Sample records for latent variable regression

  1. Bayesian Adaptive Lasso for Ordinal Regression with Latent Variables

    ERIC Educational Resources Information Center

    Feng, Xiang-Nan; Wu, Hao-Tian; Song, Xin-Yuan

    2017-01-01

    We consider an ordinal regression model with latent variables to investigate the effects of observable and latent explanatory variables on the ordinal responses of interest. Each latent variable is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a Bayesian adaptive lasso procedure to conduct…

  2. Avoiding and Correcting Bias in Score-Based Latent Variable Regression with Discrete Manifest Items

    ERIC Educational Resources Information Center

    Lu, Irene R. R.; Thomas, D. Roland

    2008-01-01

    This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…

  3. Stochastic Approximation Methods for Latent Regression Item Response Models

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2010-01-01

    This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…

  4. Stochastic Approximation Methods for Latent Regression Item Response Models. Research Report. ETS RR-09-09

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2009-01-01

    This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the…

  5. A Bayesian Semiparametric Latent Variable Model for Mixed Responses

    ERIC Educational Resources Information Center

    Fahrmeir, Ludwig; Raach, Alexander

    2007-01-01

    In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…

  6. Regression mixture models: Does modeling the covariance between independent variables and latent classes improve the results?

    PubMed Central

    Lamont, Andrea E.; Vermunt, Jeroen K.; Van Horn, M. Lee

    2016-01-01

    Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we test the effects of violating an implicit assumption often made in these models – i.e., independent variables in the model are not directly related to latent classes. Results indicated that the major risk of failing to model the relationship between predictor and latent class was an increase in the probability of selecting additional latent classes and biased class proportions. Additionally, this study tests whether regression mixture models can detect a piecewise relationship between a predictor and outcome. Results suggest that these models are able to detect piecewise relations, but only when the relationship between the latent class and the predictor is included in model estimation. We illustrate the implications of making this assumption through a re-analysis of applied data examining heterogeneity in the effects of family resources on academic achievement. We compare previous results (which assumed no relation between independent variables and latent class) to the model where this assumption is lifted. Implications and analytic suggestions for conducting regression mixture based on these findings are noted. PMID:26881956

  7. On the Asymptotic Relative Efficiency of Planned Missingness Designs.

    PubMed

    Rhemtulla, Mijke; Savalei, Victoria; Little, Todd D

    2016-03-01

    In planned missingness (PM) designs, certain data are set a priori to be missing. PM designs can increase validity and reduce cost; however, little is known about the loss of efficiency that accompanies these designs. The present paper compares PM designs to reduced sample (RN) designs that have the same total number of data points concentrated in fewer participants. In 4 studies, we consider models for both observed and latent variables, designs that do or do not include an "X set" of variables with complete data, and a full range of between- and within-set correlation values. All results are obtained using asymptotic relative efficiency formulas, and thus no data are generated; this novel approach allows us to examine whether PM designs have theoretical advantages over RN designs removing the impact of sampling error. Our primary findings are that (a) in manifest variable regression models, estimates of regression coefficients have much lower relative efficiency in PM designs as compared to RN designs, (b) relative efficiency of factor correlation or latent regression coefficient estimates is maximized when the indicators of each latent variable come from different sets, and (c) the addition of an X set improves efficiency in manifest variable regression models only for the parameters that directly involve the X-set variables, but it substantially improves efficiency of most parameters in latent variable models. We conclude that PM designs can be beneficial when the model of interest is a latent variable model; recommendations are made for how to optimize such a design.

  8. A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen

    2012-01-01

    Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…

  9. The Effect of Latent Binary Variables on the Uncertainty of the Prediction of a Dichotomous Outcome Using Logistic Regression Based Propensity Score Matching.

    PubMed

    Szekér, Szabolcs; Vathy-Fogarassy, Ágnes

    2018-01-01

    Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.

  10. Latent Variable Regression 4-Level Hierarchical Model Using Multisite Multiple-Cohorts Longitudinal Data. CRESST Report 801

    ERIC Educational Resources Information Center

    Choi, Kilchan

    2011-01-01

    This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…

  11. Correcting Measurement Error in Latent Regression Covariates via the MC-SIMEX Method

    ERIC Educational Resources Information Center

    Rutkowski, Leslie; Zhou, Yan

    2015-01-01

    Given the importance of large-scale assessments to educational policy conversations, it is critical that subpopulation achievement is estimated reliably and with sufficient precision. Despite this importance, biased subpopulation estimates have been found to occur when variables in the conditioning model side of a latent regression model contain…

  12. Visualizing Confidence Bands for Semiparametrically Estimated Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Chalmers, R. Philip; Kok, Bethany E.; Losardo, Diane

    2015-01-01

    Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural…

  13. Causal Models with Unmeasured Variables: An Introduction to LISREL.

    ERIC Educational Resources Information Center

    Wolfle, Lee M.

    Whenever one uses ordinary least squares regression, one is making an implicit assumption that all of the independent variables have been measured without error. Such an assumption is obviously unrealistic for most social data. One approach for estimating such regression models is to measure implied coefficients between latent variables for which…

  14. The consequences of ignoring measurement invariance for path coefficients in structural equation models

    PubMed Central

    Guenole, Nigel; Brown, Anna

    2014-01-01

    We report a Monte Carlo study examining the effects of two strategies for handling measurement non-invariance – modeling and ignoring non-invariant items – on structural regression coefficients between latent variables measured with item response theory models for categorical indicators. These strategies were examined across four levels and three types of non-invariance – non-invariant loadings, non-invariant thresholds, and combined non-invariance on loadings and thresholds – in simple, partial, mediated and moderated regression models where the non-invariant latent variable occupied predictor, mediator, and criterion positions in the structural regression models. When non-invariance is ignored in the latent predictor, the focal group regression parameters are biased in the opposite direction to the difference in loadings and thresholds relative to the referent group (i.e., lower loadings and thresholds for the focal group lead to overestimated regression parameters). With criterion non-invariance, the focal group regression parameters are biased in the same direction as the difference in loadings and thresholds relative to the referent group. While unacceptable levels of parameter bias were confined to the focal group, bias occurred at considerably lower levels of ignored non-invariance than was previously recognized in referent and focal groups. PMID:25278911

  15. A Latent-Variable Causal Model of Faculty Reputational Ratings.

    ERIC Educational Resources Information Center

    King, Suzanne; Wolfle, Lee M.

    A reanalysis was conducted of Saunier's research (1985) on sources of variation in the National Research Council (NRC) reputational ratings of university faculty. Saunier conducted a stepwise regression analysis using 12 predictor variables. Due to problems with multicollinearity and because of the atheoretical nature of stepwise regression,…

  16. Effects of categorization method, regression type, and variable distribution on the inflation of Type-I error rate when categorizing a confounding variable.

    PubMed

    Barnwell-Ménard, Jean-Louis; Li, Qing; Cohen, Alan A

    2015-03-15

    The loss of signal associated with categorizing a continuous variable is well known, and previous studies have demonstrated that this can lead to an inflation of Type-I error when the categorized variable is a confounder in a regression analysis estimating the effect of an exposure on an outcome. However, it is not known how the Type-I error may vary under different circumstances, including logistic versus linear regression, different distributions of the confounder, and different categorization methods. Here, we analytically quantified the effect of categorization and then performed a series of 9600 Monte Carlo simulations to estimate the Type-I error inflation associated with categorization of a confounder under different regression scenarios. We show that Type-I error is unacceptably high (>10% in most scenarios and often 100%). The only exception was when the variable categorized was a continuous mixture proxy for a genuinely dichotomous latent variable, where both the continuous proxy and the categorized variable are error-ridden proxies for the dichotomous latent variable. As expected, error inflation was also higher with larger sample size, fewer categories, and stronger associations between the confounder and the exposure or outcome. We provide online tools that can help researchers estimate the potential error inflation and understand how serious a problem this is. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Estimating Causal Effects with Ancestral Graph Markov Models

    PubMed Central

    Malinsky, Daniel; Spirtes, Peter

    2017-01-01

    We present an algorithm for estimating bounds on causal effects from observational data which combines graphical model search with simple linear regression. We assume that the underlying system can be represented by a linear structural equation model with no feedback, and we allow for the possibility of latent variables. Under assumptions standard in the causal search literature, we use conditional independence constraints to search for an equivalence class of ancestral graphs. Then, for each model in the equivalence class, we perform the appropriate regression (using causal structure information to determine which covariates to include in the regression) to estimate a set of possible causal effects. Our approach is based on the “IDA” procedure of Maathuis et al. (2009), which assumes that all relevant variables have been measured (i.e., no unmeasured confounders). We generalize their work by relaxing this assumption, which is often violated in applied contexts. We validate the performance of our algorithm on simulated data and demonstrate improved precision over IDA when latent variables are present. PMID:28217244

  18. Using the Graded Response Model to Control Spurious Interactions in Moderated Multiple Regression

    ERIC Educational Resources Information Center

    Morse, Brendan J.; Johanson, George A.; Griffeth, Rodger W.

    2012-01-01

    Recent simulation research has demonstrated that using simple raw score to operationalize a latent construct can result in inflated Type I error rates for the interaction term of a moderated statistical model when the interaction (or lack thereof) is proposed at the latent variable level. Rescaling the scores using an appropriate item response…

  19. Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.

    ERIC Educational Resources Information Center

    Olson, Jeffery E.

    Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…

  20. The Relationship Between Executive Functions and Language Abilities in Children: A Latent Variables Approach

    PubMed Central

    Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M.; Weismer, Susan Ellis

    2017-01-01

    Purpose We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Method Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF components, inhibition, updating, and task-shifting, were each indexed using 2 nonverbal tasks. A latent variables approach was used to extract latent scores that represented each EF construct. Children were also administered common standardized language measures. Multiple regression analyses were conducted to examine the relationship between EF and language skills. Results Nonverbal updating was associated with the Receptive Language Index on the Clinical Evaluation of Language Fundamentals–Fourth Edition (CELF-4). When composites denoting lexical–semantic and syntactic abilities were derived, nonverbal inhibition (but not shifting or updating) was found to predict children's syntactic abilities. These relationships held when the effects of age, IQ, and socioeconomic status were controlled. Conclusions The study makes a methodological contribution by explicating a method by which researchers can use the latent variables approach when measuring EF performance in school-age children. The study makes a theoretical and a clinical contribution by suggesting that language performance may be related to domain-general EFs. PMID:28306755

  1. The Relationship Between Executive Functions and Language Abilities in Children: A Latent Variables Approach.

    PubMed

    Kaushanskaya, Margarita; Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M; Weismer, Susan Ellis

    2017-04-14

    We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF components, inhibition, updating, and task-shifting, were each indexed using 2 nonverbal tasks. A latent variables approach was used to extract latent scores that represented each EF construct. Children were also administered common standardized language measures. Multiple regression analyses were conducted to examine the relationship between EF and language skills. Nonverbal updating was associated with the Receptive Language Index on the Clinical Evaluation of Language Fundamentals-Fourth Edition (CELF-4). When composites denoting lexical-semantic and syntactic abilities were derived, nonverbal inhibition (but not shifting or updating) was found to predict children's syntactic abilities. These relationships held when the effects of age, IQ, and socioeconomic status were controlled. The study makes a methodological contribution by explicating a method by which researchers can use the latent variables approach when measuring EF performance in school-age children. The study makes a theoretical and a clinical contribution by suggesting that language performance may be related to domain-general EFs.

  2. A Spline Regression Model for Latent Variables

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.

    2014-01-01

    Spline (or piecewise) regression models have been used in the past to account for patterns in observed data that exhibit distinct phases. The changepoint or knot marking the shift from one phase to the other, in many applications, is an unknown parameter to be estimated. As an extension of this framework, this research considers modeling the…

  3. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Latent Variable Regression in a Three-Level Hierarchical Model. CSE Report 647

    ERIC Educational Resources Information Center

    Choi, Kilchan; Seltzer, Michael

    2005-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a time period of substantive interest relate to differences in subsequent change. This report presents a fully Bayesian approach to estimating three-level hierarchical models in which latent variable…

  4. The use of cognitive ability measures as explanatory variables in regression analysis.

    PubMed

    Junker, Brian; Schofield, Lynne Steuerle; Taylor, Lowell J

    2012-12-01

    Cognitive ability measures are often taken as explanatory variables in regression analysis, e.g., as a factor affecting a market outcome such as an individual's wage, or a decision such as an individual's education acquisition. Cognitive ability is a latent construct; its true value is unobserved. Nonetheless, researchers often assume that a test score , constructed via standard psychometric practice from individuals' responses to test items, can be safely used in regression analysis. We examine problems that can arise, and suggest that an alternative approach, a "mixed effects structural equations" (MESE) model, may be more appropriate in many circumstances.

  5. The intermediate endpoint effect in logistic and probit regression

    PubMed Central

    MacKinnon, DP; Lockwood, CM; Brown, CH; Wang, W; Hoffman, JM

    2010-01-01

    Background An intermediate endpoint is hypothesized to be in the middle of the causal sequence relating an independent variable to a dependent variable. The intermediate variable is also called a surrogate or mediating variable and the corresponding effect is called the mediated, surrogate endpoint, or intermediate endpoint effect. Clinical studies are often designed to change an intermediate or surrogate endpoint and through this intermediate change influence the ultimate endpoint. In many intermediate endpoint clinical studies the dependent variable is binary, and logistic or probit regression is used. Purpose The purpose of this study is to describe a limitation of a widely used approach to assessing intermediate endpoint effects and to propose an alternative method, based on products of coefficients, that yields more accurate results. Methods The intermediate endpoint model for a binary outcome is described for a true binary outcome and for a dichotomization of a latent continuous outcome. Plots of true values and a simulation study are used to evaluate the different methods. Results Distorted estimates of the intermediate endpoint effect and incorrect conclusions can result from the application of widely used methods to assess the intermediate endpoint effect. The same problem occurs for the proportion of an effect explained by an intermediate endpoint, which has been suggested as a useful measure for identifying intermediate endpoints. A solution to this problem is given based on the relationship between latent variable modeling and logistic or probit regression. Limitations More complicated intermediate variable models are not addressed in the study, although the methods described in the article can be extended to these more complicated models. Conclusions Researchers are encouraged to use an intermediate endpoint method based on the product of regression coefficients. A common method based on difference in coefficient methods can lead to distorted conclusions regarding the intermediate effect. PMID:17942466

  6. Estimators for longitudinal latent exposure models: examining measurement model assumptions.

    PubMed

    Sánchez, Brisa N; Kim, Sehee; Sammel, Mary D

    2017-06-15

    Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can accommodate a variety of assumptions but, at the same time, present the user with many choices for model specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental development, where assumptions of the measurement model for the time-changing longitudinal exposure have appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV structure on the repeated multivariate exposure measures could result in high efficiency gains for the exposure-disease association. We examine the biases of maximum likelihood estimators when assumptions about the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estimators to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a time-changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. A multilevel model for comorbid outcomes: obesity and diabetes in the US.

    PubMed

    Congdon, Peter

    2010-02-01

    Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk.

  8. The use of cognitive ability measures as explanatory variables in regression analysis

    PubMed Central

    Junker, Brian; Schofield, Lynne Steuerle; Taylor, Lowell J

    2015-01-01

    Cognitive ability measures are often taken as explanatory variables in regression analysis, e.g., as a factor affecting a market outcome such as an individual’s wage, or a decision such as an individual’s education acquisition. Cognitive ability is a latent construct; its true value is unobserved. Nonetheless, researchers often assume that a test score, constructed via standard psychometric practice from individuals’ responses to test items, can be safely used in regression analysis. We examine problems that can arise, and suggest that an alternative approach, a “mixed effects structural equations” (MESE) model, may be more appropriate in many circumstances. PMID:26998417

  9. Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies

    NASA Astrophysics Data System (ADS)

    Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu

    2015-09-01

    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.

  10. Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions.

    PubMed

    Drouard, Vincent; Horaud, Radu; Deleforge, Antoine; Ba, Sileye; Evangelidis, Georgios

    2017-03-01

    Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging, because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose to use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available data sets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.

  11. A Multilevel Model for Comorbid Outcomes: Obesity and Diabetes in the US

    PubMed Central

    Congdon, Peter

    2010-01-01

    Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk. PMID:20616977

  12. Interaction between Helicobacter pylori and latent toxoplasmosis and demographic variables on cognitive function in young to middle-aged adults.

    PubMed

    Gale, Shawn D; Erickson, Lance D; Brown, Bruce L; Hedges, Dawson W

    2015-01-01

    Helicobacter pylori and latent toxoplasmosis are widespread diseases that have been associated with cognitive deficits and Alzheimer's disease. We sought to determine whether interactions between Helicobacter pylori and latent toxoplasmosis, age, race-ethnicity, educational attainment, economic status, and general health predict cognitive function in young and middle-aged adults. To do so, we used multivariable regression and multivariate models to analyze data obtained from the United States' National Health and Nutrition Examination Survey from the Centers for Disease Control and Prevention, which can be weighted to represent the US population. In this sample, we found that 31.6 percent of women and 36.2 percent of men of the overall sample had IgG Antibodies against Helicobacter pylori, although the seroprevalence of Helicobacter pylori varied with sociodemographic variables. There were no main effects for Helicobacter pylori or latent toxoplasmosis for any of the cognitive measures in models adjusting for age, sex, race-ethnicity, educational attainment, economic standing, and self-rated health predicting cognitive function. However, interactions between Helicobacter pylori and race-ethnicity, educational attainment, latent toxoplasmosis in the fully adjusted models predicted cognitive function. People seropositive for both Helicobacter pylori and latent toxoplasmosis - both of which appear to be common in the general population - appear to be more susceptible to cognitive deficits than are people seropositive for either Helicobacter pylori and or latent toxoplasmosis alone, suggesting a synergistic effect between these two infectious diseases on cognition in young to middle-aged adults.

  13. Association between latent toxoplasmosis and cognition in adults: a cross-sectional study.

    PubMed

    Gale, S D; Brown, B L; Erickson, L D; Berrett, A; Hedges, D W

    2015-04-01

    Latent infection from Toxoplasma gondii (T. gondii) is widespread worldwide and has been associated with cognitive deficits in some but not all animal models and in humans. We tested the hypothesis that latent toxoplasmosis is associated with decreased cognitive function in a large cross-sectional dataset, the National Health and Nutrition Examination Survey (NHANES). There were 4178 participants aged 20-59 years, of whom 19.1% had IgG antibodies against T. gondii. Two ordinary least squares (OLS) regression models adjusted for the NHANES complex sampling design and weighted to represent the US population were estimated for simple reaction time, processing speed and short-term memory or attention. The first model included only main effects of latent toxoplasmosis and demographic control variables, and the second added interaction terms between latent toxoplasmosis and the poverty-to-income ratio (PIR), educational attainment and race-ethnicity. We also used multivariate models to assess all three cognitive outcomes in the same model. Although the models evaluating main effects only demonstrated no association between latent toxoplasmosis and the cognitive outcomes, significant interactions between latent toxoplasmosis and the PIR, between latent toxoplasmosis and educational attainment, and between latent toxoplasmosis and race-ethnicity indicated that latent toxoplasmosis may adversely affect cognitive function in certain groups.

  14. On Direction of Dependence in Latent Variable Contexts

    ERIC Educational Resources Information Center

    von Eye, Alexander; Wiedermann, Wolfgang

    2014-01-01

    Approaches to determining direction of dependence in nonexperimental data are based on the relation between higher-than second-order moments on one side and correlation and regression models on the other. These approaches have experienced rapid development and are being applied in contexts such as research on partner violence, attention deficit…

  15. Finding vulnerable subpopulations in the Seychelles Child Development Study: effect modification with latent groups.

    PubMed

    Love, Tanzy Mt; Thurston, Sally W; Davidson, Philip W

    2017-04-01

    The Seychelles Child Development Study is a research project with the objective of examining associations between prenatal exposure to low doses of methylmercury from maternal fish consumption and children's developmental outcomes. Whether methylmercury has neurotoxic effects at low doses remains unclear and recommendations for pregnant women and children to reduce fish intake may prevent a substantial number of people from receiving sufficient nutrients that are abundant in fish. The primary findings of the Seychelles Child Development Study are inconsistent with adverse associations between methylmercury from fish consumption and neurodevelopmental outcomes. However, whether there are subpopulations of children who are particularly sensitive to this diet is an open question. Secondary analysis from this study found significant interactions between prenatal methylmercury levels and both caregiver IQ and income on 19-month IQ. These results are sensitive to the categories chosen for these covariates and are difficult to interpret collectively. In this paper, we estimate effect modification of the association between prenatal methylmercury exposure and 19-month IQ using a general formulation of mixture regression. Our mixture regression model creates a latent categorical group membership variable which interacts with methylmercury in predicting the outcome. We also fit the same outcome model when in addition the latent variable is assumed to be a parametric function of three distinct socioeconomic measures. Bayesian methods allow group membership and the regression coefficients to be estimated simultaneously and our approach yields a principled choice of the number of distinct subpopulations. The results show three groups with different response patterns between prenatal methylmercury exposure and 19-month IQ in this population.

  16. The extraction of simple relationships in growth factor-specific multiple-input and multiple-output systems in cell-fate decisions by backward elimination PLS regression.

    PubMed

    Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya

    2013-01-01

    Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.

  17. Examining the DSM-5 Section III Criteria for Obsessive-Compulsive Personality Disorder in a Community Sample.

    PubMed

    Liggett, Jacqueline; Sellbom, Martin; Carmichael, Kieran L C

    2017-12-01

    The current study examined the extent to which the trait-based operationalization of obsessive-compulsive personality disorder (OCPD) in Section III of the DSM-5 describes the same construct as the one described in Section II. A community sample of 313 adults completed a series of personality inventories indexing the DSM-5 Sections II and III diagnostic criteria for OCPD, in addition to a measure of functional impairment modelled after the criteria in Section III. Results indicated that latent constructs representing Section II and Section III OCPD overlapped substantially (r = .75, p < .001). Hierarchical latent regression models revealed that at least three of the four DSM-5 Section III facets (Rigid Perfectionism, Perseveration, and Intimacy Avoidance) uniquely accounted for a large proportion of variance (53%) in a latent Section II OCPD variable. Further, Anxiousness and (low) Impulsivity, as well as self and interpersonal impairment, augmented the prediction of latent OCPD scores.

  18. On the explaining-away phenomenon in multivariate latent variable models.

    PubMed

    van Rijn, Peter; Rijmen, Frank

    2015-02-01

    Many probabilistic models for psychological and educational measurements contain latent variables. Well-known examples are factor analysis, item response theory, and latent class model families. We discuss what is referred to as the 'explaining-away' phenomenon in the context of such latent variable models. This phenomenon can occur when multiple latent variables are related to the same observed variable, and can elicit seemingly counterintuitive conditional dependencies between latent variables given observed variables. We illustrate the implications of explaining away for a number of well-known latent variable models by using both theoretical and real data examples. © 2014 The British Psychological Society.

  19. Interaction between Helicobacter pylori and Latent Toxoplasmosis and Demographic Variables on Cognitive Function in Young to Middle-Aged Adults

    PubMed Central

    Gale, Shawn D.; Erickson, Lance D.; Brown, Bruce L.; Hedges, Dawson W.

    2015-01-01

    Helicobacter pylori and latent toxoplasmosis are widespread diseases that have been associated with cognitive deficits and Alzheimer’s disease. We sought to determine whether interactions between Helicobacter pylori and latent toxoplasmosis, age, race-ethnicity, educational attainment, economic status, and general health predict cognitive function in young and middle-aged adults. To do so, we used multivariable regression and multivariate models to analyze data obtained from the United States’ National Health and Nutrition Examination Survey from the Centers for Disease Control and Prevention, which can be weighted to represent the US population. In this sample, we found that 31.6 percent of women and 36.2 percent of men of the overall sample had IgG Antibodies against Helicobacter pylori, although the seroprevalence of Helicobacter pylori varied with sociodemographic variables. There were no main effects for Helicobacter pylori or latent toxoplasmosis for any of the cognitive measures in models adjusting for age, sex, race-ethnicity, educational attainment, economic standing, and self-rated health predicting cognitive function. However, interactions between Helicobacter pylori and race-ethnicity, educational attainment, latent toxoplasmosis in the fully adjusted models predicted cognitive function. People seropositive for both Helicobacter pylori and latent toxoplasmosis – both of which appear to be common in the general population – appear to be more susceptible to cognitive deficits than are people seropositive for either Helicobacter pylori and or latent toxoplasmosis alone, suggesting a synergistic effect between these two infectious diseases on cognition in young to middle-aged adults. PMID:25590622

  20. School Climate: The Controllable and the Uncontrollable

    ERIC Educational Resources Information Center

    Sulak, Tracey N.

    2018-01-01

    A positive school climate impacts students by promoting positive relations among students, staff and faculty of the school. The current study used latent class analysis and multinomial regression with R3STEP to analyse patterns of negative behaviours in schools and test the association of these patterns with structural variables like school size,…

  1. Estimating Interaction Effects With Incomplete Predictor Variables

    PubMed Central

    Enders, Craig K.; Baraldi, Amanda N.; Cham, Heining

    2014-01-01

    The existing missing data literature does not provide a clear prescription for estimating interaction effects with missing data, particularly when the interaction involves a pair of continuous variables. In this article, we describe maximum likelihood and multiple imputation procedures for this common analysis problem. We outline 3 latent variable model specifications for interaction analyses with missing data. These models apply procedures from the latent variable interaction literature to analyses with a single indicator per construct (e.g., a regression analysis with scale scores). We also discuss multiple imputation for interaction effects, emphasizing an approach that applies standard imputation procedures to the product of 2 raw score predictors. We thoroughly describe the process of probing interaction effects with maximum likelihood and multiple imputation. For both missing data handling techniques, we outline centering and transformation strategies that researchers can implement in popular software packages, and we use a series of real data analyses to illustrate these methods. Finally, we use computer simulations to evaluate the performance of the proposed techniques. PMID:24707955

  2. Estimating and Interpreting Latent Variable Interactions: A Tutorial for Applying the Latent Moderated Structural Equations Method

    ERIC Educational Resources Information Center

    Maslowsky, Julie; Jager, Justin; Hemken, Douglas

    2015-01-01

    Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…

  3. Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level

    ERIC Educational Resources Information Center

    Savalei, Victoria; Rhemtulla, Mijke

    2017-01-01

    In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately…

  4. Individual Differences in Toddlers' Prosociality: Experiences in Early Relationships Explain Variability in Prosocial Behavior

    ERIC Educational Resources Information Center

    Newton, Emily K.; Thompson, Ross A.; Goodman, Miranda

    2016-01-01

    Latent class logistic regression analysis was used to investigate sources of individual differences in profiles of prosocial behavior. Eighty-seven 18-month-olds were observed in tasks assessing sharing with a neutral adult, instrumentally helping a neutral adult, and instrumentally helping a sad adult. Maternal mental state language (MSL) and…

  5. Uncovering state-dependent relationships in shallow lakes using Bayesian latent variable regression.

    PubMed

    Vitense, Kelsey; Hanson, Mark A; Herwig, Brian R; Zimmer, Kyle D; Fieberg, John

    2018-03-01

    Ecosystems sometimes undergo dramatic shifts between contrasting regimes. Shallow lakes, for instance, can transition between two alternative stable states: a clear state dominated by submerged aquatic vegetation and a turbid state dominated by phytoplankton. Theoretical models suggest that critical nutrient thresholds differentiate three lake types: highly resilient clear lakes, lakes that may switch between clear and turbid states following perturbations, and highly resilient turbid lakes. For effective and efficient management of shallow lakes and other systems, managers need tools to identify critical thresholds and state-dependent relationships between driving variables and key system features. Using shallow lakes as a model system for which alternative stable states have been demonstrated, we developed an integrated framework using Bayesian latent variable regression (BLR) to classify lake states, identify critical total phosphorus (TP) thresholds, and estimate steady state relationships between TP and chlorophyll a (chl a) using cross-sectional data. We evaluated the method using data simulated from a stochastic differential equation model and compared its performance to k-means clustering with regression (KMR). We also applied the framework to data comprising 130 shallow lakes. For simulated data sets, BLR had high state classification rates (median/mean accuracy >97%) and accurately estimated TP thresholds and state-dependent TP-chl a relationships. Classification and estimation improved with increasing sample size and decreasing noise levels. Compared to KMR, BLR had higher classification rates and better approximated the TP-chl a steady state relationships and TP thresholds. We fit the BLR model to three different years of empirical shallow lake data, and managers can use the estimated bifurcation diagrams to prioritize lakes for management according to their proximity to thresholds and chance of successful rehabilitation. Our model improves upon previous methods for shallow lakes because it allows classification and regression to occur simultaneously and inform one another, directly estimates TP thresholds and the uncertainty associated with thresholds and state classifications, and enables meaningful constraints to be built into models. The BLR framework is broadly applicable to other ecosystems known to exhibit alternative stable states in which regression can be used to establish relationships between driving variables and state variables. © 2017 by the Ecological Society of America.

  6. Bayesian Semiparametric Structural Equation Models with Latent Variables

    ERIC Educational Resources Information Center

    Yang, Mingan; Dunson, David B.

    2010-01-01

    Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…

  7. Bayesian Estimation of Multivariate Latent Regression Models: Gauss versus Laplace

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew; Park, Trevor

    2017-01-01

    A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…

  8. Application of Fourier transform infrared spectroscopy and orthogonal projections to latent structures/partial least squares regression for estimation of procyanidins average degree of polymerisation.

    PubMed

    Passos, Cláudia P; Cardoso, Susana M; Barros, António S; Silva, Carlos M; Coimbra, Manuel A

    2010-02-28

    Fourier transform infrared (FTIR) spectroscopy has being emphasised as a widespread technique in the quick assess of food components. In this work, procyanidins were extracted with methanol and acetone/water from the seeds of white and red grape varieties. A fractionation by graded methanol/chloroform precipitations allowed to obtain 26 samples that were characterised using thiolysis as pre-treatment followed by HPLC-UV and MS detection. The average degree of polymerisation (DPn) of the procyanidins in the samples ranged from 2 to 11 flavan-3-ol residues. FTIR spectroscopy within the wavenumbers region of 1800-700 cm(-1) allowed to build a partial least squares (PLS1) regression model with 8 latent variables (LVs) for the estimation of the DPn, giving a RMSECV of 11.7%, with a R(2) of 0.91 and a RMSEP of 2.58. The application of orthogonal projection to latent structures (O-PLS1) clarifies the interpretation of the regression model vectors. Moreover, the O-PLS procedure has removed 88% of non-correlated variations with the DPn, allowing to relate the increase of the absorbance peaks at 1203 and 1099 cm(-1) with the increase of the DPn due to the higher proportion of substitutions in the aromatic ring of the polymerised procyanidin molecules. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Revisiting the Impact of NCLB High-Stakes School Accountability, Capacity, and Resources: State NAEP 1990-2009 Reading and Math Achievement Gaps and Trends

    ERIC Educational Resources Information Center

    Lee, Jaekyung; Reeves, Todd

    2012-01-01

    This study examines the impact of high-stakes school accountability, capacity, and resources under NCLB on reading and math achievement outcomes through comparative interrupted time-series analyses of 1990-2009 NAEP state assessment data. Through hierarchical linear modeling latent variable regression with inverse probability of treatment…

  10. Model Selection and Psychological Theory: A Discussion of the Differences between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)

    ERIC Educational Resources Information Center

    Vrieze, Scott I.

    2012-01-01

    This article reviews the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) in model selection and the appraisal of psychological theory. The focus is on latent variable models, given their growing use in theory testing and construction. Theoretical statistical results in regression are discussed, and more important…

  11. A Latent Class Regression Analysis of Men's Conformity to Masculine Norms and Psychological Distress

    ERIC Educational Resources Information Center

    Wong, Y. Joel; Owen, Jesse; Shea, Munyi

    2012-01-01

    How are specific dimensions of masculinity related to psychological distress in specific groups of men? To address this question, the authors used latent class regression to assess the optimal number of latent classes that explained differential relationships between conformity to masculine norms and psychological distress in a racially diverse…

  12. Accounting for standard errors of vision-specific latent trait in regression models.

    PubMed

    Wong, Wan Ling; Li, Xiang; Li, Jialiang; Wong, Tien Yin; Cheng, Ching-Yu; Lamoureux, Ecosse L

    2014-07-11

    To demonstrate the effectiveness of Hierarchical Bayesian (HB) approach in a modeling framework for association effects that accounts for SEs of vision-specific latent traits assessed using Rasch analysis. A systematic literature review was conducted in four major ophthalmic journals to evaluate Rasch analysis performed on vision-specific instruments. The HB approach was used to synthesize the Rasch model and multiple linear regression model for the assessment of the association effects related to vision-specific latent traits. The effectiveness of this novel HB one-stage "joint-analysis" approach allows all model parameters to be estimated simultaneously and was compared with the frequently used two-stage "separate-analysis" approach in our simulation study (Rasch analysis followed by traditional statistical analyses without adjustment for SE of latent trait). Sixty-six reviewed articles performed evaluation and validation of vision-specific instruments using Rasch analysis, and 86.4% (n = 57) performed further statistical analyses on the Rasch-scaled data using traditional statistical methods; none took into consideration SEs of the estimated Rasch-scaled scores. The two models on real data differed for effect size estimations and the identification of "independent risk factors." Simulation results showed that our proposed HB one-stage "joint-analysis" approach produces greater accuracy (average of 5-fold decrease in bias) with comparable power and precision in estimation of associations when compared with the frequently used two-stage "separate-analysis" procedure despite accounting for greater uncertainty due to the latent trait. Patient-reported data, using Rasch analysis techniques, do not take into account the SE of latent trait in association analyses. The HB one-stage "joint-analysis" is a better approach, producing accurate effect size estimations and information about the independent association of exposure variables with vision-specific latent traits. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  13. A Latent Transition Model with Logistic Regression

    ERIC Educational Resources Information Center

    Chung, Hwan; Walls, Theodore A.; Park, Yousung

    2007-01-01

    Latent transition models increasingly include covariates that predict prevalence of latent classes at a given time or transition rates among classes over time. In many situations, the covariate of interest may be latent. This paper describes an approach for handling both manifest and latent covariates in a latent transition model. A Bayesian…

  14. Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables

    ERIC Educational Resources Information Center

    Henson, Robert A.; Templin, Jonathan L.; Willse, John T.

    2009-01-01

    This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…

  15. Prevalence and risk factors for latent tuberculosis infection among healthcare workers in Nampula Central Hospital, Mozambique.

    PubMed

    Belo, Celso; Naidoo, Saloshni

    2017-06-08

    Healthcare workers in high tuberculosis burdened countries are occupationally exposed to the tuberculosis disease with uncomplicated and complicated tuberculosis on the increase among them. Most of them acquire Mycobacterium tuberculosis but do not progress to the active disease - latent tuberculosis infection. The objective of this study was to assess the prevalence and risk factors associated with latent tuberculosis infection among healthcare workers in Nampula Central Hospital, Mozambique. This cross-sectional study of healthcare workers was conducted between 2014 and 2015. Participants (n = 209) were administered a questionnaire on demographics and occupational tuberculosis exposure and had a tuberculin skin test administered. Multivariate linear and logistic regression tested for associations between independent variables and dependent outcomes (tuberculin skin test induration and latent tuberculosis infection status). The prevalence of latent tuberculosis infection was 34.4%. Latent tuberculosis infection was highest in those working for more than eight years (39.3%), those who had no BCG vaccination (39.6%) and were immunocompromised (78.1%). Being immunocompromised was significantly associated with latent tuberculosis infection (OR 5.97 [95% CI 1.89; 18.87]). Positive but non-significant associations occurred with working in the medical domain (OR 1.02 [95% CI 0.17; 6.37]), length of employment > eight years (OR 1.97 [95% CI 0.70; 5.53]) and occupational contact with tuberculosis patients (OR 1.24 [95% CI 0.47; 3.27]). Personal and occupational factors were positively associated with latent tuberculosis infection among healthcare workers in Mozambique.

  16. On Insensitivity of the Chi-Square Model Test to Nonlinear Misspecification in Structural Equation Models

    ERIC Educational Resources Information Center

    Mooijaart, Ab; Satorra, Albert

    2009-01-01

    In this paper, we show that for some structural equation models (SEM), the classical chi-square goodness-of-fit test is unable to detect the presence of nonlinear terms in the model. As an example, we consider a regression model with latent variables and interactions terms. Not only the model test has zero power against that type of…

  17. The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions

    ERIC Educational Resources Information Center

    Molenaar, Dylan; Dolan, Conor V.; de Boeck, Paul

    2012-01-01

    The Graded Response Model (GRM; Samejima, "Estimation of ability using a response pattern of graded scores," Psychometric Monograph No. 17, Richmond, VA: The Psychometric Society, 1969) can be derived by assuming a linear regression of a continuous variable, Z, on the trait, [theta], to underlie the ordinal item scores (Takane & de Leeuw in…

  18. The Integration of Continuous and Discrete Latent Variable Models: Potential Problems and Promising Opportunities

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Curran, Patrick J.

    2004-01-01

    Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…

  19. Estimation of Standard Error of Regression Effects in Latent Regression Models Using Binder's Linearization. Research Report. ETS RR-07-09

    ERIC Educational Resources Information Center

    Li, Deping; Oranje, Andreas

    2007-01-01

    Two versions of a general method for approximating standard error of regression effect estimates within an IRT-based latent regression model are compared. The general method is based on Binder's (1983) approach, accounting for complex samples and finite populations by Taylor series linearization. In contrast, the current National Assessment of…

  20. Accounting for measurement error in human life history trade-offs using structural equation modeling.

    PubMed

    Helle, Samuli

    2018-03-01

    Revealing causal effects from correlative data is very challenging and a contemporary problem in human life history research owing to the lack of experimental approach. Problems with causal inference arising from measurement error in independent variables, whether related either to inaccurate measurement technique or validity of measurements, seem not well-known in this field. The aim of this study is to show how structural equation modeling (SEM) with latent variables can be applied to account for measurement error in independent variables when the researcher has recorded several indicators of a hypothesized latent construct. As a simple example of this approach, measurement error in lifetime allocation of resources to reproduction in Finnish preindustrial women is modelled in the context of the survival cost of reproduction. In humans, lifetime energetic resources allocated in reproduction are almost impossible to quantify with precision and, thus, typically used measures of lifetime reproductive effort (e.g., lifetime reproductive success and parity) are likely to be plagued by measurement error. These results are contrasted with those obtained from a traditional regression approach where the single best proxy of lifetime reproductive effort available in the data is used for inference. As expected, the inability to account for measurement error in women's lifetime reproductive effort resulted in the underestimation of its underlying effect size on post-reproductive survival. This article emphasizes the advantages that the SEM framework can provide in handling measurement error via multiple-indicator latent variables in human life history studies. © 2017 Wiley Periodicals, Inc.

  1. Latent Class Models in action: bridging social capital & Internet usage.

    PubMed

    Neves, Barbara Barbosa; Fonseca, Jaime R S

    2015-03-01

    This paper explores how Latent Class Models (LCM) can be applied in social research, when the basic assumptions of regression models cannot be validated. We examine the usefulness of this method with data collected from a study on the relationship between bridging social capital and the Internet. Social capital is defined here as the resources that are potentially available in one's social ties. Bridging is a dimension of social capital, usually related to weak ties (acquaintances), and a source of instrumental resources such as information. The study surveyed a stratified random sample of 417 inhabitants of Lisbon, Portugal. We used LCM to create the variable bridging social capital, but also to estimate the relationship between bridging social capital and Internet usage when we encountered convergence problems with the logistic regression analysis. We conclude by showing a positive relationship between bridging and Internet usage, and by discussing the potential of LCM for social science research. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Friendship networks of inner-city adults: a latent class analysis and multi-level regression of supporter types and the association of supporter latent class membership with supporter and recipient drug use.

    PubMed

    Bohnert, Amy S B; German, Danielle; Knowlton, Amy R; Latkin, Carl A

    2010-03-01

    Social support is a multi-dimensional construct that is important to drug use cessation. The present study identified types of supportive friends among the social network members in a community-based sample and examined the relationship of supporter-type classes with supporter, recipient, and supporter-recipient relationship characteristics. We hypothesized that the most supportive network members and their support recipients would be less likely to be current heroin/cocaine users. Participants (n=1453) were recruited from low-income neighborhoods with a high prevalence of drug use. Participants identified their friends via a network inventory, and all nominated friends were included in a latent class analysis and grouped based on their probability of providing seven types of support. These latent classes were included as the dependent variable in a multi-level regression of supporter drug use, recipient drug use, and other characteristics. The best-fitting latent class model identified five support patterns: friends who provided Little/No Support, Low/Moderate Support, High Support, Socialization Support, and Financial Support. In bivariate models, friends in the High, Low/Moderate, and Financial Support were less likely to use heroin or cocaine and had less conflict with and were more trusted by the support recipient than friends in the Low/No Support class. Individuals with supporters in those same support classes compared to the Low/No Support class were less likely to use heroin or cocaine, or to be homeless or female. Multivariable models suggested similar trends. Those with current heroin/cocaine use were less likely to provide or receive comprehensive support from friends. Published by Elsevier Ireland Ltd.

  3. The heterogeneous health latent classes of elderly people and their socio-demographic characteristics in Taiwan.

    PubMed

    Liu, Li-Fan; Tian, Wei-Hua; Yao, Hui-Ping

    2014-01-01

    The health care needs of elderly people were influenced by their heterogeneity. This study aimed to identify the health latent classes of elderly people by using latent class analysis to deal with heterogeneity and examine their socio-demographic characteristics. Data came from the 2005 National Health Interview Survey (NHIS) in Taiwan. In total, 2449 elderly individuals with available health indicators were examined in latent class analysis (LCA), and 2217 elderly community-dwellings with complete socio-demographic data were analyzed by multinomial logistic regression. Four health latent classes were identified which included 1066 (43.5%) people in the High Comorbidity (HC), 152 (6.2%) in the Functional Impairment (FI), 252 (10.3%) in the Frail (FR), and 979 (40.0%) in the Relatively Healthy (RH) group. Multinomial logistic regressions revealed socio-demographic characteristics among health classes. The variables associated with an increased likelihood of being in the FR group were age, female, and living with families. They were also correlated to ethnicity and educations. Apart from age and gender, the Functional Impairment group was less likely to be ethnicity of Hakka, more likely to live with others than were the RH group. The HC group tended to be younger, with higher educations, and more likely to live in urban area than the Functional Impairment group. The correlations between health classes and socio-demographic factors were discussed. The health status of elderly people includes a variety of health indicators. A person-centered approach is critical to identify the health heterogeneity of elderly people and manage their care needs by targeting differential aging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. A Note on the Relationship between the Number of Indicators and Their Reliability in Detecting Regression Coefficients in Latent Regression Analysis

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Wicherts, Jelte M.; Molenaar, Peter C. M.

    2004-01-01

    We consider the question of how variation in the number and reliability of indicators affects the power to reject the hypothesis that the regression coefficients are zero in latent linear regression analysis. We show that power remains constant as long as the coefficient of determination remains unchanged. Any increase in the number of indicators…

  5. Identifying individual changes in performance with composite quality indicators while accounting for regression to the mean.

    PubMed

    Gajewski, Byron J; Dunton, Nancy

    2013-04-01

    Almost a decade ago Morton and Torgerson indicated that perceived medical benefits could be due to "regression to the mean." Despite this caution, the regression to the mean "effects on the identification of changes in institutional performance do not seem to have been considered previously in any depth" (Jones and Spiegelhalter). As a response, Jones and Spiegelhalter provide a methodology to adjust for regression to the mean when modeling recent changes in institutional performance for one-variable quality indicators. Therefore, in our view, Jones and Spiegelhalter provide a breakthrough methodology for performance measures. At the same time, in the interests of parsimony, it is useful to aggregate individual quality indicators into a composite score. Our question is, can we develop and demonstrate a methodology that extends the "regression to the mean" literature to allow for composite quality indicators? Using a latent variable modeling approach, we extend the methodology to the composite indicator case. We demonstrate the approach on 4 indicators collected by the National Database of Nursing Quality Indicators. A simulation study further demonstrates its "proof of concept."

  6. Latent mnemonic strengths are latent: a comment on Mickes, Wixted, and Wais (2007).

    PubMed

    Rouder, Jeffrey N; Pratte, Michael S; Morey, Richard D

    2010-06-01

    Mickes, Wixted, and Wais (2007) proposed a simple test of latent strength variability in recognition memory. They asked participants to rate their confidence using either a 20-point or a 99-point strength scale and plotted distributions of the resulting ratings. They found 25% more variability in ratings for studied than for new items, which they interpreted as providing evidence that latent mnemonic strength distributions are 25% more variable for studied than for new items. We show here that this conclusion is critically dependent on assumptions--so much so that these assumptions determine the conclusions. In fact, opposite conclusions, such that study does not affect the variability of latent strength, may be reached by making different but equally plausible assumptions. Because all measurements of mnemonic strength variability are critically dependent on untestable assumptions, all are arbitrary. Hence, there is no principled method for assessing the relative variability of latent mnemonic strength distributions.

  7. Modeling Psychological Attributes in Psychology – An Epistemological Discussion: Network Analysis vs. Latent Variables

    PubMed Central

    Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc

    2017-01-01

    Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780

  8. A Latent Variable Approach to the Simple View of Reading

    ERIC Educational Resources Information Center

    Kershaw, Sarah; Schatschneider, Chris

    2012-01-01

    The present study utilized a latent variable modeling approach to examine the Simple View of Reading in a sample of students from 3rd, 7th, and 10th grades (N = 215, 188, and 180, respectively). Latent interaction modeling and other latent variable models were employed to investigate (a) the functional form of the relationship between decoding and…

  9. Euclidean chemical spaces from molecular fingerprints: Hamming distance and Hempel's ravens.

    PubMed

    Martin, Eric; Cao, Eddie

    2015-05-01

    Molecules are often characterized by sparse binary fingerprints, where 1s represent the presence of substructures and 0s represent their absence. Fingerprints are especially useful for similarity calculations, such as database searching or clustering, generally measuring similarity as the Tanimoto coefficient. In other cases, such as visualization, design of experiments, or latent variable regression, a low-dimensional Euclidian "chemical space" is more useful, where proximity between points reflects chemical similarity. A temptation is to apply principal components analysis (PCA) directly to these fingerprints to obtain a low dimensional continuous chemical space. However, Gower has shown that distances from PCA on bit vectors are proportional to the square root of Hamming distance. Unlike Tanimoto similarity, Hamming similarity (HS) gives equal weight to shared 0s as to shared 1s, that is, HS gives as much weight to substructures that neither molecule contains, as to substructures which both molecules contain. Illustrative examples show that proximity in the corresponding chemical space reflects mainly similar size and complexity rather than shared chemical substructures. These spaces are ill-suited for visualizing and optimizing coverage of chemical space, or as latent variables for regression. A more suitable alternative is shown to be Multi-dimensional scaling on the Tanimoto distance matrix, which produces a space where proximity does reflect structural similarity.

  10. Beyond logistic regression: structural equations modelling for binary variables and its application to investigating unobserved confounders.

    PubMed

    Kupek, Emil

    2006-03-15

    Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100) random sample of the data generated and on a real data set. SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.

  11. Latent Transition Analysis with a Mixture Item Response Theory Measurement Model

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian

    2010-01-01

    A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…

  12. Person Re-Identification via Distance Metric Learning With Latent Variables.

    PubMed

    Sun, Chong; Wang, Dong; Lu, Huchuan

    2017-01-01

    In this paper, we propose an effective person re-identification method with latent variables, which represents a pedestrian as the mixture of a holistic model and a number of flexible models. Three types of latent variables are introduced to model uncertain factors in the re-identification problem, including vertical misalignments, horizontal misalignments and leg posture variations. The distance between two pedestrians can be determined by minimizing a given distance function with respect to latent variables, and then be used to conduct the re-identification task. In addition, we develop a latent metric learning method for learning the effective metric matrix, which can be solved via an iterative manner: once latent information is specified, the metric matrix can be obtained based on some typical metric learning methods; with the computed metric matrix, the latent variables can be determined by searching the state space exhaustively. Finally, extensive experiments are conducted on seven databases to evaluate the proposed method. The experimental results demonstrate that our method achieves better performance than other competing algorithms.

  13. Adolescent cigarette smoking: health-related behavior or normative transgression?

    PubMed

    Turbin, M S; Jessor, R; Costa, F M

    2000-09-01

    Relations among measures of adolescent behavior were examined to determine whether cigarette smoking fits into a structure of problem behaviors-behaviors that involve normative transgression-or a structure of health-related behaviors, or both. In an ethnically and socioeconomically diverse sample of 1782 male and female high school adolescents, four first-order problem behavior latent variables-sexual intercourse experience, alcohol abuse, illicit drug use, and delinquency-were established and together were shown to reflect a second-order latent variable of problem behavior. Four first-order latent variables of health-related behaviors-unhealthy dietary habits, sedentary behavior, unsafe behavior, and poor dental hygiene-were also established and together were shown to reflect a second-order latent variable of health-compromising behavior. The structure of relations among those latent variables was modeled. Cigarette smoking had a significant and substantial loading only on the problem-behavior latent variable; its loading on the health-compromising behavior latent variable was essentially zero. Adolescent cigarette smoking relates strongly and directly to problem behaviors and only indirectly, if at all, to health-compromising behaviors. Interventions to prevent or reduce adolescent smoking should attend more to factors that influence problem behaviors.

