Sample records for latent variable structure

  1. Estimating and Interpreting Latent Variable Interactions: A Tutorial for Applying the Latent Moderated Structural Equations Method

    ERIC Educational Resources Information Center

    Maslowsky, Julie; Jager, Justin; Hemken, Douglas

    2015-01-01

    Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…

  2. Bayesian Semiparametric Structural Equation Models with Latent Variables

    ERIC Educational Resources Information Center

    Yang, Mingan; Dunson, David B.

    2010-01-01

    Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…

  3. The Integration of Continuous and Discrete Latent Variable Models: Potential Problems and Promising Opportunities

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Curran, Patrick J.

    2004-01-01

    Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…

  4. Much Ado about Nothing--Or at Best, Very Little

    ERIC Educational Resources Information Center

    Widaman, Keith F.

    2014-01-01

    Latent variable structural equation modeling has become the analytic method of choice in many domains of research in psychology and allied social sciences. One important aspect of a latent variable model concerns the relations hypothesized to hold between latent variables and their indicators. The most common specification of structural equation…

  5. Avoiding and Correcting Bias in Score-Based Latent Variable Regression with Discrete Manifest Items

    ERIC Educational Resources Information Center

    Lu, Irene R. R.; Thomas, D. Roland

    2008-01-01

    This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…

  6. Detecting Mixtures from Structural Model Differences Using Latent Variable Mixture Modeling: A Comparison of Relative Model Fit Statistics

    ERIC Educational Resources Information Center

    Henson, James M.; Reise, Steven P.; Kim, Kevin H.

    2007-01-01

    The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…

  7. Adolescent cigarette smoking: health-related behavior or normative transgression?

    PubMed

    Turbin, M S; Jessor, R; Costa, F M

    2000-09-01

    Relations among measures of adolescent behavior were examined to determine whether cigarette smoking fits into a structure of problem behaviors-behaviors that involve normative transgression-or a structure of health-related behaviors, or both. In an ethnically and socioeconomically diverse sample of 1782 male and female high school adolescents, four first-order problem behavior latent variables-sexual intercourse experience, alcohol abuse, illicit drug use, and delinquency-were established and together were shown to reflect a second-order latent variable of problem behavior. Four first-order latent variables of health-related behaviors-unhealthy dietary habits, sedentary behavior, unsafe behavior, and poor dental hygiene-were also established and together were shown to reflect a second-order latent variable of health-compromising behavior. The structure of relations among those latent variables was modeled. Cigarette smoking had a significant and substantial loading only on the problem-behavior latent variable; its loading on the health-compromising behavior latent variable was essentially zero. Adolescent cigarette smoking relates strongly and directly to problem behaviors and only indirectly, if at all, to health-compromising behaviors. Interventions to prevent or reduce adolescent smoking should attend more to factors that influence problem behaviors.

  8. Latent structure modeling underlying theophylline tablet formulations using a Bayesian network based on a self-organizing map clustering.

    PubMed

    Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2015-01-01

    The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.

  9. The Latent Structure of Dietary Restraint, Body Dissatisfaction, and Drive for Thinness: A Series of Taxometric Analyses

    ERIC Educational Resources Information Center

    Holm-Denoma, Jill M.; Richey, J. Anthony; Joiner, Thomas E., Jr.

    2010-01-01

    Although the latent structure of various eating disorders has been explored in previous studies, no published studies have examined the latent structure of theoretically relevant variables that have been shown to cut across eating disorder diagnoses. The current study examined 3 such variables (dietary restraint, body dissatisfaction, and drive…

  10. Application of Local Linear Embedding to Nonlinear Exploratory Latent Structure Analysis

    ERIC Educational Resources Information Center

    Wang, Haonan; Iyer, Hari

    2007-01-01

    In this paper we discuss the use of a recent dimension reduction technique called Locally Linear Embedding, introduced by Roweis and Saul, for performing an exploratory latent structure analysis. The coordinate variables from the locally linear embedding describing the manifold on which the data reside serve as the latent variable scores. We…

  11. The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models

    ERIC Educational Resources Information Center

    Park, Jungkyu; Yu, Hsiu-Ting

    2016-01-01

    The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…

  12. Selection of latent variables for multiple mixed-outcome models

    PubMed Central

    ZHOU, LING; LIN, HUAZHEN; SONG, XINYUAN; LI, YI

    2014-01-01

    Latent variable models have been widely used for modeling the dependence structure of multiple outcomes data. However, the formulation of a latent variable model is often unknown a priori, the misspecification will distort the dependence structure and lead to unreliable model inference. Moreover, multiple outcomes with varying types present enormous analytical challenges. In this paper, we present a class of general latent variable models that can accommodate mixed types of outcomes. We propose a novel selection approach that simultaneously selects latent variables and estimates parameters. We show that the proposed estimator is consistent, asymptotically normal and has the oracle property. The practical utility of the methods is confirmed via simulations as well as an application to the analysis of the World Values Survey, a global research project that explores peoples’ values and beliefs and the social and personal characteristics that might influence them. PMID:27642219

  13. Etiological Beliefs, Treatments, Stigmatizing Attitudes toward Schizophrenia. What Do Italians and Israelis Think?

    PubMed

    Mannarini, Stefania; Boffo, Marilisa; Rossi, Alessandro; Balottin, Laura

    2017-01-01

    Background: Although scientific research on the etiology of mental disorders has improved the knowledge of biogenetic and psychosocial aspects related to the onset of mental illness, stigmatizing attitudes and behaviors are still very prevalent and pose a significant social problem. Aim: The aim of this study was to deepen the knowledge of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics, such as culture and religion of the perceiver. More precisely, the main purpose is the definition of a structure of variables, namely perceived dangerousness, social closeness, and avoidance of the ill person, together with the beliefs about the best treatment to be undertaken and the sick person' gender, capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned. Method: The study involved 305 university students, 183 from the University of Padua, Italy, and 122 from the University of Haifa, Israel. For the analyses, a latent class analysis (LCA) approach was chosen to identify a latent categorical structure accounting for the covariance between the observed variables. Such a latent structure was expected to be moderated by cultural background (Italy versus Israel) and religious beliefs, whereas causal beliefs, recommended treatment, dangerousness, social closeness, and public avoidance were the manifest variables, namely the observed indicators of the latent variable. Results: Two sets of results were obtained. First, the relevance of the manifest variables as indicators of the hypothesized latent variable was highlighted. Second, a two-latent-class categorical dimension represented by prejudicial attitudes, causal beliefs, and treatments concerning schizophrenia was found. Specifically, the differential effects of the two cultures and the religious beliefs on the latent structure and their relations highlighted the relevance of the observed variables as indicators of the expected latent variable. Conclusion: The present study contributes to the improvement of the understanding of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics of the perceiver. The definition of a structure of variables capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned was achieved from a cross-cultural perspective.

  14. Testing Specific Hypotheses Concerning Latent Group Differences in Multi-group Covariance Structure Analysis with Structured Means.

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Molenaar, Peter C. M.

    1994-01-01

    In multigroup covariance structure analysis with structured means, the traditional latent selection model is formulated as a special case of phenotypic selection. Illustrations with real and simulated data demonstrate how one can test specific hypotheses concerning selection on latent variables. (SLD)

  15. Evaluating measurement models in clinical research: covariance structure analysis of latent variable models of self-conception.

    PubMed

    Hoyle, R H

    1991-02-01

    Indirect measures of psychological constructs are vital to clinical research. On occasion, however, the meaning of indirect measures of psychological constructs is obfuscated by statistical procedures that do not account for the complex relations between items and latent variables and among latent variables. Covariance structure analysis (CSA) is a statistical procedure for testing hypotheses about the relations among items that indirectly measure a psychological construct and relations among psychological constructs. This article introduces clinical researchers to the strengths and limitations of CSA as a statistical procedure for conceiving and testing structural hypotheses that are not tested adequately with other statistical procedures. The article is organized around two empirical examples that illustrate the use of CSA for evaluating measurement models with correlated error terms, higher-order factors, and measured and latent variables.

  16. Generalized Structured Component Analysis with Latent Interactions

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan

    2010-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…

  17. Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…

  18. A Bayesian Model for the Estimation of Latent Interaction and Quadratic Effects When Latent Variables Are Non-Normally Distributed

    ERIC Educational Resources Information Center

    Kelava, Augustin; Nagengast, Benjamin

    2012-01-01

    Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…

  19. Using SAS PROC CALIS to fit Level-1 error covariance structures of latent growth models.

    PubMed

    Ding, Cherng G; Jane, Ten-Der

    2012-09-01

    In the present article, we demonstrates the use of SAS PROC CALIS to fit various types of Level-1 error covariance structures of latent growth models (LGM). Advantages of the SEM approach, on which PROC CALIS is based, include the capabilities of modeling the change over time for latent constructs, measured by multiple indicators; embedding LGM into a larger latent variable model; incorporating measurement models for latent predictors; and better assessing model fit and the flexibility in specifying error covariance structures. The strength of PROC CALIS is always accompanied with technical coding work, which needs to be specifically addressed. We provide a tutorial on the SAS syntax for modeling the growth of a manifest variable and the growth of a latent construct, focusing the documentation on the specification of Level-1 error covariance structures. Illustrations are conducted with the data generated from two given latent growth models. The coding provided is helpful when the growth model has been well determined and the Level-1 error covariance structure is to be identified.

  20. Confidence Intervals for a Semiparametric Approach to Modeling Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Losardo, Diane; Bauer, Daniel J.

    2011-01-01

    Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…

  1. Estimating Latent Variable Interactions with Nonnormal Observed Data: A Comparison of Four Approaches

    ERIC Educational Resources Information Center

    Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.

    2012-01-01

    A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…

  2. Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.

    2003-01-01

    The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…

  3. Predictive Inference Using Latent Variables with Covariates*

    PubMed Central

    Schofield, Lynne Steuerle; Junker, Brian; Taylor, Lowell J.; Black, Dan A.

    2014-01-01

    Plausible Values (PVs) are a standard multiple imputation tool for analysis of large education survey data that measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally-generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations (MESE) model of Schofield (2008). PMID:25231627

  4. Dynamic Latent Trait Models with Mixed Hidden Markov Structure for Mixed Longitudinal Outcomes.

    PubMed

    Zhang, Yue; Berhane, Kiros

    2016-01-01

    We propose a general Bayesian joint modeling approach to model mixed longitudinal outcomes from the exponential family for taking into account any differential misclassification that may exist among categorical outcomes. Under this framework, outcomes observed without measurement error are related to latent trait variables through generalized linear mixed effect models. The misclassified outcomes are related to the latent class variables, which represent unobserved real states, using mixed hidden Markov models (MHMM). In addition to enabling the estimation of parameters in prevalence, transition and misclassification probabilities, MHMMs capture cluster level heterogeneity. A transition modeling structure allows the latent trait and latent class variables to depend on observed predictors at the same time period and also on latent trait and latent class variables at previous time periods for each individual. Simulation studies are conducted to make comparisons with traditional models in order to illustrate the gains from the proposed approach. The new approach is applied to data from the Southern California Children Health Study (CHS) to jointly model questionnaire based asthma state and multiple lung function measurements in order to gain better insight about the underlying biological mechanism that governs the inter-relationship between asthma state and lung function development.

  5. Using Structural Equation Models with Latent Variables to Study Student Growth and Development.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1991-01-01

    Analysis of data on freshman-to-senior developmental gains in 722 University of Tennessee-Knoxville students provides evidence of the advantages of structural equation modeling with latent variables and suggests that the group differences identified by traditional analysis of variance and covariance techniques may be an artifact of measurement…

  6. Using Instrumental Variable (IV) Tests to Evaluate Model Specification in Latent Variable Structural Equation Models*

    PubMed Central

    Kirby, James B.; Bollen, Kenneth A.

    2009-01-01

    Structural Equation Modeling with latent variables (SEM) is a powerful tool for social and behavioral scientists, combining many of the strengths of psychometrics and econometrics into a single framework. The most common estimator for SEM is the full-information maximum likelihood estimator (ML), but there is continuing interest in limited information estimators because of their distributional robustness and their greater resistance to structural specification errors. However, the literature discussing model fit for limited information estimators for latent variable models is sparse compared to that for full information estimators. We address this shortcoming by providing several specification tests based on the 2SLS estimator for latent variable structural equation models developed by Bollen (1996). We explain how these tests can be used to not only identify a misspecified model, but to help diagnose the source of misspecification within a model. We present and discuss results from a Monte Carlo experiment designed to evaluate the finite sample properties of these tests. Our findings suggest that the 2SLS tests successfully identify most misspecified models, even those with modest misspecification, and that they provide researchers with information that can help diagnose the source of misspecification. PMID:20419054

  7. Measurement Model Specification Error in LISREL Structural Equation Models.

    ERIC Educational Resources Information Center

    Baldwin, Beatrice; Lomax, Richard

    This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…

  8. Environmental risk perception, environmental concern and propensity to participate in organic farming programmes.

    PubMed

    Toma, Luiza; Mathijs, Erik

    2007-04-01

    This paper aims to identify the factors underlying farmers' propensity to participate in organic farming programmes in a Romanian rural region that confronts non-point source pollution. For this, we employ structural equation modelling with latent variables using a specific data set collected through an agri-environmental farm survey in 2001. The model includes one 'behavioural intention' latent variable ('propensity to participate in organic farming programmes') and five 'attitude' and 'socio-economic' latent variables ('socio-demographic characteristics', 'economic characteristics', 'agri-environmental information access', 'environmental risk perception' and 'general environmental concern'). The results indicate that, overall, the model has an adequate fit to the data. All loadings are statistically significant, supporting the theoretical basis for assignment of indicators for each latent variable. The significance tests for the structural model parameters show 'environmental risk perception' as the strongest determinant of farmers' propensity to participate in organic farming programmes.

  9. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  10. Introduction to the special section on mixture modeling in personality assessment.

    PubMed

    Wright, Aidan G C; Hallquist, Michael N

    2014-01-01

    Latent variable models offer a conceptual and statistical framework for evaluating the underlying structure of psychological constructs, including personality and psychopathology. Complex structures that combine or compare categorical and dimensional latent variables can be accommodated using mixture modeling approaches, which provide a powerful framework for testing nuanced theories about psychological structure. This special series includes introductory primers on cross-sectional and longitudinal mixture modeling, in addition to empirical examples applying these techniques to real-world data collected in clinical settings. This group of articles is designed to introduce personality assessment scientists and practitioners to a general latent variable framework that we hope will stimulate new research and application of mixture models to the assessment of personality and its pathology.

  11. Building Coherent Validation Arguments for the Measurement of Latent Constructs with Unified Statistical Frameworks

    ERIC Educational Resources Information Center

    Rupp, Andre A.

    2012-01-01

    In the focus article of this issue, von Davier, Naemi, and Roberts essentially coupled: (1) a short methodological review of structural similarities of latent variable models with discrete and continuous latent variables; and (2) 2 short empirical case studies that show how these models can be applied to real, rather than simulated, large-scale…

  12. The Log-Linear Cognitive Diagnostic Model (LCDM) as a Special Case of The General Diagnostic Model (GDM). Research Report. ETS RR-14-40

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2014-01-01

    Diagnostic models combine multiple binary latent variables in an attempt to produce a latent structure that provides more information about test takers' performance than do unidimensional latent variable models. Recent developments in diagnostic modeling emphasize the possibility that multiple skills may interact in a conjunctive way within the…

  13. Unfinished Business in Clarifying Causal Measurement: Commentary on Bainter and Bollen

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2014-01-01

    In a series of articles and comments, Kenneth Bollen and his collaborators have incrementally refined an account of structural equation models that (a) model a latent variable as the effect of several observed variables and (b) carry an interpretation of the observed variables as, in some sense, measures of the latent variable that they cause.…

  14. Estimation and Model Selection for Finite Mixtures of Latent Interaction Models

    ERIC Educational Resources Information Center

    Hsu, Jui-Chen

    2011-01-01

    Latent interaction models and mixture models have received considerable attention in social science research recently, but little is known about how to handle if unobserved population heterogeneity exists in the endogenous latent variables of the nonlinear structural equation models. The current study estimates a mixture of latent interaction…

  15. Replicates in high dimensions, with applications to latent variable graphical models.

    PubMed

    Tan, Kean Ming; Ning, Yang; Witten, Daniela M; Liu, Han

    2016-12-01

    In classical statistics, much thought has been put into experimental design and data collection. In the high-dimensional setting, however, experimental design has been less of a focus. In this paper, we stress the importance of collecting multiple replicates for each subject in this setting. We consider learning the structure of a graphical model with latent variables, under the assumption that these variables take a constant value across replicates within each subject. By collecting multiple replicates for each subject, we are able to estimate the conditional dependence relationships among the observed variables given the latent variables. To test the null hypothesis of conditional independence between two observed variables, we propose a pairwise decorrelated score test. Theoretical guarantees are established for parameter estimation and for this test. We show that our proposal is able to estimate latent variable graphical models more accurately than some existing proposals, and apply the proposed method to a brain imaging dataset.

  16. The spatial pattern of suicide in the US in relation to deprivation, fragmentation and rurality.

    PubMed

    Congdon, Peter

    2011-01-01

    Analysis of geographical patterns of suicide and psychiatric morbidity has demonstrated the impact of latent ecological variables (such as deprivation, rurality). Such latent variables may be derived by conventional multivariate techniques from sets of observed indices (for example, by principal components), by composite variable methods or by methods which explicitly consider the spatial framework of areas and, in particular, the spatial clustering of latent risks and outcomes. This article considers a latent random variable approach to explaining geographical contrasts in suicide in the US; and it develops a spatial structural equation model incorporating deprivation, social fragmentation and rurality. The approach allows for such latent spatial constructs to be correlated both within and between areas. Potential effects of area ethnic mix are also included. The model is applied to male and female suicide deaths over 2002–06 in 3142 US counties.

  17. Estimating Latent Variable Interactions With Non-Normal Observed Data: A Comparison of Four Approaches

    PubMed Central

    Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.

    2012-01-01

    A Monte Carlo simulation was conducted to investigate the robustness of four latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of non-normality of the observed exogenous variables. Results showed that the CPI and LMS approaches yielded biased estimates of the interaction effect when the exogenous variables were highly non-normal. When the violation of non-normality was not severe (normal; symmetric with excess kurtosis < 1), the LMS approach yielded the most efficient estimates of the latent interaction effect with the highest statistical power. In highly non-normal conditions, the GAPI and UPI approaches with ML estimation yielded unbiased latent interaction effect estimates, with acceptable actual Type-I error rates for both the Wald and likelihood ratio tests of interaction effect at N ≥ 500. An empirical example illustrated the use of the four approaches in testing a latent variable interaction between academic self-efficacy and positive family role models in the prediction of academic performance. PMID:23457417

  18. The Theory of Planned Behavior within the Stages of the Transtheoretical Model: Latent Structural Modeling of Stage-Specific Prediction Patterns in Physical Activity

    ERIC Educational Resources Information Center

    Lippke, Sonia; Nigg, Claudio R.; Maddock, Jay E.

    2007-01-01

    This is the first study to test whether the stages of change of the transtheoretical model are qualitatively different through exploring discontinuity patterns in theory of planned behavior (TPB) variables using latent multigroup structural equation modeling (MSEM) with AMOS. Discontinuity patterns in terms of latent means and prediction patterns…

  19. Behavioral Scale Reliability and Measurement Invariance Evaluation Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2004-01-01

    A latent variable modeling approach to reliability and measurement invariance evaluation for multiple-component measuring instruments is outlined. An initial discussion deals with the limitations of coefficient alpha, a frequently used index of composite reliability. A widely and readily applicable structural modeling framework is next described…

  20. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  1. Diagnostic Procedures for Detecting Nonlinear Relationships between Latent Variables

    ERIC Educational Resources Information Center

    Bauer, Daniel J.; Baldasaro, Ruth E.; Gottfredson, Nisha C.

