERIC Educational Resources Information Center

    Obiekwe, Jerry C.

    The first purpose of this study was to analyze the results of the confirmatory factor analyses, via EQS, with regard to the latent structures of the Learning and Study Strategies Inventory (LASSI) (C. Weinstein, D. Palmer, and A. Schulte, 1987) as proposed by S. Olejnik and S. Nist (1992), A. Olivarez and M. Tallent-Runnels (1994), B. Olaussen and…

  8. A Taxometric Investigation of the Latent Structure of Worry: Dimensionality and Associations with Depression, Anxiety, and Stress

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Broman-Fulks, Joshua J.; Bergman, Shawn M.; Green, Bradley A.; Zlomke, Kimberly R.

    2010-01-01

    Worry has been described as a core feature of several disorders, particularly generalized anxiety disorder (GAD). The present study examined the latent structure of worry by applying 3 taxometric procedures (MAXEIG, MAMBAC, and L-Mode) to data collected from 2 large samples. Worry in the first sample (Study 1) of community participants (n = 1,355)…

  9. Optical properties of drug metabolites in latent fingermarks

    PubMed Central

    Shen, Yao; Ai, Qing

    2016-01-01

    Drug metabolites usually have structures of split-ring resonators (SRRs), which might lead to negative permittivity and permeability in electromagnetic field. As a result, in the UV-vis region, the latent fingermarks images of drug addicts and non drug users are inverse. The optical properties of latent fingermarks are quite different between drug addicts and non-drug users. This is a technic superiority for crime scene investigation to distinguish them. In this paper, we calculate the permittivity and permeability of drug metabolites using tight-binding model. The latent fingermarks of smokers and non-smokers are given as an example. PMID:26838730

  10. Predictive Inference Using Latent Variables with Covariates*

    PubMed Central

    Schofield, Lynne Steuerle; Junker, Brian; Taylor, Lowell J.; Black, Dan A.

    2014-01-01

    Plausible Values (PVs) are a standard multiple imputation tool for analysis of large education survey data that measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally-generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations (MESE) model of Schofield (2008). PMID:25231627

  11. Quantification of adulterations in extra virgin flaxseed oil using MIR and PLS.

    PubMed

    de Souza, Letícia Maria; de Santana, Felipe Bachion; Gontijo, Lucas Caixeta; Mazivila, Sarmento Júnior; Borges Neto, Waldomiro

    2015-09-01

    This paper proposes a new method for the quantitative analysis of soybean oil (SO) and sunflower oil (SFO) as adulterants in extra virgin flaxseed oil (EFO) by applying Mid Infrared Spectroscopy (MIR) associated with chemometric technique of Partial Least Squares (PLS). The PLS models were built in accordance with standard method ASTM E1655-05 and these showed good correlation between the reference values and those calculated using the PLS models with low error values, with R = 0.998 for SFO and R = 0.999 for SO in EFO. These models were validated analytically in accordance with Brazilian and international guidelines through the estimate of figures of merit parameters, thus showing an effective and feasible method to control the quality of extra virgin flaxseed oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A summary to communicate evidence from systematic reviews to the public improved understanding and accessibility of information: a randomized controlled trial.

    PubMed

    Santesso, Nancy; Rader, Tamara; Nilsen, Elin Strømme; Glenton, Claire; Rosenbaum, Sarah; Ciapponi, Agustín; Moja, Lorenzo; Pardo, Jordi Pardo; Zhou, Qi; Schünemann, Holger J

    2015-02-01

    To evaluate a new format of a summary, which presents research from synthesized evidence to patients and the public. We conducted a randomized controlled trial in 143 members of the public from five countries (Canada, Norway, Spain, Argentina, and Italy). Participants received either a new summary format (a plain language summary [PLS]) or the current format used in Cochrane systematic reviews. The new PLS presents information about the condition and intervention, a narrative summary of results, and a table of results with absolute numbers for effects of the intervention and quality of the evidence using Grading of Recommendations Assessment, Development, and Evaluation. With the new PLS, more participants understood the benefits and harms and quality of evidence (53% vs. 18%, P < 0.001); more answered each of the five questions correctly (P ≤ 0.001 for four questions); and they answered more questions correctly, median 3 (interquartile range [IQR]: 1-4) vs. 1 (IQR: 0-1), P < 0.001). Better understanding was independent of education level. More participants found information in the new PLS reliable, easy to find, easy to understand, and presented in a way that helped make decisions. Overall, participants preferred the new PLS. This new PLS format for patients and the public is a promising tool to translate evidence from synthesized research. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  14. Bifactor latent structure of attention-deficit/hyperactivity disorder (ADHD)/oppositional defiant disorder (ODD) symptoms and first-order latent structure of sluggish cognitive tempo symptoms.

    PubMed

    Lee, SoYean; Burns, G Leonard; Beauchaine, Theodore P; Becker, Stephen P

    2016-08-01

    The objective was to determine if the latent structure of attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) symptoms is best explained by a general disruptive behavior factor along with specific inattention (IN), hyperactivity/impulsivity (HI), and ODD factors (a bifactor model) whereas the latent structure of sluggish cognitive tempo (SCT) symptoms is best explained by a first-order factor independent of the bifactor model of ADHD/ODD. Parents' (n = 703) and teachers' (n = 366) ratings of SCT, ADHD-IN, ADHD-HI, and ODD symptoms on the Child and Adolescent Disruptive Behavior Inventory (CADBI) in a community sample of children (ages 5-13; 55% girls) were used to evaluate 4 models of symptom organization. Results indicated that a bifactor model of ADHD/ODD symptoms, in conjunction with a separate first-order SCT factor, was the best model for both parent and teacher ratings. The first-order SCT factor showed discriminant validity with the general disruptive behavior and specific IN factors in the bifactor model. In addition, higher scores on the SCT factor predicted greater academic and social impairment, even after controlling for the general disruptive behavior and 3 specific factors. Consistent with predictions from the trait-impulsivity etiological model of externalizing liability, a single, general disruptive behavior factor accounted for nearly all common variance in ADHD/ODD symptoms, whereas SCT symptoms represented a factor different from the general disruptive behavior and specific IN factor. These results provide additional support for distinguishing between SCT and ADHD-IN. The study also demonstrates how etiological models can be used to predict specific latent structures of symptom organization. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Effect on the partial least-squares prediction of yarn properties combining raman and infrared measurements and applying wavelength selection.

    PubMed

    de Groot, P J; Swierenga, H; Postma, G J; Melssen, W J; Buydens, L M C

    2003-06-01

    The combination of Raman and infrared spectroscopy on the one hand and wavelength selection on the other hand is used to improve the partial least-squares (PLS) prediction of seven selected yarn properties. These properties are important for on-line quality control during production. From 71 yarn samples, the Raman and infrared spectra are measured and reference methods are used to determine the selected properties. Making separate PLS models for all yarn properties using the Raman and infrared spectra, prior to wavelength selection, reveals that Raman spectroscopy outperforms infrared spectroscopy. If wavelength selection is applied, the PLS prediction error decreases and the correlation coefficient increases for all properties. However, a substantial wavelength selection effect is present for the infrared spectra compared to the Raman spectra. For the infrared spectra, wavelength selection results in PLS prediction errors comparable with the prediction performance of the Raman spectra prior to wavelength selection. Concatenating the Raman and infrared spectra does not enhance the PLS prediction performance, not even after wavelength selection. It is concluded that an infrared spectrometer, combined with a wavelength selection procedure, can be used if no (suitable) Raman instrument is available.

  16. Using the preschool language scale, fourth edition to characterize language in preschoolers with autism spectrum disorders.

    PubMed

    Volden, Joanne; Smith, Isabel M; Szatmari, Peter; Bryson, Susan; Fombonne, Eric; Mirenda, Pat; Roberts, Wendy; Vaillancourt, Tracy; Waddell, Charlotte; Zwaigenbaum, Lonnie; Georgiades, Stelios; Duku, Eric; Thompson, Ann

    2011-08-01

    The Preschool Language Scale, Fourth Edition (PLS-4; Zimmerman, Steiner, & Pond, 2002) was used to examine syntactic and semantic language skills in preschool children with autism spectrum disorders (ASD) to determine its suitability for use with this population. We expected that PLS-4 performance would be better in more intellectually able children and that receptive skills would be relatively more impaired than expressive abilities, consistent with previous findings in the area of vocabulary. Our sample consisted of 294 newly diagnosed preschool children with ASD. Children were assessed via a battery of developmental measures, including the PLS-4. As expected, PLS-4 scores were higher in more intellectually able children with ASD, and overall, expressive communication was higher than auditory comprehension. However, this overall advantage was not stable across nonverbal developmental levels. Expressive skills were significantly better than receptive skills at the youngest developmental levels, whereas the converse applied in children with more advanced development. The PLS-4 can be used to obtain a general index of early syntax and semantic skill in young children with ASD. Longitudinal data will be necessary to determine how the developmental relationship between receptive and expressive language skills unfolds in children with ASD.

  17. Total sulfur determination in residues of crude oil distillation using FT-IR/ATR and variable selection methods

    NASA Astrophysics Data System (ADS)

    Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; Mello, Paola de Azevedo; Ferrão, Marco Flores; dos Santos, Maria de Fátima Pereira; Guimarães, Regina Célia Lourenço; Müller, Edson Irineu; Flores, Erico Marlon Moraes

    2012-04-01

    Total sulfur concentration was determined in atmospheric residue (AR) and vacuum residue (VR) samples obtained from petroleum distillation process by Fourier transform infrared spectroscopy with attenuated total reflectance (FT-IR/ATR) in association with chemometric methods. Calibration and prediction set consisted of 40 and 20 samples, respectively. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). Different treatments and pre-processing steps were also evaluated for the development of models. The pre-treatment based on multiplicative scatter correction (MSC) and the mean centered data were selected for models construction. The use of siPLS as variable selection method provided a model with root mean square error of prediction (RMSEP) values significantly better than those obtained by PLS model using all variables. The best model was obtained using siPLS algorithm with spectra divided in 20 intervals and combinations of 3 intervals (911-824, 823-736 and 737-650 cm-1). This model produced a RMSECV of 400 mg kg-1 S and RMSEP of 420 mg kg-1 S, showing a correlation coefficient of 0.990.

  18. Mixture quantification using PLS in plastic scintillation measurements.

    PubMed

    Bagán, H; Tarancón, A; Rauret, G; García, J F

    2011-06-01

    This article reports the capability of plastic scintillation (PS) combined with multivariate calibration (Partial least squares; PLS) to detect and quantify alpha and beta emitters in mixtures. While several attempts have been made with this purpose in mind using liquid scintillation (LS), no attempt was done using PS that has the great advantage of not producing mixed waste after the measurements are performed. Following this objective, ternary mixtures of alpha and beta emitters ((241)Am, (137)Cs and (90)Sr/(90)Y) have been quantified. Procedure optimisation has evaluated the use of the net spectra or the sample spectra, the inclusion of different spectra obtained at different values of the Pulse Shape Analysis parameter and the application of the PLS1 or PLS2 algorithms. The conclusions show that the use of PS+PLS2 applied to the sample spectra, without the use of any pulse shape discrimination, allows quantification of the activities with relative errors less than 10% in most of the cases. This procedure not only allows quantification of mixtures but also reduces measurement time (no blanks are required) and the application of this procedure does not require detectors that include the pulse shape analysis parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Discrimination of Gastrodia elata from Different Geographical Origin for Quality Evaluation Using Newly-Build Near Infrared Spectrum Coupled with Multivariate Analysis.

    PubMed

    Zuo, Yamin; Deng, Xuehua; Wu, Qing

    2018-05-04

    Discrimination of Gastrodia elata ( G. elata ) geographical origin is of great importance to pharmaceutical companies and consumers in China. this paper focuses on the feasibility of near infrared spectrum (NIRS) combined multivariate analysis as a rapid and non-destructive method to prove its fit for this purpose. Firstly, 16 batches of G. elata samples from four main-cultivation regions in China were quantified by traditional HPLC method. It showed that samples from different origins could not be efficiently differentiated by the contents of four phenolic compounds in this study. Secondly, the raw near infrared (NIR) spectra of those samples were acquired and two different pattern recognition techniques were used to classify the geographical origins. The results showed that with spectral transformation optimized, discriminant analysis (DA) provided 97% and 99% correct classification for the calibration and validation sets of samples from discriminating of four different main-cultivation regions, and provided 98% and 99% correct classifications for the calibration and validation sets of samples from eight different cities, respectively, which all performed better than the principal component analysis (PCA) method. Thirdly, as phenolic compounds content (PCC) is highly related with the quality of G. elata , synergy interval partial least squares (Si-PLS) was applied to build the PCC prediction model. The coefficient of determination for prediction (R p ²) of the Si-PLS model was 0.9209, and root mean square error for prediction (RMSEP) was 0.338. The two regions (4800 cm −1 ⁻5200 cm −1 , and 5600 cm −1 ⁻6000 cm −1 ) selected by Si-PLS corresponded to the absorptions of aromatic ring in the basic phenolic structure. It can be concluded that NIR spectroscopy combined with PCA, DA and Si-PLS would be a potential tool to provide a reference for the quality control of G. elata.

  20. Comparison of Internet-based and paper-based questionnaires in Taiwan using multisample invariance approach.

    PubMed

    Yu, Sen-Chi; Yu, Min-Ning

    2007-08-01

    This study examines whether the Internet-based questionnaire is psychometrically equivalent to the paper-based questionnaire. A random sample of 2,400 teachers in Taiwan was divided into experimental and control groups. The experimental group was invited to complete the electronic form of the Chinese version of Center for Epidemiologic Studies Depression Scale (CES-D) placed on the Internet, whereas the control group was invited to complete the paper-based CES-D, which they received by mail. The multisample invariance approach, derived from structural equation modeling (SEM), was applied to analyze the collected data. The analytical results show that the two groups have equivalent factor structures in the CES-D. That is, the items in CES-D function equivalently in the two groups. Then the equality of latent mean test was performed. The latent means of "depressed mood," "positive affect," and "interpersonal problems" in CES-D are not significantly different between these two groups. However, the difference in the "somatic symptoms" latent means between these two groups is statistically significant at alpha = 0.01. But the Cohen's d statistics indicates that such differences in latent means do not apparently lead to a meaningful effect size in practice. Both CES-D questionnaires exhibit equal validity, reliability, and factor structures and exhibit a little difference in latent means. Therefore, the Internet-based questionnaire represents a promising alternative to the paper-based questionnaire.

  1. Post-traumatic stress symptoms and structure among orphan and vulnerable children and adolescents in Zambia

    PubMed Central

    Familiar, Itziar; Murray, Laura; Gross, Alden; Skavenski, Stephanie; Jere, Elizabeth; Bass, Judith

    2014-01-01

    Background Scant information exists on PTSD symptoms and structure in youth from developing countries. Methods We describe the symptom profile and exposure to trauma experiences among 343 orphan and vulnerable children and adolescents from Zambia. We distinguished profiles of post-traumatic stress symptoms using latent class analysis. Results Average number of trauma-related symptoms (21.6; range 0-38) was similar across sex and age. Latent class model suggested 3 classes varying by level of severity: low (31% of the sample), medium (45% of the sample), and high (24% of the sample) symptomatology. Conclusions Results suggest that PTSD is a continuously distributed latent trait. PMID:25382359

  2. A lattice protein with an amyloidogenic latent state: stability and folding kinetics.

    PubMed

    Palyanov, Andrey Yu; Krivov, Sergei V; Karplus, Martin; Chekmarev, Sergei F

    2007-03-15

    We have designed a model lattice protein that has two stable folded states, the lower free energy native state and a latent state of somewhat higher energy. The two states have a sizable part of their structures in common (two "alpha-helices") and differ in the content of "alpha-helices" and "beta-strands" in the rest of their structures; i.e. for the native state, this part is alpha-helical, and for the latent state it is composed of beta-strands. Thus, the lattice protein free energy surface mimics that of amyloidogenic proteins that form well organized fibrils under appropriate conditions. A Go-like potential was used and the folding process was simulated with a Monte Carlo method. To gain insight into the equilibrium free energy surface and the folding kinetics, we have combined standard approaches (reduced free energy surfaces, contact maps, time-dependent populations of the characteristic states, and folding time distributions) with a new approach. The latter is based on a principal coordinate analysis of the entire set of contacts, which makes possible the introduction of unbiased reaction coordinates and the construction of a kinetic network for the folding process. The system is found to have four characteristic basins, namely a semicompact globule, an on-pathway intermediate (the bifurcation basin), and the native and latent states. The bifurcation basin is shallow and consists of the structure common to the native and latent states, with the rest disorganized. On the basis of the simulation results, a simple kinetic model describing the transitions between the characteristic states was developed, and the rate constants for the essential transitions were estimated. During the folding process the system dwells in the bifurcation basin for a relatively short time before it proceeds to the native or latent state. We suggest that such a bifurcation may occur generally for proteins in which native and latent states have a sizable part of their structures in common. Moreover, there is the possibility of introducing changes in the system (e.g., mutations), which guide the system toward the native or misfolded state.