  14. Factors influencing the quality of life of haemodialysis patients according to symptom cluster.

    PubMed

    Shim, Hye Yeung; Cho, Mi-Kyoung

    2018-05-01

    To identify the characteristics in each symptom cluster and factors influencing the quality of life of haemodialysis patients in Korea according to cluster. Despite developments in renal replacement therapy, haemodialysis still restricts the activities of daily living due to pain and impairs physical functioning induced by the disease and its complications. Descriptive survey. Two hundred and thirty dialysis patients aged >18 years. They completed self-administered questionnaires of Dialysis Symptom Index and Kidney Disease Quality of Life instrument-Short Form 1.3. To determine the optimal number of clusters, the collected data were analysed using polytomous variable latent class analysis in R software (poLCA) to estimate the latent class models and the latent class regression models for polytomous outcome variables. Differences in characteristics, symptoms and QOL according to the symptom cluster of haemodialysis patients were analysed using the independent t test and chi-square test. The factors influencing the QOL according to symptom cluster were identified using hierarchical multiple regression analysis. Physical and emotional symptoms were significantly more severe, and the QOL was significantly worse in Cluster 1 than in Cluster 2. The factors influencing the QOL were spouse, job, insurance type and physical and emotional symptoms in Cluster 1, with these variables having an explanatory power of 60.9%. Physical and emotional symptoms were the only influencing factors in Cluster 2, and they had an explanatory power of 37.4%. Mitigating the symptoms experienced by haemodialysis patients and improving their QOL require educational and therapeutic symptom management interventions that are tailored according to the characteristics and symptoms in each cluster. The findings of this study are expected to lead to practical guidelines for addressing the symptoms experienced by haemodialysis patients, and they provide basic information for developing nursing interventions to manage these symptoms and improve the QOL of these patients. © 2017 John Wiley & Sons Ltd.

  15. Examining the Association between Patient-Reported Symptoms of Attention and Memory Dysfunction with Objective Cognitive Performance: A Latent Regression Rasch Model Approach.

    PubMed

    Li, Yuelin; Root, James C; Atkinson, Thomas M; Ahles, Tim A

    2016-06-01

    Patient-reported cognition generally exhibits poor concordance with objectively assessed cognitive performance. In this article, we introduce latent regression Rasch modeling and provide a step-by-step tutorial for applying Rasch methods as an alternative to traditional correlation to better clarify the relationship of self-report and objective cognitive performance. An example analysis using these methods is also included. Introduction to latent regression Rasch modeling is provided together with a tutorial on implementing it using the JAGS programming language for the Bayesian posterior parameter estimates. In an example analysis, data from a longitudinal neurocognitive outcomes study of 132 breast cancer patients and 45 non-cancer matched controls that included self-report and objective performance measures pre- and post-treatment were analyzed using both conventional and latent regression Rasch model approaches. Consistent with previous research, conventional analysis and correlations between neurocognitive decline and self-reported problems were generally near zero. In contrast, application of latent regression Rasch modeling found statistically reliable associations between objective attention and processing speed measures with self-reported Attention and Memory scores. Latent regression Rasch modeling, together with correlation of specific self-reported cognitive domains with neurocognitive measures, helps to clarify the relationship of self-report with objective performance. While the majority of patients attribute their cognitive difficulties to memory decline, the Rash modeling suggests the importance of processing speed and initial learning. To encourage the use of this method, a step-by-step guide and programming language for implementation is provided. Implications of this method in cognitive outcomes research are discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Sleep schedules and school performance in Indigenous Australian children.

    PubMed

    Blunden, Sarah; Magee, Chris; Attard, Kelly; Clarkson, Larissa; Caputi, Peter; Skinner, Timothy

    2018-04-01

    Sleep duration and sleep schedule variability have been related to negative health and well-being outcomes in children, but little is known about Australian Indigenous children. Data for children aged 7-9 years came from the Australian Longitudinal Study of Indigenous Children and the National Assessment Program-Literacy and Numeracy (NAPLAN). Latent class analysis determined sleep classes taking into account sleep duration, bedtimes, waketimes, and variability in bedtimes from weekdays to weekends. Regression models tested whether the sleep classes were cross-sectionally associated with grade 3 NAPLAN scores. Latent change score modeling then examined whether the sleep classes predicted changes in NAPLAN performance from grades 3 to 5. Five sleep schedule classes were identified: normative sleep, early risers, long sleep, variable sleep, and short sleep. Overall, long sleepers performed best, with those with reduced sleep (short sleepers and early risers) performing the worse on grammar, numeracy, and writing performance. Latent change score results also showed that long sleepers performed best in spelling and writing and short sleepers and typical sleepers performed the worst over time. In this sample of Australian Indigenous children, short sleep was associated with poorer school performance compared with long sleep, with this performance worsening over time for some performance indicators. Other sleep schedules (eg, early wake times and variable sleep) also had some relationships with school performance. As sleep scheduling is modifiable, this offers opportunity for improvement in sleep and thus performance outcomes for these and potentially all children. Copyright © 2018 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  17. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Treating Latent Variable Regression Coefficients as Random Coefficients in a Three-Level Hierarchical Model

    ERIC Educational Resources Information Center

    Choi, Kilchan; Seltzer, Michael

    2010-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…

  18. Latent transition analysis of pre-service teachers' efficacy in mathematics and science

    NASA Astrophysics Data System (ADS)

    Ward, Elizabeth Kennedy

    This study modeled changes in pre-service teacher efficacy in mathematics and science over the course of the final year of teacher preparation using latent transition analysis (LTA), a longitudinal form of analysis that builds on two modeling traditions (latent class analysis (LCA) and auto-regressive modeling). Data were collected using the STEBI-B, MTEBI-r, and the ABNTMS instruments. The findings suggest that LTA is a viable technique for use in teacher efficacy research. Teacher efficacy is modeled as a construct with two dimensions: personal teaching efficacy (PTE) and outcome expectancy (OE). Findings suggest that the mathematics and science teaching efficacy (PTE) of pre-service teachers is a multi-class phenomena. The analyses revealed a four-class model of PTE at the beginning and end of the final year of teacher training. Results indicate that when pre-service teachers transition between classes, they tend to move from a lower efficacy class into a higher efficacy class. In addition, the findings suggest that time-varying variables (attitudes and beliefs) and time-invariant variables (previous coursework, previous experiences, and teacher perceptions) are statistically significant predictors of efficacy class membership. Further, analyses suggest that the measures used to assess outcome expectancy are not suitable for LCA and LTA procedures.

  19. A Framework for Multifaceted Evaluation of Student Models

    ERIC Educational Resources Information Center

    Huang, Yun; González-Brenes, José P.; Kumar, Rohit; Brusilovsky, Peter

    2015-01-01

    Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained…

  20. The Latent Variable Approach as Applied to Transitive Reasoning

    ERIC Educational Resources Information Center

    Bouwmeester, Samantha; Vermunt, Jeroen K.; Sijtsma, Klaas

    2012-01-01

    We discuss the limitations of hypothesis testing using (quasi-) experiments in the study of cognitive development and suggest latent variable modeling as a viable alternative to experimentation. Latent variable models allow testing a theory as a whole, incorporating individual differences with respect to developmental processes or abilities in the…

  1. Much Ado about Nothing--Or at Best, Very Little

    ERIC Educational Resources Information Center

    Widaman, Keith F.

    2014-01-01

    Latent variable structural equation modeling has become the analytic method of choice in many domains of research in psychology and allied social sciences. One important aspect of a latent variable model concerns the relations hypothesized to hold between latent variables and their indicators. The most common specification of structural equation…

  2. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

    ERIC Educational Resources Information Center

    Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini

    2012-01-01

    The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…

  3. Latent structure modeling underlying theophylline tablet formulations using a Bayesian network based on a self-organizing map clustering.

    PubMed

    Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2015-01-01

    The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.

  4. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    PubMed

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  5. Latent variable models are network models.

    PubMed

    Molenaar, Peter C M

    2010-06-01

    Cramer et al. present an original and interesting network perspective on comorbidity and contrast this perspective with a more traditional interpretation of comorbidity in terms of latent variable theory. My commentary focuses on the relationship between the two perspectives; that is, it aims to qualify the presumed contrast between interpretations in terms of networks and latent variables.

  6. Examining Parallelism of Sets of Psychometric Measures Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Patelis, Thanos; Marcoulides, George A.

    2011-01-01

    A latent variable modeling approach that can be used to examine whether several psychometric tests are parallel is discussed. The method consists of sequentially testing the properties of parallel measures via a corresponding relaxation of parameter constraints in a saturated model or an appropriately constructed latent variable model. The…

  7. Dissociative Experiences are Associated with Obsessive-Compulsive Symptoms in a Non-clinical Sample: A Latent Profile Analysis

    PubMed Central

    BOYSAN, Murat

    2014-01-01

    Introduction There has been a burgeoning literature considering the significant associations between obsessive-compulsive symptoms and dissociative experiences. In this study, the relationsips between dissociative symtomotology and dimensions of obsessive-compulsive symptoms were examined in homogeneous sub-groups obtained with latent class algorithm in an undergraduate Turkish sample. Method Latent profile analysis, a recently developed classification method based on latent class analysis, was applied to the Dissociative Experiences Scale (DES) item-response data from 2976 undergraduates. Differences in severity of obsessive-compulsive symptoms, anxiety and depression across groups were evaluated by running multinomial logistic regression analyses. Associations between latent class probabilities and psychological variables in terms of obsessive-compulsive sub-types, anxiety, and depression were assessed by computing Pearson’s product-moment correlation coefficients. Results The findings of the latent profile analysis supported further evidence for discontinuity model of dissociative experiences. The analysis empirically justified the distinction among three sub-groups based on the DES items. A marked proportion of the sample (42%) was assigned to the high dissociative class. In the further analyses, all sub-types of obsessive-compulsive symptoms significantly differed across latent classes. Regarding the relationships between obsessive-compulsive symptoms and dissociative symptomatology, low dissociation appeared to be a buffering factor dealing with obsessive-compulsive symptoms; whereas high dissociation appeared to be significantly associated with high levels of obsessive-compulsive symptoms. Conclusion It is concluded that the concept of dissociation can be best understood in a typological approach that dissociative symptomatology not only exacerbates obsessive-compulsive symptoms but also serves as an adaptive coping mechanism. PMID:28360635

  8. Dissociative Experiences are Associated with Obsessive-Compulsive Symptoms in a Non-clinical Sample: A Latent Profile Analysis.

    PubMed

    Boysan, Murat

    2014-09-01

    There has been a burgeoning literature considering the significant associations between obsessive-compulsive symptoms and dissociative experiences. In this study, the relationsips between dissociative symtomotology and dimensions of obsessive-compulsive symptoms were examined in homogeneous sub-groups obtained with latent class algorithm in an undergraduate Turkish sample. Latent profile analysis, a recently developed classification method based on latent class analysis, was applied to the Dissociative Experiences Scale (DES) item-response data from 2976 undergraduates. Differences in severity of obsessive-compulsive symptoms, anxiety and depression across groups were evaluated by running multinomial logistic regression analyses. Associations between latent class probabilities and psychological variables in terms of obsessive-compulsive sub-types, anxiety, and depression were assessed by computing Pearson's product-moment correlation coefficients. The findings of the latent profile analysis supported further evidence for discontinuity model of dissociative experiences. The analysis empirically justified the distinction among three sub-groups based on the DES items. A marked proportion of the sample (42%) was assigned to the high dissociative class. In the further analyses, all sub-types of obsessive-compulsive symptoms significantly differed across latent classes. Regarding the relationships between obsessive-compulsive symptoms and dissociative symptomatology, low dissociation appeared to be a buffering factor dealing with obsessive-compulsive symptoms; whereas high dissociation appeared to be significantly associated with high levels of obsessive-compulsive symptoms. It is concluded that the concept of dissociation can be best understood in a typological approach that dissociative symptomatology not only exacerbates obsessive-compulsive symptoms but also serves as an adaptive coping mechanism.

  9. The perception of the relationship between environment and health according to data from Italian Behavioural Risk Factor Surveillance System (PASSI).

    PubMed

    Sampaolo, Letizia; Tommaso, Giulia; Gherardi, Bianca; Carrozzi, Giuliano; Freni Sterrantino, Anna; Ottone, Marta; Goldoni, Carlo Alberto; Bertozzi, Nicoletta; Scaringi, Meri; Bolognesi, Lara; Masocco, Maria; Salmaso, Stefania; Lauriola, Paolo

    2017-01-01

    "OBJECTIVES: to identify groups of people in relation to the perception of environmental risk and to assess the main characteristics using data collected in the environmental module of the surveillance network Italian Behavioral Risk Factor Surveillance System (PASSI). perceptive profiles were identified using a latent class analysis; later they were included as outcome in multinomial logistic regression models to assess the association between environmental risk perception and demographic, health, socio-economic and behavioural variables. the latent class analysis allowed to split the sample in "worried", "indifferent", and "positive" people. The multinomial logistic regression model showed that the "worried" profile typically includes people of Italian nationality, living in highly urbanized areas, with a high level of education, and with economic difficulties; they pay special attention to their own health and fitness, but they have a negative perception of their own psychophysical state. the application of advanced statistical analysis enable to appraise PASSI data in order to characterize the perception of environmental risk, making the planning of interventions related to risk communication possible. ".

  10. Predictive Inference Using Latent Variables with Covariates*

    PubMed Central

    Schofield, Lynne Steuerle; Junker, Brian; Taylor, Lowell J.; Black, Dan A.

    2014-01-01

    Plausible Values (PVs) are a standard multiple imputation tool for analysis of large education survey data that measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally-generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations (MESE) model of Schofield (2008). PMID:25231627

  11. Detecting Mixtures from Structural Model Differences Using Latent Variable Mixture Modeling: A Comparison of Relative Model Fit Statistics

    ERIC Educational Resources Information Center

    Henson, James M.; Reise, Steven P.; Kim, Kevin H.

    2007-01-01

    The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…

  12. Latent profile analysis of regression-based norms demonstrates relationship of compounding MS symptom burden and negative work events.

    PubMed

    Frndak, Seth E; Smerbeck, Audrey M; Irwin, Lauren N; Drake, Allison S; Kordovski, Victoria M; Kunker, Katrina A; Khan, Anjum L; Benedict, Ralph H B

    2016-10-01

    We endeavored to clarify how distinct co-occurring symptoms relate to the presence of negative work events in employed multiple sclerosis (MS) patients. Latent profile analysis (LPA) was utilized to elucidate common disability patterns by isolating patient subpopulations. Samples of 272 employed MS patients and 209 healthy controls (HC) were administered neuroperformance tests of ambulation, hand dexterity, processing speed, and memory. Regression-based norms were created from the HC sample. LPA identified latent profiles using the regression-based z-scores. Finally, multinomial logistic regression tested for negative work event differences among the latent profiles. Four profiles were identified via LPA: a common profile (55%) characterized by slightly below average performance in all domains, a broadly low-performing profile (18%), a poor motor abilities profile with average cognition (17%), and a generally high-functioning profile (9%). Multinomial regression analysis revealed that the uniformly low-performing profile demonstrated a higher likelihood of reported negative work events. Employed MS patients with co-occurring motor, memory and processing speed impairments were most likely to report a negative work event, classifying them as uniquely at risk for job loss.

  13. Latent class analysis derived subgroups of low back pain patients - do they have prognostic capacity?

    PubMed

    Molgaard Nielsen, Anne; Hestbaek, Lise; Vach, Werner; Kent, Peter; Kongsted, Alice

    2017-08-09

    Heterogeneity in patients with low back pain is well recognised and different approaches to subgrouping have been proposed. One statistical technique that is increasingly being used is Latent Class Analysis as it performs subgrouping based on pattern recognition with high accuracy. Previously, we developed two novel suggestions for subgrouping patients with low back pain based on Latent Class Analysis of patient baseline characteristics (patient history and physical examination), which resulted in 7 subgroups when using a single-stage analysis, and 9 subgroups when using a two-stage approach. However, their prognostic capacity was unexplored. This study (i) determined whether the subgrouping approaches were associated with the future outcomes of pain intensity, pain frequency and disability, (ii) assessed whether one of these two approaches was more strongly or more consistently associated with these outcomes, and (iii) assessed the performance of the novel subgroupings as compared to the following variables: two existing subgrouping tools (STarT Back Tool and Quebec Task Force classification), four baseline characteristics and a group of previously identified domain-specific patient categorisations (collectively, the 'comparator variables'). This was a longitudinal cohort study of 928 patients consulting for low back pain in primary care. The associations between each subgroup approach and outcomes at 2 weeks, 3 and 12 months, and with weekly SMS responses were tested in linear regression models, and their prognostic capacity (variance explained) was compared to that of the comparator variables listed above. The two previously identified subgroupings were similarly associated with all outcomes. The prognostic capacity of both subgroupings was better than that of the comparator variables, except for participants' recovery beliefs and the domain-specific categorisations, but was still limited. The explained variance ranged from 4.3%-6.9% for pain intensity and from 6.8%-20.3% for disability, and highest at the 2 weeks follow-up. Latent Class-derived subgroups provided additional prognostic information when compared to a range of variables, but the improvements were not substantial enough to warrant further development into a new prognostic tool. Further research could investigate if these novel subgrouping approaches may help to improve existing tools that subgroup low back pain patients.

  14. Gene Variants Associated with Antisocial Behaviour: A Latent Variable Approach

    ERIC Educational Resources Information Center

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.

    2013-01-01

    Objective: The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods: Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a…

  15. The Least-Squares Estimation of Latent Trait Variables.

    ERIC Educational Resources Information Center

    Tatsuoka, Kikumi

    This paper presents a new method for estimating a given latent trait variable by the least-squares approach. The beta weights are obtained recursively with the help of Fourier series and expressed as functions of item parameters of response curves. The values of the latent trait variable estimated by this method and by maximum likelihood method…

  16. Categories versus dimensions in personality and psychopathology: a quantitative review of taxometric research.

    PubMed

    Haslam, N; Holland, E; Kuppens, P

    2012-05-01

    Taxometric research methods were developed by Paul Meehl and colleagues to distinguish between categorical and dimensional models of latent variables. We have conducted a comprehensive review of published taxometric research that included 177 articles, 311 distinct findings and a combined sample of 533 377 participants. Multilevel logistic regression analyses have examined the methodological and substantive variables associated with taxonic (categorical) findings. Although 38.9% of findings were taxonic, these findings were much less frequent in more recent and methodologically stronger studies, and in those reporting comparative fit indices based on simulated comparison data. When these and other possible confounds were statistically controlled, the true prevalence of taxonic findings was estimated at 14%. The domains of normal personality, mood disorders, anxiety disorders, eating disorders, externalizing disorders, and personality disorders (PDs) other than schizotypal yielded little persuasive evidence of taxa. Promising but still not definitive evidence of psychological taxa was confined to the domains of schizotypy, substance use disorders and autism. This review indicates that most latent variables of interest to psychiatrists and personality and clinical psychologists are dimensional, and that many influential taxonic findings of early taxometric research are likely to be spurious.

  17. Selection of latent variables for multiple mixed-outcome models

    PubMed Central

    ZHOU, LING; LIN, HUAZHEN; SONG, XINYUAN; LI, YI

    2014-01-01

    Latent variable models have been widely used for modeling the dependence structure of multiple outcomes data. However, the formulation of a latent variable model is often unknown a priori, the misspecification will distort the dependence structure and lead to unreliable model inference. Moreover, multiple outcomes with varying types present enormous analytical challenges. In this paper, we present a class of general latent variable models that can accommodate mixed types of outcomes. We propose a novel selection approach that simultaneously selects latent variables and estimates parameters. We show that the proposed estimator is consistent, asymptotically normal and has the oracle property. The practical utility of the methods is confirmed via simulations as well as an application to the analysis of the World Values Survey, a global research project that explores peoples’ values and beliefs and the social and personal characteristics that might influence them. PMID:27642219

  18. [Factors affecting maternal physical activities: an analysis based on the structural equation modeling].

    PubMed

    Liu, Yi; Luo, Bi-Ru

    2016-11-20

    To analyze the factors affecting maternal physical activities at different stages among pregnant women. Self-designed questionnaires were used to investigate the physical activities of women in different stages, including 650 in the first, 650 in the second, and 750 in the third trimester of pregnancy. The factors affecting maternal physical activities were analyzed using the structural equation model that comprised 4 latent variables (attitude, norm, behavioral attention and behavior) with observed variables that matched the latent variables. The participants ranged from 18 to 35 years of age. The women and their husbands, but not their mothers or mothers-in-law, were all well educated. The caregiver during pregnancy was mostly the mother followed by the husband. For traveling, the women in the first, second and third trimesters preferred walking, bus, and personal escort, respectively; the main physical activity was walking in all trimesters, and the women in different trimester were mostly sedentary, a greater intensity of exercise was associated with less exercise time. Structural equation modeling (SEM) analysis showed that the physical activities of pregnant women was affected by behavioral intention (with standardized regression coefficient of 0.372); attitude and subjective norms affected physical activity by indirectly influencing the behavior intention (standardized regression coefficients of 0.140 and 0.669). The pregnant women in different stages have inappropriate physical activities with insufficient exercise time and intensity. The subjective norms affects the physical activities of the pregnant women by influencing their attitudes and behavior intention indirectly, suggesting the need of health education of the caregivers during pregnancy.

  19. A Bayesian Model for the Estimation of Latent Interaction and Quadratic Effects When Latent Variables Are Non-Normally Distributed

    ERIC Educational Resources Information Center

    Kelava, Augustin; Nagengast, Benjamin

    2012-01-01

    Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…

  20. Smooth Scalar-on-Image Regression via Spatial Bayesian Variable Selection

    PubMed Central

    Goldsmith, Jeff; Huang, Lei; Crainiceanu, Ciprian M.

    2013-01-01

    We develop scalar-on-image regression models when images are registered multidimensional manifolds. We propose a fast and scalable Bayes inferential procedure to estimate the image coefficient. The central idea is the combination of an Ising prior distribution, which controls a latent binary indicator map, and an intrinsic Gaussian Markov random field, which controls the smoothness of the nonzero coefficients. The model is fit using a single-site Gibbs sampler, which allows fitting within minutes for hundreds of subjects with predictor images containing thousands of locations. The code is simple and is provided in less than one page in the Appendix. We apply this method to a neuroimaging study where cognitive outcomes are regressed on measures of white matter microstructure at every voxel of the corpus callosum for hundreds of subjects. PMID:24729670

  1. An Alternative Way to Model Population Ability Distributions in Large-Scale Educational Surveys

    ERIC Educational Resources Information Center

    Wetzel, Eunike; Xu, Xueli; von Davier, Matthias

    2015-01-01

    In large-scale educational surveys, a latent regression model is used to compensate for the shortage of cognitive information. Conventionally, the covariates in the latent regression model are principal components extracted from background data. This operational method has several important disadvantages, such as the handling of missing data and…

  2. Gene variants associated with antisocial behaviour: A latent variable approach

    PubMed Central

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.

    2013-01-01

    Objective The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a 15-year follow-up of a randomized trial of a prenatal and infancy nurse-home visitation program in Elmira, New York. We then investigated, via a novel latent variable approach, 450 informative genetic polymorphisms in 71 genes previously associated with antisocial behaviour, drug use, affiliative behaviours, and stress response in 241 consenting individuals for whom DNA was available. Haplotype and Pathway analyses were also performed. Results Eight single-nucleotide polymorphisms (SNPs) from 8 genes contributed to the latent genetic variable that in turn accounted for 16.0% of the variance within the latent antisocial phenotype. The number of risk alleles was linearly related to the latent antisocial variable scores. Haplotypes that included the putative risk alleles for all 8 genes were also associated with higher latent antisocial variable scores. In addition, 33 SNPs from 63 of the remaining genes were also significant when added to the final model. Many of these genes interact on a molecular level, forming molecular networks. The results support a role for genes related to dopamine, norepinephrine, serotonin, glutamate, opioid, and cholinergic signaling as well as stress response pathways in mediating susceptibility to antisocial behaviour. Conclusions This preliminary study supports use of relevant behavioural indicators and latent variable approaches to study the potential “co-action” of gene variants associated with antisocial behaviour. It also underscores the cumulative relevance of common genetic variants for understanding the etiology of complex behaviour. If replicated in future studies, this approach may allow the identification of a ‘shared’ variance across genetic risk alleles associated with complex neuropsychiatric dimensional phenotypes using relatively small numbers of well-characterized research participants. PMID:23822756

  3. A Comparison of Approaches for the Analysis of Interaction Effects between Latent Variables Using Partial Least Squares Path Modeling

    ERIC Educational Resources Information Center

    Henseler, Jorg; Chin, Wynne W.

    2010-01-01

    In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…

  4. Accuracy of latent-variable estimation in Bayesian semi-supervised learning.

    PubMed

    Yamazaki, Keisuke

    2015-09-01

    Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Estimating Latent Variable Interactions With Non-Normal Observed Data: A Comparison of Four Approaches

    PubMed Central

    Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.

    2012-01-01

    A Monte Carlo simulation was conducted to investigate the robustness of four latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of non-normality of the observed exogenous variables. Results showed that the CPI and LMS approaches yielded biased estimates of the interaction effect when the exogenous variables were highly non-normal. When the violation of non-normality was not severe (normal; symmetric with excess kurtosis < 1), the LMS approach yielded the most efficient estimates of the latent interaction effect with the highest statistical power. In highly non-normal conditions, the GAPI and UPI approaches with ML estimation yielded unbiased latent interaction effect estimates, with acceptable actual Type-I error rates for both the Wald and likelihood ratio tests of interaction effect at N ≥ 500. An empirical example illustrated the use of the four approaches in testing a latent variable interaction between academic self-efficacy and positive family role models in the prediction of academic performance. PMID:23457417

  6. Development and Application of Methods for Estimating Operating Characteristics of Discrete Test Item Responses without Assuming any Mathematical Form.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    In latent trait theory the latent space, or space of the hypothetical construct, is usually represented by some unidimensional or multi-dimensional continuum of real numbers. Like the latent space, the item response can either be treated as a discrete variable or as a continuous variable. Latent trait theory relates the item response to the latent…

  7. Justifying scale type for a latent variable: Formative or reflective?

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Bahron, Arsiah; Bagul, Awangku Hassanal Bahar Pengiran

    2015-12-01

    The study attempted to explore the possibilities to create a procedure at the experimental level to double confirm whether manifest variables scale type is formative or reflective. Now, the criteria of making such a decision are heavily depended on researchers' judgment at the conceptual and operational level. The study created an experimental procedure that seems could double confirm the decisions from the conceptual and operational level judgments. The experimental procedure includes the following tests, Variance Inflation Factor (VIF), Tolerance (TOL), Ridge Regression, Cronbach's alpha, Dillon-Goldstein's rho, and first and second eigenvalue. The procedure considers manifest variables' both multicollinearity and consistency. As the result, the procedure received the same judgment with the carefully established decision making at the concept and operational level.

  8. Individual Differences in Toddlers' Prosociality: Experiences in Early Relationships Explain Variability in Prosocial Behavior.

    PubMed

    Newton, Emily K; Thompson, Ross A; Goodman, Miranda

    2016-11-01

    Latent class logistic regression analysis was used to investigate sources of individual differences in profiles of prosocial behavior. Eighty-seven 18-month-olds were observed in tasks assessing sharing with a neutral adult, instrumentally helping a neutral adult, and instrumentally helping a sad adult. Maternal mental state language (MSL) and maternal sensitivity were also assessed. Despite differing motivational demands across tasks, we found consistency in children's prosocial behavior with three latent classes: no prosocial behavior, moderate prosocial behavior, and frequent instrumental helping across emotional situations. Maternal sensitivity, MSL, and their interaction predicted toddlers' membership in the classes. These findings evidence moderate consistency in early prosocial behaviors and suggest that these capacities are motivated in early relationships with caregivers. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  9. On the Latent Regression Model of Item Response Theory. Research Report. ETS RR-07-12

    ERIC Educational Resources Information Center

    Antal, Tamás

    2007-01-01

    Full account of the latent regression model for the National Assessment of Educational Progress is given. The treatment includes derivation of the EM algorithm, Newton-Raphson method, and the asymptotic standard errors. The paper also features the use of the adaptive Gauss-Hermite numerical integration method as a basic tool to evaluate…

  10. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  11. Asymptomatic Alzheimer disease: Defining resilience.

    PubMed

    Hohman, Timothy J; McLaren, Donald G; Mormino, Elizabeth C; Gifford, Katherine A; Libon, David J; Jefferson, Angela L

    2016-12-06

    To define robust resilience metrics by leveraging CSF biomarkers of Alzheimer disease (AD) pathology within a latent variable framework and to demonstrate the ability of such metrics to predict slower rates of cognitive decline and protection against diagnostic conversion. Participants with normal cognition (n = 297) and mild cognitive impairment (n = 432) were drawn from the Alzheimer's Disease Neuroimaging Initiative. Resilience metrics were defined at baseline by examining the residuals when regressing brain aging outcomes (hippocampal volume and cognition) on CSF biomarkers. A positive residual reflected better outcomes than expected for a given level of pathology (high resilience). Residuals were integrated into a latent variable model of resilience and validated by testing their ability to independently predict diagnostic conversion, cognitive decline, and the rate of ventricular dilation. Latent variables of resilience predicted a decreased risk of conversion (hazard ratio < 0.54, p < 0.0001), slower cognitive decline (β > 0.02, p < 0.001), and slower rates of ventricular dilation (β < -4.7, p < 2 × 10 -15 ). These results were significant even when analyses were restricted to clinically normal individuals. Furthermore, resilience metrics interacted with biomarker status such that biomarker-positive individuals with low resilience showed the greatest risk of subsequent decline. Robust phenotypes of resilience calculated by leveraging AD biomarkers and baseline brain aging outcomes provide insight into which individuals are at greatest risk of short-term decline. Such comprehensive definitions of resilience are needed to further our understanding of the mechanisms that protect individuals from the clinical manifestation of AD dementia, especially among biomarker-positive individuals. © 2016 American Academy of Neurology.

  12. Replicates in high dimensions, with applications to latent variable graphical models.

    PubMed

    Tan, Kean Ming; Ning, Yang; Witten, Daniela M; Liu, Han

    2016-12-01

    In classical statistics, much thought has been put into experimental design and data collection. In the high-dimensional setting, however, experimental design has been less of a focus. In this paper, we stress the importance of collecting multiple replicates for each subject in this setting. We consider learning the structure of a graphical model with latent variables, under the assumption that these variables take a constant value across replicates within each subject. By collecting multiple replicates for each subject, we are able to estimate the conditional dependence relationships among the observed variables given the latent variables. To test the null hypothesis of conditional independence between two observed variables, we propose a pairwise decorrelated score test. Theoretical guarantees are established for parameter estimation and for this test. We show that our proposal is able to estimate latent variable graphical models more accurately than some existing proposals, and apply the proposed method to a brain imaging dataset.

  13. Distributed neural system for emotional intelligence revealed by lesion mapping.

    PubMed

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2014-03-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease.

  14. Distributed neural system for emotional intelligence revealed by lesion mapping

    PubMed Central

    Colom, Roberto; Grafman, Jordan

    2014-01-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease. PMID:23171618

  15. Clinical Insight Into Latent Variables of Psychiatric Questionnaires for Mood Symptom Self-Assessment

    PubMed Central

    Saunders, Kate; Bilderbeck, Amy; Palmius, Niclas; Goodwin, Guy; De Vos, Maarten

    2017-01-01

    Background We recently described a new questionnaire to monitor mood called mood zoom (MZ). MZ comprises 6 items assessing mood symptoms on a 7-point Likert scale; we had previously used standard principal component analysis (PCA) to tentatively understand its properties, but the presence of multiple nonzero loadings obstructed the interpretation of its latent variables. Objective The aim of this study was to rigorously investigate the internal properties and latent variables of MZ using an algorithmic approach which may lead to more interpretable results than PCA. Additionally, we explored three other widely used psychiatric questionnaires to investigate latent variable structure similarities with MZ: (1) Altman self-rating mania scale (ASRM), assessing mania; (2) quick inventory of depressive symptomatology (QIDS) self-report, assessing depression; and (3) generalized anxiety disorder (7-item) (GAD-7), assessing anxiety. Methods We elicited responses from 131 participants: 48 bipolar disorder (BD), 32 borderline personality disorder (BPD), and 51 healthy controls (HC), collected longitudinally (median [interquartile range, IQR]: 363 [276] days). Participants were requested to complete ASRM, QIDS, and GAD-7 weekly (all 3 questionnaires were completed on the Web) and MZ daily (using a custom-based smartphone app). We applied sparse PCA (SPCA) to determine the latent variables for the four questionnaires, where a small subset of the original items contributes toward each latent variable. Results We found that MZ had great consistency across the three cohorts studied. Three main principal components were derived using SPCA, which can be tentatively interpreted as (1) anxiety and sadness, (2) positive affect, and (3) irritability. The MZ principal component comprising anxiety and sadness explains most of the variance in BD and BPD, whereas the positive affect of MZ explains most of the variance in HC. The latent variables in ASRM were identical for the patient groups but different for HC; nevertheless, the latent variables shared common items across both the patient group and HC. On the contrary, QIDS had overall very different principal components across groups; sleep was a key element in HC and BD but was absent in BPD. In GAD-7, nervousness was the principal component explaining most of the variance in BD and HC. Conclusions This study has important implications for understanding self-reported mood. MZ has a consistent, intuitively interpretable latent variable structure and hence may be a good instrument for generic mood assessment. Irritability appears to be the key distinguishing latent variable between BD and BPD and might be useful for differential diagnosis. Anxiety and sadness are closely interlinked, a finding that might inform treatment effects to jointly address these covarying symptoms. Anxiety and nervousness appear to be amongst the cardinal latent variable symptoms in BD and merit close attention in clinical practice. PMID:28546141

  16. Confidence Intervals for a Semiparametric Approach to Modeling Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Losardo, Diane; Bauer, Daniel J.

    2011-01-01

    Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…

  17. Estimating Latent Variable Interactions with Nonnormal Observed Data: A Comparison of Four Approaches

    ERIC Educational Resources Information Center

    Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.

    2012-01-01

    A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…

  18. Dynamic Latent Trait Models with Mixed Hidden Markov Structure for Mixed Longitudinal Outcomes.

    PubMed

    Zhang, Yue; Berhane, Kiros

    2016-01-01

    We propose a general Bayesian joint modeling approach to model mixed longitudinal outcomes from the exponential family for taking into account any differential misclassification that may exist among categorical outcomes. Under this framework, outcomes observed without measurement error are related to latent trait variables through generalized linear mixed effect models. The misclassified outcomes are related to the latent class variables, which represent unobserved real states, using mixed hidden Markov models (MHMM). In addition to enabling the estimation of parameters in prevalence, transition and misclassification probabilities, MHMMs capture cluster level heterogeneity. A transition modeling structure allows the latent trait and latent class variables to depend on observed predictors at the same time period and also on latent trait and latent class variables at previous time periods for each individual. Simulation studies are conducted to make comparisons with traditional models in order to illustrate the gains from the proposed approach. The new approach is applied to data from the Southern California Children Health Study (CHS) to jointly model questionnaire based asthma state and multiple lung function measurements in order to gain better insight about the underlying biological mechanism that governs the inter-relationship between asthma state and lung function development.

  19. The spatial pattern of suicide in the US in relation to deprivation, fragmentation and rurality.

    PubMed

    Congdon, Peter

    2011-01-01

    Analysis of geographical patterns of suicide and psychiatric morbidity has demonstrated the impact of latent ecological variables (such as deprivation, rurality). Such latent variables may be derived by conventional multivariate techniques from sets of observed indices (for example, by principal components), by composite variable methods or by methods which explicitly consider the spatial framework of areas and, in particular, the spatial clustering of latent risks and outcomes. This article considers a latent random variable approach to explaining geographical contrasts in suicide in the US; and it develops a spatial structural equation model incorporating deprivation, social fragmentation and rurality. The approach allows for such latent spatial constructs to be correlated both within and between areas. Potential effects of area ethnic mix are also included. The model is applied to male and female suicide deaths over 2002–06 in 3142 US counties.

  20. Evaluation of trends in wheat yield models

    NASA Technical Reports Server (NTRS)

    Ferguson, M. C.

    1982-01-01

    Trend terms in models for wheat yield in the U.S. Great Plains for the years 1932 to 1976 are evaluated. The subset of meteorological variables yielding the largest adjusted R(2) is selected using the method of leaps and bounds. Latent root regression is used to eliminate multicollinearities, and generalized ridge regression is used to introduce bias to provide stability in the data matrix. The regression model used provides for two trends in each of two models: a dependent model in which the trend line is piece-wise continuous, and an independent model in which the trend line is discontinuous at the year of the slope change. It was found that the trend lines best describing the wheat yields consisted of combinations of increasing, decreasing, and constant trend: four combinations for the dependent model and seven for the independent model.

  1. Application of Local Linear Embedding to Nonlinear Exploratory Latent Structure Analysis

    ERIC Educational Resources Information Center

    Wang, Haonan; Iyer, Hari

    2007-01-01

    In this paper we discuss the use of a recent dimension reduction technique called Locally Linear Embedding, introduced by Roweis and Saul, for performing an exploratory latent structure analysis. The coordinate variables from the locally linear embedding describing the manifold on which the data reside serve as the latent variable scores. We…

  2. Introduction to Latent Class Analysis with Applications

    ERIC Educational Resources Information Center

    Porcu, Mariano; Giambona, Francesca

    2017-01-01

    Latent class analysis (LCA) is a statistical method used to group individuals (cases, units) into classes (categories) of an unobserved (latent) variable on the basis of the responses made on a set of nominal, ordinal, or continuous observed variables. In this article, we introduce LCA in order to demonstrate its usefulness to early adolescence…

  3. Mixture Distribution Latent State-Trait Analysis: Basic Ideas and Applications

    ERIC Educational Resources Information Center

    Courvoisier, Delphine S.; Eid, Michael; Nussbeck, Fridtjof W.

    2007-01-01

    Extensions of latent state-trait models for continuous observed variables to mixture latent state-trait models with and without covariates of change are presented that can separate individuals differing in their occasion-specific variability. An empirical application to the repeated measurement of mood states (N = 501) revealed that a model with 2…

  4. The intergenerational transmission of conduct problems.

    PubMed

    Raudino, Alessandra; Fergusson, David M; Woodward, Lianne J; Horwood, L John

    2013-03-01

    Drawing on prospective longitudinal data, this paper examines the intergenerational transmission of childhood conduct problems in a sample of 209 parents and their 331 biological offspring studied as part of the Christchurch Health and Developmental Study. The aims were to estimate the association between parental and offspring conduct problems and to examine the extent to which this association could be explained by (a) confounding social/family factors from the parent's childhood and (b) intervening factors reflecting parental behaviours and family functioning. The same item set was used to assess childhood conduct problems in parents and offspring. Two approaches to data analysis (generalised estimating equation regression methods and latent variable structural equation modelling) were used to examine possible explanations of the intergenerational continuity in behaviour. Regression analysis suggested that there was moderate intergenerational continuity (r = 0.23, p < 0.001) between parental and offspring conduct problems. This continuity was not explained by confounding factors but was partially mediated by parenting behaviours, particularly parental over-reactivity. Latent variable modelling designed to take account of non-observed common genetic and environmental factors underlying the continuities in problem behaviours across generations also suggested that parenting behaviour played a role in mediating the intergenerational transmission of conduct problems. There is clear evidence of intergenerational continuity in conduct problems. In part this association reflects a causal chain process in which parental conduct problems are associated (directly or indirectly) with impaired parenting behaviours that in turn influence risks of conduct problems in offspring.

  5. A statistical model for interpreting computerized dynamic posturography data

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Metter, E. Jeffrey; Paloski, William H.

    2002-01-01

    Computerized dynamic posturography (CDP) is widely used for assessment of altered balance control. CDP trials are quantified using the equilibrium score (ES), which ranges from zero to 100, as a decreasing function of peak sway angle. The problem of how best to model and analyze ESs from a controlled study is considered. The ES often exhibits a skewed distribution in repeated trials, which can lead to incorrect inference when applying standard regression or analysis of variance models. Furthermore, CDP trials are terminated when a patient loses balance. In these situations, the ES is not observable, but is assigned the lowest possible score--zero. As a result, the response variable has a mixed discrete-continuous distribution, further compromising inference obtained by standard statistical methods. Here, we develop alternative methodology for analyzing ESs under a stochastic model extending the ES to a continuous latent random variable that always exists, but is unobserved in the event of a fall. Loss of balance occurs conditionally, with probability depending on the realized latent ES. After fitting the model by a form of quasi-maximum-likelihood, one may perform statistical inference to assess the effects of explanatory variables. An example is provided, using data from the NIH/NIA Baltimore Longitudinal Study on Aging.

  6. Etiological Beliefs, Treatments, Stigmatizing Attitudes toward Schizophrenia. What Do Italians and Israelis Think?

    PubMed

    Mannarini, Stefania; Boffo, Marilisa; Rossi, Alessandro; Balottin, Laura

    2017-01-01

    Background: Although scientific research on the etiology of mental disorders has improved the knowledge of biogenetic and psychosocial aspects related to the onset of mental illness, stigmatizing attitudes and behaviors are still very prevalent and pose a significant social problem. Aim: The aim of this study was to deepen the knowledge of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics, such as culture and religion of the perceiver. More precisely, the main purpose is the definition of a structure of variables, namely perceived dangerousness, social closeness, and avoidance of the ill person, together with the beliefs about the best treatment to be undertaken and the sick person' gender, capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned. Method: The study involved 305 university students, 183 from the University of Padua, Italy, and 122 from the University of Haifa, Israel. For the analyses, a latent class analysis (LCA) approach was chosen to identify a latent categorical structure accounting for the covariance between the observed variables. Such a latent structure was expected to be moderated by cultural background (Italy versus Israel) and religious beliefs, whereas causal beliefs, recommended treatment, dangerousness, social closeness, and public avoidance were the manifest variables, namely the observed indicators of the latent variable. Results: Two sets of results were obtained. First, the relevance of the manifest variables as indicators of the hypothesized latent variable was highlighted. Second, a two-latent-class categorical dimension represented by prejudicial attitudes, causal beliefs, and treatments concerning schizophrenia was found. Specifically, the differential effects of the two cultures and the religious beliefs on the latent structure and their relations highlighted the relevance of the observed variables as indicators of the expected latent variable. Conclusion: The present study contributes to the improvement of the understanding of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics of the perceiver. The definition of a structure of variables capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned was achieved from a cross-cultural perspective.

  7. The Road to Creative Achievement: A Latent Variable Model of Ability and Personality Predictors

    PubMed Central

    Jauk, Emanuel; Benedek, Mathias; Neubauer, Aljoscha C

    2014-01-01

    This study investigated the significance of different well-established psychometric indicators of creativity for real-life creative outcomes. Specifically, we tested the effects of creative potential, intelligence, and openness to experiences on everyday creative activities and actual creative achievement. Using a heterogeneous sample of 297 adults, we performed latent multiple regression analyses by means of structural equation modelling. We found openness to experiences and two independent indicators of creative potential, ideational originality and ideational fluency, to predict everyday creative activities. Creative activities, in turn, predicted actual creative achievement. Intelligence was found to predict creative achievement, but not creative activities. Moreover, intelligence moderated the effect of creative activities on creative achievement, suggesting that intelligence may play an important role in transforming creative activities into publically acknowledged creative achievements. This study supports the view of creativity as a multifaceted construct and provides an integrative model illustrating the potential interplay between its different facets. PMID:24532953

  8. Mixture Factor Analysis for Approximating a Nonnormally Distributed Continuous Latent Factor with Continuous and Dichotomous Observed Variables

    ERIC Educational Resources Information Center

    Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo

    2012-01-01

    Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…

  9. The Latent Structure of Dietary Restraint, Body Dissatisfaction, and Drive for Thinness: A Series of Taxometric Analyses

    ERIC Educational Resources Information Center

    Holm-Denoma, Jill M.; Richey, J. Anthony; Joiner, Thomas E., Jr.

    2010-01-01

    Although the latent structure of various eating disorders has been explored in previous studies, no published studies have examined the latent structure of theoretically relevant variables that have been shown to cut across eating disorder diagnoses. The current study examined 3 such variables (dietary restraint, body dissatisfaction, and drive…

  10. The Houdini Transformation: True, but Illusory.

    PubMed

    Bentler, Peter M; Molenaar, Peter C M

    2012-01-01

    Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This paper verifies the Houdini transformation on a general latent variable model using algebraic methods. The results show that the Houdini transformation is illusory, in the sense that the Houdini transformed model remains a latent variable model. Contrary to common knowledge, a model that is a path model with only observed variables and residual errors may, in fact, be a latent variable model.

  11. The Houdini Transformation: True, but Illusory

    PubMed Central

    Bentler, Peter M.; Molenaar, Peter C. M.

    2012-01-01

    Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This paper verifies the Houdini transformation on a general latent variable model using algebraic methods. The results show that the Houdini transformation is illusory, in the sense that the Houdini transformed model remains a latent variable model. Contrary to common knowledge, a model that is a path model with only observed variables and residual errors may, in fact, be a latent variable model. PMID:23180888

  12. Measuring behaviours for escaping from house fires: use of latent variable models to summarise multiple behaviours.

    PubMed

    Ploubidis, G B; Edwards, P; Kendrick, D

    2015-12-15

    This paper reports the development and testing of a construct measuring parental fire safety behaviours for planning escape from a house fire. Latent variable modelling of data on parental-reported fire safety behaviours and plans for escaping from a house fire and multivariable logistic regression to quantify the association between groups defined by the latent variable modelling and parental-report of having a plan for escaping from a house fire. Data comes from 1112 participants in a cluster randomised controlled trial set in children's centres in 4 study centres in the UK. A two class model provided the best fit to the data, combining responses to five fire safety planning behaviours. The first group ('more behaviours for escaping from a house fire') comprised 86% of participants who were most likely to have a torch, be aware of how their smoke alarm sounds, to have external door and window keys accessible, and exits clear. The second group ('fewer behaviours for escaping from a house fire') comprised 14% of participants who were less likely to report these five behaviours. After adjusting for potential confounders, participants allocated to the 'more behaviours for escaping from a house fire group were 2.5 times more likely to report having an escape plan (OR 2.48; 95% CI 1.59-3.86) than those in the "fewer behaviours for escaping from a house fire" group. Multiple fire safety behaviour questions can be combined into a single binary summary measure of fire safety behaviours for escaping from a house fire. Our findings will be useful to future studies wishing to use a single measure of fire safety planning behaviour as measures of outcome or exposure. NCT 01452191. Date of registration 13/10/2011.

  13. Applying Latent Class Analysis to Risk Stratification for Perioperative Mortality in Patients Undergoing Intraabdominal General Surgery.

    PubMed

    Kim, Minjae; Wall, Melanie M; Li, Guohua

    2016-07-01

    Perioperative risk stratification is often performed using individual risk factors without consideration of the syndemic of these risk factors. We used latent class analysis (LCA) to identify the classes of comorbidities and risk factors associated with perioperative mortality in patients presenting for intraabdominal general surgery. The 2005 to 2010 American College of Surgeons National Surgical Quality Improvement Program was used to obtain a cohort of patients undergoing intraabdominal general surgery. Risk factors and comorbidities were entered into LCA models to identify the latent classes, and individuals were assigned to a class based on the highest posterior probability of class membership. Relative risk regression was used to determine the associations between the latent classes and 30-day mortality, with adjustments for procedure. A 9-class model was fit using LCA on 466,177 observations. After combining classes with similar adjusted mortality risks, 5 risk classes were obtained. Compared with the class with average mortality risk (class 4), the risk ratios (95% confidence interval) ranged from 0.020 (0.014-0.027) in the lowest risk class (class 1) to 6.75 (6.46-7.02) in the highest risk class. After adjusting for procedure and ASA physical status, the latent classes remained significantly associated with 30-day mortality. The addition of the risk class variable to a model containing ASA physical status and surgical procedure demonstrated a significant increase in the area under the receiver operator characteristic curve (0.892 vs 0.915; P < 0.0001). Latent classes of risk factors and comorbidities in patients undergoing intraabdominal surgery are predictive of 30-day mortality independent of the ASA physical status and improve risk prediction with the ASA physical status.

  14. Variations in Care Quality Outcomes of Dying People: Latent Class Analysis of an Adult National Register Population.

    PubMed

    Öhlén, Joakim; Russell, Lara; Håkanson, Cecilia; Alvariza, Anette; Fürst, Carl Johan; Årestedt, Kristofer; Sawatzky, Richard

    2017-01-01

    Symptom relief is a key goal of palliative care. There is a need to consider complexities in symptom relief patterns for groups of people to understand and evaluate symptom relief as an indicator of quality of care at end of life. The aims of this study were to distinguish classes of patients who have different symptom relief patterns during the last week of life and to identify predictors of these classes in an adult register population. In a cross-sectional retrospective design, data were used from 87,026 decedents with expected deaths registered in the Swedish Register of Palliative Care in 2011 and 2012. Study variables were structured into patient characteristics, and processes and outcomes of quality of care. A latent class analysis was used to identify symptom relief patterns. Multivariate multinomial regression analyses were used to identify predictors of class membership. Five latent classes were generated: "relieved pain," "relieved pain and rattles," "relieved pain and anxiety," "partly relieved shortness of breath, rattles and anxiety," and "partly relieved pain, anxiety and confusion." Important predictors of class membership were age, sex, cause of death, and having someone present at death, individual prescriptions as needed (PRN) and expert consultations. Interindividual variability and complexity in symptom relief patterns may inform quality of care and its evaluation for dying people across care settings. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  15. Latent Transition Analysis of Pre-Service Teachers' Efficacy in Mathematics and Science

    ERIC Educational Resources Information Center

    Ward, Elizabeth Kennedy

    2009-01-01

    This study modeled changes in pre-service teacher efficacy in mathematics and science over the course of the final year of teacher preparation using latent transition analysis (LTA), a longitudinal form of analysis that builds on two modeling traditions (latent class analysis (LCA) and auto-regressive modeling). Data were collected using the…

  16. Building Coherent Validation Arguments for the Measurement of Latent Constructs with Unified Statistical Frameworks

    ERIC Educational Resources Information Center

    Rupp, Andre A.

    2012-01-01

    In the focus article of this issue, von Davier, Naemi, and Roberts essentially coupled: (1) a short methodological review of structural similarities of latent variable models with discrete and continuous latent variables; and (2) 2 short empirical case studies that show how these models can be applied to real, rather than simulated, large-scale…

  17. Advanced Nonlinear Latent Variable Modeling: Distribution Analytic LMS and QML Estimators of Interaction and Quadratic Effects

    ERIC Educational Resources Information Center

    Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.