    2012-01-01

    Structural equation models are commonly used to estimate relationships between latent variables. Almost universally, the fitted models specify that these relationships are linear in form. This assumption is rarely checked empirically, largely for lack of appropriate diagnostic techniques. This article presents and evaluates two procedures that can…

  2. Clinical Insight Into Latent Variables of Psychiatric Questionnaires for Mood Symptom Self-Assessment

    PubMed Central

    Saunders, Kate; Bilderbeck, Amy; Palmius, Niclas; Goodwin, Guy; De Vos, Maarten

    2017-01-01

    Background We recently described a new questionnaire to monitor mood called mood zoom (MZ). MZ comprises 6 items assessing mood symptoms on a 7-point Likert scale; we had previously used standard principal component analysis (PCA) to tentatively understand its properties, but the presence of multiple nonzero loadings obstructed the interpretation of its latent variables. Objective The aim of this study was to rigorously investigate the internal properties and latent variables of MZ using an algorithmic approach which may lead to more interpretable results than PCA. Additionally, we explored three other widely used psychiatric questionnaires to investigate latent variable structure similarities with MZ: (1) Altman self-rating mania scale (ASRM), assessing mania; (2) quick inventory of depressive symptomatology (QIDS) self-report, assessing depression; and (3) generalized anxiety disorder (7-item) (GAD-7), assessing anxiety. Methods We elicited responses from 131 participants: 48 bipolar disorder (BD), 32 borderline personality disorder (BPD), and 51 healthy controls (HC), collected longitudinally (median [interquartile range, IQR]: 363 [276] days). Participants were requested to complete ASRM, QIDS, and GAD-7 weekly (all 3 questionnaires were completed on the Web) and MZ daily (using a custom-based smartphone app). We applied sparse PCA (SPCA) to determine the latent variables for the four questionnaires, where a small subset of the original items contributes toward each latent variable. Results We found that MZ had great consistency across the three cohorts studied. Three main principal components were derived using SPCA, which can be tentatively interpreted as (1) anxiety and sadness, (2) positive affect, and (3) irritability. The MZ principal component comprising anxiety and sadness explains most of the variance in BD and BPD, whereas the positive affect of MZ explains most of the variance in HC. The latent variables in ASRM were identical for the patient groups but different for HC; nevertheless, the latent variables shared common items across both the patient group and HC. On the contrary, QIDS had overall very different principal components across groups; sleep was a key element in HC and BD but was absent in BPD. In GAD-7, nervousness was the principal component explaining most of the variance in BD and HC. Conclusions This study has important implications for understanding self-reported mood. MZ has a consistent, intuitively interpretable latent variable structure and hence may be a good instrument for generic mood assessment. Irritability appears to be the key distinguishing latent variable between BD and BPD and might be useful for differential diagnosis. Anxiety and sadness are closely interlinked, a finding that might inform treatment effects to jointly address these covarying symptoms. Anxiety and nervousness appear to be amongst the cardinal latent variable symptoms in BD and merit close attention in clinical practice. PMID:28546141

  3. A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen

    2012-01-01

    Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…

  4. Matrix completion by deep matrix factorization.

    PubMed

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modeling Bivariate Change in Individual Differences: Prospective Associations Between Personality and Life Satisfaction.

    PubMed

    Hounkpatin, Hilda Osafo; Boyce, Christopher J; Dunn, Graham; Wood, Alex M

    2017-09-18

    A number of structural equation models have been developed to examine change in 1 variable or the longitudinal association between 2 variables. The most common of these are the latent growth model, the autoregressive cross-lagged model, the autoregressive latent trajectory model, and the latent change score model. The authors first overview each of these models through evaluating their different assumptions surrounding the nature of change and how these assumptions may result in different data interpretations. They then, to elucidate these issues in an empirical example, examine the longitudinal association between personality traits and life satisfaction. In a representative Dutch sample (N = 8,320), with participants providing data on both personality and life satisfaction measures every 2 years over an 8-year period, the authors reproduce findings from previous research. However, some of the structural equation models overviewed have not previously been applied to the personality-life satisfaction relation. The extended empirical examination suggests intraindividual changes in life satisfaction predict subsequent intraindividual changes in personality traits. The availability of data sets with 3 or more assessment waves allows the application of more advanced structural equation models such as the autoregressive latent trajectory or the extended latent change score model, which accounts for the complex dynamic nature of change processes and allows stronger inferences on the nature of the association between variables. However, the choice of model should be determined by theories of change processes in the variables being studied. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Visualizing Confidence Bands for Semiparametrically Estimated Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Chalmers, R. Philip; Kok, Bethany E.; Losardo, Diane

    2015-01-01

    Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural…

  7. The Benefits of Latent Variable Modeling to Develop Norms for a Translated Version of a Standardized Scale

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Shaw, Leslie A.; Shogren, Karrie A.; Lang, Kyle M.; Little, Todd D.

    2017-01-01

    This article demonstrates the use of structural equation modeling to develop norms for a translated version of a standardized scale, the Supports Intensity Scale-Children's Version (SIS-C). The latent variable norming method proposed is useful when the standardization sample for a translated version is relatively small to derive norms…

  8. Latent Variable Regression 4-Level Hierarchical Model Using Multisite Multiple-Cohorts Longitudinal Data. CRESST Report 801

    ERIC Educational Resources Information Center

    Choi, Kilchan

    2011-01-01

    This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…

  9. Construct validity evidence for the Male Role Norms Inventory-Short Form: A structural equation modeling approach using the bifactor model.

    PubMed

    Levant, Ronald F; Hall, Rosalie J; Weigold, Ingrid K; McCurdy, Eric R

    2016-10-01

    The construct validity of the Male Role Norms Inventory-Short Form (MRNI-SF) was assessed using a latent variable approach implemented with structural equation modeling (SEM). The MRNI-SF was specified as having a bifactor structure, and validation scales were also specified as latent variables. The latent variable approach had the advantages of separating effects of general and specific factors and controlling for some sources of measurement error. Data (N = 484) were from a diverse sample (38.8% men of color, 22.3% men of diverse sexualities) of community-dwelling and college men who responded to an online survey. The construct validity of the MRNI-SF General Traditional Masculinity Ideology factor was supported for all 4 of the proposed latent correlations with: (a) Male Role Attitudes Scale; (b) general factor of Conformity to Masculine Norms Inventory-46; (c) higher-order factor of Gender Role Conflict Scale; and (d) Personal Attributes Questionnaire-Masculinity Scale. Significant correlations with relevant other latent factors provided concurrent validity evidence for the MRNI-SF specific factors of Negativity toward Sexual Minorities, Importance of Sex, Restrictive Emotionality, and Toughness, with all 8 of the hypothesized relationships supported. However, 3 relationships concerning Dominance were not supported. (The construct validity of the remaining 2 MRNI-SF specific factors-Avoidance of Femininity and Self-Reliance through Mechanical Skills was not assessed.) Comparisons were made, and meaningful differences noted, between the latent correlations emphasized in this study and their raw variable counterparts. Results are discussed in terms of the advantages of an SEM approach and the unique characteristics of the bifactor model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Using structural equation modeling to investigate relationships among ecological variables

    USGS Publications Warehouse

    Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.

    2000-01-01

    Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0.1258. Natural variability had a positive direct effect on biodiversity of magnitude 0.5347 and a negative indirect effect mediated through growth potential of magnitude -0.1105 yielding a positive total effects of magnitude 0.4242. Sediment contamination had a negative direct effect on biodiversity of magnitude -0.1956 and a negative indirect effect on growth potential via biodiversity of magnitude -0.067. Biodiversity had a positive effect on growth potential of magnitude 0.8432, and growth potential had a positive effect on biodiversity of magnitude 0.3398. The correlation between biodiversity and growth potential was estimated at 0.7658 and that between sediment contamination and natural variability at -0.3769.

  11. On the Benefits of Latent Variable Modeling for Norming Scales: The Case of the "Supports Intensity Scale-Children's Version"

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M.

    2016-01-01

    Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…

  12. Characterising the latent structure and organisation of self-reported thoughts, feelings and behaviours in adolescents and young adults

    PubMed Central

    Neufeld, Sharon; Jones, Peter B.; Fonagy, Peter; Bullmore, Edward T.; Dolan, Raymond J.; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M.

    2017-01-01

    Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed ‘distress’ and five ‘distress independent’ specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits. PMID:28403164

  13. Characterising the latent structure and organisation of self-reported thoughts, feelings and behaviours in adolescents and young adults.

    PubMed

    St Clair, Michelle C; Neufeld, Sharon; Jones, Peter B; Fonagy, Peter; Bullmore, Edward T; Dolan, Raymond J; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M

    2017-01-01

    Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed 'distress' and five 'distress independent' specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits.

  14. Three Cs in measurement models: causal indicators, composite indicators, and covariates.

    PubMed

    Bollen, Kenneth A; Bauldry, Shawn

    2011-09-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the "Three Cs"). Causal indicators have conceptual unity, and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variables. Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects, and composites are a matter of convenience. The failure to distinguish the Three Cs has led to confusion and questions, such as, Are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points.

  15. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  16. Modeling Latent Interactions at Level 2 in Multilevel Structural Equation Models: An Evaluation of Mean-Centered and Residual-Centered Unconstrained Approaches

    ERIC Educational Resources Information Center

    Leite, Walter L.; Zuo, Youzhen

    2011-01-01

    Among the many methods currently available for estimating latent variable interactions, the unconstrained approach is attractive to applied researchers because of its relatively easy implementation with any structural equation modeling (SEM) software. Using a Monte Carlo simulation study, we extended and evaluated the unconstrained approach to…

  17. The Longitudinal Structure of General and Specific Anxiety Dimensions in Children: Testing a Latent Trait-State-Occasion Model

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Cole, David A.

    2009-01-01

    In an 8-wave, 4-year longitudinal study, 787 children (Grades 3-6) completed the Revised Children's Manifest Anxiety Scale (C. R. Reynolds & B. O. Richmond, 1985), a measure of the Physiological Reactivity, Worry-Oversensitivity, and Social Alienation dimensions of anxiety. A latent variable (trait-state-occasion) model and a latent growth curve…

  18. On the Benefits of Latent Variable Modeling for Norming Scales: The Case of the "Supports Intensity Scale--Children's Version"

    ERIC Educational Resources Information Center

    Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M.

    2016-01-01

    Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…

  19. Toward a Model-Based Approach to the Clinical Assessment of Personality Psychopathology

    PubMed Central

    Eaton, Nicholas R.; Krueger, Robert F.; Docherty, Anna R.; Sponheim, Scott R.

    2015-01-01

    Recent years have witnessed tremendous growth in the scope and sophistication of statistical methods available to explore the latent structure of psychopathology, involving continuous, discrete, and hybrid latent variables. The availability of such methods has fostered optimism that they can facilitate movement from classification primarily crafted through expert consensus to classification derived from empirically-based models of psychopathological variation. The explication of diagnostic constructs with empirically supported structures can then facilitate the development of assessment tools that appropriately characterize these constructs. Our goal in this paper is to illustrate how new statistical methods can inform conceptualization of personality psychopathology and therefore its assessment. We use magical thinking as example, because both theory and earlier empirical work suggested the possibility of discrete aspects to the latent structure of personality psychopathology, particularly forms of psychopathology involving distortions of reality testing, yet other data suggest that personality psychopathology is generally continuous in nature. We directly compared the fit of a variety of latent variable models to magical thinking data from a sample enriched with clinically significant variation in psychotic symptomatology for explanatory purposes. Findings generally suggested a continuous latent variable model best represented magical thinking, but results varied somewhat depending on different indices of model fit. We discuss the implications of the findings for classification and applied personality assessment. We also highlight some limitations of this type of approach that are illustrated by these data, including the importance of substantive interpretation, in addition to use of model fit indices, when evaluating competing structural models. PMID:24007309

  20. Measuring Latent Quantities

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2011-01-01

    A distinction is proposed between measures and predictors of latent variables. The discussion addresses the consequences of the distinction for the true-score model, the linear factor model, Structural Equation Models, longitudinal and multilevel models, and item-response models. A distribution-free treatment of calibration and…

  1. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    PubMed Central

    Bollen, Kenneth A.; Bauldry, Shawn

    2013-01-01

    In the last two decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that we can classify indicators into two categories, effect (reflective) indicators and causal (formative) indicators. This paper argues that the dichotomous view is too simple. Instead, there are effect indicators and three types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the “three Cs”). Causal indicators have conceptual unity and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variable(s). Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects and composites are a matter of convenience. The failure to distinguish the “three Cs” has led to confusion and questions such as: are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points. PMID:21767021

  2. Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data.

    PubMed

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S

    2016-06-01

    We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.

  3. Students' Views on Mathematics in Single-Sex and Coed Classrooms in Ghana

    ERIC Educational Resources Information Center

    Bofah, Emmanuel Adu-tutu; Hannula, Markku S.

    2016-01-01

    In this study, we investigated students' views on themselves as learners of mathematics as a function of school-by-sex (N = 2034, MAge = 18.49, SDAge = 1.25; 12th-grade; 58.2% girls). Using latent variable Structural Equation Modeling (SEM), the measurement and structural equivalence as well as the equality of latent means of scores across…

  4. The Information a Test Provides on an Ability Parameter. Research Report. ETS RR-07-18

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2007-01-01

    In item-response theory, if a latent-structure model has an ability variable, then elementary information theory may be employed to provide a criterion for evaluation of the information the test provides concerning ability. This criterion may be considered even in cases in which the latent-structure model is not valid, although interpretation of…

  5. A new model of wheezing severity in young children using the validated ISAAC wheezing module: A latent variable approach with validation in independent cohorts.

    PubMed

    Brunwasser, Steven M; Gebretsadik, Tebeb; Gold, Diane R; Turi, Kedir N; Stone, Cosby A; Datta, Soma; Gern, James E; Hartert, Tina V

    2018-01-01

    The International Study of Asthma and Allergies in Children (ISAAC) Wheezing Module is commonly used to characterize pediatric asthma in epidemiological studies, including nearly all airway cohorts participating in the Environmental Influences on Child Health Outcomes (ECHO) consortium. However, there is no consensus model for operationalizing wheezing severity with this instrument in explanatory research studies. Severity is typically measured using coarsely-defined categorical variables, reducing power and potentially underestimating etiological associations. More precise measurement approaches could improve testing of etiological theories of wheezing illness. We evaluated a continuous latent variable model of pediatric wheezing severity based on four ISAAC Wheezing Module items. Analyses included subgroups of children from three independent cohorts whose parents reported past wheezing: infants ages 0-2 in the INSPIRE birth cohort study (Cohort 1; n = 657), 6-7-year-old North American children from Phase One of the ISAAC study (Cohort 2; n = 2,765), and 5-6-year-old children in the EHAAS birth cohort study (Cohort 3; n = 102). Models were estimated using structural equation modeling. In all cohorts, covariance patterns implied by the latent variable model were consistent with the observed data, as indicated by non-significant χ2 goodness of fit tests (no evidence of model misspecification). Cohort 1 analyses showed that the latent factor structure was stable across time points and child sexes. In both cohorts 1 and 3, the latent wheezing severity variable was prospectively associated with wheeze-related clinical outcomes, including physician asthma diagnosis, acute corticosteroid use, and wheeze-related outpatient medical visits when adjusting for confounders. We developed an easily applicable continuous latent variable model of pediatric wheezing severity based on items from the well-validated ISAAC Wheezing Module. This model prospectively associates with asthma morbidity, as demonstrated in two ECHO birth cohort studies, and provides a more statistically powerful method of testing etiologic hypotheses of childhood wheezing illness and asthma.

  6. Realist identification of group-level latent variables for perinatal social epidemiology theory building.

    PubMed

    Eastwood, John Graeme; Jalaludin, Bin Badrudin; Kemp, Lynn Ann; Phung, Hai Ngoc

    2014-01-01

    We have previously reported in this journal on an ecological study of perinatal depressive symptoms in South Western Sydney. In that article, we briefly reported on a factor analysis that was utilized to identify empirical indicators for analysis. In this article, we report on the mixed method approach that was used to identify those latent variables. Social epidemiology has been slow to embrace a latent variable approach to the study of social, political, economic, and cultural structures and mechanisms, partly for philosophical reasons. Critical realist ontology and epistemology have been advocated as an appropriate methodological approach to both theory building and theory testing in the health sciences. We describe here an emergent mixed method approach that uses qualitative methods to identify latent constructs followed by factor analysis using empirical indicators chosen to measure identified qualitative codes. Comparative analysis of the findings is reported together with a limited description of realist approaches to abstract reasoning.

  7. Structural identifiability of cyclic graphical models of biological networks with latent variables.

    PubMed

    Wang, Yulin; Lu, Na; Miao, Hongyu

    2016-06-13

    Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and is thus of higher resolution in comparison with many existing approaches. Overall, this study provides a basis for systematic examination and refinement of graphical models of biological networks from the identifiability point of view, and it has a significant potential to be extended to more complex network structures or high-dimensional systems.

  8. Estimation of the latent mediated effect with ordinal data using the limited-information and Bayesian full-information approaches.

    PubMed

    Chen, Jinsong; Zhang, Dake; Choi, Jaehwa

    2015-12-01

    It is common to encounter latent variables with ordinal data in social or behavioral research. Although a mediated effect of latent variables (latent mediated effect, or LME) with ordinal data may appear to be a straightforward combination of LME with continuous data and latent variables with ordinal data, the methodological challenges to combine the two are not trivial. This research covers model structures as complex as LME and formulates both point and interval estimates of LME for ordinal data using the Bayesian full-information approach. We also combine weighted least squares (WLS) estimation with the bias-corrected bootstrapping (BCB; Efron Journal of the American Statistical Association, 82, 171-185, 1987) method or the traditional delta method as the limited-information approach. We evaluated the viability of these different approaches across various conditions through simulation studies, and provide an empirical example to illustrate the approaches. We found that the Bayesian approach with reasonably informative priors is preferred when both point and interval estimates are of interest and the sample size is 200 or above.

  9. On the explaining-away phenomenon in multivariate latent variable models.

    PubMed

    van Rijn, Peter; Rijmen, Frank

    2015-02-01

    Many probabilistic models for psychological and educational measurements contain latent variables. Well-known examples are factor analysis, item response theory, and latent class model families. We discuss what is referred to as the 'explaining-away' phenomenon in the context of such latent variable models. This phenomenon can occur when multiple latent variables are related to the same observed variable, and can elicit seemingly counterintuitive conditional dependencies between latent variables given observed variables. We illustrate the implications of explaining away for a number of well-known latent variable models by using both theoretical and real data examples. © 2014 The British Psychological Society.

  10. Latent change models of adult cognition: are changes in processing speed and working memory associated with changes in episodic memory?

    PubMed

    Hertzog, Christopher; Dixon, Roger A; Hultsch, David F; MacDonald, Stuart W S

    2003-12-01

    The authors used 6-year longitudinal data from the Victoria Longitudinal Study (VLS) to investigate individual differences in amount of episodic memory change. Latent change models revealed reliable individual differences in cognitive change. Changes in episodic memory were significantly correlated with changes in other cognitive variables, including speed and working memory. A structural equation model for the latent change scores showed that changes in speed and working memory predicted changes in episodic memory, as expected by processing resource theory. However, these effects were best modeled as being mediated by changes in induction and fact retrieval. Dissociations were detected between cross-sectional ability correlations and longitudinal changes. Shuffling the tasks used to define the Working Memory latent variable altered patterns of change correlations.