  3. Latent Heating Retrievals Using the TRMM Precipitation Radar: A Multi-Seasonal Study

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, S.; Meneghini, R.; Halverson, J.; Johnson, R.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. Present largescale weather and climate models can simulate latent heat release only crudely, thus reducing their confidence in predictions on both global and regional scales. This paper represents the first attempt to use NASA Tropical Rainfall Measuring Mission (TRMM) rainfall information to estimate the four-dimensional structure of global monthly latent heating profiles over the global tropics from December 1997 to October 2000. The Goddard Convective-Stratiform. Heating (CSH) algorithm and TRMM precipitation radar data are used for this study. We will examine and compare the latent heating structures between 1997-1998 (winter) ENSO and 1998-2000 (non-ENSO). We will also examine over the tropics. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental; Indian oceans vs west Pacific; Africa vs S. America) will be also examined and compared. In addition, we will examine the relationship between latent heating (max heating level) and SST. The period of interest also coincides with several TRMM field campaigns that recently occurred over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and in the central Pacific in 1999 (KWAJEX). Sounding diagnosed Q1 budgets from these experiments could provide a means of validating the retrieved profiles of latent heating from the CSH algorithm.

  4. Measuring Latent Quantities

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2011-01-01

    A distinction is proposed between measures and predictors of latent variables. The discussion addresses the consequences of the distinction for the true-score model, the linear factor model, Structural Equation Models, longitudinal and multilevel models, and item-response models. A distribution-free treatment of calibration and…

  5. Discriminative latent models for recognizing contextual group activities.

    PubMed

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N; Mori, Greg

    2012-08-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities.

  6. Discriminative Latent Models for Recognizing Contextual Group Activities

    PubMed Central

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N.; Mori, Greg

    2012-01-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities. PMID:22144516

  7. The Peer Interaction in Primary School Questionnaire: Testing for Measurement Equivalence and Latent Mean Differences in Bullying between Gender in Egypt, Saudi Arabia and the USA

    ERIC Educational Resources Information Center

    Hussein, Mohamed Habashy

    2010-01-01

    The Peer Interaction in Primary School Questionnaire (PIPSQ) was developed to assess individuals' levels of bullying and victimization. This study used the approach of latent means analysis (LMA) within the framework of structural equation modeling (SEM) to explore the factor structure and gender differences associated with the PIPSQ in a sample…

  8. A Latent Growth Curve Analysis of the Structure of Aggression, Drug Use, and Delinquent Behaviors and their Interrelations over Time in Urban and Rural Adolescents

    ERIC Educational Resources Information Center

    Farrell, Albert D.; Sullivan, Terri N.; Esposito, Layla E.; Meyer, Aleta L.; Valois, Robert F.

    2005-01-01

    Latent growth curve analysis was used to examine the structure and interrelations among aggression, drug use, and delinquent behavior during early adolescence. Five waves of data were collected from 667 students at three urban middle schools serving a predominantly African American population, and from a more ethnically diverse sample of 950…

  9. The latent structure of alcohol misuse in young adults: Do taxometric results differ as a function of prior criminal history?

    PubMed

    Walters, Glenn D

    2015-12-01

    The purpose of this study was to determine whether the latent structure of alcohol misuse is categorical or continuous in male and female adults with and without a history of prior criminal offending. Data from 3452 (1530 male, 1922 female) 27-to-32 year old members of the National Longitudinal Study of Adolescent to Adult Health (Add Health) were subjected to taxometric analysis using three nonredundant taxometric procedures--mean above minus below a cut (MAMBAC), maximum covariance (MAXCOV), and latent mode factor analysis (L-Mode). Analyses produced results consistent with categorical latent structure in males with a previous history of criminal offending but not in males without a previous history of criminal offending or females with or without a history of criminal offending. The findings from the other groups were indeterminate for the most part (i.e., neither categorical nor continuous). The presumptive taxon was validated by testing differences in age of onset and frequency of criminal arrest and drunkenness between the putative taxon and the upper portion of the complement. As predicted, all four validation outcomes were significantly worse in the taxon group. On the basis of these results it is concluded that alcohol misuse in young adults may have features of both categorical and continuous latent structure and that the categorical aspects are more prominent in males with a history of offending behavior. Additional research is required to determine which aspects and features of alcohol misuse are categorical and which aspects and features are continuous. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Toward a Model-Based Approach to the Clinical Assessment of Personality Psychopathology

    PubMed Central

    Eaton, Nicholas R.; Krueger, Robert F.; Docherty, Anna R.; Sponheim, Scott R.

    2015-01-01

    Recent years have witnessed tremendous growth in the scope and sophistication of statistical methods available to explore the latent structure of psychopathology, involving continuous, discrete, and hybrid latent variables. The availability of such methods has fostered optimism that they can facilitate movement from classification primarily crafted through expert consensus to classification derived from empirically-based models of psychopathological variation. The explication of diagnostic constructs with empirically supported structures can then facilitate the development of assessment tools that appropriately characterize these constructs. Our goal in this paper is to illustrate how new statistical methods can inform conceptualization of personality psychopathology and therefore its assessment. We use magical thinking as example, because both theory and earlier empirical work suggested the possibility of discrete aspects to the latent structure of personality psychopathology, particularly forms of psychopathology involving distortions of reality testing, yet other data suggest that personality psychopathology is generally continuous in nature. We directly compared the fit of a variety of latent variable models to magical thinking data from a sample enriched with clinically significant variation in psychotic symptomatology for explanatory purposes. Findings generally suggested a continuous latent variable model best represented magical thinking, but results varied somewhat depending on different indices of model fit. We discuss the implications of the findings for classification and applied personality assessment. We also highlight some limitations of this type of approach that are illustrated by these data, including the importance of substantive interpretation, in addition to use of model fit indices, when evaluating competing structural models. PMID:24007309

  11. Design and Optimization of a Chemometric-Assisted Spectrophotometric Determination of Telmisartan and Hydrochlorothiazide in Pharmaceutical Dosage Form

    PubMed Central

    Lakshmi, KS; Lakshmi, S

    2010-01-01

    Two chemometric methods were developed for the simultaneous determination of telmisartan and hydrochlorothiazide. The chemometric methods applied were principal component regression (PCR) and partial least square (PLS-1). These approaches were successfully applied to quantify the two drugs in the mixture using the information included in the UV absorption spectra of appropriate solutions in the range of 200-350 nm with the intervals Δλ = 1 nm. The calibration of PCR and PLS-1 models was evaluated by internal validation (prediction of compounds in its own designed training set of calibration) and by external validation over laboratory prepared mixtures and pharmaceutical preparations. The PCR and PLS-1 methods require neither any separation step, nor any prior graphical treatment of the overlapping spectra of the two drugs in a mixture. The results of PCR and PLS-1 methods were compared with each other and a good agreement was found. PMID:21331198

  12. Design and optimization of a chemometric-assisted spectrophotometric determination of telmisartan and hydrochlorothiazide in pharmaceutical dosage form.

    PubMed

    Lakshmi, Ks; Lakshmi, S

    2010-01-01

    Two chemometric methods were developed for the simultaneous determination of telmisartan and hydrochlorothiazide. The chemometric methods applied were principal component regression (PCR) and partial least square (PLS-1). These approaches were successfully applied to quantify the two drugs in the mixture using the information included in the UV absorption spectra of appropriate solutions in the range of 200-350 nm with the intervals Δλ = 1 nm. The calibration of PCR and PLS-1 models was evaluated by internal validation (prediction of compounds in its own designed training set of calibration) and by external validation over laboratory prepared mixtures and pharmaceutical preparations. The PCR and PLS-1 methods require neither any separation step, nor any prior graphical treatment of the overlapping spectra of the two drugs in a mixture. The results of PCR and PLS-1 methods were compared with each other and a good agreement was found.

  13. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    NASA Astrophysics Data System (ADS)

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  14. Discrimination of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and partial least squares-discriminant analysis

    PubMed Central

    Zhang, Xue-Xi; Yin, Jian-Hua; Mao, Zhi-Hua; Xia, Yang

    2015-01-01

    Abstract. Fourier transform infrared imaging (FTIRI) combined with chemometrics algorithm has strong potential to obtain complex chemical information from biology tissues. FTIRI and partial least squares-discriminant analysis (PLS-DA) were used to differentiate healthy and osteoarthritic (OA) cartilages for the first time. A PLS model was built on the calibration matrix of spectra that was randomly selected from the FTIRI spectral datasets of healthy and lesioned cartilage. Leave-one-out cross-validation was performed in the PLS model, and the fitting coefficient between actual and predicted categorical values of the calibration matrix reached 0.95. In the calibration and prediction matrices, the successful identifying percentages of healthy and lesioned cartilage spectra were 100% and 90.24%, respectively. These results demonstrated that FTIRI combined with PLS-DA could provide a promising approach for the categorical identification of healthy and OA cartilage specimens. PMID:26057029

  15. Fast Measurement of Soluble Solid Content in Mango Based on Visible and Infrared Spectroscopy Technique

    NASA Astrophysics Data System (ADS)

    Yu, Jiajia; He, Yong

    Mango is a kind of popular tropical fruit, and the soluble solid content is an important in this study visible and short-wave near-infrared spectroscopy (VIS/SWNIR) technique was applied. For sake of investigating the feasibility of using VIS/SWNIR spectroscopy to measure the soluble solid content in mango, and validating the performance of selected sensitive bands, for the calibration set was formed by 135 mango samples, while the remaining 45 mango samples for the prediction set. The combination of partial least squares and backpropagation artificial neural networks (PLS-BP) was used to calculate the prediction model based on raw spectrum data. Based on PLS-BP, the determination coefficient for prediction (Rp) was 0.757 and root mean square and the process is simple and easy to operate. Compared with the Partial least squares (PLS) result, the performance of PLS-BP is better.

  16. Discrimination of healthy and osteoarthritic articular cartilages by Fourier transform infrared imaging and partial least squares-discriminant analysis.

    PubMed

    Zhang, Xue-Xi; Yin, Jian-Hua; Mao, Zhi-Hua; Xia, Yang

    2015-06-01

    Fourier transform infrared imaging (FTIRI) combined with chemometrics algorithm has strong potential to obtain complex chemical information from biology tissues. FTIRI and partial least squares-discriminant analysis (PLS-DA) were used to differentiate healthy and osteoarthritic (OA) cartilages for the first time. A PLS model was built on the calibration matrix of spectra that was randomly selected from the FTIRI spectral datasets of healthy and lesioned cartilage. Leave-one-out cross-validation was performed in the PLS model, and the fitting coefficient between actual and predicted categorical values of the calibration matrix reached 0.95. In the calibration and prediction matrices, the successful identifying percentages of healthy and lesioned cartilage spectra were 100% and 90.24%, respectively. These results demonstrated that FTIRI combined with PLS-DA could provide a promising approach for the categorical identification of healthy and OA cartilage specimens.

  17. Advanced spectrophotometric chemometric methods for resolving the binary mixture of doxylamine succinate and pyridoxine hydrochloride.

    PubMed

    Katsarov, Plamen; Gergov, Georgi; Alin, Aylin; Pilicheva, Bissera; Al-Degs, Yahya; Simeonov, Vasil; Kassarova, Margarita

    2018-03-01

    The prediction power of partial least squares (PLS) and multivariate curve resolution-alternating least squares (MCR-ALS) methods have been studied for simultaneous quantitative analysis of the binary drug combination - doxylamine succinate and pyridoxine hydrochloride. Analysis of first-order UV overlapped spectra was performed using different PLS models - classical PLS1 and PLS2 as well as partial robust M-regression (PRM). These linear models were compared to MCR-ALS with equality and correlation constraints (MCR-ALS-CC). All techniques operated within the full spectral region and extracted maximum information for the drugs analysed. The developed chemometric methods were validated on external sample sets and were applied to the analyses of pharmaceutical formulations. The obtained statistical parameters were satisfactory for calibration and validation sets. All developed methods can be successfully applied for simultaneous spectrophotometric determination of doxylamine and pyridoxine both in laboratory-prepared mixtures and commercial dosage forms.

  18. A comparison of different strategies in multivariate regression models for the direct determination of Mn, Cr, and Ni in steel samples using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Luna, Aderval S.; Gonzaga, Fabiano B.; da Rocha, Werickson F. C.; Lima, Igor C. A.

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) analysis was carried out on eleven steel samples to quantify the concentrations of chromium, nickel, and manganese. LIBS spectral data were correlated to known concentrations of the samples using different strategies in partial least squares (PLS) regression models. For the PLS analysis, one predictive model was separately generated for each element, while different approaches were used for the selection of variables (VIP: variable importance in projection and iPLS: interval partial least squares) in the PLS model to quantify the contents of the elements. The comparison of the performance of the models showed that there was no significant statistical difference using the Wilcoxon signed rank test. The elliptical joint confidence region (EJCR) did not detect systematic errors in these proposed methodologies for each metal.

  19. Latent Structure Agreement Analysis

    DTIC Science & Technology

    1989-11-01

    correct for bias in estimation of disease prevalence due to misclassification error [39]. Software Varying panel latent class agreement models can be...D., and L. M. Irwig, "Estimation of Test Error Rates, Disease Prevalence and Relative Risk from Misclassified Data: A Review," Journal of Clinical

  20. Forensic applications of chemical imaging: latent fingerprint detection using visible absorption and luminescence.

    PubMed

    Exline, David L; Wallace, Christie; Roux, Claude; Lennard, Chris; Nelson, Matthew P; Treado, Patrick J

    2003-09-01

    Chemical imaging technology is a rapid examination technique that combines molecular spectroscopy and digital imaging, providing information on morphology, composition, structure, and concentration of a material. Among many other applications, chemical imaging offers an array of novel analytical testing methods, which limits sample preparation and provides high-quality imaging data essential in the detection of latent fingerprints. Luminescence chemical imaging and visible absorbance chemical imaging have been successfully applied to ninhydrin, DFO, cyanoacrylate, and luminescent dye-treated latent fingerprints, demonstrating the potential of this technology to aid forensic investigations. In addition, visible absorption chemical imaging has been applied successfully to visualize untreated latent fingerprints.

  1. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using themore » leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.« less

  2. The subgingival microbiota of Papillon-Lefèvre syndrome.

    PubMed

    Albandar, Jasim M; Khattab, Razan; Monem, Fawza; Barbuto, Sara M; Paster, Bruce J

    2012-07-01

    There is little information about the microbiologic profiles of periodontal lesions in Papillon-Lefèvre syndrome (PLS) and the significance of bacteria in the pathogenesis of periodontitis in these patients. This comprehensive analysis of the subgingival microbiota in patients with PLS used 16S ribosomal RNA (rRNA) clonal analysis and the 16S rRNA-based Human Oral Microbe Identification Microarray (HOMIM). Thirteen patients with PLS from seven unrelated families volunteered for this microbiologic study. Subgingival plaque was collected with sterile paper points from multiple sites with ≥5 mm probing depth, and whole genomic DNA was extracted. The 16S rRNA genes were amplified, cloned, and sequenced. The samples were then probed for ≈300 predominant oral bacterial species using the HOMIM. The most commonly detected phylotypes in the clonal analysis were Gemella morbillorum, Gemella haemolysans, Granulicatella adiacens, Lachnospiraceae OT 100 (EI074), Parvimonas micra, Selenomonas noxia, and Veillonella parvula. As a group, streptococci were commonly detected in these individuals. In the HOMIM analysis, a total of 170 bacterial species/phylotypes were detected, with a range of 40 to 80 species per patient with PLS. Of these, 12 bacterial species were detected in medium to high levels in ≥50% of the individuals. The high-frequency strains were clustered into eight groups: Aggregatibacter actinomycetemcomitans, Campylobacter spp., Capnocytophaga granulosa, G. morbillorum, P. micra, Porphyromonas endodontalis, Streptococcus spp., and Tannerella forsythia. The subgingival microbiota in PLS is diverse. Periodontal pathogens commonly associated with chronic and aggressive periodontitis and opportunistic pathogens may be associated with the development of severe periodontitis in patients with PLS.

  3. Ultrasound-triggered effects of the microbubbles coupled to GDNF- and Nurr1-loaded PEGylated liposomes in a rat model of Parkinson's disease.