    2011-01-01

    Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…

  18. The Log-Linear Cognitive Diagnostic Model (LCDM) as a Special Case of The General Diagnostic Model (GDM). Research Report. ETS RR-14-40

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2014-01-01

    Diagnostic models combine multiple binary latent variables in an attempt to produce a latent structure that provides more information about test takers' performance than do unidimensional latent variable models. Recent developments in diagnostic modeling emphasize the possibility that multiple skills may interact in a conjunctive way within the…

  19. Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression

    PubMed Central

    Shimizu, Yu; Yoshimoto, Junichiro; Takamura, Masahiro; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji

    2017-01-01

    In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area. PMID:28700672

  20. Characteristics of cyclist crashes in Italy using latent class analysis and association rule mining

    PubMed Central

    De Angelis, Marco; Marín Puchades, Víctor; Fraboni, Federico; Pietrantoni, Luca

    2017-01-01

    The factors associated with severity of the bicycle crashes may differ across different bicycle crash patterns. Therefore, it is important to identify distinct bicycle crash patterns with homogeneous attributes. The current study aimed at identifying subgroups of bicycle crashes in Italy and analyzing separately the different bicycle crash types. The present study focused on bicycle crashes that occurred in Italy during the period between 2011 and 2013. We analyzed categorical indicators corresponding to the characteristics of infrastructure (road type, road signage, and location type), road user (i.e., opponent vehicle and cyclist’s maneuver, type of collision, age and gender of the cyclist), vehicle (type of opponent vehicle), and the environmental and time period variables (time of the day, day of the week, season, pavement condition, and weather). To identify homogenous subgroups of bicycle crashes, we used latent class analysis. Using latent class analysis, the bicycle crash data set was segmented into 19 classes, which represents 19 different bicycle crash types. Logistic regression analysis was used to identify the association between class membership and severity of the bicycle crashes. Finally, association rules were conducted for each of the latent classes to uncover the factors associated with an increased likelihood of severity. Association rules highlighted different crash characteristics associated with an increased likelihood of severity for each of the 19 bicycle crash types. PMID:28158296

  1. Measurement Model Specification Error in LISREL Structural Equation Models.

    ERIC Educational Resources Information Center

    Baldwin, Beatrice; Lomax, Richard

    This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…

  2. Evaluating measurement models in clinical research: covariance structure analysis of latent variable models of self-conception.

    PubMed

    Hoyle, R H

    1991-02-01

    Indirect measures of psychological constructs are vital to clinical research. On occasion, however, the meaning of indirect measures of psychological constructs is obfuscated by statistical procedures that do not account for the complex relations between items and latent variables and among latent variables. Covariance structure analysis (CSA) is a statistical procedure for testing hypotheses about the relations among items that indirectly measure a psychological construct and relations among psychological constructs. This article introduces clinical researchers to the strengths and limitations of CSA as a statistical procedure for conceiving and testing structural hypotheses that are not tested adequately with other statistical procedures. The article is organized around two empirical examples that illustrate the use of CSA for evaluating measurement models with correlated error terms, higher-order factors, and measured and latent variables.

  3. Unfinished Business in Clarifying Causal Measurement: Commentary on Bainter and Bollen

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2014-01-01

    In a series of articles and comments, Kenneth Bollen and his collaborators have incrementally refined an account of structural equation models that (a) model a latent variable as the effect of several observed variables and (b) carry an interpretation of the observed variables as, in some sense, measures of the latent variable that they cause.…

  4. Variation in Latent Classes of Adult Attention-Deficit Hyperactivity Disorder by Sex and Environmental Adversity.

    PubMed

    Ebejer, Jane L; Medland, Sarah E; van der Werf, Julius; Lynskey, Michael; Martin, Nicholas G; Duffy, David L

    2016-11-01

    The findings of genetic, imaging and neuropsychological studies of attention-deficit hyperactivity disorder (ADHD) are mixed. To understand why this might be the case we use both dimensional and categorical symptom measurement to provide alternate and detailed perspectives of symptom expression. Interviewers collected ADHD, conduct problems (CP) and sociodemographic data from 3793 twins and their siblings aged 22 to 49 (M = 32.6). We estimate linear weighting of symptoms across ADHD and CP items. Latent class analyses and regression describe associations between measured variables, environmental risk factors and subsequent disadvantage. Additionally, the clinical relevance of each class was estimated. Five classes were found for women and men; few symptoms, hyperactive-impulsive, CP, inattentive, combined symptoms with CP. Women within the inattentive class reported more symptoms and reduced emotional health when compared to men and to women within other latent classes. Women and men with combined ADHD symptoms reported comorbid conduct problems but those with either inattention or hyperactivity-impulsivity only did not. The dual perspective of dimensional and categorical measurement of ADHD provides important detail about symptom variation across sex and with environmental covariates. © The Author(s) 2013.

  5. A Latent Class Analysis of Family Characteristics Linked to Youth Offending Outcomes.

    PubMed

    Chng, Grace S; Chu, Chi Meng; Zeng, Gerald; Li, Dongdong; Ting, Ming Hwa

    2016-11-01

    There were two aims to this study: firstly, to identify family subtypes of Singaporean youth offenders based on eight family variables. Secondly, the associations of these family subtypes with youth offending outcomes were tested. With a sample of 3,744 youth, a latent class analysis was first conducted based on eight family variables. Multivariate analyses and a Cox regression were subsequently performed to analyze the associations of the family classes with age at first arrest, age at first charge, and recidivism. A three-class solution was found to have the best fit to the data: (1) intact functioning families had little family risk; (2) families with criminality had higher probabilities of family criminality, of drug/alcohol abuse, and of being nonintact; and (3) poorly managed families received the poorest parenting and were more likely to be nonintact. Youth offenders from the latter two classes were arrested and charged at younger ages. Additionally, they reoffended at a quicker rate. Family backgrounds matter for youth offending outcomes. Interventions have to be multifaceted and targeted at the family in order to mitigate the risk of young offenders from developing into pathological adult criminals.

  6. A Latent Class Analysis of Family Characteristics Linked to Youth Offending Outcomes

    PubMed Central

    Chu, Chi Meng; Zeng, Gerald; Li, Dongdong; Ting, Ming Hwa

    2016-01-01

    Objectives: There were two aims to this study: firstly, to identify family subtypes of Singaporean youth offenders based on eight family variables. Secondly, the associations of these family subtypes with youth offending outcomes were tested. Methods: With a sample of 3,744 youth, a latent class analysis was first conducted based on eight family variables. Multivariate analyses and a Cox regression were subsequently performed to analyze the associations of the family classes with age at first arrest, age at first charge, and recidivism. Results: A three-class solution was found to have the best fit to the data: (1) intact functioning families had little family risk; (2) families with criminality had higher probabilities of family criminality, of drug/alcohol abuse, and of being nonintact; and (3) poorly managed families received the poorest parenting and were more likely to be nonintact. Youth offenders from the latter two classes were arrested and charged at younger ages. Additionally, they reoffended at a quicker rate. Conclusions: Family backgrounds matter for youth offending outcomes. Interventions have to be multifaceted and targeted at the family in order to mitigate the risk of young offenders from developing into pathological adult criminals. PMID:28736458

  7. Longitudinal Patterns of Health Insurance Coverage Among a National Sample of Children in the Child Welfare System

    PubMed Central

    Raghavan, Ramesh; Aarons, Gregory A.; Roesch, Scott C.; Leslie, Laurel K.

    2008-01-01

    Objectives. We sought to describe health insurance coverage over time among a national sample of children who came into contact with child welfare or child protective services agencies. Methods. We used data from 4 waves of the National Survey of Child and Adolescent Well-Being to examine insurance coverage among 2501 youths. Longitudinal insurance trajectories were identified using latent class analyses, a technique used to classify individuals into groupings of observed variables, and survey-weighted logistic regression was used to identify variables associated with class membership. Results. We identified 2 latent insurance classes—1 contained children who gained health insurance, and the other contained children who stably maintained coverage over time. History of sexual abuse, and race/ethnicity other than White, Black, and Hispanic, were associated with membership in the “gainer” class. Foster care placement and poorer health status were associated with membership in the “maintainer” class. Caregiver characteristics were not associated with class membership. Conclusions. The majority of children in child welfare had stable health insurance coverage over time. Given this vulnerable population’s dependence upon Medicaid, protection of existing entitlements to Medicaid is essential to preserve their stable insurance coverage. PMID:18235059

  8. Interexaminer variation of minutia markup on latent fingerprints.

    PubMed

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2016-07-01

    Latent print examiners often differ in the number of minutiae they mark during analysis of a latent, and also during comparison of a latent with an exemplar. Differences in minutia counts understate interexaminer variability: examiners' markups may have similar minutia counts but differ greatly in which specific minutiae were marked. We assessed variability in minutia markup among 170 volunteer latent print examiners. Each provided detailed markup documenting their examinations of 22 latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. An average of 12 examiners marked each latent. The primary factors associated with minutia reproducibility were clarity, which regions of the prints examiners chose to mark, and agreement on value or comparison determinations. In clear areas (where the examiner was "certain of the location, presence, and absence of all minutiae"), median reproducibility was 82%; in unclear areas, median reproducibility was 46%. Differing interpretations regarding which regions should be marked (e.g., when there is ambiguity in the continuity of a print) contributed to variability in minutia markup: especially in unclear areas, marked minutiae were often far from the nearest minutia marked by a majority of examiners. Low reproducibility was also associated with differences in value or comparison determinations. Lack of standardization in minutia markup and unfamiliarity with test procedures presumably contribute to the variability we observed. We have identified factors accounting for interexaminer variability; implementing standards for detailed markup as part of documentation and focusing future training efforts on these factors may help to facilitate transparency and reduce subjectivity in the examination process. Published by Elsevier Ireland Ltd.

  9. Multimethod latent class analysis

    PubMed Central

    Nussbeck, Fridtjof W.; Eid, Michael

    2015-01-01

    Correct and, hence, valid classifications of individuals are of high importance in the social sciences as these classifications are the basis for diagnoses and/or the assignment to a treatment. The via regia to inspect the validity of psychological ratings is the multitrait-multimethod (MTMM) approach. First, a latent variable model for the analysis of rater agreement (latent rater agreement model) will be presented that allows for the analysis of convergent validity between different measurement approaches (e.g., raters). Models of rater agreement are transferred to the level of latent variables. Second, the latent rater agreement model will be extended to a more informative MTMM latent class model. This model allows for estimating (i) the convergence of ratings, (ii) method biases in terms of differential latent distributions of raters and differential associations of categorizations within raters (specific rater bias), and (iii) the distinguishability of categories indicating if categories are satisfyingly distinct from each other. Finally, an empirical application is presented to exemplify the interpretation of the MTMM latent class model. PMID:26441714

  10. Exploring heterogeneity in clinical trials with latent class analysis

    PubMed Central

    Abarda, Abdallah; Contractor, Ateka A.; Wang, Juan; Dayton, C. Mitchell

    2018-01-01

    Case-mix is common in clinical trials and treatment effect can vary across different subgroups. Conventionally, a subgroup analysis is performed by dividing the overall study population by one or two grouping variables. It is usually impossible to explore complex high-order intersections among confounding variables. Latent class analysis (LCA) provides a framework to identify latent classes by observed manifest variables. Distal clinical outcomes and treatment effect can be different across these classes. This paper provides a step-by-step tutorial on how to perform LCA with R. A simulated dataset is generated to illustrate the process. In the example, the classify-analyze approach is employed to explore the differential treatment effects on distal outcomes across latent classes. PMID:29955579

  11. Heterogeneous Risk Perceptions: The Case of Poultry Meat Purchase Intentions in Finland

    PubMed Central

    Heikkilä, Jaakko; Pouta, Eija; Forsman-Hugg, Sari; Mäkelä, Johanna

    2013-01-01

    This study focused on the heterogeneity of consumer reactions, measured through poultry meat purchase intentions, when facing three cases of risk. The heterogeneity was analysed by latent class logistic regression that included all three risk cases. Approximately 60% of the respondents belonged to the group of production risk avoiders, in which the intention to purchase risk food was significantly lower than in the second group of risk neutrals. In addition to socio-demographic variables, the purchase intentions were statistically associated with several attitude-based variables. We highlighted some policy implications of the heterogeneity. Overall, the study demonstrated that risk matters to consumers, not all risk is equal, and consumer types react somewhat differently to different types of risk. PMID:24157513

  12. A Database Approach for Predicting and Monitoring Baked Anode Properties

    NASA Astrophysics Data System (ADS)

    Lauzon-Gauthier, Julien; Duchesne, Carl; Tessier, Jayson

    2012-11-01

    The baked anode quality control strategy currently used by most carbon plants based on testing anode core samples in the laboratory is inadequate for facing increased raw material variability. The low core sampling rate limited by lab capacity and the common practice of reporting averaged properties based on some anode population mask a significant amount of individual anode variability. In addition, lab results are typically available a few weeks after production and the anodes are often already set in the reduction cells preventing early remedial actions when necessary. A database approach is proposed in this work to develop a soft-sensor for predicting individual baked anode properties at the end of baking cycle. A large historical database including raw material properties, process operating parameters and anode core data was collected from a modern Alcoa plant. A multivariate latent variable PLS regression method was used for analyzing the large database and building the soft-sensor model. It is shown that the general low frequency trends in most anode physical and mechanical properties driven by raw material changes are very well captured by the model. Improvements in the data infrastructure (instrumentation, sampling frequency and location) will be necessary for predicting higher frequency variations in individual baked anode properties. This paper also demonstrates how multivariate latent variable models can be interpreted against process knowledge and used for real-time process monitoring of carbon plants, and detection of faults and abnormal operation.

  13. Environmental risk perception, environmental concern and propensity to participate in organic farming programmes.

    PubMed

    Toma, Luiza; Mathijs, Erik

    2007-04-01

    This paper aims to identify the factors underlying farmers' propensity to participate in organic farming programmes in a Romanian rural region that confronts non-point source pollution. For this, we employ structural equation modelling with latent variables using a specific data set collected through an agri-environmental farm survey in 2001. The model includes one 'behavioural intention' latent variable ('propensity to participate in organic farming programmes') and five 'attitude' and 'socio-economic' latent variables ('socio-demographic characteristics', 'economic characteristics', 'agri-environmental information access', 'environmental risk perception' and 'general environmental concern'). The results indicate that, overall, the model has an adequate fit to the data. All loadings are statistically significant, supporting the theoretical basis for assignment of indicators for each latent variable. The significance tests for the structural model parameters show 'environmental risk perception' as the strongest determinant of farmers' propensity to participate in organic farming programmes.

  14. Marginalized zero-inflated negative binomial regression with application to dental caries

    PubMed Central

    Preisser, John S.; Das, Kalyan; Long, D. Leann; Divaris, Kimon

    2015-01-01

    The zero-inflated negative binomial regression model (ZINB) is often employed in diverse fields such as dentistry, health care utilization, highway safety, and medicine to examine relationships between exposures of interest and overdispersed count outcomes exhibiting many zeros. The regression coefficients of ZINB have latent class interpretations for a susceptible subpopulation at risk for the disease/condition under study with counts generated from a negative binomial distribution and for a non-susceptible subpopulation that provides only zero counts. The ZINB parameters, however, are not well-suited for estimating overall exposure effects, specifically, in quantifying the effect of an explanatory variable in the overall mixture population. In this paper, a marginalized zero-inflated negative binomial regression (MZINB) model for independent responses is proposed to model the population marginal mean count directly, providing straightforward inference for overall exposure effects based on maximum likelihood estimation. Through simulation studies, the finite sample performance of MZINB is compared to marginalized zero-inflated Poisson, Poisson, and negative binomial regression. The MZINB model is applied in the evaluation of a school-based fluoride mouthrinse program on dental caries in 677 children. PMID:26568034

  15. Directional data analysis under the general projected normal distribution

    PubMed Central

    Wang, Fangpo; Gelfand, Alan E.

    2013-01-01

    The projected normal distribution is an under-utilized model for explaining directional data. In particular, the general version provides flexibility, e.g., asymmetry and possible bimodality along with convenient regression specification. Here, we clarify the properties of this general class. We also develop fully Bayesian hierarchical models for analyzing circular data using this class. We show how they can be fit using MCMC methods with suitable latent variables. We show how posterior inference for distributional features such as the angular mean direction and concentration can be implemented as well as how prediction within the regression setting can be handled. With regard to model comparison, we argue for an out-of-sample approach using both a predictive likelihood scoring loss criterion and a cumulative rank probability score criterion. PMID:24046539

  16. Class Evolution Tree: A Graphical Tool to Support Decisions on the Number of Classes in Exploratory Categorical Latent Variable Modeling for Rehabilitation Research

    ERIC Educational Resources Information Center

    Kriston, Levente; Melchior, Hanne; Hergert, Anika; Bergelt, Corinna; Watzke, Birgit; Schulz, Holger; von Wolff, Alessa

    2011-01-01

    The aim of our study was to develop a graphical tool that can be used in addition to standard statistical criteria to support decisions on the number of classes in explorative categorical latent variable modeling for rehabilitation research. Data from two rehabilitation research projects were used. In the first study, a latent profile analysis was…

  17. Data on the interexaminer variation of minutia markup on latent fingerprints.

    PubMed

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2016-09-01

    The data in this article supports the research paper entitled "Interexaminer variation of minutia markup on latent fingerprints" [1]. The data in this article describes the variability in minutia markup during both analysis of the latents and comparison between latents and exemplars. The data was collected in the "White Box Latent Print Examiner Study," in which each of 170 volunteer latent print examiners provided detailed markup documenting their examinations of latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. Each examiner examined 22 latent-exemplar pairs; an average of 12 examiners marked each latent.

  18. Monoamine Oxidase A (MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation

    PubMed Central

    Xu, Man K.; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J. S.; Croudace, Tim J.; Barnett, Jennifer H.; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B.

    2017-01-01

    Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene (MAOA) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = −0.167; CI: −0.289, −0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits. PMID:29075213

  19. Monoamine Oxidase A (MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation.

    PubMed

    Xu, Man K; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J S; Croudace, Tim J; Barnett, Jennifer H; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B

    2017-01-01

    Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene ( MAOA ) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = -0.167; CI: -0.289, -0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits.

  20. Interval ridge regression (iRR) as a fast and robust method for quantitative prediction and variable selection applied to edible oil adulteration.

    PubMed

    Jović, Ozren; Smrečki, Neven; Popović, Zora

    2016-04-01

    A novel quantitative prediction and variable selection method called interval ridge regression (iRR) is studied in this work. The method is performed on six data sets of FTIR, two data sets of UV-vis and one data set of DSC. The obtained results show that models built with ridge regression on optimal variables selected with iRR significantly outperfom models built with ridge regression on all variables in both calibration (6 out of 9 cases) and validation (2 out of 9 cases). In this study, iRR is also compared with interval partial least squares regression (iPLS). iRR outperfomed iPLS in validation (insignificantly in 6 out of 9 cases and significantly in one out of 9 cases for p<0.05). Also, iRR can be a fast alternative to iPLS, especially in case of unknown degree of complexity of analyzed system, i.e. if upper limit of number of latent variables is not easily estimated for iPLS. Adulteration of hempseed (H) oil, a well known health beneficial nutrient, is studied in this work by mixing it with cheap and widely used oils such as soybean (So) oil, rapeseed (R) oil and sunflower (Su) oil. Binary mixture sets of hempseed oil with these three oils (HSo, HR and HSu) and a ternary mixture set of H oil, R oil and Su oil (HRSu) were considered. The obtained accuracy indicates that using iRR on FTIR and UV-vis data, each particular oil can be very successfully quantified (in all 8 cases RMSEP<1.2%). This means that FTIR-ATR coupled with iRR can very rapidly and effectively determine the level of adulteration in the adulterated hempseed oil (R(2)>0.99). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Group Comparisons in the Presence of Missing Data Using Latent Variable Modeling Techniques

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2010-01-01

    A latent variable modeling approach for examining population similarities and differences in observed variable relationship and mean indexes in incomplete data sets is discussed. The method is based on the full information maximum likelihood procedure of model fitting and parameter estimation. The procedure can be employed to test group identities…

  2. Estimation and Model Selection for Finite Mixtures of Latent Interaction Models

    ERIC Educational Resources Information Center

    Hsu, Jui-Chen

    2011-01-01

    Latent interaction models and mixture models have received considerable attention in social science research recently, but little is known about how to handle if unobserved population heterogeneity exists in the endogenous latent variables of the nonlinear structural equation models. The current study estimates a mixture of latent interaction…

  3. Spectral Learning for Supervised Topic Models.

    PubMed

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  4. Aggressiveness as a latent personality trait of domestic dogs: Testing local independence and measurement invariance.

    PubMed

    Goold, Conor; Newberry, Ruth C

    2017-01-01

    Studies of animal personality attempt to uncover underlying or "latent" personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4-10 months, 10 months-3 years, 3-6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate "aggressive personality" trait attributions can be costly to dogs, recipients of aggression and society in general.

  5. Latent variable method for automatic adaptation to background states in motor imagery BCI

    NASA Astrophysics Data System (ADS)

    Dagaev, Nikolay; Volkova, Ksenia; Ossadtchi, Alexei

    2018-02-01

    Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. Approach. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model’s parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. Main results. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Significance. Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.

  6. Latent class instrumental variables: A clinical and biostatistical perspective

    PubMed Central

    Baker, Stuart G.; Kramer, Barnett S.; Lindeman, Karen S.

    2015-01-01

    In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. PMID:26239275

  7. An Exploratory Analysis of Personality, Attitudes, and Study Skills on the Learning Curve within a Team-based Learning Environment

    PubMed Central

    Henry, Teague; Campbell, Ashley

    2015-01-01

    Objective. To examine factors that determine the interindividual variability of learning within a team-based learning environment. Methods. Students in a pharmacokinetics course were given 4 interim, low-stakes cumulative assessments throughout the semester and a cumulative final examination. Students’ Myers-Briggs personality type was assessed, as well as their study skills, motivations, and attitudes towards team-learning. A latent curve model (LCM) was applied and various covariates were assessed to improve the regression model. Results. A quadratic LCM was applied for the first 4 assessments to predict final examination performance. None of the covariates examined significantly impacted the regression model fit except metacognitive self-regulation, which explained some of the variability in the rate of learning. There were some correlations between personality type and attitudes towards team learning, with introverts having a lower opinion of team-learning than extroverts. Conclusion. The LCM could readily describe the learning curve. Extroverted and introverted personality types had the same learning performance even though preference for team-learning was lower in introverts. Other personality traits, study skills, or practice did not significantly contribute to the learning variability in this course. PMID:25861101

  8. An exploratory analysis of personality, attitudes, and study skills on the learning curve within a team-based learning environment.

    PubMed

    Persky, Adam M; Henry, Teague; Campbell, Ashley

    2015-03-25

    To examine factors that determine the interindividual variability of learning within a team-based learning environment. Students in a pharmacokinetics course were given 4 interim, low-stakes cumulative assessments throughout the semester and a cumulative final examination. Students' Myers-Briggs personality type was assessed, as well as their study skills, motivations, and attitudes towards team-learning. A latent curve model (LCM) was applied and various covariates were assessed to improve the regression model. A quadratic LCM was applied for the first 4 assessments to predict final examination performance. None of the covariates examined significantly impacted the regression model fit except metacognitive self-regulation, which explained some of the variability in the rate of learning. There were some correlations between personality type and attitudes towards team learning, with introverts having a lower opinion of team-learning than extroverts. The LCM could readily describe the learning curve. Extroverted and introverted personality types had the same learning performance even though preference for team-learning was lower in introverts. Other personality traits, study skills, or practice did not significantly contribute to the learning variability in this course.

  9. Identification of Chinese medicine syndromes in persistent insomnia associated with major depressive disorder: a latent tree analysis.

    PubMed

    Yeung, Wing-Fai; Chung, Ka-Fai; Zhang, Nevin Lian-Wen; Zhang, Shi Ping; Yung, Kam-Ping; Chen, Pei-Xian; Ho, Yan-Yee

    2016-01-01

    Chinese medicine (CM) syndrome (zheng) differentiation is based on the co-occurrence of CM manifestation profiles, such as signs and symptoms, and pulse and tongue features. Insomnia is a symptom that frequently occurs in major depressive disorder despite adequate antidepressant treatment. This study aims to identify co-occurrence patterns in participants with persistent insomnia and major depressive disorder from clinical feature data using latent tree analysis, and to compare the latent variables with relevant CM syndromes. One hundred and forty-two participants with persistent insomnia and a history of major depressive disorder completed a standardized checklist (the Chinese Medicine Insomnia Symptom Checklist) specially developed for CM syndrome classification of insomnia. The checklist covers symptoms and signs, including tongue and pulse features. The clinical features assessed by the checklist were analyzed using Lantern software. CM practitioners with relevant experience compared the clinical feature variables under each latent variable with reference to relevant CM syndromes, based on a previous review of CM syndromes. The symptom data were analyzed to build the latent tree model and the model with the highest Bayes information criterion score was regarded as the best model. This model contained 18 latent variables, each of which divided participants into two clusters. Six clusters represented more than 50 % of the sample. The clinical feature co-occurrence patterns of these six clusters were interpreted as the CM syndromes Liver qi stagnation transforming into fire, Liver fire flaming upward, Stomach disharmony, Hyperactivity of fire due to yin deficiency, Heart-kidney noninteraction, and Qi deficiency of the heart and gallbladder. The clinical feature variables that contributed significant cumulative information coverage (at least 95 %) were identified. Latent tree model analysis on a sample of depressed participants with insomnia revealed 13 clinical feature co-occurrence patterns, four mutual-exclusion patterns, and one pattern with a single clinical feature variable.

  10. Development of lifetime comorbidity in the WHO World Mental Health (WMH) Surveys

    PubMed Central

    Kessler, Ronald C.; Ormel, Johan; Petukhova, Maria; McLaughlin, Katie A.; Green, Jennifer Greif; Russo, Leo J.; Stein, Dan J.; Zaslavsky, Alan M; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Andrade, Laura; Benjet, Corina; de Girolamo, Giovanni; de Graaf, Ron; Demyttenaere, Koen; Fayyad, John; Haro, Josep Maria; Hu, Chi yi; Karam, Aimee; Lee, Sing; Lepine, Jean-Pierre; Matchsinger, Herbert; Mihaescu-Pintia, Constanta; Posada-Villa, Jose; Sagar, Rajesh; Üstün, T. Bedirhan

    2010-01-01

    CONTEXT Although numerous studies have examined the role of latent variables in the structure of comorbidity among mental disorders, none has examined their role in the development of comorbidity. OBJECTIVE To study the role of latent variables in the development of comorbidity among 18 lifetime DSM-IV disorders in the WHO World Mental Health (WMH) surveys. SETTING/PARTICIPANTS Nationally or regionally representative community surveys in 14 countries with a total of 21,229 respondents. MAIN OUTCOME MEASURES First onset of 18 lifetime DSM-IV anxiety, mood, behavior, and substance disorders assessed retrospectively in the WHO Composite International Diagnostic Interview (CIDI). RESULTS Separate internalizing (anxiety and mood disorders) and externalizing (behavior and substance disorders) factors were found in exploratory factor analysis of lifetime disorders. Consistently significant positive time-lagged associations were found in survival analyses for virtually all temporally primary lifetime disorders predicting subsequent onset of other disorders. Within-domain (i.e., internalizing or externalizing) associations were generally stronger than between-domain associations. The vast majority of time-lagged associations were explained by a model that assumed the existence of mediating latent internalizing and externalizing variables. Specific phobia and obsessive-compulsive disorder (internalizing) and hyperactivity disorder and oppositional-defiant disorder (externalizing) were the most important predictors. A small number of residual associations remained significant after controlling the latent variables. CONCLUSIONS The good fit of the latent variable model suggests that common causal pathways account for most of the comorbidity among the disorders considered here. These common pathways should be the focus of future research on the development of comorbidity, although several important pair-wise associations that cannot be accounted for by latent variables also exist that warrant further focused study. PMID:21199968

  11. Latent Constructs in Psychosocial Factors Associated with Cardiovascular Disease: An Examination by Race and Sex

    PubMed Central

    Clark, Cari Jo; Henderson, Kimberly M.; de Leon, Carlos F. Mendes; Guo, Hongfei; Lunos, Scott; Evans, Denis A.; Everson-Rose, Susan A.

    2012-01-01

    This study examines race and sex differences in the latent structure of 10 psychosocial measures and the association of identified factors with self-reported history of coronary heart disease (CHD). Participants were 4,128 older adults from the Chicago Health and Aging Project. Exploratory factor analysis (EFA) with oblique geomin rotation was used to identify latent factors among the psychosocial measures. Multi-group comparisons of the EFA model were conducted using exploratory structural equation modeling to test for measurement invariance across race and sex subgroups. A factor-based scale score was created for invariant factor(s). Logistic regression was used to test the relationship between the factor score(s) and CHD adjusting for relevant confounders. Effect modification of the relationship by race–sex subgroup was tested. A two-factor model fit the data well (comparative fit index = 0.986; Tucker–Lewis index = 0.969; root mean square error of approximation = 0.039). Depressive symptoms, neuroticism, perceived stress, and low life satisfaction loaded on Factor I. Social engagement, spirituality, social networks, and extraversion loaded on Factor II. Only Factor I, re-named distress, showed measurement invariance across subgroups. Distress was associated with a 37% increased odds of self-reported CHD (odds ratio: 1.37; 95% confidence intervals: 1.25, 1.50; p-value < 0.0001). This effect did not differ by race or sex (interaction p-value = 0.43). This study identified two underlying latent constructs among a large range of psychosocial variables; only one, distress, was validly measured across race–sex subgroups. This construct was robustly related to prevalent CHD, highlighting the potential importance of latent constructs as predictors of cardiovascular disease. PMID:22347196

  12. A descriptivist approach to trait conceptualization and inference.

    PubMed

    Jonas, Katherine G; Markon, Kristian E

    2016-01-01

    In their recent article, How Functionalist and Process Approaches to Behavior Can Explain Trait Covariation, Wood, Gardner, and Harms (2015) underscore the need for more process-based understandings of individual differences. At the same time, the article illustrates a common error in the use and interpretation of latent variable models: namely, the misuse of models to arbitrate issues of causation and the nature of latent variables. Here, we explain how latent variables can be understood simply as parsimonious summaries of data, and how statistical inference can be based on choosing those summaries that minimize information required to represent the data using the model. Although Wood, Gardner, and Harms acknowledge this perspective, they underestimate its significance, including its importance to modeling and the conceptualization of psychological measurement. We believe this perspective has important implications for understanding individual differences in a number of domains, including current debates surrounding the role of formative versus reflective latent variables. (c) 2015 APA, all rights reserved).

  13. A General Approach to Defining Latent Growth Components

    ERIC Educational Resources Information Center

    Mayer, Axel; Steyer, Rolf; Mueller, Horst

    2012-01-01

    We present a 3-step approach to defining latent growth components. In the first step, a measurement model with at least 2 indicators for each time point is formulated to identify measurement error variances and obtain latent variables that are purged from measurement error. In the second step, we use contrast matrices to define the latent growth…

  14. An overview of longitudinal data analysis methods for neurological research.

    PubMed

    Locascio, Joseph J; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models.

  15. Latent class instrumental variables: a clinical and biostatistical perspective.

    PubMed

    Baker, Stuart G; Kramer, Barnett S; Lindeman, Karen S

    2016-01-15

    In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Examining the relationship between socio-economic status, WASH practices and wasting

    PubMed Central

    Raihan, Mohammad Jyoti; Farzana, Fahmida Dil; Sultana, Sabiha; Haque, Md Ahshanul; Rahman, Ahmed Shafiqur; Waid, Jillian L.; McCormick, Ben; Choudhury, Nuzhat; Ahmed, Tahmeed

    2017-01-01

    Childhood wasting is a global problem and is significantly more pronounced in low and middle income countries like Bangladesh. Socio Economic Status (SES) and Water, Sanitation and Hygiene (WASH) practices may be significantly associated with wasting. Most previous research is consistent about the role of SES, but the significance of WASH in the context of wasting remains ambiguous. The effect of SES and WASH on weight for length (WHZ) is examined using a Structural Equation Model (SEM) to explicitly describe the direct and indirect role of WASH in the context of SES.A nationally representative survey of 10,478 Bangladeshi children under 5 were examined. An expert defined SEM was used to construct latent variables for SES and WASH. The SEM included a direct pathway from SES to WHZ and an indirect pathway from SES to WHZ via WASH along with regression of relevant covariates on the outcome WHZ and the latent variables. Both SES (p<0.01) and WASH (p<0.05) significantly affect WHZ. SES (p<0.01) also significantly affects WASH. Other structural components showed that child’s age (p<0.01) affects WHZ and types of residence (p<0.01) affects SES. WASH practices at least partially mediate the association between SES and wasting status. WASH and SES are both significantly associated with WHZ. PMID:28278161

  17. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    DOE PAGES

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.; ...

    2016-07-29

    Spatio-temporal fields of land–atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data andmore » (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange ( R 2 < 0.5), ecosystem respiration ( R 2 > 0.6), gross primary production ( R 2> 0.7), latent heat ( R 2 > 0.7), sensible heat ( R 2 > 0.7), and net radiation ( R 2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well ( R 2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted ( R 2 < 0.5). Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). Finally, the evaluated large ensemble of ML-based models will be the basis of new global flux products.« less

  18. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.

    Spatio-temporal fields of land–atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data andmore » (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange ( R 2 < 0.5), ecosystem respiration ( R 2 > 0.6), gross primary production ( R 2> 0.7), latent heat ( R 2 > 0.7), sensible heat ( R 2 > 0.7), and net radiation ( R 2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well ( R 2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted ( R 2 < 0.5). Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). Finally, the evaluated large ensemble of ML-based models will be the basis of new global flux products.« less

  19. Revealing unobserved factors underlying cortical activity with a rectified latent variable model applied to neural population recordings.

    PubMed

    Whiteway, Matthew R; Butts, Daniel A

    2017-03-01

    The activity of sensory cortical neurons is not only driven by external stimuli but also shaped by other sources of input to the cortex. Unlike external stimuli, these other sources of input are challenging to experimentally control, or even observe, and as a result contribute to variability of neural responses to sensory stimuli. However, such sources of input are likely not "noise" and may play an integral role in sensory cortex function. Here we introduce the rectified latent variable model (RLVM) in order to identify these sources of input using simultaneously recorded cortical neuron populations. The RLVM is novel in that it employs nonnegative (rectified) latent variables and is much less restrictive in the mathematical constraints on solutions because of the use of an autoencoder neural network to initialize model parameters. We show that the RLVM outperforms principal component analysis, factor analysis, and independent component analysis, using simulated data across a range of conditions. We then apply this model to two-photon imaging of hundreds of simultaneously recorded neurons in mouse primary somatosensory cortex during a tactile discrimination task. Across many experiments, the RLVM identifies latent variables related to both the tactile stimulation as well as nonstimulus aspects of the behavioral task, with a majority of activity explained by the latter. These results suggest that properly identifying such latent variables is necessary for a full understanding of sensory cortical function and demonstrate novel methods for leveraging large population recordings to this end. NEW & NOTEWORTHY The rapid development of neural recording technologies presents new opportunities for understanding patterns of activity across neural populations. Here we show how a latent variable model with appropriate nonlinear form can be used to identify sources of input to a neural population and infer their time courses. Furthermore, we demonstrate how these sources are related to behavioral contexts outside of direct experimental control. Copyright © 2017 the American Physiological Society.

  20. Prevalence and associated risk factors of latent tuberculosis infection in a Spanish prison.

    PubMed

    López de Goicoechea-Saiz, M E; Sternberg, F; Portilla-Sogorb, J

    2018-01-01

    To determine the prevalence of latent tuberculosis infection (LTI) in a Spanish prison, analyze the main sociodemographic and clinical variables associated with this condition and estimate the percentage of individuals with LTI who have received chemoprophylactic treatment. Cross-sectional study including inmates hosted in the Madrid VI Prison on 16/07/2016. Exclusion criteria: history of tuberculosis; non-updated tuberculin test according to the Tuberculosis Prevention and Control Program in Prisons protocol. Information of the variables was collected from SANIT and SIP programs, and by checking the clinical records of inmates. Description of the participant population and comparison between the frequency of distribution of the independent variables in LTI present and absent groups were performed, the last calculating the p value with Ji2 and Mann-Whitney U tests. Bivariate and multivariate analysis have been carried out with a logistic regression model. 936 individuals have been included. The prevalence of LTI in prison is 54.6%. This condition has been linked to the sociodemographic variables age, sex and nationality of origin, being age the one that has shown the strongest association. Among the other factors analyzed, only HCV infection behaves as a predictor of LTI. 30.3% of the individuals with LTI have completed or are receiving chemoprophylactic treatment in the moment of the study. LTI prevalence is high in the Spanish current prison population. The results of the study emphasize the relevance of the LTI screening in the prison setting, specially among high risk groups, and point out the need of a greater effort in the indication and completion of the chemoprophylactic treatment.

  1. The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models

    ERIC Educational Resources Information Center

    Park, Jungkyu; Yu, Hsiu-Ting

    2016-01-01

    The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…

  2. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-04-29

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Measuring individual differences in responses to date-rape vignettes using latent variable models.

    PubMed

    Tuliao, Antover P; Hoffman, Lesa; McChargue, Dennis E

    2017-01-01

    Vignette methodology can be a flexible and powerful way to examine individual differences in response to dangerous real-life scenarios. However, most studies underutilize the usefulness of such methodology by analyzing only one outcome, which limits the ability to track event-related changes (e.g., vacillation in risk perception). The current study was designed to illustrate the dynamic influence of risk perception on exit point from a date-rape vignette. Our primary goal was to provide an illustrative example of how to use latent variable models for vignette methodology, including latent growth curve modeling with piecewise slopes, as well as latent variable measurement models. Through the combination of a step-by-step exposition in this text and corresponding model syntax available electronically, we detail an alternative statistical "blueprint" to enhance future violence research efforts using vignette methodology. Aggr. Behav. 43:60-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. TPSLVM: a dimensionality reduction algorithm based on thin plate splines.

    PubMed

    Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming

    2014-10-01

    Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.

  5. Realist identification of group-level latent variables for perinatal social epidemiology theory building.

    PubMed

    Eastwood, John Graeme; Jalaludin, Bin Badrudin; Kemp, Lynn Ann; Phung, Hai Ngoc

    2014-01-01

    We have previously reported in this journal on an ecological study of perinatal depressive symptoms in South Western Sydney. In that article, we briefly reported on a factor analysis that was utilized to identify empirical indicators for analysis. In this article, we report on the mixed method approach that was used to identify those latent variables. Social epidemiology has been slow to embrace a latent variable approach to the study of social, political, economic, and cultural structures and mechanisms, partly for philosophical reasons. Critical realist ontology and epistemology have been advocated as an appropriate methodological approach to both theory building and theory testing in the health sciences. We describe here an emergent mixed method approach that uses qualitative methods to identify latent constructs followed by factor analysis using empirical indicators chosen to measure identified qualitative codes. Comparative analysis of the findings is reported together with a limited description of realist approaches to abstract reasoning.

  6. Using SAS PROC CALIS to fit Level-1 error covariance structures of latent growth models.

    PubMed

    Ding, Cherng G; Jane, Ten-Der

    2012-09-01

    In the present article, we demonstrates the use of SAS PROC CALIS to fit various types of Level-1 error covariance structures of latent growth models (LGM). Advantages of the SEM approach, on which PROC CALIS is based, include the capabilities of modeling the change over time for latent constructs, measured by multiple indicators; embedding LGM into a larger latent variable model; incorporating measurement models for latent predictors; and better assessing model fit and the flexibility in specifying error covariance structures. The strength of PROC CALIS is always accompanied with technical coding work, which needs to be specifically addressed. We provide a tutorial on the SAS syntax for modeling the growth of a manifest variable and the growth of a latent construct, focusing the documentation on the specification of Level-1 error covariance structures. Illustrations are conducted with the data generated from two given latent growth models. The coding provided is helpful when the growth model has been well determined and the Level-1 error covariance structure is to be identified.

  7. Heteroscedastic Latent Trait Models for Dichotomous Data.

    PubMed

    Molenaar, Dylan

    2015-09-01

    Effort has been devoted to account for heteroscedasticity with respect to observed or latent moderator variables in item or test scores. For instance, in the multi-group generalized linear latent trait model, it could be tested whether the observed (polychoric) covariance matrix differs across the levels of an observed moderator variable. In the case that heteroscedasticity arises across the latent trait itself, existing models commonly distinguish between heteroscedastic residuals and a skewed trait distribution. These models have valuable applications in intelligence, personality and psychopathology research. However, existing approaches are only limited to continuous and polytomous data, while dichotomous data are common in intelligence and psychopathology research. Therefore, in present paper, a heteroscedastic latent trait model is presented for dichotomous data. The model is studied in a simulation study, and applied to data pertaining alcohol use and cognitive ability.

  8. Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.

    2003-01-01

    The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…

  9. Estimating and Visualizing Nonlinear Relations among Latent Variables: A Semiparametric Approach

    ERIC Educational Resources Information Center

    Pek, Jolynn; Sterba, Sonya K.; Kok, Bethany E.; Bauer, Daniel J.

    2009-01-01

    The graphical presentation of any scientific finding enhances its description, interpretation, and evaluation. Research involving latent variables is no exception, especially when potential nonlinear effects are suspect. This article has multiple aims. First, it provides a nontechnical overview of a semiparametric approach to modeling nonlinear…

  10. Generalized Structured Component Analysis with Latent Interactions

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan

    2010-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…

  11. Behavioral Scale Reliability and Measurement Invariance Evaluation Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2004-01-01

    A latent variable modeling approach to reliability and measurement invariance evaluation for multiple-component measuring instruments is outlined. An initial discussion deals with the limitations of coefficient alpha, a frequently used index of composite reliability. A widely and readily applicable structural modeling framework is next described…

  12. Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders

    2007-01-01

    Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models,…

  13. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  14. Meta-Analysis of Scale Reliability Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2013-01-01

    A latent variable modeling approach is outlined that can be used for meta-analysis of reliability coefficients of multicomponent measuring instruments. Important limitations of efforts to combine composite reliability findings across multiple studies are initially pointed out. A reliability synthesis procedure is discussed that is based on…

  15. Diagnostic Procedures for Detecting Nonlinear Relationships between Latent Variables

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Baldasaro, Ruth E.; Gottfredson, Nisha C.

    2012-01-01

    Structural equation models are commonly used to estimate relationships between latent variables. Almost universally, the fitted models specify that these relationships are linear in form. This assumption is rarely checked empirically, largely for lack of appropriate diagnostic techniques. This article presents and evaluates two procedures that can…

  16. Estimation of the latent mediated effect with ordinal data using the limited-information and Bayesian full-information approaches.

    PubMed

    Chen, Jinsong; Zhang, Dake; Choi, Jaehwa

    2015-12-01

    It is common to encounter latent variables with ordinal data in social or behavioral research. Although a mediated effect of latent variables (latent mediated effect, or LME) with ordinal data may appear to be a straightforward combination of LME with continuous data and latent variables with ordinal data, the methodological challenges to combine the two are not trivial. This research covers model structures as complex as LME and formulates both point and interval estimates of LME for ordinal data using the Bayesian full-information approach. We also combine weighted least squares (WLS) estimation with the bias-corrected bootstrapping (BCB; Efron Journal of the American Statistical Association, 82, 171-185, 1987) method or the traditional delta method as the limited-information approach. We evaluated the viability of these different approaches across various conditions through simulation studies, and provide an empirical example to illustrate the approaches. We found that the Bayesian approach with reasonably informative priors is preferred when both point and interval estimates are of interest and the sample size is 200 or above.

  17. Nurses and opioids: results of a bi-national survey on mental models regarding opioid administration in hospitals.

    PubMed

    Guest, Charlotte; Sobotka, Fabian; Karavasopoulou, Athina; Ward, Stephen; Bantel, Carsten

    2017-01-01

    Pain remains insufficiently treated in hospitals. Increasing evidence suggests human factors contribute to this, due to nurses failing to administer opioids. This behavior might be the consequence of nurses' mental models about opioids. As personal experience and conceptions shape these models, the aim of this prospective survey was to identify model-influencing factors. A questionnaire was developed comprising of 14 statements concerning ideations about opioids and seven questions concerning demographics, indicators of adult learning, and strength of religious beliefs. Latent variables that may underlie nurses' mental models were identified using undirected graphical dependence models. Representative items of latent variables were employed for ordinal regression analysis. Questionnaires were distributed to 1,379 nurses in two London, UK, hospitals (n=580) and one German (n=799) hospital between September 2014 and February 2015. A total of 511 (37.1%) questionnaires were returned. Mean (standard deviation) age of participants were 37 (11) years; 83.5% participants were female; 45.2% worked in critical care; and 51.5% had more than 10 years experience. Of the nurses, 84% were not scared of opioids, 87% did not regard opioids as drugs to help patients die, and 72% did not view them as drugs of abuse. More English (41%) than German (28%) nurses were afraid of criminal investigations and were constantly aware of side effects (UK, 94%; Germany, 38%) when using opioids. Four latent variables were identified which likely influence nurses' mental models: "conscious decision-making"; "medication-related fears"; "practice-based observations"; and "risk assessment". They were predicted by strength of religious beliefs and indicators of informal learning such as experience but not by indicators of formal learning such as conference attendance. Nurses in both countries employ analytical and affective mental models when administering the opioids and seem to learn from experience rather than from formal teaching. Additionally, some attitudes and emotions towards opioids are likely the result of nurses' cultural background.

  18. Differential Item Functioning in the SF-36 Physical Functioning and Mental Health Sub-Scales: A Population-Based Investigation in the Canadian Multicentre Osteoporosis Study.

    PubMed

    Lix, Lisa M; Wu, Xiuyun; Hopman, Wilma; Mayo, Nancy; Sajobi, Tolulope T; Liu, Juxin; Prior, Jerilynn C; Papaioannou, Alexandra; Josse, Robert G; Towheed, Tanveer E; Davison, K Shawn; Sawatzky, Richard

    2016-01-01

    Self-reported health status measures, like the Short Form 36-item Health Survey (SF-36), can provide rich information about the overall health of a population and its components, such as physical, mental, and social health. However, differential item functioning (DIF), which arises when population sub-groups with the same underlying (i.e., latent) level of health have different measured item response probabilities, may compromise the comparability of these measures. The purpose of this study was to test for DIF on the SF-36 physical functioning (PF) and mental health (MH) sub-scale items in a Canadian population-based sample. Study data were from the prospective Canadian Multicentre Osteoporosis Study (CaMos), which collected baseline data in 1996-1997. DIF was tested using a multiple indicators multiple causes (MIMIC) method. Confirmatory factor analysis defined the latent variable measurement model for the item responses and latent variable regression with demographic and health status covariates (i.e., sex, age group, body weight, self-perceived general health) produced estimates of the magnitude of DIF effects. The CaMos cohort consisted of 9423 respondents; 69.4% were female and 51.7% were less than 65 years. Eight of 10 items on the PF sub-scale and four of five items on the MH sub-scale exhibited DIF. Large DIF effects were observed on PF sub-scale items about vigorous and moderate activities, lifting and carrying groceries, walking one block, and bathing or dressing. On the MH sub-scale items, all DIF effects were small or moderate in size. SF-36 PF and MH sub-scale scores were not comparable across population sub-groups defined by demographic and health status variables due to the effects of DIF, although the magnitude of this bias was not large for most items. We recommend testing and adjusting for DIF to ensure comparability of the SF-36 in population-based investigations.

  19. Validation of the conceptual research utilization scale: an application of the standards for educational and psychological testing in healthcare.

    PubMed

    Squires, Janet E; Estabrooks, Carole A; Newburn-Cook, Christine V; Gierl, Mark

    2011-05-19

    There is a lack of acceptable, reliable, and valid survey instruments to measure conceptual research utilization (CRU). In this study, we investigated the psychometric properties of a newly developed scale (the CRU Scale). We used the Standards for Educational and Psychological Testing as a validation framework to assess four sources of validity evidence: content, response processes, internal structure, and relations to other variables. A panel of nine international research utilization experts performed a formal content validity assessment. To determine response process validity, we conducted a series of one-on-one scale administration sessions with 10 healthcare aides. Internal structure and relations to other variables validity was examined using CRU Scale response data from a sample of 707 healthcare aides working in 30 urban Canadian nursing homes. Principal components analysis and confirmatory factor analyses were conducted to determine internal structure. Relations to other variables were examined using: (1) bivariate correlations; (2) change in mean values of CRU with increasing levels of other kinds of research utilization; and (3) multivariate linear regression. Content validity index scores for the five items ranged from 0.55 to 1.00. The principal components analysis predicted a 5-item 1-factor model. This was inconsistent with the findings from the confirmatory factor analysis, which showed best fit for a 4-item 1-factor model. Bivariate associations between CRU and other kinds of research utilization were statistically significant (p < 0.01) for the latent CRU scale score and all five CRU items. The CRU scale score was also shown to be significant predictor of overall research utilization in multivariate linear regression. The CRU scale showed acceptable initial psychometric properties with respect to responses from healthcare aides in nursing homes. Based on our validity, reliability, and acceptability analyses, we recommend using a reduced (four-item) version of the CRU scale to yield sound assessments of CRU by healthcare aides. Refinement to the wording of one item is also needed. Planned future research will include: latent scale scoring, identification of variables that predict and are outcomes to conceptual research use, and longitudinal work to determine CRU Scale sensitivity to change.

  20. Estimating overall exposure effects for the clustered and censored outcome using random effect Tobit regression models.