  11. Latent structure analysis of the process variables and pharmaceutical responses of an orally disintegrating tablet.

    PubMed

    Hayashi, Yoshihiro; Oshima, Etsuko; Maeda, Jin; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2012-01-01

    A multivariate statistical technique was applied to the design of an orally disintegrating tablet and to clarify the causal correlation among variables of the manufacturing process and pharmaceutical responses. Orally disintegrating tablets (ODTs) composed mainly of mannitol were prepared via the wet-granulation method using crystal transition from the δ to the β form of mannitol. Process parameters (water amounts (X(1)), kneading time (X(2)), compression force (X(3)), and amounts of magnesium stearate (X(4))) were optimized using a nonlinear response surface method (RSM) incorporating a thin plate spline interpolation (RSM-S). The results of a verification study revealed that the experimental responses, such as tensile strength and disintegration time, coincided well with the predictions. A latent structure analysis of the pharmaceutical formulations of the tablet performed using a Bayesian network led to the clear visualization of a causal connection among variables of the manufacturing process and tablet characteristics. The quantity of β-mannitol in the granules (Q(β)) was affected by X(2) and influenced all granule properties. The specific surface area of the granules was affected by X(1) and Q(β) and had an effect on all tablet characteristics. Moreover, the causal relationships among the variables were clarified by inferring conditional probability distributions. These techniques provide a better understanding of the complicated latent structure among variables of the manufacturing process and tablet characteristics.

  12. Spatial path models with multiple indicators and multiple causes: mental health in US counties.

    PubMed

    Congdon, Peter

    2011-06-01

    This paper considers a structural model for the impact on area mental health outcomes (poor mental health, suicide) of spatially structured latent constructs: deprivation, social capital, social fragmentation and rurality. These constructs are measured by multiple observed effect indicators, with the constructs allowed to be correlated both between and within areas. However, in the scheme developed here, particular latent constructs may also be influenced by known variables, or, via path sequences, by other constructs, possibly nonlinearly. For example, area social capital may be measured by effect indicators (e.g. associational density, charitable activity), but influenced as causes by other constructs (e.g. area deprivation), and by observed features of the socio-ethnic structure of areas. A model incorporating these features is applied to suicide mortality and the prevalence of poor mental health in 3141 US counties, which are related to the latent spatial constructs and to observed variables (e.g. county ethnic mix). Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Aggressiveness as a latent personality trait of domestic dogs: Testing local independence and measurement invariance.

    PubMed

    Goold, Conor; Newberry, Ruth C

    2017-01-01

    Studies of animal personality attempt to uncover underlying or "latent" personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4-10 months, 10 months-3 years, 3-6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate "aggressive personality" trait attributions can be costly to dogs, recipients of aggression and society in general.

  14. Discriminative latent models for recognizing contextual group activities.

    PubMed

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N; Mori, Greg

    2012-08-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities.

  15. Discriminative Latent Models for Recognizing Contextual Group Activities

    PubMed Central

    Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N.; Mori, Greg

    2012-01-01

    In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities. PMID:22144516

  16. A Latent Variable Approach to Executive Control in Healthy Ageing

    ERIC Educational Resources Information Center

    Adrover-Roig, Daniel; Sese, Albert; Barcelo, Francisco; Palmer, Alfonso

    2012-01-01

    It is a well-established finding that the central executive is fractionated in at least three separable component processes: Updating, Shifting, and Inhibition of information (Miyake et al., 2000). However, the fractionation of the central executive among the elderly has been less well explored, and Miyake's et al. latent structure has not yet…

  17. Latent Variable Modeling of Brain Gray Matter Volume and Psychopathy in Incarcerated Offenders

    PubMed Central

    Baskin-Sommers, Arielle R.; Neumann, Craig S.; Cope, Lora M.; Kiehl, Kent A.

    2016-01-01

    Advanced statistical modeling has become a prominent feature in psychological science and can be a useful approach for representing the neural architecture linked to psychopathology. Psychopathy, a disorder characterized by dysfunction in interpersonal-affective and impulsive-antisocial domains, is associated with widespread neural abnormalities. Several imaging studies suggest that underlying structural deficits in paralimbic regions are associated with psychopathy. While these studies are useful, they make assumptions about the organization of the brain and its relevance to individuals displaying psychopathic features. Capitalizing on statistical modeling, the present study (N=254) used latent variable methods to examine the structure of gray matter volume in male offenders, and assessed the latent relations between psychopathy and gray matter factors reflecting paralimbic and non-paralimbic regions. Results revealed good fit for a four-factor gray matter paralimbic model and these first-order factors were accounted for by a super-ordinate paralimbic ‘system’ factor. Moreover, a super-ordinate psychopathy factor significantly predicted the paralimbic, but not the non-paralimbic factor. The latent variable paralimbic model, specifically linked with psychopathy, goes beyond understanding of single brain regions within the system and provides evidence for psychopathy-related gray matter volume reductions in the paralimbic system as a whole. PMID:27269123

  18. Development of lifetime comorbidity in the WHO World Mental Health (WMH) Surveys

    PubMed Central

    Kessler, Ronald C.; Ormel, Johan; Petukhova, Maria; McLaughlin, Katie A.; Green, Jennifer Greif; Russo, Leo J.; Stein, Dan J.; Zaslavsky, Alan M; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Andrade, Laura; Benjet, Corina; de Girolamo, Giovanni; de Graaf, Ron; Demyttenaere, Koen; Fayyad, John; Haro, Josep Maria; Hu, Chi yi; Karam, Aimee; Lee, Sing; Lepine, Jean-Pierre; Matchsinger, Herbert; Mihaescu-Pintia, Constanta; Posada-Villa, Jose; Sagar, Rajesh; Üstün, T. Bedirhan

    2010-01-01

    CONTEXT Although numerous studies have examined the role of latent variables in the structure of comorbidity among mental disorders, none has examined their role in the development of comorbidity. OBJECTIVE To study the role of latent variables in the development of comorbidity among 18 lifetime DSM-IV disorders in the WHO World Mental Health (WMH) surveys. SETTING/PARTICIPANTS Nationally or regionally representative community surveys in 14 countries with a total of 21,229 respondents. MAIN OUTCOME MEASURES First onset of 18 lifetime DSM-IV anxiety, mood, behavior, and substance disorders assessed retrospectively in the WHO Composite International Diagnostic Interview (CIDI). RESULTS Separate internalizing (anxiety and mood disorders) and externalizing (behavior and substance disorders) factors were found in exploratory factor analysis of lifetime disorders. Consistently significant positive time-lagged associations were found in survival analyses for virtually all temporally primary lifetime disorders predicting subsequent onset of other disorders. Within-domain (i.e., internalizing or externalizing) associations were generally stronger than between-domain associations. The vast majority of time-lagged associations were explained by a model that assumed the existence of mediating latent internalizing and externalizing variables. Specific phobia and obsessive-compulsive disorder (internalizing) and hyperactivity disorder and oppositional-defiant disorder (externalizing) were the most important predictors. A small number of residual associations remained significant after controlling the latent variables. CONCLUSIONS The good fit of the latent variable model suggests that common causal pathways account for most of the comorbidity among the disorders considered here. These common pathways should be the focus of future research on the development of comorbidity, although several important pair-wise associations that cannot be accounted for by latent variables also exist that warrant further focused study. PMID:21199968

  19. Bayesian Adaptive Lasso for Ordinal Regression with Latent Variables

    ERIC Educational Resources Information Center

    Feng, Xiang-Nan; Wu, Hao-Tian; Song, Xin-Yuan

    2017-01-01

    We consider an ordinal regression model with latent variables to investigate the effects of observable and latent explanatory variables on the ordinal responses of interest. Each latent variable is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a Bayesian adaptive lasso procedure to conduct…

  20. Multilevel Latent Class Analysis: An Application of Adolescent Smoking Typologies with Individual and Contextual Predictors

    ERIC Educational Resources Information Center

    Henry, Kimberly L.; Muthen, Bengt

    2010-01-01

    Latent class analysis (LCA) is a statistical method used to identify subtypes of related cases using a set of categorical or continuous observed variables. Traditional LCA assumes that observations are independent. However, multilevel data structures are common in social and behavioral research and alternative strategies are needed. In this…

  1. Sensitivity of Latent Heating Profiles to Environmental Conditions: Implications for TRMM and Climate Research

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) as a part of NASA's Earth System Enterprise is the first mission dedicated to measuring tropical rainfall through microwave and visible sensors, and includes the first spaceborne rain radar. Tropical rainfall comprises two-thirds of global rainfall. It is also the primary distributor of heat through the atmosphere's circulation. It is this circulation that defines Earth's weather and climate. Understanding rainfall and its variability is crucial to understanding and predicting global climate change. Weather and climate models need an accurate assessment of the latent heating released as tropical rainfall occurs. Currently, cloud model-based algorithms are used to derive latent heating based on rainfall structure. Ultimately, these algorithms can be applied to actual data from TRMM. This study investigates key underlying assumptions used in developing the latent heating algorithms. For example, the standard algorithm is highly dependent on a system's rainfall amount and structure. It also depends on an a priori database of model-derived latent heating profiles based on the aforementioned rainfall characteristics. Unanswered questions remain concerning the sensitivity of latent heating profiles to environmental conditions (both thermodynamic and kinematic), regionality, and seasonality. This study investigates and quantifies such sensitivities and seeks to determine the optimal latent heating profile database based on the results. Ultimately, the study seeks to produce an optimized latent heating algorithm based not only on rainfall structure but also hydrometeor profiles.

  2. Abstract: Inference and Interval Estimation for Indirect Effects With Latent Variable Models.

    PubMed

    Falk, Carl F; Biesanz, Jeremy C

    2011-11-30

    Models specifying indirect effects (or mediation) and structural equation modeling are both popular in the social sciences. Yet relatively little research has compared methods that test for indirect effects among latent variables and provided precise estimates of the effectiveness of different methods. This simulation study provides an extensive comparison of methods for constructing confidence intervals and for making inferences about indirect effects with latent variables. We compared the percentile (PC) bootstrap, bias-corrected (BC) bootstrap, bias-corrected accelerated (BC a ) bootstrap, likelihood-based confidence intervals (Neale & Miller, 1997), partial posterior predictive (Biesanz, Falk, and Savalei, 2010), and joint significance tests based on Wald tests or likelihood ratio tests. All models included three reflective latent variables representing the independent, dependent, and mediating variables. The design included the following fully crossed conditions: (a) sample size: 100, 200, and 500; (b) number of indicators per latent variable: 3 versus 5; (c) reliability per set of indicators: .7 versus .9; (d) and 16 different path combinations for the indirect effect (α = 0, .14, .39, or .59; and β = 0, .14, .39, or .59). Simulations were performed using a WestGrid cluster of 1680 3.06GHz Intel Xeon processors running R and OpenMx. Results based on 1,000 replications per cell and 2,000 resamples per bootstrap method indicated that the BC and BC a bootstrap methods have inflated Type I error rates. Likelihood-based confidence intervals and the PC bootstrap emerged as methods that adequately control Type I error and have good coverage rates.

  3. Aggressiveness as a latent personality trait of domestic dogs: Testing local independence and measurement invariance

    PubMed Central

    2017-01-01

    Studies of animal personality attempt to uncover underlying or “latent” personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4–10 months, 10 months–3 years, 3–6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate “aggressive personality” trait attributions can be costly to dogs, recipients of aggression and society in general. PMID:28854267

  4. Estimators for longitudinal latent exposure models: examining measurement model assumptions.

    PubMed

    Sánchez, Brisa N; Kim, Sehee; Sammel, Mary D

    2017-06-15

    Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can accommodate a variety of assumptions but, at the same time, present the user with many choices for model specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental development, where assumptions of the measurement model for the time-changing longitudinal exposure have appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV structure on the repeated multivariate exposure measures could result in high efficiency gains for the exposure-disease association. We examine the biases of maximum likelihood estimators when assumptions about the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estimators to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a time-changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Structural Modeling of Variables Related to Parental Support in Mexican Children's Perfomance on Reading and Writing

    ERIC Educational Resources Information Center

    Bazan-Ramirez, Aldo; Castellanos-Simons, Doris; Lopez-Valenzuela, Mercedes

    2010-01-01

    This paper aims at analysing the structural relationships among some latent and observed variables related to the assessment of written language performance in 139 fourth grade students of Elementary School selected from nine public schools of the northwest of Mexico. Questionnaires were also applied to the children's parents and teachers. The…

  6. Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables

    ERIC Educational Resources Information Center

    Henson, Robert A.; Templin, Jonathan L.; Willse, John T.

    2009-01-01

    This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…

  7. Latent Heating Structures Derived from TRMM

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R.; Hou, A.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.; Olson, W.; Satoh, S.

    2004-01-01

    Rainfall is the fundamental variable within the Earth's hydrological cycle because it is both the main forcing term leading to variations in continental and oceanic surface water budgets. The vertical distribution of latent heat release, which is accompanied with rain, modulates large-scale meridional and zonal circulations within the tropics as well as modifying the energetic efficiency of mid-latitude weather systems. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water.This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission 0. The TRMM observatory, whose development was a joint US-Japan space endeavor, was launched in November 1997. TRMM measurements provide an accurate account of rainfall over the global tropics, information which can be .used to estimate the four-dimensional structure of latent heating across the entire tropical and sub-tropical regions. Various algorithm methodologies for estimating latent heating based on rain rate measurements from TRMM observations are described. The strengths and weaknesses of these algorithms, as well as the latent heating products generated by these algorithms, are also discussed along with validation analyses of the products. The investigation paper provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, and concludes with remarks designed to stimulate further research on latent heating retrieval

  8. Inverse Ising problem in continuous time: A latent variable approach

    NASA Astrophysics Data System (ADS)

    Donner, Christian; Opper, Manfred

    2017-12-01

    We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.

  9. The Depression Anxiety Stress Scales (DASS): normative data and latent structure in a large non-clinical sample.

    PubMed

    Crawford, John R; Henry, Julie D

    2003-06-01

    To provide UK normative data for the Depression Anxiety and Stress Scale (DASS) and test its convergent, discriminant and construct validity. Cross-sectional, correlational and confirmatory factor analysis (CFA). The DASS was administered to a non-clinical sample, broadly representative of the general adult UK population (N = 1,771) in terms of demographic variables. Competing models of the latent structure of the DASS were derived from theoretical and empirical sources and evaluated using confirmatory factor analysis. Correlational analysis was used to determine the influence of demographic variables on DASS scores. The convergent and discriminant validity of the measure was examined through correlating the measure with two other measures of depression and anxiety (the HADS and the sAD), and a measure of positive and negative affectivity (the PANAS). The best fitting model (CFI =.93) of the latent structure of the DASS consisted of three correlated factors corresponding to the depression, anxiety and stress scales with correlated error permitted between items comprising the DASS subscales. Demographic variables had only very modest influences on DASS scores. The reliability of the DASS was excellent, and the measure possessed adequate convergent and discriminant validity Conclusions: The DASS is a reliable and valid measure of the constructs it was intended to assess. The utility of this measure for UK clinicians is enhanced by the provision of large sample normative data.

  10. Further insights on the French WISC-IV factor structure through Bayesian structural equation modeling.

    PubMed

    Golay, Philippe; Reverte, Isabelle; Rossier, Jérôme; Favez, Nicolas; Lecerf, Thierry

    2013-06-01

    The interpretation of the Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all cross-loadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Multilevel structural equation models for assessing moderation within and across levels of analysis.

    PubMed

    Preacher, Kristopher J; Zhang, Zhen; Zyphur, Michael J

    2016-06-01

    Social scientists are increasingly interested in multilevel hypotheses, data, and statistical models as well as moderation or interactions among predictors. The result is a focus on hypotheses and tests of multilevel moderation within and across levels of analysis. Unfortunately, existing approaches to multilevel moderation have a variety of shortcomings, including conflated effects across levels of analysis and bias due to using observed cluster averages instead of latent variables (i.e., "random intercepts") to represent higher-level constructs. To overcome these problems and elucidate the nature of multilevel moderation effects, we introduce a multilevel structural equation modeling (MSEM) logic that clarifies the nature of the problems with existing practices and remedies them with latent variable interactions. This remedy uses random coefficients and/or latent moderated structural equations (LMS) for unbiased tests of multilevel moderation. We describe our approach and provide an example using the publicly available High School and Beyond data with Mplus syntax in Appendix. Our MSEM method eliminates problems of conflated multilevel effects and reduces bias in parameter estimates while offering a coherent framework for conceptualizing and testing multilevel moderation effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. The consequences of ignoring measurement invariance for path coefficients in structural equation models

    PubMed Central

    Guenole, Nigel; Brown, Anna

    2014-01-01

    We report a Monte Carlo study examining the effects of two strategies for handling measurement non-invariance – modeling and ignoring non-invariant items – on structural regression coefficients between latent variables measured with item response theory models for categorical indicators. These strategies were examined across four levels and three types of non-invariance – non-invariant loadings, non-invariant thresholds, and combined non-invariance on loadings and thresholds – in simple, partial, mediated and moderated regression models where the non-invariant latent variable occupied predictor, mediator, and criterion positions in the structural regression models. When non-invariance is ignored in the latent predictor, the focal group regression parameters are biased in the opposite direction to the difference in loadings and thresholds relative to the referent group (i.e., lower loadings and thresholds for the focal group lead to overestimated regression parameters). With criterion non-invariance, the focal group regression parameters are biased in the same direction as the difference in loadings and thresholds relative to the referent group. While unacceptable levels of parameter bias were confined to the focal group, bias occurred at considerably lower levels of ignored non-invariance than was previously recognized in referent and focal groups. PMID:25278911

  13. Virtual Levels and Role Models: N-Level Structural Equations Model of Reciprocal Ratings Data.

    PubMed

    Mehta, Paras D

    2018-01-01

    A general latent variable modeling framework called n-Level Structural Equations Modeling (NL-SEM) for dependent data-structures is introduced. NL-SEM is applicable to a wide range of complex multilevel data-structures (e.g., cross-classified, switching membership, etc.). Reciprocal dyadic ratings obtained in round-robin design involve complex set of dependencies that cannot be modeled within Multilevel Modeling (MLM) or Structural Equations Modeling (SEM) frameworks. The Social Relations Model (SRM) for round robin data is used as an example to illustrate key aspects of the NL-SEM framework. NL-SEM introduces novel constructs such as 'virtual levels' that allows a natural specification of latent variable SRMs. An empirical application of an explanatory SRM for personality using xxM, a software package implementing NL-SEM is presented. Results show that person perceptions are an integral aspect of personality. Methodological implications of NL-SEM for the analyses of an emerging class of contextual- and relational-SEMs are discussed.

  14. A multilevel model for comorbid outcomes: obesity and diabetes in the US.

    PubMed

    Congdon, Peter

    2010-02-01

    Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk.

  15. Latent mnemonic strengths are latent: a comment on Mickes, Wixted, and Wais (2007).

    PubMed

    Rouder, Jeffrey N; Pratte, Michael S; Morey, Richard D

    2010-06-01

    Mickes, Wixted, and Wais (2007) proposed a simple test of latent strength variability in recognition memory. They asked participants to rate their confidence using either a 20-point or a 99-point strength scale and plotted distributions of the resulting ratings. They found 25% more variability in ratings for studied than for new items, which they interpreted as providing evidence that latent mnemonic strength distributions are 25% more variable for studied than for new items. We show here that this conclusion is critically dependent on assumptions--so much so that these assumptions determine the conclusions. In fact, opposite conclusions, such that study does not affect the variability of latent strength, may be reached by making different but equally plausible assumptions. Because all measurements of mnemonic strength variability are critically dependent on untestable assumptions, all are arbitrary. Hence, there is no principled method for assessing the relative variability of latent mnemonic strength distributions.

  16. CORRECTING FOR MEASUREMENT ERROR IN LATENT VARIABLES USED AS PREDICTORS*

    PubMed Central

    Schofield, Lynne Steuerle

    2015-01-01

    This paper represents a methodological-substantive synergy. A new model, the Mixed Effects Structural Equations (MESE) model which combines structural equations modeling and item response theory is introduced to attend to measurement error bias when using several latent variables as predictors in generalized linear models. The paper investigates racial and gender disparities in STEM retention in higher education. Using the MESE model with 1997 National Longitudinal Survey of Youth data, I find prior mathematics proficiency and personality have been previously underestimated in the STEM retention literature. Pre-college mathematics proficiency and personality explain large portions of the racial and gender gaps. The findings have implications for those who design interventions aimed at increasing the rates of STEM persistence among women and under-represented minorities. PMID:26977218

  17. Modeling Psychological Attributes in Psychology – An Epistemological Discussion: Network Analysis vs. Latent Variables

    PubMed Central

    Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc

    2017-01-01

    Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780

  18. Distinguishing State Variability From Trait Change in Longitudinal Data: The Role of Measurement (Non)Invariance in Latent State-Trait Analyses

    PubMed Central

    Geiser, Christian; Keller, Brian T.; Lockhart, Ginger; Eid, Michael; Cole, David A.; Koch, Tobias

    2014-01-01

    Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present paper, we contrast LST and LGC models from the perspective of measurement invariance (MI) testing. We show that establishing a pure state-variability process requires (a) the inclusion of a mean structure and (b) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with non-invariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion-specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided. PMID:24652650

  19. Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.