    PubMed

    Yue, Peijian; Gao, Lin; Wang, Xuejing; Ding, Xuebing; Teng, Junfang

    2018-06-01

    The purpose of this study was to investigate ultrasound-triggered effects of the glial cell line-derived neurotrophic factor (GDNF) + nuclear receptor-related factor 1 (Nurr1)-polyethylene glycol (PEG)ylated liposomes-coupled microbubbles (PLs-GDNF + Nurr1-MBs) on behavioral impairment and neuron loss in a rat model of Parkinson's disease (PD). The unloaded PEGylated liposomes-coupled microbubbles (PLs-MBs) were characterized for zeta potential, particle size, and concentration. 6-hydroxydopamine (6-OHDA) was used to establish the PD rat model. Rotational, climbing pole, and suspension tests were used to detect behavioral impairment. The immunohistochemical staining of tyrosine hydroxylase (TH) and dopamine transporter (DAT) was used to assess the neuron loss. Western blot and quantitative real-time PCR (qRT-PCR) analysis were used to measure the expression levels of GDNF and Nurr1. The particle size of PLs-MBs was gradually increased, while the concentration and absolute zeta potential were gradually decreased as the time prolongs. 6-OHDA increased amphetamine-induced rotations and loss of dopaminergic neurons as compared to sham group. Interestingly, PLs-GDNF-MBs or PLs-Nurr1-MBs decreased rotations and increased the TH and DAT immunoreactivity. Combined of both genes resulted in a robust reduction in the rotations and a greater increase of the dopaminergic neurons. The delivery of PLs-GDNF + Nurr1-MBs into the brains using magnetic resonance imaging (MRI)-guided focused ultrasound may be more efficacious for the treatment of PD than the single treatment. © 2017 Wiley Periodicals, Inc.

  4. Tissue-selective alteration of ethanolamine plasmalogen metabolism in dedifferentiated colon mucosa.

    PubMed

    Lopez, Daniel H; Bestard-Escalas, Joan; Garate, Jone; Maimó-Barceló, Albert; Fernández, Roberto; Reigada, Rebeca; Khorrami, Sam; Ginard, Daniel; Okazaki, Toshiro; Fernández, José A; Barceló-Coblijn, Gwendolyn

    2018-08-01

    Human colon lipid analysis by imaging mass spectrometry (IMS) demonstrates that the lipid fingerprint is highly sensitive to a cell's pathophysiological state. Along the colon crypt axis, and concomitant to the differentiation process, certain lipid species tightly linked to signaling (phosphatidylinositols and arachidonic acid (AA)-containing diacylglycerophospholipids), change following a rather simple mathematical expression. We extend here our observations to ethanolamine plasmalogens (PlsEtn), a unique type of glycerophospholipid presenting a vinyl ether linkage at sn-1 position. PlsEtn distribution was studied in healthy, adenomatous, and carcinomatous colon mucosa sections by IMS. In epithelium, 75% of PlsEtn changed in a highly regular manner along the crypt axis, in clear contrast with diacyl species (67% of which remained constant). Consistently, AA-containing PlsEtn species were more abundant at the base, where stem cells reside, and decreased while ascending the crypt. In turn, mono-/diunsaturated species experienced the opposite change. These gradients were accompanied by a gradual expression of ether lipid synthesis enzymes. In lamina propria, 90% of stromal PlsEtn remained unchanged despite the high content of AA and the gradient in AA-containing diacylglycerophospholipids. Finally, both lipid and protein gradients were severely affected in polyps and carcinoma. These results link PlsEtn species regulation to cell differentiation for the first time and confirm that diacyl and ether species are differently regulated. Furthermore, they reaffirm the observations on cell lipid fingerprint image sensitivity to predict cell pathophysiological status, reinforcing the translational impact both lipidome and IMS might have in clinical research. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Novel PLS3 variants in X-linked osteoporosis: Exploring bone material properties.

    PubMed

    Balasubramanian, Meena; Fratzl-Zelman, Nadja; O'Sullivan, Rory; Bull, Mary; Fa Peel, Nicola; Pollitt, Rebecca C; Jones, Rebecca; Milne, Elizabeth; Smith, Kath; Roschger, Paul; Klaushofer, Klaus; Bishop, Nicholas J

    2018-05-07

    Idiopathic Juvenile Osteoporosis (IJO) refers to significantly lower than expected bone mass manifesting in childhood with no identifiable aetiology. IJO classically presents in early pubertal period with multiple fractures including metaphyseal and vertebral crush fractures, and low bone-mass. Here we describe two patients and provide information on their clinical phenotype, genotype and bone material analysis in one of the patients. Patient 1: 40-year old adult male diagnosed with IJO in childhood who re-presented with a hip fracture as an adult. Genetic analysis identified a pathogenic PLS3 hemizygous variant, c.1765del in exon 16. Patient 2: 15-year old boy with multiple vertebral fractures and bone biopsy findings suggestive of IJO who also has a diagnosis of autism spectrum disorder. Genetic analysis identified a maternally inherited PLS3 pathogenic c.1295T>A variant in exon 12. Analyses of the transiliac bone sample revealed severe reduction of trabecular volume and bone turnover indices and elevated bone matrix mineralisation. We propose that genetic testing for PLS3 should be undertaken in patients presenting with a current or previous history of IJO as this has implications for genetic counselling and cascade screening. The extensive evaluation of the transiliac biopsy sample of Patient 2 revealed a novel bone phenotype. This report includes a review of IJO and genetic causes of osteoporosis, and suggests that existing cases of IJO should be screened for PLS3. Through analysis of bone material properties in Patient 2, we can conclude that PLS3 does have a role in bone mineralisation. © 2018 Wiley Periodicals, Inc.

  6. Pain and the defense response: structural equation modeling reveals a coordinated psychophysiological response to increasing painful stimulation.

    PubMed

    Donaldson, Gary W; Chapman, C Richard; Nakamura, Yoshi; Bradshaw, David H; Jacobson, Robert C; Chapman, Christopher N

    2003-03-01

    The defense response theory implies that individuals should respond to increasing levels of painful stimulation with correlated increases in affectively mediated psychophysiological responses. This paper employs structural equation modeling to infer the latent processes responsible for correlated growth in the pain report, evoked potential amplitudes, pupil dilation, and skin conductance of 92 normal volunteers who experienced 144 trials of three levels of increasingly painful electrical stimulation. The analysis assumed a two-level model of latent growth as a function of stimulus level. The first level of analysis formulated a nonlinear growth model for each response measure, and allowed intercorrelations among the parameters of these models across individuals. The second level of analysis posited latent process factors to account for these intercorrelations. The best-fitting parsimonious model suggests that two latent processes account for the correlations. One of these latent factors, the activation threshold, determines the initial threshold response, while the other, the response gradient, indicates the magnitude of the coherent increase in response with stimulus level. Collectively, these two second-order factors define the defense response, a broad construct comprising both subjective pain evaluation and physiological mechanisms.

  7. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    NASA Astrophysics Data System (ADS)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  8. Construct validity evidence for the Male Role Norms Inventory-Short Form: A structural equation modeling approach using the bifactor model.

    PubMed

    Levant, Ronald F; Hall, Rosalie J; Weigold, Ingrid K; McCurdy, Eric R

    2016-10-01

    The construct validity of the Male Role Norms Inventory-Short Form (MRNI-SF) was assessed using a latent variable approach implemented with structural equation modeling (SEM). The MRNI-SF was specified as having a bifactor structure, and validation scales were also specified as latent variables. The latent variable approach had the advantages of separating effects of general and specific factors and controlling for some sources of measurement error. Data (N = 484) were from a diverse sample (38.8% men of color, 22.3% men of diverse sexualities) of community-dwelling and college men who responded to an online survey. The construct validity of the MRNI-SF General Traditional Masculinity Ideology factor was supported for all 4 of the proposed latent correlations with: (a) Male Role Attitudes Scale; (b) general factor of Conformity to Masculine Norms Inventory-46; (c) higher-order factor of Gender Role Conflict Scale; and (d) Personal Attributes Questionnaire-Masculinity Scale. Significant correlations with relevant other latent factors provided concurrent validity evidence for the MRNI-SF specific factors of Negativity toward Sexual Minorities, Importance of Sex, Restrictive Emotionality, and Toughness, with all 8 of the hypothesized relationships supported. However, 3 relationships concerning Dominance were not supported. (The construct validity of the remaining 2 MRNI-SF specific factors-Avoidance of Femininity and Self-Reliance through Mechanical Skills was not assessed.) Comparisons were made, and meaningful differences noted, between the latent correlations emphasized in this study and their raw variable counterparts. Results are discussed in terms of the advantages of an SEM approach and the unique characteristics of the bifactor model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Use of Vis/NIRS for the determination of sugar content of cola soft drinks based on chemometric methods

    NASA Astrophysics Data System (ADS)

    Liu, Fei; He, Yong

    2008-03-01

    Three different chemometric methods were performed for the determination of sugar content of cola soft drinks using visible and near infrared spectroscopy (Vis/NIRS). Four varieties of colas were prepared and 180 samples (45 samples for each variety) were selected for the calibration set, while 60 samples (15 samples for each variety) for the validation set. The smoothing way of Savitzky-Golay, standard normal variate (SNV) and Savitzky-Golay first derivative transformation were applied for the pre-processing of spectral data. The first eleven principal components (PCs) extracted by partial least squares (PLS) analysis were employed as the inputs of BP neural network (BPNN) and least squares-support vector machine (LS-SVM) model. Then the BPNN model with the optimal structural parameters and LS-SVM model with radial basis function (RBF) kernel were applied to build the regression model with a comparison of PLS regression. The correlation coefficient (r), root mean square error of prediction (RMSEP) and bias for prediction were 0.971, 1.259 and -0.335 for PLS, 0.986, 0.763, and -0.042 for BPNN, while 0.978, 0.995 and -0.227 for LS-SVM, respectively. All the three methods supplied a high and satisfying precision. The results indicated that Vis/NIR spectroscopy combined with chemometric methods could be utilized as a high precision way for the determination of sugar content of cola soft drinks.

  10. A general class of multinomial mixture models for anuran calling survey data

    USGS Publications Warehouse

    Royle, J. Andrew; Link, W.A.

    2005-01-01

    We propose a general framework for modeling anuran abundance using data collected from commonly used calling surveys. The data generated from calling surveys are indices of calling intensity (vocalization of males) that do not have a precise link to actual population size and are sensitive to factors that influence anuran behavior. We formulate a model for calling-index data in terms of the maximum potential calling index that could be observed at a site (the 'latent abundance class'), given its underlying breeding population, and we focus attention on estimating the distribution of this latent abundance class. A critical consideration in estimating the latent structure is imperfect detection, which causes the observed abundance index to be less than or equal to the latent abundance class. We specify a multinomial sampling model for the observed abundance index that is conditional on the latent abundance class. Estimation of the latent abundance class distribution is based on the marginal likelihood of the index data, having integrated over the latent class distribution. We apply the proposed modeling framework to data collected as part of the North American Amphibian Monitoring Program (NAAMP).

  11. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling.

    PubMed

    Singh, Praveen K; Ramachandran, Gayetri; Ramos-Ruiz, Ricardo; Peiró-Pastor, Ramón; Abia, David; Wu, Ling J; Meijer, Wilfried J J

    2013-10-01

    Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default "OFF" state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed.

  12. dRVVT is more sensitive than KCT or TTI for detecting lupus anticoagulant activity of anti-beta2-glycoprotein I autoantibodies.

    PubMed

    Pengo, V; Biasiolo, A; Rampazzo, P; Brocco, T

    1999-02-01

    Anti-beta2-glycoprotein I (beta2-GPI) antibodies behave as classical Lupus Anticoagulants (LA), as they inhibit phospholipid-dependent coagulation reactions and their activity disappears in the presence of excess exogenous phospholipids (PLs). We have recently shown that a certain amount of PLs in the dilute Russell Viper Venom Time (dRVVT) test system is required to express LA activity of anti beta2-GPI antibodies. We have now extended this observation to two other tests, i.e., Kaolin Clotting Time (KCT) in which PLs are not added, and Tissue Thromboplastin Inhibition test (TTI) in which PLs are extremely diluted. In fact, affinity-purified antibody preparations from 5 patients with antiphospholipid syndrome did not express or only weakly expressed anticoagulant activity in both tests; the mean ratios of coagulation times obtained with purified antibodies and that of control buffer were 1.11 and 1.0 for KCT and TTI, respectively. On the contrary, the mean ratios in dRVVT were 1.31 and 1.49 at a PLs dilution of 1:8 and 1:64, respectively. Therefore, the presence of LA activity due to autoantibodies to beta2-GPI is characterized by a positive dRVVT and negative or only weakly positive KCT and TTI.

  13. UV–Vis and ATR–FTIR spectroscopic investigations of postmortem interval based on the changes in rabbit plasma

    PubMed Central

    Wang, Qi; He, Haijun; Li, Bing; Lin, Hancheng; Zhang, Yinming; Zhang, Ji

    2017-01-01

    Estimating PMI is of great importance in forensic investigations. Although many methods are used to estimate the PMI, a few investigations focus on the postmortem redistribution. In this study, ultraviolet–visible (UV–Vis) measurement combined with visual inspection indicated a regular diffusion of hemoglobin into plasma after death showing the redistribution of postmortem components in blood. Thereafter, attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy was used to confirm the variations caused by this phenomenon. First, full-spectrum partial least-squares (PLS) and genetic algorithm combined with PLS (GA-PLS) models were constructed to predict the PMI. The performance of GA-PLS model was better than that of full-spectrum PLS model based on its root mean square error (RMSE) of cross-validation of 3.46 h (R2 = 0.95) and the RMSE of prediction of 3.46 h (R2 = 0.94). The investigation on the similarity of spectra between blood plasma and formed elements also supported the role of redistribution of components in spectral changes in postmortem plasma. These results demonstrated that ATR-FTIR spectroscopy coupled with the advanced mathematical methods could serve as a convenient and reliable tool to study the redistribution of postmortem components and estimate the PMI. PMID:28753641

  14. Total sulfur determination in residues of crude oil distillation using FT-IR/ATR and variable selection methods.

    PubMed

    Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; de Azevedo Mello, Paola; Ferrão, Marco Flores; de Fátima Pereira dos Santos, Maria; Guimarães, Regina Célia Lourenço; Müller, Edson Irineu; Flores, Erico Marlon Moraes

    2012-04-01

    Total sulfur concentration was determined in atmospheric residue (AR) and vacuum residue (VR) samples obtained from petroleum distillation process by Fourier transform infrared spectroscopy with attenuated total reflectance (FT-IR/ATR) in association with chemometric methods. Calibration and prediction set consisted of 40 and 20 samples, respectively. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). Different treatments and pre-processing steps were also evaluated for the development of models. The pre-treatment based on multiplicative scatter correction (MSC) and the mean centered data were selected for models construction. The use of siPLS as variable selection method provided a model with root mean square error of prediction (RMSEP) values significantly better than those obtained by PLS model using all variables. The best model was obtained using siPLS algorithm with spectra divided in 20 intervals and combinations of 3 intervals (911-824, 823-736 and 737-650 cm(-1)). This model produced a RMSECV of 400 mg kg(-1) S and RMSEP of 420 mg kg(-1) S, showing a correlation coefficient of 0.990. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. [Influence of Spectral Pre-Processing on PLS Quantitative Model of Detecting Cu in Navel Orange by LIBS].

    PubMed

    Li, Wen-bing; Yao, Lin-tao; Liu, Mu-hua; Huang, Lin; Yao, Ming-yin; Chen, Tian-bing; He, Xiu-wen; Yang, Ping; Hu, Hui-qin; Nie, Jiang-hui

    2015-05-01

    Cu in navel orange was detected rapidly by laser-induced breakdown spectroscopy (LIBS) combined with partial least squares (PLS) for quantitative analysis, then the effect on the detection accuracy of the model with different spectral data ptetreatment methods was explored. Spectral data for the 52 Gannan navel orange samples were pretreated by different data smoothing, mean centralized and standard normal variable transform. Then 319~338 nm wavelength section containing characteristic spectral lines of Cu was selected to build PLS models, the main evaluation indexes of models such as regression coefficient (r), root mean square error of cross validation (RMSECV) and the root mean square error of prediction (RMSEP) were compared and analyzed. Three indicators of PLS model after 13 points smoothing and processing of the mean center were found reaching 0. 992 8, 3. 43 and 3. 4 respectively, the average relative error of prediction model is only 5. 55%, and in one word, the quality of calibration and prediction of this model are the best results. The results show that selecting the appropriate data pre-processing method, the prediction accuracy of PLS quantitative model of fruits and vegetables detected by LIBS can be improved effectively, providing a new method for fast and accurate detection of fruits and vegetables by LIBS.

  16. Semi-quantitative prediction of a multiple API solid dosage form with a combination of vibrational spectroscopy methods.