    PubMed

    Wang, Wei; Griswold, Michael E

    2016-11-30

    The random effect Tobit model is a regression model that accommodates both left- and/or right-censoring and within-cluster dependence of the outcome variable. Regression coefficients of random effect Tobit models have conditional interpretations on a constructed latent dependent variable and do not provide inference of overall exposure effects on the original outcome scale. Marginalized random effects model (MREM) permits likelihood-based estimation of marginal mean parameters for the clustered data. For random effect Tobit models, we extend the MREM to marginalize over both the random effects and the normal space and boundary components of the censored response to estimate overall exposure effects at population level. We also extend the 'Average Predicted Value' method to estimate the model-predicted marginal means for each person under different exposure status in a designated reference group by integrating over the random effects and then use the calculated difference to assess the overall exposure effect. The maximum likelihood estimation is proposed utilizing a quasi-Newton optimization algorithm with Gauss-Hermite quadrature to approximate the integration of the random effects. We use these methods to carefully analyze two real datasets. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Inferring oscillatory modulation in neural spike trains

    PubMed Central

    Arai, Kensuke; Kass, Robert E.

    2017-01-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak. PMID:28985231

  2. Aggressiveness as a latent personality trait of domestic dogs: Testing local independence and measurement invariance

    PubMed Central

    2017-01-01

    Studies of animal personality attempt to uncover underlying or “latent” personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4–10 months, 10 months–3 years, 3–6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate “aggressive personality” trait attributions can be costly to dogs, recipients of aggression and society in general. PMID:28854267

  3. Association of Stressful Life Events with Psychological Problems: A Large-Scale Community-Based Study Using Grouped Outcomes Latent Factor Regression with Latent Predictors

    PubMed Central

    Hassanzadeh, Akbar; Heidari, Zahra; Hassanzadeh Keshteli, Ammar; Afshar, Hamid

    2017-01-01

    Objective The current study is aimed at investigating the association between stressful life events and psychological problems in a large sample of Iranian adults. Method In a cross-sectional large-scale community-based study, 4763 Iranian adults, living in Isfahan, Iran, were investigated. Grouped outcomes latent factor regression on latent predictors was used for modeling the association of psychological problems (depression, anxiety, and psychological distress), measured by Hospital Anxiety and Depression Scale (HADS) and General Health Questionnaire (GHQ-12), as the grouped outcomes, and stressful life events, measured by a self-administered stressful life events (SLEs) questionnaire, as the latent predictors. Results The results showed that the personal stressors domain has significant positive association with psychological distress (β = 0.19), anxiety (β = 0.25), depression (β = 0.15), and their collective profile score (β = 0.20), with greater associations in females (β = 0.28) than in males (β = 0.13) (all P < 0.001). In addition, in the adjusted models, the regression coefficients for the association of social stressors domain and psychological problems profile score were 0.37, 0.35, and 0.46 in total sample, males, and females, respectively (P < 0.001). Conclusion Results of our study indicated that different stressors, particularly those socioeconomic related, have an effective impact on psychological problems. It is important to consider the social and cultural background of a population for managing the stressors as an effective approach for preventing and reducing the destructive burden of psychological problems. PMID:29312459

  4. Using Instrumental Variable (IV) Tests to Evaluate Model Specification in Latent Variable Structural Equation Models*

    PubMed Central

    Kirby, James B.; Bollen, Kenneth A.

    2009-01-01

    Structural Equation Modeling with latent variables (SEM) is a powerful tool for social and behavioral scientists, combining many of the strengths of psychometrics and econometrics into a single framework. The most common estimator for SEM is the full-information maximum likelihood estimator (ML), but there is continuing interest in limited information estimators because of their distributional robustness and their greater resistance to structural specification errors. However, the literature discussing model fit for limited information estimators for latent variable models is sparse compared to that for full information estimators. We address this shortcoming by providing several specification tests based on the 2SLS estimator for latent variable structural equation models developed by Bollen (1996). We explain how these tests can be used to not only identify a misspecified model, but to help diagnose the source of misspecification within a model. We present and discuss results from a Monte Carlo experiment designed to evaluate the finite sample properties of these tests. Our findings suggest that the 2SLS tests successfully identify most misspecified models, even those with modest misspecification, and that they provide researchers with information that can help diagnose the source of misspecification. PMID:20419054

  5. Matrix completion by deep matrix factorization.

    PubMed

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Impact of marriage on HIV/AIDS risk behaviors among impoverished, at-risk couples: a multilevel latent variable approach.

    PubMed

    Stein, Judith A; Nyamathi, Adeline; Ullman, Jodie B; Bentler, Peter M

    2007-01-01

    Studies among normative samples generally demonstrate a positive impact of marriage on health behaviors and other related attitudes. In this study, we examine the impact of marriage on HIV/AIDS risk behaviors and attitudes among impoverished, highly stressed, homeless couples, many with severe substance abuse problems. A multilevel analysis of 368 high-risk sexually intimate married and unmarried heterosexual couples assessed individual and couple-level effects on social support, substance use problems, HIV/AIDS knowledge, perceived HIV/AIDS risk, needle-sharing, condom use, multiple sex partners, and HIV/AIDS testing. More variance was explained in the protective and risk variables by couple-level latent variable predictors than by individual latent variable predictors, although some gender effects were found (e.g., more alcohol problems among men). The couple-level variable of marriage predicted lower perceived risk, less deviant social support, and fewer sex partners but predicted more needle-sharing.

  7. A gap-filling model for eddy covariance latent heat flux: Estimating evapotranspiration of a subtropical seasonal evergreen broad-leaved forest as an example

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ying; Chu, Chia-Ren; Li, Ming-Hsu

    2012-10-01

    SummaryIn this paper we present a semi-parametric multivariate gap-filling model for tower-based measurement of latent heat flux (LE). Two statistical techniques, the principal component analysis (PCA) and a nonlinear interpolation approach were integrated into this LE gap-filling model. The PCA was first used to resolve the multicollinearity relationships among various environmental variables, including radiation, soil moisture deficit, leaf area index, wind speed, etc. Two nonlinear interpolation methods, multiple regressions (MRS) and the K-nearest neighbors (KNNs) were examined with random selected flux gaps for both clear sky and nighttime/cloudy data to incorporate into this LE gap-filling model. Experimental results indicated that the KNN interpolation approach is able to provide consistent LE estimations while MRS presents over estimations during nighttime/cloudy. Rather than using empirical regression parameters, the KNN approach resolves the nonlinear relationship between the gap-filled LE flux and principal components with adaptive K values under different atmospheric states. The developed LE gap-filling model (PCA with KNN) works with a RMSE of 2.4 W m-2 (˜0.09 mm day-1) at a weekly time scale by adding 40% artificial flux gaps into original dataset. Annual evapotranspiration at this study site were estimated at 736 mm (1803 MJ) and 728 mm (1785 MJ) for year 2008 and 2009, respectively.

  8. Predicting completion of treatment among foreign-born adolescents treated for latent tuberculosis infection in Los Angeles.

    PubMed

    Coly, A; Morisky, D

    2004-06-01

    Two health clinics in Los Angeles County, California. To identify factors associated with completion of care among foreign-born adolescents treated for latent tuberculosis infection (LTBI). A total of 766 low-income adolescents (79% participation rate), including 610 foreign-born, were recruited. In prospective face-to-face interviews, data were obtained on socio-demographic and lifestyle characteristics, psychosocial factors and clinic-related variables. Medical chart data were abstracted regarding clinic appointment keeping and completion of treatment. Univariate and multivariate logistic regression analyses were performed to identify factors associated with completion of care. Foreign-born adolescents were more likely to complete care than US-born adolescents, with 82% completion of care rate. In logistic regression analyses after controlling for age, medication taking behavior (OR 1.26, 95%CI 1.15-1.39), living with both parents (OR 1.74, 95%CI 1.02-2.97), sexual intercourse (OR 0.66, 95%CI 0.36-1.19) and speaking mostly or only English with parents (OR 0.39, 95%CI 0.15-1.03) were independently associated with completion of care. These findings contribute to our understanding of the factors that may explain why some adolescents complete care whereas others do not. They provide supportive evidence that tailored intervention programs should be developed to support the screening and completion of treatment of foreign-born adolescents.

  9. Abstract: Inference and Interval Estimation for Indirect Effects With Latent Variable Models.

    PubMed

    Falk, Carl F; Biesanz, Jeremy C

    2011-11-30

    Models specifying indirect effects (or mediation) and structural equation modeling are both popular in the social sciences. Yet relatively little research has compared methods that test for indirect effects among latent variables and provided precise estimates of the effectiveness of different methods. This simulation study provides an extensive comparison of methods for constructing confidence intervals and for making inferences about indirect effects with latent variables. We compared the percentile (PC) bootstrap, bias-corrected (BC) bootstrap, bias-corrected accelerated (BC a ) bootstrap, likelihood-based confidence intervals (Neale & Miller, 1997), partial posterior predictive (Biesanz, Falk, and Savalei, 2010), and joint significance tests based on Wald tests or likelihood ratio tests. All models included three reflective latent variables representing the independent, dependent, and mediating variables. The design included the following fully crossed conditions: (a) sample size: 100, 200, and 500; (b) number of indicators per latent variable: 3 versus 5; (c) reliability per set of indicators: .7 versus .9; (d) and 16 different path combinations for the indirect effect (α = 0, .14, .39, or .59; and β = 0, .14, .39, or .59). Simulations were performed using a WestGrid cluster of 1680 3.06GHz Intel Xeon processors running R and OpenMx. Results based on 1,000 replications per cell and 2,000 resamples per bootstrap method indicated that the BC and BC a bootstrap methods have inflated Type I error rates. Likelihood-based confidence intervals and the PC bootstrap emerged as methods that adequately control Type I error and have good coverage rates.

  10. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study.

    PubMed

    Stenbæk, Dea Siggaard; Dam, Vibeke Høyrup; Fisher, Patrick MacDonald; Hansen, Nanna; Hjordt, Liv Vadskjær; Frokjaer, Vibe Gedsoe

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17) or the latent construct of global 5-HT4R levels (all p-values > .37). Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits.

  11. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study

    PubMed Central

    Fisher, Patrick MacDonald; Hansen, Nanna; Hjordt, Liv Vadskjær; Frokjaer, Vibe Gedsoe

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17) or the latent construct of global 5-HT4R levels (all p-values > .37). Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits. PMID:28880910

  12. Evaluating aggregate effects of rare and common variants in the 1000 Genomes Project exon sequencing data using latent variable structural equation modeling.

    PubMed

    Nock, Nl; Zhang, Lx

    2011-11-29

    Methods that can evaluate aggregate effects of rare and common variants are limited. Therefore, we applied a two-stage approach to evaluate aggregate gene effects in the 1000 Genomes Project data, which contain 24,487 single-nucleotide polymorphisms (SNPs) in 697 unrelated individuals from 7 populations. In stage 1, we identified potentially interesting genes (PIGs) as those having at least one SNP meeting Bonferroni correction using univariate, multiple regression models. In stage 2, we evaluate aggregate PIG effects on trait, Q1, by modeling each gene as a latent construct, which is defined by multiple common and rare variants, using the multivariate statistical framework of structural equation modeling (SEM). In stage 1, we found that PIGs varied markedly between a randomly selected replicate (replicate 137) and 100 other replicates, with the exception of FLT1. In stage 1, collapsing rare variants decreased false positives but increased false negatives. In stage 2, we developed a good-fitting SEM model that included all nine genes simulated to affect Q1 (FLT1, KDR, ARNT, ELAV4, FLT4, HIF1A, HIF3A, VEGFA, VEGFC) and found that FLT1 had the largest effect on Q1 (βstd = 0.33 ± 0.05). Using replicate 137 estimates as population values, we found that the mean relative bias in the parameters (loadings, paths, residuals) and their standard errors across 100 replicates was on average, less than 5%. Our latent variable SEM approach provides a viable framework for modeling aggregate effects of rare and common variants in multiple genes, but more elegant methods are needed in stage 1 to minimize type I and type II error.

  13. Psychometrics in Psychological Research: Role Model or Partner in Science?

    ERIC Educational Resources Information Center

    Sijtsma, Klaas

    2006-01-01

    This is a reaction to Borsboom's (2006) discussion paper on the issue that psychology takes so little notice of the modern developments in psychometrics, in particular, latent variable methods. Contrary to Borsboom, it is argued that latent variables are summaries of interesting data properties, that construct validation should involve studying…

  14. An Alternative Approach for Nonlinear Latent Variable Models

    ERIC Educational Resources Information Center

    Mooijaart, Ab; Bentler, Peter M.

    2010-01-01

    In the last decades there has been an increasing interest in nonlinear latent variable models. Since the seminal paper of Kenny and Judd, several methods have been proposed for dealing with these kinds of models. This article introduces an alternative approach. The methodology involves fitting some third-order moments in addition to the means and…

  15. Using Structural Equation Models with Latent Variables to Study Student Growth and Development.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1991-01-01

    Analysis of data on freshman-to-senior developmental gains in 722 University of Tennessee-Knoxville students provides evidence of the advantages of structural equation modeling with latent variables and suggests that the group differences identified by traditional analysis of variance and covariance techniques may be an artifact of measurement…

  16. Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…

  17. Aptitude, Achievement and Competence in Medicine: A Latent Variable Path Model

    ERIC Educational Resources Information Center

    Collin, V. Terri; Violato, Claudio; Hecker, Kent

    2009-01-01

    To develop and test a latent variable path model of general achievement, aptitude for medicine and competence in medicine employing data from the Medical College Admission Test (MCAT), pre-medical undergraduate grade point average (UGPA) and demographic characteristics for competence in pre-clinical and measures of competence (United States…

  18. Evaluation of Reliability Coefficients for Two-Level Models via Latent Variable Analysis

    ERIC Educational Resources Information Center

    Raykov, Tenko; Penev, Spiridon

    2010-01-01

    A latent variable analysis procedure for evaluation of reliability coefficients for 2-level models is outlined. The method provides point and interval estimates of group means' reliability, overall reliability of means, and conditional reliability. In addition, the approach can be used to test simple hypotheses about these parameters. The…

  19. Evaluation of Scale Reliability with Binary Measures Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; Asparouhov, Tihomir

    2010-01-01

    A method for interval estimation of scale reliability with discrete data is outlined. The approach is applicable with multi-item instruments consisting of binary measures, and is developed within the latent variable modeling methodology. The procedure is useful for evaluation of consistency of single measures and of sum scores from item sets…

  20. Estimation of Latent Group Effects: Psychometric Technical Report No. 2.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.

    Conventional methods of multivariate normal analysis do not apply when the variables of interest are not observed directly, but must be inferred from fallible or incomplete data. For example, responses to mental test items may depend upon latent aptitude variables, which modeled in turn as functions of demographic effects in the population. A…

  1. Global Convergence of the EM Algorithm for Unconstrained Latent Variable Models with Categorical Indicators

    ERIC Educational Resources Information Center

    Weissman, Alexander

    2013-01-01

    Convergence of the expectation-maximization (EM) algorithm to a global optimum of the marginal log likelihood function for unconstrained latent variable models with categorical indicators is presented. The sufficient conditions under which global convergence of the EM algorithm is attainable are provided in an information-theoretic context by…

  2. Intraclass Correlation Coefficients in Hierarchical Designs: Evaluation Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2011-01-01

    Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…

  3. Evaluation of Weighted Scale Reliability and Criterion Validity: A Latent Variable Modeling Approach

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2007-01-01

    A method is outlined for evaluating the reliability and criterion validity of weighted scales based on sets of unidimensional measures. The approach is developed within the framework of latent variable modeling methodology and is useful for point and interval estimation of these measurement quality coefficients in counseling and education…

  4. Multilevel Latent Class Analysis: Parametric and Nonparametric Models

    ERIC Educational Resources Information Center

    Finch, W. Holmes; French, Brian F.

    2014-01-01

    Latent class analysis is an analytic technique often used in educational and psychological research to identify meaningful groups of individuals within a larger heterogeneous population based on a set of variables. This technique is flexible, encompassing not only a static set of variables but also longitudinal data in the form of growth mixture…

  5. Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion

    NASA Astrophysics Data System (ADS)

    Hamid, M. R. Ab; Sami, W.; Mohmad Sidek, M. H.

    2017-09-01

    Assessment of discriminant validity is a must in any research that involves latent variables for the prevention of multicollinearity issues. Fornell and Larcker criterion is the most widely used method for this purpose. However, a new method has emerged for establishing the discriminant validity assessment through heterotrait-monotrait (HTMT) ratio of correlations method. Therefore, this article presents the results of discriminant validity assessment using these methods. Data from previous study was used that involved 429 respondents for empirical validation of value-based excellence model in higher education institutions (HEI) in Malaysia. From the analysis, the convergent, divergent and discriminant validity were established and admissible using Fornell and Larcker criterion. However, the discriminant validity is an issue when employing the HTMT criterion. This shows that the latent variables under study faced the issue of multicollinearity and should be looked into for further details. This also implied that the HTMT criterion is a stringent measure that could detect the possible indiscriminant among the latent variables. In conclusion, the instrument which consisted of six latent variables was still lacking in terms of discriminant validity and should be explored further.

  6. Testing Specific Hypotheses Concerning Latent Group Differences in Multi-group Covariance Structure Analysis with Structured Means.

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Molenaar, Peter C. M.

    1994-01-01

    In multigroup covariance structure analysis with structured means, the traditional latent selection model is formulated as a special case of phenotypic selection. Illustrations with real and simulated data demonstrate how one can test specific hypotheses concerning selection on latent variables. (SLD)

  7. Spurious Latent Classes in the Mixture Rasch Model

    ERIC Educational Resources Information Center

    Alexeev, Natalia; Templin, Jonathan; Cohen, Allan S.

    2011-01-01

    Mixture Rasch models have been used to study a number of psychometric issues such as goodness of fit, response strategy differences, strategy shifts, and multidimensionality. Although these models offer the potential for improving understanding of the latent variables being measured, under some conditions overextraction of latent classes may…

  8. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

    ERIC Educational Resources Information Center

    Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

    2013-01-01

    Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

  9. A new model of wheezing severity in young children using the validated ISAAC wheezing module: A latent variable approach with validation in independent cohorts.

    PubMed

    Brunwasser, Steven M; Gebretsadik, Tebeb; Gold, Diane R; Turi, Kedir N; Stone, Cosby A; Datta, Soma; Gern, James E; Hartert, Tina V

    2018-01-01

    The International Study of Asthma and Allergies in Children (ISAAC) Wheezing Module is commonly used to characterize pediatric asthma in epidemiological studies, including nearly all airway cohorts participating in the Environmental Influences on Child Health Outcomes (ECHO) consortium. However, there is no consensus model for operationalizing wheezing severity with this instrument in explanatory research studies. Severity is typically measured using coarsely-defined categorical variables, reducing power and potentially underestimating etiological associations. More precise measurement approaches could improve testing of etiological theories of wheezing illness. We evaluated a continuous latent variable model of pediatric wheezing severity based on four ISAAC Wheezing Module items. Analyses included subgroups of children from three independent cohorts whose parents reported past wheezing: infants ages 0-2 in the INSPIRE birth cohort study (Cohort 1; n = 657), 6-7-year-old North American children from Phase One of the ISAAC study (Cohort 2; n = 2,765), and 5-6-year-old children in the EHAAS birth cohort study (Cohort 3; n = 102). Models were estimated using structural equation modeling. In all cohorts, covariance patterns implied by the latent variable model were consistent with the observed data, as indicated by non-significant χ2 goodness of fit tests (no evidence of model misspecification). Cohort 1 analyses showed that the latent factor structure was stable across time points and child sexes. In both cohorts 1 and 3, the latent wheezing severity variable was prospectively associated with wheeze-related clinical outcomes, including physician asthma diagnosis, acute corticosteroid use, and wheeze-related outpatient medical visits when adjusting for confounders. We developed an easily applicable continuous latent variable model of pediatric wheezing severity based on items from the well-validated ISAAC Wheezing Module. This model prospectively associates with asthma morbidity, as demonstrated in two ECHO birth cohort studies, and provides a more statistically powerful method of testing etiologic hypotheses of childhood wheezing illness and asthma.

  10. Trajectories of Substance Use Disorders in Youth: Identifying and Predicting Group Memberships

    ERIC Educational Resources Information Center

    Lee, Chih-Yuan S.; Winters, Ken C.; Wall, Melanie M.

    2010-01-01

    This study used latent class regression to identify latent trajectory classes based on individuals' diagnostic course of substance use disorders (SUDs) from late adolescence to early adulthood as well as to examine whether several psychosocial risk factors predicted the trajectory class membership. The study sample consisted of 310 individuals…

  11. An Overview of Longitudinal Data Analysis Methods for Neurological Research

    PubMed Central

    Locascio, Joseph J.; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models. PMID:22203825

  12. Three Cs in measurement models: causal indicators, composite indicators, and covariates.

    PubMed

    Bollen, Kenneth A; Bauldry, Shawn

    2011-09-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the "Three Cs"). Causal indicators have conceptual unity, and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variables. Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects, and composites are a matter of convenience. The failure to distinguish the Three Cs has led to confusion and questions, such as, Are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points.

  13. Using structural equation modeling to investigate relationships among ecological variables

    USGS Publications Warehouse

    Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.

    2000-01-01

    Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0.1258. Natural variability had a positive direct effect on biodiversity of magnitude 0.5347 and a negative indirect effect mediated through growth potential of magnitude -0.1105 yielding a positive total effects of magnitude 0.4242. Sediment contamination had a negative direct effect on biodiversity of magnitude -0.1956 and a negative indirect effect on growth potential via biodiversity of magnitude -0.067. Biodiversity had a positive effect on growth potential of magnitude 0.8432, and growth potential had a positive effect on biodiversity of magnitude 0.3398. The correlation between biodiversity and growth potential was estimated at 0.7658 and that between sediment contamination and natural variability at -0.3769.

  14. A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.

    2012-01-01

    A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…

  15. The Relationship between Executive Functions and Language Abilities in Children: A Latent Variables Approach

    ERIC Educational Resources Information Center

    Kaushanskaya, Margarita; Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M.; Weismer, Susan Ellis

    2017-01-01

    Purpose: We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Method: Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF…

  16. The Benefits of Latent Variable Modeling to Develop Norms for a Translated Version of a Standardized Scale

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Shaw, Leslie A.; Shogren, Karrie A.; Lang, Kyle M.; Little, Todd D.

    2017-01-01

    This article demonstrates the use of structural equation modeling to develop norms for a translated version of a standardized scale, the Supports Intensity Scale-Children's Version (SIS-C). The latent variable norming method proposed is useful when the standardization sample for a translated version is relatively small to derive norms…

  17. Interrater Agreement Evaluation: A Latent Variable Modeling Approach

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; von Eye, Alexander; Marcoulides, George A.

    2013-01-01

    A latent variable modeling method for evaluation of interrater agreement is outlined. The procedure is useful for point and interval estimation of the degree of agreement among a given set of judges evaluating a group of targets. In addition, the approach allows one to test for identity in underlying thresholds across raters as well as to identify…

  18. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  19. Cognitive Preconditions of Early Reading and Spelling: A Latent-Variable Approach with Longitudinal Data

    ERIC Educational Resources Information Center

    Preßler, Anna-Lena; Könen, Tanja; Hasselhorn, Marcus; Krajewski, Kristin

    2014-01-01

    The aim of the present study was to empirically disentangle the interdependencies of the impact of nonverbal intelligence, working memory capacities, and phonological processing skills on early reading decoding and spelling within a latent variable approach. In a sample of 127 children, these cognitive preconditions were assessed before the onset…

  20. An Alternative Two Stage Least Squares (2SLS) Estimator for Latent Variable Equations.

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.

    1996-01-01

    An alternative two-stage least squares (2SLS) estimator of the parameters in LISREL type models is proposed and contrasted with existing estimators. The new 2SLS estimator allows observed and latent variables to originate from nonnormal distributions, is consistent, has a known asymptotic covariance matrix, and can be estimated with standard…

  1. Classical Item Analysis Using Latent Variable Modeling: A Note on a Direct Evaluation Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2011-01-01

    A directly applicable latent variable modeling procedure for classical item analysis is outlined. The method allows one to point and interval estimate item difficulty, item correlations, and item-total correlations for composites consisting of categorical items. The approach is readily employed in empirical research and as a by-product permits…

  2. A Direct Latent Variable Modeling Based Method for Point and Interval Estimation of Coefficient Alpha

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A direct approach to point and interval estimation of Cronbach's coefficient alpha for multiple component measuring instruments is outlined. The procedure is based on a latent variable modeling application with widely circulated software. As a by-product, using sample data the method permits ascertaining whether the population discrepancy…

  3. Introduction to the special section on mixture modeling in personality assessment.

    PubMed

    Wright, Aidan G C; Hallquist, Michael N

    2014-01-01

    Latent variable models offer a conceptual and statistical framework for evaluating the underlying structure of psychological constructs, including personality and psychopathology. Complex structures that combine or compare categorical and dimensional latent variables can be accommodated using mixture modeling approaches, which provide a powerful framework for testing nuanced theories about psychological structure. This special series includes introductory primers on cross-sectional and longitudinal mixture modeling, in addition to empirical examples applying these techniques to real-world data collected in clinical settings. This group of articles is designed to introduce personality assessment scientists and practitioners to a general latent variable framework that we hope will stimulate new research and application of mixture models to the assessment of personality and its pathology.

  4. Assets as a Socioeconomic Status Index: Categorical Principal Components Analysis vs. Latent Class Analysis.

    PubMed

    Sartipi, Majid; Nedjat, Saharnaz; Mansournia, Mohammad Ali; Baigi, Vali; Fotouhi, Akbar

    2016-11-01

    Some variables like Socioeconomic Status (SES) cannot be directly measured, instead, so-called 'latent variables' are measured indirectly through calculating tangible items. There are different methods for measuring latent variables such as data reduction methods e.g. Principal Components Analysis (PCA) and Latent Class Analysis (LCA). The purpose of our study was to measure assets index- as a representative of SES- through two methods of Non-Linear PCA (NLPCA) and LCA, and to compare them for choosing the most appropriate model. This was a cross sectional study in which 1995 respondents filled the questionnaires about their assets in Tehran. The data were analyzed by SPSS 19 (CATPCA command) and SAS 9.2 (PROC LCA command) to estimate their socioeconomic status. The results were compared based on the Intra-class Correlation Coefficient (ICC). The 6 derived classes from LCA based on BIC, were highly consistent with the 6 classes from CATPCA (Categorical PCA) (ICC = 0.87, 95%CI: 0.86 - 0.88). There is no gold standard to measure SES. Therefore, it is not possible to definitely say that a specific method is better than another one. LCA is a complicated method that presents detailed information about latent variables and required one assumption (local independency), while NLPCA is a simple method, which requires more assumptions. Generally, NLPCA seems to be an acceptable method of analysis because of its simplicity and high agreement with LCA.

  5. Variable-Length Computerized Adaptive Testing Using the Higher Order DINA Model

    ERIC Educational Resources Information Center

    Hsu, Chia-Ling; Wang, Wen-Chung

    2015-01-01

    Cognitive diagnosis models provide profile information about a set of latent binary attributes, whereas item response models yield a summary report on a latent continuous trait. To utilize the advantages of both models, higher order cognitive diagnosis models were developed in which information about both latent binary attributes and latent…

  6. Testing Manifest Monotonicity Using Order-Constrained Statistical Inference

    ERIC Educational Resources Information Center

    Tijmstra, Jesper; Hessen, David J.; van der Heijden, Peter G. M.; Sijtsma, Klaas

    2013-01-01

    Most dichotomous item response models share the assumption of latent monotonicity, which states that the probability of a positive response to an item is a nondecreasing function of a latent variable intended to be measured. Latent monotonicity cannot be evaluated directly, but it implies manifest monotonicity across a variety of observed scores,…

  7. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    PubMed Central

    Bollen, Kenneth A.; Bauldry, Shawn

    2013-01-01

    In the last two decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that we can classify indicators into two categories, effect (reflective) indicators and causal (formative) indicators. This paper argues that the dichotomous view is too simple. Instead, there are effect indicators and three types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the “three Cs”). Causal indicators have conceptual unity and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variable(s). Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects and composites are a matter of convenience. The failure to distinguish the “three Cs” has led to confusion and questions such as: are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points. PMID:21767021

  8. Many-level multilevel structural equation modeling: An efficient evaluation strategy.

    PubMed

    Pritikin, Joshua N; Hunter, Michael D; von Oertzen, Timo; Brick, Timothy R; Boker, Steven M

    2017-01-01

    Structural equation models are increasingly used for clustered or multilevel data in cases where mixed regression is too inflexible. However, when there are many levels of nesting, these models can become difficult to estimate. We introduce a novel evaluation strategy, Rampart, that applies an orthogonal rotation to the parts of a model that conform to commonly met requirements. This rotation dramatically simplifies fit evaluation in a way that becomes more potent as the size of the data set increases. We validate and evaluate the implementation using a 3-level latent regression simulation study. Then we analyze data from a state-wide child behavioral health measure administered by the Oklahoma Department of Human Services. We demonstrate the efficiency of Rampart compared to other similar software using a latent factor model with a 5-level decomposition of latent variance. Rampart is implemented in OpenMx, a free and open source software.

  9. Latent change models of adult cognition: are changes in processing speed and working memory associated with changes in episodic memory?

    PubMed

    Hertzog, Christopher; Dixon, Roger A; Hultsch, David F; MacDonald, Stuart W S

    2003-12-01

    The authors used 6-year longitudinal data from the Victoria Longitudinal Study (VLS) to investigate individual differences in amount of episodic memory change. Latent change models revealed reliable individual differences in cognitive change. Changes in episodic memory were significantly correlated with changes in other cognitive variables, including speed and working memory. A structural equation model for the latent change scores showed that changes in speed and working memory predicted changes in episodic memory, as expected by processing resource theory. However, these effects were best modeled as being mediated by changes in induction and fact retrieval. Dissociations were detected between cross-sectional ability correlations and longitudinal changes. Shuffling the tasks used to define the Working Memory latent variable altered patterns of change correlations.

  10. Growth Modeling with Non-Ignorable Dropout: Alternative Analyses of the STAR*D Antidepressant Trial

    PubMed Central

    Muthén, Bengt; Asparouhov, Tihomir; Hunter, Aimee; Leuchter, Andrew

    2011-01-01

    This paper uses a general latent variable framework to study a series of models for non-ignorable missingness due to dropout. Non-ignorable missing data modeling acknowledges that missingness may depend on not only covariates and observed outcomes at previous time points as with the standard missing at random (MAR) assumption, but also on latent variables such as values that would have been observed (missing outcomes), developmental trends (growth factors), and qualitatively different types of development (latent trajectory classes). These alternative predictors of missing data can be explored in a general latent variable framework using the Mplus program. A flexible new model uses an extended pattern-mixture approach where missingness is a function of latent dropout classes in combination with growth mixture modeling using latent trajectory classes. A new selection model allows not only an influence of the outcomes on missingness, but allows this influence to vary across latent trajectory classes. Recommendations are given for choosing models. The missing data models are applied to longitudinal data from STAR*D, the largest antidepressant clinical trial in the U.S. to date. Despite the importance of this trial, STAR*D growth model analyses using non-ignorable missing data techniques have not been explored until now. The STAR*D data are shown to feature distinct trajectory classes, including a low class corresponding to substantial improvement in depression, a minority class with a U-shaped curve corresponding to transient improvement, and a high class corresponding to no improvement. The analyses provide a new way to assess drug efficiency in the presence of dropout. PMID:21381817

  11. Developing a Tool for Measuring the Decision-Making Competence of Older Adults

    PubMed Central

    Finucane, Melissa L.; Gullion, Christina M.

    2010-01-01

    The authors evaluated the reliability and validity of a tool for measuring older adults’ decision-making competence (DMC). Two-hundred-five younger adults (25-45 years), 208 young-older adults (65-74 years), and 198 old-older adults (75-97 years) made judgments and decisions related to health, finance, and nutrition. Reliable indices of comprehension, dimension weighting, and cognitive reflection were developed. Unlike previous research, the authors were able to compare old-older with young-older adults’ performance. As hypothesized, old-older adults performed more poorly than young-older adults; both groups of older adults performed more poorly than younger adults. Hierarchical regression analyses showed that a large amount of variance in decision performance across age groups (including mean trends) could be accounted for by social variables, health measures, basic cognitive skills, attitudinal measures, and numeracy. Structural equation modeling revealed significant pathways from three exogenous latent factors (crystallized intelligence, other cognitive abilities, and age) to the endogenous DMC latent factor. Further research is needed to validate the meaning of performance on these tasks for real-life decision making. PMID:20545413

  12. From prenatal anxiety to parenting stress: a longitudinal study.

    PubMed

    Huizink, A C; Menting, B; De Moor, M H M; Verhage, M L; Kunseler, F C; Schuengel, C; Oosterman, M

    2017-10-01

    The objective of this study was to explore how maternal mood during pregnancy, i.e., general anxiety, pregnancy-specific anxiety, and depression predicted parenting stress 3 months after giving birth, thereby shaping the child's early postnatal environmental circumstances. To this end, data were used from 1073 women participating in the Dutch longitudinal cohort Generations 2 , which studies first-time pregnant mothers during pregnancy and across the transition to parenthood. Women filled out the State Trait Anxiety Inventory (STAI), Pregnancy-Related Anxiety Questionnaire-revised (PRAQ-R), and Beck Depression Index (BDI) three times during pregnancy: at 12, 22, and 32 weeks gestational age. Three months postpartum, a parenting stress questionnaire was filled out yielding seven different parenting constructs. Latent scores were computed for each of the repeatedly measured maternal mood variables with Mplus and parenting stress constructs were simultaneously regressed on these latent scores. Results showed that trait anxiety and pregnancy-specific anxiety were uniquely related to almost all parenting stress constructs, taking depression into account. Early prevention and intervention to reduce maternal anxiety in pregnancy could hold the key for a more advantageous trajectory of early postnatal parenting.

  13. Understanding planning ability measured by the Tower of London: an evaluation of its internal structure by latent variable modeling.

    PubMed

    Koppenol-Gonzalez, Gabriela V; Bouwmeester, Samantha; Boonstra, A Marije

    2010-12-01

    The Tower of London (TOL) is a widely used instrument for assessing planning ability. Inhibition and (spatial) working memory are assumed to contribute to performance on the TOL, but findings about the relationship between these cognitive processes are often inconsistent. Moreover, the influence of specific properties of TOL problems on cognitive processes and difficulty level is often not taken into account. Furthermore, it may be expected that several planning strategies can be distinguished that cannot be extracted from the total score. In this study, a factor analysis and a latent class regression analysis were performed to address these issues. The results showed that 4 strategy groups that differed with respect to preplanning time could be distinguished. The effect of problem properties also differed for the 4 groups. Additional analyses showed that the groups differed on average planning performance but that there were no significant differences between inhibition and spatial working memory performance. Finally, it seemed that multiple factors influence performance on the TOL, the most important ones being the score measurements, the problem properties, and strategy use.

  14. Methods for integrating moderation and mediation: a general analytical framework using moderated path analysis.

    PubMed

    Edwards, Jeffrey R; Lambert, Lisa Schurer

    2007-03-01

    Studies that combine moderation and mediation are prevalent in basic and applied psychology research. Typically, these studies are framed in terms of moderated mediation or mediated moderation, both of which involve similar analytical approaches. Unfortunately, these approaches have important shortcomings that conceal the nature of the moderated and the mediated effects under investigation. This article presents a general analytical framework for combining moderation and mediation that integrates moderated regression analysis and path analysis. This framework clarifies how moderator variables influence the paths that constitute the direct, indirect, and total effects of mediated models. The authors empirically illustrate this framework and give step-by-step instructions for estimation and interpretation. They summarize the advantages of their framework over current approaches, explain how it subsumes moderated mediation and mediated moderation, and describe how it can accommodate additional moderator and mediator variables, curvilinear relationships, and structural equation models with latent variables. (c) 2007 APA, all rights reserved.

  15. Partial Granger causality--eliminating exogenous inputs and latent variables.

    PubMed

    Guo, Shuixia; Seth, Anil K; Kendrick, Keith M; Zhou, Cong; Feng, Jianfeng

    2008-07-15

    Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.

  16. The Fixed-Links Model in Combination with the Polynomial Function as a Tool for Investigating Choice Reaction Time Data

    ERIC Educational Resources Information Center

    Schweizer, Karl

    2006-01-01

    A model with fixed relations between manifest and latent variables is presented for investigating choice reaction time data. The numbers for fixation originate from the polynomial function. Two options are considered: the component-based (1 latent variable for each component of the polynomial function) and composite-based options (1 latent…

  17. Estimation of Contextual Effects through Nonlinear Multilevel Latent Variable Modeling with a Metropolis-Hastings Robbins-Monro Algorithm

    ERIC Educational Resources Information Center

    Yang, Ji Seung; Cai, Li

    2014-01-01

    The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…

  18. On the Benefits of Latent Variable Modeling for Norming Scales: The Case of the "Supports Intensity Scale-Children's Version"

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M.

    2016-01-01

    Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…

  19. Do Two or More Multicomponent Instruments Measure the Same Construct? Testing Construct Congruence Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Tong, Bing

    2016-01-01

    A latent variable modeling procedure is discussed that can be used to test if two or more homogeneous multicomponent instruments with distinct components are measuring the same underlying construct. The method is widely applicable in scale construction and development research and can also be of special interest in construct validation studies.…

  20. Improvement in latent variable indirect response modeling of multiple categorical clinical endpoints: application to modeling of guselkumab treatment effects in psoriatic patients.

    PubMed

    Hu, Chuanpu; Randazzo, Bruce; Sharma, Amarnath; Zhou, Honghui

    2017-10-01

    Exposure-response modeling plays an important role in optimizing dose and dosing regimens during clinical drug development. The modeling of multiple endpoints is made possible in part by recent progress in latent variable indirect response (IDR) modeling for ordered categorical endpoints. This manuscript aims to investigate the level of improvement achievable by jointly modeling two such endpoints in the latent variable IDR modeling framework through the sharing of model parameters. This is illustrated with an application to the exposure-response of guselkumab, a human IgG1 monoclonal antibody in clinical development that blocks IL-23. A Phase 2b study was conducted in 238 patients with psoriasis for which disease severity was assessed using Psoriasis Area and Severity Index (PASI) and Physician's Global Assessment (PGA) scores. A latent variable Type I IDR model was developed to evaluate the therapeutic effect of guselkumab dosing on 75, 90 and 100% improvement of PASI scores from baseline and PGA scores, with placebo effect empirically modeled. The results showed that the joint model is able to describe the observed data better with fewer parameters compared with the common approach of separately modeling the endpoints.

  1. Construct validity evidence for the Male Role Norms Inventory-Short Form: A structural equation modeling approach using the bifactor model.

    PubMed

    Levant, Ronald F; Hall, Rosalie J; Weigold, Ingrid K; McCurdy, Eric R

    2016-10-01

    The construct validity of the Male Role Norms Inventory-Short Form (MRNI-SF) was assessed using a latent variable approach implemented with structural equation modeling (SEM). The MRNI-SF was specified as having a bifactor structure, and validation scales were also specified as latent variables. The latent variable approach had the advantages of separating effects of general and specific factors and controlling for some sources of measurement error. Data (N = 484) were from a diverse sample (38.8% men of color, 22.3% men of diverse sexualities) of community-dwelling and college men who responded to an online survey. The construct validity of the MRNI-SF General Traditional Masculinity Ideology factor was supported for all 4 of the proposed latent correlations with: (a) Male Role Attitudes Scale; (b) general factor of Conformity to Masculine Norms Inventory-46; (c) higher-order factor of Gender Role Conflict Scale; and (d) Personal Attributes Questionnaire-Masculinity Scale. Significant correlations with relevant other latent factors provided concurrent validity evidence for the MRNI-SF specific factors of Negativity toward Sexual Minorities, Importance of Sex, Restrictive Emotionality, and Toughness, with all 8 of the hypothesized relationships supported. However, 3 relationships concerning Dominance were not supported. (The construct validity of the remaining 2 MRNI-SF specific factors-Avoidance of Femininity and Self-Reliance through Mechanical Skills was not assessed.) Comparisons were made, and meaningful differences noted, between the latent correlations emphasized in this study and their raw variable counterparts. Results are discussed in terms of the advantages of an SEM approach and the unique characteristics of the bifactor model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Using Design-Based Latent Growth Curve Modeling with Cluster-Level Predictor to Address Dependency

    ERIC Educational Resources Information Center

    Wu, Jiun-Yu; Kwok, Oi-Man; Willson, Victor L.

    2014-01-01

    The authors compared the effects of using the true Multilevel Latent Growth Curve Model (MLGCM) with single-level regular and design-based Latent Growth Curve Models (LGCM) with or without the higher-level predictor on various criterion variables for multilevel longitudinal data. They found that random effect estimates were biased when the…

  3. A Vernacular for Linear Latent Growth Models

    ERIC Educational Resources Information Center

    Hancock, Gregory R.; Choi, Jaehwa

    2006-01-01

    In its most basic form, latent growth modeling (latent curve analysis) allows an assessment of individuals' change in a measured variable X over time. For simple linear models, as with other growth models, parameter estimates associated with the a construct (amount of X at a chosen temporal reference point) and b construct (growth in X per unit…

  4. A Latent Transition Analysis Model for Assessing Change in Cognitive Skills

    ERIC Educational Resources Information Center

    Li, Feiming; Cohen, Allan; Bottge, Brian; Templin, Jonathan

    2016-01-01

    Latent transition analysis (LTA) was initially developed to provide a means of measuring change in dynamic latent variables. In this article, we illustrate the use of a cognitive diagnostic model, the DINA model, as the measurement model in a LTA, thereby demonstrating a means of analyzing change in cognitive skills over time. An example is…

  5. Examining Measurement Invariance and Differential Item Functioning with Discrete Latent Construct Indicators: A Note on a Multiple Testing Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; Marcoulides, George A.; Li, Tatyana; Menold, Natalja

    2018-01-01

    A latent variable modeling method for studying measurement invariance when evaluating latent constructs with multiple binary or binary scored items with no guessing is outlined. The approach extends the continuous indicator procedure described by Raykov and colleagues, utilizes similarly the false discovery rate approach to multiple testing, and…

  6. Alexithymia and psychosocial problems among Italian preadolescents. A latent class analysis approach.

    PubMed

    Mannarini, Stefania; Balottin, Laura; Toldo, Irene; Gatta, Michela

    2016-10-01

    The study, conducted on Italian preadolscents aged 11 to 13 belonging to the general population, aims to investigate the relationship between the emotional functioning, namely, alexithymia, and the risk of developing behavioral and emotional problems measured using the Strength and Difficulty Questionnaire. The latent class analysis approach allowed to identify two latent variables, accounting for the internalizing (emotional symptoms and difficulties in emotional awareness) and for the externalizing problems (conduct problems and hyperactivity, problematic relationships with peers, poor prosocial behaviors and externally oriented thinking). The two latent variables featured two latent classes: the difficulty in dealing with problems and the strength to face problems that was representative of most of the healthy participants with specific gender differences. Along with the analysis of psychopathological behaviors, the study of resilience and strengths can prove to be a key step in order to develop valuable preventive approaches to tackle psychiatric disorders. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  7. Clarifying the Relationship between Impulsive Delay Discounting and Nicotine Dependence

    PubMed Central

    Amlung, Michael; MacKillop, James

    2014-01-01

    Impulsive delayed reward discounting (DRD) has been linked to nicotine dependence, but with some inconsistency. This may be related to the considerable variability in the literature with regard to the DRD assessments used, particularly in the case of reward magnitudes assessed. In addition, previous studies have often not considered concurrent substance use when examining the relationship between DRD and nicotine dependence. The current study sought to further clarify the relationship between DRD and nicotine dependence by characterizing DRD across diverse reward magnitudes and incorporating other substance use. Daily smokers (N = 933) were assessed for DRD preferences across nine reward magnitudes (delayed reward range: $2.50–$850), comorbid substance use, and relevant demographic variables (age, education, income). A significant large effect size magnitude effect was found for DRD, reflecting steeper discounting for smaller delayed rewards, but significant correlations across magnitudes also suggested similar relative levels of discounting. Principal components analysis (PCA) was used to generate a single latent index of discounting across all magnitudes that accounted for 67% of the total variance. In both correlation and regression analyses, steeper composite DRD was significantly associated with nicotine dependence severity. This relationship remained statistically significant after incorporating demographic variables and alcohol and illicit drug use. These findings provide evidence of a specific link between impulsive DRD and nicotine dependence, and reveal that this association is robust across a broad range of monetary rewards. The study also demonstrates the utility of using PCA to generate latent indices of delay discounting across multiple magnitudes of delayed reward. PMID:24841186

  8. Cognitive Activities During Adulthood Are More Important than Education in Building Reserve

    PubMed Central

    Reed, Bruce R.; Dowling, Maritza; Farias, Sarah Tomaszewski; Sonnen, Joshua; Strauss, Milton; Schneider, Julie A.; Bennett, David A.; Mungas, Dan

    2012-01-01

    Cognitive reserve is thought to reflect life experiences. Which experiences contribute to reserve and their relative importance is not understood. Subjects were 652 autopsied cases from the Rush Memory and Aging Project and the Religious Orders Study. Reserve was defined as the residual variance of the regressions of cognitive factors on brain pathology and was captured in a latent variable that was regressed on potential determinants of reserve. Neuropathology variables included Alzheimer’s disease markers, Lewy bodies, infarcts, microinfarcts, and brain weight. Cognition was measured with six cognitive domain scores. Determinants of reserve were socioeconomic status (SES), education, leisure cognitive activities at age 40 (CA40) and at study enrollment (CAbaseline) in late life. The four exogenous predictors of reserve were weakly to moderately inter-correlated. In a multivariate model, all except SES had statistically significant effects on Reserve, the strongest of which were CA40 (β= .31) and CAbaseline (β= .28). The Education effect was negative in the full model (β= −.25). Results suggest that leisure cognitive activities throughout adulthood are more important than education in determining reserve. Discrepancies between cognitive activity and education may be informative in estimating late life reserve. PMID:23131600

  9. Cognitive activities during adulthood are more important than education in building reserve.

    PubMed

    Reed, Bruce R; Dowling, Maritza; Tomaszewski Farias, Sarah; Sonnen, Joshua; Strauss, Milton; Schneider, Julie A; Bennett, David A; Mungas, Dan

    2011-07-01

    Cognitive reserve is thought to reflect life experiences. Which experiences contribute to reserve and their relative importance is not understood. Subjects were 652 autopsied cases from the Rush Memory and Aging Project and the Religious Orders Study. Reserve was defined as the residual variance of the regressions of cognitive factors on brain pathology and was captured in a latent variable that was regressed on potential determinants of reserve. Neuropathology variables included Alzheimer's disease markers, Lewy bodies, infarcts, microinfarcts, and brain weight. Cognition was measured with six cognitive domain scores. Determinants of reserve were socioeconomic status (SES), education, leisure cognitive activities at age 40 (CA40) and at study enrollment (CAbaseline) in late life. The four exogenous predictors of reserve were weakly to moderately inter-correlated. In a multivariate model, all except SES had statistically significant effects on Reserve, the strongest of which were CA40 (β = .31) and CAbaseline (β = .28). The Education effect was negative in the full model (β = -.25). Results suggest that leisure cognitive activities throughout adulthood are more important than education in determining reserve. Discrepancies between cognitive activity and education may be informative in estimating late life reserve.

  10. Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data

    DOE PAGES

    Hsu, David

    2015-09-27

    Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking. This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression,more » also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes.« less

  11. Multivariate generalized hidden Markov regression models with random covariates: Physical exercise in an elderly population.

    PubMed

    Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello

    2018-04-22

    A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Generalized reduced rank latent factor regression for high dimensional tensor fields, and neuroimaging-genetic applications

    PubMed Central

    Tao, Chenyang; Nichols, Thomas E.; Hua, Xue; Ching, Christopher R.K.; Rolls, Edmund T.; Thompson, Paul M.; Feng, Jianfeng

    2017-01-01

    We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches. PMID:27666385

  13. Modeling Bivariate Change in Individual Differences: Prospective Associations Between Personality and Life Satisfaction.

    PubMed

    Hounkpatin, Hilda Osafo; Boyce, Christopher J; Dunn, Graham; Wood, Alex M

    2017-09-18

    A number of structural equation models have been developed to examine change in 1 variable or the longitudinal association between 2 variables. The most common of these are the latent growth model, the autoregressive cross-lagged model, the autoregressive latent trajectory model, and the latent change score model. The authors first overview each of these models through evaluating their different assumptions surrounding the nature of change and how these assumptions may result in different data interpretations. They then, to elucidate these issues in an empirical example, examine the longitudinal association between personality traits and life satisfaction. In a representative Dutch sample (N = 8,320), with participants providing data on both personality and life satisfaction measures every 2 years over an 8-year period, the authors reproduce findings from previous research. However, some of the structural equation models overviewed have not previously been applied to the personality-life satisfaction relation. The extended empirical examination suggests intraindividual changes in life satisfaction predict subsequent intraindividual changes in personality traits. The availability of data sets with 3 or more assessment waves allows the application of more advanced structural equation models such as the autoregressive latent trajectory or the extended latent change score model, which accounts for the complex dynamic nature of change processes and allows stronger inferences on the nature of the association between variables. However, the choice of model should be determined by theories of change processes in the variables being studied. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. High-Performance Psychometrics: The Parallel-E Parallel-M Algorithm for Generalized Latent Variable Models. Research Report. ETS RR-16-34

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2016-01-01

    This report presents results on a parallel implementation of the expectation-maximization (EM) algorithm for multidimensional latent variable models. The developments presented here are based on code that parallelizes both the E step and the M step of the parallel-E parallel-M algorithm. Examples presented in this report include item response…

  15. Cognitive Psychology Meets Psychometric Theory: On the Relation between Process Models for Decision Making and Latent Variable Models for Individual Differences

    ERIC Educational Resources Information Center

    van der Maas, Han L. J.; Molenaar, Dylan; Maris, Gunter; Kievit, Rogier A.; Borsboom, Denny

    2011-01-01

    This article analyzes latent variable models from a cognitive psychology perspective. We start by discussing work by Tuerlinckx and De Boeck (2005), who proved that a diffusion model for 2-choice response processes entails a 2-parameter logistic item response theory (IRT) model for individual differences in the response data. Following this line…

  16. On the Benefits of Latent Variable Modeling for Norming Scales: The Case of the "Supports Intensity Scale--Children's Version"

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M.