    PubMed

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang

    2018-03-12

    Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.

  20. A Latent Variable Approach to the Simple View of Reading

    ERIC Educational Resources Information Center

    Kershaw, Sarah; Schatschneider, Chris

    2012-01-01

    The present study utilized a latent variable modeling approach to examine the Simple View of Reading in a sample of students from 3rd, 7th, and 10th grades (N = 215, 188, and 180, respectively). Latent interaction modeling and other latent variable models were employed to investigate (a) the functional form of the relationship between decoding and…

  1. Metric and structural equivalence of core cognitive abilities measured with the Wechsler Adult Intelligence Scale-III in the United States and Australia.

    PubMed

    Bowden, Stephen C; Lissner, Dianne; McCarthy, Kerri A L; Weiss, Lawrence G; Holdnack, James A

    2007-10-01

    Equivalence of the psychological model underlying Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) scores obtained in the United States and Australia was examined in this study. Examination of metric invariance involves testing the hypothesis that all components of the measurement model relating observed scores to latent variables are numerically equal in different samples. The assumption of metric invariance is necessary for interpretation of scores derived from research studies that seek to generalize patterns of convergent and divergent validity and patterns of deficit or disability. An Australian community volunteer sample was compared to the US standardization data. A pattern of strict metric invariance was observed across samples. In addition, when the effects of different demographic characteristics of the US and Australian samples were included, structural parameters reflecting values of the latent cognitive variables were found not to differ. These results provide important evidence for the equivalence of measurement of core cognitive abilities with the WAIS-III and suggest that latent cognitive abilities in the US and Australia do not differ.

  2. Latent variable model for suicide risk in relation to social capital and socio-economic status.

    PubMed

    Congdon, Peter

    2012-08-01

    There is little evidence on the association between suicide outcomes (ideation, attempts, self-harm) and social capital. This paper investigates such associations using a structural equation model based on health survey data, and allowing for both individual and contextual risk factors. Social capital and other major risk factors for suicide, namely socioeconomic status and social isolation, are modelled as latent variables that are proxied (or measured) by observed indicators or question responses for survey subjects. These latent scales predict suicide risk in the structural component of the model. Also relevant to explaining suicide risk are contextual variables, such as area deprivation and region of residence, as well as the subject's demographic status. The analysis is based on the 2007 Adult Psychiatric Morbidity Survey and includes 7,403 English subjects. A Bayesian modelling strategy is used. Models with and without social capital as a predictor of suicide risk are applied. A benefit to statistical fit is demonstrated when social capital is added as a predictor. Social capital varies significantly by geographic context variables (neighbourhood deprivation, region), and this impacts on the direct effects of these contextual variables on suicide risk. In particular, area deprivation is not confirmed as a distinct significant influence. The model develops a suicidality risk score incorporating social capital, and the success of this risk score in predicting actual suicide events is demonstrated. Social capital as reflected in neighbourhood perceptions is a significant factor affecting risks of different types of self-harm and may mediate the effects of other contextual variables such as area deprivation.

  3. Bayesian inference of uncertainties in precipitation-streamflow modeling in a snow affected catchment

    NASA Astrophysics Data System (ADS)

    Koskela, J. J.; Croke, B. W. F.; Koivusalo, H.; Jakeman, A. J.; Kokkonen, T.

    2012-11-01

    Bayesian inference is used to study the effect of precipitation and model structural uncertainty on estimates of model parameters and confidence limits of predictive variables in a conceptual rainfall-runoff model in the snow-fed Rudbäck catchment (142 ha) in southern Finland. The IHACRES model is coupled with a simple degree day model to account for snow accumulation and melt. The posterior probability distribution of the model parameters is sampled by using the Differential Evolution Adaptive Metropolis (DREAM(ZS)) algorithm and the generalized likelihood function. Precipitation uncertainty is taken into account by introducing additional latent variables that were used as multipliers for individual storm events. Results suggest that occasional snow water equivalent (SWE) observations together with daily streamflow observations do not contain enough information to simultaneously identify model parameters, precipitation uncertainty and model structural uncertainty in the Rudbäck catchment. The addition of an autoregressive component to account for model structure error and latent variables having uniform priors to account for input uncertainty lead to dubious posterior distributions of model parameters. Thus our hypothesis that informative priors for latent variables could be replaced by additional SWE data could not be confirmed. The model was found to work adequately in 1-day-ahead simulation mode, but the results were poor in the simulation batch mode. This was caused by the interaction of parameters that were used to describe different sources of uncertainty. The findings may have lessons for other cases where parameterizations are similarly high in relation to available prior information.

  4. Medical University admission test: a confirmatory factor analysis of the results.

    PubMed

    Luschin-Ebengreuth, Marion; Dimai, Hans P; Ithaler, Daniel; Neges, Heide M; Reibnegger, Gilbert

    2016-05-01

    The Graz Admission Test has been applied since the academic year 2006/2007. The validity of the Test was demonstrated by a significant improvement of study success and a significant reduction of dropout rate. The purpose of this study was a detailed analysis of the internal correlation structure of the various components of the Graz Admission Test. In particular, the question investigated was whether or not the various test parts constitute a suitable construct which might be designated as "Basic Knowledge in Natural Science." This study is an observational investigation, analyzing the results of the Graz Admission Test for the study of human medicine and dentistry. A total of 4741 applicants were included in the analysis. Principal component factor analysis (PCFA) as well as techniques from structural equation modeling, specifically confirmatory factor analysis (CFA), were employed to detect potential underlying latent variables governing the behavior of the measured variables. PCFA showed good clustering of the science test parts, including also text comprehension. A putative latent variable "Basic Knowledge in Natural Science," investigated by CFA, was indeed shown to govern the response behavior of the applicants in biology, chemistry, physics, and mathematics as well as text comprehension. The analysis of the correlation structure of the various test parts confirmed that the science test parts together with text comprehension constitute a satisfactory instrument for measuring a latent construct variable "Basic Knowledge in Natural Science." The present results suggest the fundamental importance of basic science knowledge for results obtained in the framework of the admission process for medical universities.

  5. Latent Transition Analysis with a Mixture Item Response Theory Measurement Model

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian

    2010-01-01

    A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…

  6. Person Re-Identification via Distance Metric Learning With Latent Variables.

    PubMed

    Sun, Chong; Wang, Dong; Lu, Huchuan

    2017-01-01

    In this paper, we propose an effective person re-identification method with latent variables, which represents a pedestrian as the mixture of a holistic model and a number of flexible models. Three types of latent variables are introduced to model uncertain factors in the re-identification problem, including vertical misalignments, horizontal misalignments and leg posture variations. The distance between two pedestrians can be determined by minimizing a given distance function with respect to latent variables, and then be used to conduct the re-identification task. In addition, we develop a latent metric learning method for learning the effective metric matrix, which can be solved via an iterative manner: once latent information is specified, the metric matrix can be obtained based on some typical metric learning methods; with the computed metric matrix, the latent variables can be determined by searching the state space exhaustively. Finally, extensive experiments are conducted on seven databases to evaluate the proposed method. The experimental results demonstrate that our method achieves better performance than other competing algorithms.

  7. Families as Natural Experiments: A Procedure for Estimating the Potentially Biasing Influence of Families on Relationships Between Variables.

    ERIC Educational Resources Information Center

    Teachman, Jay D.

    1995-01-01

    Argues that data on siblings provide a way to account for the impact of unmeasured, omitted variables on relationships of interest because families form a sort of natural experiment, with similar experiences and common genetic heritage. Proposes a latent-variable structural equation approach to the problem, which provides estimates of both within-…

  8. Representing Heterogeneity in Structural Relationships Among Multiple Choice Variables Using a Latent Segmentation Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garikapati, Venu; Astroza, Sebastian; Pendyala, Ram M.

    Travel model systems often adopt a single decision structure that links several activity-travel choices together. The single decision structure is then used to predict activity-travel choices, with those downstream in the decision-making chain influenced by those upstream in the sequence. The adoption of a singular sequential causal structure to depict relationships among activity-travel choices in travel demand model systems ignores the possibility that some choices are made jointly as a bundle as well as the possible presence of structural heterogeneity in the population with respect to decision-making processes. As different segments in the population may adopt and follow different causalmore » decision-making mechanisms when making selected choices jointly, it would be of value to develop simultaneous equations model systems relating multiple endogenous choice variables that are able to identify population subgroups following alternative causal decision structures. Because the segments are not known a priori, they are considered latent and determined endogenously within a joint modeling framework proposed in this paper. The methodology is applied to a national mobility survey data set to identify population segments that follow different causal structures relating residential location choice, vehicle ownership, and car-share and mobility service usage. It is found that the model revealing three distinct latent segments best describes the data, confirming the efficacy of the modeling approach and the existence of structural heterogeneity in decision-making in the population. Future versions of activity-travel model systems should strive to incorporate such structural heterogeneity to better reflect varying decision processes across population subgroups.« less

  9. Validity test and its consistency in the construction of patient loyalty model

    NASA Astrophysics Data System (ADS)

    Yanuar, Ferra

    2016-04-01

    The main objective of this present study is to demonstrate the estimation of validity values and its consistency based on structural equation model. The method of estimation was then implemented to an empirical data in case of the construction the patient loyalty model. In the hypothesis model, service quality, patient satisfaction and patient loyalty were determined simultaneously, each factor were measured by any indicator variables. The respondents involved in this study were the patients who ever got healthcare at Puskesmas in Padang, West Sumatera. All 394 respondents who had complete information were included in the analysis. This study found that each construct; service quality, patient satisfaction and patient loyalty were valid. It means that all hypothesized indicator variables were significant to measure their corresponding latent variable. Service quality is the most measured by tangible, patient satisfaction is the most mesured by satisfied on service and patient loyalty is the most measured by good service quality. Meanwhile in structural equation, this study found that patient loyalty was affected by patient satisfaction positively and directly. Service quality affected patient loyalty indirectly with patient satisfaction as mediator variable between both latent variables. Both structural equations were also valid. This study also proved that validity values which obtained here were also consistence based on simulation study using bootstrap approach.

  10. Illustration of Step-Wise Latent Class Modeling With Covariates and Taxometric Analysis in Research Probing Children's Mental Models in Learning Sciences

    PubMed Central

    Stamovlasis, Dimitrios; Papageorgiou, George; Tsitsipis, Georgios; Tsikalas, Themistoklis; Vaiopoulou, Julie

    2018-01-01

    This paper illustrates two psychometric methods, latent class analysis (LCA) and taxometric analysis (TA) using empirical data from research probing children's mental representation in science learning. LCA is used to obtain a typology based on observed variables and to further investigate how the encountered classes might be related to external variables, where the effectiveness of classification process and the unbiased estimations of parameters become the main concern. In the step-wise LCA, the class membership is assigned and subsequently its relationship with covariates is established. This leading-edge modeling approach suffers from severe downward-biased estimations. The illustration of LCA is focused on alternative bias correction approaches and demonstrates the effect of modal and proportional class-membership assignment along with BCH and ML correction procedures. The illustration of LCA is presented with three covariates, which are psychometric variables operationalizing formal reasoning, divergent thinking and field dependence-independence, respectively. Moreover, taxometric analysis, a method designed to detect the type of the latent structural model, categorical or dimensional, is introduced, along with the relevant basic concepts and tools. TA was applied complementarily in the same data sets to answer the fundamental hypothesis about children's naïve knowledge on the matters under study and it comprises an additional asset in building theory which is fundamental for educational practices. Taxometric analysis provided results that were ambiguous as far as the type of the latent structure. This finding initiates further discussion and sets a problematization within this framework rethinking fundamental assumptions and epistemological issues. PMID:29713300

  11. A comparison of latent class, K-means, and K-median methods for clustering dichotomous data.

    PubMed

    Brusco, Michael J; Shireman, Emilie; Steinley, Douglas

    2017-09-01

    The problem of partitioning a collection of objects based on their measurements on a set of dichotomous variables is a well-established problem in psychological research, with applications including clinical diagnosis, educational testing, cognitive categorization, and choice analysis. Latent class analysis and K-means clustering are popular methods for partitioning objects based on dichotomous measures in the psychological literature. The K-median clustering method has recently been touted as a potentially useful tool for psychological data and might be preferable to its close neighbor, K-means, when the variable measures are dichotomous. We conducted simulation-based comparisons of the latent class, K-means, and K-median approaches for partitioning dichotomous data. Although all 3 methods proved capable of recovering cluster structure, K-median clustering yielded the best average performance, followed closely by latent class analysis. We also report results for the 3 methods within the context of an application to transitive reasoning data, in which it was found that the 3 approaches can exhibit profound differences when applied to real data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Multivariate Analysis of Genotype-Phenotype Association.

    PubMed

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.

  13. Adolescent Substance Use, Sleep, and Academic Achievement: Evidence of Harm Due to Caffeine

    ERIC Educational Resources Information Center

    James, Jack E.; Kristjansson, Alfgeir Logi; Sigfusdottir, Inga Dora

    2011-01-01

    Using academic achievement as the key outcome variable, 7377 Icelandic adolescents were surveyed for cigarette smoking, alcohol use, daytime sleepiness, caffeine use, and potential confounders. Structural equation modeling (SEM) was used to examine direct and indirect effects of measured and latent variables in two models: the first with caffeine…

  14. Estimating Causal Effects with Ancestral Graph Markov Models

    PubMed Central

    Malinsky, Daniel; Spirtes, Peter

    2017-01-01

    We present an algorithm for estimating bounds on causal effects from observational data which combines graphical model search with simple linear regression. We assume that the underlying system can be represented by a linear structural equation model with no feedback, and we allow for the possibility of latent variables. Under assumptions standard in the causal search literature, we use conditional independence constraints to search for an equivalence class of ancestral graphs. Then, for each model in the equivalence class, we perform the appropriate regression (using causal structure information to determine which covariates to include in the regression) to estimate a set of possible causal effects. Our approach is based on the “IDA” procedure of Maathuis et al. (2009), which assumes that all relevant variables have been measured (i.e., no unmeasured confounders). We generalize their work by relaxing this assumption, which is often violated in applied contexts. We validate the performance of our algorithm on simulated data and demonstrate improved precision over IDA when latent variables are present. PMID:28217244

  15. Structural Equation Model Trees

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2015-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789

  16. A Framework for Multifaceted Evaluation of Student Models

    ERIC Educational Resources Information Center

    Huang, Yun; González-Brenes, José P.; Kumar, Rohit; Brusilovsky, Peter

    2015-01-01

    Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained…

  17. The Latent Variable Approach as Applied to Transitive Reasoning

    ERIC Educational Resources Information Center

    Bouwmeester, Samantha; Vermunt, Jeroen K.; Sijtsma, Klaas

    2012-01-01

    We discuss the limitations of hypothesis testing using (quasi-) experiments in the study of cognitive development and suggest latent variable modeling as a viable alternative to experimentation. Latent variable models allow testing a theory as a whole, incorporating individual differences with respect to developmental processes or abilities in the…

  18. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

    ERIC Educational Resources Information Center

    Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini

    2012-01-01

    The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…

  19. A Bayesian Semiparametric Latent Variable Model for Mixed Responses

    ERIC Educational Resources Information Center

    Fahrmeir, Ludwig; Raach, Alexander

    2007-01-01

    In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…

  20. Disgust proneness predicts obsessive-compulsive disorder symptom severity in a clinical sample of youth: Distinctions from negative affect.

    PubMed

    Olatunji, Bunmi O; Ebesutani, Chad; Kim, Jingu; Riemann, Bradley C; Jacobi, David M

    2017-04-15

    Although studies have linked disgust proneness to the etiology and maintenance of obsessive-compulsive disorder (OCD) in adults, there remains a paucity of research examining the specificity of this association among youth. The present study employed structural equation modeling to examine the association between disgust proneness, negative affect, and OCD symptom severity in a clinical sample of youth admitted to a residential treatment facility (N =471). Results indicate that disgust proneness and negative affect latent factors independently predicted an OCD symptom severity latent factor. However, when both variables were modeled as predictors simultaneously, latent disgust proneness remained significantly associated with OCD symptom severity, whereas the association between latent negative affect and OCD symptom severity became nonsignificant. Tests of mediation converged in support of disgust proneness as a significant intervening variable between negative affect and OCD symptom severity. Subsequent analysis showed that the path from disgust proneness to OCD symptom severity in the structural model was significantly stronger among those without a primary diagnosis of OCD compared to those with a primary diagnosis of OCD. Given the cross-sectional design, the causal inferences that can be made are limited. The present study is also limited by the exclusive reliance on self-report measures. Disgust proneness may play a uniquely important role in OCD among youth. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Accounting for measurement error in human life history trade-offs using structural equation modeling.

    PubMed

    Helle, Samuli

    2018-03-01

    Revealing causal effects from correlative data is very challenging and a contemporary problem in human life history research owing to the lack of experimental approach. Problems with causal inference arising from measurement error in independent variables, whether related either to inaccurate measurement technique or validity of measurements, seem not well-known in this field. The aim of this study is to show how structural equation modeling (SEM) with latent variables can be applied to account for measurement error in independent variables when the researcher has recorded several indicators of a hypothesized latent construct. As a simple example of this approach, measurement error in lifetime allocation of resources to reproduction in Finnish preindustrial women is modelled in the context of the survival cost of reproduction. In humans, lifetime energetic resources allocated in reproduction are almost impossible to quantify with precision and, thus, typically used measures of lifetime reproductive effort (e.g., lifetime reproductive success and parity) are likely to be plagued by measurement error. These results are contrasted with those obtained from a traditional regression approach where the single best proxy of lifetime reproductive effort available in the data is used for inference. As expected, the inability to account for measurement error in women's lifetime reproductive effort resulted in the underestimation of its underlying effect size on post-reproductive survival. This article emphasizes the advantages that the SEM framework can provide in handling measurement error via multiple-indicator latent variables in human life history studies. © 2017 Wiley Periodicals, Inc.

  2. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  3. Using Mixed-Effects Structural Equation Models to Study Student Academic Development.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1992-01-01

    A study at the University of Tennessee Knoxville used mixed-effect structural equation models incorporating latent variables as an alternative to conventional methods of analyzing college students' (n=722) first-year-to-senior academic gains. Results indicate, contrary to previous analysis, that coursework and student characteristics interact to…

  4. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  5. Child involvement, alliance, and therapist flexibility: process variables in cognitive-behavioural therapy for anxiety disorders in childhood.