    PubMed

    Hertrampf, A; Sousa, R M; Menezes, J C; Herdling, T

    2016-05-30

    Quality control (QC) in the pharmaceutical industry is a key activity in ensuring medicines have the required quality, safety and efficacy for their intended use. QC departments at pharmaceutical companies are responsible for all release testing of final products but also all incoming raw materials. Near-infrared spectroscopy (NIRS) and Raman spectroscopy are important techniques for fast and accurate identification and qualification of pharmaceutical samples. Tablets containing two different active pharmaceutical ingredients (API) [bisoprolol, hydrochlorothiazide] in different commercially available dosages were analysed using Raman- and NIR Spectroscopy. The goal was to define multivariate models based on each vibrational spectroscopy to discriminate between different dosages (identity) and predict their dosage (semi-quantitative). Furthermore the combination of spectroscopic techniques was investigated. Therefore, two different multiblock techniques based on PLS have been applied: multiblock PLS (MB-PLS) and sequential-orthogonalised PLS (SO-PLS). NIRS showed better results compared to Raman spectroscopy for both identification and quantitation. The multiblock techniques investigated showed that each spectroscopy contains information not present or captured with the other spectroscopic technique, thus demonstrating that there is a potential benefit in their combined use for both identification and quantitation purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A systematic literature review of PTSD's latent structure in the Diagnostic and Statistical Manual of Mental Disorders: DSM-IV to DSM-5.

    PubMed

    Armour, Cherie; Műllerová, Jana; Elhai, Jon D

    2016-03-01

    The factor structure of posttraumatic stress disorder (PTSD) has been widely researched, but consensus regarding the exact number and nature of factors is yet to be reached. The aim of the current study was to systematically review the extant literature on PTSD's latent structure in the Diagnostic and Statistical Manual of Mental Disorders (DSM) in order to identify the best-fitting model. One hundred and twelve research papers published after 1994 using confirmatory factor analysis and DSM-based measures of PTSD were included in the review. In the DSM-IV literature, four-factor models received substantial support, but the five-factor Dysphoric arousal model demonstrated the best fit, regardless of gender, measurement instrument or trauma type. The recently proposed DSM-5 PTSD model was found to be a good representation of PTSD's latent structure, but studies analysing the six- and seven-factor models suggest that the DSM-5 PTSD factor structure may need further alterations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Modeling Bivariate Change in Individual Differences: Prospective Associations Between Personality and Life Satisfaction.

    PubMed

    Hounkpatin, Hilda Osafo; Boyce, Christopher J; Dunn, Graham; Wood, Alex M

    2017-09-18

    A number of structural equation models have been developed to examine change in 1 variable or the longitudinal association between 2 variables. The most common of these are the latent growth model, the autoregressive cross-lagged model, the autoregressive latent trajectory model, and the latent change score model. The authors first overview each of these models through evaluating their different assumptions surrounding the nature of change and how these assumptions may result in different data interpretations. They then, to elucidate these issues in an empirical example, examine the longitudinal association between personality traits and life satisfaction. In a representative Dutch sample (N = 8,320), with participants providing data on both personality and life satisfaction measures every 2 years over an 8-year period, the authors reproduce findings from previous research. However, some of the structural equation models overviewed have not previously been applied to the personality-life satisfaction relation. The extended empirical examination suggests intraindividual changes in life satisfaction predict subsequent intraindividual changes in personality traits. The availability of data sets with 3 or more assessment waves allows the application of more advanced structural equation models such as the autoregressive latent trajectory or the extended latent change score model, which accounts for the complex dynamic nature of change processes and allows stronger inferences on the nature of the association between variables. However, the choice of model should be determined by theories of change processes in the variables being studied. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Measurement Model Specification Error in LISREL Structural Equation Models.

    ERIC Educational Resources Information Center

    Baldwin, Beatrice; Lomax, Richard

    This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…

  20. Mass Spectrometry and Fourier Transform Infrared Spectroscopy for Analysis of Biological Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Timothy J.

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55% (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the eight weekmore » study, cecal and distal-colon contents samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic treated subgroups were well classified for cecal samples and modestly separated for distal-colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.« less

  1. High-resolution time-of-flight mass spectrometry fingerprinting of metabolites from cecum and distal colon contents of rats fed resistant starch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Timothy J.; Jones, Roger W.; Ai, Yongfeng

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55 % (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the 8-weekmore » study, cecal and distal colon content samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic-treated subgroups were well classified for cecal samples and modestly separated for distal colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.« less

  2. A nonpolar, nonamphiphilic molecule can accelerate adsorption of phospholipids and lower their surface tension at the air/water interface.

    PubMed

    Nguyen, Phuc Nghia; Trinh Dang, Thuan Thao; Waton, Gilles; Vandamme, Thierry; Krafft, Marie Pierre

    2011-10-04

    The adsorption dynamics of a series of phospholipids (PLs) at the interface between an aqueous solution or dispersion of the PL and a gas phase containing the nonpolar, nonamphiphilic linear perfluorocarbon perfluorohexane (PFH) was studied by bubble profile analysis tensiometry. The PLs investigated were dioctanoylphosphatidylcholine (DiC(8)-PC), dilaurylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmitoylphosphatidylcholine. The gas phase consisted of air or air saturated with PFH. The perfluorocarbon gas was found to have an unexpected, strong effect on both the adsorption rate and the equilibrium interfacial tension (γ(eq)) of the PLs. First, for all of the PLs, and at all concentrations investigated, the γ(eq) values were significantly lower (by up to 10 mN m(-1)) when PFH was present in the gas phase. The efficacy of PFH in decreasing γ(eq) depends on the ability of PLs to form micelles or vesicles in water. For vesicles, it also depends on the gel or fluid state of the membranes. Second, the adsorption rates of all the PLs at the interface (as assessed by the time required for the initial interfacial tension to be reduced by 30%) are significantly accelerated (by up to fivefold) by the presence of PFH for the lower PL concentrations. Both the surface-tension reducing effect and the adsorption rate increasing effect establish that PFH has a strong interaction with the PL monolayer and acts as a cosurfactant at the interface, despite the absence of any amphiphilic character. Fitting the adsorption profiles of DiC(8)-PC at the PFH-saturated air/aqueous solution interface with the modified Frumkin model indicated that the PFH molecule lay horizontally at the interface. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development and validation of a Partial Least Squares-Discriminant Analysis (PLS-DA) model based on the determination of ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) in hair for the diagnosis of chronic alcohol abuse.

    PubMed

    Alladio, E; Giacomelli, L; Biosa, G; Corcia, D Di; Gerace, E; Salomone, A; Vincenti, M

    2018-01-01

    The chronic intake of an excessive amount of alcohol is currently ascertained by determining the concentration of direct alcohol metabolites in the hair samples of the alleged abusers, including ethyl glucuronide (EtG) and, less frequently, fatty acid ethyl esters (FAEEs). Indirect blood biomarkers of alcohol abuse are still determined to support hair EtG results and diagnose a consequent liver impairment. In the present study, the supporting role of hair FAEEs is compared with indirect blood biomarkers with respect to the contexts in which hair EtG interpretation is uncertain. Receiver Operating Characteristics (ROC) curves and multivariate Principal Component Analysis (PCA) demonstrated much stronger correlation of EtG results with FAEEs than with any single indirect biomarker or their combinations. Partial Least Squares Discriminant Analysis (PLS-DA) models based on hair EtG and FAEEs were developed to maximize the biomarkers information content on a multivariate background. The final PLS-DA model yielded 100% correct classification on a training/evaluation dataset of 155 subjects, including both chronic alcohol abusers and social drinkers. Then, the PLS-DA model was validated on an external dataset of 81 individual providing optimal discrimination ability between chronic alcohol abusers and social drinkers, in terms of specificity and sensitivity. The PLS-DA scores obtained for each subject, with respect to the PLS-DA model threshold that separates the probabilistic distributions for the two classes, furnished a likelihood ratio value, which in turn conveys the strength of the experimental data support to the classification decision, within a Bayesian logic. Typical boundary real cases from daily work are discussed, too. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Identification of a Functional Plasmodesmal Localization Signal in a Plant Viral Cell-To-Cell-Movement Protein.

    PubMed

    Yuan, Cheng; Lazarowitz, Sondra G; Citovsky, Vitaly

    2016-01-19

    Our fundamental knowledge of the protein-sorting pathways required for plant cell-to-cell trafficking and communication via the intercellular connections termed plasmodesmata has been severely limited by the paucity of plasmodesmal targeting sequences that have been identified to date. To address this limitation, we have identified the plasmodesmal localization signal (PLS) in the Tobacco mosaic virus (TMV) cell-to-cell-movement protein (MP), which has emerged as the paradigm for dissecting the molecular details of cell-to-cell transport through plasmodesmata. We report here the identification of a bona fide functional TMV MP PLS, which encompasses amino acid residues between positions 1 and 50, with residues Val-4 and Phe-14 potentially representing critical sites for PLS function that most likely affect protein conformation or protein interactions. We then demonstrated that this PLS is both necessary and sufficient for protein targeting to plasmodesmata. Importantly, as TMV MP traffics to plasmodesmata by a mechanism that is distinct from those of the three plant cell proteins in which PLSs have been reported, our findings provide important new insights to expand our understanding of protein-sorting pathways to plasmodesmata. The science of virology began with the discovery of Tobacco mosaic virus (TMV). Since then, TMV has served as an experimental and conceptual model for studies of viruses and dissection of virus-host interactions. Indeed, the TMV cell-to-cell-movement protein (MP) has emerged as the paradigm for dissecting the molecular details of cell-to-cell transport through the plant intercellular connections termed plasmodesmata. However, one of the most fundamental and key functional features of TMV MP, its putative plasmodesmal localization signal (PLS), has not been identified. Here, we fill this gap in our knowledge and identify the TMV MP PLS. Copyright © 2016 Yuan et al.

  5. Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model

    NASA Astrophysics Data System (ADS)

    Yeganeh, B.; Motlagh, M. Shafie Pour; Rashidi, Y.; Kamalan, H.

    2012-08-01

    Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS-SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS-SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65-85% for hybrid PLS-SVM model respectively. Also it was found that the hybrid PLS-SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS-SVM model.

  6. Purified human MDR 1 modulates membrane potential in reconstituted proteoliposomes.

    PubMed

    Howard, Ellen M; Roepe, Paul D

    2003-04-01

    Human multidrug resistance (hu MDR 1) cDNA was fused to a P. shermanii transcarboxylase biotin acceptor domain (TCBD), and the fusion protein was heterologously overexpressed at high yield in K(+)-uptake deficient Saccharomyces cerevisiae yeast strain 9.3, purified by avidin-biotin chromatography, and reconstituted into proteoliposomes (PLs) formed with Escherichia coli lipid. As measured by pH- dependent ATPase activity, purified, reconstituted, biotinylated MDR-TCBD protein is fully functional. Dodecyl maltoside proved to be the most effective detergent for the membrane solubilization of MDR-TCBD, and various salts were found to significantly affect reconstitution into PLs. After extensive analysis, we find that purified reconstituted MDR-TCBD protein does not catalyze measurable H(+) pumping in the presence of ATP. In the presence of physiologic [ATP], K(+)/Na(+) diffusion potentials monitored by either anionic oxonol or cationic carbocyanine are easily established upon addition of valinomycin to either control or MDR-TCBD PLs. However, in the absence of ATP, although control PLs still maintain easily measurable K(+)/Na(+) diffusion potentials upon addition of valinomycin, MDR-TCBD PLs do not. Dissipation of potential by MDR-TCBD is clearly [ATP] dependent and also appears to be Cl(-) dependent, since replacing Cl(-) with equimolar glutamate restores the ability of MDR-TCBD PLs to form a membrane potential in the absence of physiologic [ATP]. The data are difficult to reconcile with models that might propose ATP-catalyzed "pumping" of the fluorescent probes we use and are more consistent with electrically passive anion transport via MDR-TCBD protein, but only at low [ATP]. These observations may help to resolve the confusing array of data related to putative ion transport by hu MDR 1 protein.

  7. Hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) and its application to predicting key process variables.

    PubMed

    He, Yan-Lin; Xu, Yuan; Geng, Zhi-Qiang; Zhu, Qun-Xiong

    2016-03-01

    In this paper, a hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) is proposed. Firstly, an improved functional link neural network with small norm of expanded weights and high input-output correlation (SNEWHIOC-FLNN) was proposed for enhancing the generalization performance of FLNN. Unlike the traditional FLNN, the expanded variables of the original inputs are not directly used as the inputs in the proposed SNEWHIOC-FLNN model. The original inputs are attached to some small norm of expanded weights. As a result, the correlation coefficient between some of the expanded variables and the outputs is enhanced. The larger the correlation coefficient is, the more relevant the expanded variables tend to be. In the end, the expanded variables with larger correlation coefficient are selected as the inputs to improve the performance of the traditional FLNN. In order to test the proposed SNEWHIOC-FLNN model, three UCI (University of California, Irvine) regression datasets named Housing, Concrete Compressive Strength (CCS), and Yacht Hydro Dynamics (YHD) are selected. Then a hybrid model based on the improved FLNN integrating with partial least square (IFLNN-PLS) was built. In IFLNN-PLS model, the connection weights are calculated using the partial least square method but not the error back propagation algorithm. Lastly, IFLNN-PLS was developed as an intelligent measurement model for accurately predicting the key variables in the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. Simulation results illustrated that the IFLNN-PLS could significant improve the prediction performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Clinicopathologic implications of DNA mismatch repair status in endometrial carcinomas.

    PubMed

    Shikama, Ayumi; Minaguchi, Takeo; Matsumoto, Koji; Akiyama-Abe, Azusa; Nakamura, Yuko; Michikami, Hiroo; Nakao, Sari; Sakurai, Manabu; Ochi, Hiroyuki; Onuki, Mamiko; Satoh, Toyomi; Oki, Akinori; Yoshikawa, Hiroyuki

    2016-02-01

    Endometrial carcinoma is the most common malignancy in women with Lynch syndrome caused by mismatch repair (MMR) deficiency. We investigated the clinicopathologic significance of deficient MMR and Lynch syndrome presumed by MMR analyses in unselected endometrial carcinomas. We analyzed immunohistochemistry of MMR proteins (MLH1/MSH2/MSH6/PMS2) and MLH1 promoter methylation in primary endometrial carcinomas from 221 consecutive patients. Based on these results, tumors were categorized as sporadic or probable Lynch syndrome (PLS). Clinicopathologic variables and prognosis were compared according to MMR status and sporadic/PLS classification. Deficient MMR showed only trends towards favorable overall survival (OS) compared with intact MMR (p=0.13), whereas PLS showed significantly better OS than sporadic (p=0.038). Sporadic was significantly associated with older age, obesity, deep myometrial invasion, and advanced stage (p=0.008, 0.01, 0.02 and 0.03), while PLS was significantly associated with early stage and Lynch syndrome-associated multiple cancer (p=0.04 and 0.001). The trend towards favorable OS of PLS was stronger in advanced stage than in early stage (hazard ratio, 0.044 [95% CI 0-25.6] vs. 0.49 [0.063-3.8]). In the subset receiving adjuvant therapies, PLS showed trends towards favorable disease-free survival compared to sporadic by contrast with patients receiving no adjuvant therapies showing no such trend (hazard ratio, 0.045 [95% CI 0-20.3] vs. 0.81 [0.095-7.0]). The current findings suggest that analyzing MMR status and searching for Lynch syndrome may identify a subset of patients with favorable survival and high sensitivity to adjuvant therapies, providing novel and useful implications for formulating the precision medicine in endometrial carcinoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Implicit measurement of the latent heat in a magnetocaloric NiMnIn Heusler alloy

    NASA Astrophysics Data System (ADS)

    Ghahremani, Mohammadreza; ElBidweihy, Hatem; Bennett, Lawrence H.; Della Torre, Edward; Zou, Min; Johnson, Francis

    2013-05-01

    The latent heat linked with the first-order transformation of a NiMnIn Heusler alloy has been studied through direct measurements of the adiabatic temperature change, ΔTad, during magnetization process. The experimental procedure used guarantees independent data points and negates any contribution of hysteretic losses to the magnetocaloric effect. Thus, the differences between the magnitudes of ΔTad measurements during the magnetization with the initial temperature change directions from low-to-high and high-to-low are solely attributed to the latent heat exchange, which accompanies the irreversible structural first-order transformation. An estimate of the latent heat inducing such differences is about 0.292 J/g.

  10. Machine learning study for the prediction of transdermal peptide

    NASA Astrophysics Data System (ADS)

    Jung, Eunkyoung; Choi, Seung-Hoon; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Yun-Jaie; Shin, Jae-Min; Choi, Kihang; Jung, Dong Hyun

    2011-04-01

    In order to develop a computational method to rapidly evaluate transdermal peptides, we report approaches for predicting the transdermal activity of peptides on the basis of peptide sequence information using Artificial Neural Network (ANN), Partial Least Squares (PLS) and Support Vector Machine (SVM). We identified 269 transdermal peptides by the phage display technique and use them as the positive controls to develop and test machine learning models. Combinations of three descriptors with neural network architectures, the number of latent variables and the kernel functions are tried in training to make appropriate predictions. The capacity of models is evaluated by means of statistical indicators including sensitivity, specificity, and the area under the receiver operating characteristic curve (ROC score). In the ROC score-based comparison, three methods proved capable of providing a reasonable prediction of transdermal peptide. The best result is obtained by SVM model with a radial basis function and VHSE descriptors. The results indicate that it is possible to discriminate between transdermal peptides and random sequences using our models. We anticipate that our models will be applicable to prediction of transdermal peptide for large peptide database for facilitating efficient transdermal drug delivery through intact skin.