    2016-01-01

    Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…

  17. Comparing Between- and Within-Group Variances in a Two-Level Study: A Latent Variable Modeling Approach to Evaluating Their Relationship

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Akaeze, Hope O.

    2017-01-01

    This note is concerned with examining the relationship between within-group and between-group variances in two-level nested designs. A latent variable modeling approach is outlined that permits point and interval estimation of their ratio and allows their comparison in a multilevel study. The procedure can also be used to test various hypotheses…

  18. The "g" Factor and Cognitive Test Session Behavior: Using a Latent Variable Approach in Examining Measurement Invariance Across Age Groups on the WJ III

    ERIC Educational Resources Information Center

    Frisby, Craig L.; Wang, Ze

    2016-01-01

    Data from the standardization sample of the Woodcock-Johnson Psychoeducational Battery--Third Edition (WJ III) Cognitive standard battery and Test Session Observation Checklist items were analyzed to understand the relationship between g (general mental ability) and test session behavior (TSB; n = 5,769). Latent variable modeling methods were used…

  19. A latent class regression analysis of men's conformity to masculine norms and psychological distress.

    PubMed

    Wong, Y Joel; Owen, Jesse; Shea, Munyi

    2012-01-01

    How are specific dimensions of masculinity related to psychological distress in specific groups of men? To address this question, the authors used latent class regression to assess the optimal number of latent classes that explained differential relationships between conformity to masculine norms and psychological distress in a racially diverse sample of 223 men. The authors identified a 2-class solution. Both latent classes demonstrated very different associations between conformity to masculine norms and psychological distress. In Class 1 (labeled risk avoiders; n = 133), conformity to the masculine norm of risk-taking was negatively related to psychological distress. In Class 2 (labeled detached risk-takers; n = 90), conformity to the masculine norms of playboy, self-reliance, and risk-taking was positively related to psychological distress, whereas conformity to the masculine norm of violence was negatively related to psychological distress. A post hoc analysis revealed that younger men and Asian American men (compared with Latino and White American men) had significantly greater odds of being in Class 2 versus Class 1. The implications of these findings for future research and clinical practice are examined. (c) 2012 APA, all rights reserved.

  20. The association between cognition and academic performance in Ugandan children surviving malaria with neurological involvement.

    PubMed

    Bangirana, Paul; Menk, Jeremiah; John, Chandy C; Boivin, Michael J; Hodges, James S

    2013-01-01

    The contribution of different cognitive abilities to academic performance in children surviving cerebral insult can guide the choice of interventions to improve cognitive and academic outcomes. This study's objective was to identify which cognitive abilities are associated with academic performance in children after malaria with neurological involvement. 62 Ugandan children with a history of malaria with neurological involvement were assessed for cognitive ability (working memory, reasoning, learning, visual spatial skills, attention) and academic performance (reading, spelling, arithmetic) three months after the illness. Linear regressions were fit for each academic score with the five cognitive outcomes entered as predictors. Adjusters in the analysis were age, sex, education, nutrition, and home environment. Exploratory factor analysis (EFA) and structural equation models (SEM) were used to determine the nature of the association between cognition and academic performance. Predictive residual sum of squares was used to determine which combination of cognitive scores was needed to predict academic performance. In regressions of a single academic score on all five cognitive outcomes and adjusters, only Working Memory was associated with Reading (coefficient estimate = 0.36, 95% confidence interval = 0.10 to 0.63, p<0.01) and Spelling (0.46, 0.13 to 0.78, p<0.01), Visual Spatial Skills was associated with Arithmetic (0.15, 0.03 to 0.26, p<0.05), and Learning was associated with Reading (0.06, 0.00 to 0.11, p<0.05). One latent cognitive factor was identified using EFA. The SEM found a strong association between this latent cognitive ability and each academic performance measure (P<0.0001). Working memory, visual spatial ability and learning were the best predictors of academic performance. Academic performance is strongly associated with the latent variable labelled "cognitive ability" which captures most of the variation in the individual specific cognitive outcome measures. Working memory, visual spatial skills, and learning together stood out as the best combination to predict academic performance.

  1. Association of Depressed Mood With Herpes Simplex Virus-2 Immunoglobulin-G Levels in Pregnancy.

    PubMed

    Hsu, Pao-Chu; Yolken, Robert H; Postolache, Teodor T; Beckie, Theresa M; Munro, Cindy L; Groer, Maureen W

    2016-10-01

    Depressed mood is common in pregnancy, is associated with stress, and could result in immune suppression that may lead to latent herpes viral reactivation. This study investigated whether depressed mood is associated with higher herpes viral IgG levels in pregnant women. Complete cross-sectional data from 247 pregnant women were available for this substudy. The data included demographics, scores on the Perceived Stress Scale and Profile of Mood States (POMS), and a panel of serum IgG levels for human herpesviruses. Only the herpes simplex virus type 2 (HSV-2) (genital herpes) IgG level was associated with Perceived Stress Scale and POMS-Depression/Dejection (POMS-D) score. Hierarchical multiple regression analysis was used to examine the association of POMS-D with herpesviral IgG levels adjusting for demographic variables. In the final model, African American race (β = .251, p < .001), older age (β = .199, p = .002), single marital status (β = -.304, p < .001), and depressed mood (β = .122, p = .04) were associated with HSV-2 IgG levels. In logistic regression, the strongest correlates of HSV IgG positivity were single marital status, followed by POMS-D scores and African American race. Genital herpes is a concern in pregnancy. Antibody titers may indicate asymptomatic viral shedding, viral reactivation, or primary viral infection. Antibody levels may be higher because of the immune changes during pregnancy and potential immune effects of depressed mood causing reactivation of latent HSV-2.

  2. Flexible link functions in nonparametric binary regression with Gaussian process priors.

    PubMed

    Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K

    2016-09-01

    In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.

  3. Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors

    PubMed Central

    Li, Dan; Lin, Lizhen; Dey, Dipak K.

    2015-01-01

    Summary In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. PMID:26686333

  4. The Longitudinal Structure of General and Specific Anxiety Dimensions in Children: Testing a Latent Trait-State-Occasion Model

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Cole, David A.

    2009-01-01

    In an 8-wave, 4-year longitudinal study, 787 children (Grades 3-6) completed the Revised Children's Manifest Anxiety Scale (C. R. Reynolds & B. O. Richmond, 1985), a measure of the Physiological Reactivity, Worry-Oversensitivity, and Social Alienation dimensions of anxiety. A latent variable (trait-state-occasion) model and a latent growth curve…

  5. Causal Indicators Can Help to Interpret Factors

    ERIC Educational Resources Information Center

    Bentler, Peter M.

    2016-01-01

    The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…

  6. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression

    ERIC Educational Resources Information Center

    Weiss, Brandi A.; Dardick, William

    2016-01-01

    This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…

  7. Effects of additional data on Bayesian clustering.

    PubMed

    Yamazaki, Keisuke

    2017-10-01

    Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Elucidating the functional relationship between working memory capacity and psychometric intelligence: a fixed-links modeling approach for experimental repeated-measures designs.

    PubMed

    Thomas, Philipp; Rammsayer, Thomas; Schweizer, Karl; Troche, Stefan

    2015-01-01

    Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.

  9. Design, innovation, and rural creative places: Are the arts the cherry on top, or the secret sauce?

    PubMed

    Wojan, Timothy R; Nichols, Bonnie

    2018-01-01

    Creative class theory explains the positive relationship between the arts and commercial innovation as the mutual attraction of artists and other creative workers by an unobserved creative milieu. This study explores alternative theories for rural settings, by analyzing establishment-level survey data combined with data on the local arts scene. The study identifies the local contextual factors associated with a strong design orientation, and estimates the impact that a strong design orientation has on the local economy. Data on innovation and design come from a nationally representative sample of establishments in tradable industries. Latent class analysis allows identifying unobserved subpopulations comprised of establishments with different design and innovation orientations. Logistic regression allows estimating the association between an establishment's design orientation and local contextual factors. A quantile instrumental variable regression allows assessing the robustness of the logistic regression results with respect to endogeneity. An estimate of design orientation at the local level derived from the survey is used to examine variation in economic performance during the period of recovery from the Great Recession (2010-2014). Three distinct innovation (substantive, nominal, and non-innovators) and design orientations (design-integrated, "design last finish," and no systematic approach to design) are identified. Innovation- and design-intensive establishments were identified in both rural and urban areas. Rural design-integrated establishments tended to locate in counties with more highly educated workforces and containing at least one performing arts organization. A quantile instrumental variable regression confirmed that the logistic regression result is robust to endogeneity concerns. Finally, rural areas characterized by design-integrated establishments experienced faster growth in wages relative to rural areas characterized by establishments using no systematic approach to design.

  10. Design, innovation, and rural creative places: Are the arts the cherry on top, or the secret sauce?

    PubMed Central

    Nichols, Bonnie

    2018-01-01

    Objective Creative class theory explains the positive relationship between the arts and commercial innovation as the mutual attraction of artists and other creative workers by an unobserved creative milieu. This study explores alternative theories for rural settings, by analyzing establishment-level survey data combined with data on the local arts scene. The study identifies the local contextual factors associated with a strong design orientation, and estimates the impact that a strong design orientation has on the local economy. Method Data on innovation and design come from a nationally representative sample of establishments in tradable industries. Latent class analysis allows identifying unobserved subpopulations comprised of establishments with different design and innovation orientations. Logistic regression allows estimating the association between an establishment’s design orientation and local contextual factors. A quantile instrumental variable regression allows assessing the robustness of the logistic regression results with respect to endogeneity. An estimate of design orientation at the local level derived from the survey is used to examine variation in economic performance during the period of recovery from the Great Recession (2010–2014). Results Three distinct innovation (substantive, nominal, and non-innovators) and design orientations (design-integrated, “design last finish,” and no systematic approach to design) are identified. Innovation- and design-intensive establishments were identified in both rural and urban areas. Rural design-integrated establishments tended to locate in counties with more highly educated workforces and containing at least one performing arts organization. A quantile instrumental variable regression confirmed that the logistic regression result is robust to endogeneity concerns. Finally, rural areas characterized by design-integrated establishments experienced faster growth in wages relative to rural areas characterized by establishments using no systematic approach to design. PMID:29489884

  11. Validation of the conceptual research utilization scale: an application of the standards for educational and psychological testing in healthcare

    PubMed Central

    2011-01-01

    Background There is a lack of acceptable, reliable, and valid survey instruments to measure conceptual research utilization (CRU). In this study, we investigated the psychometric properties of a newly developed scale (the CRU Scale). Methods We used the Standards for Educational and Psychological Testing as a validation framework to assess four sources of validity evidence: content, response processes, internal structure, and relations to other variables. A panel of nine international research utilization experts performed a formal content validity assessment. To determine response process validity, we conducted a series of one-on-one scale administration sessions with 10 healthcare aides. Internal structure and relations to other variables validity was examined using CRU Scale response data from a sample of 707 healthcare aides working in 30 urban Canadian nursing homes. Principal components analysis and confirmatory factor analyses were conducted to determine internal structure. Relations to other variables were examined using: (1) bivariate correlations; (2) change in mean values of CRU with increasing levels of other kinds of research utilization; and (3) multivariate linear regression. Results Content validity index scores for the five items ranged from 0.55 to 1.00. The principal components analysis predicted a 5-item 1-factor model. This was inconsistent with the findings from the confirmatory factor analysis, which showed best fit for a 4-item 1-factor model. Bivariate associations between CRU and other kinds of research utilization were statistically significant (p < 0.01) for the latent CRU scale score and all five CRU items. The CRU scale score was also shown to be significant predictor of overall research utilization in multivariate linear regression. Conclusions The CRU scale showed acceptable initial psychometric properties with respect to responses from healthcare aides in nursing homes. Based on our validity, reliability, and acceptability analyses, we recommend using a reduced (four-item) version of the CRU scale to yield sound assessments of CRU by healthcare aides. Refinement to the wording of one item is also needed. Planned future research will include: latent scale scoring, identification of variables that predict and are outcomes to conceptual research use, and longitudinal work to determine CRU Scale sensitivity to change. PMID:21595888

  12. Nurses and opioids: results of a bi-national survey on mental models regarding opioid administration in hospitals

    PubMed Central

    Guest, Charlotte; Sobotka, Fabian; Karavasopoulou, Athina; Ward, Stephen; Bantel, Carsten

    2017-01-01

    Objective Pain remains insufficiently treated in hospitals. Increasing evidence suggests human factors contribute to this, due to nurses failing to administer opioids. This behavior might be the consequence of nurses’ mental models about opioids. As personal experience and conceptions shape these models, the aim of this prospective survey was to identify model-influencing factors. Material and methods A questionnaire was developed comprising of 14 statements concerning ideations about opioids and seven questions concerning demographics, indicators of adult learning, and strength of religious beliefs. Latent variables that may underlie nurses’ mental models were identified using undirected graphical dependence models. Representative items of latent variables were employed for ordinal regression analysis. Questionnaires were distributed to 1,379 nurses in two London, UK, hospitals (n=580) and one German (n=799) hospital between September 2014 and February 2015. Results A total of 511 (37.1%) questionnaires were returned. Mean (standard deviation) age of participants were 37 (11) years; 83.5% participants were female; 45.2% worked in critical care; and 51.5% had more than 10 years experience. Of the nurses, 84% were not scared of opioids, 87% did not regard opioids as drugs to help patients die, and 72% did not view them as drugs of abuse. More English (41%) than German (28%) nurses were afraid of criminal investigations and were constantly aware of side effects (UK, 94%; Germany, 38%) when using opioids. Four latent variables were identified which likely influence nurses’ mental models: “conscious decision-making”; “medication-related fears”; “practice-based observations”; and “risk assessment”. They were predicted by strength of religious beliefs and indicators of informal learning such as experience but not by indicators of formal learning such as conference attendance. Conclusion Nurses in both countries employ analytical and affective mental models when administering the opioids and seem to learn from experience rather than from formal teaching. Additionally, some attitudes and emotions towards opioids are likely the result of nurses’ cultural background. PMID:28280383

  13. Childhood malnutrition in Egypt using geoadditive Gaussian and latent variable models.

    PubMed

    Khatab, Khaled

    2010-04-01

    Major progress has been made over the last 30 years in reducing the prevalence of malnutrition amongst children less than 5 years of age in developing countries. However, approximately 27% of children under the age of 5 in these countries are still malnourished. This work focuses on the childhood malnutrition in one of the biggest developing countries, Egypt. This study examined the association between bio-demographic and socioeconomic determinants and the malnutrition problem in children less than 5 years of age using the 2003 Demographic and Health survey data for Egypt. In the first step, we use separate geoadditive Gaussian models with the continuous response variables stunting (height-for-age), underweight (weight-for-age), and wasting (weight-for-height) as indicators of nutritional status in our case study. In a second step, based on the results of the first step, we apply the geoadditive Gaussian latent variable model for continuous indicators in which the 3 measurements of the malnutrition status of children are assumed as indicators for the latent variable "nutritional status".

  14. The Theory of Planned Behavior within the Stages of the Transtheoretical Model: Latent Structural Modeling of Stage-Specific Prediction Patterns in Physical Activity

    ERIC Educational Resources Information Center

    Lippke, Sonia; Nigg, Claudio R.; Maddock, Jay E.

    2007-01-01

    This is the first study to test whether the stages of change of the transtheoretical model are qualitatively different through exploring discontinuity patterns in theory of planned behavior (TPB) variables using latent multigroup structural equation modeling (MSEM) with AMOS. Discontinuity patterns in terms of latent means and prediction patterns…

  15. Multivariate Analysis of Genotype-Phenotype Association.

    PubMed

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.

  16. On Latent Growth Models for Composites and Their Constituents.

    PubMed

    Hancock, Gregory R; Mao, Xiulin; Kher, Hemant

    2013-09-01

    Over the last decade and a half, latent growth modeling has become an extremely popular and versatile technique for evaluating longitudinal change and its determinants. Most common among the models applied are those for a single measured variable over time. This model has been extended in a variety of ways, most relevant for the current work being the multidomain and the second-order latent growth models. Whereas the former allows for growth function characteristics to be modeled for multiple outcomes simultaneously, with the degree of growth characteristics' relations assessed within the model (e.g., cross-domain slope factor correlations), the latter models growth in latent outcomes, each of which has effect indicators repeated over time. But what if one has an outcome that is believed to be formative relative to its indicator variables rather than latent? In this case, where the outcome is a composite of multiple constituents, modeling change over time is less straightforward. This article provides analytical and applied details for simultaneously modeling growth in composites and their constituent elements, including a real data example using a general computer self-efficacy questionnaire.

  17. DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural activity

    PubMed Central

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2014-01-01

    Objective Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than three, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance DataHigh was developed to fulfill a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity. PMID:24216250

  18. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity

    NASA Astrophysics Data System (ADS)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2013-12-01

    Objective. Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  19. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity.

    PubMed

    Cowley, Benjamin R; Kaufman, Matthew T; Butler, Zachary S; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M

    2013-12-01

    Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  20. Inverse Ising problem in continuous time: A latent variable approach

    NASA Astrophysics Data System (ADS)

    Donner, Christian; Opper, Manfred

    2017-12-01

    We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.

  1. Brazilian cross-cultural adaptation and validation of the List of Threatening Events Questionnaire (LTE-Q).

    PubMed

    Abreu, Patrícia B de; Cogo-Moreira, Hugo; Pose, Regina A; Laranjeira, Ronaldo; Caetano, Raul; Gaya, Carolina M; Madruga, Clarice S

    2017-01-01

    To perform a construct validation of the List of Threatening Events Questionnaire (LTE-Q), as well as convergence validation by identifying its association with drug use in a sample of the Brazilian population. This is a secondary analysis of the Second Brazilian National Alcohol and Drugs Survey (II BNADS), which used a cross-cultural adaptation of the LTE-Q in a probabilistic sample of 4,607 participants aged 14 years and older. Latent class analysis was used to validate the latent trait adversity (which considered the number of events from the list of 12 item in the LTE experienced by the respondent in the previous year) and logistic regression was performed to find its association with binge drinking and cocaine use. The confirmatory factor analysis returned a chi-square of 108.341, weighted root mean square residual (WRMR) of 1.240, confirmatory fit indices (CFI) of 0.970, Tucker-Lewis index (TLI) of 0.962, and root mean square error approximation (RMSEA) score of 1.000. LTE-Q convergence validation showed that the adversity latent trait increased the chances of binge drinking by 1.31 time and doubled the chances of previous year cocaine use (adjusted by sociodemographic variables). The use of the LTE-Q in Brazil should be encouraged in different research fields, including large epidemiological surveys, as it is also appropriate when time and budget are limited. The LTE-Q can be a useful tool in the development of targeted and more efficient prevention strategies.

  2. Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics.

    PubMed

    Ribeiro, J S; Augusto, F; Salva, T J G; Ferreira, M M C

    2012-11-15

    In this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial least squares (PLS) regression method was used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the compounds for the regression model of each sensory attribute in order to take only significant chromatographic peaks into account. The prediction errors of these models, using 4 or 5 latent variables, were equal to 0.28, 0.33, 0.35, 0.33, 0.34 and 0.41, for each of the attributes and compatible with the errors of the mean scores of the experts. Thus, the results proved the feasibility of using a similar methodology in on-line or routine applications to predict the sensory quality of Brazilian Arabica coffee. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Forecast model applications of retrieved three dimensional liquid water fields

    NASA Technical Reports Server (NTRS)

    Raymond, William H.; Olson, William S.

    1990-01-01

    Forecasts are made for tropical storm Emily using heating rates derived from the SSM/I physical retrievals described in chapters 2 and 3. Average values of the latent heating rates from the convective and stratiform cloud simulations, used in the physical retrieval, are obtained for individual 1.1 km thick vertical layers. Then, the layer-mean latent heating rates are regressed against the slant path-integrated liquid and ice precipitation water contents to determine the best fit two parameter regression coefficients for each layer. The regression formulae and retrieved precipitation water contents are utilized to infer the vertical distribution of heating rates for forecast model applications. In the forecast model, diabatic temperature contributions are calculated and used in a diabatic initialization, or in a diabatic initialization combined with a diabatic forcing procedure. Our forecasts show that the time needed to spin-up precipitation processes in tropical storm Emily is greatly accelerated through the application of the data.

  4. Measuring Latent Quantities

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2011-01-01

    A distinction is proposed between measures and predictors of latent variables. The discussion addresses the consequences of the distinction for the true-score model, the linear factor model, Structural Equation Models, longitudinal and multilevel models, and item-response models. A distribution-free treatment of calibration and…

  5. A general theoretical framework for interpreting patient-reported outcomes estimated from ordinally scaled item responses.

    PubMed

    Massof, Robert W

    2014-10-01

    A simple theoretical framework explains patient responses to items in rating scale questionnaires. Fixed latent variables position each patient and each item on the same linear scale. Item responses are governed by a set of fixed category thresholds, one for each ordinal response category. A patient's item responses are magnitude estimates of the difference between the patient variable and the patient's estimate of the item variable, relative to his/her personally defined response category thresholds. Differences between patients in their personal estimates of the item variable and in their personal choices of category thresholds are represented by random variables added to the corresponding fixed variables. Effects of intervention correspond to changes in the patient variable, the patient's response bias, and/or latent item variables for a subset of items. Intervention effects on patients' item responses were simulated by assuming the random variables are normally distributed with a constant scalar covariance matrix. Rasch analysis was used to estimate latent variables from the simulated responses. The simulations demonstrate that changes in the patient variable and changes in response bias produce indistinguishable effects on item responses and manifest as changes only in the estimated patient variable. Changes in a subset of item variables manifest as intervention-specific differential item functioning and as changes in the estimated person variable that equals the average of changes in the item variables. Simulations demonstrate that intervention-specific differential item functioning produces inefficiencies and inaccuracies in computer adaptive testing. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. The roles of users personal characteristics and organisational support in the attitude towards using ERP systems in a Spanish public hospital.

    PubMed

    Escobar-Rodriguez, Tomas; Bartual-Sopena, Lourdes

    Enterprise resources planning (ERP) systems enable central and integrative control over all processes throughout an organisation by ensuring one data entry point and the use of a common database. T his paper analyses the attitude of healthcare personnel towards the use of an ERP system in a Spanish public hospital, identifying influencing factors. This research is based on a regression analysis of latent variables using the optimisation technique of partial least squares. We propose a research model including possible relationships among different constructs using the technology acceptance model. Our results show that the personal characteristics of potential users are key factors in explaining attitude towards using ERP systems.

  7. On Fitting a Multivariate Two-Part Latent Growth Model

    PubMed Central

    Xu, Shu; Blozis, Shelley A.; Vandewater, Elizabeth A.

    2017-01-01

    A 2-part latent growth model can be used to analyze semicontinuous data to simultaneously study change in the probability that an individual engages in a behavior, and if engaged, change in the behavior. This article uses a Monte Carlo (MC) integration algorithm to study the interrelationships between the growth factors of 2 variables measured longitudinally where each variable can follow a 2-part latent growth model. A SAS macro implementing Mplus is developed to estimate the model to take into account the sampling uncertainty of this simulation-based computational approach. A sample of time-use data is used to show how maximum likelihood estimates can be obtained using a rectangular numerical integration method and an MC integration method. PMID:29333054

  8. Latent lifestyle preferences and household location decisions

    NASA Astrophysics Data System (ADS)

    Walker, Joan L.; Li, Jieping

    2007-04-01

    Lifestyle, indicating preferences towards a particular way of living, is a key driver of the decision of where to live. We employ latent class choice models to represent this behavior, where the latent classes are the lifestyles and the choice model is the choice of residential location. Thus, we simultaneously estimate lifestyle groups and how lifestyle impacts location decisions. Empirical results indicate three latent lifestyle segments: suburban dwellers, urban dwellers, and transit-riders. The suggested lifestyle segments have intriguing policy implications. Lifecycle characteristics are used to predict lifestyle preferences, although there remain significant aspects that cannot be explained by observable variables.

  9. On the role of precipitation latent heating in modulating the strength and width of the Hadley circulation

    NASA Astrophysics Data System (ADS)

    Mathew, Sneha Susan; Kumar, Karanam Kishore

    2018-05-01

    The latent heat released in the clouds over the tropics plays a vital role in driving the Hadley circulation (HC). The present study discusses the influence of latent heating (LH) on the HC parameters viz., centre, strength and total width by using precipitation LH profiles derived from the space-borne observations of the Precipitation Radar (PR) onboard Tropical Rain Measuring Mission (TRMM) and meridional stream function (MSF) derived from ECMWF-Interim reanalysis. The latitude of peak latent heating, width of the latent heating distribution and the total LH released within the ascending limb of the HC are estimated and their influence on the HC centre, strength and width is quantified, for the first time. The present results show that the latitude of peak LH significantly influences the position of the HC centre with correlation coefficient of 0.90. This high correlation between these two quantities seems to be due to their co-variability with the apparent motion of the Sun across the latitudes. The intensity of the HC in the NH as well as SH shows high correlation with the latitude of peak LH with coefficients - 0.85 and - 0.78, respectively. These results indicate that farther the latitude of peak LH from the equator in the summer hemisphere, stronger is the HC intensity in the winter hemisphere. The present analysis also reveals that the total LH released within the ascending limb of HC substantially influence the total width of the HC, with correlation coefficient 0.52, as compared to the other two LH parameters. This observation can be attributed to the fact that the HC is sensitive to the latent heat release in the mid-tropospheric levels in the tropics. An attempt is also made to investigate the degree of variability of these parameters after deseasonalization and results are discussed in the light of present understanding. The significance of the present study lies in providing the observational evidence for the influence of latent heating on the HC strength/width variability, quantitatively, for the first time using TRMM observations of precipitation latent heating.

  10. Assessing factors related to waist circumference and obesity: application of a latent variable model.

    PubMed

    Dalvand, Sahar; Koohpayehzadeh, Jalil; Karimlou, Masoud; Asgari, Fereshteh; Rafei, Ali; Seifi, Behjat; Niksima, Seyed Hassan; Bakhshi, Enayatollah

    2015-01-01

    Because the use of BMI (Body Mass Index) alone as a measure of adiposity has been criticized, in the present study our aim was to fit a latent variable model to simultaneously examine the factors that affect waist circumference (continuous outcome) and obesity (binary outcome) among Iranian adults. Data included 18,990 Iranian individuals aged 20-65 years that are derived from the third National Survey of Noncommunicable Diseases Risk Factors in Iran. Using latent variable model, we estimated the relation of two correlated responses (waist circumference and obesity) with independent variables including age, gender, PR (Place of Residence), PA (physical activity), smoking status, SBP (Systolic Blood Pressure), DBP (Diastolic Blood Pressure), CHOL (cholesterol), FBG (Fasting Blood Glucose), diabetes, and FHD (family history of diabetes). All variables were related to both obesity and waist circumference (WC). Older age, female sex, being an urban resident, physical inactivity, nonsmoking, hypertension, hypercholesterolemia, hyperglycemia, diabetes, and having family history of diabetes were significant risk factors that increased WC and obesity. Findings from this study of Iranian adult settings offer more insights into factors associated with high WC and high prevalence of obesity in this population.

  11. Distinguishing State Variability From Trait Change in Longitudinal Data: The Role of Measurement (Non)Invariance in Latent State-Trait Analyses

    PubMed Central

    Geiser, Christian; Keller, Brian T.; Lockhart, Ginger; Eid, Michael; Cole, David A.; Koch, Tobias

    2014-01-01

    Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present paper, we contrast LST and LGC models from the perspective of measurement invariance (MI) testing. We show that establishing a pure state-variability process requires (a) the inclusion of a mean structure and (b) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with non-invariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion-specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided. PMID:24652650

  12. Latent variable modeling to analyze the effects of process parameters on the dissolution of paracetamol tablet

    PubMed Central

    Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Shi, Xinyuan; Qiao, Yanjiang

    2017-01-01

    ABSTRACT The dissolution is one of the critical quality attributes (CQAs) of oral solid dosage forms because it relates to the absorption of drug. In this paper, the influence of raw materials, granules and process parameters on the dissolution of paracetamol tablet was analyzed using latent variable modeling methods. The variability in raw materials and granules was understood based on the principle component analysis (PCA), respectively. A multi-block partial least squares (MBPLS) model was used to determine the critical factors affecting the dissolution. The results showed that the binder amount, the post granulation time, the API content in granule, the fill depth and the punch tip separation distance were the critical factors with variable importance in the projection (VIP) values larger than 1. The importance of each unit of the whole process was also ranked using the block importance in the projection (BIP) index. It was concluded that latent variable models (LVMs) were very useful tools to extract information from the available data and improve the understanding on dissolution behavior of paracetamol tablet. The obtained LVMs were also helpful to propose the process design space and to design control strategies in the further research. PMID:27689242

  13. Multiple indicators, multiple causes measurement error models

    DOE PAGES

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; ...

    2014-06-25

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  14. Multiple Indicators, Multiple Causes Measurement Error Models

    PubMed Central

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.

    2014-01-01

    Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535

  15. Multiple indicators, multiple causes measurement error models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  16. Adolescent substance use behavior and suicidal behavior for boys and girls: a cross-sectional study by latent analysis approach.

    PubMed

    Wang, Peng-Wei; Yen, Cheng-Fang

    2017-12-08

    Adolescent suicidal behavior may consist of different symptoms, including suicidal ideation, suicidal planning and suicidal attempts. Adolescent substance use behavior may contribute to adolescent suicidal behavior. However, research on the relationships between specific substance use and individual suicidal behavior is insufficient, as adolescents may not use only one substance or develop only one facet of suicidal behavior. Latent variables permit us to describe the relationships between clusters of related behaviors more accurately than studying the relationships between specific behaviors. Thus, the aim of this study was to explore how adolescent substance use behavior contributes to suicidal behavior using latent variables representing adolescent suicidal and substance use behaviors. A total of 13,985 adolescents were recruited using a stratified random sampling strategy. The participants indicated whether they had experienced suicidal ideation, planning and attempts and reported their cigarette, alcohol, ketamine and MDMA use during the past year. Latent analysis was used to examine the relationship between substance use and suicidal behavior. Adolescents who used any one of the above substances exhibited more suicidal behavior. The results of latent variables analysis revealed that adolescent substance use contributed to suicidal behavior and that boys exhibited more severe substance use behavior than girls. However, there was no gender difference in the association between substance use and suicidal behavior. Substance use behavior in adolescents is related to more suicidal behavior. In addition, the contribution of substance use to suicidal behavior does not differ between genders.

  17. Examining the integrity of measurement of cognitive abilities in the prediction of achievement: Comparisons and contrasts across variables from higher-order and bifactor models.

    PubMed

    Benson, Nicholas F; Kranzler, John H; Floyd, Randy G

    2016-10-01

    Prior research examining cognitive ability and academic achievement relations have been based on different theoretical models, have employed both latent variables as well as observed variables, and have used a variety of analytic methods. Not surprisingly, results have been inconsistent across studies. The aims of this study were to (a) examine how relations between psychometric g, Cattell-Horn-Carroll (CHC) broad abilities, and academic achievement differ across higher-order and bifactor models; (b) examine how well various types of observed scores corresponded with latent variables; and (c) compare two types of observed scores (i.e., refined and non-refined factor scores) as predictors of academic achievement. Results suggest that cognitive-achievement relations vary across theoretical models and that both types of factor scores tend to correspond well with the models on which they are based. However, orthogonal refined factor scores (derived from a bifactor model) have the advantage of controlling for multicollinearity arising from the measurement of psychometric g across all measures of cognitive abilities. Results indicate that the refined factor scores provide more precise representations of their targeted constructs than non-refined factor scores and maintain close correspondence with the cognitive-achievement relations observed for latent variables. Thus, we argue that orthogonal refined factor scores provide more accurate representations of the relations between CHC broad abilities and achievement outcomes than non-refined scores do. Further, the use of refined factor scores addresses calls for the application of scores based on latent variable models. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  18. The Influence of Social Interaction and Physical Health on the Association Between Hearing and Depression With Age and Gender

    PubMed Central

    Seeto, Mark

    2017-01-01

    Recent epidemiological data suggest the relation between hearing difficulty and depression is more evident in younger and middle-aged populations than in older adults. There are also suggestions that the relation may be more evident in specific subgroups; that is, other factors may influence a relationship between hearing and depression in different subgroups. Using cross-sectional data from the UK Biobank on 134,357 community-dwelling people and structural equation modelling, this study examined the potential mediating influence of social isolation and unemployment and the confounding influence of physical illness and cardiovascular conditions on the relation between a latent hearing variable and both a latent depressive episodes variable and a latent depressive symptoms variable. The models were stratified by age (40s, 50s, and 60s) and gender and further controlled for physical illness and professional support in associations involving social isolation and unemployment. The latent hearing variable was primarily defined by reported hearing difficulty in noise. For all subgroups, poor hearing was significantly related to both more depressive episodes and more depressive symptoms. In all models, the direct and generally small association exceeded the indirect associations via physical health and social interaction. Significant (depressive episodes) and near significant (depressive symptoms) higher direct associations were estimated for males in their 40s and 50s than for males in their 60s. There was at each age-group no significant difference in estimated associations across gender. Irrespective of the temporal order of variables, findings suggest that audiological services should facilitate psychosocial counselling. PMID:28752806

  19. The Influence of Social Interaction and Physical Health on the Association Between Hearing and Depression With Age and Gender.

    PubMed

    Keidser, Gitte; Seeto, Mark

    2017-01-01

    Recent epidemiological data suggest the relation between hearing difficulty and depression is more evident in younger and middle-aged populations than in older adults. There are also suggestions that the relation may be more evident in specific subgroups; that is, other factors may influence a relationship between hearing and depression in different subgroups. Using cross-sectional data from the UK Biobank on 134,357 community-dwelling people and structural equation modelling, this study examined the potential mediating influence of social isolation and unemployment and the confounding influence of physical illness and cardiovascular conditions on the relation between a latent hearing variable and both a latent depressive episodes variable and a latent depressive symptoms variable. The models were stratified by age (40s, 50s, and 60s) and gender and further controlled for physical illness and professional support in associations involving social isolation and unemployment. The latent hearing variable was primarily defined by reported hearing difficulty in noise. For all subgroups, poor hearing was significantly related to both more depressive episodes and more depressive symptoms. In all models, the direct and generally small association exceeded the indirect associations via physical health and social interaction. Significant (depressive episodes) and near significant (depressive symptoms) higher direct associations were estimated for males in their 40s and 50s than for males in their 60s. There was at each age-group no significant difference in estimated associations across gender. Irrespective of the temporal order of variables, findings suggest that audiological services should facilitate psychosocial counselling.

  20. Refining the tobacco dependence phenotype using the Wisconsin Inventory of Smoking Dependence Motives (WISDM)

    PubMed Central

    Piper, Megan E.; Bolt, Daniel M.; Kim, Su-Young; Japuntich, Sandra J.; Smith, Stevens S.; Niederdeppe, Jeff; Cannon, Dale S.; Baker, Timothy B.

    2008-01-01

    The construct of tobacco dependence is important from both scientific and public health perspectives, but it is poorly understood. The current research integrates person-centered analyses (e.g., latent profile analysis) and variable-centered analyses (e.g., exploratory factor analysis) to understand better the latent structure of dependence and to guide distillation of the phenotype. Using data from four samples of smokers (including treatment and non-treatment samples), latent profiles were derived using the Wisconsin Inventory of Smoking Dependence Motives (WISDM) subscale scores. Across all four samples, results revealed a unique latent profile that had relative elevations on four dependence motive subscales (Automaticity, Craving, Loss of Control, and Tolerance). Variable-centered analyses supported the uniqueness of these four subscales both as measures of a common factor distinct from that underlying the other nine subscales, and as the strongest predictors of relapse, withdrawal and other dependence criteria. Conversely, the remaining nine motives carried little unique predictive validity regarding dependence. Applications of a factor mixture model further support the presence of a unique class of smokers in relation to a common factor underlying the four subscales. The results illustrate how person-centered analyses may be useful as a supplement to variable-centered analyses for uncovering variables that are necessary and/or sufficient predictors of disorder criteria, as they may uncover small segments of a population in which the variables are uniquely distributed. The results also suggest that severe dependence is associated with a pattern of smoking that is heavy, pervasive, automatic and relatively unresponsive to instrumental contingencies. PMID:19025223

  1. Scale Reliability Evaluation with Heterogeneous Populations

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A latent variable modeling approach for scale reliability evaluation in heterogeneous populations is discussed. The method can be used for point and interval estimation of reliability of multicomponent measuring instruments in populations representing mixtures of an unknown number of latent classes or subpopulations. The procedure is helpful also…

  2. Measurement of Psychological Disorders Using Cognitive Diagnosis Models

    ERIC Educational Resources Information Center

    Templin, Jonathan L.; Henson, Robert A.

    2006-01-01

    Cognitive diagnosis models are constrained (multiple classification) latent class models that characterize the relationship of questionnaire responses to a set of dichotomous latent variables. Having emanated from educational measurement, several aspects of such models seem well suited to use in psychological assessment and diagnosis. This article…

  3. Associations between complex OHC mixtures and thyroid and cortisol hormone levels in East Greenland polar bears

    PubMed Central

    TØ, Bechshøft; Sonne, C; Dietz, R; Born, EW; Muir, DCG; Letcher, RJ; Novak, MA; Henchey, E; Meyer, JS; Jenssen, BM; Villanger, GD

    2012-01-01

    The multivariate relationship between hair cortisol, whole blood thyroid hormones, and the complex mixtures of organohalogen contaminant (OHC) levels measured in subcutaneous adipose of 23 East Greenland polar bears (eight males and 15 females, all sampled between the years 1999 and 2001) was analyzed using projection to latent structure (PLS) regression modeling. In the resulting PLS model, most important variables with a negative influence on cortisol levels were particularly BDE-99, but also CB-180, -201, BDE-153, and CB-170/190. The most important variables with a positive influence on cortisol were CB-66/95, α-HCH, TT3, as well as heptachlor epoxide, dieldrin, BDE-47, p,p′-DDD. Although statistical modeling does not necessarily fully explain biological cause-effect relationships, relationships indicate that (1) the hypothalamic-pituitary-adrenal (HPA) axis in East Greenland polar bears is likely to be affected by OHC-contaminants and (2) the association between OHCs and cortisol may be linked with the hypothalamus-pituitary-thyroid (HPT) axis. PMID:22575327

  4. Evidence of Associations between Cytokine Genes and Subjective Reports of Sleep Disturbance in Oncology Patients and Their Family Caregivers

    PubMed Central

    Miaskowski, Christine; Cooper, Bruce A.; Dhruva, Anand; Dunn, Laura B.; Langford, Dale J.; Cataldo, Janine K.; Baggott, Christina R.; Merriman, John D.; Dodd, Marylin; Lee, Kathryn; West, Claudia; Paul, Steven M.; Aouizerat, Bradley E.

    2012-01-01

    The purposes of this study were to identify distinct latent classes of individuals based on subjective reports of sleep disturbance; to examine differences in demographic, clinical, and symptom characteristics between the latent classes; and to evaluate for variations in pro- and anti-inflammatory cytokine genes between the latent classes. Among 167 oncology outpatients with breast, prostate, lung, or brain cancer and 85 of their FCs, growth mixture modeling (GMM) was used to identify latent classes of individuals based on General Sleep Disturbance Scale (GSDS) obtained prior to, during, and for four months following completion of radiation therapy. Single nucleotide polymorphisms (SNPs) and haplotypes in candidate cytokine genes were interrogated for differences between the two latent classes. Multiple logistic regression was used to assess the effect of phenotypic and genotypic characteristics on GSDS group membership. Two latent classes were identified: lower sleep disturbance (88.5%) and higher sleep disturbance (11.5%). Participants who were younger and had a lower Karnofsky Performance status score were more likely to be in the higher sleep disturbance class. Variation in two cytokine genes (i.e., IL6, NFKB) predicted latent class membership. Evidence was found for latent classes with distinct sleep disturbance trajectories. Unique genetic markers in cytokine genes may partially explain the interindividual heterogeneity characterizing these trajectories. PMID:22844404

  5. Verbal task demands are key in explaining the relationship between paired-associate learning and reading ability.

    PubMed

    Clayton, Francina J; Sears, Claire; Davis, Alice; Hulme, Charles

    2018-07-01

    Paired-associate learning (PAL) tasks measure the ability to form a novel association between a stimulus and a response. Performance on such tasks is strongly associated with reading ability, and there is increasing evidence that verbal task demands may be critical in explaining this relationship. The current study investigated the relationships between different forms of PAL and reading ability. A total of 97 children aged 8-10 years completed a battery of reading assessments and six different PAL tasks (phoneme-phoneme, visual-phoneme, nonverbal-nonverbal, visual-nonverbal, nonword-nonword, and visual-nonword) involving both familiar phonemes and unfamiliar nonwords. A latent variable path model showed that PAL ability is captured by two correlated latent variables: auditory-articulatory and visual-articulatory. The auditory-articulatory latent variable was the stronger predictor of reading ability, providing support for a verbal account of the PAL-reading relationship. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Latent Variable Modeling of Brain Gray Matter Volume and Psychopathy in Incarcerated Offenders

    PubMed Central

    Baskin-Sommers, Arielle R.; Neumann, Craig S.; Cope, Lora M.; Kiehl, Kent A.

    2016-01-01

    Advanced statistical modeling has become a prominent feature in psychological science and can be a useful approach for representing the neural architecture linked to psychopathology. Psychopathy, a disorder characterized by dysfunction in interpersonal-affective and impulsive-antisocial domains, is associated with widespread neural abnormalities. Several imaging studies suggest that underlying structural deficits in paralimbic regions are associated with psychopathy. While these studies are useful, they make assumptions about the organization of the brain and its relevance to individuals displaying psychopathic features. Capitalizing on statistical modeling, the present study (N=254) used latent variable methods to examine the structure of gray matter volume in male offenders, and assessed the latent relations between psychopathy and gray matter factors reflecting paralimbic and non-paralimbic regions. Results revealed good fit for a four-factor gray matter paralimbic model and these first-order factors were accounted for by a super-ordinate paralimbic ‘system’ factor. Moreover, a super-ordinate psychopathy factor significantly predicted the paralimbic, but not the non-paralimbic factor. The latent variable paralimbic model, specifically linked with psychopathy, goes beyond understanding of single brain regions within the system and provides evidence for psychopathy-related gray matter volume reductions in the paralimbic system as a whole. PMID:27269123

  7. Architecture of cognitive flexibility revealed by lesion mapping

    PubMed Central

    Barbey, Aron K.; Colom, Roberto; Grafman, Jordan

    2013-01-01

    Neuroscience has made remarkable progress in understanding the architecture of human intelligence, identifying a distributed network of brain structures that support goal-directed, intelligent behavior. However, the neural foundations of cognitive flexibility and adaptive aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 149) that investigates the neural bases of key competencies of cognitive flexibility (i.e., mental flexibility and the fluent generation of new ideas) and systematically examine their contributions to a broad spectrum of cognitive and social processes, including psychometric intelligence (Wechsler Adult Intelligence Scale), emotional intelligence (Mayer, Salovey, Caruso Emotional Intelligence Test), and personality (Neuroticism–Extraversion–Openness Personality Inventory). Latent variable modeling was applied to obtain error-free indices of each factor, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. Regression analyses revealed that latent scores for psychometric intelligence reliably predict latent scores for cognitive flexibility (adjusted R2 = 0.94). Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal, and parietal regions, including white matter association tracts, which bind these areas into an integrated system. A targeted analysis of the unique variance explained by cognitive flexibility further revealed selective damage within the right superior temporal gyrus, a region known to support insight and the recognition of novel semantic relations. The observed findings motivate an integrative framework for understanding the neural foundations of adaptive behavior, suggesting that core elements of cognitive flexibility emerge from a distributed network of brain regions that support specific competencies for human intelligence. PMID:23721727

  8. Analyzing Longitudinal Item Response Data via the Pairwise Fitting Method

    ERIC Educational Resources Information Center

    Fu, Zhi-Hui; Tao, Jian; Shi, Ning-Zhong; Zhang, Ming; Lin, Nan

    2011-01-01

    Multidimensional item response theory (MIRT) models can be applied to longitudinal educational surveys where a group of individuals are administered different tests over time with some common items. However, computational problems typically arise as the dimension of the latent variables increases. This is especially true when the latent variable…

  9. A joint latent class model for classifying severely hemorrhaging trauma patients.

    PubMed

    Rahbar, Mohammad H; Ning, Jing; Choi, Sangbum; Piao, Jin; Hong, Chuan; Huang, Hanwen; Del Junco, Deborah J; Fox, Erin E; Rahbar, Elaheh; Holcomb, John B

    2015-10-24

    In trauma research, "massive transfusion" (MT), historically defined as receiving ≥10 units of red blood cells (RBCs) within 24 h of admission, has been routinely used as a "gold standard" for quantifying bleeding severity. Due to early in-hospital mortality, however, MT is subject to survivor bias and thus a poorly defined criterion to classify bleeding trauma patients. Using the data from a retrospective trauma transfusion study, we applied a latent-class (LC) mixture model to identify severely hemorrhaging (SH) patients. Based on the joint distribution of cumulative units of RBCs and binary survival outcome at 24 h of admission, we applied an expectation-maximization (EM) algorithm to obtain model parameters. Estimated posterior probabilities were used for patients' classification and compared with the MT rule. To evaluate predictive performance of the LC-based classification, we examined the role of six clinical variables as predictors using two separate logistic regression models. Out of 471 trauma patients, 211 (45 %) were MT, while our latent SH classifier identified only 127 (27 %) of patients as SH. The agreement between the two classification methods was 73 %. A non-ignorable portion of patients (17 out of 68, 25 %) who died within 24 h were not classified as MT but the SH group included 62 patients (91 %) who died during the same period. Our comparison of the predictive models based on MT and SH revealed significant differences between the coefficients of potential predictors of patients who may be in need of activation of the massive transfusion protocol. The traditional MT classification does not adequately reflect transfusion practices and outcomes during the trauma reception and initial resuscitation phase. Although we have demonstrated that joint latent class modeling could be used to correct for potential bias caused by misclassification of severely bleeding patients, improvement in this approach could be made in the presence of time to event data from prospective studies.

  10. Determination of total phenolic compounds in compost by infrared spectroscopy.

    PubMed

    Cascant, M M; Sisouane, M; Tahiri, S; Krati, M El; Cervera, M L; Garrigues, S; de la Guardia, M

    2016-06-01

    Middle and near infrared (MIR and NIR) were applied to determine the total phenolic compounds (TPC) content in compost samples based on models built by using partial least squares (PLS) regression. The multiplicative scatter correction, standard normal variate and first derivative were employed as spectra pretreatment, and the number of latent variable were optimized by leave-one-out cross-validation. The performance of PLS-ATR-MIR and PLS-DR-NIR models was evaluated according to root mean square error of cross validation and prediction (RMSECV and RMSEP), the coefficient of determination for prediction (Rpred(2)) and residual predictive deviation (RPD) being obtained for this latter values of 5.83 and 8.26 for MIR and NIR, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Repeatability and Reproducibility of Decisions by Latent Fingerprint Examiners

    PubMed Central

    Ulery, Bradford T.; Hicklin, R. Austin; Buscaglia, JoAnn; Roberts, Maria Antonia

    2012-01-01

    The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. We tested latent print examiners on the extent to which they reached consistent decisions. This study assessed intra-examiner repeatability by retesting 72 examiners on comparisons of latent and exemplar fingerprints, after an interval of approximately seven months; each examiner was reassigned 25 image pairs for comparison, out of total pool of 744 image pairs. We compare these repeatability results with reproducibility (inter-examiner) results derived from our previous study. Examiners repeated 89.1% of their individualization decisions, and 90.1% of their exclusion decisions; most of the changed decisions resulted in inconclusive decisions. Repeatability of comparison decisions (individualization, exclusion, inconclusive) was 90.0% for mated pairs, and 85.9% for nonmated pairs. Repeatability and reproducibility were notably lower for comparisons assessed by the examiners as “difficult” than for “easy” or “moderate” comparisons, indicating that examiners' assessments of difficulty may be useful for quality assurance. No false positive errors were repeated (n = 4); 30% of false negative errors were repeated. One percent of latent value decisions were completely reversed (no value even for exclusion vs. of value for individualization). Most of the inter- and intra-examiner variability concerned whether the examiners considered the information available to be sufficient to reach a conclusion; this variability was concentrated on specific image pairs such that repeatability and reproducibility were very high on some comparisons and very low on others. Much of the variability appears to be due to making categorical decisions in borderline cases. PMID:22427888

  12. Toward a Model-Based Approach to the Clinical Assessment of Personality Psychopathology

    PubMed Central

    Eaton, Nicholas R.; Krueger, Robert F.; Docherty, Anna R.; Sponheim, Scott R.

    2015-01-01

    Recent years have witnessed tremendous growth in the scope and sophistication of statistical methods available to explore the latent structure of psychopathology, involving continuous, discrete, and hybrid latent variables. The availability of such methods has fostered optimism that they can facilitate movement from classification primarily crafted through expert consensus to classification derived from empirically-based models of psychopathological variation. The explication of diagnostic constructs with empirically supported structures can then facilitate the development of assessment tools that appropriately characterize these constructs. Our goal in this paper is to illustrate how new statistical methods can inform conceptualization of personality psychopathology and therefore its assessment. We use magical thinking as example, because both theory and earlier empirical work suggested the possibility of discrete aspects to the latent structure of personality psychopathology, particularly forms of psychopathology involving distortions of reality testing, yet other data suggest that personality psychopathology is generally continuous in nature. We directly compared the fit of a variety of latent variable models to magical thinking data from a sample enriched with clinically significant variation in psychotic symptomatology for explanatory purposes. Findings generally suggested a continuous latent variable model best represented magical thinking, but results varied somewhat depending on different indices of model fit. We discuss the implications of the findings for classification and applied personality assessment. We also highlight some limitations of this type of approach that are illustrated by these data, including the importance of substantive interpretation, in addition to use of model fit indices, when evaluating competing structural models. PMID:24007309

  13. Child involvement, alliance, and therapist flexibility: process variables in cognitive-behavioural therapy for anxiety disorders in childhood.