    PubMed

    Hudson, Jennifer L; Kendall, Philip C; Chu, Brian C; Gosch, Elizabeth; Martin, Erin; Taylor, Alan; Knight, Ashleigh

    2014-01-01

    This study examined the relations between treatment process variables and child anxiety outcomes. Independent raters watched/listened to taped therapy sessions of 151 anxiety-disordered (6-14 yr-old; M = 10.71) children (43% boys) and assessed process variables (child alliance, therapist alliance, child involvement, therapist flexibility and therapist functionality) within a manual-based cognitive-behavioural treatment. Latent growth modelling examined three latent variables (intercept, slope, and quadratic) for each process variable. Child age, gender, family income and ethnicity were examined as potential antecedents. Outcome was analyzed using factorially derived clinician, mother, father, child and teacher scores from questionnaire and structured diagnostic interviews at pretreatment, posttreatment and 12-month follow-up. Latent growth models demonstrated a concave quadratic curve for child involvement and therapist flexibility over time. A predominantly linear, downward slope was observed for alliance, and functional flexibility remained consistent over time. Increased alliance, child involvement and therapist flexibility showed some albeit inconsistent, associations with positive treatment outcome. Findings support the notion that maintaining the initial high level of alliance or involvement is important for clinical improvement. There is some support that progressively increasing alliance/involvement also positively impacts on treatment outcome. These findings were not consistent across outcome measurement points or reporters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A Multilevel Model for Comorbid Outcomes: Obesity and Diabetes in the US

    PubMed Central

    Congdon, Peter

    2010-01-01

    Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk. PMID:20616977

  7. Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan

    2005-01-01

    In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…

  8. A Maximum Likelihood Approach for Multisample Nonlinear Structural Equation Models with Missing Continuous and Dichotomous Data

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    Structural equation models are widely appreciated in social-psychological research and other behavioral research to model relations between latent constructs and manifest variables and to control for measurement error. Most applications of SEMs are based on fully observed continuous normal data and models with a linear structural equation.…

  9. Latent variable models are network models.

    PubMed

    Molenaar, Peter C M

    2010-06-01

    Cramer et al. present an original and interesting network perspective on comorbidity and contrast this perspective with a more traditional interpretation of comorbidity in terms of latent variable theory. My commentary focuses on the relationship between the two perspectives; that is, it aims to qualify the presumed contrast between interpretations in terms of networks and latent variables.

  10. Examining Parallelism of Sets of Psychometric Measures Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Patelis, Thanos; Marcoulides, George A.

    2011-01-01

    A latent variable modeling approach that can be used to examine whether several psychometric tests are parallel is discussed. The method consists of sequentially testing the properties of parallel measures via a corresponding relaxation of parameter constraints in a saturated model or an appropriately constructed latent variable model. The…

  11. The Influence of Social Interaction and Physical Health on the Association Between Hearing and Depression With Age and Gender

    PubMed Central

    Seeto, Mark

    2017-01-01

    Recent epidemiological data suggest the relation between hearing difficulty and depression is more evident in younger and middle-aged populations than in older adults. There are also suggestions that the relation may be more evident in specific subgroups; that is, other factors may influence a relationship between hearing and depression in different subgroups. Using cross-sectional data from the UK Biobank on 134,357 community-dwelling people and structural equation modelling, this study examined the potential mediating influence of social isolation and unemployment and the confounding influence of physical illness and cardiovascular conditions on the relation between a latent hearing variable and both a latent depressive episodes variable and a latent depressive symptoms variable. The models were stratified by age (40s, 50s, and 60s) and gender and further controlled for physical illness and professional support in associations involving social isolation and unemployment. The latent hearing variable was primarily defined by reported hearing difficulty in noise. For all subgroups, poor hearing was significantly related to both more depressive episodes and more depressive symptoms. In all models, the direct and generally small association exceeded the indirect associations via physical health and social interaction. Significant (depressive episodes) and near significant (depressive symptoms) higher direct associations were estimated for males in their 40s and 50s than for males in their 60s. There was at each age-group no significant difference in estimated associations across gender. Irrespective of the temporal order of variables, findings suggest that audiological services should facilitate psychosocial counselling. PMID:28752806

  12. The Influence of Social Interaction and Physical Health on the Association Between Hearing and Depression With Age and Gender.

    PubMed

    Keidser, Gitte; Seeto, Mark

    2017-01-01

    Recent epidemiological data suggest the relation between hearing difficulty and depression is more evident in younger and middle-aged populations than in older adults. There are also suggestions that the relation may be more evident in specific subgroups; that is, other factors may influence a relationship between hearing and depression in different subgroups. Using cross-sectional data from the UK Biobank on 134,357 community-dwelling people and structural equation modelling, this study examined the potential mediating influence of social isolation and unemployment and the confounding influence of physical illness and cardiovascular conditions on the relation between a latent hearing variable and both a latent depressive episodes variable and a latent depressive symptoms variable. The models were stratified by age (40s, 50s, and 60s) and gender and further controlled for physical illness and professional support in associations involving social isolation and unemployment. The latent hearing variable was primarily defined by reported hearing difficulty in noise. For all subgroups, poor hearing was significantly related to both more depressive episodes and more depressive symptoms. In all models, the direct and generally small association exceeded the indirect associations via physical health and social interaction. Significant (depressive episodes) and near significant (depressive symptoms) higher direct associations were estimated for males in their 40s and 50s than for males in their 60s. There was at each age-group no significant difference in estimated associations across gender. Irrespective of the temporal order of variables, findings suggest that audiological services should facilitate psychosocial counselling.

  13. Refining the tobacco dependence phenotype using the Wisconsin Inventory of Smoking Dependence Motives (WISDM)

    PubMed Central

    Piper, Megan E.; Bolt, Daniel M.; Kim, Su-Young; Japuntich, Sandra J.; Smith, Stevens S.; Niederdeppe, Jeff; Cannon, Dale S.; Baker, Timothy B.

    2008-01-01

    The construct of tobacco dependence is important from both scientific and public health perspectives, but it is poorly understood. The current research integrates person-centered analyses (e.g., latent profile analysis) and variable-centered analyses (e.g., exploratory factor analysis) to understand better the latent structure of dependence and to guide distillation of the phenotype. Using data from four samples of smokers (including treatment and non-treatment samples), latent profiles were derived using the Wisconsin Inventory of Smoking Dependence Motives (WISDM) subscale scores. Across all four samples, results revealed a unique latent profile that had relative elevations on four dependence motive subscales (Automaticity, Craving, Loss of Control, and Tolerance). Variable-centered analyses supported the uniqueness of these four subscales both as measures of a common factor distinct from that underlying the other nine subscales, and as the strongest predictors of relapse, withdrawal and other dependence criteria. Conversely, the remaining nine motives carried little unique predictive validity regarding dependence. Applications of a factor mixture model further support the presence of a unique class of smokers in relation to a common factor underlying the four subscales. The results illustrate how person-centered analyses may be useful as a supplement to variable-centered analyses for uncovering variables that are necessary and/or sufficient predictors of disorder criteria, as they may uncover small segments of a population in which the variables are uniquely distributed. The results also suggest that severe dependence is associated with a pattern of smoking that is heavy, pervasive, automatic and relatively unresponsive to instrumental contingencies. PMID:19025223

  14. What Is Going on Inside the Arrows? Discovering the Hidden Springs in Causal Models

    PubMed Central

    Murray-Watters, Alexander; Glymour, Clark

    2016-01-01

    Using Gebharter's (2014) representation, we consider aspects of the problem of discovering the structure of unmeasured sub-mechanisms when the variables in those sub-mechanisms have not been measured. Exploiting an early insight of Sober's (1998), we provide a correct algorithm for identifying latent, endogenous structure—sub-mechanisms—for a restricted class of structures. The algorithm can be merged with other methods for discovering causal relations among unmeasured variables, and feedback relations between measured variables and unobserved causes can sometimes be learned. PMID:27313331

  15. Application of core-shell-structured CdTe@SiO2 quantum dots synthesized via a facile solution method for improving latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Han, Jiaxing; Lv, Caifeng; Wang, Qin; Zhang, Jun; Li, Qun; Bao, Liru; Li, Xin

    2012-10-01

    Fingerprint detection is important in criminal investigation. This paper reports a facile powder brushing technique for improving latent fingerprint detection using core-shell-structured CdTe@SiO2 quantum dots (QDs) as fluorescent labeling marks. Core-shell-structured CdTe@SiO2 QDs are prepared via a simple solution-based approach using NH2NH2·H2O as pH adjustor and stabilizer, and their application for improving latent fingerprint detection is explored. The obtained CdTe@SiO2 QDs show spherical shapes with well-defined core-shell structures encapsulating different amounts of QDs depending on the type of the pH adjustor and stabilizer. Moreover, the fluorescence of CdTe@SiO2 QDs is largely enhanced by surface modification of the SiO2 shell. The CdTe@SiO2 QDs overcome the oxidation problem of pure CdTe QDs in air, thus affording better variability with strong adhesive ability, better resolution, and bright emission colors for practical application in latent fingerprint detection. In comparison with the conventional fluorescence powders, silver powders, and others, the effectiveness of CdTe@SiO2 QD powders for detection of latent fingerprints present on a large variety of object surfaces is greatly improved. The synthesis method for CdTe@SiO2 QDs is simple, cheap, and easy for large-scale production, and thus offers many advantages in the practical application of fingerprint detection.

  16. Causal mediation analysis with a latent mediator.

    PubMed

    Albert, Jeffrey M; Geng, Cuiyu; Nelson, Suchitra

    2016-05-01

    Health researchers are often interested in assessing the direct effect of a treatment or exposure on an outcome variable, as well as its indirect (or mediation) effect through an intermediate variable (or mediator). For an outcome following a nonlinear model, the mediation formula may be used to estimate causally interpretable mediation effects. This method, like others, assumes that the mediator is observed. However, as is common in structural equations modeling, we may wish to consider a latent (unobserved) mediator. We follow a potential outcomes framework and assume a generalized structural equations model (GSEM). We provide maximum-likelihood estimation of GSEM parameters using an approximate Monte Carlo EM algorithm, coupled with a mediation formula approach to estimate natural direct and indirect effects. The method relies on an untestable sequential ignorability assumption; we assess robustness to this assumption by adapting a recently proposed method for sensitivity analysis. Simulation studies show good properties of the proposed estimators in plausible scenarios. Our method is applied to a study of the effect of mother education on occurrence of adolescent dental caries, in which we examine possible mediation through latent oral health behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Improving the Quality of Ability Estimates through Multidimensional Scoring and Incorporation of Ancillary Variables

    ERIC Educational Resources Information Center

    de la Torre, Jimmy

    2009-01-01

    For one reason or another, various sources of information, namely, ancillary variables and correlational structure of the latent abilities, which are usually available in most testing situations, are ignored in ability estimation. A general model that incorporates these sources of information is proposed in this article. The model has a general…

  18. Gene Variants Associated with Antisocial Behaviour: A Latent Variable Approach

    ERIC Educational Resources Information Center

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.

    2013-01-01

    Objective: The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods: Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a…

  19. The Least-Squares Estimation of Latent Trait Variables.

    ERIC Educational Resources Information Center

    Tatsuoka, Kikumi

    This paper presents a new method for estimating a given latent trait variable by the least-squares approach. The beta weights are obtained recursively with the help of Fourier series and expressed as functions of item parameters of response curves. The values of the latent trait variable estimated by this method and by maximum likelihood method…

  20. Exploration and confirmation of the latent variable structure of the Jefferson scale of empathy

    PubMed Central

    LaNoue, Marianna

    2014-01-01

    Objectives: To reaffirm the underlying components of the JSE by using exploratory factor analysis (EFA), and to confirm its latent variable structure by using confirmatory factor analysis (CFA). Methods Research participants included 2,612 medical students who entered Jefferson Medical College between 2002 and 2012. This sample was divided into two groups: Matriculants between 2002 and 2007 (n=1,380) and between 2008 and 2012 (n=1,232). Data for 2002-2007 matriculants were subjected to EFA (principal component factor extraction), and data for matriculants of 2008-2012 were used for CFA (structural equation modeling, and root mean square error for approximation). Results The EFA resulted in three factors: “perspective-taking,” “compassionate care” and “walking in patient’s shoes” replicating the 3-factor model reported in most of the previous studies. The CFA showed that the 3-factor model was an acceptable fit, thus confirming the latent variable structure emerged in the EFA. Corrected item-total score correlations for the total sample were all positive and statistically significant, ranging from 0.13 to 0.61 with a median of 0.44 (p<0.01). The item discrimination effect size indices (contrasting item mean scores for the top-third versus bottom-third JSE scorers) ranged from 0.50 to 1.4 indicating that the differences in item mean scores between top and bottom scorers on the JSE were of practical importance. Cronbach’s alpha coefficient of the JSE for the total sample was 0.80, ranging from 0.75 to 0.84 for matriculatnts of different years. Conclusions Findings provided further support for underlying constructs of the JSE, adding to its credibility. PMID:25341215

  1. Anxiety, Depression and Hopelessness in Adolescents: A Structural Equation Model

    PubMed Central

    Cunningham, Shaylyn; Gunn, Thelma; Alladin, Assen; Cawthorpe, David

    2008-01-01

    Objective This study tested a structural model, examining the relationship between a latent variable termed demoralization and measured variables (anxiety, depression and hopelessness) in a community sample of Canadian youth. Methods The combined sample consisted of data collected from four independent studies from 2001 to 2005. Nine hundred and seventy one (n=971) participants were high school students (grades 10–12) from three geographic locations: Calgary, Saskatchewan and Lethbridge. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory-Revised (BDI-II), Beck Hopelessness Scale (BHS), and demographic survey. Structural equation modeling was used for statistical analysis. Results The analysis revealed that the final model, including depression, anxiety and hopelessness and one latent variable demoralization, fit the data (chi-square value, X2 (2) = 7.25, p< .001, goodness of fit indices (CFI=0.99, NFI=0.98) and standardized error (0.05). Overall, the findings suggest that close relationships exist among depression, anxiety, hopelessness and demoralization that is stable across demographic variables. Further, the model explains the relationship between sub-clinical anxiety, depression and hopelessness. Conclusion These findings contribute to a theoretical framework, which has implications for educational and clinical intervention. The present findings will help guide further preventative research on examining demoralization as a precursor to sub-clinical anxiety and depression. PMID:18769644

  2. The Coach-Athlete Relationship Questionnaire (CART-Q): development and initial validation.

    PubMed

    Jowett, Sophia; Ntoumanis, Nikos

    2004-08-01

    The purpose of the present study was to develop and validate a self-report instrument that measures the nature of the coach-athlete relationship. Jowett et al.'s (Jowett & Meek, 2000; Jowett, in press) qualitative case studies and relevant literature were used to generate items for an instrument that measures affective, cognitive, and behavioral aspects of the coach-athlete relationship. Two studies were carried out in an attempt to assess content, predictive, and construct validity, as well as internal consistency, of the Coach-Athlete Relationship Questionnaire (CART-Q), using two independent British samples. Principal component analysis and confirmatory factor analysis were used to reduce the number of items, identify principal components, and confirm the latent structure of the CART-Q. Results supported the multidimensional nature of the coach-athlete relationship. The latent structure of the CART-Q was underlined by the latent variables of coaches' and athletes' Closeness (emotions), Commitment (cognitions), and Complementarity (behaviors).

  3. A Multilevel CFA-MTMM Model for Nested Structurally Different Methods

    ERIC Educational Resources Information Center

    Koch, Tobias; Schultze, Martin; Burrus, Jeremy; Roberts, Richard D.; Eid, Michael

    2015-01-01

    The numerous advantages of structural equation modeling (SEM) for the analysis of multitrait-multimethod (MTMM) data are well known. MTMM-SEMs allow researchers to explicitly model the measurement error, to examine the true convergent and discriminant validity of the given measures, and to relate external variables to the latent trait as well as…

  4. Applying Longitudinal Mean and Covariance Structures (LMACS) Analysis to Assess Construct Stability Over Two Time Points: An Example Using Psychological Entitlement

    ERIC Educational Resources Information Center

    Bashkov, Bozhidar M.; Finney, Sara J.

    2013-01-01

    Traditional methods of assessing construct stability are reviewed and longitudinal mean and covariance structures (LMACS) analysis, a modern approach, is didactically illustrated using psychological entitlement data. Measurement invariance and latent variable stability results are interpreted, emphasizing substantive implications for educators and…

  5. Gene variants associated with antisocial behaviour: A latent variable approach

    PubMed Central

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.

    2013-01-01

    Objective The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a 15-year follow-up of a randomized trial of a prenatal and infancy nurse-home visitation program in Elmira, New York. We then investigated, via a novel latent variable approach, 450 informative genetic polymorphisms in 71 genes previously associated with antisocial behaviour, drug use, affiliative behaviours, and stress response in 241 consenting individuals for whom DNA was available. Haplotype and Pathway analyses were also performed. Results Eight single-nucleotide polymorphisms (SNPs) from 8 genes contributed to the latent genetic variable that in turn accounted for 16.0% of the variance within the latent antisocial phenotype. The number of risk alleles was linearly related to the latent antisocial variable scores. Haplotypes that included the putative risk alleles for all 8 genes were also associated with higher latent antisocial variable scores. In addition, 33 SNPs from 63 of the remaining genes were also significant when added to the final model. Many of these genes interact on a molecular level, forming molecular networks. The results support a role for genes related to dopamine, norepinephrine, serotonin, glutamate, opioid, and cholinergic signaling as well as stress response pathways in mediating susceptibility to antisocial behaviour. Conclusions This preliminary study supports use of relevant behavioural indicators and latent variable approaches to study the potential “co-action” of gene variants associated with antisocial behaviour. It also underscores the cumulative relevance of common genetic variants for understanding the etiology of complex behaviour. If replicated in future studies, this approach may allow the identification of a ‘shared’ variance across genetic risk alleles associated with complex neuropsychiatric dimensional phenotypes using relatively small numbers of well-characterized research participants. PMID:23822756

  6. Phenotypic factor analysis of psychopathology reveals a new body-related transdiagnostic factor.

    PubMed

    Pezzoli, Patrizia; Antfolk, Jan; Santtila, Pekka

    2017-01-01

    Comorbidity challenges the notion of mental disorders as discrete categories. An increasing body of literature shows that symptoms cut across traditional diagnostic boundaries and interact in shaping the latent structure of psychopathology. Using exploratory and confirmatory factor analysis, we reveal the latent sources of covariation among nine measures of psychopathological functioning in a population-based sample of 13024 Finnish twins and their siblings. By implementing unidimensional, multidimensional, second-order, and bifactor models, we illustrate the relationships between observed variables, specific, and general latent factors. We also provide the first investigation to date of measurement invariance of the bifactor model of psychopathology across gender and age groups. Our main result is the identification of a distinct "Body" factor, alongside the previously identified Internalizing and Externalizing factors. We also report relevant cross-disorder associations, especially between body-related psychopathology and trait anger, as well as substantial sex and age differences in observed and latent means. The findings expand the meta-structure of psychopathology, with implications for empirical and clinical practice, and demonstrate shared mechanisms underlying attitudes towards nutrition, self-image, sexuality and anger, with gender- and age-specific features.

  7. A Comparison of Approaches for the Analysis of Interaction Effects between Latent Variables Using Partial Least Squares Path Modeling

    ERIC Educational Resources Information Center

    Henseler, Jorg; Chin, Wynne W.

    2010-01-01

    In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…

  8. Accuracy of latent-variable estimation in Bayesian semi-supervised learning.

    PubMed

    Yamazaki, Keisuke

    2015-09-01

    Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Development and Application of Methods for Estimating Operating Characteristics of Discrete Test Item Responses without Assuming any Mathematical Form.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    In latent trait theory the latent space, or space of the hypothetical construct, is usually represented by some unidimensional or multi-dimensional continuum of real numbers. Like the latent space, the item response can either be treated as a discrete variable or as a continuous variable. Latent trait theory relates the item response to the latent…

  10. The Double ABCX Model of Family Stress and Adaptation: An Empirical Test by Analysis of Structural Equations with Latent Variables.

    ERIC Educational Resources Information Center

    Lavee, Yoav; And Others

    1985-01-01

    Examined relationships among major variables of the Double ABCX model of family stress and adaptation using data on Army families' adaptation to the crisis of relocation overseas. Results support the notion of pile-up of demands. Family system resources and social support are both found to facilitate adaptation. (Author/BL)

  11. Factors influencing readiness to deploy in disaster response: findings from a cross-sectional survey of the Department of Veterans Affairs Disaster Emergency Medical Personnel System

    PubMed Central

    2014-01-01

    Background The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. Methods This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. Results DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. Conclusions These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross. PMID:25038628

  12. Factors influencing readiness to deploy in disaster response: findings from a cross-sectional survey of the Department of Veterans Affairs Disaster Emergency Medical Personnel System.