  11. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  12. Structure-based characterization of the binding of peptide to the human endophilin-1 Src homology 3 domain using position-dependent noncovalent potential analysis.

    PubMed

    Fu, Chunjiang; Wu, Gang; Lv, Fenglin; Tian, Feifei

    2012-05-01

    Many protein-protein interactions are mediated by a peptide-recognizing domain, such as WW, PDZ, or SH3. In the present study, we describe a new method called position-dependent noncovalent potential analysis (PDNPA), which can accurately characterize the nonbonding profile between the human endophilin-1 Src homology 3 (hEndo1 SH3) domain and its peptide ligands and quantitatively predict the binding affinity of peptide to hEndo1 SH3. In this procedure, structure models of diverse peptides in complex with the hEndo1 SH3 domain are constructed by molecular dynamics simulation and a virtual mutagenesis protocol. Subsequently, three noncovalent interactions associated with each position of the peptide ligand in the complexed state are analyzed using empirical potential functions, and the resulting potential descriptors are then correlated with the experimentally measured affinity on the basis of 1997 hEndo1 SH3-binding peptides with known activities, using linear partial least squares regression (PLS) and the nonlinear support vector machine (SVM). The results suggest that: (i) the electrostatics appears to be more important than steric properties and hydrophobicity in the formation of the hEndo1 SH3-peptide complex; (ii) P(-4) of the core decapeptide ligand with the sequence pattern P(-6)P(-5)P(-4)P(-3)P(-2)P(-1)P(0)P(1)P(2)P(3) is the most important position in terms of determining both the stability and specificity of the architecture of the complex, and; (iii) nonlinear SVM appears to be more effective than linear PLS for accurately predicting the binding affinity of a peptide ligand to hEndo1 SH3, whereas PLS models are straightforward and easy to interpret as compared to those built by SVM.

  13. PLS-based quantitative structure-activity relationship for substituted benzamides of clebopride type. Application of experimental design in drug design.

    PubMed

    Norinder, U; Högberg, T

    1992-04-01

    The advantageous approach of using an experimentally designed training set as the basis for establishing a quantitative structure-activity relationship with good predictive capability is described. The training set was selected from a fractional factorial design scheme based on a principal component description of physico-chemical parameters of aromatic substituents. The derived model successfully predicts the activities of additional substituted benzamides of 6-methoxy-N-(4-piperidyl)salicylamide type. The major influence on activity of the 3-substituent is demonstrated.

  14. Behavioral Scale Reliability and Measurement Invariance Evaluation Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2004-01-01

    A latent variable modeling approach to reliability and measurement invariance evaluation for multiple-component measuring instruments is outlined. An initial discussion deals with the limitations of coefficient alpha, a frequently used index of composite reliability. A widely and readily applicable structural modeling framework is next described…

  15. Working Memory Tasks Differ in Factor Structure across Age Cohorts: Implications for Dedifferentiation

    ERIC Educational Resources Information Center

    Johnson, Wendy; Logie, Robert H.; Brockmole, James R.

    2010-01-01

    Researchers interested in working memory have debated whether it should be considered a single latent cognitive ability or a set of essentially independent latent abilities distinguished by domain-specific memory and/or processing resources. Simultaneously, researchers interested in cognitive aging have established that there are substantial…

  16. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  17. Diagnostic Procedures for Detecting Nonlinear Relationships between Latent Variables

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Baldasaro, Ruth E.; Gottfredson, Nisha C.

    2012-01-01

    Structural equation models are commonly used to estimate relationships between latent variables. Almost universally, the fitted models specify that these relationships are linear in form. This assumption is rarely checked empirically, largely for lack of appropriate diagnostic techniques. This article presents and evaluates two procedures that can…

  18. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach.

    PubMed

    Wu, Yanwei; Guo, Pan; Chen, Siying; Chen, He; Zhang, Yinchao

    2017-04-01

    Auto-adaptive background subtraction (AABS) is proposed as a denoising method for data processing of the coherent Doppler lidar (CDL). The method is proposed specifically for a low-signal-to-noise-ratio regime, in which the drifting power spectral density of CDL data occurs. Unlike the periodogram maximum (PM) and adaptive iteratively reweighted penalized least squares (airPLS), the proposed method presents reliable peaks and is thus advantageous in identifying peak locations. According to the analysis results of simulated and actually measured data, the proposed method outperforms the airPLS method and the PM algorithm in the furthest detectable range. The proposed method improves the detection range approximately up to 16.7% and 40% when compared to the airPLS method and the PM method, respectively. It also has smaller mean wind velocity and standard error values than the airPLS and PM methods. The AABS approach improves the quality of Doppler shift estimates and can be applied to obtain the whole wind profiling by the CDL.

  19. Different approaches in Partial Least Squares and Artificial Neural Network models applied for the analysis of a ternary mixture of Amlodipine, Valsartan and Hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2014-03-01

    Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.

  20. Preliminary antifungal and cytotoxic evaluation of synthetic cycloalkyl[b]thiophene derivatives with PLS-DA analysis.

    PubMed

    Souza, Beatriz C C; De Oliveira, Tiago B; Aquino, Thiago M; de Lima, Maria C A; Pitta, Ivan R; Galdino, Suely L; Lima, Edeltrudes O; Gonçalves-Silva, Teresinha; Militão, Gardênia C G; Scotti, Luciana; Scotti, Marcus T; Mendonça, Francisco J B

    2012-06-01

    A series of 2-[(arylidene)amino]-cycloalkyl[b]thiophene-3-carbonitriles (2a-x) was synthesized by incorporation of substituted aromatic aldehydes in Gewald adducts (1a-c). The title compounds were screened for their antifungal activity against Candida krusei and Criptococcus neoformans and for their antiproliferative activity against a panel of 3 human cancer cell lines (HT29, NCI H-292 and HEP). For antiproliferative activity, the partial least squares (PLS) methodology was applied. Some of the prepared compounds exhibited promising antifungal and proliferative properties. The most active compounds for antifungal activity were cyclohexyl[b]thiophene derivatives, and for antiproliferative activity cycloheptyl[b]thiophene derivatives, especially 2-[(1H-indol-2-yl-methylidene)amino]- 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile (2r), which inhibited more than 97 % growth of the three cell lines. The PLS discriminant analysis (PLS-DA) applied generated good exploratory and predictive results and showed that the descriptors having shape characteristics were strongly correlated with the biological data.

  1. Determination of main fruits in adulterated nectars by ATR-FTIR spectroscopy combined with multivariate calibration and variable selection methods.

    PubMed

    Miaw, Carolina Sheng Whei; Assis, Camila; Silva, Alessandro Rangel Carolino Sales; Cunha, Maria Luísa; Sena, Marcelo Martins; de Souza, Scheilla Vitorino Carvalho

    2018-07-15

    Grape, orange, peach and passion fruit nectars were formulated and adulterated by dilution with syrup, apple and cashew juices at 10 levels for each adulterant. Attenuated total reflectance Fourier transform mid infrared (ATR-FTIR) spectra were obtained. Partial least squares (PLS) multivariate calibration models allied to different variable selection methods, such as interval partial least squares (iPLS), ordered predictors selection (OPS) and genetic algorithm (GA), were used to quantify the main fruits. PLS improved by iPLS-OPS variable selection showed the highest predictive capacity to quantify the main fruit contents. The selected variables in the final models varied from 72 to 100; the root mean square errors of prediction were estimated from 0.5 to 2.6%; the correlation coefficients of prediction ranged from 0.948 to 0.990; and, the mean relative errors of prediction varied from 3.0 to 6.7%. All of the developed models were validated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E.; Olson, W.

    2005-01-01

    Rainfall production is a fundamental process within the Earth;s hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations with the Tropics - as well as modify the energetic efficiencies of mid-latitude weather systems. This paper highlights the retrieval of observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional amount of rainfall over the global Tropics and sub-tropics - information which can be used to estimate the spacetime structure of latent heating across the Earth's low latitudes. A set of algorithm methodologies has and continues to be developed to estimate latent heating based on rain rate profile retrievals obtained from TRMM measurements. These algorithms are briefly described followed by a discussion of the foremost latent heating products that can be generate from them. The investigation then provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  3. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  4. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  5. Vertical Profiles of Latent Heat Release over the Global Tropics Using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in straitform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMXX), Brazil in 1999 (TRMM- LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  6. Heterogeneity of sleep quality in relation to circadian preferences and depressive symptomatology among major depressive patients.

    PubMed

    Selvi, Yavuz; Boysan, Murat; Kandeger, Ali; Uygur, Omer F; Sayin, Ayca A; Akbaba, Nursel; Koc, Basak

    2018-08-01

    The current study aimed at investigating the latent dimensional structure of sleep quality as indexed by the seven components of the Pittsburgh Sleep Quality Index (PSQI), as well as latent covariance structure between sleep quality, circadian preferences and depressive symptoms. Two hundred twenty-five patients with major depressive disorder (MDD), with an average age of 29.92 ± 10.49 years (aged between 17 and 63), participated in the study. The PSQI, Morningness-Eveningness Questionnaire (MEQ) and Beck Depression Inventory (BDI) were administered to participants. Four sets of latent class analyses were subsequently run to obtain optimal number of latent classes best fit to the data. Mixture models revealed that sleep quality is multifaceted in MDD. The data best fit to four-latent-class model: Poor Habitual Sleep Quality (PHSQ), Poor Subjective Sleep Quality (PSSQ), Intermediate Sleep Quality (ISQ), and Good Sleep Quality (GSQ). MDD patients classified into GSQ latent class (23.6%) reported the lowest depressive symptoms and were more prone to morningness diurnal preferences compared to other three homogenous sub-groups. Finally, the significant association between eveningness diurnal preferences and depressive symptomatology was significantly mediated by poor sleep quality. The cross-sectional nature of the study and the lack of an objective measurement of sleep such as polysomnography recordings was the most striking limitation of the study. We concluded sleep quality in relation to circadian preferences and depressive symptoms has a heterogeneous nature in MDD. Copyright © 2018. Published by Elsevier B.V.

  7. Latent geometry of bipartite networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2017-03-01

    Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.

  8. Papaya latex supernatant has a potent effect on the free-living stages of equid cyathostomins in vitro.

    PubMed

    Peachey, L E; Pinchbeck, G L; Matthews, J B; Burden, F A; Behnke, J M; Hodgkinson, J E

    2016-09-15

    The control of equid gastrointestinal nematodes in developed countries, in particular the cyathostomins, is threatened by high levels of anthelmintic resistance. In recent years, there has been increasing interest in the evaluation of traditional 'ethnoveterinary' medicines as alternatives to chemical anthelmintics. The cysteine proteinases (CPs), a group of enzymes derived from fruits such as papaya (Carica papaya), pineapple (Ananas comosus) and figs (Ficus spp.), have shown good efficacy against adult stages of a range of parasitic nematodes, in vitro and in vivo. The efficacy of CPs against cyathostomins remains to be explored. In this study, the efficacy of a crude preparation of CPs, papaya latex supernatant (PLS), against the free-living stages of cyathostomins was evaluated using two in vitro tests, the egg hatch test (EHT) and the larval migration inhibition test (LMIT). It was demonstrated that PLS had a potent effect in the EHT, with EC-50 values in the range of 0.12-0.22μM. At concentrations above 6.25μM the eggs did not develop, below this concentration the L1 developed but they lost integrity of the cuticle upon hatching. These effects were inhibited by pre-incubation of PLS with the CP inhibitor L-trans-epoxysuccinyl-l-leucylamido-(4-guanidino butane) (E64), indicating that CPs were responsible for the anti-parasitic activity. A dose-dependent inhibition of migration of third stage larvae (L3) in the LMIT was demonstrated at higher concentrations of PLS, with EC-50 values in the range of 67.35-106.31μM. Incubation of PLS with E64 prior to use in the LMIT did not reverse the anti-migratory effect, suggesting that CPs were not responsible for the reduced migration of cyathostomin L3 and that PLS also contains an additional active compound. This is the first report of PLS and/or CPs showing activity against the free-living stages of a parasitic helminth. In addition, it suggests that cyathostomins are highly sensitive to the effects of CPs and further evaluation of their efficacy against parasitic stages and in vivo are strongly indicated. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Exploring context and content links in social media: a latent space method.

    PubMed

    Qi, Guo-Jun; Aggarwal, Charu; Tian, Qi; Ji, Heng; Huang, Thomas S

    2012-05-01

    Social media networks contain both content and context-specific information. Most existing methods work with either of the two for the purpose of multimedia mining and retrieval. In reality, both content and context information are rich sources of information for mining, and the full power of mining and processing algorithms can be realized only with the use of a combination of the two. This paper proposes a new algorithm which mines both context and content links in social media networks to discover the underlying latent semantic space. This mapping of the multimedia objects into latent feature vectors enables the use of any off-the-shelf multimedia retrieval algorithms. Compared to the state-of-the-art latent methods in multimedia analysis, this algorithm effectively solves the problem of sparse context links by mining the geometric structure underlying the content links between multimedia objects. Specifically for multimedia annotation, we show that an effective algorithm can be developed to directly construct annotation models by simultaneously leveraging both context and content information based on latent structure between correlated semantic concepts. We conduct experiments on the Flickr data set, which contains user tags linked with images. We illustrate the advantages of our approach over the state-of-the-art multimedia retrieval techniques.

  10. Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Olson, W. S.; Meneghini, R.; Yang, S.; Simpson, J.; Kummerow, C.; Smith, E.

    2000-01-01

    This paper represents the first attempt to use TRMM rainfall information to estimate the four dimensional latent heating structure over the global tropics for February 1998. The mean latent heating profiles over six oceanic regions (TOGA COARE IFA, Central Pacific, S. Pacific Convergence Zone, East Pacific, Indian Ocean and Atlantic Ocean) and three continental regions (S. America, Central Africa and Australia) are estimated and studied. The heating profiles obtained from the results of diagnostic budget studies over a broad range of geographic locations are used to provide comparisons and indirect validation for the heating algorithm estimated heating profiles. Three different latent heating algorithms, the Goddard Convective-Stratiform (CSH) heating, the Goddard Profiling (GPROF) heating, and the Hydrometeor heating (HH) are used and their results are intercompared. The horizontal distribution or patterns of latent heat release from the three different heating retrieval methods are quite similar. They all can identify the areas of major convective activity (i.e., a well defined ITCZ in the Pacific, a distinct SPCZ) in the global tropics. The magnitude of their estimated latent heating release is also not in bad agreement with each other and with those determined from diagnostic budget studies. However, the major difference among these three heating retrieval algorithms is the altitude of the maximum heating level. The CSH algorithm estimated heating profiles only show one maximum heating level, and the level varies between convective activity from various geographic locations. These features are in good agreement with diagnostic budget studies. By contrast, two maximum heating levels were found using the GPROF heating and HH algorithms. The latent heating profiles estimated from all three methods can not show cooling between active convective events. We also examined the impact of different TMI (Multi-channel Passive Microwave Sensor) and PR (Precipitation Radar) rainfall information on latent heating structures.

  11. ETV Program Report: Coatings for Wastewater Collection Systems - Protective Liner Systems, Inc., Epoxy Mastic, PLS-614

    EPA Science Inventory

    The Protective Liner Systems International, Inc. Epoxy Mastic PLS-614 coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and T...

  12. Application of Partial Least Square (PLS) Regression to Determine Landscape-Scale Aquatic Resources Vulnerability in the Ozark Mountains

    EPA Science Inventory

    Partial least squares (PLS) analysis offers a number of advantages over the more traditionally used regression analyses applied in landscape ecology, particularly for determining the associations among multiple constituents of surface water and landscape configuration. Common dat...