    PubMed

    Hudson, Jennifer L; Kendall, Philip C; Chu, Brian C; Gosch, Elizabeth; Martin, Erin; Taylor, Alan; Knight, Ashleigh

    2014-01-01

    This study examined the relations between treatment process variables and child anxiety outcomes. Independent raters watched/listened to taped therapy sessions of 151 anxiety-disordered (6-14 yr-old; M = 10.71) children (43% boys) and assessed process variables (child alliance, therapist alliance, child involvement, therapist flexibility and therapist functionality) within a manual-based cognitive-behavioural treatment. Latent growth modelling examined three latent variables (intercept, slope, and quadratic) for each process variable. Child age, gender, family income and ethnicity were examined as potential antecedents. Outcome was analyzed using factorially derived clinician, mother, father, child and teacher scores from questionnaire and structured diagnostic interviews at pretreatment, posttreatment and 12-month follow-up. Latent growth models demonstrated a concave quadratic curve for child involvement and therapist flexibility over time. A predominantly linear, downward slope was observed for alliance, and functional flexibility remained consistent over time. Increased alliance, child involvement and therapist flexibility showed some albeit inconsistent, associations with positive treatment outcome. Findings support the notion that maintaining the initial high level of alliance or involvement is important for clinical improvement. There is some support that progressively increasing alliance/involvement also positively impacts on treatment outcome. These findings were not consistent across outcome measurement points or reporters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Semiparametric regression analysis of failure time data with dependent interval censoring.

    PubMed

    Chen, Chyong-Mei; Shen, Pao-Sheng

    2017-09-20

    Interval-censored failure-time data arise when subjects are examined or observed periodically such that the failure time of interest is not examined exactly but only known to be bracketed between two adjacent observation times. The commonly used approaches assume that the examination times and the failure time are independent or conditionally independent given covariates. In many practical applications, patients who are already in poor health or have a weak immune system before treatment usually tend to visit physicians more often after treatment than those with better health or immune system. In this situation, the visiting rate is positively correlated with the risk of failure due to the health status, which results in dependent interval-censored data. While some measurable factors affecting health status such as age, gender, and physical symptom can be included in the covariates, some health-related latent variables cannot be observed or measured. To deal with dependent interval censoring involving unobserved latent variable, we characterize the visiting/examination process as recurrent event process and propose a joint frailty model to account for the association of the failure time and visiting process. A shared gamma frailty is incorporated into the Cox model and proportional intensity model for the failure time and visiting process, respectively, in a multiplicative way. We propose a semiparametric maximum likelihood approach for estimating model parameters and show the asymptotic properties, including consistency and weak convergence. Extensive simulation studies are conducted and a data set of bladder cancer is analyzed for illustrative purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Ordinal probability effect measures for group comparisons in multinomial cumulative link models.

    PubMed

    Agresti, Alan; Kateri, Maria

    2017-03-01

    We consider simple ordinal model-based probability effect measures for comparing distributions of two groups, adjusted for explanatory variables. An "ordinal superiority" measure summarizes the probability that an observation from one distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model. The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It equals Φ(β/2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities, for standard normal cdf Φ and effect β that is the coefficient of the group indicator variable. For the more general latent variable model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1+exp(β)] with the log-log link and equals approximately exp(β/2)/[1+exp(β/2)] with the logit link, where β is the group effect. Another ordinal superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures directly for ordinal models for the observed response that need not assume corresponding latent response models. We present confidence intervals for the measures and illustrate with an example. © 2016, The International Biometric Society.

  16. Factors influencing readiness to deploy in disaster response: findings from a cross-sectional survey of the Department of Veterans Affairs Disaster Emergency Medical Personnel System

    PubMed Central

    2014-01-01

    Background The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. Methods This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. Results DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. Conclusions These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross. PMID:25038628

  17. Factors influencing readiness to deploy in disaster response: findings from a cross-sectional survey of the Department of Veterans Affairs Disaster Emergency Medical Personnel System.

    PubMed

    Zagelbaum, Nicole K; Heslin, Kevin C; Stein, Judith A; Ruzek, Josef; Smith, Robert E; Nyugen, Tam; Dobalian, Aram

    2014-07-19

    The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross.

  18. Investigating Factorial Invariance of Latent Variables Across Populations When Manifest Variables Are Missing Completely

    PubMed Central

    Widaman, Keith F.; Grimm, Kevin J.; Early, Dawnté R.; Robins, Richard W.; Conger, Rand D.

    2013-01-01

    Difficulties arise in multiple-group evaluations of factorial invariance if particular manifest variables are missing completely in certain groups. Ad hoc analytic alternatives can be used in such situations (e.g., deleting manifest variables), but some common approaches, such as multiple imputation, are not viable. At least 3 solutions to this problem are viable: analyzing differing sets of variables across groups, using pattern mixture approaches, and a new method using random number generation. The latter solution, proposed in this article, is to generate pseudo-random normal deviates for all observations for manifest variables that are missing completely in a given sample and then to specify multiple-group models in a way that respects the random nature of these values. An empirical example is presented in detail comparing the 3 approaches. The proposed solution can enable quantitative comparisons at the latent variable level between groups using programs that require the same number of manifest variables in each group. PMID:24019738

  19. Exploratory factor analysis of pathway copy number data with an application towards the integration with gene expression data.

    PubMed

    van Wieringen, Wessel N; van de Wiel, Mark A

    2011-05-01

    Realizing that genes often operate together, studies into the molecular biology of cancer shift focus from individual genes to pathways. In order to understand the regulatory mechanisms of a pathway, one must study its genes at all molecular levels. To facilitate such study at the genomic level, we developed exploratory factor analysis for the characterization of the variability of a pathway's copy number data. A latent variable model that describes the call probability data of a pathway is introduced and fitted with an EM algorithm. In two breast cancer data sets, it is shown that the first two latent variables of GO nodes, which inherit a clear interpretation from the call probabilities, are often related to the proportion of aberrations and a contrast of the probabilities of a loss and of a gain. Linking the latent variables to the node's gene expression data suggests that they capture the "global" effect of genomic aberrations on these transcript levels. In all, the proposed method provides an possibly insightful characterization of pathway copy number data, which may be fruitfully exploited to study the interaction between the pathway's DNA copy number aberrations and data from other molecular levels like gene expression.

  20. On the Power of Multivariate Latent Growth Curve Models to Detect Correlated Change

    ERIC Educational Resources Information Center

    Hertzog, Christopher; Lindenberger, Ulman; Ghisletta, Paolo; Oertzen, Timo von

    2006-01-01

    We evaluated the statistical power of single-indicator latent growth curve models (LGCMs) to detect correlated change between two variables (covariance of slopes) as a function of sample size, number of longitudinal measurement occasions, and reliability (measurement error variance). Power approximations following the method of Satorra and Saris…

  1. Assessing Change in Latent Skills across Time with Longitudinal Cognitive Diagnosis Modeling: An Evaluation of Model Performance

    ERIC Educational Resources Information Center

    Kaya, Yasemin; Leite, Walter L.

    2017-01-01

    Cognitive diagnosis models are diagnostic models used to classify respondents into homogenous groups based on multiple categorical latent variables representing the measured cognitive attributes. This study aims to present longitudinal models for cognitive diagnosis modeling, which can be applied to repeated measurements in order to monitor…

  2. A Latent Variable Approach to Executive Control in Healthy Ageing

    ERIC Educational Resources Information Center

    Adrover-Roig, Daniel; Sese, Albert; Barcelo, Francisco; Palmer, Alfonso

    2012-01-01

    It is a well-established finding that the central executive is fractionated in at least three separable component processes: Updating, Shifting, and Inhibition of information (Miyake et al., 2000). However, the fractionation of the central executive among the elderly has been less well explored, and Miyake's et al. latent structure has not yet…

  3. On the Relation between the Linear Factor Model and the Latent Profile Model

    ERIC Educational Resources Information Center

    Halpin, Peter F.; Dolan, Conor V.; Grasman, Raoul P. P. P.; De Boeck, Paul

    2011-01-01

    The relationship between linear factor models and latent profile models is addressed within the context of maximum likelihood estimation based on the joint distribution of the manifest variables. Although the two models are well known to imply equivalent covariance decompositions, in general they do not yield equivalent estimates of the…

  4. (Latent) Transitions to Learning at University: A Latent Profile Transition Analysis of First-Year Japanese Students

    ERIC Educational Resources Information Center

    Fryer, Luke K.

    2017-01-01

    During the past decade, quantitative researchers have examined the first-year university experience from both variable-centred and person-centred perspectives. These studies have, however, generally been cross-sectional and therefore often failed to address how student learning changes during this transition. Furthermore, research has been…

  5. A Comparison of Four Approaches to Account for Method Effects in Latent State-Trait Analyses

    ERIC Educational Resources Information Center

    Geiser, Christian; Lockhart, Ginger

    2012-01-01

    Latent state-trait (LST) analysis is frequently applied in psychological research to determine the degree to which observed scores reflect stable person-specific effects, effects of situations and/or person-situation interactions, and random measurement error. Most LST applications use multiple repeatedly measured observed variables as indicators…

  6. A comparison of latent class, K-means, and K-median methods for clustering dichotomous data.

    PubMed

    Brusco, Michael J; Shireman, Emilie; Steinley, Douglas

    2017-09-01

    The problem of partitioning a collection of objects based on their measurements on a set of dichotomous variables is a well-established problem in psychological research, with applications including clinical diagnosis, educational testing, cognitive categorization, and choice analysis. Latent class analysis and K-means clustering are popular methods for partitioning objects based on dichotomous measures in the psychological literature. The K-median clustering method has recently been touted as a potentially useful tool for psychological data and might be preferable to its close neighbor, K-means, when the variable measures are dichotomous. We conducted simulation-based comparisons of the latent class, K-means, and K-median approaches for partitioning dichotomous data. Although all 3 methods proved capable of recovering cluster structure, K-median clustering yielded the best average performance, followed closely by latent class analysis. We also report results for the 3 methods within the context of an application to transitive reasoning data, in which it was found that the 3 approaches can exhibit profound differences when applied to real data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Variation in working memory capacity, fluid intelligence, and episodic recall: a latent variable examination of differences in the dynamics of free recall.

    PubMed

    Unsworth, Nash

    2009-09-01

    A latent variable analysis was conducted to examine the nature of individual differences in the dynamics of free recall and cognitive abilities. Participants performed multiple measures of free recall, working memory capacity (WMC), and fluid intelligence (gF). For each free recall task, recall accuracy, recall latency, and number of intrusion errors were determined, and latent factors were derived for each. It was found that recall accuracy was negatively related to both recall latency and number of intrusions, and recall latency and number of intrusions were positively related. Furthermore, latent WMC and gF factors were positively related to recall accuracy, but negatively related to recall latency and number of intrusions. Finally, a cluster analysis revealed that subgroups of participants with deficits in focusing the search had deficits in recovering degraded representations or deficits in monitoring the products of retrieval. The results are consistent with the idea that variation in the dynamics of free recall, WMC, and gF are primarily due to differences in search set size, but differences in recovery and monitoring are also important.

  8. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGES

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  9. Evaluation of the Bitterness of Traditional Chinese Medicines using an E-Tongue Coupled with a Robust Partial Least Squares Regression Method.

    PubMed

    Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin

    2016-01-25

    To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb's test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R² and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data.

  10. Suicide Risk across Latent Class Subgroups: A Test of the Generalizability of the Interpersonal Psychological Theory of Suicide.

    PubMed

    Ma, Jennifer S; Batterham, Philip J; Calear, Alison L; Han, Jin

    2018-01-06

    It remains unclear whether the Interpersonal Psychological Theory of Suicide (IPTS; Joiner, ) is generalizable to the population or holds more explanatory power for certain subgroups compared to others. The aim of this study was to (1) identify subgroups of individuals who endorsed suicide ideation in the past month based on a range of mental health and demographic variables, (2) compare levels of the IPTS constructs within these subgroups, and (3) test the IPTS predictions for suicide ideation and suicide attempt for each group. Latent class, negative binomial, linear, and logistic regression analyses were conducted on population-based data obtained from 1,321 adults recruited from Facebook. Among participants reporting suicide ideation, four distinct patterns of risk factors emerged based on age and severity of mental health symptoms. Groups with highly elevated mental health symptoms reported the highest levels of thwarted belongingness and perceived burdensomeness. Tests of the IPTS interactions provided partial support for the theory, primarily in young adults with elevated mental health symptoms. Lack of support found for the IPTS predictions across the subgroups and full sample in this study raise some questions around the broad applicability of the theory. © 2018 The American Association of Suicidology.

  11. Prolonged grief and post-traumatic growth after loss: Latent class analysis.

    PubMed

    Zhou, Ningning; Yu, Wei; Tang, Suqin; Wang, Jianping; Killikelly, Clare

    2018-06-06

    Bereavement may trigger different psychological outcomes, such as prolonged grief disorder or post-traumatic growth. The relationship between these two outcomes and potential precipitators remain unknown. The current study aimed to identify classes of Chinese bereaved individuals based on prolonged grief symptoms and post-traumatic growth and to examine predictors for these classes. We used data from 273 Chinese individuals who lost a relative due to disease (92.3%), accident (4.4%) and other reasons (1.8%). Latent class analysis revealed three classes: a resilient class, a growth class, and a combined grief/growth class. A higher level of functional impairment was found for the combined grief/growth class than for the other two classes. Membership in the combined grief/growth class was significantly predicted by the younger age of the deceased and the death of a parent, child or spouse. Subjective closeness with the deceased and gender were marginally significant predictors. When the four variables were included in the multinomial regression analysis, death of a parent, child or spouse significantly predicted the membership to the combined grief/growth class. These findings provide valuable information for the development of tailored interventions that may build on the bereaved individuals' personal strengths. Copyright © 2018. Published by Elsevier B.V.

  12. Domain-Invariant Partial-Least-Squares Regression.

    PubMed

    Nikzad-Langerodi, Ramin; Zellinger, Werner; Lughofer, Edwin; Saminger-Platz, Susanne

    2018-05-11

    Multivariate calibration models often fail to extrapolate beyond the calibration samples because of changes associated with the instrumental response, environmental condition, or sample matrix. Most of the current methods used to adapt a source calibration model to a target domain exclusively apply to calibration transfer between similar analytical devices, while generic methods for calibration-model adaptation are largely missing. To fill this gap, we here introduce domain-invariant partial-least-squares (di-PLS) regression, which extends ordinary PLS by a domain regularizer in order to align the source and target distributions in the latent-variable space. We show that a domain-invariant weight vector can be derived in closed form, which allows the integration of (partially) labeled data from the source and target domains as well as entirely unlabeled data from the latter. We test our approach on a simulated data set where the aim is to desensitize a source calibration model to an unknown interfering agent in the target domain (i.e., unsupervised model adaptation). In addition, we demonstrate unsupervised, semisupervised, and supervised model adaptation by di-PLS on two real-world near-infrared (NIR) spectroscopic data sets.

  13. Vegetation Monitoring with Gaussian Processes and Latent Force Models

    NASA Astrophysics Data System (ADS)

    Camps-Valls, Gustau; Svendsen, Daniel; Martino, Luca; Campos, Manuel; Luengo, David

    2017-04-01

    Monitoring vegetation by biophysical parameter retrieval from Earth observation data is a challenging problem, where machine learning is currently a key player. Neural networks, kernel methods, and Gaussian Process (GP) regression have excelled in parameter retrieval tasks at both local and global scales. GP regression is based on solid Bayesian statistics, yield efficient and accurate parameter estimates, and provides interesting advantages over competing machine learning approaches such as confidence intervals. However, GP models are hampered by lack of interpretability, that prevented the widespread adoption by a larger community. In this presentation we will summarize some of our latest developments to address this issue. We will review the main characteristics of GPs and their advantages in vegetation monitoring standard applications. Then, three advanced GP models will be introduced. First, we will derive sensitivity maps for the GP predictive function that allows us to obtain feature ranking from the model and to assess the influence of examples in the solution. Second, we will introduce a Joint GP (JGP) model that combines in situ measurements and simulated radiative transfer data in a single GP model. The JGP regression provides more sensible confidence intervals for the predictions, respects the physics of the underlying processes, and allows for transferability across time and space. Finally, a latent force model (LFM) for GP modeling that encodes ordinary differential equations to blend data-driven modeling and physical models of the system is presented. The LFM performs multi-output regression, adapts to the signal characteristics, is able to cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. Empirical evidence of the performance of these models will be presented through illustrative examples.

  14. Estimation of the Regression Effect Using a Latent Trait Model.

    ERIC Educational Resources Information Center

    Quinn, Jimmy L.

    A logistic model was used to generate data to serve as a proxy for an immediate retest from item responses to a fourth grade standardized reading comprehension test of 45 items. Assuming that the actual test may be considered a pretest and the proxy data may be considered a retest, the effect of regression was investigated using a percentage of…

  15. From loss to loneliness: The relationship between bereavement and depressive symptoms.

    PubMed

    Fried, Eiko I; Bockting, Claudi; Arjadi, Retha; Borsboom, Denny; Amshoff, Maximilian; Cramer, Angélique O J; Epskamp, Sacha; Tuerlinckx, Francis; Carr, Deborah; Stroebe, Margaret

    2015-05-01

    Spousal bereavement can cause a rise in depressive symptoms. This study empirically evaluates 2 competing explanations concerning how this causal effect is brought about: (a) a traditional latent variable explanation, in which loss triggers depression which then leads to symptoms; and (b) a novel network explanation, in which bereavement directly affects particular depression symptoms which then activate other symptoms. We used data from the Changing Lives of Older Couples (CLOC) study and compared depressive symptomatology, assessed via the 11-item Center for Epidemiologic Studies Depression Scale (CES-D), among those who lost their partner (N = 241) with a still-married control group (N = 274). We modeled the effect of partner loss on depressive symptoms either as an indirect effect through a latent variable, or as a direct effect in a network constructed through a causal search algorithm. Compared to the control group, widow(er)s' scores were significantly higher for symptoms of loneliness, sadness, depressed mood, and appetite loss, and significantly lower for happiness and enjoyed life. The effect of partner loss on these symptoms was not mediated by a latent variable. The network model indicated that bereavement mainly affected loneliness, which in turn activated other depressive symptoms. The direct effects of spousal loss on particular symptoms are inconsistent with the predictions of latent variable models, but can be explained from a network perspective. The findings support a growing body of literature showing that specific adverse life events differentially affect depressive symptomatology, and suggest that future studies should examine interventions that directly target such symptoms. (c) 2015 APA, all rights reserved).

  16. A longitudinal study of mortality and air pollution for São Paulo, Brazil.

    PubMed

    Botter, Denise A; Jørgensen, Bent; Peres, Antonieta A Q

    2002-09-01

    We study the effects of various air-pollution variables on the daily death counts for people over 65 years in São Paulo, Brazil, from 1991 to 1993, controlling for meteorological variables. We use a state space model where the air-pollution variables enter via the latent process, and the meteorological variables via the observation equation. The latent process represents the potential mortality due to air pollution, and is estimated by Kalman filter techniques. The effect of air pollution on mortality is found to be a function of the variation in the sulphur dioxide level for the previous 3 days, whereas the other air-pollution variables (total suspended particulates, nitrogen dioxide, carbon monoxide, ozone) are not significant when sulphur dioxide is in the equation. There are significant effects of humidity and up to lag 3 of temperature, and a significant seasonal variation.

  17. Characterising the latent structure and organisation of self-reported thoughts, feelings and behaviours in adolescents and young adults

    PubMed Central

    Neufeld, Sharon; Jones, Peter B.; Fonagy, Peter; Bullmore, Edward T.; Dolan, Raymond J.; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M.

    2017-01-01

    Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed ‘distress’ and five ‘distress independent’ specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits. PMID:28403164

  18. Characterising the latent structure and organisation of self-reported thoughts, feelings and behaviours in adolescents and young adults.

    PubMed

    St Clair, Michelle C; Neufeld, Sharon; Jones, Peter B; Fonagy, Peter; Bullmore, Edward T; Dolan, Raymond J; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M

    2017-01-01

    Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed 'distress' and five 'distress independent' specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits.

  19. The Effects of Model Misspecification and Sample Size on LISREL Maximum Likelihood Estimates.

    ERIC Educational Resources Information Center

    Baldwin, Beatrice

    The robustness of LISREL computer program maximum likelihood estimates under specific conditions of model misspecification and sample size was examined. The population model used in this study contains one exogenous variable; three endogenous variables; and eight indicator variables, two for each latent variable. Conditions of model…

  20. Authoritative parenting style and adolescent smoking and drinking.

    PubMed

    Piko, Bettina F; Balázs, Máté Á

    2012-03-01

    While peer influences have often found to be a risk factor in terms of adolescent substance use, parental variables may continue to serve as an adaptive and protective function, although the role of parents is more latent and controversial. Therefore, the main goal of this paper was to investigate the role of authoritative parenting style and other family variables in adolescents' smoking and drinking. Using a sample of Hungarian youth (N=2072; age range between 12 and 22; Mean=15.4 years, S.D.=1.8 years; 49,2% males) logistic regression analyses confirmed that authoritative parenting style (particularly responsiveness) and positive identification with parents may serve as a protection, whereas negative family interactions may act as a risk factor. These relationships are particularly decisive in case of monthly prevalence of drinking and both lifetime and current prevalence of smoking. Gender differences are slight (namely, parental control for boys, whereas responsiveness for girls seem to be more relevant), however, the role of certain parental variables may change with age. Although parental control tends to decrease among high school students, it even serves as a greater protection for those whose parents continue providing parental monitoring. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Neighborhood adversity, ethnic diversity, and weak social cohesion and social networks predict high rates of maternal depressive symptoms: a critical realist ecological study in South Western Sydney, Australia.

    PubMed

    Eastwood, John Graeme; Kemp, Lynn Ann; Jalaludin, Bin Badrudin; Phung, Hai Ngoc

    2013-01-01

    The aim of the study reported here is to explore ecological covariate and latent variable associations with perinatal depressive symptoms in South Western Sydney for the purpose of informing subsequent theory generation of perinatal context, depression, and the developmental origins of health and disease. Mothers (n = 15,389) delivering in 2002 and 2003 were assessed at two to three weeks after delivery for risk factors for depressive symptoms. The binary outcome variables were Edinburgh Postnatal Depression Scale (EPDS)> 9 and > 12. Aggregated EPDS > 9 was analyzed for 101 suburbs. Suburb-level variables were drawn from the 2001 Australian Census, New South Wales Crime Statistics, and aggregated individual-level risk factors. Analysis included exploratory factor analysis, univariate and multivariate likelihood, and Bayesian linear regression with conditional autoregressive components. The exploratory factor analysis identified six factors: neighborhood adversity, social cohesion, health behaviors, housing quality, social services, and support networks. Variables associated with neighborhood adversity, social cohesion, social networks, and ethnic diversity were consistently associated with aggregated depressive symptoms. The findings support the theoretical proposition that neighborhood adversity causes maternal psychological distress and depression within the context of social buffers including social networks, social cohesion, and social services.

  2. Modeling Latent Interactions at Level 2 in Multilevel Structural Equation Models: An Evaluation of Mean-Centered and Residual-Centered Unconstrained Approaches

    ERIC Educational Resources Information Center

    Leite, Walter L.; Zuo, Youzhen

    2011-01-01

    Among the many methods currently available for estimating latent variable interactions, the unconstrained approach is attractive to applied researchers because of its relatively easy implementation with any structural equation modeling (SEM) software. Using a Monte Carlo simulation study, we extended and evaluated the unconstrained approach to…

  3. Multilevel Latent Class Analysis: An Application of Adolescent Smoking Typologies with Individual and Contextual Predictors

    ERIC Educational Resources Information Center

    Henry, Kimberly L.; Muthen, Bengt

    2010-01-01

    Latent class analysis (LCA) is a statistical method used to identify subtypes of related cases using a set of categorical or continuous observed variables. Traditional LCA assumes that observations are independent. However, multilevel data structures are common in social and behavioral research and alternative strategies are needed. In this…

  4. Randomization-Based Inference about Latent Variables from Complex Samples: The Case of Two-Stage Sampling

    ERIC Educational Resources Information Center

    Li, Tiandong

    2012-01-01

    In large-scale assessments, such as the National Assessment of Educational Progress (NAEP), plausible values based on Multiple Imputations (MI) have been used to estimate population characteristics for latent constructs under complex sample designs. Mislevy (1991) derived a closed-form analytic solution for a fixed-effect model in creating…

  5. Squeezing Interval Change From Ordinal Panel Data: Latent Growth Curves With Ordinal Outcomes

    ERIC Educational Resources Information Center

    Mehta, Paras D.; Neale, Michael C.; Flay, Brian R.

    2004-01-01

    A didactic on latent growth curve modeling for ordinal outcomes is presented. The conceptual aspects of modeling growth with ordinal variables and the notion of threshold invariance are illustrated graphically using a hypothetical example. The ordinal growth model is described in terms of 3 nested models: (a) multivariate normality of the…

  6. www.common-metrics.org: a web application to estimate scores from different patient-reported outcome measures on a common scale.

    PubMed

    Fischer, H Felix; Rose, Matthias

    2016-10-19

    Recently, a growing number of Item-Response Theory (IRT) models has been published, which allow estimation of a common latent variable from data derived by different Patient Reported Outcomes (PROs). When using data from different PROs, direct estimation of the latent variable has some advantages over the use of sum score conversion tables. It requires substantial proficiency in the field of psychometrics to fit such models using contemporary IRT software. We developed a web application ( http://www.common-metrics.org ), which allows estimation of latent variable scores more easily using IRT models calibrating different measures on instrument independent scales. Currently, the application allows estimation using six different IRT models for Depression, Anxiety, and Physical Function. Based on published item parameters, users of the application can directly estimate latent trait estimates using expected a posteriori (EAP) for sum scores as well as for specific response patterns, Bayes modal (MAP), Weighted likelihood estimation (WLE) and Maximum likelihood (ML) methods and under three different prior distributions. The obtained estimates can be downloaded and analyzed using standard statistical software. This application enhances the usability of IRT modeling for researchers by allowing comparison of the latent trait estimates over different PROs, such as the Patient Health Questionnaire Depression (PHQ-9) and Anxiety (GAD-7) scales, the Center of Epidemiologic Studies Depression Scale (CES-D), the Beck Depression Inventory (BDI), PROMIS Anxiety and Depression Short Forms and others. Advantages of this approach include comparability of data derived with different measures and tolerance against missing values. The validity of the underlying models needs to be investigated in the future.

  7. Computer use, symptoms, and quality of life.

    PubMed

    Hayes, John R; Sheedy, James E; Stelmack, Joan A; Heaney, Catherine A

    2007-08-01

    To model the effects of computer use on reported visual and physical symptoms and to measure the effects upon quality of life measures. A survey of 1000 university employees (70.5% adjusted response rate) assessed visual and physical symptoms, job, physical and mental demands, ability to control/influence work, amount of work at a computer, computer work environment, relations with others at work, life and job satisfaction, and quality of life. Data were analyzed to determine whether self-reported eye symptoms are associated with perceived quality of life. The study also explored the factors that are associated with eye symptoms. Structural equation modeling and multiple regression analyses were used to assess the hypotheses. Seventy percent of the employees used some form of vision correction during computer use, 2.9% used glasses specifically prescribed for computer use, and 8% had had refractive surgery. Employees spent an average of 6 h per day at the computer. In a multiple regression framework, the latent variable eye symptoms was significantly associated with a composite quality of life variable (p = 0.02) after adjusting for job quality, job satisfaction, supervisor relations, co-worker relations, mental and physical load of the job, and job demand. Age and gender were not significantly associated with symptoms. After adjusting for age, gender, ergonomics, hours at the computer, and exercise, eye symptoms were significantly associated with physical symptoms (p < 0.001) accounting for 48% of the variance. Environmental variability at work was associated with eye symptoms and eye symptoms demonstrated a significant impact on quality of life and physical symptoms.

  8. Latent structure analysis of the process variables and pharmaceutical responses of an orally disintegrating tablet.

    PubMed

    Hayashi, Yoshihiro; Oshima, Etsuko; Maeda, Jin; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2012-01-01

    A multivariate statistical technique was applied to the design of an orally disintegrating tablet and to clarify the causal correlation among variables of the manufacturing process and pharmaceutical responses. Orally disintegrating tablets (ODTs) composed mainly of mannitol were prepared via the wet-granulation method using crystal transition from the δ to the β form of mannitol. Process parameters (water amounts (X(1)), kneading time (X(2)), compression force (X(3)), and amounts of magnesium stearate (X(4))) were optimized using a nonlinear response surface method (RSM) incorporating a thin plate spline interpolation (RSM-S). The results of a verification study revealed that the experimental responses, such as tensile strength and disintegration time, coincided well with the predictions. A latent structure analysis of the pharmaceutical formulations of the tablet performed using a Bayesian network led to the clear visualization of a causal connection among variables of the manufacturing process and tablet characteristics. The quantity of β-mannitol in the granules (Q(β)) was affected by X(2) and influenced all granule properties. The specific surface area of the granules was affected by X(1) and Q(β) and had an effect on all tablet characteristics. Moreover, the causal relationships among the variables were clarified by inferring conditional probability distributions. These techniques provide a better understanding of the complicated latent structure among variables of the manufacturing process and tablet characteristics.

  9. Examining the Heterogeneity and Cost Effectiveness of a Complex Intervention by Segmentation of Patients with Chronic Obstructive Pulmonary Disease.

    PubMed

    Sørensen, Sabrina Storgaard; Jensen, Morten Berg; Pedersen, Kjeld Møller; Ehlers, Lars

    2018-02-01

    To examine the heterogeneity in cost-effectiveness analyses of patient-tailored complex interventions. Latent class analysis (LCA) was performed on data from a randomized controlled trial evaluating a patient-tailored case management strategy for patients suffering from chronic obstructive pulmonary disease (COPD). LCA was conducted on detailed process variables representing service variation in the intervention group. Features of the identified latent classes were compared for consistency with baseline demographic, clinical, and economic characteristics for each class. Classes for the control group, corresponding to the identified latent classes for the intervention group, were identified using multinomial logistic regression. Cost-utility analyses were then conducted at the class level, and uncertainty surrounding the point estimates was assessed by probabilistic sensitivity analysis. The LCA identified three distinct classes: the psychologically care class, the extensive COPD care class, and the limited COPD care class. Patient baseline characteristics were in line with the features identified in the LCA. Evaluation of cost-effectiveness revealed highly disparate results, and case management for only the extensive COPD care class appeared cost-effective with an incremental cost-effectiveness ratio of £26,986 per quality-adjusted life-year gained using the threshold value set by the National Institute of Health and Care Excellence. Findings indicate that researchers evaluating patient-tailored complex interventions need to address both supply-side variation and demand-side heterogeneity to link findings with outcome. The article specifically proposes the use of LCA because it is believed to have the potential to enable more appropriate targeting of complex care strategies. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. Incorporating imperfect detection into joint models of communites: A response to Warton et al.

    USGS Publications Warehouse

    Beissinger, Steven R.; Iknayan, Kelly J.; Guillera-Arroita, Gurutzeta; Zipkin, Elise; Dorazio, Robert; Royle, Andy; Kery, Marc

    2016-01-01

    Warton et al. [1] advance community ecology by describing a statistical framework that can jointly model abundances (or distributions) across many taxa to quantify how community properties respond to environmental variables. This framework specifies the effects of both measured and unmeasured (latent) variables on the abundance (or occurrence) of each species. Latent variables are random effects that capture the effects of both missing environmental predictors and correlations in parameter values among different species. As presented in Warton et al., however, the joint modeling framework fails to account for the common problem of detection or measurement errors that always accompany field sampling of abundance or occupancy, and are well known to obscure species- and community-level inferences.

  11. Variable Importance in Multivariate Group Comparisons.

    ERIC Educational Resources Information Center

    Huberty, Carl J.; Wisenbaker, Joseph M.

    1992-01-01

    Interpretations of relative variable importance in multivariate analysis of variance are discussed, with attention to (1) latent construct definition; (2) linear discriminant function scores; and (3) grouping variable effects. Two numerical ranking methods are proposed and compared by the bootstrap approach using two real data sets. (SLD)

  12. Wealth, intelligence, politics and global fertility differentials.

    PubMed

    Meisenberg, Gerhard

    2009-07-01

    Demographic trends in today's world are dominated by large fertility differentials between nations, with 'less developed' nations having higher fertility than the more advanced nations. The present study investigates whether these fertility differences are related primarily to indicators of economic development, the intellectual level of the population, or political modernity in the form of liberal democracy. Results obtained with multiple regression, path models and latent variable models are compared. Both log-transformed GDP and measures of intelligence independently reduce fertility across all methods, whereas the effects of liberal democracy are weak and inconsistent. At present rates of fertility and mortality and in the absence of changes within countries, the average IQ of the young world population would decline by 1.34 points per decade and the average per capita income would decline by 0.79% per year.

  13. Racial Discrimination and Racial Socialization as Predictors of African American Adolescents’ Racial Identity Development using Latent Transition Analysis

    PubMed Central

    Seaton, Eleanor K.; Yip, Tiffany; Morgan-Lopez, Antonio; Sellers, Robert M.

    2013-01-01

    The current study examined perceptions of racial discrimination and racial socialization on racial identity development among 566 African American adolescents over three years. Latent class analyses were used to estimate identity statuses (Diffuse, Foreclosed, Moratorium and Achieved). The probabilities of transitioning from one stage to another were examined with latent transition analyses to determine the likelihood of youth progressing, regressing or remaining constant. Racial socialization and perceptions of racial discrimination were examined as covariates to assess the association with changes in racial identity status. The results indicated that perceptions of racial discrimination were not linked to any changes in racial identity. Youth who reported higher levels of racial socialization were less likely to be in Diffuse or Foreclosed compared to the Achieved group. PMID:21875184

  14. Multilevel Latent Class Analysis for Large-Scale Educational Assessment Data: Exploring the Relation between the Curriculum and Students' Mathematical Strategies

    ERIC Educational Resources Information Center

    Fagginger Auer, Marije F.; Hickendorff, Marian; Van Putten, Cornelis M.; Béguin, Anton A.; Heiser, Willem J.

    2016-01-01

    A first application of multilevel latent class analysis (MLCA) to educational large-scale assessment data is demonstrated. This statistical technique addresses several of the challenges that assessment data offers. Importantly, MLCA allows modeling of the often ignored teacher effects and of the joint influence of teacher and student variables.…

  15. Consequences of Ignoring Guessing when Estimating the Latent Density in Item Response Theory

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2008-01-01

    In Ramsay-curve item response theory (RC-IRT), the latent variable distribution is estimated simultaneously with the item parameters. In extant Monte Carlo evaluations of RC-IRT, the item response function (IRF) used to fit the data is the same one used to generate the data. The present simulation study examines RC-IRT when the IRF is imperfectly…

  16. Students' Views on Mathematics in Single-Sex and Coed Classrooms in Ghana

    ERIC Educational Resources Information Center

    Bofah, Emmanuel Adu-tutu; Hannula, Markku S.

    2016-01-01

    In this study, we investigated students' views on themselves as learners of mathematics as a function of school-by-sex (N = 2034, MAge = 18.49, SDAge = 1.25; 12th-grade; 58.2% girls). Using latent variable Structural Equation Modeling (SEM), the measurement and structural equivalence as well as the equality of latent means of scores across…

  17. The Information a Test Provides on an Ability Parameter. Research Report. ETS RR-07-18

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2007-01-01

    In item-response theory, if a latent-structure model has an ability variable, then elementary information theory may be employed to provide a criterion for evaluation of the information the test provides concerning ability. This criterion may be considered even in cases in which the latent-structure model is not valid, although interpretation of…

  18. An introduction to mixture item response theory models.

    PubMed

    De Ayala, R J; Santiago, S Y

    2017-02-01

    Mixture item response theory (IRT) allows one to address situations that involve a mixture of latent subpopulations that are qualitatively different but within which a measurement model based on a continuous latent variable holds. In this modeling framework, one can characterize students by both their location on a continuous latent variable as well as by their latent class membership. For example, in a study of risky youth behavior this approach would make it possible to estimate an individual's propensity to engage in risky youth behavior (i.e., on a continuous scale) and to use these estimates to identify youth who might be at the greatest risk given their class membership. Mixture IRT can be used with binary response data (e.g., true/false, agree/disagree, endorsement/not endorsement, correct/incorrect, presence/absence of a behavior), Likert response scales, partial correct scoring, nominal scales, or rating scales. In the following, we present mixture IRT modeling and two examples of its use. Data needed to reproduce analyses in this article are available as supplemental online materials at http://dx.doi.org/10.1016/j.jsp.2016.01.002. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  19. Latent Heating Structures Derived from TRMM

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R.; Hou, A.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.; Olson, W.; Satoh, S.

    2004-01-01

    Rainfall is the fundamental variable within the Earth's hydrological cycle because it is both the main forcing term leading to variations in continental and oceanic surface water budgets. The vertical distribution of latent heat release, which is accompanied with rain, modulates large-scale meridional and zonal circulations within the tropics as well as modifying the energetic efficiency of mid-latitude weather systems. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water.This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission 0. The TRMM observatory, whose development was a joint US-Japan space endeavor, was launched in November 1997. TRMM measurements provide an accurate account of rainfall over the global tropics, information which can be .used to estimate the four-dimensional structure of latent heating across the entire tropical and sub-tropical regions. Various algorithm methodologies for estimating latent heating based on rain rate measurements from TRMM observations are described. The strengths and weaknesses of these algorithms, as well as the latent heating products generated by these algorithms, are also discussed along with validation analyses of the products. The investigation paper provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, and concludes with remarks designed to stimulate further research on latent heating retrieval

  20. Rapid Detection of Volatile Oil in Mentha haplocalyx by Near-Infrared Spectroscopy and Chemometrics.

    PubMed

    Yan, Hui; Guo, Cheng; Shao, Yang; Ouyang, Zhen

    2017-01-01

    Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . The effects of data pre-processing methods on the accuracy of the PLSR calibration models were investigated. The performance of the final model was evaluated according to the correlation coefficient ( R ) and root mean square error of prediction (RMSEP). For PLSR model, the best preprocessing method combination was first-order derivative, standard normal variate transformation (SNV), and mean centering, which had of 0.8805, of 0.8719, RMSEC of 0.091, and RMSEP of 0.097, respectively. The wave number variables linking to volatile oil are from 5500 to 4000 cm-1 by analyzing the loading weights and variable importance in projection (VIP) scores. For SVM model, six LVs (less than seven LVs in PLSR model) were adopted in model, and the result was better than PLSR model. The and were 0.9232 and 0.9202, respectively, with RMSEC and RMSEP of 0.084 and 0.082, respectively, which indicated that the predicted values were accurate and reliable. This work demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in M. haplocalyx . The quality of medicine directly links to clinical efficacy, thus, it is important to control the quality of Mentha haplocalyx . Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . For SVM model, 6 LVs (less than 7 LVs in PLSR model) were adopted in model, and the result was better than PLSR model. It demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in Mentha haplocalyx . Abbreviations used: 1 st der: First-order derivative; 2 nd der: Second-order derivative; LOO: Leave-one-out; LVs: Latent variables; MC: Mean centering, NIR: Near-infrared; NIRS: Near infrared spectroscopy; PCR: Principal component regression, PLSR: Partial least squares regression; RBF: Radial basis function; RMSEC: Root mean square error of cross validation, RMSEC: Root mean square error of calibration; RMSEP: Root mean square error of prediction; SNV: Standard normal variate transformation; SVM: Support vector machine; VIP: Variable Importance in projection.

  1. Estimation of diagnostic test accuracy without full verification: a review of latent class methods

    PubMed Central

    Collins, John; Huynh, Minh

    2014-01-01

    The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification. PMID:24910172

  2. Fall Risk, Supports and Services, and Falls Following a Nursing Home Discharge.

    PubMed

    Noureldin, Marwa; Hass, Zachary; Abrahamson, Kathleen; Arling, Greg

    2017-09-04

    Falls are a major source of morbidity and mortality among older adults; however, little is known regarding fall occurrence during a nursing home (NH) to community transition. This study sought to examine whether the presence of supports and services impacts the relationship between fall-related risk factors and fall occurrence post NH discharge. Participants in the Minnesota Return to Community Initiative who were assisted in achieving a community discharge (N = 1459) comprised the study sample. The main outcome was fall occurrence within 30 days of discharge. Factor analyses were used to estimate latent models from variables of interest. A structural equation model (SEM) was estimated to determine the relationship between the emerging latent variables and falls. Fifteen percent of participants fell within 30 days of NH discharge. Factor analysis of fall-related risk factors produced three latent variables: fall concerns/history; activities of daily living impairments; and use of high-risk medications. A supports/services latent variable also emerged that included caregiver support frequency, medication management assistance, durable medical equipment use, discharge location, and receipt of home health or skilled nursing services. In the SEM model, high-risk medications use and fall concerns/history had direct positive effects on falling. Receiving supports/services did not affect falling directly; however, it reduced the effect of high-risk medication use on falling (p < .05). Within the context of a state-implemented transition program, findings highlight the importance of supports/services in mitigating against medication-related risk of falling post NH discharge. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Tuberculosis and latent infection in employees of different prison unit types

    PubMed Central

    Nogueira, Péricles Alves; Abrahão, Regina Maura Cabral de Melo; Galesi, Vera Maria Neder; López, Rossana Verónica Mendoza

    2018-01-01

    ABSTRACT OBJECTIVE Estimate the prevalence of active tuberculosis and latent tuberculosis infection among the staff that is in contact and the staff that is not in contact with prisoners, and investigate factors associated with latent tuberculosis infection in this population. METHODS Observational cross-sectional study, conducted from 2012 to 2015, in employees of different prison units in the municipality of Franco da Rocha, SP. It consisted of the application of a questionnaire, application and reading of the tuberculin test, sputum smear microscopy, sputum culture, and radiological examination. The association between the qualitative variables was calculated by the Pearson's chi-squared test. The sociodemographic and clinical-epidemiological factors related to the latent tuberculosis infection were evaluated by the logistic regression with the odds ratios (OR) calculation and their respective intervals with 95% of confidence (95%CI). RESULTS A total of 1,059 employees were examined, 657 (62.0%) of prisons, 249 (23.5%) of CASA Foundation units and 153 (14.5%) of custodial and psychiatric treatment hospitals. The tuberculin test was applied and read for 945 (89.2%) professionals. Of these, 797 (84.3%) were contacts of detainees and 148 (15.7%) were not. Among prison staff, the factors associated with latent tuberculosis infection were: contact with detainee (OR = 2.12, 95%CI 1.21–3.71); male gender (OR = 1.97, 95%CI 1.19–3.27); between 30 and 39 years old (OR = 2.98, 95%CI 1.34–6.63), 40 to 49 years old (OR = 4.32, 95%CI 1.94–9.60), and 50 to 59 years old (OR = 3.98, 95%CI 1.68–9.43); nonwhite color or race (OR = 1.89, 95%CI 1.29–2.78); and smoker (OR = 1.64, 95%CI 1.05–2.55). There were no positive test on sputum smear microscopy and culture. Of the 241 (22.8%) professionals who underwent radiological examination, 48 (19.9%) presented alterations of which 11 were suspected of tuberculosis. CONCLUSIONS Prison employees who have direct contact with detainees are 2.12 times more likely to become infected with Mycobacterium tuberculosis in the work environment and consequently to become ill with tuberculosis and should be targeted for disease prevention and control. PMID:29412377

  4. Increased mortality risk among the visually impaired: the roles of mental well-being and preventive care practices.

    PubMed

    Zheng, D Diane; Christ, Sharon L; Lam, Byron L; Arheart, Kristopher L; Galor, Anat; Lee, David J

    2012-05-14

    Mechanisms by which visual impairment (VI) increases mortality risk are poorly understood. We estimated the direct and indirect effects of self-rated VI on risk of mortality through mental well-being and preventive care practice mechanisms. Using complete data from 12,987 adult participants of the 2000 Medical Expenditure Panel Survey with mortality linkage through 2006, we undertook structural equation modeling using two latent variables representing mental well-being and poor preventive care to examine multiple effect pathways of self-rated VI on all-cause mortality. Generalized linear structural equation modeling was used to simultaneously estimate pathways including the latent variables and Cox regression model, with adjustment for controls and the complex sample survey design. VI increased the risk of mortality directly after adjusting for mental well-being and other covariates (hazard ratio [HR] = 1.25 [95% confidence interval: 1.01, 1.55]). Poor preventive care practices were unrelated to VI and to mortality. Mental well-being decreased mortality risk (HR = 0.68 [0.64, 0.74], P < 0.001). VI adversely affected mental well-being (β = -0.54 [-0.65, -0.43]; P < 0.001). VI also increased mortality risk indirectly through mental well-being (HR = 1.23 [1.16, 1.30]). The total effect of VI on mortality including its influence through mental well-being was HR 1.53 [1.24, 1.90]. Similar but slightly stronger patterns of association were found when examining cardiovascular disease-related mortality, but not cancer-related mortality. VI increases the risk of mortality directly and indirectly through its adverse impact on mental well-being. Prevention of disabling ocular conditions remains a public health priority along with more aggressive diagnosis and treatment of depression and other mental health conditions in those living with VI.

  5. Associations between complex OHC mixtures and thyroid and cortisol hormone levels in East Greenland polar bears.

    PubMed

    Bechshøft, T Ø; Sonne, C; Dietz, R; Born, E W; Muir, D C G; Letcher, R J; Novak, M A; Henchey, E; Meyer, J S; Jenssen, B M; Villanger, G D

    2012-07-01

    The multivariate relationship between hair cortisol, whole blood thyroid hormones, and the complex mixtures of organohalogen contaminant (OHC) levels measured in subcutaneous adipose of 23 East Greenland polar bears (eight males and 15 females, all sampled between the years 1999 and 2001) was analyzed using projection to latent structure (PLS) regression modeling. In the resulting PLS model, most important variables with a negative influence on cortisol levels were particularly BDE-99, but also CB-180, -201, BDE-153, and CB-170/190. The most important variables with a positive influence on cortisol were CB-66/95, α-HCH, TT3, as well as heptachlor epoxide, dieldrin, BDE-47, p,p'-DDD. Although statistical modeling does not necessarily fully explain biological cause-effect relationships, relationships indicate that (1) the hypothalamic-pituitary-adrenal (HPA) axis in East Greenland polar bears is likely to be affected by OHC-contaminants and (2) the association between OHCs and cortisol may be linked with the hypothalamus-pituitary-thyroid (HPT) axis. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. How the 2SLS/IV estimator can handle equality constraints in structural equation models: a system-of-equations approach.

    PubMed

    Nestler, Steffen

    2014-05-01

    Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.

  7. Impact of measurement invariance on construct correlations, mean differences, and relations with external correlates: an illustrative example using Big Five and RIASEC measures.

    PubMed

    Schmitt, Neal; Golubovich, Juliya; Leong, Frederick T L

    2011-12-01

    The impact of measurement invariance and the provision for partial invariance in confirmatory factor analytic models on factor intercorrelations, latent mean differences, and estimates of relations with external variables is investigated for measures of two sets of widely assessed constructs: Big Five personality and the six Holland interests (RIASEC). In comparing models that include provisions for partial invariance with models that do not, the results indicate quite small differences in parameter estimates involving the relations between factors, one relatively large standardized mean difference in factors between the subgroups compared and relatively small differences in the regression coefficients when the factors are used to predict external variables. The results provide support for the use of partially invariant models, but there does not seem to be a great deal of difference between structural coefficients when the measurement model does or does not include separate estimates of subgroup parameters that differ across subgroups. Future research should include simulations in which the impact of various factors related to invariance is estimated.

  8. Women's Retirement Expectations: How Stable Are They?

    PubMed Central

    Hardy, Melissa A.

    2009-01-01

    Objective Using the National Longitudinal Survey of Mature Women, we examine between- and within-person differences in expected retirement age as a key element of the retirement planning process. The expectation typologies of 1,626 women born between 1923 and 1937 were classified jointly on the basis of specificity and consistency. Methods Latent class analysis was used to determine retirement expectation patterns over a 7-year span. Multinomial logistic regression analyses were employed to estimate the effects of demographic and status characteristics on the likelihood of reporting 4 distinct longitudinal patterns of retirement expectations. Results Substantial heterogeneity in reports of expected retirement age between and within individuals over the 7-year span was found. Demographic and status characteristics, specifically age, race, marital status, job tenure, and recent job change, sorted respondents into different retirement expectation patterns. Conclusions The frequent within-person fluctuations and substantial between-person heterogeneity in retirement expectations indicate uncertainty and variability in both expectations and process of expectation formation. Variability in respondents' reports suggests that studying retirement expectations at multiple time points better captures the dynamics of preretirement planning. PMID:19176483

  9. Severity of mental illness as a result of multiple childhood adversities: US National Epidemiologic Survey.

    PubMed

    Curran, Emma; Adamson, Gary; Stringer, Maurice; Rosato, Michael; Leavey, Gerard

    2016-05-01

    To examine patterns of childhood adversity, their long-term consequences and the combined effect of different childhood adversity patterns as predictors of subsequent psychopathology. Secondary analysis of data from the US National Epidemiologic Survey on alcohol and related conditions. Using latent class analysis to identify childhood adversity profiles; and using multinomial logistic regression to validate and further explore these profiles with a range of associated demographic and household characteristics. Finally, confirmatory factor analysis substantiated initial latent class analysis findings by investigating a range of mental health diagnoses. Latent class analysis generated a three-class model of childhood adversity in which 60 % of participants were allocated to a low adversity class; 14 % to a global adversities class (reporting exposures for all the derived latent classes); and 26 % to a domestic emotional and physical abuse class (exposed to a range of childhood adversities). Confirmatory Factor analysis defined an internalising-externalising spectrum to represent lifetime reporting patterns of mental health disorders. Using logistic regression, both adversity groups showed specific gender and race/ethnicity differences, related family discord and increased psychopathology. We identified underlying patterns in the exposure to childhood adversity and associated mental health. These findings are informative in their description of the configuration of adversities, rather than focusing solely on the cumulative aspect of experience. Amelioration of longer-term negative consequences requires early identification of psychopathology risk factors that can inform protective and preventive interventions. This study highlights the utility of screening for childhood adversities when individuals present with symptoms of psychiatric disorders.