    PubMed

    Zagelbaum, Nicole K; Heslin, Kevin C; Stein, Judith A; Ruzek, Josef; Smith, Robert E; Nyugen, Tam; Dobalian, Aram

    2014-07-19

    The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross.

  13. Stability of Language in Childhood: A Multi-Age, -Domain, -Measure, and -Source Study

    PubMed Central

    Bornstein, Marc H.; Putnick, Diane L.

    2011-01-01

    The stability of language across childhood is traditionally assessed by exploring longitudinal relations between individual language measures. However, language encompasses many domains and varies with different sources (child speech, parental report, experimenter assessment). This study evaluated individual variation in multiple age-appropriate measures of child language derived from multiple sources and stability between their latent variables in 192 young children across more than 2 years. Structural equation modeling demonstrated the loading of multiple measures of child language from different sources on single latent variables of language at ages 20 and 48 months. A large stability coefficient (r = .84) obtained between the 2 language latent variables. This stability obtained even when accounting for family socioeconomic status, maternal verbal intelligence, education, speech, and tendency to respond in a socially desirable fashion, and child social competence. Stability was also equivalent for children in diverse childcare situations and for girls and boys. Across age, from the beginning of language acquisition to just before school entry, aggregating multiple age-appropriate methods and measures at each age and multiple reporters, children show strong stability of individual differences in general language development. PMID:22004343

  14. Estimating, Testing, and Comparing Specific Effects in Structural Equation Models: The Phantom Model Approach

    ERIC Educational Resources Information Center

    Macho, Siegfried; Ledermann, Thomas

    2011-01-01

    The phantom model approach for estimating, testing, and comparing specific effects within structural equation models (SEMs) is presented. The rationale underlying this novel method consists in representing the specific effect to be assessed as a total effect within a separate latent variable model, the phantom model that is added to the main…

  15. Structural Equation Modeling of Group Differences in CES-D Ratings of Native Hawaiian and Non-Hawaiian High School Students.

    ERIC Educational Resources Information Center

    McArdle, John J.; Johnson, Ronald C.; Hishinuma, Earl S.; Miyamoto, Robin H.; Andrade, Naleen N.

    2001-01-01

    Analyzes differences in self-reported Center for Epidemiologic Studies Depression inventory results among ethnic Hawaiian and non-Hawaiian high school students, using different forms of latent variable structural equation models. Finds a high degree of invariance between students on depression. Discusses issues about common features and…

  16. Implementing Restricted Maximum Likelihood Estimation in Structural Equation Models

    ERIC Educational Resources Information Center

    Cheung, Mike W.-L.

    2013-01-01

    Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects…

  17. Testing Mediation in Structural Equation Modeling: The Effectiveness of the Test of Joint Significance

    ERIC Educational Resources Information Center

    Leth-Steensen, Craig; Gallitto, Elena

    2016-01-01

    A large number of approaches have been proposed for estimating and testing the significance of indirect effects in mediation models. In this study, four sets of Monte Carlo simulations involving full latent variable structural equation models were run in order to contrast the effectiveness of the currently popular bias-corrected bootstrapping…

  18. Integrative Lifecourse and Genetic Analysis of Military Working Dogs

    DTIC Science & Technology

    2015-12-01

    done as the samples are collected in order to avoid experimental variability and batch effects . Detailed description and discussion of this task...associated loss of power to detect all associations but those of large effect sizes) and latent variables (e.g., population structure – addressed in...processes associated with tissue development and maintenance are thus grouped with external environmental effects . This in turn suggests how those

  19. Introduction to Latent Class Analysis with Applications

    ERIC Educational Resources Information Center

    Porcu, Mariano; Giambona, Francesca

    2017-01-01

    Latent class analysis (LCA) is a statistical method used to group individuals (cases, units) into classes (categories) of an unobserved (latent) variable on the basis of the responses made on a set of nominal, ordinal, or continuous observed variables. In this article, we introduce LCA in order to demonstrate its usefulness to early adolescence…

  20. Mixture Distribution Latent State-Trait Analysis: Basic Ideas and Applications

    ERIC Educational Resources Information Center

    Courvoisier, Delphine S.; Eid, Michael; Nussbeck, Fridtjof W.

    2007-01-01

    Extensions of latent state-trait models for continuous observed variables to mixture latent state-trait models with and without covariates of change are presented that can separate individuals differing in their occasion-specific variability. An empirical application to the repeated measurement of mood states (N = 501) revealed that a model with 2…

  1. MULTIVARIATE LINEAR MIXED MODELS FOR MULTIPLE OUTCOMES. (R824757)

    EPA Science Inventory

    We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of ...

  2. Matching consumer feeding behaviours and resource traits: a fourth-corner problem in food-web theory.

    PubMed

    Monteiro, Angelo Barbosa; Faria, Lucas Del Bianco

    2018-06-06

    For decades, food web theory has proposed phenomenological models for the underlying structure of ecological networks. Generally, these models rely on latent niche variables that match the feeding behaviour of consumers with their resource traits. In this paper, we used a comprehensive database to evaluate different hypotheses on the best dependency structure of trait-matching patterns between consumers and resource traits. We found that consumer feeding behaviours had complex interactions with resource traits; however, few dimensions (i.e. latent variables) could reproduce the trait-matching patterns. We discuss our findings in the light of three food web models designed to reproduce the multidimensionality of food web data; additionally, we discuss how using species traits clarify food webs beyond species pairwise interactions and enable studies to infer ecological generality at larger scales, despite potential taxonomic differences, variations in ecological conditions and differences in species abundance between communities. © 2018 John Wiley & Sons Ltd/CNRS.

  3. Stability of Core Language Skill Stability of Core Language Skill from Early Childhood to Adolescence: A Latent Variable Approach

    PubMed Central

    Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.; Suwalsky, Joan T. D.

    2014-01-01

    This four-wave prospective longitudinal study evaluated stability of language in 324 children from early childhood to adolescence. Structural equation modeling supported loadings of multiple age-appropriate multi-source measures of child language on single-factor core language skills at 20 months and 4, 10, and 14 years. Large stability coefficients (standardized indirect effect = .46) were obtained between language latent variables from early childhood to adolescence and accounting for child nonverbal intelligence and social competence and maternal verbal intelligence, education, speech, and social desirability. Stability coefficients were similar for girls and boys. Stability of core language skill was stronger from 4 to 10 to 14 years than from 20 months to 4 years, so early intervention to improve lagging language is recommended. PMID:25165797

  4. Long-Term Stability of Core Language Skill in Children with Contrasting Language Skills

    PubMed Central

    Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.

    2016-01-01

    This four-wave longitudinal study evaluated stability of core language skill in 421 European American and African American children, half of whom were identified as low (n = 201) and half of whom were average-to-high (n = 220) in later language skill. Structural equation modeling supported loadings of multivariate age-appropriate multisource measures of child language on single latent variables of core language skill at 15 and 25 months and 5 and 11 years. Significant stability coefficients were obtained between language latent variables for children of low and average-to-high language skill, even accounting for child positive social interaction and nonverbal intelligence, maternal education and language, and family home environment. Prospects for children with different language skills and intervention implications are discussed. PMID:26998572

  5. Mixture Factor Analysis for Approximating a Nonnormally Distributed Continuous Latent Factor with Continuous and Dichotomous Observed Variables

    ERIC Educational Resources Information Center

    Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo

    2012-01-01

    Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…

  6. Anxiety, bulimia, drug and alcohol addiction, depression, and schizophrenia: what do you think about their aetiology, dangerousness, social distance, and treatment? A latent class analysis approach.

    PubMed

    Mannarini, Stefania; Boffo, Marilisa

    2015-01-01

    Mental illness stigma is a serious societal problem and a critical impediment to treatment seeking for mentally ill people. To improve the understanding of mental illness stigma, this study focuses on the simultaneous analysis of people's aetiological beliefs, attitudes (i.e. perceived dangerousness and social distance), and recommended treatments related to several mental disorders by devising an over-arching latent structure that could explain the relations among these variables. Three hundred and sixty university students randomly received an unlabelled vignette depicting one of six mental disorders to be evaluated on the four variables on a Likert-type scale. A one-factor Latent Class Analysis (LCA) model was hypothesized, which comprised the four manifest variables as indicators and the mental disorder as external variable. The main findings were the following: (a) a one-factor LCA model was retrieved; (b) alcohol and drug addictions are the most strongly stigmatized; (c) a realistic opinion about the causes and treatment of schizophrenia, anxiety, bulimia, and depression was associated to lower prejudicial attitudes and social rejection. Beyond the general appraisal of mental illness an individual might have, the results generally point to the acknowledgement of the specific features of different diagnostic categories. The implications of the present results are discussed in the framework of a better understanding of mental illness stigma.

  7. Fall Risk, Supports and Services, and Falls Following a Nursing Home Discharge.

    PubMed

    Noureldin, Marwa; Hass, Zachary; Abrahamson, Kathleen; Arling, Greg

    2017-09-04

    Falls are a major source of morbidity and mortality among older adults; however, little is known regarding fall occurrence during a nursing home (NH) to community transition. This study sought to examine whether the presence of supports and services impacts the relationship between fall-related risk factors and fall occurrence post NH discharge. Participants in the Minnesota Return to Community Initiative who were assisted in achieving a community discharge (N = 1459) comprised the study sample. The main outcome was fall occurrence within 30 days of discharge. Factor analyses were used to estimate latent models from variables of interest. A structural equation model (SEM) was estimated to determine the relationship between the emerging latent variables and falls. Fifteen percent of participants fell within 30 days of NH discharge. Factor analysis of fall-related risk factors produced three latent variables: fall concerns/history; activities of daily living impairments; and use of high-risk medications. A supports/services latent variable also emerged that included caregiver support frequency, medication management assistance, durable medical equipment use, discharge location, and receipt of home health or skilled nursing services. In the SEM model, high-risk medications use and fall concerns/history had direct positive effects on falling. Receiving supports/services did not affect falling directly; however, it reduced the effect of high-risk medication use on falling (p < .05). Within the context of a state-implemented transition program, findings highlight the importance of supports/services in mitigating against medication-related risk of falling post NH discharge. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. The Houdini Transformation: True, but Illusory.

    PubMed

    Bentler, Peter M; Molenaar, Peter C M

    2012-01-01

    Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This paper verifies the Houdini transformation on a general latent variable model using algebraic methods. The results show that the Houdini transformation is illusory, in the sense that the Houdini transformed model remains a latent variable model. Contrary to common knowledge, a model that is a path model with only observed variables and residual errors may, in fact, be a latent variable model.

  9. The Houdini Transformation: True, but Illusory

    PubMed Central

    Bentler, Peter M.; Molenaar, Peter C. M.

    2012-01-01

    Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This paper verifies the Houdini transformation on a general latent variable model using algebraic methods. The results show that the Houdini transformation is illusory, in the sense that the Houdini transformed model remains a latent variable model. Contrary to common knowledge, a model that is a path model with only observed variables and residual errors may, in fact, be a latent variable model. PMID:23180888

  10. A Multigroup Investigation of Latent Cognitive Abilities and Reading Achievement Relations

    ERIC Educational Resources Information Center

    Hajovsky, Daniel; Reynolds, Matthew R.; Floyd, Randy G.; Turek, Joshua J.; Keith, Timothy Z.

    2014-01-01

    The structural relations between the Cattell-Horn-Carroll abilities and reading achievement outcome variables across child and adolescent development were examined in the "Kaufman Assessment Battery for Children, Second Edition", and the "Kaufman Test of Educational Achievement, Second Edition", co-normed sample. We estimated…

  11. Demographic analysis from summaries of an age-structured population

    USGS Publications Warehouse

    Link, William A.; Royle, J. Andrew; Hatfield, Jeff S.

    2003-01-01

    Demographic analyses of age-structured populations typically rely on life history data for individuals, or when individual animals are not identified, on information about the numbers of individuals in each age class through time. While it is usually difficult to determine the age class of a randomly encountered individual, it is often the case that the individual can be readily and reliably assigned to one of a set of age classes. For example, it is often possible to distinguish first-year from older birds. In such cases, the population age structure can be regarded as a latent variable governed by a process prior, and the data as summaries of this latent structure. In this article, we consider the problem of uncovering the latent structure and estimating process parameters from summaries of age class information. We present a demographic analysis for the critically endangered migratory population of whooping cranes (Grus americana), based only on counts of first-year birds and of older birds. We estimate age and year-specific survival rates. We address the controversial issue of whether management action on the breeding grounds has influenced recruitment, relating recruitment rates to the number of seventh-year and older birds, and examining the pattern of variation through time in this rate.

  12. Advanced Nonlinear Latent Variable Modeling: Distribution Analytic LMS and QML Estimators of Interaction and Quadratic Effects

    ERIC Educational Resources Information Center

    Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.

    2011-01-01

    Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…

  13. Structural Equation Modelling with Three Schemes Estimation of Score Factors on Partial Least Square (Case Study: The Quality Of Education Level SMA/MA in Sumenep Regency)

    NASA Astrophysics Data System (ADS)

    Anekawati, Anik; Widjanarko Otok, Bambang; Purhadi; Sutikno

    2017-06-01

    Research in education often involves a latent variable. Statistical analysis technique that has the ability to analyze the pattern of relationship among latent variables as well as between latent variables and their indicators is Structural Equation Modeling (SEM). SEM partial least square (PLS) was developed as an alternative if these conditions are met: the theory that underlying the design of the model is weak, does not assume a certain scale measurement, the sample size should not be large and the data does not have the multivariate normal distribution. The purpose of this paper is to compare the results of modeling of the educational quality in high school level (SMA/MA) in Sumenep Regency with structural equation modeling approach partial least square with three schemes estimation of score factors. This paper is a result of explanatory research using secondary data from Sumenep Education Department and Badan Pusat Statistik (BPS) Sumenep which was data of Sumenep in the Figures and the District of Sumenep in the Figures for the year 2015. The unit of observation in this study were districts in Sumenep that consists of 18 districts on the mainland and 9 districts in the islands. There were two endogenous variables and one exogenous variable. Endogenous variables are the quality of education level of SMA/MA (Y1) and school infrastructure (Y2), whereas exogenous variable is socio-economic condition (X1). In this study, There is one improved model which represented by model from path scheme because this model is a consistent, all of its indicators are valid and its the value of R-square increased which is: Y1=0.651Y2. In this model, the quality of education influenced only by the school infrastructure (0.651). The socio-economic condition did not affect neither the school infrastructure nor the quality of education. If the school infrastructure increased 1 point, then the quality of education increased 0.651 point. The quality of education had an R2 of 0.418, which indicates that 41.8 percent of variance in the quality of education is explained by the school infrastructure, the remaining 58.2% is explained by the other factors which were not investigated in this work.

  14. On the specification of structural equation models for ecological systems

    USGS Publications Warehouse

    Grace, J.B.; Michael, Anderson T.; Han, O.; Scheiner, S.M.

    2010-01-01

    The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical concepts using latent variables. In this paper, we discuss characteristics of ecological theory and some of the challenges for proper specification of theoretical ideas in structural equation models (SE models). In our presentation, we describe some of the requirements for classical latent variable models in which observed variables (indicators) are interpreted as the effects of underlying causes. We also describe alternative model specifications in which indicators are interpreted as having causal influences on the theoretical concepts. We suggest that this latter nonclassical specification (which involves another variable type-the composite) will often be appropriate for ecological studies because of the multifaceted nature of our theoretical concepts. In this paper, we employ the use of meta-models to aid the translation of theory into SE models and also to facilitate our ability to relate results back to our theories. We demonstrate our approach by showing how a synthetic theory of grassland biodiversity can be evaluated using SEM and data from a coastal grassland. In this example, the theory focuses on the responses of species richness to abiotic stress and disturbance, both directly and through intervening effects on community biomass. Models examined include both those based on classical forms (where each concept is represented using a single latent variable) and also ones in which the concepts are recognized to be multifaceted and modeled as such. To address the challenge of matching SE models with the conceptual level of our theory, two approaches are illustrated, compositing and aggregation. Both approaches are shown to have merits, with the former being preferable for cases where the multiple facets of a concept have widely differing effects in the system and the latter being preferable where facets act together consistently when influencing other parts of the system. Because ecological theory characteristically deals with concepts that are multifaceted, we expect the methods presented in this paper will be useful for ecologists wishing to use SEM. ?? 2010 by the Ecological Society of America.

  15. On Insensitivity of the Chi-Square Model Test to Nonlinear Misspecification in Structural Equation Models

    ERIC Educational Resources Information Center

    Mooijaart, Ab; Satorra, Albert

    2009-01-01

    In this paper, we show that for some structural equation models (SEM), the classical chi-square goodness-of-fit test is unable to detect the presence of nonlinear terms in the model. As an example, we consider a regression model with latent variables and interactions terms. Not only the model test has zero power against that type of…

  16. The Structure of Oral Language and Reading and Their Relation to Comprehension in Kindergarten through Grade 2

    ERIC Educational Resources Information Center

    Foorman, Barbara R.; Herrera, Sarah; Petscher, Yaacov; Mitchell, Alison; Truckenmiller, Adrea

    2015-01-01

    This study examined the structure of oral language and reading and their relation to comprehension from a latent variable modeling perspective in Kindergarten, Grade 1, and Grade 2. Participants were students in Kindergarten (n = 218), Grade 1 (n = 372), and Grade 2 (n = 273), attending Title 1 schools. Students were administered phonological…

  17. An Application of Latent Variable Structural Equation Modeling for Experimental Research in Educational Technology

    ERIC Educational Resources Information Center

    Lee, Hyeon Woo

    2011-01-01

    As the technology-enriched learning environments and theoretical constructs involved in instructional design become more sophisticated and complex, a need arises for equally sophisticated analytic methods to research these environments, theories, and models. Thus, this paper illustrates a comprehensive approach for analyzing data arising from…

  18. Differentiating Categories and Dimensions: Evaluating the Robustness of Taxometric Analyses

    ERIC Educational Resources Information Center

    Ruscio, John; Kaczetow, Walter

    2009-01-01

    Interest in modeling the structure of latent variables is gaining momentum, and many simulation studies suggest that taxometric analysis can validly assess the relative fit of categorical and dimensional models. The generation and parallel analysis of categorical and dimensional comparison data sets reduces the subjectivity required to interpret…

  19. The Relations Among Inhibition and Interference Control Functions: A Latent-Variable Analysis

    ERIC Educational Resources Information Center

    Friedman, Naomi P.; Miyake, Akira

    2004-01-01

    This study used data from 220 adults to examine the relations among 3 inhibition-related functions. Confirmatory factor analysis suggested that Prepotent Response Inhibition and Resistance to Distractor Interference were closely related, but both were unrelated to Resistance to Proactive Interference. Structural equation modeling, which combined…

  20. The Evaluation and Selection of Adequate Causal Models: A Compensatory Education Example.

    ERIC Educational Resources Information Center

    Tanaka, Jeffrey S.

    1982-01-01

    Implications of model evaluation (using traditional chi square goodness of fit statistics, incremental fit indices for covariance structure models, and latent variable coefficients of determination) on substantive conclusions are illustrated with an example examining the effects of participation in a compensatory education program on posttreatment…

  1. Does Teachers' Pedagogical Content Knowledge Affect Their Fluency Instruction?

    ERIC Educational Resources Information Center

    Van den Hurk, H. T. G.; Houtveen, A. A. M.; Van de Grift, W. J. C. M.

    2017-01-01

    The relation is studied between teachers' pedagogical content knowledge of reading and the quality of their subsequent classroom behaviour in teaching fluent reading. A confirmatory factor analysis model with two latent variables is tested and shows adequate goodness-of-fit indices. Contrary to our expectations, the results of structural equation…

  2. Contextual Stress and Health Risk Behaviors among African American Adolescents

    ERIC Educational Resources Information Center

    Copeland-Linder, Nikeea; Lambert, Sharon F.; Chen, Yi-Fu; Ialongo, Nicholas S.