  13. Reduced thermal conductivity by nanoscale intergrowths in perovskite like layered structure La{sub 2}Ti{sub 2}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaliq, Jibran; Chen, Kan; Li, Chunchun

    2015-02-21

    The effect of substitution and oxidation-reduction on the thermal conductivity of perovskite-like layered structure (PLS) ceramics was investigated in relation to mass contrast and non-stoichiometry. Sr (acceptor) was substituted on the A site, while Ta (donor) was substituted on the B site of La{sub 2}Ti{sub 2}O{sub 7}. Substitution in PLS materials creates atomic scale disorders to accommodate the non-stoichiometry. High resolution transmission electron microscopy and X ray diffraction revealed that acceptor substitution in La{sub 2}Ti{sub 2}O{sub 7} produced nanoscale intergrowths of n = 5 layered phase, while donor substitution produced nanoscale intergrowths of n = 3 layered phase. As a result of these nanoscalemore » intergrowths, the thermal conductivity value reduced by as much as ∼20%. Pure La{sub 2}Ti{sub 2}O{sub 7} has a thermal conductivity value of ∼1.3 W/m K which dropped to a value of ∼1.12 W/m K for Sr doped La{sub 2}Ti{sub 2}O{sub 7} and ∼0.93 W/m K for Ta doped La{sub 2}Ti{sub 2}O{sub 7} at 573 K.« less

  14. The Importance of Isomorphism for Conclusions about Homology: A Bayesian Multilevel Structural Equation Modeling Approach with Ordinal Indicators.

    PubMed

    Guenole, Nigel

    2016-01-01

    We describe a Monte Carlo study examining the impact of assuming item isomorphism (i.e., equivalent construct meaning across levels of analysis) on conclusions about homology (i.e., equivalent structural relations across levels of analysis) under varying degrees of non-isomorphism in the context of ordinal indicator multilevel structural equation models (MSEMs). We focus on the condition where one or more loadings are higher on the between level than on the within level to show that while much past research on homology has ignored the issue of psychometric isomorphism, psychometric isomorphism is in fact critical to valid conclusions about homology. More specifically, when a measurement model with non-isomorphic items occupies an exogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the within level exogenous latent variance is under-estimated leading to over-estimation of the within level structural coefficient, while the between level exogenous latent variance is overestimated leading to underestimation of the between structural coefficient. When a measurement model with non-isomorphic items occupies an endogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the endogenous within level latent variance is under-estimated leading to under-estimation of the within level structural coefficient while the endogenous between level latent variance is over-estimated leading to over-estimation of the between level structural coefficient. The innovative aspect of this article is demonstrating that even minor violations of psychometric isomorphism render claims of homology untenable. We also show that posterior predictive p-values for ordinal indicator Bayesian MSEMs are insensitive to violations of isomorphism even when they lead to severely biased within and between level structural parameters. We highlight conditions where poor estimation of even correctly specified models rules out empirical examination of isomorphism and homology without taking precautions, for instance, larger Level-2 sample sizes, or using informative priors.

  15. The Importance of Isomorphism for Conclusions about Homology: A Bayesian Multilevel Structural Equation Modeling Approach with Ordinal Indicators

    PubMed Central

    Guenole, Nigel

    2016-01-01

    We describe a Monte Carlo study examining the impact of assuming item isomorphism (i.e., equivalent construct meaning across levels of analysis) on conclusions about homology (i.e., equivalent structural relations across levels of analysis) under varying degrees of non-isomorphism in the context of ordinal indicator multilevel structural equation models (MSEMs). We focus on the condition where one or more loadings are higher on the between level than on the within level to show that while much past research on homology has ignored the issue of psychometric isomorphism, psychometric isomorphism is in fact critical to valid conclusions about homology. More specifically, when a measurement model with non-isomorphic items occupies an exogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the within level exogenous latent variance is under-estimated leading to over-estimation of the within level structural coefficient, while the between level exogenous latent variance is overestimated leading to underestimation of the between structural coefficient. When a measurement model with non-isomorphic items occupies an endogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the endogenous within level latent variance is under-estimated leading to under-estimation of the within level structural coefficient while the endogenous between level latent variance is over-estimated leading to over-estimation of the between level structural coefficient. The innovative aspect of this article is demonstrating that even minor violations of psychometric isomorphism render claims of homology untenable. We also show that posterior predictive p-values for ordinal indicator Bayesian MSEMs are insensitive to violations of isomorphism even when they lead to severely biased within and between level structural parameters. We highlight conditions where poor estimation of even correctly specified models rules out empirical examination of isomorphism and homology without taking precautions, for instance, larger Level-2 sample sizes, or using informative priors. PMID:26973580

  16. The spatial pattern of suicide in the US in relation to deprivation, fragmentation and rurality.

    PubMed

    Congdon, Peter

    2011-01-01

    Analysis of geographical patterns of suicide and psychiatric morbidity has demonstrated the impact of latent ecological variables (such as deprivation, rurality). Such latent variables may be derived by conventional multivariate techniques from sets of observed indices (for example, by principal components), by composite variable methods or by methods which explicitly consider the spatial framework of areas and, in particular, the spatial clustering of latent risks and outcomes. This article considers a latent random variable approach to explaining geographical contrasts in suicide in the US; and it develops a spatial structural equation model incorporating deprivation, social fragmentation and rurality. The approach allows for such latent spatial constructs to be correlated both within and between areas. Potential effects of area ethnic mix are also included. The model is applied to male and female suicide deaths over 2002–06 in 3142 US counties.

  17. ε-Poly-l-Lysine Peptide Chain Length Regulated by the Linkers Connecting the Transmembrane Domains of ε-Poly-l-Lysine Synthetase

    PubMed Central

    Kito, Naoko; Kita, Akihiro; Imokawa, Yuuki; Yamanaka, Kazuya; Maruyama, Chitose; Katano, Hajime

    2014-01-01

    ε-Poly-l-lysine (ε-PL), consisting of 25 to 35 l-lysine residues with linkages between the α-carboxyl groups and ε-amino groups, is produced by Streptomyces albulus NBRC14147. ε-PL synthetase (Pls) is a membrane protein with six transmembrane domains (TM1 to TM6) as well as both an adenylation domain and a thiolation domain, characteristic of the nonribosomal peptide synthetases. Pls directly generates ε-PL chain length diversity (25- to 35-mer), but the processes that control the chain length of ε-PL during the polymerization reaction are still not fully understood. Here, we report on the identification of Pls amino acid residues involved in the regulation of the ε-PL chain length. From approximately 12,000 variants generated by random mutagenesis, we found 8 Pls variants that produced shorter chains of ε-PL. These variants have one or more mutations in two linker regions connecting the TM1 and TM2 domains and the TM3 and TM4 domains. In the Pls catalytic mechanism, the growing chain of ε-PL is not tethered to the enzyme, implying that the enzyme must hold the growing chain until the polymerization reaction is complete. Our findings reveal that the linker regions are important contributors to grasp the growing chain of ε-PL. PMID:24907331

  18. Top-up operation at Pohang Light Source-II

    NASA Astrophysics Data System (ADS)

    Hwang, I.; Huang, J. Y.; Kim, M.; Lee, B.-J.; Kim, C.; Choi, J.-Y.; Kim, M.-H.; Lee, H. S.; Moon, D.; Lee, E. H.; Kim, D.-E.; Nam, S. H.; Shin, S.; Cho, Moohyun

    2014-05-01

    After three years of upgrading work, PLS-II (S. Shin, Commissioning of the PLS-II, JINST, January 2013) is now successfully operating. The top-up operation of the 3 GeV linear accelerator had to be delayed because of some challenges encountered, and PLS-II was run in decay mode at the beginning in March 2012. The main difficulties encountered in the top-up operation of PLS-II are different levels between the linear accelerator and the storage ring, the 14 narrow gap in-vacuum undulators in operation, and the full energy injection by 3 GeV linear accelerator. Large vertical emittance and energy jitter of the linac were the major obstacles that called for careful control of injected beam to reduce beam loss in the storage ring during injection. The following measures were taken to resolve these problems: (1) The high resolution Libera BPM (see http://www.i-tech.si) was implemented to measure the beam trajectory and energy. (2) Three slit systems were installed to filter the beam edge. (3) De-Qing circuit was applied to the modulator system to improve the energy stability of injected beam. As a result, the radiation by beam loss during injection is reduced drastically, and the top-up mode has been successfully operating since 19th March 2013. In this paper, we describe the experimental results of the PLS-II top-up operation and the improvement plan.

  19. Impaired corticopontocerebellar tracts underlie pseudobulbar affect in motor neuron disorders

    PubMed Central

    Katipally, Rohan; Kim, Meredith P.; Schanz, Olivia; Stephen, Matthew; Danielian, Laura; Wu, Tianxia; Huey, Edward D.; Meoded, Avner

    2014-01-01

    Objective: The objectives of the study were (1) to determine the prevalence and characteristics of pseudobulbar affect (PBA) in patients with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) in an outpatient clinic population, and (2) to test the hypothesis that damage of inputs to the cerebellum, leading to cerebellar dysmodulation, is associated with PBA. Methods: Chart review of all patients with PLS and ALS seen between 2000 and 2013. The examining neurologist documented the presence or absence of PBA in 87 patients. Forty-seven patients also had diffusion tensor imaging (DTI) studies. Tract-based spatial statistics were used to compare DTI of patients with and without PBA to identify altered white matter tracts associated with PBA. Results: Thirty-one of 50 patients with PLS and 12 of 37 patients with ALS had PBA. Psychiatric/emotional assessment found congruence between mood and affect during episodes, but excessive magnitude of the response. DTI studies of 25 PLS and 22 ALS patient brains showed reduced fractional anisotropy of the corticospinal and callosal white matter tracts in all patients. Patients with PBA additionally had increased mean diffusivity of white matter tracts underlying the frontotemporal cortex, the transverse pontine fibers, and the middle cerebellar peduncle. Conclusions: PBA is common in PLS. Imaging findings showing disruption of corticopontocerebellar pathways support the hypothesis that PBA can be viewed as a “dysmetria” of emotional expression resulting from cerebellar dysmodulation. PMID:25008395

  20. Impaired corticopontocerebellar tracts underlie pseudobulbar affect in motor neuron disorders.

    PubMed

    Floeter, Mary Kay; Katipally, Rohan; Kim, Meredith P; Schanz, Olivia; Stephen, Matthew; Danielian, Laura; Wu, Tianxia; Huey, Edward D; Meoded, Avner

    2014-08-12

    The objectives of the study were (1) to determine the prevalence and characteristics of pseudobulbar affect (PBA) in patients with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) in an outpatient clinic population, and (2) to test the hypothesis that damage of inputs to the cerebellum, leading to cerebellar dysmodulation, is associated with PBA. Chart review of all patients with PLS and ALS seen between 2000 and 2013. The examining neurologist documented the presence or absence of PBA in 87 patients. Forty-seven patients also had diffusion tensor imaging (DTI) studies. Tract-based spatial statistics were used to compare DTI of patients with and without PBA to identify altered white matter tracts associated with PBA. Thirty-one of 50 patients with PLS and 12 of 37 patients with ALS had PBA. Psychiatric/emotional assessment found congruence between mood and affect during episodes, but excessive magnitude of the response. DTI studies of 25 PLS and 22 ALS patient brains showed reduced fractional anisotropy of the corticospinal and callosal white matter tracts in all patients. Patients with PBA additionally had increased mean diffusivity of white matter tracts underlying the frontotemporal cortex, the transverse pontine fibers, and the middle cerebellar peduncle. PBA is common in PLS. Imaging findings showing disruption of corticopontocerebellar pathways support the hypothesis that PBA can be viewed as a "dysmetria" of emotional expression resulting from cerebellar dysmodulation. © 2014 American Academy of Neurology.

  1. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies.

    PubMed

    Slatter, David A; Percy, Charles L; Allen-Redpath, Keith; Gajsiewicz, Joshua M; Brooks, Nick J; Clayton, Aled; Tyrrell, Victoria J; Rosas, Marcela; Lauder, Sarah N; Watson, Andrew; Dul, Maria; Garcia-Diaz, Yoel; Aldrovandi, Maceler; Heurich, Meike; Hall, Judith; Morrissey, James H; Lacroix-Desmazes, Sebastien; Delignat, Sandrine; Jenkins, P Vincent; Collins, Peter W; O'Donnell, Valerie B

    2018-03-22

    Hemostatic defects are treated using coagulation factors; however, clot formation also requires a procoagulant phospholipid (PL) surface. Here, we show that innate immune cell-derived enzymatically oxidized phospholipids (eoxPL) termed hydroxyeicosatetraenoic acid-phospholipids (HETE-PLs) restore hemostasis in human and murine conditions of pathological bleeding. HETE-PLs abolished blood loss in murine hemophilia A and enhanced coagulation in factor VIII- (FVIII-), FIX-, and FX-deficient human plasma . HETE-PLs were decreased in platelets from patients after cardiopulmonary bypass (CPB). To explore molecular mechanisms, the ability of eoxPL to stimulate individual isolated coagulation factor/cofactor complexes was tested in vitro. Extrinsic tenase (FVIIa/tissue factor [TF]), intrinsic tenase (FVIIIa/FIXa), and prothrombinase (FVa/FXa) all were enhanced by both HETE-PEs and HETE-PCs, suggesting a common mechanism involving the fatty acid moiety. In plasma, 9-, 15-, and 12-HETE-PLs were more effective than 5-, 11-, or 8-HETE-PLs, indicating positional isomer specificity. Coagulation was enhanced at lower lipid/factor ratios, consistent with a more concentrated area for protein binding. Surface plasmon resonance confirmed binding of FII and FX to HETE-PEs. HETE-PEs increased membrane curvature and thickness, but not surface charge or homogeneity, possibly suggesting increased accessibility to cations/factors. In summary, innate immune-derived eoxPL enhance calcium-dependent coagulation factor function, and their potential utility in bleeding disorders is proposed.

  2. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies

    PubMed Central

    Slatter, David A.; Percy, Charles L.; Allen-Redpath, Keith; Gajsiewicz, Joshua M.; Brooks, Nick J.; Tyrrell, Victoria J.; Lauder, Sarah N.; Watson, Andrew; Dul, Maria; Garcia-Diaz, Yoel; Aldrovandi, Maceler; Heurich, Meike; Hall, Judith; Lacroix-Desmazes, Sebastien; Delignat, Sandrine; Jenkins, P. Vincent; Collins, Peter W.; O’Donnell, Valerie B.

    2018-01-01

    Hemostatic defects are treated using coagulation factors; however, clot formation also requires a procoagulant phospholipid (PL) surface. Here, we show that innate immune cell–derived enzymatically oxidized phospholipids (eoxPL) termed hydroxyeicosatetraenoic acid–phospholipids (HETE-PLs) restore hemostasis in human and murine conditions of pathological bleeding. HETE-PLs abolished blood loss in murine hemophilia A and enhanced coagulation in factor VIII- (FVIII-), FIX-, and FX-deficient human plasma . HETE-PLs were decreased in platelets from patients after cardiopulmonary bypass (CPB). To explore molecular mechanisms, the ability of eoxPL to stimulate individual isolated coagulation factor/cofactor complexes was tested in vitro. Extrinsic tenase (FVIIa/tissue factor [TF]), intrinsic tenase (FVIIIa/FIXa), and prothrombinase (FVa/FXa) all were enhanced by both HETE-PEs and HETE-PCs, suggesting a common mechanism involving the fatty acid moiety. In plasma, 9-, 15-, and 12-HETE-PLs were more effective than 5-, 11-, or 8-HETE-PLs, indicating positional isomer specificity. Coagulation was enhanced at lower lipid/factor ratios, consistent with a more concentrated area for protein binding. Surface plasmon resonance confirmed binding of FII and FX to HETE-PEs. HETE-PEs increased membrane curvature and thickness, but not surface charge or homogeneity, possibly suggesting increased accessibility to cations/factors. In summary, innate immune-derived eoxPL enhance calcium-dependent coagulation factor function, and their potential utility in bleeding disorders is proposed. PMID:29563336

  3. Comparison of partial least squares and random forests for evaluating relationship between phenolics and bioactivities of Neptunia oleracea.

    PubMed

    Lee, Soo Yee; Mediani, Ahmed; Maulidiani, Maulidiani; Khatib, Alfi; Ismail, Intan Safinar; Zawawi, Norhasnida; Abas, Faridah

    2018-01-01

    Neptunia oleracea is a plant consumed as a vegetable and which has been used as a folk remedy for several diseases. Herein, two regression models (partial least squares, PLS; and random forest, RF) in a metabolomics approach were compared and applied to the evaluation of the relationship between phenolics and bioactivities of N. oleracea. In addition, the effects of different extraction conditions on the phenolic constituents were assessed by pattern recognition analysis. Comparison of the PLS and RF showed that RF exhibited poorer generalization and hence poorer predictive performance. Both the regression coefficient of PLS and the variable importance of RF revealed that quercetin and kaempferol derivatives, caffeic acid and vitexin-2-O-rhamnoside were significant towards the tested bioactivities. Furthermore, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) results showed that sonication and absolute ethanol are the preferable extraction method and ethanol ratio, respectively, to produce N. oleracea extracts with high phenolic levels and therefore high DPPH scavenging and α-glucosidase inhibitory activities. Both PLS and RF are useful regression models in metabolomics studies. This work provides insight into the performance of different multivariate data analysis tools and the effects of different extraction conditions on the extraction of desired phenolics from plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Correlation of sensory bitterness in dairy protein hydrolysates: Comparison of prediction models built using sensory, chromatographic and electronic tongue data.