  10. Polydrug Use and HIV Risk Among People Who Inject Heroin in Tijuana, Mexico: A Latent Class Analysis.

    PubMed

    Meacham, Meredith C; Rudolph, Abby E; Strathdee, Steffanie A; Rusch, Melanie L; Brouwer, Kimberly C; Patterson, Thomas L; Vera, Alicia; Rangel, Gudelia; Roesch, Scott C

    2015-01-01

    Although most people who inject drugs (PWID) in Tijuana, Mexico, primarily inject heroin, injection and non-injection use of methamphetamine and cocaine is common. We examined patterns of polydrug use among heroin injectors to inform prevention and treatment of drug use and its health and social consequences. Participants were PWID residing in Tijuana, aged ≥18 years who reported heroin injection in the past six months and were recruited through respondent-driven sampling (n = 1,025). Latent class analysis was conducted to assign individuals to classes on a probabilistic basis, using four indicators of past six-month polydrug and polyroute use: cocaine injecting, cocaine smoking or snorting, methamphetamine injecting, and methamphetamine smoking or snorting. Latent class membership was regressed onto covariates in a multinomial logistic regression. Latent class analyses testing 1, 2, 3, and 4 classes were fit, with the 3-class solution fitting best. Class 1 was defined by predominantly heroin use (50.2%, n = 515); class 2 by methamphetamine and heroin use (43.7%, n = 448), and class 3 by methamphetamine, cocaine, and heroin use (6.0%, n = 62). Bivariate and multivariate analyses indicated a group of methamphetamine and cocaine users that exhibited higher-risk sexual practices and lower heroin injecting frequency, and a group of methamphetamine users who were younger and more likely to be female. Discrete subtypes of heroin PWID were identified based on methamphetamine and cocaine use patterns. These findings have identified subtypes of heroin injectors who require more tailored interventions to reduce the health and social harms of injecting drug use.

  11. Polydrug use and HIV risk among people who inject heroin in Tijuana, Mexico: A Latent class analysis

    PubMed Central

    Meacham, M.C.; Rudolph, A.E.; Strathdee, S.A.; Rusch, M.L.; Brouwer, K.C.; Patterson, T.L.; Vera, A.; Rangel, G.; Roesch, S.C.

    2016-01-01

    Background Although most people who inject drugs (PWID) in Tijuana, Mexico, primarily inject heroin, injection and non-injection use of methamphetamine and cocaine is common. We examined patterns of polydrug use among heroin injectors to inform prevention and treatment of drug use and its health and social consequences. Methods Participants were PWID residing in Tijuana aged ≥ 18 years who reported heroin injection in the past 6 months and were recruited through respondent driven sampling (n=1025). Latent class analysis was conducted to assign individuals to classes on a probabilistic basis, using four indicators of past 6 month polydrug and polyroute use: cocaine injecting, cocaine smoking or snorting, methamphetamine injecting, methamphetamine smoking or snorting. Latent class membership was regressed onto covariates in a multinomial logistic regression. Results Latent class analyses testing 1, 2, 3, and 4 classes were fit, with the 3-class solution fitting best. Class 1 was defined by predominantly heroin use (50.2%, n=515); class 2 by methamphetamine and heroin use (43.7%, n=448), and class 3 by methamphetamine, cocaine, and heroin use (6.0%, n=62). Bivariate and multivariate analyses indicated a group of methamphetamine and cocaine users that exhibited higher risk sexual practices and lower heroin injecting frequency, and a group of methamphetamine users who were younger and more likely to be female. Conclusions Discrete subtypes of heroin PWID were identified based on methamphetamine and cocaine use patterns. These findings have identified subtypes of heroin injectors who require more tailored interventions to reduce the health and social harms of injecting drug use. PMID:26444185

  12. Evaluation of the Bitterness of Traditional Chinese Medicines using an E-Tongue Coupled with a Robust Partial Least Squares Regression Method

    PubMed Central

    Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin

    2016-01-01

    To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb’s test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R2 and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data. PMID:26821026

  13. Gender roles and binge drinking among Latino emerging adults: a latent class regression analysis.

    PubMed

    Vaughan, Ellen L; Wong, Y Joel; Middendorf, Katharine G

    2014-09-01

    Gender roles are often cited as a culturally specific predictor of drinking among Latino populations. This study used latent class regression to test the relationships between gender roles and binge drinking in a sample of Latino emerging adults. Participants were Latino emerging adults who participated in Wave III of the National Longitudinal Study of Adolescent Health (N = 2,442). A subsample of these participants (n = 660) completed the Bem Sex Role Inventory--Short. We conducted latent class regression using 3 dimensions of gender roles (femininity, social masculinity, and personal masculinity) to predict binge drinking. Results indicated a 3-class solution. In Class 1, the protective personal masculinity class, personal masculinity (e.g., being a leader, defending one's own beliefs) was associated with a reduction in the odds of binge drinking. In Class 2, the nonsignificant class, gender roles were not related to binge drinking. In Class 3, the mixed masculinity class, personal masculinity was associated with a reduction in the odds of binge drinking, whereas social masculinity (e.g., forceful, dominant) was associated with an increase in the odds of binge drinking. Post hoc analyses found that females, those born outside the United States, and those with greater English language usage were at greater odds of being in Class 1 (vs. Class 2). Males, those born outside the United States, and those with greater Spanish language usage were at greater odds of being in Class 3 (vs. Class 2). Directions for future research and implications for practice with Latino emerging adults are discussed.

  14. Modeling the Trajectory of Analgesic Demand Over Time After Total Knee Arthroplasty Using the Latent Curve Analysis.

    PubMed

    Lo, Po-Han; Tsou, Mei-Yung; Chang, Kuang-Yi

    2015-09-01

    Patient-controlled epidural analgesia (PCEA) is commonly used for pain relief after total knee arthroplasty (TKA). This study aimed to model the trajectory of analgesic demand over time after TKA and explore its influential factors using latent curve analysis. Data were retrospectively collected from 916 patients receiving unilateral or bilateral TKA and postoperative PCEA. PCEA demands during 12-hour intervals for 48 hours were directly retrieved from infusion pumps. Potentially influential factors of PCEA demand, including age, height, weight, body mass index, sex, and infusion pump settings, were also collected. A latent curve analysis with 2 latent variables, the intercept (baseline) and slope (trend), was applied to model the changes in PCEA demand over time. The effects of influential factors on these 2 latent variables were estimated to examine how these factors interacted with time to alter the trajectory of PCEA demand over time. On average, the difference in analgesic demand between the first and second 12-hour intervals was only 15% of that between the first and third 12-hour intervals. No significant difference in PCEA demand was noted between the third and fourth 12-hour intervals. Aging tended to decrease the baseline PCEA demand but body mass index and infusion rate were positively correlated with the baseline. Only sex significantly affected the trend parameter and male individuals tended to have a smoother decreasing trend of analgesic demands over time. Patients receiving bilateral procedures did not consume more analgesics than their unilateral counterparts. Goodness of fit analysis indicated acceptable model fit to the observed data. Latent curve analysis provided valuable information about how analgesic demand after TKA changed over time and how patient characteristics affected its trajectory.

  15. Deconstructing sub-clinical psychosis into latent-state and trait variables over a 30-year time span.

    PubMed

    Rössler, Wulf; Hengartner, Michael P; Ajdacic-Gross, Vladeta; Haker, Helene; Angst, Jules

    2013-10-01

    Our aim was to deconstruct the variance underlying the expression of sub-clinical psychosis symptoms into portions associated with latent time-dependent states and time-invariant traits. We analyzed data of 335 subjects from the general population of Zurich, Switzerland, who had been repeatedly measured between 1979 (age 20/21) and 2008 (age 49/50). We applied two measures of sub-clinical psychosis derived from the SCL-90-R, namely schizotypal signs (STS) and schizophrenia nuclear symptoms (SNS). Variance was decomposed with latent state-trait analysis and associations with covariates were examined with generalized linear models. At ages 19/20 and 49/50, the latent states underlying STS accounted for 48% and 51% of variance, whereas for SNS those estimates were 62% and 50%. Between those age classes, however, expression of sub-clinical psychosis was strongly associated with stable traits (75% and 89% of total variance in STS and SNS, respectively, at age 27/28). Latent states underlying variance in STS and SNS were particularly related to partnership problems over almost the entire observation period. STS was additionally related to employment problems, whereas drug-use was a strong predictor of states underlying both syndromes at age 19/20. The latent trait underlying expression of STS and SNS was particularly related to low sense of mastery and self-esteem and to high depressiveness. Although most psychosis symptoms are transient and episodic in nature, the variability in their expression is predominantly caused by stable traits. Those time-invariant and rather consistent effects are particularly influential around age 30, whereas the occasion-specific states appear to be particularly influential at ages 20 and 50. © 2013.

  16. Fitting a Mixture Rasch Model to English as a Foreign Language Listening Tests: The Role of Cognitive and Background Variables in Explaining Latent Differential Item Functioning

    ERIC Educational Resources Information Center

    Aryadoust, Vahid

    2015-01-01

    The present study uses a mixture Rasch model to examine latent differential item functioning in English as a foreign language listening tests. Participants (n = 250) took a listening and lexico-grammatical test and completed the metacognitive awareness listening questionnaire comprising problem solving (PS), planning and evaluation (PE), mental…

  17. An All-Fragments Grammar for Simple and Accurate Parsing

    DTIC Science & Technology

    2012-03-21

    Tsujii. Probabilistic CFG with latent annotations. In Proceedings of ACL, 2005. Slav Petrov and Dan Klein. Improved Inference for Unlexicalized Parsing. In...Proceedings of NAACL-HLT, 2007. Slav Petrov and Dan Klein. Sparse Multi-Scale Grammars for Discriminative Latent Variable Parsing. In Proceedings of...EMNLP, 2008. Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning Accurate, Compact, and Interpretable Tree Annotation. In Proceedings

  18. Stability of Language in Childhood: A Multi-Age, -Domain, -Measure, and -Source Study

    PubMed Central

    Bornstein, Marc H.; Putnick, Diane L.

    2011-01-01

    The stability of language across childhood is traditionally assessed by exploring longitudinal relations between individual language measures. However, language encompasses many domains and varies with different sources (child speech, parental report, experimenter assessment). This study evaluated individual variation in multiple age-appropriate measures of child language derived from multiple sources and stability between their latent variables in 192 young children across more than 2 years. Structural equation modeling demonstrated the loading of multiple measures of child language from different sources on single latent variables of language at ages 20 and 48 months. A large stability coefficient (r = .84) obtained between the 2 language latent variables. This stability obtained even when accounting for family socioeconomic status, maternal verbal intelligence, education, speech, and tendency to respond in a socially desirable fashion, and child social competence. Stability was also equivalent for children in diverse childcare situations and for girls and boys. Across age, from the beginning of language acquisition to just before school entry, aggregating multiple age-appropriate methods and measures at each age and multiple reporters, children show strong stability of individual differences in general language development. PMID:22004343

  19. High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics

    PubMed Central

    Carvalho, Carlos M.; Chang, Jeffrey; Lucas, Joseph E.; Nevins, Joseph R.; Wang, Quanli; West, Mike

    2010-01-01

    We describe studies in molecular profiling and biological pathway analysis that use sparse latent factor and regression models for microarray gene expression data. We discuss breast cancer applications and key aspects of the modeling and computational methodology. Our case studies aim to investigate and characterize heterogeneity of structure related to specific oncogenic pathways, as well as links between aggregate patterns in gene expression profiles and clinical biomarkers. Based on the metaphor of statistically derived “factors” as representing biological “subpathway” structure, we explore the decomposition of fitted sparse factor models into pathway subcomponents and investigate how these components overlay multiple aspects of known biological activity. Our methodology is based on sparsity modeling of multivariate regression, ANOVA, and latent factor models, as well as a class of models that combines all components. Hierarchical sparsity priors address questions of dimension reduction and multiple comparisons, as well as scalability of the methodology. The models include practically relevant non-Gaussian/nonparametric components for latent structure, underlying often quite complex non-Gaussianity in multivariate expression patterns. Model search and fitting are addressed through stochastic simulation and evolutionary stochastic search methods that are exemplified in the oncogenic pathway studies. Supplementary supporting material provides more details of the applications, as well as examples of the use of freely available software tools for implementing the methodology. PMID:21218139

  20. Data-driven subtypes of major depressive disorder: a systematic review

    PubMed Central

    2012-01-01

    Background According to current classification systems, patients with major depressive disorder (MDD) may have very different combinations of symptoms. This symptomatic diversity hinders the progress of research into the causal mechanisms and treatment allocation. Theoretically founded subtypes of depression such as atypical, psychotic, and melancholic depression have limited clinical applicability. Data-driven analyses of symptom dimensions or subtypes of depression are scarce. In this systematic review, we examine the evidence for the existence of data-driven symptomatic subtypes of depression. Methods We undertook a systematic literature search of MEDLINE, PsycINFO and Embase in May 2012. We included studies analyzing the depression criteria of the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) of adults with MDD in latent variable analyses. Results In total, 1176 articles were retrieved, of which 20 satisfied the inclusion criteria. These reports described a total of 34 latent variable analyses: 6 confirmatory factor analyses, 6 exploratory factor analyses, 12 principal component analyses, and 10 latent class analyses. The latent class techniques distinguished 2 to 5 classes, which mainly reflected subgroups with different overall severity: 62 of 71 significant differences on symptom level were congruent with a latent class solution reflecting severity. The latent class techniques did not consistently identify specific symptom clusters. Latent factor techniques mostly found a factor explaining the variance in the symptoms depressed mood and interest loss (11 of 13 analyses), often complemented by psychomotor retardation or fatigue (8 of 11 analyses). However, differences in found factors and classes were substantial. Conclusions The studies performed to date do not provide conclusive evidence for the existence of depressive symptom dimensions or symptomatic subtypes. The wide diversity of identified factors and classes might result either from the absence of patterns to be found, or from the theoretical and modeling choices preceding analysis. PMID:23210727

  1. Epstein-Barr Virus Latent Membrane Protein 1 Genetic Variability in Peripheral Blood B Cells and Oropharyngeal Fluids

    PubMed Central

    Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R.; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F.

    2014-01-01

    ABSTRACT We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. IMPORTANCE This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed. PMID:24429365

  2. Latent variable model for suicide risk in relation to social capital and socio-economic status.

    PubMed

    Congdon, Peter

    2012-08-01

    There is little evidence on the association between suicide outcomes (ideation, attempts, self-harm) and social capital. This paper investigates such associations using a structural equation model based on health survey data, and allowing for both individual and contextual risk factors. Social capital and other major risk factors for suicide, namely socioeconomic status and social isolation, are modelled as latent variables that are proxied (or measured) by observed indicators or question responses for survey subjects. These latent scales predict suicide risk in the structural component of the model. Also relevant to explaining suicide risk are contextual variables, such as area deprivation and region of residence, as well as the subject's demographic status. The analysis is based on the 2007 Adult Psychiatric Morbidity Survey and includes 7,403 English subjects. A Bayesian modelling strategy is used. Models with and without social capital as a predictor of suicide risk are applied. A benefit to statistical fit is demonstrated when social capital is added as a predictor. Social capital varies significantly by geographic context variables (neighbourhood deprivation, region), and this impacts on the direct effects of these contextual variables on suicide risk. In particular, area deprivation is not confirmed as a distinct significant influence. The model develops a suicidality risk score incorporating social capital, and the success of this risk score in predicting actual suicide events is demonstrated. Social capital as reflected in neighbourhood perceptions is a significant factor affecting risks of different types of self-harm and may mediate the effects of other contextual variables such as area deprivation.

  3. Epstein-Barr virus latent membrane protein 1 genetic variability in peripheral blood B cells and oropharyngeal fluids.

    PubMed

    Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F; Luzuriaga, Katherine

    2014-04-01

    We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed.

  4. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect.

    PubMed

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT.

  5. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect

    PubMed Central

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT. PMID:27499744

  6. A latent class distance association model for cross-classified data with a categorical response variable.

    PubMed

    Vera, José Fernando; de Rooij, Mark; Heiser, Willem J

    2014-11-01

    In this paper we propose a latent class distance association model for clustering in the predictor space of large contingency tables with a categorical response variable. The rows of such a table are characterized as profiles of a set of explanatory variables, while the columns represent a single outcome variable. In many cases such tables are sparse, with many zero entries, which makes traditional models problematic. By clustering the row profiles into a few specific classes and representing these together with the categories of the response variable in a low-dimensional Euclidean space using a distance association model, a parsimonious prediction model can be obtained. A generalized EM algorithm is proposed to estimate the model parameters and the adjusted Bayesian information criterion statistic is employed to test the number of mixture components and the dimensionality of the representation. An empirical example highlighting the advantages of the new approach and comparing it with traditional approaches is presented. © 2014 The British Psychological Society.

  7. Racial discrimination and racial socialization as predictors of African American adolescents' racial identity development using latent transition analysis.

    PubMed

    Seaton, Eleanor K; Yip, Tiffany; Morgan-Lopez, Antonio; Sellers, Robert M

    2012-03-01

    The present study examined perceptions of racial discrimination and racial socialization on racial identity development among 566 African American adolescents over 3 years. Latent class analyses were used to estimate identity statuses (Diffuse, Foreclosed, Moratorium, and Achieved). The probabilities of transitioning from one stage to another were examined with latent transition analyses to determine the likelihood of youth progressing, regressing, or remaining constant. Racial socialization and perceptions of racial discrimination were examined as covariates to assess the association with changes in racial identity status. The results indicated that perceptions of racial discrimination were not linked to any changes in racial identity. Youth who reported higher levels of racial socialization were less likely to be in Diffuse or Foreclosed compared with the Achieved group. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  8. Associations between sheep farmer attitudes, beliefs, emotions and personality, and their barriers to uptake of best practice: The example of footrot.

    PubMed

    O'Kane, Holly; Ferguson, Eamonn; Kaler, Jasmeet; Green, Laura

    2017-04-01

    There is interest in understanding how farmers' behaviour influences their management of livestock. We extend the theory of planned behaviour with farmers attitudes, beliefs, emotions and personality to investigate how these are associated with management of livestock disease using the example of footrot (FR) in sheep. In May 2013 a one-year retrospective questionnaire was sent to 4000 sheep farmers in England, requesting data on lameness prevalence, management of footrot, farm/flock descriptors, and farmer-orientated themes: barriers to treating footrot, opinions and knowledge of footrot, relating to other people and personality. Principal component analysis (PCA) was used to make composite variables from explanatory variables and latent class (LC) analysis was used to subgroup farmers, based on nine managements of FR. Associations between LC and composite variables were investigated using multinomial logistic regression. Negative binomial regression was used to investigate associations between the proportion of lame sheep and composite and personality variables. The useable response rate was 32% and 97% of farmers reported having lame sheep; the geometric mean prevalence of lameness (GMPL) was 3.7% (95% CI 3.51%-3.86%). Participants grouped into three latent classes; LC1 (best practice-treat FR within 3days of sheep becoming lame; use injectable and topical antibiotics; avoid foot trimming), 11% farmers), LC2 (slow to act, 57%) and LC3 (slow to act, delayed culling, 32%), with GMPL 2.95%, 3.60% and 4.10% respectively. Farmers who reported the production cycle as a barrier to treating sheep with FR were more likely to be in LC2 (RRR 1.36) than LC1. Negative emotions towards FR were associated with higher risk of being in LC2 (RRR 1.39) than LC1. Knowledge of preventing FR spread was associated with a lower risk of being in LC2 (RRR 0.46) or LC3 (RRR 0.34) than LC1. Knowledge about FR transmission was associated with a lower risk of being in LC3 (RRR 0.64) than LC1. An increased risk of lameness was associated with the production cycle being a barrier to treating sheep with FR (IRR 1.13), negative emotions towards FR (IRR 1.13) and feelings of hopelessness towards FR (IRR 1.20). Conscientiousness (IRR 0.95) and understanding the importance of active control of lameness (IRR 0.76) were associated with reduced risk of lameness. We conclude that emotions and personality are associated with differences in farmer management of FR and prevalence of lameness. Further understanding how personality and emotions influence change in behaviour is key to increasing uptake of new information. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Processes of 30-90 days sea surface temperature variability in the northern Indian Ocean during boreal summer

    NASA Astrophysics Data System (ADS)

    Vialard, J.; Jayakumar, A.; Gnanaseelan, C.; Lengaigne, M.; Sengupta, D.; Goswami, B. N.

    2012-05-01

    During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against ~0.25 for wind stress) and in observations (0.8 regression coefficient); ~60% of the heat flux variation is due do shortwave radiation and ~40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our ~100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.

  10. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  11. Parenting Characteristics in the Home Environment and Adolescent Overweight: A Latent Class Analysis

    PubMed Central

    Berge, Jerica M.; Wall, Melanie; Bauer, Katherine W.; Neumark-Sztainer, Dianne

    2010-01-01

    Parenting style and parental support and modeling of physical activity and healthy dietary intake have been linked to youth weight status, although findings have been inconsistent across studies. Furthermore, little is known about how these factors co-occur, and the influence of the co-existence of these factors on adolescents' weight. This paper examines the relationship between the co-occurrence of various parenting characteristics and adolescents' weight status. Data are from Project EAT, a population-based study of 4746 diverse adolescents. Theoretical and latent class groupings of parenting styles and parenting practices were created. Regression analyses examined the relationship between the created variables and adolescents' body mass index (BMI). Having an authoritarian mother was associated with higher BMI in sons. The co-occurrence of an authoritarian mother and neglectful father was associated with higher BMI for sons. Daughters' whose fathers did not model or encourage healthy behaviors reported higher BMIs. The co-occurrence of neither parent modeling healthy behaviors was associated with higher BMIs for sons, and incongruent parental modeling and encouraging of healthy behaviors was associated with higher BMIs in daughters. While further research into the complex dynamics of the home environment is needed, findings indicate that authoritarian parenting style is associated with higher adolescent weight status and incongruent parenting styles and practices between mothers and fathers are associated with higher adolescent weight status. PMID:19816417

  12. Private sector tuberculosis prevention in the US: Characteristics associated with interferon-gamma release assay or tuberculin skin testing.

    PubMed

    Stockbridge, Erica L; Miller, Thaddeus L; Carlson, Erin K; Ho, Christine

    2018-01-01

    To determine whether latent tuberculosis infection risk factors are associated with an increased likelihood of latent tuberculosis infection testing in the US private healthcare sector. A national sample of medical and pharmacy claims representing services rendered January 2011 through December 2013 for 3,997,986 commercially insured individuals in the US who were 0 to 64 years of age. We used multivariable logistic regression models to determine whether TB/LTBI risk factors were associated with an increased likelihood of Interferon-Gamma Release Assay (IGRA) or Tuberculin Skin Test (TST) testing in the private sector. 4.31% (4.27-4.34%) received at least one TST/IGRA test between 2011 and 2013 while 1.69% (1.67-1.72%) received a TST/IGRA test in 2013. Clinical risk factors associated with a significantly increased likelihood of testing included HIV, immunosuppressive therapy, exposure to tuberculosis, a history of tuberculosis, diabetes, tobacco use, end stage renal disease, and alcohol use disorder. Other significant variables included gender, age, asthma, the state tuberculosis rate, population density, and percent of foreign-born persons in a county. Private sector TST/IGRA testing is not uncommon and testing varies with clinical risk indicators. Thus, the private sector can be a powerful resource in the fight against tuberculosis. Analyses of administrative data can inform how best to leverage private sector healthcare toward tuberculosis prevention activities.

  13. Insurees' preferences in hospital choice-A population-based study.

    PubMed

    Schuldt, Johannes; Doktor, Anna; Lichters, Marcel; Vogt, Bodo; Robra, Bernt-Peter

    2017-10-01

    In Germany, the patient himself makes the choice for or against a health service provider. Hospital comparison websites offer him possibilities to inform himself before choosing. However, it remains unclear, how health care consumers use those websites, and there is little information about how preferences in hospital choice differ interpersonally. We conducted a Discrete-Choice-Experiment (DCE) on hospital choice with 1500 randomly selected participants (age 40-70) in three different German cities selecting four attributes for hospital vignettes. The analysis of the study draws on multilevel mixed effects logit regression analyses with the dependent variables: "chance to select a hospital" and "choice confidence". Subsequently, we performed a Latent-Class-Analysis to uncover consumer segments with distinct preferences. 590 of the questionnaires were evaluable. All four attributes of the hospital vignettes have a significant impact on hospital choice. The attribute "complication rate" exerts the highest impact on consumers' decisions and reported choice confidence. Latent-Class-Analysis results in one dominant consumer segment that considered the complication rate the most important decision criterion. Using DCE, we were able to show that the complication rate is an important trusted criterion in hospital choice to a large group of consumers. Our study supports current governmental efforts in Germany to concentrate the provision of specialized health care services. We suggest further national and cross-national research on the topic. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Parenting characteristics in the home environment and adolescent overweight: a latent class analysis.

    PubMed

    Berge, Jerica M; Wall, Melanie; Bauer, Katherine W; Neumark-Sztainer, Dianne

    2010-04-01

    Parenting style and parental support and modeling of physical activity and healthy dietary intake have been linked to youth weight status, although findings have been inconsistent across studies. Furthermore, little is known about how these factors co-occur, and the influence of the coexistence of these factors on adolescents' weight. This article examines the relationship between the co-occurrence of various parenting characteristics and adolescents' weight status. Data are from Project EAT (eating among teens), a population-based study of 4,746 diverse adolescents. Theoretical and latent class groupings of parenting styles and parenting practices were created. Regression analyses examined the relationship between the created variables and adolescents' BMI. Having an authoritarian mother was associated with higher BMI in sons. The co-occurrence of an authoritarian mother and neglectful father was associated with higher BMI for sons. Daughters' whose fathers did not model or encourage healthy behaviors reported higher BMIs. The co-occurrence of neither parent modeling healthy behaviors was associated with higher BMIs for sons, and incongruent parental modeling and encouraging of healthy behaviors was associated with higher BMIs in daughters. Although, further research into the complex dynamics of the home environment is needed, findings indicate that authoritarian parenting style is associated with higher adolescent weight status and incongruent parenting styles and practices between mothers and fathers are associated with higher adolescent weight status.

  15. Comparison of the tuberculin skin test and the QuantiFERON-TB Gold test in detecting latent tuberculosis in health care workers in Iran

    PubMed Central

    2016-01-01

    OBJECTIVES: The tuberculin skin test (TST) and the QuantiFERON-TB Gold test (QFT) are used to identify latent tuberculosis infections (LTBIs). The aim of this study was to determine the agreement between these two tests among health care workers in Iran. METHODS: This cross-sectional study included 177 tuberculosis (TB) laboratory staff and 67 non-TB staff. TST indurations of 10 mm or more were considered positive. The Student’s t-test and the chi-square test were used to compare the mean score and proportion of variables between the TB laboratory staff and the non-TB laboratory staff. Kappa statistics were used to evaluate the agreement between these tests, and logistic regression was used to assess the risk factors associated with positive results for each test. RESULTS: The prevalence of LTBIs according to both the QFT and the TST was 17% (95% confidence interval [CI], 12% to 21%) and 16% (95% CI, 11% to 21%), respectively. The agreement between the QFT and the TST was 77.46%, with a kappa of 0.19 (95% CI, 0.04 to 0.34). CONCLUSIONS: Although the prevalence of LTBI based on the QFT and the TST was not significantly different, the kappa statistic was low between these two tests for the detection of LTBIs. PMID:27457062

  16. Spatial path models with multiple indicators and multiple causes: mental health in US counties.

    PubMed

    Congdon, Peter

    2011-06-01

    This paper considers a structural model for the impact on area mental health outcomes (poor mental health, suicide) of spatially structured latent constructs: deprivation, social capital, social fragmentation and rurality. These constructs are measured by multiple observed effect indicators, with the constructs allowed to be correlated both between and within areas. However, in the scheme developed here, particular latent constructs may also be influenced by known variables, or, via path sequences, by other constructs, possibly nonlinearly. For example, area social capital may be measured by effect indicators (e.g. associational density, charitable activity), but influenced as causes by other constructs (e.g. area deprivation), and by observed features of the socio-ethnic structure of areas. A model incorporating these features is applied to suicide mortality and the prevalence of poor mental health in 3141 US counties, which are related to the latent spatial constructs and to observed variables (e.g. county ethnic mix). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A Bayesian Approach to More Stable Estimates of Group-Level Effects in Contextual Studies.

    PubMed

    Zitzmann, Steffen; Lüdtke, Oliver; Robitzsch, Alexander

    2015-01-01

    Multilevel analyses are often used to estimate the effects of group-level constructs. However, when using aggregated individual data (e.g., student ratings) to assess a group-level construct (e.g., classroom climate), the observed group mean might not provide a reliable measure of the unobserved latent group mean. In the present article, we propose a Bayesian approach that can be used to estimate a multilevel latent covariate model, which corrects for the unreliable assessment of the latent group mean when estimating the group-level effect. A simulation study was conducted to evaluate the choice of different priors for the group-level variance of the predictor variable and to compare the Bayesian approach with the maximum likelihood approach implemented in the software Mplus. Results showed that, under problematic conditions (i.e., small number of groups, predictor variable with a small ICC), the Bayesian approach produced more accurate estimates of the group-level effect than the maximum likelihood approach did.

  18. Sensitivity of Latent Heating Profiles to Environmental Conditions: Implications for TRMM and Climate Research

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) as a part of NASA's Earth System Enterprise is the first mission dedicated to measuring tropical rainfall through microwave and visible sensors, and includes the first spaceborne rain radar. Tropical rainfall comprises two-thirds of global rainfall. It is also the primary distributor of heat through the atmosphere's circulation. It is this circulation that defines Earth's weather and climate. Understanding rainfall and its variability is crucial to understanding and predicting global climate change. Weather and climate models need an accurate assessment of the latent heating released as tropical rainfall occurs. Currently, cloud model-based algorithms are used to derive latent heating based on rainfall structure. Ultimately, these algorithms can be applied to actual data from TRMM. This study investigates key underlying assumptions used in developing the latent heating algorithms. For example, the standard algorithm is highly dependent on a system's rainfall amount and structure. It also depends on an a priori database of model-derived latent heating profiles based on the aforementioned rainfall characteristics. Unanswered questions remain concerning the sensitivity of latent heating profiles to environmental conditions (both thermodynamic and kinematic), regionality, and seasonality. This study investigates and quantifies such sensitivities and seeks to determine the optimal latent heating profile database based on the results. Ultimately, the study seeks to produce an optimized latent heating algorithm based not only on rainfall structure but also hydrometeor profiles.

  19. Anxiety, bulimia, drug and alcohol addiction, depression, and schizophrenia: what do you think about their aetiology, dangerousness, social distance, and treatment? A latent class analysis approach.

    PubMed

    Mannarini, Stefania; Boffo, Marilisa

    2015-01-01

    Mental illness stigma is a serious societal problem and a critical impediment to treatment seeking for mentally ill people. To improve the understanding of mental illness stigma, this study focuses on the simultaneous analysis of people's aetiological beliefs, attitudes (i.e. perceived dangerousness and social distance), and recommended treatments related to several mental disorders by devising an over-arching latent structure that could explain the relations among these variables. Three hundred and sixty university students randomly received an unlabelled vignette depicting one of six mental disorders to be evaluated on the four variables on a Likert-type scale. A one-factor Latent Class Analysis (LCA) model was hypothesized, which comprised the four manifest variables as indicators and the mental disorder as external variable. The main findings were the following: (a) a one-factor LCA model was retrieved; (b) alcohol and drug addictions are the most strongly stigmatized; (c) a realistic opinion about the causes and treatment of schizophrenia, anxiety, bulimia, and depression was associated to lower prejudicial attitudes and social rejection. Beyond the general appraisal of mental illness an individual might have, the results generally point to the acknowledgement of the specific features of different diagnostic categories. The implications of the present results are discussed in the framework of a better understanding of mental illness stigma.

  20. Robust Bayesian clustering.

    PubMed

    Archambeau, Cédric; Verleysen, Michel

    2007-01-01

    A new variational Bayesian learning algorithm for Student-t mixture models is introduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to outliers. The Student-t distribution has heavier tails than the Gaussian distribution and is therefore less sensitive to any departure of the empirical distribution from Gaussianity. As a consequence, the Student-t distribution is suitable for constructing robust mixture models. In this work, we formalize the Bayesian Student-t mixture model as a latent variable model in a different way from Svensén and Bishop [Svensén, M., & Bishop, C. M. (2005). Robust Bayesian mixture modelling. Neurocomputing, 64, 235-252]. The main difference resides in the fact that it is not necessary to assume a factorized approximation of the posterior distribution on the latent indicator variables and the latent scale variables in order to obtain a tractable solution. Not neglecting the correlations between these unobserved random variables leads to a Bayesian model having an increased robustness. Furthermore, it is expected that the lower bound on the log-evidence is tighter. Based on this bound, the model complexity, i.e. the number of components in the mixture, can be inferred with a higher confidence.

  1. Identifying Useful Auxiliary Variables for Incomplete Data Analyses: A Note on a Group Difference Examination Approach

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2014-01-01

    This research note contributes to the discussion of methods that can be used to identify useful auxiliary variables for analyses of incomplete data sets. A latent variable approach is discussed, which is helpful in finding auxiliary variables with the property that if included in subsequent maximum likelihood analyses they may enhance considerably…

  2. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  3. Inference for finite-sample trajectories in dynamic multi-state site-occupancy models using hidden Markov model smoothing

    USGS Publications Warehouse

    Fiske, Ian J.; Royle, J. Andrew; Gross, Kevin

    2014-01-01

    Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multi-season, multi-state models as hidden Markov models to find both maximum likelihood estimates of model parameters and finite-sample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric bootstrap procedures that allow formal inference about latent trend. We examine model behavior through simulation, and we apply the model to data from the North American Amphibian Monitoring Program.

  4. The catechol-O-methyltransferase gene (COMT) and cognitive function from childhood through adolescence

    PubMed Central

    Gaysina, Darya; Xu, Man K.; Barnett, Jennifer H.; Croudace, Tim J.; Wong, Andrew; Richards, Marcus; Jones, Peter B.

    2013-01-01

    Genetic variation in the catechol-O-methyltransferase gene (COMT) can influence cognitive function, and this effect may depend on developmental stage. Using a large representative British birth cohort, we investigated the effect of COMT on cognitive function (verbal and non-verbal) at ages 8 and 15 years taking into account the possible modifying effect of pubertal stage. Five functional COMT polymorphisms, rs6269, rs4818, rs4680, rs737865 and rs165599 were analysed. Associations between COMT polymorphisms and cognition were tested using regression and latent variable structural equation modelling (SEM). Before correction for multiple testing, COMT rs737865 showed association with reading comprehension, verbal ability and global cognition at age 15 years in pubescent boys only. Although there was some evidence for age- and sex-specific effects of the COMT rs737865 none remained significant after correction for multiple testing. Further studies are necessary in order to make firmer conclusions. PMID:23178897

  5. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    PubMed

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  6. The Relationship between Grandiose and Vulnerable (Hypersensitive) Narcissism

    PubMed Central

    Jauk, Emanuel; Weigle, Elena; Lehmann, Konrad; Benedek, Mathias; Neubauer, Aljoscha C.

    2017-01-01

    Narcissistic grandiosity is characterized by overt expressions of feelings of superiority and entitlement, while narcissistic vulnerability reflects hypersensitivity and introversive self-absorbedness. Clinical evidence suggests that grandiosity is accompanied by vulnerable aspects, pointing to a common foundation. Subclinical personality research, however, views grandiose and vulnerable narcissism as independent traits. Grandiose narcissism displays substantial correlation with extraversion, while vulnerable narcissism correlates highly with introversion. We investigated if (1) controlling for intro-/extraversion might reveal a “common core” of grandiose and vulnerable narcissism, and if (2) the correlation between both aspects might be higher at higher levels of narcissism. Latent variable structural equation modeling and segmented regression analysis confirmed these hypotheses in a large non-clinical sample (N = 1,006). Interindividual differences in intro-/extraversion mask the common core of grandiose and vulnerable narcissism. The association between both aspects increases at high levels (upper 10%) of grandiose narcissism, which suggests a possible transition to clinically relevant (pathological) narcissism. PMID:28955288

  7. Perceived Emotion Control Moderates the Relationship between Neuroticism and Generalized Anxiety Disorder

    PubMed Central

    Bourgeois, Michelle L.; Brown, Timothy A.

    2015-01-01

    The relationships between neuroticism, perceived emotion control, and generalized anxiety disorder (GAD) severity were examined in 293 individuals diagnosed with GAD at a specialty anxiety disorders clinic. Hierarchical regression analyses performed within a structural equation modeling framework revealed that (1) neuroticism and perceived emotion control both predicted a latent variable of GAD in the expected direction, and (2) perceived emotion control moderated the relationship between neuroticism and GAD severity, such that lower levels of perceived emotion control were associated with a stronger relationship between neuroticism and GAD severity. The other dimensions of perceived control (i.e., stress and threat control) did not moderate the effect of neuroticism on GAD severity. The findings are discussed with regard to their implications to conceptual models of the psychopathology of GAD, and theory-based differential relationships between dimensions of vulnerability, perceived control, and anxiety disorders. PMID:26236059

  8. Epilepsy and the Wnt Signaling Pathway

    DTIC Science & Technology

    2015-06-01

    status epilepticus (SE), head injury, infection or stroke). This is followed by a variable (months to years in humans) “latent period” followed by the...TERMS Status Epilepticus , Wnt Signaling, Epileptogenesis 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACTU U 18. NUMBER OF PAGES 4...disease sub-type. In this grant, we will investigate the mechanisms of Status Epilepticus (SE) and the ensuing latent period in animal models of

  9. Individual heterogeneity in reproductive rates and cost of reproduction in a long-lived vertebrate

    PubMed Central

    Chambert, Thierry; Rotella, Jay J; Higgs, Megan D; Garrott, Robert A

    2013-01-01

    Individual variation in reproductive success is a key feature of evolution, but also has important implications for predicting population responses to variable environments. Although such individual variation in reproductive outcomes has been reported in numerous studies, most analyses to date have not considered whether these realized differences were due to latent individual heterogeneity in reproduction or merely random chance causing different outcomes among like individuals. Furthermore, latent heterogeneity in fitness components might be expressed differently in contrasted environmental conditions, an issue that has only rarely been investigated. Here, we assessed (i) the potential existence of latent individual heterogeneity and (ii) the nature of its expression (fixed vs. variable) in a population of female Weddell seals (Leptonychotes weddellii), using a hierarchical modeling approach on a 30-year mark–recapture data set consisting of 954 individual encounter histories. We found strong support for the existence of latent individual heterogeneity in the population, with “robust” individuals expected to produce twice as many pups as “frail” individuals. Moreover, the expression of individual heterogeneity appeared consistent, with only mild evidence that it might be amplified when environmental conditions are severe. Finally, the explicit modeling of individual heterogeneity allowed us to detect a substantial cost of reproduction that was not evidenced when the heterogeneity was ignored. PMID:23919151

  10. Comparison of CTT and Rasch-based approaches for the analysis of longitudinal Patient Reported Outcomes.

    PubMed

    Blanchin, Myriam; Hardouin, Jean-Benoit; Le Neel, Tanguy; Kubis, Gildas; Blanchard, Claire; Mirallié, Eric; Sébille, Véronique

    2011-04-15

    Health sciences frequently deal with Patient Reported Outcomes (PRO) data for the evaluation of concepts, in particular health-related quality of life, which cannot be directly measured and are often called latent variables. Two approaches are commonly used for the analysis of such data: Classical Test Theory (CTT) and Item Response Theory (IRT). Longitudinal data are often collected to analyze the evolution of an outcome over time. The most adequate strategy to analyze longitudinal latent variables, which can be either based on CTT or IRT models, remains to be identified. This strategy must take into account the latent characteristic of what PROs are intended to measure as well as the specificity of longitudinal designs. A simple and widely used IRT model is the Rasch model. The purpose of our study was to compare CTT and Rasch-based approaches to analyze longitudinal PRO data regarding type I error, power, and time effect estimation bias. Four methods were compared: the Score and Mixed models (SM) method based on the CTT approach, the Rasch and Mixed models (RM), the Plausible Values (PV), and the Longitudinal Rasch model (LRM) methods all based on the Rasch model. All methods have shown comparable results in terms of type I error, all close to 5 per cent. LRM and SM methods presented comparable power and unbiased time effect estimations, whereas RM and PV methods showed low power and biased time effect estimations. This suggests that RM and PV methods should be avoided to analyze longitudinal latent variables. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Illustration of Step-Wise Latent Class Modeling With Covariates and Taxometric Analysis in Research Probing Children's Mental Models in Learning Sciences

    PubMed Central

    Stamovlasis, Dimitrios; Papageorgiou, George; Tsitsipis, Georgios; Tsikalas, Themistoklis; Vaiopoulou, Julie

    2018-01-01

    This paper illustrates two psychometric methods, latent class analysis (LCA) and taxometric analysis (TA) using empirical data from research probing children's mental representation in science learning. LCA is used to obtain a typology based on observed variables and to further investigate how the encountered classes might be related to external variables, where the effectiveness of classification process and the unbiased estimations of parameters become the main concern. In the step-wise LCA, the class membership is assigned and subsequently its relationship with covariates is established. This leading-edge modeling approach suffers from severe downward-biased estimations. The illustration of LCA is focused on alternative bias correction approaches and demonstrates the effect of modal and proportional class-membership assignment along with BCH and ML correction procedures. The illustration of LCA is presented with three covariates, which are psychometric variables operationalizing formal reasoning, divergent thinking and field dependence-independence, respectively. Moreover, taxometric analysis, a method designed to detect the type of the latent structural model, categorical or dimensional, is introduced, along with the relevant basic concepts and tools. TA was applied complementarily in the same data sets to answer the fundamental hypothesis about children's naïve knowledge on the matters under study and it comprises an additional asset in building theory which is fundamental for educational practices. Taxometric analysis provided results that were ambiguous as far as the type of the latent structure. This finding initiates further discussion and sets a problematization within this framework rethinking fundamental assumptions and epistemological issues. PMID:29713300

  12. Tuberculosis and latent tuberculosis infection among healthcare workers in Kisumu, Kenya.

    PubMed

    Agaya, Janet; Nnadi, Chimeremma D; Odhiambo, Joseph; Obonyo, Charles; Obiero, Vincent; Lipke, Virginia; Okeyo, Elisha; Cain, Kevin; Oeltmann, John E

    2015-12-01

    To assess prevalence and occupational risk factors of latent TB infection and history of TB disease ascribed to work in a healthcare setting in western Kenya. We conducted a cross-sectional survey among healthcare workers in western Kenya in 2013. They were recruited from dispensaries, health centres and hospitals that offer both TB and HIV services. School workers from the health facilities' catchment communities were randomly selected to serve as the community comparison group. Latent TB infection was diagnosed by tuberculin skin testing. HIV status of participants was assessed. Using a logistic regression model, we determined the adjusted odds of latent TB infection among healthcare workers compared to school workers; and among healthcare workers only, we assessed work-related risk factors for latent TB infection. We enrolled 1005 healthcare workers and 411 school workers. Approximately 60% of both groups were female. A total of 22% of 958 healthcare workers and 12% of 392 school workers tested HIV positive. Prevalence of self-reported history of TB disease was 7.4% among healthcare workers and 3.6% among school workers. Prevalence of latent TB infection was 60% among healthcare workers and 48% among school workers. Adjusted odds of latent TB infection were 1.5 times higher among healthcare workers than school workers (95% confidence interval 1.2-2.0). Healthcare workers at all three facility types had similar prevalence of latent TB infection (P = 0.72), but increasing years of employment was associated with increased odds of LTBI (P < 0.01). Healthcare workers at facilities in western Kenya which offer TB and HIV services are at increased risk of latent TB infection, and the risk is similar across facility types. Implementation of WHO-recommended TB infection control measures are urgently needed in health facilities to protect healthcare workers. © 2015 John Wiley & Sons Ltd.

  13. On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables.

    DOT National Transportation Integrated Search

    2015-12-01

    We develop an econometric framework for incorporating spatial dependence in integrated model systems of latent variables and multidimensional mixed data outcomes. The framework combines Bhats Generalized Heterogeneous Data Model (GHDM) with a spat...

  14. Should "Multiple Imputations" Be Treated as "Multiple Indicators"?

    ERIC Educational Resources Information Center

    Mislevy, Robert J.

    1993-01-01

    Multiple imputations for latent variables are constructed so that analyses treating them as true variables have the correct expectations for population characteristics. Analyzing multiple imputations in accordance with their construction yields correct estimates of population characteristics, whereas analyzing them as multiple indicators generally…

  15. Measurement Models for Reasoned Action Theory.

    PubMed

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin

    2012-03-01

    Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach.

  16. Application of latent variable model in Rosenberg self-esteem scale.

    PubMed

    Leung, Shing-On; Wu, Hui-Ping

    2013-01-01

    Latent Variable Models (LVM) are applied to Rosenberg Self-Esteem Scale (RSES). Parameter estimations automatically give negative signs hence no recoding is necessary for negatively scored items. Bad items can be located through parameter estimate, item characteristic curves and other measures. Two factors are extracted with one on self-esteem and the other on the degree to take moderate views, with the later not often being covered in previous studies. A goodness-of-fit measure based on two-way margins is used but more works are needed. Results show that scaling provided by models with more formal statistical ground correlated highly with conventional method, which may provide justification for usual practice.

  17. Self-Consciousness and Assertiveness as Explanatory Variables of L2 Oral Ability: A Latent Variable Approach

    ERIC Educational Resources Information Center

    Ockey, Gary

    2011-01-01

    Drawing on current theories in personality, second-language (L2) oral ability, and psychometrics, this study investigates the extent to which self-consciousness and assertiveness are explanatory variables of L2 oral ability. Three hundred sixty first-year Japanese university students who were studying English as a foreign language participated in…

  18. The time frame of Epstein-Barr virus latent membrane protein-1 gene to disappear in nasopharyngeal swabs after initiation of primary radiotherapy is an independently significant prognostic factor predicting local control for patients with nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.-Y.; Chang, K.-P.; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Linkou, Taiwan

    Purpose: The presence of Epstein-Barr virus latent membrane protein-1 (LMP-1) gene in nasopharyngeal swabs indicates the presence of nasopharyngeal carcinoma (NPC) mucosal tumor cells. This study was undertaken to investigate whether the time taken for LMP-1 to disappear after initiation of primary radiotherapy (RT) was inversely associated with NPC local control. Methods and Materials: During July 1999 and October 2002, there were 127 nondisseminated NPC patients receiving serial examinations of nasopharyngeal swabbing with detection of LMP-1 during the RT course. The time for LMP-1 regression was defined as the number of days after initiation of RT for LMP-1 results tomore » turn negative. The primary outcome was local control, which was represented by freedom from local recurrence. Results: The time for LMP-1 regression showed a statistically significant influence on NPC local control both univariately (p < 0.0001) and multivariately (p = 0.004). In multivariate analysis, the administration of chemotherapy conferred a significantly more favorable local control (p = 0.03). Advanced T status ({>=} T2b), overall treatment time of external photon radiotherapy longer than 55 days, and older age showed trends toward being poor prognosticators. The time for LMP-1 regression was very heterogeneous. According to the quartiles of the time for LMP-1 regression, we defined the pattern of LMP-1 regression as late regression if it required 40 days or more. Kaplan-Meier plots indicated that the patients with late regression had a significantly worse local control than those with intermediate or early regression (p 0.0129). Conclusion: Among the potential prognostic factors examined in this study, the time for LMP-1 regression was the most independently significant factor that was inversely associated with NPC local control.« less

  19. Accelerometry in persons with multiple sclerosis: measurement of physical activity or walking mobility?

    PubMed

    Weikert, Madeline; Motl, Robert W; Suh, Yoojin; McAuley, Edward; Wynn, Daniel

    2010-03-15

    Motion sensors such as accelerometers have been recognized as an ideal measure of physical activity in persons with MS. This study examined the hypothesis that accelerometer movement counts represent a measure of both physical activity and walking mobility in individuals with MS. The sample included 269 individuals with a definite diagnosis of relapsing-remitting MS who completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ), International Physical Activity Questionnaire (IPAQ), Multiple Sclerosis Walking Scale-12 (MSWS-12), Patient Determined Disease Steps (PDDS), and then wore an ActiGraph accelerometer for 7days. The data were analyzed using bivariate correlation and confirmatory factor analysis. The results indicated that (a) the GLTEQ and IPAQ scores were strongly correlated and loaded significantly on a physical activity latent variable, (b) the MSWS-12 and PDDS scores strongly correlated and loaded significantly on a walking mobility latent variable, and (c) the accelerometer movement counts correlated similarly with the scores from the four self-report questionnaires and cross-loaded on both physical activity and walking mobility latent variables. Our data suggest that accelerometers are measuring both physical activity and walking mobility in persons with MS, whereas self-report instruments are measuring either physical activity or walking mobility in this population.

  20. A call for theory to support the use of causal-formative indicators: A commentary on Bollen and Diamantopoulos (2017).