    2011-01-01

    This study examined the longitudinal association between contextual stress and health risk behaviors and the role of protective factors in a community epidemiologically-defined sample of urban African American adolescents (N = 500; 46.4% female). Structural equation modeling was used to create a latent variable measuring contextual stress…

  3. Obtaining systematic teacher reports of disruptive behavior disorders utilizing DSM-IV.

    PubMed

    Wolraich, M L; Feurer, I D; Hannah, J N; Baumgaertel, A; Pinnock, T Y

    1998-04-01

    This study examines the psychometric properties of the Vanderbilt AD/HD Diagnostic Teacher Rating Scale (VADTRS) and provides preliminary normative data from a large, geographically defined population. The VADTRS consists of the complete list of DSM-IV AD/HD symptoms, a screen for other disruptive behavior disorders, anxiety and depression, and ratings of academic and classroom behavior performance. Teachers in one suburban county completed the scale for their students during 2 consecutive years. Statistical methods included (a) exploratory and confirmatory latent variable analyses of item data, (b) evaluation of the internal consistency of the latent dimensions, (c) evaluation of latent structure concordance between school year samples, and (d) preliminary evaluation of criterion-related validity. The instrument comprises four behavioral dimensions and two performance dimensions. The behavioral dimensions were concordant between school years and were consistent with a priori DSM-IV diagnostic criteria. Correlations between latent dimensions and relevant, known disorders or problems varied from .25 to .66.

  4. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  5. Interexaminer variation of minutia markup on latent fingerprints.

    PubMed

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2016-07-01

    Latent print examiners often differ in the number of minutiae they mark during analysis of a latent, and also during comparison of a latent with an exemplar. Differences in minutia counts understate interexaminer variability: examiners' markups may have similar minutia counts but differ greatly in which specific minutiae were marked. We assessed variability in minutia markup among 170 volunteer latent print examiners. Each provided detailed markup documenting their examinations of 22 latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. An average of 12 examiners marked each latent. The primary factors associated with minutia reproducibility were clarity, which regions of the prints examiners chose to mark, and agreement on value or comparison determinations. In clear areas (where the examiner was "certain of the location, presence, and absence of all minutiae"), median reproducibility was 82%; in unclear areas, median reproducibility was 46%. Differing interpretations regarding which regions should be marked (e.g., when there is ambiguity in the continuity of a print) contributed to variability in minutia markup: especially in unclear areas, marked minutiae were often far from the nearest minutia marked by a majority of examiners. Low reproducibility was also associated with differences in value or comparison determinations. Lack of standardization in minutia markup and unfamiliarity with test procedures presumably contribute to the variability we observed. We have identified factors accounting for interexaminer variability; implementing standards for detailed markup as part of documentation and focusing future training efforts on these factors may help to facilitate transparency and reduce subjectivity in the examination process. Published by Elsevier Ireland Ltd.

  6. Multimethod latent class analysis

    PubMed Central

    Nussbeck, Fridtjof W.; Eid, Michael

    2015-01-01

    Correct and, hence, valid classifications of individuals are of high importance in the social sciences as these classifications are the basis for diagnoses and/or the assignment to a treatment. The via regia to inspect the validity of psychological ratings is the multitrait-multimethod (MTMM) approach. First, a latent variable model for the analysis of rater agreement (latent rater agreement model) will be presented that allows for the analysis of convergent validity between different measurement approaches (e.g., raters). Models of rater agreement are transferred to the level of latent variables. Second, the latent rater agreement model will be extended to a more informative MTMM latent class model. This model allows for estimating (i) the convergence of ratings, (ii) method biases in terms of differential latent distributions of raters and differential associations of categorizations within raters (specific rater bias), and (iii) the distinguishability of categories indicating if categories are satisfyingly distinct from each other. Finally, an empirical application is presented to exemplify the interpretation of the MTMM latent class model. PMID:26441714

  7. Exploring heterogeneity in clinical trials with latent class analysis

    PubMed Central

    Abarda, Abdallah; Contractor, Ateka A.; Wang, Juan; Dayton, C. Mitchell

    2018-01-01

    Case-mix is common in clinical trials and treatment effect can vary across different subgroups. Conventionally, a subgroup analysis is performed by dividing the overall study population by one or two grouping variables. It is usually impossible to explore complex high-order intersections among confounding variables. Latent class analysis (LCA) provides a framework to identify latent classes by observed manifest variables. Distal clinical outcomes and treatment effect can be different across these classes. This paper provides a step-by-step tutorial on how to perform LCA with R. A simulated dataset is generated to illustrate the process. In the example, the classify-analyze approach is employed to explore the differential treatment effects on distal outcomes across latent classes. PMID:29955579

  8. Modeling and impacts of the latent heat of phase change and specific heat for phase change materials

    NASA Astrophysics Data System (ADS)

    Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.

    2018-05-01

    We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.

  9. On the Asymptotic Relative Efficiency of Planned Missingness Designs.

    PubMed

    Rhemtulla, Mijke; Savalei, Victoria; Little, Todd D

    2016-03-01

    In planned missingness (PM) designs, certain data are set a priori to be missing. PM designs can increase validity and reduce cost; however, little is known about the loss of efficiency that accompanies these designs. The present paper compares PM designs to reduced sample (RN) designs that have the same total number of data points concentrated in fewer participants. In 4 studies, we consider models for both observed and latent variables, designs that do or do not include an "X set" of variables with complete data, and a full range of between- and within-set correlation values. All results are obtained using asymptotic relative efficiency formulas, and thus no data are generated; this novel approach allows us to examine whether PM designs have theoretical advantages over RN designs removing the impact of sampling error. Our primary findings are that (a) in manifest variable regression models, estimates of regression coefficients have much lower relative efficiency in PM designs as compared to RN designs, (b) relative efficiency of factor correlation or latent regression coefficient estimates is maximized when the indicators of each latent variable come from different sets, and (c) the addition of an X set improves efficiency in manifest variable regression models only for the parameters that directly involve the X-set variables, but it substantially improves efficiency of most parameters in latent variable models. We conclude that PM designs can be beneficial when the model of interest is a latent variable model; recommendations are made for how to optimize such a design.

  10. Class Evolution Tree: A Graphical Tool to Support Decisions on the Number of Classes in Exploratory Categorical Latent Variable Modeling for Rehabilitation Research

    ERIC Educational Resources Information Center

    Kriston, Levente; Melchior, Hanne; Hergert, Anika; Bergelt, Corinna; Watzke, Birgit; Schulz, Holger; von Wolff, Alessa

    2011-01-01

    The aim of our study was to develop a graphical tool that can be used in addition to standard statistical criteria to support decisions on the number of classes in explorative categorical latent variable modeling for rehabilitation research. Data from two rehabilitation research projects were used. In the first study, a latent profile analysis was…

  11. Data on the interexaminer variation of minutia markup on latent fingerprints.

    PubMed

    Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn

    2016-09-01

    The data in this article supports the research paper entitled "Interexaminer variation of minutia markup on latent fingerprints" [1]. The data in this article describes the variability in minutia markup during both analysis of the latents and comparison between latents and exemplars. The data was collected in the "White Box Latent Print Examiner Study," in which each of 170 volunteer latent print examiners provided detailed markup documenting their examinations of latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. Each examiner examined 22 latent-exemplar pairs; an average of 12 examiners marked each latent.

  12. Monoamine Oxidase A (MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation

    PubMed Central

    Xu, Man K.; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J. S.; Croudace, Tim J.; Barnett, Jennifer H.; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B.

    2017-01-01

    Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene (MAOA) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = −0.167; CI: −0.289, −0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits. PMID:29075213

  13. Monoamine Oxidase A (MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation.

    PubMed

    Xu, Man K; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J S; Croudace, Tim J; Barnett, Jennifer H; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B

    2017-01-01

    Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene ( MAOA ) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = -0.167; CI: -0.289, -0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits.

  14. Group Comparisons in the Presence of Missing Data Using Latent Variable Modeling Techniques

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2010-01-01

    A latent variable modeling approach for examining population similarities and differences in observed variable relationship and mean indexes in incomplete data sets is discussed. The method is based on the full information maximum likelihood procedure of model fitting and parameter estimation. The procedure can be employed to test group identities…

  15. Stochastic Approximation Methods for Latent Regression Item Response Models

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2010-01-01

    This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…

  16. Do recognizable lifetime eating disorder phenotypes naturally occur in a culturally asian population? A combined latent profile and taxometric approach.

    PubMed

    Thomas, Jennifer J; Eddy, Kamryn T; Ruscio, John; Ng, King Lam; Casale, Kristen E; Becker, Anne E; Lee, Sing

    2015-05-01

    We examined whether empirically derived eating disorder (ED) categories in Hong Kong Chinese patients (N = 454) would be consistent with recognizable lifetime ED phenotypes derived from latent structure models of European and American samples. We performed latent profile analysis (LPA) using indicator variables from data collected during routine assessment, and then applied taxometric analysis to determine whether latent classes were qualitatively versus quantitatively distinct. Latent profile analysis identified four classes: (i) binge/purge (47%); (ii) non-fat-phobic low-weight (34%); (iii) fat-phobic low-weight (12%); and (iv) overweight disordered eating (6%). Taxometric analysis identified qualitative (categorical) distinctions between the binge/purge and non-fat-phobic low-weight classes, and also between the fat-phobic and non-fat-phobic low-weight classes. Distinctions between the fat-phobic low-weight and binge/purge classes were indeterminate. Empirically derived categories in Hong Kong showed recognizable correspondence with recognizable lifetime ED phenotypes. Although taxometric findings support two distinct classes of low weight EDs, LPA findings also support heterogeneity among non-fat-phobic individuals. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  17. School Climate: The Controllable and the Uncontrollable

    ERIC Educational Resources Information Center

    Sulak, Tracey N.

    2018-01-01

    A positive school climate impacts students by promoting positive relations among students, staff and faculty of the school. The current study used latent class analysis and multinomial regression with R3STEP to analyse patterns of negative behaviours in schools and test the association of these patterns with structural variables like school size,…

  18. Incorporating Measurement Nonequivalence in a Cross-Study Latent Growth Curve Analysis

    ERIC Educational Resources Information Center

    Flora, David B.; Curran, Patrick J.; Hussong, Andrea M.; Edwards, Michael C.

    2008-01-01

    A large literature emphasizes the importance of testing for measurement equivalence in scales that may be used as observed variables in structural equation modeling applications. When the same construct is measured across more than one developmental period, as in a longitudinal study, it can be especially critical to establish measurement…

  19. The Development of Verbal and Visual Working Memory Processes: A Latent Variable Approach

    ERIC Educational Resources Information Center

    Koppenol-Gonzalez, Gabriela V.; Bouwmeester, Samantha; Vermunt, Jeroen K.

    2012-01-01

    Working memory (WM) processing in children has been studied with different approaches, focusing on either the organizational structure of WM processing during development (factor analytic) or the influence of different task conditions on WM processing (experimental). The current study combined both approaches, aiming to distinguish verbal and…

  20. Verbal Knowledge, Working Memory, and Processing Speed as Predictors of Verbal Learning in Older Adults

    ERIC Educational Resources Information Center

    Rast, Philippe

    2011-01-01

    The present study aimed at modeling individual differences in a verbal learning task by means of a latent structured growth curve approach based on an exponential function that yielded 3 parameters: initial recall, learning rate, and asymptotic performance. Three cognitive variables--speed of information processing, verbal knowledge, working…

  1. Development of Emergent Literacy and Early Reading Skills in Preschool Children: Evidence from a Latent-Variable Longitudinal Study.

    ERIC Educational Resources Information Center

    Lonigan, Christopher J.; Burgess, Stephen R.; Anthony, Jason L.

    2000-01-01

    Examined the joint and unique predictive significance of emergent literacy skills for later emergent literacy skills and reading in two samples of preschoolers. Structural equation modeling revealed significant developmental continuity of these skills, particularly for letter knowledge and phonological sensitivity from late preschool to early…

  2. Mind Wandering and Online Learning: A Latent Variable Analysis

    ERIC Educational Resources Information Center

    Hollis, R. Benjamin

    2013-01-01

    Thoughts drift in everyday life and in the classroom. The goal of this study was to investigate how often students reported off-task thinking while watching online lectures. These findings were related to working memory capacity, topic interest, and achievement goal orientations. Structural equation modeling was used to evaluate how all of these…

  3. Men and women are from Earth: examining the latent structure of gender.

    PubMed

    Carothers, Bobbi J; Reis, Harry T

    2013-02-01

    Taxometric methods enable determination of whether the latent structure of a construct is dimensional or taxonic (nonarbitrary categories). Although sex as a biological category is taxonic, psychological gender differences have not been examined in this way. The taxometric methods of mean above minus below a cut, maximum eigenvalue, and latent mode were used to investigate whether gender is taxonic or dimensional. Behavioral measures of stereotyped hobbies and physiological characteristics (physical strength, anthropometric measurements) were examined for validation purposes, and were taxonic by sex. Psychological indicators included sexuality and mating (sexual attitudes and behaviors, mate selectivity, sociosexual orientation), interpersonal orientation (empathy, relational-interdependent self-construal), gender-related dispositions (masculinity, femininity, care orientation, unmitigated communion, fear of success, science inclination, Big Five personality), and intimacy (intimacy prototypes and stages, social provisions, intimacy with best friend). Constructs were with few exceptions dimensional, speaking to Spence's (1993) gender identity theory. Average differences between men and women are not under dispute, but the dimensionality of gender indicates that these differences are inappropriate for diagnosing gender-typical psychological variables on the basis of sex. (c) 2013 APA, all rights reserved.

  4. Latent variable method for automatic adaptation to background states in motor imagery BCI

    NASA Astrophysics Data System (ADS)

    Dagaev, Nikolay; Volkova, Ksenia; Ossadtchi, Alexei

    2018-02-01

    Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. Approach. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model’s parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. Main results. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Significance. Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.

  5. Are gestational age, birth weight, and birth length indicators of favorable fetal growth conditions? A structural equation analysis of Filipino infants.

    PubMed

    Bollen, Kenneth A; Noble, Mark D; Adair, Linda S

    2013-07-30

    The fetal origins hypothesis emphasizes the life-long health impacts of prenatal conditions. Birth weight, birth length, and gestational age are indicators of the fetal environment. However, these variables often have missing data and are subject to random and systematic errors caused by delays in measurement, differences in measurement instruments, and human error. With data from the Cebu (Philippines) Longitudinal Health and Nutrition Survey, we use structural equation models, to explore random and systematic errors in these birth outcome measures, to analyze how maternal characteristics relate to birth outcomes, and to take account of missing data. We assess whether birth weight, birth length, and gestational age are influenced by a single latent variable that we call favorable fetal growth conditions (FFGC) and if so, which variable is most closely related to FFGC. We find that a model with FFGC as a latent variable fits as well as a less parsimonious model that has birth weight, birth length, and gestational age as distinct individual variables. We also demonstrate that birth weight is more reliably measured than is gestational age. FFGCs were significantly influenced by taller maternal stature, better nutritional stores indexed by maternal arm fat and muscle area during pregnancy, higher birth order, avoidance of smoking, and maternal age 20-35 years. Effects of maternal characteristics on newborn weight, length, and gestational age were largely indirect, operating through FFGC. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Latent class instrumental variables: A clinical and biostatistical perspective

    PubMed Central

    Baker, Stuart G.; Kramer, Barnett S.; Lindeman, Karen S.

    2015-01-01

    In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. PMID:26239275

  7. Measurement of psychological disorders using cognitive diagnosis models.

    PubMed

    Templin, Jonathan L; Henson, Robert A

    2006-09-01

    Cognitive diagnosis models are constrained (multiple classification) latent class models that characterize the relationship of questionnaire responses to a set of dichotomous latent variables. Having emanated from educational measurement, several aspects of such models seem well suited to use in psychological assessment and diagnosis. This article presents the development of a new cognitive diagnosis model for use in psychological assessment--the DINO (deterministic input; noisy "or" gate) model--which, as an illustrative example, is applied to evaluate and diagnose pathological gamblers. As part of this example, a demonstration of the estimates obtained by cognitive diagnosis models is provided. Such estimates include the probability an individual meets each of a set of dichotomous Diagnostic and Statistical Manual of Mental Disorders (text revision [DSM-IV-TR]; American Psychiatric Association, 2000) criteria, resulting in an estimate of the probability an individual meets the DSM-IV-TR definition for being a pathological gambler. Furthermore, a demonstration of how the hypothesized underlying factors contributing to pathological gambling can be measured with the DINO model is presented, through use of a covariance structure model for the tetrachoric correlation matrix of the dichotomous latent variables representing DSM-IV-TR criteria. Copyright 2006 APA

  8. Human Life History Strategies.

    PubMed

    Chua, Kristine J; Lukaszewski, Aaron W; Grant, DeMond M; Sng, Oliver

    2017-01-01

    Human life history (LH) strategies are theoretically regulated by developmental exposure to environmental cues that ancestrally predicted LH-relevant world states (e.g., risk of morbidity-mortality). Recent modeling work has raised the question of whether the association of childhood family factors with adult LH variation arises via (i) direct sampling of external environmental cues during development and/or (ii) calibration of LH strategies to internal somatic condition (i.e., health), which itself reflects exposure to variably favorable environments. The present research tested between these possibilities through three online surveys involving a total of over 26,000 participants. Participants completed questionnaires assessing components of self-reported environmental harshness (i.e., socioeconomic status, family neglect, and neighborhood crime), health status, and various LH-related psychological and behavioral phenotypes (e.g., mating strategies, paranoia, and anxiety), modeled as a unidimensional latent variable. Structural equation models suggested that exposure to harsh ecologies had direct effects on latent LH strategy as well as indirect effects on latent LH strategy mediated via health status. These findings suggest that human LH strategies may be calibrated to both external and internal cues and that such calibrational effects manifest in a wide range of psychological and behavioral phenotypes.

  9. Why aren’t they happy? An analysis of end-user satisfaction with Electronic health records

    PubMed Central

    Unni, Prasad; Staes, Catherine; Weeks, Howard; Kramer, Heidi; Borbolla, Damion; Slager, Stacey; Taft, Teresa; Chidambaram, Valliammai; Weir, Charlene

    2016-01-01

    Introduction. Implementations of electronic health records (EHR) have been met with mixed outcome reviews. Complaints about these systems have led to many attempts to have useful measures of end-user satisfaction. However, most user satisfaction assessments do not focus on high-level reasoning, despite the complaints of many physicians. Our study attempts to identify some of these determinants. Method. We developed a user satisfaction survey instrument, based on pre-identified and important clinical and non-clinical clinician tasks. We surveyed a sample of in-patient physicians and focused on using exploratory factor analyses to identify underlying high-level cognitive tasks. We used the results to create unique, orthogonal variables representative of latent structure predictive of user satisfaction. Results. Our findings identified 3 latent high-level tasks that were associated with end-user satisfaction: a) High- level clinical reasoning b) Communicate/coordinate care and c) Follow the rules/compliance. Conclusion: We were able to successfully identify latent variables associated with satisfaction. Identification of communicability and high-level clinical reasoning as important factors determining user satisfaction can lead to development and design of more usable electronic health records with higher user satisfaction. PMID:28269962

  10. Mixture modeling methods for the assessment of normal and abnormal personality, part I: cross-sectional models.

    PubMed

    Hallquist, Michael N; Wright, Aidan G C

    2014-01-01

    Over the past 75 years, the study of personality and personality disorders has been informed considerably by an impressive array of psychometric instruments. Many of these tests draw on the perspective that personality features can be conceptualized in terms of latent traits that vary dimensionally across the population. A purely trait-oriented approach to personality, however, might overlook heterogeneity that is related to similarities among subgroups of people. This article describes how factor mixture modeling (FMM), which incorporates both categories and dimensions, can be used to represent person-oriented and trait-oriented variability in the latent structure of personality. We provide an overview of different forms of FMM that vary in the degree to which they emphasize trait- versus person-oriented variability. We also provide practical guidelines for applying FMM to personality data, and we illustrate model fitting and interpretation using an empirical analysis of general personality dysfunction.