    PubMed

    Newman, J; Egan, T; Harbourne, N; O'Riordan, D; Jacquier, J C; O'Sullivan, M

    2014-08-01

    Sensory evaluation can be problematic for ingredients with a bitter taste during research and development phase of new food products. In this study, 19 dairy protein hydrolysates (DPH) were analysed by an electronic tongue and their physicochemical characteristics, the data obtained from these methods were correlated with their bitterness intensity as scored by a trained sensory panel and each model was also assessed by its predictive capabilities. The physiochemical characteristics of the DPHs investigated were degree of hydrolysis (DH%), and data relating to peptide size and relative hydrophobicity from size exclusion chromatography (SEC) and reverse phase (RP) HPLC. Partial least square regression (PLS) was used to construct the prediction models. All PLS regressions had good correlations (0.78 to 0.93) with the strongest being the combination of data obtained from SEC and RP HPLC. However, the PLS with the strongest predictive power was based on the e-tongue which had the PLS regression with the lowest root mean predicted residual error sum of squares (PRESS) in the study. The results show that the PLS models constructed with the e-tongue and the combination of SEC and RP-HPLC has potential to be used for prediction of bitterness and thus reducing the reliance on sensory analysis in DPHs for future food research. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Computer aided diagnosis system for the Alzheimer's disease based on partial least squares and random forest SPECT image classification.

    PubMed

    Ramírez, J; Górriz, J M; Segovia, F; Chaves, R; Salas-Gonzalez, D; López, M; Alvarez, I; Padilla, P

    2010-03-19

    This letter shows a computer aided diagnosis (CAD) technique for the early detection of the Alzheimer's disease (AD) by means of single photon emission computed tomography (SPECT) image classification. The proposed method is based on partial least squares (PLS) regression model and a random forest (RF) predictor. The challenge of the curse of dimensionality is addressed by reducing the large dimensionality of the input data by downscaling the SPECT images and extracting score features using PLS. A RF predictor then forms an ensemble of classification and regression tree (CART)-like classifiers being its output determined by a majority vote of the trees in the forest. A baseline principal component analysis (PCA) system is also developed for reference. The experimental results show that the combined PLS-RF system yields a generalization error that converges to a limit when increasing the number of trees in the forest. Thus, the generalization error is reduced when using PLS and depends on the strength of the individual trees in the forest and the correlation between them. Moreover, PLS feature extraction is found to be more effective for extracting discriminative information from the data than PCA yielding peak sensitivity, specificity and accuracy values of 100%, 92.7%, and 96.9%, respectively. Moreover, the proposed CAD system outperformed several other recently developed AD CAD systems. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Effect of the nature of phospholipids on the degree of their interaction with isobornylphenol antioxidants

    NASA Astrophysics Data System (ADS)

    Marakulina, K. M.; Kramor, R. V.; Lukanina, Yu. K.; Plashchina, I. G.; Polyakov, A. V.; Fedorova, I. V.; Chukicheva, I. Yu.; Kutchin, A. V.; Shishkina, L. N.

    2016-02-01

    The parameters of complexation between natural phospholipids (lecithin, sphingomyelin, and cephalin) with antioxidants of a new class, isobornylphenols (IBPs), were determined by UV and IR spectroscopy. The self-organization of phospholipids (PLs) was studied depending on the structure of IBPs by dynamic light scattering. The nature of phospholipids and the structure of IBPs was found to produce a substantial effect both on the degree of complexation and on the size of PL aggregates in a nonpolar solvent. Based on the obtained data it was concluded that the structure of biological membranes mainly depends on the complexation of IBP with sphingomyelin.

  7. Topic Model for Graph Mining.

    PubMed

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng

    2015-12-01

    Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.

  8. Latent topic discovery of clinical concepts from hospital discharge summaries of a heterogeneous patient cohort.

    PubMed

    Lehman, Li-Wei; Long, William; Saeed, Mohammed; Mark, Roger

    2014-01-01

    Patients in critical care often exhibit complex disease patterns. A fundamental challenge in clinical research is to identify clinical features that may be characteristic of adverse patient outcomes. In this work, we propose a data-driven approach for phenotype discovery of patients in critical care. We used Hierarchical Dirichlet Process (HDP) as a non-parametric topic modeling technique to automatically discover the latent "topic" structure of diseases, symptoms, and findings documented in hospital discharge summaries. We show that the latent topic structure can be used to reveal phenotypic patterns of diseases and symptoms shared across subgroups of a patient cohort, and may contain prognostic value in stratifying patients' post hospital discharge mortality risks. Using discharge summaries of a large patient cohort from the MIMIC II database, we evaluate the clinical utility of the discovered topic structure in identifying patients who are at high risk of mortality within one year post hospital discharge. We demonstrate that the learned topic structure has statistically significant associations with mortality post hospital discharge, and may provide valuable insights in defining new feature sets for predicting patient outcomes.

  9. Application of Partial Least Squares (PLS) Regression to Determine Landscape-Scale Aquatic Resource Vulnerability in the Ozark Mountains

    EPA Science Inventory

    Partial least squares (PLS) analysis offers a number of advantages over the more traditionally used regression analyses applied in landscape ecology to study the associations among constituents of surface water and landscapes. Common data problems in ecological studies include: s...

  10. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  11. Latent Profile and Cluster Analysis of Infant Temperament: Comparisons across Person-Centered Approaches

    ERIC Educational Resources Information Center

    Gartstein, Maria A.; Prokasky, Amanda; Bell, Martha Ann; Calkins, Susan; Bridgett, David J.; Braungart-Rieker, Julia; Leerkes, Esther; Cheatham, Carol L.; Eiden, Rina D.; Mize, Krystal D.; Jones, Nancy Aaron; Mireault, Gina; Seamon, Erich

    2017-01-01

    There is renewed interest in person-centered approaches to understanding the structure of temperament. However, questions concerning temperament types are not frequently framed in a developmental context, especially during infancy. In addition, the most common person-centered techniques, cluster analysis (CA) and latent profile analysis (LPA),…

  12. Applying the Mixed Rasch Model to the Runco Ideational Behavior Scale

    ERIC Educational Resources Information Center

    Sen, Sedat

    2016-01-01

    Previous research using creativity assessments has used latent class models and identified multiple classes (a 3-class solution) associated with various domains. This study explored the latent class structure of the Runco Ideational Behavior Scale, which was designed to quantify ideational capacity. A robust state-of the-art technique called the…

  13. The Latent Classes of Subclinical ADHD Symptoms: Convergences of Multiple Informant Reports

    ERIC Educational Resources Information Center

    Kobor, Andrea; Takacs, Adam; Urban, Robert; Csepe, Valeria

    2012-01-01

    The purpose of the present study was to conduct latent class analysis on the Hyperactivity scale of the Strengths and Difficulties Questionnaire in order to identify distinct subgroups of subclinical ADHD in a multi-informant framework. We hypothesized a similar structure between teachers and parents, and differences in symptom severity across…

  14. Comparing Latent Structures of the Grade of Membership, Rasch, and Latent Class Models

    ERIC Educational Resources Information Center

    Erosheva, Elena A.

    2005-01-01

    This paper focuses on model interpretation issues and employs a geometric approach to compare the potential value of using the Grade of Membership (GoM) model in representing population heterogeneity. We consider population heterogeneity manifolds generated by letting subject specific parameters vary over their natural range, while keeping other…

  15. A Latent Variable Approach to Executive Control in Healthy Ageing

    ERIC Educational Resources Information Center

    Adrover-Roig, Daniel; Sese, Albert; Barcelo, Francisco; Palmer, Alfonso

    2012-01-01

    It is a well-established finding that the central executive is fractionated in at least three separable component processes: Updating, Shifting, and Inhibition of information (Miyake et al., 2000). However, the fractionation of the central executive among the elderly has been less well explored, and Miyake's et al. latent structure has not yet…

  16. A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen

    2012-01-01

    Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…

  17. What If We Took Our Models Seriously? Estimating Latent Scores in Individuals

    ERIC Educational Resources Information Center

    Schneider, W. Joel

    2013-01-01

    Researchers often argue that the structural models of the constructs they study are relevant to clinicians. Unfortunately, few clinicians are able to translate the mathematically precise relationships between latent constructs and observed scores into information that can be usefully applied to individuals. Typically this means that when a new…

  18. Mean structure analysis from an IRT approach: an application in the context of organizational psychology.

    PubMed

    Revuelta Menéndez, Javier; Ximénez Gómez, Carmen

    2012-11-01

    The application of mean and covariance structure analysis with quantitative data is increasing. However, latent means analysis with qualitative data is not as widespread. This article summarizes the procedures to conduct an analysis of latent means of dichotomous data from an item response theory approach. We illustrate the implementation of these procedures in an empirical example referring to the organizational context, where a multi-group analysis was conducted to compare the latent means of three employee groups in two factors measuring personal preferences and the perceived degree of rewards from the organization. Results show that higher personal motivations are associated with higher perceived importance of the organization, and that these perceptions differ across groups, so that higher-level employees have a lower level of personal and perceived motivation. The article shows how to estimate the factor means and the factor correlation from dichotomous data, and how to assess goodness of fit. Lastly, we provide the M-Plus syntax code in order to facilitate the latent means analyses for applied researchers.

  19. Heating Structures Derived from Satellite

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Haddad, Z.; Hou, A.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C.; Lang, S.; Meneghini, R.; Olson, W.

    2004-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. The Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, was launched in November 1997. It provides an accurate measurement of rainfall over the global tropics which can be used to estimate the four-dimensional structure of latent heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. This paper describes several different algorithms for estimating latent heating using TRMM observations. The strengths and weaknesses of each algorithm as well as the heating products are also discussed. The validation of heating products will be exhibited. Finally, the application of this heating information to global circulation and climate models is presented.

  20. Phenotypic factor analysis of psychopathology reveals a new body-related transdiagnostic factor.

    PubMed

    Pezzoli, Patrizia; Antfolk, Jan; Santtila, Pekka

    2017-01-01

    Comorbidity challenges the notion of mental disorders as discrete categories. An increasing body of literature shows that symptoms cut across traditional diagnostic boundaries and interact in shaping the latent structure of psychopathology. Using exploratory and confirmatory factor analysis, we reveal the latent sources of covariation among nine measures of psychopathological functioning in a population-based sample of 13024 Finnish twins and their siblings. By implementing unidimensional, multidimensional, second-order, and bifactor models, we illustrate the relationships between observed variables, specific, and general latent factors. We also provide the first investigation to date of measurement invariance of the bifactor model of psychopathology across gender and age groups. Our main result is the identification of a distinct "Body" factor, alongside the previously identified Internalizing and Externalizing factors. We also report relevant cross-disorder associations, especially between body-related psychopathology and trait anger, as well as substantial sex and age differences in observed and latent means. The findings expand the meta-structure of psychopathology, with implications for empirical and clinical practice, and demonstrate shared mechanisms underlying attitudes towards nutrition, self-image, sexuality and anger, with gender- and age-specific features.

  1. Spatial path models with multiple indicators and multiple causes: mental health in US counties.

    PubMed

    Congdon, Peter

    2011-06-01

    This paper considers a structural model for the impact on area mental health outcomes (poor mental health, suicide) of spatially structured latent constructs: deprivation, social capital, social fragmentation and rurality. These constructs are measured by multiple observed effect indicators, with the constructs allowed to be correlated both between and within areas. However, in the scheme developed here, particular latent constructs may also be influenced by known variables, or, via path sequences, by other constructs, possibly nonlinearly. For example, area social capital may be measured by effect indicators (e.g. associational density, charitable activity), but influenced as causes by other constructs (e.g. area deprivation), and by observed features of the socio-ethnic structure of areas. A model incorporating these features is applied to suicide mortality and the prevalence of poor mental health in 3141 US counties, which are related to the latent spatial constructs and to observed variables (e.g. county ethnic mix). Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Prediction of biodegradability from chemical structure: Modeling or ready biodegradation test data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loonen, H.; Lindgren, F.; Hansen, B.

    1999-08-01

    Biodegradation data were collected and evaluated for 894 substances with widely varying chemical structures. All data were determined according to the Japanese Ministry of International Trade and Industry (MITI) I test protocol. The MITI I test is a screening test for ready biodegradability and has been described by Organization for Economic Cooperation and Development (OECD) test guideline 301 C and European Union (EU) test guideline C4F. The chemicals were characterized by a set of 127 predefined structural fragments. This data set was used to develop a model for the prediction of the biodegradability of chemicals under standardized OECD and EUmore » ready biodegradation test conditions. Partial least squares (PLS) discriminant analysis was used for the model development. The model was evaluated by means of internal cross-validation and repeated external validation. The importance of various structural fragments and fragment interactions was investigated. The most important fragments include the presence of a long alkyl chain; hydroxy, ester, and acid groups (enhancing biodegradation); and the presence of one or more aromatic rings and halogen substituents (regarding biodegradation). More than 85% of the model predictions were correct for using the complete data set. The not readily biodegradable predictions were slightly better than the readily biodegradable predictions (86 vs 84%). The average percentage of correct predictions from four external validation studies was 83%. Model optimization by including fragment interactions improve the model predicting capabilities to 89%. It can be concluded that the PLS model provides predictions of high reliability for a diverse range of chemical structures. The predictions conform to the concept of readily biodegradable (or not readily biodegradable) as defined by OECD and EU test guidelines.« less

  3. Fourier transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of extracellular matrix degradation in aorta.

    PubMed

    Cheheltani, Rabee; McGoverin, Cushla M; Rao, Jayashree; Vorp, David A; Kiani, Mohammad F; Pleshko, Nancy

    2014-06-21

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues.

  4. Fourier Transform Infrared Spectroscopy to Quantify Collagen and Elastin in an In Vitro Model of Extracellular Matrix Degradation in Aorta

    PubMed Central

    Cheheltani, Rabee; McGoverin, Cushla M.; Rao, Jayashree; Vorp, David A.; Kiani, Mohammad F.; Pleshko, N.

    2014-01-01

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues. PMID:24761431

  5. Preliminary Interpretation of Titan Plasma Interaction as Observed by the Cassini Plasma Spectrometer: Comparisons With Voyager 1

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sittler, E. C.; Johnson, R. E.; Simpson, D. G.; Smith, H. T.; Crary, F.; McComas, D. J.; Young, D. T.; Coates, A. J.; Neubauer, F. M.

    2005-01-01

    The Cassini Plasma Spectrometer (CAPS) instrument made measurements of Titan s plasma environment when the Cassini Orbiter flew through the moon s plasma wake October 26,2004 (flyby TA) and December 13,2004 (flyby TB). Preliminary CAPS ion and electron measurements from these encounters (1,2) are compared with measurements made by the Voyager I Plasma Science Instrument (PLS). The comparisons are used to evaluate previous interpretations and predictions of the Titan plasma environment that have been made using PLS measurements (3,4). The plasma wake trajectories of flybys TA, TB and Voyager 1 are similar because they occurred when Titan was near Saturn s local noon. These similarities make possible direct, meaningful comparisons between the various plasma wake measurements. The inquiries stimulated by the previous interpretations and predictions made using PLS data have produced the following results from the CAPS ion measurements: A) The major ambient ion components of Saturn s rotating magnetosphere in the vicinity of Titan are H+, H2+, and O+. B) Finite gyroradius effects are apparent in ambient 0 as the result of its interaction with Titan s atmosphere. C) The principal pickup ions are composed of H+, H2+, CH4+ and N2+. D) There is clear evidence of slowing down of the ambient plasma due to pickup ion mass loading; and, as the ionopause is approached, heavier pickup ions such as N2+ become dominant. The similarities and differences between the magnitudes and structures of the electron densities and temperatures along the three flyby trajectories are described

  6. GARP regulates the bioavailability and activation of TGFβ.

    PubMed

    Wang, Rui; Zhu, Jianghai; Dong, Xianchi; Shi, Minlong; Lu, Chafen; Springer, Timothy A

    2012-03-01

    Glycoprotein-A repetitions predominant protein (GARP) associates with latent transforming growth factor-β (proTGFβ) on the surface of T regulatory cells and platelets; however, whether GARP functions in latent TGFβ activation and the structural basis of coassociation remain unknown. We find that Cys-192 and Cys-331 of GARP disulfide link to the TGFβ1 prodomain and that GARP with C192A and C331A mutations can also noncovalently associate with proTGFβ1. Noncovalent association is sufficiently strong for GARP to outcompete latent TGFβ-binding protein for binding to proTGFβ1. Association between GARP and proTGFβ1 prevents the secretion of TGFβ1. Integrin α(V)β(6) and to a lesser extent α(V)β(8) are able to activate TGFβ from the GARP-proTGFβ1 complex. Activation requires the RGD motif of latent TGFβ, disulfide linkage between GARP and latent TGFβ, and membrane association of GARP. Our results show that GARP is a latent TGFβ-binding protein that functions in regulating the bioavailability and activation of TGFβ.