    PubMed

    Hardin, Andrew

    2017-09-01

    In this issue, Bollen and Diamantopoulos (2017) defend causal-formative indicators against several common criticisms leveled by scholars who oppose their use. In doing so, the authors make several convincing assertions: Constructs exist independently from their measures; theory determines whether indicators cause or measure latent variables; and reflective and causal-formative indicators are both subject to interpretational confounding. However, despite being a well-reasoned, comprehensive defense of causal-formative indicators, no single article can address all of the issues associated with this debate. Thus, Bollen and Diamantopoulos leave a few fundamental issues unresolved. For example, how can researchers establish the reliability of indicators that may include measurement error? Moreover, how should researchers interpret disturbance terms that capture sources of influence related to both the empirical definition of the latent variable and to the theoretical definition of the construct? Relatedly, how should researchers reconcile the requirement for a census of causal-formative indicators with the knowledge that indicators are likely missing from the empirically estimated latent variable? This commentary develops 6 related research questions to draw attention to these fundamental issues, and to call for future research that can lead to the development of theory to guide the use of causal-formative indicators. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Comparing hierarchical models via the marginalized deviance information criterion.

    PubMed

    Quintero, Adrian; Lesaffre, Emmanuel

    2018-07-20

    Hierarchical models are extensively used in pharmacokinetics and longitudinal studies. When the estimation is performed from a Bayesian approach, model comparison is often based on the deviance information criterion (DIC). In hierarchical models with latent variables, there are several versions of this statistic: the conditional DIC (cDIC) that incorporates the latent variables in the focus of the analysis and the marginalized DIC (mDIC) that integrates them out. Regardless of the asymptotic and coherency difficulties of cDIC, this alternative is usually used in Markov chain Monte Carlo (MCMC) methods for hierarchical models because of practical convenience. The mDIC criterion is more appropriate in most cases but requires integration of the likelihood, which is computationally demanding and not implemented in Bayesian software. Therefore, we consider a method to compute mDIC by generating replicate samples of the latent variables that need to be integrated out. This alternative can be easily conducted from the MCMC output of Bayesian packages and is widely applicable to hierarchical models in general. Additionally, we propose some approximations in order to reduce the computational complexity for large-sample situations. The method is illustrated with simulated data sets and 2 medical studies, evidencing that cDIC may be misleading whilst mDIC appears pertinent. Copyright © 2018 John Wiley & Sons, Ltd.

  2. The efficiency of parameter estimation of latent path analysis using summated rating scale (SRS) and method of successive interval (MSI) for transformation of score to scale

    NASA Astrophysics Data System (ADS)

    Solimun, Fernandes, Adji Achmad Rinaldo; Arisoesilaningsih, Endang

    2017-12-01

    Research in various fields generally investigates systems and involves latent variables. One method to analyze the model representing the system is path analysis. The data of latent variables measured using questionnaires by applying attitude scale model yields data in the form of score, before analyzed should be transformation so that it becomes data of scale. Path coefficient, is parameter estimator, calculated from scale data using method of successive interval (MSI) and summated rating scale (SRS). In this research will be identifying which data transformation method is better. Path coefficients have smaller varieties are said to be more efficient. The transformation method that produces scaled data and used in path analysis capable of producing path coefficients (parameter estimators) with smaller varieties is said to be better. The result of analysis using real data shows that on the influence of Attitude variable to Intention Entrepreneurship, has relative efficiency (ER) = 1, where it shows that the result of analysis using data transformation of MSI and SRS as efficient. On the other hand, for simulation data, at high correlation between items (0.7-0.9), MSI method is more efficient 1.3 times better than SRS method.

  3. SOCIAL STABILITY AND HIV RISK BEHAVIOR: EVALUATING THE ROLE OF ACCUMULATED VULNERABILITY

    PubMed Central

    German, Danielle; Latkin, Carl A.

    2011-01-01

    This study evaluated a cumulative and syndromic relationship among commonly co-occurring vulnerabilites (homelessness, incarceration, low-income, residential transition) in association with HIV-related risk behaviors among 635 low-income women in Baltimore. Analysis included descriptive statistics, logistic regression, latent class analysis and latent class regression. Both methods of assessing multidimensional instability showed significant associations with risk indicators. Risk of multiple partners, sex exchange, and drug use decreased significantly with each additional domain. Higher stability class membership (77%) was associated with decreased likelihood of multiple partners, exchange partners, recent drug use, and recent STI. Multidimensional social vulnerabilities were cumulatively and synergistically linked to HIV risk behavior. Independent instability measures may miss important contextual determinants of risk. Social stability offers a useful framework to understand the synergy of social vulnerabilities that shape sexual risk behavior. Social policies and programs aiming to enhance housing and overall social stability are likely to be beneficial for HIV prevention. PMID:21259043

  4. Impact of an equality constraint on the class-specific residual variances in regression mixtures: A Monte Carlo simulation study

    PubMed Central

    Kim, Minjung; Lamont, Andrea E.; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M. Lee

    2015-01-01

    Regression mixture models are a novel approach for modeling heterogeneous effects of predictors on an outcome. In the model building process residual variances are often disregarded and simplifying assumptions made without thorough examination of the consequences. This simulation study investigated the impact of an equality constraint on the residual variances across latent classes. We examine the consequence of constraining the residual variances on class enumeration (finding the true number of latent classes) and parameter estimates under a number of different simulation conditions meant to reflect the type of heterogeneity likely to exist in applied analyses. Results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted estimated class sizes and showed the potential to greatly impact parameter estimates in each class. Results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions were made. PMID:26139512

  5. Substance use, mental illness, and familial conflict non-negotiation among HIV-positive African-Americans: latent class regression and a new syndemic framework.

    PubMed

    Robinson, Allysha C; Knowlton, Amy R; Gielen, Andrea C; Gallo, Joseph J

    2016-02-01

    We evaluated a synergistic epidemic (syndemic) of substance use, mental illness, and familial conflict non-negotiation among HIV-positive injection drug users (IDU). Baseline BEACON study data was utilized. Latent class analyses identified syndemic classes. These classes were regressed on sex, viral suppression, and acute care non-utilization. Females were hypothesized to have higher syndemic burden, and worse health outcomes than males. Nine percent of participants had high substance use/mental illness prevalence (Class 4); 23 % had moderate levels of all factors (Class 3); 25 % had high mental illness (Class 2); 43 % had moderate substance use/mental illness (Class 1; N = 331). Compared to Classes 1-3, Class 4 was mostly female (p < .05), less likely to achieve viral suppression, and more likely to utilize acute care (p < .05). Interventions should target African-American IDU females to improve their risk of negative medical outcomes. Findings support comprehensive syndemic approaches to HIV interventions, rather than singular treatment methods.

  6. Identifying patterns of item missing survey data using latent groups: an observational study

    PubMed Central

    McElwee, Paul; Nathan, Andrea; Burton, Nicola W; Turrell, Gavin

    2017-01-01

    Objectives To examine whether respondents to a survey of health and physical activity and potential determinants could be grouped according to the questions they missed, known as ‘item missing’. Design Observational study of longitudinal data. Setting Residents of Brisbane, Australia. Participants 6901 people aged 40–65 years in 2007. Materials and methods We used a latent class model with a mixture of multinomial distributions and chose the number of classes using the Bayesian information criterion. We used logistic regression to examine if participants’ characteristics were associated with their modal latent class. We used logistic regression to examine whether the amount of item missing in a survey predicted wave missing in the following survey. Results Four per cent of participants missed almost one-fifth of the questions, and this group missed more questions in the middle of the survey. Eighty-three per cent of participants completed almost every question, but had a relatively high missing probability for a question on sleep time, a question which had an inconsistent presentation compared with the rest of the survey. Participants who completed almost every question were generally younger and more educated. Participants who completed more questions were less likely to miss the next longitudinal wave. Conclusions Examining patterns in item missing data has improved our understanding of how missing data were generated and has informed future survey design to help reduce missing data. PMID:29084795

  7. Psychological Processes Mediate the Impact of Familial Risk, Social Circumstances and Life Events on Mental Health

    PubMed Central

    Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara

    2013-01-01

    Background Despite widespread acceptance of the ‘biopsychosocial model’, the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Methods and Findings Participants were 32,827 (age 18–85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ2 (3199, N = 23,397) = 126654·8, p<·001; RCFI = ·97; RMSEA = ·04 (·038–·039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. Conclusion These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies. PMID:24146890

  8. Structural identifiability of cyclic graphical models of biological networks with latent variables.

    PubMed

    Wang, Yulin; Lu, Na; Miao, Hongyu

    2016-06-13

    Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and is thus of higher resolution in comparison with many existing approaches. Overall, this study provides a basis for systematic examination and refinement of graphical models of biological networks from the identifiability point of view, and it has a significant potential to be extended to more complex network structures or high-dimensional systems.

  9. Psychological processes mediate the impact of familial risk, social circumstances and life events on mental health.

    PubMed

    Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara

    2013-01-01

    Despite widespread acceptance of the 'biopsychosocial model', the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Participants were 32,827 (age 18-85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ(2) (3199, N = 23,397) = 126654.8, p<.001; RCFI = .97; RMSEA = .04 (.038-.039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies.

  10. Physician communication in the operating room.

    PubMed

    Kirschbaum, Kristin A; Rask, John P; Fortner, Sally A; Kulesher, Robert; Nelson, Michael T; Yen, Tony; Brennan, Matthew

    2015-01-01

    In this study, communication research was conducted with multidisciplinary groups of operating-room physicians. Theoretical frameworks from intercultural communication and rhetoric were used to (a) measure latent cultural communication variables and (b) conduct communication training with the physicians. A six-step protocol guided the research with teams of physicians from different surgical specialties: anesthesiologists, general surgeons, and obstetrician-gynecologists (n = 85). Latent cultural communication variables were measured by surveys administered to physicians before and after completion of the protocol. The centerpiece of the 2-hour research protocol was an instructional session that informed the surgical physicians about rhetorical choices that support participatory communication. Post-training results demonstrated scores increased on communication variables that contribute to collaborative communication and teamwork among the physicians. This study expands health communication research through application of combined intercultural and rhetorical frameworks, and establishes new ways communication theory can contribute to medical education.

  11. Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data.

    PubMed

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S

    2016-06-01

    We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.

  12. Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.

    PubMed

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang

    2018-03-12

    Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.

  13. Mean Comparison: Manifest Variable versus Latent Variable

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Bentler, Peter M.

    2006-01-01

    An extension of multiple correspondence analysis is proposed that takes into account cluster-level heterogeneity in respondents' preferences/choices. The method involves combining multiple correspondence analysis and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables…

  14. The choice of product indicators in latent variable interaction models: post hoc analyses.

    PubMed

    Foldnes, Njål; Hagtvet, Knut Arne

    2014-09-01

    The unconstrained product indicator (PI) approach is a simple and popular approach for modeling nonlinear effects among latent variables. This approach leaves the practitioner to choose the PIs to be included in the model, introducing arbitrariness into the modeling. In contrast to previous Monte Carlo studies, we evaluated the PI approach by 3 post hoc analyses applied to a real-world case adopted from a research effort in social psychology. The measurement design applied 3 and 4 indicators for the 2 latent 1st-order variables, leaving the researcher with a choice among more than 4,000 possible PI configurations. Sixty so-called matched-pair configurations that have been recommended in previous literature are of special interest. In the 1st post hoc analysis we estimated the interaction effect for all PI configurations, keeping the real-world sample fixed. The estimated interaction effect was substantially affected by the choice of PIs, also across matched-pair configurations. Subsequently, a post hoc Monte Carlo study was conducted, with varying sample sizes and data distributions. Convergence, bias, Type I error and power of the interaction test were investigated for each matched-pair configuration and the all-pairs configuration. Variation in estimates across matched-pair configurations for a typical sample was substantial. The choice of specific configuration significantly affected convergence and the interaction test's outcome. The all-pairs configuration performed overall better than the matched-pair configurations. A further advantage of the all-pairs over the matched-pairs approach is its unambiguity. The final study evaluates the all-pairs configuration for small sample sizes and compares it to the non-PI approach of latent moderated structural equations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Metric and structural equivalence of core cognitive abilities measured with the Wechsler Adult Intelligence Scale-III in the United States and Australia.

    PubMed

    Bowden, Stephen C; Lissner, Dianne; McCarthy, Kerri A L; Weiss, Lawrence G; Holdnack, James A

    2007-10-01

    Equivalence of the psychological model underlying Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) scores obtained in the United States and Australia was examined in this study. Examination of metric invariance involves testing the hypothesis that all components of the measurement model relating observed scores to latent variables are numerically equal in different samples. The assumption of metric invariance is necessary for interpretation of scores derived from research studies that seek to generalize patterns of convergent and divergent validity and patterns of deficit or disability. An Australian community volunteer sample was compared to the US standardization data. A pattern of strict metric invariance was observed across samples. In addition, when the effects of different demographic characteristics of the US and Australian samples were included, structural parameters reflecting values of the latent cognitive variables were found not to differ. These results provide important evidence for the equivalence of measurement of core cognitive abilities with the WAIS-III and suggest that latent cognitive abilities in the US and Australia do not differ.

  16. Discriminative latent models for recognizing contextual group activities.

    PubMed

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N; Mori, Greg

    2012-08-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities.

  17. Discriminative Latent Models for Recognizing Contextual Group Activities

    PubMed Central

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N.; Mori, Greg

    2012-01-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities. PMID:22144516

  18. Disgust proneness predicts obsessive-compulsive disorder symptom severity in a clinical sample of youth: Distinctions from negative affect.

    PubMed

    Olatunji, Bunmi O; Ebesutani, Chad; Kim, Jingu; Riemann, Bradley C; Jacobi, David M

    2017-04-15

    Although studies have linked disgust proneness to the etiology and maintenance of obsessive-compulsive disorder (OCD) in adults, there remains a paucity of research examining the specificity of this association among youth. The present study employed structural equation modeling to examine the association between disgust proneness, negative affect, and OCD symptom severity in a clinical sample of youth admitted to a residential treatment facility (N =471). Results indicate that disgust proneness and negative affect latent factors independently predicted an OCD symptom severity latent factor. However, when both variables were modeled as predictors simultaneously, latent disgust proneness remained significantly associated with OCD symptom severity, whereas the association between latent negative affect and OCD symptom severity became nonsignificant. Tests of mediation converged in support of disgust proneness as a significant intervening variable between negative affect and OCD symptom severity. Subsequent analysis showed that the path from disgust proneness to OCD symptom severity in the structural model was significantly stronger among those without a primary diagnosis of OCD compared to those with a primary diagnosis of OCD. Given the cross-sectional design, the causal inferences that can be made are limited. The present study is also limited by the exclusive reliance on self-report measures. Disgust proneness may play a uniquely important role in OCD among youth. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. THE ATTENUATION OF LATENT LESIONS CAUSED BY THE ACTION OF X RAYS ON RHIZOMES OF TOPINAMBOUR (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonard, R.

    1962-11-26

    Tests on in vitro cultures of isolated rhizome fragments of Topinambour after x irradiation show that the changes caused by the irradiation can regress if the cultivation of the tissues is made several weeks after irradiation. (trauth)

  20. Intraclass Correlation Coefficients in Hierarchical Design Studies with Discrete Response Variables: A Note on a Direct Interval Estimation Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A latent variable modeling procedure that can be used to evaluate intraclass correlation coefficients in two-level settings with discrete response variables is discussed. The approach is readily applied when the purpose is to furnish confidence intervals at prespecified confidence levels for these coefficients in setups with binary or ordinal…

  1. Families as Natural Experiments: A Procedure for Estimating the Potentially Biasing Influence of Families on Relationships Between Variables.

    ERIC Educational Resources Information Center

    Teachman, Jay D.

    1995-01-01

    Argues that data on siblings provide a way to account for the impact of unmeasured, omitted variables on relationships of interest because families form a sort of natural experiment, with similar experiences and common genetic heritage. Proposes a latent-variable structural equation approach to the problem, which provides estimates of both within-…

  2. Measurement Models for Reasoned Action Theory

    PubMed Central

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin

    2012-01-01

    Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach. PMID:23243315

  3. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression

    PubMed Central

    Weiss, Brandi A.; Dardick, William

    2015-01-01

    This article introduces an entropy-based measure of data–model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data–model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data–model fit to assess how well logistic regression models classify cases into observed categories. PMID:29795897

  4. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression.

    PubMed

    Weiss, Brandi A; Dardick, William

    2016-12-01

    This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data-model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data-model fit to assess how well logistic regression models classify cases into observed categories.

  5. Fourier transform infrared reflectance spectra of latent fingerprints: a biometric gauge for the age of an individual.

    PubMed

    Hemmila, April; McGill, Jim; Ritter, David

    2008-03-01

    To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.

  6. A Two-Step Approach to Analyze Satisfaction Data

    ERIC Educational Resources Information Center

    Ferrari, Pier Alda; Pagani, Laura; Fiorio, Carlo V.

    2011-01-01

    In this paper a two-step procedure based on Nonlinear Principal Component Analysis (NLPCA) and Multilevel models (MLM) for the analysis of satisfaction data is proposed. The basic hypothesis is that observed ordinal variables describe different aspects of a latent continuous variable, which depends on covariates connected with individual and…

  7. Factorial versus Typological Models: A Comparison of Methods for Personality Data

    ERIC Educational Resources Information Center

    von Davier, Matthias; Naemi, Bobby; Roberts, Richard D.

    2012-01-01

    This article describes an exploration of the distinction between typological and factorial latent variables in the domain of personality theory. Traditionally, many personality variables have been considered to be factorial in nature, even though there are examples of typological constructs dating back to Hippocrates. Recently, some…

  8. Specifying and Refining a Complex Measurement Model.

    ERIC Educational Resources Information Center

    Levy, Roy; Mislevy, Robert J.

    This paper aims to describe a Bayesian approach to modeling and estimating cognitive models both in terms of statistical machinery and actual instrument development. Such a method taps the knowledge of experts to provide initial estimates for the probabilistic relationships among the variables in a multivariate latent variable model and refines…

  9. Undergraduate Nurse Variables that Predict Academic Achievement and Clinical Competence in Nursing

    ERIC Educational Resources Information Center

    Blackman, Ian; Hall, Margaret; Darmawan, I Gusti Ngurah.

    2007-01-01

    A hypothetical model was formulated to explore factors that influenced academic and clinical achievement for undergraduate nursing students. Sixteen latent variables were considered including the students' background, gender, type of first language, age, their previous successes with their undergraduate nursing studies and status given for…

  10. Using empirical Bayes predictors from generalized linear mixed models to test and visualize associations among longitudinal outcomes.

    PubMed

    Mikulich-Gilbertson, Susan K; Wagner, Brandie D; Grunwald, Gary K; Riggs, Paula D; Zerbe, Gary O

    2018-01-01

    Medical research is often designed to investigate changes in a collection of response variables that are measured repeatedly on the same subjects. The multivariate generalized linear mixed model (MGLMM) can be used to evaluate random coefficient associations (e.g. simple correlations, partial regression coefficients) among outcomes that may be non-normal and differently distributed by specifying a multivariate normal distribution for their random effects and then evaluating the latent relationship between them. Empirical Bayes predictors are readily available for each subject from any mixed model and are observable and hence, plotable. Here, we evaluate whether second-stage association analyses of empirical Bayes predictors from a MGLMM, provide a good approximation and visual representation of these latent association analyses using medical examples and simulations. Additionally, we compare these results with association analyses of empirical Bayes predictors generated from separate mixed models for each outcome, a procedure that could circumvent computational problems that arise when the dimension of the joint covariance matrix of random effects is large and prohibits estimation of latent associations. As has been shown in other analytic contexts, the p-values for all second-stage coefficients that were determined by naively assuming normality of empirical Bayes predictors provide a good approximation to p-values determined via permutation analysis. Analyzing outcomes that are interrelated with separate models in the first stage and then associating the resulting empirical Bayes predictors in a second stage results in different mean and covariance parameter estimates from the maximum likelihood estimates generated by a MGLMM. The potential for erroneous inference from using results from these separate models increases as the magnitude of the association among the outcomes increases. Thus if computable, scatterplots of the conditionally independent empirical Bayes predictors from a MGLMM are always preferable to scatterplots of empirical Bayes predictors generated by separate models, unless the true association between outcomes is zero.

  11. An innovative statistical approach for analysing non-continuous variables in environmental monitoring: assessing temporal trends of TBT pollution.

    PubMed

    Santos, José António; Galante-Oliveira, Susana; Barroso, Carlos

    2011-03-01

    The current work presents an innovative statistical approach to model ordinal variables in environmental monitoring studies. An ordinal variable has values that can only be compared as "less", "equal" or "greater" and it is not possible to have information about the size of the difference between two particular values. The example of ordinal variable under this study is the vas deferens sequence (VDS) used in imposex (superimposition of male sexual characters onto prosobranch females) field assessment programmes for monitoring tributyltin (TBT) pollution. The statistical methodology presented here is the ordered logit regression model. It assumes that the VDS is an ordinal variable whose values match up a process of imposex development that can be considered continuous in both biological and statistical senses and can be described by a latent non-observable continuous variable. This model was applied to the case study of Nucella lapillus imposex monitoring surveys conducted in the Portuguese coast between 2003 and 2008 to evaluate the temporal evolution of TBT pollution in this country. In order to produce more reliable conclusions, the proposed model includes covariates that may influence the imposex response besides TBT (e.g. the shell size). The model also provides an analysis of the environmental risk associated to TBT pollution by estimating the probability of the occurrence of females with VDS ≥ 2 in each year, according to OSPAR criteria. We consider that the proposed application of this statistical methodology has a great potential in environmental monitoring whenever there is the need to model variables that can only be assessed through an ordinal scale of values.

  12. General practitioners' knowledge and concern about electromagnetic fields.

    PubMed

    Berg-Beckhoff, Gabriele; Breckenkamp, Jürgen; Larsen, Pia Veldt; Kowall, Bernd

    2014-12-01

    Our aim is to explore general practitioners' (GPs') knowledge about EMF, and to assess whether different knowledge structures are related to the GPs' concern about EMF. Random samples were drawn from lists of GPs in Germany in 2008. Knowledge about EMF was assessed by seven items. A latent class analysis was conducted to identify latent structures in GPs' knowledge. Further, the GPs' concern about EMF health risk was measured using a score comprising six items. The association between GPs' concern about EMF and their knowledge was analysed using multiple linear regression. In total 435 (response rate 23.3%) GPs participated in the study. Four groups were identified by the latent class analysis: 43.1% of the GPs gave mainly correct answers; 23.7% of the GPs answered low frequency EMF questions correctly; 19.2% answered only the questions relating EMF with health risks, and 14.0% answered mostly "don't know". There was no association between GPs' latent knowledge classes or between the number of correct answers given by the GPs and their EMF concern, whereas the number of incorrect answers was associated with EMF concern. Greater EMF concern in subjects with more incorrect answers suggests paying particular attention to misconceptions regarding EMF in risk communication.

  13. Paths to tobacco abstinence: A repeated-measures latent class analysis.

    PubMed

    McCarthy, Danielle E; Ebssa, Lemma; Witkiewitz, Katie; Shiffman, Saul

    2015-08-01

    Knowledge of smoking change processes may be enhanced by identifying pathways to stable abstinence. We sought to identify latent classes of smokers based on their day-to-day smoking status in the first weeks of a cessation attempt. We examined treatment effects on class membership and compared classes on baseline individual differences and 6-month abstinence rates. In this secondary analysis of a double-blind randomized placebo-controlled clinical trial (N = 1,433) of 5 smoking cessation pharmacotherapies (nicotine patch, nicotine lozenge, bupropion SR, patch and lozenge, or bupropion SR and lozenge), we conducted repeated-measures latent class analysis of daily smoking status (any smoking vs. none) for the first 27 days of a quit attempt. Treatment and covariate relations with latent class membership were examined. Distal outcome analysis compared confirmed 6-month abstinence rates among the latent classes. A 5-class solution was selected. Three-quarters of smokers were in stable smoking or abstinent classes, but 25% were in classes with unstable abstinence probabilities over time. Active treatment (compared to placebo), and particularly the patch and lozenge combination, promoted early quitting. Latent classes differed in 6-month abstinence rates and on several baseline variables, including nicotine dependence, quitting history, self-efficacy, sleep disturbance, and minority status. Repeated-measures latent class analysis identified latent classes of smoking change patterns affected by treatment, related to known risk factors, and predictive of distal outcomes. Tracking behavior early in a change attempt may identify prognostic patterns of change and facilitate adaptive treatment planning. (c) 2015 APA, all rights reserved).

  14. Stability and Instability of Subjective Well-Being in the Transition from Adolescence to Young Adulthood: Longitudinal Evidence from 20991 Young Australians

    PubMed Central

    Page, Andrew

    2016-01-01

    Purpose This study assessed the long-term stability and instability of subjective well-being during post-school transition (i.e., transition from adolescence to young adulthood) and evaluated the determinants of transition stability. Methods Using two cohorts from a national representative longitudinal study, the Longitudinal Study of Australian Youth (N = 20991), latent profile analysis and latent transition analysis were conducted to examine transition patterns among subjective well-being profiles for youth from age 17 to 25. Multinomial logistic regressions were conducted to evaluate whether key socio-demographic variables were associated with transition stability. Results We identified: (1) three subjective well-being profiles: Low (30%), Moderate (50%), and High (20%); and (2) three major transition patterns among these subjective well-being profiles: stable, partially-stable, and unstable. The majority of youth had stable transition patterns during the transition from adolescence to adulthood. A large percentage of youth (52%) started low in subjective well-being profile and remained in the low subjective-wellbeing profile. Our examination also revealed gender was the most pronounced indicator for transition stability during this time period, with males more likely to have unstable transition patterns than females. Conclusions Results suggest that different subjective well-being status and transition patterns can be identified in the post-high school transition to adulthood, including unstable transitions. By targeting those groups more vulnerable to transition, mental health promotion and interventions may be delivered more effectively. PMID:27232183

  15. Environmental, morphological, and productive characterization of Sardinian goats and use of latent explanatory factors for population analysis.

    PubMed

    Vacca, G M; Paschino, P; Dettori, M L; Bergamaschi, M; Cipolat-Gotet, C; Bittante, G; Pazzola, M

    2016-09-01

    Dairy goat farming is practiced worldwide, within a range of different farming systems. Here we investigated the effects of environmental factors and morphology on milk traits of the Sardinian goat population. Sardinian goats are currently reared in Sardinia (Italy) in a low-input context, similar to many goat farming systems, especially in developing countries. Milk and morphological traits from 1,050 Sardinian goats from 42 farms were recorded. We observed a high variability regarding morphological traits, such as coat color, ear length and direction, horn presence, and udder shape. Such variability derived partly from the unplanned repeated crossbreeding of the native Sardinian goats with exotic breeds, especially Maltese goats. The farms located in the mountains were characterized by the traditional farming system and the lowest percentage of crossbred goats. Explanatory factors analysis was used to summarize the interrelated measured milk variables. The explanatory factor related to fat, protein, and energy content of milk (the "Quality" latent variable) explained about 30% of the variance of the whole data set of measured milk traits followed by the "Hygiene" (19%), "Production" (19%), and "Acidity" (11%) factors. The "Quality" and "Hygiene" factors were not affected by any of the farm classification items, whereas "Production" and "Acidity" were affected only by altitude and size of herds, respectively, indicating the adaptation of the local goat population to different environmental conditions. The use of latent explanatory factor analysis allowed us to clearly explain the large variability of milk traits, revealing that the Sardinian goat population cannot be divided into subpopulations based on milk attitude The factors, properly integrated with genetic data, may be useful tools in future selection programs.

  16. Individual Differences in Childhood Sleep Problems Predict Later Cognitive Executive Control

    PubMed Central

    Friedman, Naomi P.; Corley, Robin P.; Hewitt, John K.; Wright, Kenneth P.

    2009-01-01

    Study Objective: To determine whether individual differences in developmental patterns of general sleep problems are associated with 3 executive function abilities—inhibiting, updating working memory, and task shifting—in late adolescence. Participants: 916 twins (465 female, 451 male) and parents from the Colorado Longitudinal Twin Study. Measurements and Results: Parents reported their children's sleep problems at ages 4 years, 5 y, 7 y, and 9–16 y based on a 7-item scale from the Child-Behavior Checklist; a subset of children (n = 568) completed laboratory assessments of executive functions at age 17. Latent variable growth curve analyses were used to model individual differences in longitudinal trajectories of childhood sleep problems. Sleep problems declined over time, with ~70% of children having ≥ 1 problem at age 4 and ~33% of children at age 16. However, significant individual differences in both the initial levels of problems (intercept) and changes across time (slope) were observed. When executive function latent variables were added to the model, the intercept did not significantly correlate with the later executive function latent variables; however, the slope variable significantly (P < 0.05) negatively correlated with inhibiting (r = −0.27) and updating (r = −0.21), but not shifting (r = −0.10) abilities. Further analyses suggested that the slope variable predicted the variance common to the 3 executive functions (r = −0.29). Conclusions: Early levels of sleep problems do not seem to have appreciable implications for later executive functioning. However, individuals whose sleep problems decrease more across time show better general executive control in late adolescence. Citation: Friedman NP; Corley RP; Hewitt JK; Wright KP. Individual differences in childhood sleep problems predict later cognitive executive control. SLEEP 2009;32(3):323-333. PMID:19294952

  17. Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood.

    PubMed

    Donnellan, M Brent; Kenny, David A; Trzesniewski, Kali H; Lucas, Richard E; Conger, Rand D

    2012-12-01

    The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development.

  18. Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood

    PubMed Central

    Donnellan, M. Brent; Kenny, David A.; Trzesniewski, Kali H.; Lucas, Richard E.; Conger, Rand D.

    2012-01-01

    The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development. PMID:23180899

  19. Symptom Cluster Research With Biomarkers and Genetics Using Latent Class Analysis.

    PubMed

    Conley, Samantha

    2017-12-01

    The purpose of this article is to provide an overview of latent class analysis (LCA) and examples from symptom cluster research that includes biomarkers and genetics. A review of LCA with genetics and biomarkers was conducted using Medline, Embase, PubMed, and Google Scholar. LCA is a robust latent variable model used to cluster categorical data and allows for the determination of empirically determined symptom clusters. Researchers should consider using LCA to link empirically determined symptom clusters to biomarkers and genetics to better understand the underlying etiology of symptom clusters. The full potential of LCA in symptom cluster research has not yet been realized because it has been used in limited populations, and researchers have explored limited biologic pathways.

  20. Leisure Activity Patterns and Their Associations with Overweight: A Prospective Study among Adolescents

    ERIC Educational Resources Information Center

    Lajunen, Hanna-Reetta; Keski-Rahkonen, Anna; Pulkkinen, Lea; Rose, Richard J.; Rissanen, Aila; Kaprio, Jaakko

    2009-01-01

    We examined longitudinal associations between individual leisure activities (television viewing, video viewing, computer games, listening to music, board games, musical instrument playing, reading, arts, crafts, socializing, clubs or scouts, sports, outdoor activities) and being overweight using logistic regression and latent class analysis in a…

  1. Improvement in latent variable indirect response joint modeling of a continuous and a categorical clinical endpoint in rheumatoid arthritis.

    PubMed

    Hu, Chuanpu; Zhou, Honghui

    2016-02-01

    Improving the quality of exposure-response modeling is important in clinical drug development. The general joint modeling of multiple endpoints is made possible in part by recent progress on the latent variable indirect response (IDR) modeling for ordered categorical endpoints. This manuscript aims to investigate, when modeling a continuous and a categorical clinical endpoint, the level of improvement achievable by joint modeling in the latent variable IDR modeling framework through the sharing of model parameters for the individual endpoints, guided by the appropriate representation of drug and placebo mechanism. This was illustrated with data from two phase III clinical trials of intravenously administered mAb X for the treatment of rheumatoid arthritis, with the 28-joint disease activity score (DAS28) and 20, 50, and 70% improvement in the American College of Rheumatology (ACR20, ACR50, and ACR70) disease severity criteria were used as efficacy endpoints. The joint modeling framework led to a parsimonious final model with reasonable performance, evaluated by visual predictive check. The results showed that, compared with the more common approach of separately modeling the endpoints, it is possible for the joint model to be more parsimonious and yet better describe the individual endpoints. In particular, the joint model may better describe one endpoint through subject-specific random effects that would not have been estimable from data of this endpoint alone.

  2. Ascertainment-adjusted parameter estimation approach to improve robustness against misspecification of health monitoring methods

    NASA Astrophysics Data System (ADS)

    Juesas, P.; Ramasso, E.

    2016-12-01

    Condition monitoring aims at ensuring system safety which is a fundamental requirement for industrial applications and that has become an inescapable social demand. This objective is attained by instrumenting the system and developing data analytics methods such as statistical models able to turn data into relevant knowledge. One difficulty is to be able to correctly estimate the parameters of those methods based on time-series data. This paper suggests the use of the Weighted Distribution Theory together with the Expectation-Maximization algorithm to improve parameter estimation in statistical models with latent variables with an application to health monotonic under uncertainty. The improvement of estimates is made possible by incorporating uncertain and possibly noisy prior knowledge on latent variables in a sound manner. The latent variables are exploited to build a degradation model of dynamical system represented as a sequence of discrete states. Examples on Gaussian Mixture Models, Hidden Markov Models (HMM) with discrete and continuous outputs are presented on both simulated data and benchmarks using the turbofan engine datasets. A focus on the application of a discrete HMM to health monitoring under uncertainty allows to emphasize the interest of the proposed approach in presence of different operating conditions and fault modes. It is shown that the proposed model depicts high robustness in presence of noisy and uncertain prior.

  3. The Depression Anxiety Stress Scales (DASS): normative data and latent structure in a large non-clinical sample.

    PubMed

    Crawford, John R; Henry, Julie D

    2003-06-01

    To provide UK normative data for the Depression Anxiety and Stress Scale (DASS) and test its convergent, discriminant and construct validity. Cross-sectional, correlational and confirmatory factor analysis (CFA). The DASS was administered to a non-clinical sample, broadly representative of the general adult UK population (N = 1,771) in terms of demographic variables. Competing models of the latent structure of the DASS were derived from theoretical and empirical sources and evaluated using confirmatory factor analysis. Correlational analysis was used to determine the influence of demographic variables on DASS scores. The convergent and discriminant validity of the measure was examined through correlating the measure with two other measures of depression and anxiety (the HADS and the sAD), and a measure of positive and negative affectivity (the PANAS). The best fitting model (CFI =.93) of the latent structure of the DASS consisted of three correlated factors corresponding to the depression, anxiety and stress scales with correlated error permitted between items comprising the DASS subscales. Demographic variables had only very modest influences on DASS scores. The reliability of the DASS was excellent, and the measure possessed adequate convergent and discriminant validity Conclusions: The DASS is a reliable and valid measure of the constructs it was intended to assess. The utility of this measure for UK clinicians is enhanced by the provision of large sample normative data.

  4. Enterprise Systems Analysis

    DTIC Science & Technology

    2017-04-30

    practices in latent variable theory, it is not surprising that effective measurement programs present methodological typing and considering of experimental ...7 3.3 Methodology ...8 Revised Enterprise Modeling Methodology ................................................................ 128 9 Conclusions

  5. Morphological and motor characteristics of Croatian first league female football players.

    PubMed

    Jelaska, Petra Mandić; Katić, Ratko; Jelaska, Igor

    2013-05-01

    The aim of this study was to determine the structure of morphological and motor characteristics of Croatian first league female football players and their impact on the estimated quality of the players. According to the goal of the research, a sample consisted of 70 Croatian first league female football players. Participants were measured in 18 tests for assessing morphological characteristics, a set of 12 basic motor abilities tests and a set of 7 tests for assessing football-specific motor abilities. Exploratory factor analysis strategy was applied separately to all measured tests: morphological, basic motor abilities and football specific motor abilities. Factor analysis of morphological tests has shown existence of 3 significant latent dimensions that explain 64% of the total variability. Factors are defined as transverse dimensionality of the skeleton and voluminosity (35%), subcutaneous fat tissue (16%) and longitudinal dimensionality of the skeleton (13%). In the area of basic motor abilities, four factors were extracted. The first factor is responsible for the integration of agility and explosive power of legs, i.e. a factor of movement regulation (agility/lower body explosiveness) (23%), the second one defines muscle tone regulation (15%), the third one defines the frequency of leg movements (12%), while the fourth one is recognized as responsible for the manifestation of basic strength, particularly of basic core strength (19%). Two factors were isolated in the space of football-specific motor abilities: football-specific efficiency (53%) and situational football coordination (27%). Furthermore, by use of factor analysis on extracted latent dimensions (morphological, basic and football specific motor abilities) two higher order factors (explaining 87% of common variability) were extracted. They were named morphological-motor factor (54%) and football-specific motor abilities factor (33%). It is assumed that two extracted higher-order factors fully describe morphological and motor status of first league female football players. Furthermore, the linear regression results in latent space showed that the identified factors are very good predictors of female football players quality (delta = 0.959). In doing so, both specific motor abilities factors and the first factor of basic motor abilities as a factor of general motor efficiency have the greatest impact on player quality, and these factors have been identified as most important predictors of player quality in Croatian women's first league and elite female football players in general. Obtained results provide deep insight into the structure of relations between the morphological, motor and specific motor variables and also indicate the importance of such definition of specific motor abilities. Consequently, results explicitly indicate the necessity of early, continuous, and systematic development of football-specific motor abilities in female football players of high competitive level but also, adjusted, to the younger age categories.

  6. Dietary and exercise change following acute cardiac syndrome onset: A latent class growth modelling analysis.

    PubMed

    Bennett, Paul; Gruszczynska, Ewa; Marke, Victoria

    2016-10-01

    The present study aim determine sub-group trajectories of change on measures of diet and exercise following acute coronary syndrome. 150 participants were assessed in hospital, 1 month and 6 months subsequently on measures including physical activity, diet, illness beliefs, coping and mood. Change trajectories were measured using latent class growth modelling. Multinomial logistic regression was used to predict class membership. These analyses revealed changes in exercise were confined to a sub-group of participants already reporting relatively high exercise levels; those eating less healthily evidenced modest dietary improvements. Coping, gender, depression and perceived control predicted group membership to a modest degree. © The Author(s) 2015.

  7. Pathway Evidence of How Musical Perception Predicts Word-Level Reading Ability in Children with Reading Difficulties

    PubMed Central

    Cogo-Moreira, Hugo; Brandão de Ávila, Clara Regina; Ploubidis, George B.; de Jesus Mari, Jair

    2013-01-01

    Objective To investigate whether specific domains of musical perception (temporal and melodic domains) predict the word-level reading skills of eight- to ten-year-old children (n = 235) with reading difficulties, normal quotient of intelligence, and no previous exposure to music education classes. Method A general-specific solution of the Montreal Battery of Evaluation of Amusia (MBEA), which underlies a musical perception construct and is constituted by three latent factors (the general, temporal, and the melodic domain), was regressed on word-level reading skills (rate of correct isolated words/non-words read per minute). Results General and melodic latent domains predicted word-level reading skills. PMID:24358358

  8. Bayesian inference of uncertainties in precipitation-streamflow modeling in a snow affected catchment

    NASA Astrophysics Data System (ADS)

    Koskela, J. J.; Croke, B. W. F.; Koivusalo, H.; Jakeman, A. J.; Kokkonen, T.

    2012-11-01

    Bayesian inference is used to study the effect of precipitation and model structural uncertainty on estimates of model parameters and confidence limits of predictive variables in a conceptual rainfall-runoff model in the snow-fed Rudbäck catchment (142 ha) in southern Finland. The IHACRES model is coupled with a simple degree day model to account for snow accumulation and melt. The posterior probability distribution of the model parameters is sampled by using the Differential Evolution Adaptive Metropolis (DREAM(ZS)) algorithm and the generalized likelihood function. Precipitation uncertainty is taken into account by introducing additional latent variables that were used as multipliers for individual storm events. Results suggest that occasional snow water equivalent (SWE) observations together with daily streamflow observations do not contain enough information to simultaneously identify model parameters, precipitation uncertainty and model structural uncertainty in the Rudbäck catchment. The addition of an autoregressive component to account for model structure error and latent variables having uniform priors to account for input uncertainty lead to dubious posterior distributions of model parameters. Thus our hypothesis that informative priors for latent variables could be replaced by additional SWE data could not be confirmed. The model was found to work adequately in 1-day-ahead simulation mode, but the results were poor in the simulation batch mode. This was caused by the interaction of parameters that were used to describe different sources of uncertainty. The findings may have lessons for other cases where parameterizations are similarly high in relation to available prior information.

  9. Medical University admission test: a confirmatory factor analysis of the results.

    PubMed

    Luschin-Ebengreuth, Marion; Dimai, Hans P; Ithaler, Daniel; Neges, Heide M; Reibnegger, Gilbert

    2016-05-01

    The Graz Admission Test has been applied since the academic year 2006/2007. The validity of the Test was demonstrated by a significant improvement of study success and a significant reduction of dropout rate. The purpose of this study was a detailed analysis of the internal correlation structure of the various components of the Graz Admission Test. In particular, the question investigated was whether or not the various test parts constitute a suitable construct which might be designated as "Basic Knowledge in Natural Science." This study is an observational investigation, analyzing the results of the Graz Admission Test for the study of human medicine and dentistry. A total of 4741 applicants were included in the analysis. Principal component factor analysis (PCFA) as well as techniques from structural equation modeling, specifically confirmatory factor analysis (CFA), were employed to detect potential underlying latent variables governing the behavior of the measured variables. PCFA showed good clustering of the science test parts, including also text comprehension. A putative latent variable "Basic Knowledge in Natural Science," investigated by CFA, was indeed shown to govern the response behavior of the applicants in biology, chemistry, physics, and mathematics as well as text comprehension. The analysis of the correlation structure of the various test parts confirmed that the science test parts together with text comprehension constitute a satisfactory instrument for measuring a latent construct variable "Basic Knowledge in Natural Science." The present results suggest the fundamental importance of basic science knowledge for results obtained in the framework of the admission process for medical universities.

  10. Weight-related abuse: Perceived emotional impact and the effect on disordered eating.

    PubMed

    Salwen, Jessica K; Hymowitz, Genna F; Bannon, Sarah M; O'Leary, K Daniel

    2015-07-01

    The purpose of this article was to evaluate theories that (1) weight-related abuse (WRA) plays a unique role in the development of disordered eating, above and beyond general childhood verbal abuse and weight-related teasing, and (2) the perceived emotional impact of WRA mediates the relationship between WRA and current disordered eating. Self-report questionnaires on childhood trauma, weight-related teasing, WRA, and current eating behaviors were administered to a total of 383 undergraduate students. In initial regressions, WRA significantly predicted binge eating, emotional eating, night eating, and unhealthy weight control. WRA continued to significantly predict all 4 forms of disordered eating following the introduction of measures of weight-related teasing and childhood verbal abuse into the regression. Latent variable analysis confirmed that perceived emotional impact of WRA mediated the relationship between WRA and disordered eating, and tests for indirect effects yielded a significant indirect effect of WRA on disordered eating through perceived emotional impact. In sum, WRA is a unique construct and the content of childhood or adolescent maltreatment is important in determining eventual psychopathology outcomes. These findings support the necessity of incorporating information on developmental history and cognitive factors into assessment and treatment of individuals with disordered eating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Identifying patterns of item missing survey data using latent groups: an observational study.

    PubMed

    Barnett, Adrian G; McElwee, Paul; Nathan, Andrea; Burton, Nicola W; Turrell, Gavin

    2017-10-30

    To examine whether respondents to a survey of health and physical activity and potential determinants could be grouped according to the questions they missed, known as 'item missing'. Observational study of longitudinal data. Residents of Brisbane, Australia. 6901 people aged 40-65 years in 2007. We used a latent class model with a mixture of multinomial distributions and chose the number of classes using the Bayesian information criterion. We used logistic regression to examine if participants' characteristics were associated with their modal latent class. We used logistic regression to examine whether the amount of item missing in a survey predicted wave missing in the following survey. Four per cent of participants missed almost one-fifth of the questions, and this group missed more questions in the middle of the survey. Eighty-three per cent of participants completed almost every question, but had a relatively high missing probability for a question on sleep time, a question which had an inconsistent presentation compared with the rest of the survey. Participants who completed almost every question were generally younger and more educated. Participants who completed more questions were less likely to miss the next longitudinal wave. Examining patterns in item missing data has improved our understanding of how missing data were generated and has informed future survey design to help reduce missing data. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Using Explanatory Item Response Models to Evaluate Complex Scientific Tasks Designed for the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Chiu, Tina

    This dissertation includes three studies that analyze a new set of assessment tasks developed by the Learning Progressions in Middle School Science (LPS) Project. These assessment tasks were designed to measure science content knowledge on the structure of matter domain and scientific argumentation, while following the goals from the Next Generation Science Standards (NGSS). The three studies focus on the evidence available for the success of this design and its implementation, generally labelled as "validity" evidence. I use explanatory item response models (EIRMs) as the overarching framework to investigate these assessment tasks. These models can be useful when gathering validity evidence for assessments as they can help explain student learning and group differences. In the first study, I explore the dimensionality of the LPS assessment by comparing the fit of unidimensional, between-item multidimensional, and Rasch testlet models to see which is most appropriate for this data. By applying multidimensional item response models, multiple relationships can be investigated, and in turn, allow for a more substantive look into the assessment tasks. The second study focuses on person predictors through latent regression and differential item functioning (DIF) models. Latent regression models show the influence of certain person characteristics on item responses, while DIF models test whether one group is differentially affected by specific assessment items, after conditioning on latent ability. Finally, the last study applies the linear logistic test model (LLTM) to investigate whether item features can help explain differences in item difficulties.

  13. Obtaining systematic teacher reports of disruptive behavior disorders utilizing DSM-IV.

    PubMed

    Wolraich, M L; Feurer, I D; Hannah, J N; Baumgaertel, A; Pinnock, T Y

    1998-04-01

    This study examines the psychometric properties of the Vanderbilt AD/HD Diagnostic Teacher Rating Scale (VADTRS) and provides preliminary normative data from a large, geographically defined population. The VADTRS consists of the complete list of DSM-IV AD/HD symptoms, a screen for other disruptive behavior disorders, anxiety and depression, and ratings of academic and classroom behavior performance. Teachers in one suburban county completed the scale for their students during 2 consecutive years. Statistical methods included (a) exploratory and confirmatory latent variable analyses of item data, (b) evaluation of the internal consistency of the latent dimensions, (c) evaluation of latent structure concordance between school year samples, and (d) preliminary evaluation of criterion-related validity. The instrument comprises four behavioral dimensions and two performance dimensions. The behavioral dimensions were concordant between school years and were consistent with a priori DSM-IV diagnostic criteria. Correlations between latent dimensions and relevant, known disorders or problems varied from .25 to .66.

  14. An IRT Model with a Parameter-Driven Process for Change

    ERIC Educational Resources Information Center

    Rijmen, Frank; De Boeck, Paul; van der Maas, Han L. J.

    2005-01-01

    An IRT model with a parameter-driven process for change is proposed. Quantitative differences between persons are taken into account by a continuous latent variable, as in common IRT models. In addition, qualitative inter-individual differences and auto-dependencies are accounted for by assuming within-subject variability with respect to the…

  15. Beyond IQ: A Latent State-Trait Analysis of General Intelligence, Dynamic Decision Making, and Implicit Learning

    ERIC Educational Resources Information Center

    Danner, Daniel; Hagemann, Dirk; Schankin, Andrea; Hager, Marieke; Funke, Joachim

    2011-01-01

    The present study investigated cognitive performance measures beyond IQ. In particular, we investigated the psychometric properties of dynamic decision making variables and implicit learning variables and their relation with general intelligence and professional success. N = 173 employees from different companies and occupational groups completed…

  16. Characterizing Student Expectations: A Small Empirical Study

    ERIC Educational Resources Information Center

    Warwick, Jonathan

    2016-01-01

    This paper describes the results of a small empirical study (n = 130), in which undergraduate students in the Business Faculty of a UK university were asked to express views and expectations relating to the study of a mathematics. Factor analysis is used to identify latent variables emerging from clusters of the measured variables and these are…

  17. Adolescent Substance Use, Sleep, and Academic Achievement: Evidence of Harm Due to Caffeine

    ERIC Educational Resources Information Center

    James, Jack E.; Kristjansson, Alfgeir Logi; Sigfusdottir, Inga Dora

    2011-01-01

    Using academic achievement as the key outcome variable, 7377 Icelandic adolescents were surveyed for cigarette smoking, alcohol use, daytime sleepiness, caffeine use, and potential confounders. Structural equation modeling (SEM) was used to examine direct and indirect effects of measured and latent variables in two models: the first with caffeine…

  18. Use of Partial Least Squares improves the efficacy of removing unwanted variability in differential expression analyses based on RNA-Seq data.

    PubMed

    Chakraborty, Sutirtha

    2018-05-26

    RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package 'SVAPLSseq') to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques. Copyright © 2017. Published by Elsevier Inc.

  19. Stability of Core Language Skill Stability of Core Language Skill from Early Childhood to Adolescence: A Latent Variable Approach

    PubMed Central

    Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.; Suwalsky, Joan T. D.

    2014-01-01

    This four-wave prospective longitudinal study evaluated stability of language in 324 children from early childhood to adolescence. Structural equation modeling supported loadings of multiple age-appropriate multi-source measures of child language on single-factor core language skills at 20 months and 4, 10, and 14 years. Large stability coefficients (standardized indirect effect = .46) were obtained between language latent variables from early childhood to adolescence and accounting for child nonverbal intelligence and social competence and maternal verbal intelligence, education, speech, and social desirability. Stability coefficients were similar for girls and boys. Stability of core language skill was stronger from 4 to 10 to 14 years than from 20 months to 4 years, so early intervention to improve lagging language is recommended. PMID:25165797

  20. Long-Term Stability of Core Language Skill in Children with Contrasting Language Skills

    PubMed Central

    Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.

    2016-01-01

    This four-wave longitudinal study evaluated stability of core language skill in 421 European American and African American children, half of whom were identified as low (n = 201) and half of whom were average-to-high (n = 220) in later language skill. Structural equation modeling supported loadings of multivariate age-appropriate multisource measures of child language on single latent variables of core language skill at 15 and 25 months and 5 and 11 years. Significant stability coefficients were obtained between language latent variables for children of low and average-to-high language skill, even accounting for child positive social interaction and nonverbal intelligence, maternal education and language, and family home environment. Prospects for children with different language skills and intervention implications are discussed. PMID:26998572

Top