  7. Estimating Latent Variable Interactions With Non-Normal Observed Data: A Comparison of Four Approaches

    PubMed Central

    Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.

    2012-01-01

    A Monte Carlo simulation was conducted to investigate the robustness of four latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of non-normality of the observed exogenous variables. Results showed that the CPI and LMS approaches yielded biased estimates of the interaction effect when the exogenous variables were highly non-normal. When the violation of non-normality was not severe (normal; symmetric with excess kurtosis < 1), the LMS approach yielded the most efficient estimates of the latent interaction effect with the highest statistical power. In highly non-normal conditions, the GAPI and UPI approaches with ML estimation yielded unbiased latent interaction effect estimates, with acceptable actual Type-I error rates for both the Wald and likelihood ratio tests of interaction effect at N ≥ 500. An empirical example illustrated the use of the four approaches in testing a latent variable interaction between academic self-efficacy and positive family role models in the prediction of academic performance. PMID:23457417

  8. Real time flaw detection and characterization in tube through partial least squares and SVR: Application to eddy current testing

    NASA Astrophysics Data System (ADS)

    Ahmed, Shamim; Miorelli, Roberto; Calmon, Pierre; Anselmi, Nicola; Salucci, Marco

    2018-04-01

    This paper describes Learning-By-Examples (LBE) technique for performing quasi real time flaw localization and characterization within a conductive tube based on Eddy Current Testing (ECT) signals. Within the framework of LBE, the combination of full-factorial (i.e., GRID) sampling and Partial Least Squares (PLS) feature extraction (i.e., GRID-PLS) techniques are applied for generating a suitable training set in offine phase. Support Vector Regression (SVR) is utilized for model development and inversion during offine and online phases, respectively. The performance and robustness of the proposed GIRD-PLS/SVR strategy on noisy test set is evaluated and compared with standard GRID/SVR approach.

  9. Optimal study design with identical power: an application of power equivalence to latent growth curve models.

    PubMed

    von Oertzen, Timo; Brandmaier, Andreas M

    2013-06-01

    Structural equation models have become a broadly applied data-analytic framework. Among them, latent growth curve models have become a standard method in longitudinal research. However, researchers often rely solely on rules of thumb about statistical power in their study designs. The theory of power equivalence provides an analytical answer to the question of how design factors, for example, the number of observed indicators and the number of time points assessed in repeated measures, trade off against each other while holding the power for likelihood-ratio tests on the latent structure constant. In this article, we present applications of power-equivalent transformations on a model with data from a previously published study on cognitive aging, and highlight consequences of participant attrition on power. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. The computational nature of memory modification.

    PubMed

    Gershman, Samuel J; Monfils, Marie-H; Norman, Kenneth A; Niv, Yael

    2017-03-15

    Retrieving a memory can modify its influence on subsequent behavior. We develop a computational theory of memory modification, according to which modification of a memory trace occurs through classical associative learning, but which memory trace is eligible for modification depends on a structure learning mechanism that discovers the units of association by segmenting the stream of experience into statistically distinct clusters (latent causes). New memories are formed when the structure learning mechanism infers that a new latent cause underlies current sensory observations. By the same token, old memories are modified when old and new sensory observations are inferred to have been generated by the same latent cause. We derive this framework from probabilistic principles, and present a computational implementation. Simulations demonstrate that our model can reproduce the major experimental findings from studies of memory modification in the Pavlovian conditioning literature.

  11. The Latent Class Structure of Chinese Patients with Eating Disorders in Shanghai.

    PubMed

    Zheng, Yuchen; Kang, Qing; Huang, Jiabin; Jiang, Wenhui; Liu, Qiang; Chen, Han; Fan, Qing; Wang, Zhen; Chen, Jue; Xiao, Zeping

    2017-08-25

    Eating disorder is culture related, and the clinical symptoms are different between eastern and western patients. So the validity of feeding and eating disorders in the upcoming ICD-11 guide for Chinese patients is unclear. To explore the latent class structure of Chinese patients with eating disorder and the cross-cultural validity of the eating disorder section of the new ICD-11 guide in China. A total of 379 patients with eating disorders at Shanghai Mental Health Center were evaluated using the EDI questionnaire and a questionnaire developed by researchers from 2010 to 2016. SPSS 20.0 was used to enter data and analyze demographic data, and Latent GOLD was employed to conduct latent profile analysis. According to the results of latent profile analysis, patients with eating disorder were divided into five classes: low-weight fasting class (23.1%), non-fat-phobic binge/purge class (21.54%), low-fat-phobic binge class (19.27%), fat-phobic binge class (19.27%), and non-fat-phobic low-weight class (16.76%). Among the clinical symptoms extracted, there were significant differences in Body Mass Index (BMI), binge eating behavior, self-induced vomiting, laxative use and fat-phobic opinion; while there was no significant difference in restrictive food intake. Based on the clinical symptoms, there are five latent classes in Chinese patients with eating disorder, which is in accordance with the diagnostic categories of feeding and eating disorder in ICD-11. However, further work is needed in improving the fat-phobic opinion of patients with eating disorder and clarifying the BMI standard of thinness in the Chinese population.

  12. Latent transition models with latent class predictors: attention deficit hyperactivity disorder subtypes and high school marijuana use

    PubMed Central

    Reboussin, Beth A.; Ialongo, Nicholas S.

    2011-01-01

    Summary Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder which is most often diagnosed in childhood with symptoms often persisting into adulthood. Elevated rates of substance use disorders have been evidenced among those with ADHD, but recent research focusing on the relationship between subtypes of ADHD and specific drugs is inconsistent. We propose a latent transition model (LTM) to guide our understanding of how drug use progresses, in particular marijuana use, while accounting for the measurement error that is often found in self-reported substance use data. We extend the LTM to include a latent class predictor to represent empirically derived ADHD subtypes that do not rely on meeting specific diagnostic criteria. We begin by fitting two separate latent class analysis (LCA) models by using second-order estimating equations: a longitudinal LCA model to define stages of marijuana use, and a cross-sectional LCA model to define ADHD subtypes. The LTM model parameters describing the probability of transitioning between the LCA-defined stages of marijuana use and the influence of the LCA-defined ADHD subtypes on these transition rates are then estimated by using a set of first-order estimating equations given the LCA parameter estimates. A robust estimate of the LTM parameter variance that accounts for the variation due to the estimation of the two sets of LCA parameters is proposed. Solving three sets of estimating equations enables us to determine the underlying latent class structures independently of the model for the transition rates and simplifying assumptions about the correlation structure at each stage reduces the computational complexity. PMID:21461139

  13. High temperature sensor/microphone development for active noise control

    NASA Technical Reports Server (NTRS)

    Shrout, Thomas R.

    1993-01-01

    The industrial and scientific communities have shown genuine interest in electronic systems which can operate at high temperatures, among which are sensors to monitor noise, vibration, and acoustic emissions. Acoustic sensing can be accomplished by a wide variety of commercially available devices, including: simple piezoelectric sensors, accelerometers, strain gauges, proximity sensors, and fiber optics. Of the several sensing mechanisms investigated, piezoelectrics were found to be the most prevalent, because of their simplicity of design and application and, because of their high sensitivity over broad ranges of frequencies and temperature. Numerous piezoelectric materials are used in acoustic sensors today; but maximum use temperatures are imposed by their transition temperatures (T(sub c)) and by their resistivity. Lithium niobate, in single crystal form, has the highest operating temperature of any commercially available material, 650 C; but that is not high enough for future requirements. Only two piezoelectric materials show potential for use at 1000 C; AlN thin film reported to be piezoactive at 1150 C, and perovskite layer structure (PLS) materials, which possess among the highest T(sub c) (greater than 1500 C) reported for ferroelectrics. A ceramic PLS composition was chosen. The solid solution composition, 80% strontium niobate (SN) and 20% strontium tantalate (STa), with a T(sub c) approximately 1160 C, was hot forged, a process which concurrently sinters and renders the plate-like grains into a highly oriented configuration to enhance piezo properties. Poled samples of this composition showed coupling (k33) approximately 6 and piezoelectric strain constant (d33) approximately 3. Piezoactivity was seen at 1125 C, the highest temperature measurement reported for a ferroelectric ceramic. The high temperature piezoelectric responses of this, and similar PLS materials, opens the possibility of their use in electronic devices operating at temperatures up to 1000 C. Concurrent with the materials study was an effort to define issues involved in the development of a microphone capable of operation at temperatures up to 1000 C; important since microphones capable of operation above 260 C are not generally available. The distinguishing feature of a microphone is its diaphragm which receives sound from the atmosphere: whereas, most other acoustic sensors receive sound through the solid structure on which they are installed. In order to gain an understanding of the potential problems involved in designing and testing a high temperature microphone, a prototype was constructed using a commercially available lithium niobate piezoelectric element in a stainless steel structure. The prototype showed excellent frequency response at room temperature, and responded to acoustic stimulation at 670 C, above which temperature the voltage output rapidly diminished because of decreased resistivity in the element. Samples of the PLS material were also evaluated in a simulated microphone configuration, but their voltage output was found to be a few mV compared to the 10 output of the prototype.

  14. Portable Linear Sled (PLS) for biomedical research

    NASA Technical Reports Server (NTRS)

    Vallotton, Will; Matsuhiro, Dennis; Wynn, Tom; Temple, John

    1993-01-01

    The PLS is a portable linear motion generating device conceived by researchers at Ames Research Center's Vestibular Research Facility and designed by engineers at Ames for the study of motion sickness in space. It is an extremely smooth apparatus, powered by linear motors and suspended on air bearings which ride on precision ground ceramic ways.

  15. Determination of propranolol hydrochloride in pharmaceutical preparations using near infrared spectrometry with fiber optic probe and multivariate calibration methods.

    PubMed

    Marques Junior, Jucelino Medeiros; Muller, Aline Lima Hermes; Foletto, Edson Luiz; da Costa, Adilson Ben; Bizzi, Cezar Augusto; Irineu Muller, Edson

    2015-01-01

    A method for determination of propranolol hydrochloride in pharmaceutical preparation using near infrared spectrometry with fiber optic probe (FTNIR/PROBE) and combined with chemometric methods was developed. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). The treatments based on the mean centered data and multiplicative scatter correction (MSC) were selected for models construction. A root mean square error of prediction (RMSEP) of 8.2 mg g(-1) was achieved using siPLS (s2i20PLS) algorithm with spectra divided into 20 intervals and combination of 2 intervals (8501 to 8801 and 5201 to 5501 cm(-1)). Results obtained by the proposed method were compared with those using the pharmacopoeia reference method and significant difference was not observed. Therefore, proposed method allowed a fast, precise, and accurate determination of propranolol hydrochloride in pharmaceutical preparations. Furthermore, it is possible to carry out on-line analysis of this active principle in pharmaceutical formulations with use of fiber optic probe.

  16. Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions.

    PubMed

    Thap, Tharoeun; Yoon, Kwon-Ha; Lee, Jinseok

    2016-04-15

    We proposed new electrodes that are applicable for electrocardiogram (ECG) monitoring under freshwater- and saltwater-immersion conditions. Our proposed electrodes are made of graphite pencil lead (GPL), a general-purpose writing pencil. We have fabricated two types of electrode: a pencil lead solid type (PLS) electrode and a pencil lead powder type (PLP) electrode. In order to assess the qualities of the PLS and PLP electrodes, we compared their performance with that of a commercial Ag/AgCl electrode, under a total of seven different conditions: dry, freshwater immersion with/without movement, post-freshwater wet condition, saltwater immersion with/without movement, and post-saltwater wet condition. In both dry and post-freshwater wet conditions, all ECG-recorded PQRST waves were clearly discernible, with all types of electrodes, Ag/AgCl, PLS, and PLP. On the other hand, under the freshwater- and saltwater-immersion conditions with/without movement, as well as post-saltwater wet conditions, we found that the proposed PLS and PLP electrodes provided better ECG waveform quality, with significant statistical differences compared with the quality provided by Ag/AgCl electrodes.

  17. Near-infrared reflectance spectroscopy predicts protein, starch, and seed weight in intact seeds of common bean ( Phaseolus vulgaris L.).

    PubMed

    Hacisalihoglu, Gokhan; Larbi, Bismark; Settles, A Mark

    2010-01-27

    The objective of this study was to explore the potential of near-infrared reflectance (NIR) spectroscopy to determine individual seed composition in common bean ( Phaseolus vulgaris L.). NIR spectra and analytical measurements of seed weight, protein, and starch were collected from 267 individual bean seeds representing 91 diverse genotypes. Partial least-squares (PLS) regression models were developed with 61 bean accessions randomly assigned to a calibration data set and 30 accessions assigned to an external validation set. Protein gave the most accurate PLS regression, with the external validation set having a standard error of prediction (SEP) = 1.6%. PLS regressions for seed weight and starch had sufficient accuracy for seed sorting applications, with SEP = 41.2 mg and 4.9%, respectively. Seed color had a clear effect on the NIR spectra, with black beans having a distinct spectral type. Seed coat color did not impact the accuracy of PLS predictions. This research demonstrates that NIR is a promising technique for simultaneous sorting of multiple seed traits in single bean seeds with no sample preparation.

  18. Partial least squares density modeling (PLS-DM) - a new class-modeling strategy applied to the authentication of olives in brine by near-infrared spectroscopy.

    PubMed

    Oliveri, Paolo; López, M Isabel; Casolino, M Chiara; Ruisánchez, Itziar; Callao, M Pilar; Medini, Luca; Lanteri, Silvia

    2014-12-03

    A new class-modeling method, referred to as partial least squares density modeling (PLS-DM), is presented. The method is based on partial least squares (PLS), using a distance-based sample density measurement as the response variable. Potential function probability density is subsequently calculated on PLS scores and used, jointly with residual Q statistics, to develop efficient class models. The influence of adjustable model parameters on the resulting performances has been critically studied by means of cross-validation and application of the Pareto optimality criterion. The method has been applied to verify the authenticity of olives in brine from cultivar Taggiasca, based on near-infrared (NIR) spectra recorded on homogenized solid samples. Two independent test sets were used for model validation. The final optimal model was characterized by high efficiency and equilibrate balance between sensitivity and specificity values, if compared with those obtained by application of well-established class-modeling methods, such as soft independent modeling of class analogy (SIMCA) and unequal dispersed classes (UNEQ). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Prediction of olive oil sensory descriptors using instrumental data fusion and partial least squares (PLS) regression.

    PubMed

    Borràs, Eva; Ferré, Joan; Boqué, Ricard; Mestres, Montserrat; Aceña, Laura; Calvo, Angels; Busto, Olga

    2016-08-01

    Headspace-Mass Spectrometry (HS-MS), Fourier Transform Mid-Infrared spectroscopy (FT-MIR) and UV-Visible spectrophotometry (UV-vis) instrumental responses have been combined to predict virgin olive oil sensory descriptors. 343 olive oil samples analyzed during four consecutive harvests (2010-2014) were used to build multivariate calibration models using partial least squares (PLS) regression. The reference values of the sensory attributes were provided by expert assessors from an official taste panel. The instrumental data were modeled individually and also using data fusion approaches. The use of fused data with both low- and mid-level of abstraction improved PLS predictions for all the olive oil descriptors. The best PLS models were obtained for two positive attributes (fruity and bitter) and two defective descriptors (fusty and musty), all of them using data fusion of MS and MIR spectral fingerprints. Although good predictions were not obtained for some sensory descriptors, the results are encouraging, specially considering that the legal categorization of virgin olive oils only requires the determination of fruity and defective descriptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Nondestructive evaluation of soluble solid content in strawberry by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zhiming; Huang, Wenqian; Chen, Liping; Wang, Xiu; Peng, Yankun

    This paper indicates the feasibility to use near infrared (NIR) spectroscopy combined with synergy interval partial least squares (siPLS) algorithms as a rapid nondestructive method to estimate the soluble solid content (SSC) in strawberry. Spectral preprocessing methods were optimized selected by cross-validation in the model calibration. Partial least squares (PLS) algorithm was conducted on the calibration of regression model. The performance of the final model was back-evaluated according to root mean square error of calibration (RMSEC) and correlation coefficient (R2 c) in calibration set, and tested by mean square error of prediction (RMSEP) and correlation coefficient (R2 p) in prediction set. The optimal siPLS model was obtained with after first derivation spectra preprocessing. The measurement results of best model were achieved as follow: RMSEC = 0.2259, R2 c = 0.9590 in the calibration set; and RMSEP = 0.2892, R2 p = 0.9390 in the prediction set. This work demonstrated that NIR spectroscopy and siPLS with efficient spectral preprocessing is a useful tool for nondestructively evaluation SSC in strawberry.

Top