  11. Measuring Five Dimensions of Religiosity across Adolescence

    PubMed Central

    Pearce, Lisa D.; Hayward, George M.; Pearlman, Jessica A.

    2017-01-01

    This paper theorizes and tests a latent variable model of adolescent religiosity in which five dimensions of religiosity are interrelated: religious beliefs, religious exclusivity, external religiosity, private practice, and religious salience. Research often theorizes overlapping and independent influences of single items or dimensions of religiosity on outcomes such as adolescent sexual behavior, but rarely operationalizes the dimensions in a measurement model accounting for their associations with each other and across time. We use longitudinal structural equation modeling (SEM) with latent variables to analyze data from two waves of the National Study of Youth and Religion. We test our hypothesized measurement model as compared to four alternate measurement models and find that our proposed model maintains superior fit. We then discuss the associations between the five dimensions of religiosity we measure and how these change over time. Our findings suggest how future research might better operationalize multiple dimensions of religiosity in studies of the influence of religion in adolescence. PMID:28931956

  12. Identification of Chinese medicine syndromes in persistent insomnia associated with major depressive disorder: a latent tree analysis.

    PubMed

    Yeung, Wing-Fai; Chung, Ka-Fai; Zhang, Nevin Lian-Wen; Zhang, Shi Ping; Yung, Kam-Ping; Chen, Pei-Xian; Ho, Yan-Yee

    2016-01-01

    Chinese medicine (CM) syndrome (zheng) differentiation is based on the co-occurrence of CM manifestation profiles, such as signs and symptoms, and pulse and tongue features. Insomnia is a symptom that frequently occurs in major depressive disorder despite adequate antidepressant treatment. This study aims to identify co-occurrence patterns in participants with persistent insomnia and major depressive disorder from clinical feature data using latent tree analysis, and to compare the latent variables with relevant CM syndromes. One hundred and forty-two participants with persistent insomnia and a history of major depressive disorder completed a standardized checklist (the Chinese Medicine Insomnia Symptom Checklist) specially developed for CM syndrome classification of insomnia. The checklist covers symptoms and signs, including tongue and pulse features. The clinical features assessed by the checklist were analyzed using Lantern software. CM practitioners with relevant experience compared the clinical feature variables under each latent variable with reference to relevant CM syndromes, based on a previous review of CM syndromes. The symptom data were analyzed to build the latent tree model and the model with the highest Bayes information criterion score was regarded as the best model. This model contained 18 latent variables, each of which divided participants into two clusters. Six clusters represented more than 50 % of the sample. The clinical feature co-occurrence patterns of these six clusters were interpreted as the CM syndromes Liver qi stagnation transforming into fire, Liver fire flaming upward, Stomach disharmony, Hyperactivity of fire due to yin deficiency, Heart-kidney noninteraction, and Qi deficiency of the heart and gallbladder. The clinical feature variables that contributed significant cumulative information coverage (at least 95 %) were identified. Latent tree model analysis on a sample of depressed participants with insomnia revealed 13 clinical feature co-occurrence patterns, four mutual-exclusion patterns, and one pattern with a single clinical feature variable.

  13. The choice of product indicators in latent variable interaction models: post hoc analyses.

    PubMed

    Foldnes, Njål; Hagtvet, Knut Arne

    2014-09-01

    The unconstrained product indicator (PI) approach is a simple and popular approach for modeling nonlinear effects among latent variables. This approach leaves the practitioner to choose the PIs to be included in the model, introducing arbitrariness into the modeling. In contrast to previous Monte Carlo studies, we evaluated the PI approach by 3 post hoc analyses applied to a real-world case adopted from a research effort in social psychology. The measurement design applied 3 and 4 indicators for the 2 latent 1st-order variables, leaving the researcher with a choice among more than 4,000 possible PI configurations. Sixty so-called matched-pair configurations that have been recommended in previous literature are of special interest. In the 1st post hoc analysis we estimated the interaction effect for all PI configurations, keeping the real-world sample fixed. The estimated interaction effect was substantially affected by the choice of PIs, also across matched-pair configurations. Subsequently, a post hoc Monte Carlo study was conducted, with varying sample sizes and data distributions. Convergence, bias, Type I error and power of the interaction test were investigated for each matched-pair configuration and the all-pairs configuration. Variation in estimates across matched-pair configurations for a typical sample was substantial. The choice of specific configuration significantly affected convergence and the interaction test's outcome. The all-pairs configuration performed overall better than the matched-pair configurations. A further advantage of the all-pairs over the matched-pairs approach is its unambiguity. The final study evaluates the all-pairs configuration for small sample sizes and compares it to the non-PI approach of latent moderated structural equations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. Regression mixture models: Does modeling the covariance between independent variables and latent classes improve the results?

    PubMed Central

    Lamont, Andrea E.; Vermunt, Jeroen K.; Van Horn, M. Lee

    2016-01-01

    Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we test the effects of violating an implicit assumption often made in these models – i.e., independent variables in the model are not directly related to latent classes. Results indicated that the major risk of failing to model the relationship between predictor and latent class was an increase in the probability of selecting additional latent classes and biased class proportions. Additionally, this study tests whether regression mixture models can detect a piecewise relationship between a predictor and outcome. Results suggest that these models are able to detect piecewise relations, but only when the relationship between the latent class and the predictor is included in model estimation. We illustrate the implications of making this assumption through a re-analysis of applied data examining heterogeneity in the effects of family resources on academic achievement. We compare previous results (which assumed no relation between independent variables and latent class) to the model where this assumption is lifted. Implications and analytic suggestions for conducting regression mixture based on these findings are noted. PMID:26881956

  15. Psychological Processes Mediate the Impact of Familial Risk, Social Circumstances and Life Events on Mental Health

    PubMed Central

    Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara

    2013-01-01

    Background Despite widespread acceptance of the ‘biopsychosocial model’, the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Methods and Findings Participants were 32,827 (age 18–85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ2 (3199, N = 23,397) = 126654·8, p<·001; RCFI = ·97; RMSEA = ·04 (·038–·039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. Conclusion These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies. PMID:24146890

  16. Psychological processes mediate the impact of familial risk, social circumstances and life events on mental health.

    PubMed

    Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara

    2013-01-01

    Despite widespread acceptance of the 'biopsychosocial model', the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Participants were 32,827 (age 18-85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ(2) (3199, N = 23,397) = 126654.8, p<.001; RCFI = .97; RMSEA = .04 (.038-.039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies.

  17. A descriptivist approach to trait conceptualization and inference.

    PubMed

    Jonas, Katherine G; Markon, Kristian E

    2016-01-01

    In their recent article, How Functionalist and Process Approaches to Behavior Can Explain Trait Covariation, Wood, Gardner, and Harms (2015) underscore the need for more process-based understandings of individual differences. At the same time, the article illustrates a common error in the use and interpretation of latent variable models: namely, the misuse of models to arbitrate issues of causation and the nature of latent variables. Here, we explain how latent variables can be understood simply as parsimonious summaries of data, and how statistical inference can be based on choosing those summaries that minimize information required to represent the data using the model. Although Wood, Gardner, and Harms acknowledge this perspective, they underestimate its significance, including its importance to modeling and the conceptualization of psychological measurement. We believe this perspective has important implications for understanding individual differences in a number of domains, including current debates surrounding the role of formative versus reflective latent variables. (c) 2015 APA, all rights reserved).

  18. Stochastic Approximation Methods for Latent Regression Item Response Models. Research Report. ETS RR-09-09

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2009-01-01

    This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the…

  19. A General Approach to Defining Latent Growth Components

    ERIC Educational Resources Information Center

    Mayer, Axel; Steyer, Rolf; Mueller, Horst

    2012-01-01

    We present a 3-step approach to defining latent growth components. In the first step, a measurement model with at least 2 indicators for each time point is formulated to identify measurement error variances and obtain latent variables that are purged from measurement error. In the second step, we use contrast matrices to define the latent growth…

  20. Flexible Modeling of Latent Task Structures in Multitask Learning

    DTIC Science & Technology

    2012-06-26

    Flexible Modeling of Latent Task Structures in Multitask Learning Alexandre Passos† apassos@cs.umass.edu Computer Science Department, University of...of Maryland, College Park, MD USA Abstract Multitask learning algorithms are typically designed assuming some fixed, a priori known latent structure...shared by all the tasks. However, it is usually unclear what type of latent task structure is the most ap- propriate for a given multitask learning prob

  1. Using Confirmatory Factor Analysis to Understand Executive Control in Preschool Children: Sources of Variation in Emergent Mathematic Achievement

    ERIC Educational Resources Information Center

    Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A.; Sheffield, Tiffany D.; Nelson, Jennifer Mize

    2011-01-01

    Latent variable modeling methods have demonstrated utility for understanding the structure of executive control (EC) across development. These methods are utilized to better characterize the relation between EC and mathematics achievement in the preschool period, and to understand contributing sources of individual variation. Using the sample and…

  2. Stability of Core Language Skill from Early Childhood to Adolescence: A Latent Variable Approach

    ERIC Educational Resources Information Center

    Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.; Suwalsky, Joan T. D.

    2014-01-01

    This four-wave prospective longitudinal study evaluated stability of language in 324 children from early childhood to adolescence. Structural equation modeling supported loadings of multiple age-appropriate multisource measures of child language on single-factor core language skills at 20 months and 4, 10, and 14 years. Large stability…

  3. A Latent Variable Analysis of Working Memory Capacity, Short-Term Memory Capacity, Processing Speed, and General Fluid Intelligence.

    ERIC Educational Resources Information Center

    Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.

    2002-01-01

    Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…

  4. DIF Analysis with Multilevel Data: A Simulation Study Using the Latent Variable Approach

    ERIC Educational Resources Information Center

    Jin, Ying; Eason, Hershel

    2016-01-01

    The effects of mean ability difference (MAD) and short tests on the performance of various DIF methods have been studied extensively in previous simulation studies. Their effects, however, have not been studied under multilevel data structure. MAD was frequently observed in large-scale cross-country comparison studies where the primary sampling…

  5. Investigating Gender and Racial/Ethnic Invariance in Use of a Course Management System in Higher Education

    ERIC Educational Resources Information Center

    Li, Yi; Wang, Qiu; Campbell, John

    2015-01-01

    This study focused on learning equity in colleges and universities where teaching and learning depends heavily on computer technologies. The study used the Structural Equation Modeling (SEM) to investigate gender and racial/ethnic heterogeneity in the use of a computer based course management system (CMS). Two latent variables (CMS usage and…

  6. Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level

    ERIC Educational Resources Information Center

    Savalei, Victoria; Rhemtulla, Mijke

    2017-01-01

    In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately…

  7. Rejoinder to MacCallum, Edwards, and Cai (2012) and Rindskopf (2012): Mastering a New Method

    ERIC Educational Resources Information Center

    Muthen, Bengt; Asparouhov, Tihomir

    2012-01-01

    This rejoinder discusses the general comments on how to use Bayesian structural equation modeling (BSEM) wisely and how to get more people better trained in using Bayesian methods. Responses to specific comments cover how to handle sign switching, nonconvergence and nonidentification, and prior choices in latent variable models. Two new…

  8. Creative Self-Efficacy: The Influence of Affective States and Social Persuasion as Antecedents and Imagination and Divergent Thinking as Consequences

    ERIC Educational Resources Information Center

    Puente-Díaz, Rogelio; Cavazos-Arroyo, Judith

    2017-01-01

    Two studies examined the influence of encouragement for creativity, curiosity, harmonious passion, and autonomy support as antecedents of creative self-efficacy and imagination and divergent thinking as consequences. College students completed a battery of questionnaires. Structural equation modeling treating the variables as latent and not…

  9. Developing General Literacy Ability and Intercultural Sensitivity through English Literacy Instruction: Using Global Literature for Korean EFL Learners

    ERIC Educational Resources Information Center

    Bae, Jiyoung

    2012-01-01

    This study explored L2 literacy ability and intercultural sensitivity of Korean late elementary to early middle school students learning English as a foreign language. This study investigated the latent variable structure of L2 literacy abilities, including fluency, vocabulary, reading comprehension, and writing abilities, and intercultural…

  10. Engagement in Adolescent Career Preparation: Social Support, Personality and the Development of Choice Decidedness and Congruence

    ERIC Educational Resources Information Center

    Hirschi, Andreas; Niles, Spencer G.; Akos, Patrick

    2011-01-01

    This longitudinal panel study investigated predictors and outcomes of active engagement in career preparation among 349 Swiss adolescents from the beginning to the end of eighth grade. Latent variable structural equation modeling was applied. The results showed that engagement in terms of self- and environmental-exploration and active career…

  11. Latent class instrumental variables: a clinical and biostatistical perspective.

    PubMed

    Baker, Stuart G; Kramer, Barnett S; Lindeman, Karen S

    2016-01-15

    In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. Copyright © 2015 John Wiley & Sons, Ltd.

  12. A structural equation modeling approach to understanding pathways that connect socioeconomic status and smoking.

    PubMed

    Martinez, Sydney A; Beebe, Laura A; Thompson, David M; Wagener, Theodore L; Terrell, Deirdra R; Campbell, Janis E

    2018-01-01

    The inverse association between socioeconomic status and smoking is well established, yet the mechanisms that drive this relationship are unclear. We developed and tested four theoretical models of the pathways that link socioeconomic status to current smoking prevalence using a structural equation modeling (SEM) approach. Using data from the 2013 National Health Interview Survey, we selected four indicator variables (poverty ratio, personal earnings, educational attainment, and employment status) that we hypothesize underlie a latent variable, socioeconomic status. We measured direct, indirect, and total effects of socioeconomic status on smoking on four pathways through four latent variables representing social cohesion, financial strain, sleep disturbance, and psychological distress. Results of the model indicated that the probability of being a smoker decreased by 26% of a standard deviation for every one standard deviation increase in socioeconomic status. The direct effects of socioeconomic status on smoking accounted for the majority of the total effects, but the overall model also included significant indirect effects. Of the four mediators, sleep disturbance and psychological distress had the largest total effects on current smoking. We explored the use of structural equation modeling in epidemiology to quantify effects of socioeconomic status on smoking through four social and psychological factors to identify potential targets for interventions. A better understanding of the complex relationship between socioeconomic status and smoking is critical as we continue to reduce the burden of tobacco and eliminate health disparities related to smoking.

  13. A structural equation modeling approach to understanding pathways that connect socioeconomic status and smoking

    PubMed Central

    Beebe, Laura A.; Thompson, David M.; Wagener, Theodore L.; Terrell, Deirdra R.; Campbell, Janis E.

    2018-01-01

    The inverse association between socioeconomic status and smoking is well established, yet the mechanisms that drive this relationship are unclear. We developed and tested four theoretical models of the pathways that link socioeconomic status to current smoking prevalence using a structural equation modeling (SEM) approach. Using data from the 2013 National Health Interview Survey, we selected four indicator variables (poverty ratio, personal earnings, educational attainment, and employment status) that we hypothesize underlie a latent variable, socioeconomic status. We measured direct, indirect, and total effects of socioeconomic status on smoking on four pathways through four latent variables representing social cohesion, financial strain, sleep disturbance, and psychological distress. Results of the model indicated that the probability of being a smoker decreased by 26% of a standard deviation for every one standard deviation increase in socioeconomic status. The direct effects of socioeconomic status on smoking accounted for the majority of the total effects, but the overall model also included significant indirect effects. Of the four mediators, sleep disturbance and psychological distress had the largest total effects on current smoking. We explored the use of structural equation modeling in epidemiology to quantify effects of socioeconomic status on smoking through four social and psychological factors to identify potential targets for interventions. A better understanding of the complex relationship between socioeconomic status and smoking is critical as we continue to reduce the burden of tobacco and eliminate health disparities related to smoking. PMID:29408939

  14. Multivariate analysis of fears in dental phobic patients according to a reduced FSS-II scale.

    PubMed

    Hakeberg, M; Gustafsson, J E; Berggren, U; Carlsson, S G

    1995-10-01

    This study analyzed and assessed dimensions of a questionnaire developed to measure general fears and phobias. A previous factor analysis among 109 dental phobics had revealed a five-factor structure with 22 items and an explained total variance of 54%. The present study analyzed the same material using a multivariate statistical procedure (LISREL) to reveal structural latent variables. The LISREL analysis, based on the correlation matrix, yielded a chi-square of 216.6 with 195 degrees of freedom (P = 0.138) and showed a model with seven latent variables. One was a general fear factor correlated to all 22 items. The other six factors concerned "Illness & Death" (5 items), "Failures & Embarrassment" (5 items), "Social situations" (5 items), "Physical injuries" (4 items), "Animals & Natural phenomena" (4 items). One item (opposite sex) was included in both "Failures & Embarrassment" and "Social situations". The last factor, "Social interaction", combined all the items in "Failures & Embarrassment" and "Social situations" (9 items). In conclusion, this multivariate statistical analysis (LISREL) revealed and confirmed a factor structure similar to our previous study, but added two important dimensions not shown with a traditional factor analysis. This reduced FSS-II version measures general fears and phobias and may be used on a routine clinical basis as well as in dental phobia research.

  15. Revealing unobserved factors underlying cortical activity with a rectified latent variable model applied to neural population recordings.

    PubMed

    Whiteway, Matthew R; Butts, Daniel A

    2017-03-01

    The activity of sensory cortical neurons is not only driven by external stimuli but also shaped by other sources of input to the cortex. Unlike external stimuli, these other sources of input are challenging to experimentally control, or even observe, and as a result contribute to variability of neural responses to sensory stimuli. However, such sources of input are likely not "noise" and may play an integral role in sensory cortex function. Here we introduce the rectified latent variable model (RLVM) in order to identify these sources of input using simultaneously recorded cortical neuron populations. The RLVM is novel in that it employs nonnegative (rectified) latent variables and is much less restrictive in the mathematical constraints on solutions because of the use of an autoencoder neural network to initialize model parameters. We show that the RLVM outperforms principal component analysis, factor analysis, and independent component analysis, using simulated data across a range of conditions. We then apply this model to two-photon imaging of hundreds of simultaneously recorded neurons in mouse primary somatosensory cortex during a tactile discrimination task. Across many experiments, the RLVM identifies latent variables related to both the tactile stimulation as well as nonstimulus aspects of the behavioral task, with a majority of activity explained by the latter. These results suggest that properly identifying such latent variables is necessary for a full understanding of sensory cortical function and demonstrate novel methods for leveraging large population recordings to this end. NEW & NOTEWORTHY The rapid development of neural recording technologies presents new opportunities for understanding patterns of activity across neural populations. Here we show how a latent variable model with appropriate nonlinear form can be used to identify sources of input to a neural population and infer their time courses. Furthermore, we demonstrate how these sources are related to behavioral contexts outside of direct experimental control. Copyright © 2017 the American Physiological Society.

  16. Measuring individual differences in responses to date-rape vignettes using latent variable models.

    PubMed

    Tuliao, Antover P; Hoffman, Lesa; McChargue, Dennis E

    2017-01-01

    Vignette methodology can be a flexible and powerful way to examine individual differences in response to dangerous real-life scenarios. However, most studies underutilize the usefulness of such methodology by analyzing only one outcome, which limits the ability to track event-related changes (e.g., vacillation in risk perception). The current study was designed to illustrate the dynamic influence of risk perception on exit point from a date-rape vignette. Our primary goal was to provide an illustrative example of how to use latent variable models for vignette methodology, including latent growth curve modeling with piecewise slopes, as well as latent variable measurement models. Through the combination of a step-by-step exposition in this text and corresponding model syntax available electronically, we detail an alternative statistical "blueprint" to enhance future violence research efforts using vignette methodology. Aggr. Behav. 43:60-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. TPSLVM: a dimensionality reduction algorithm based on thin plate splines.

    PubMed

    Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming

    2014-10-01

    Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.

  18. Heteroscedastic Latent Trait Models for Dichotomous Data.

    PubMed

    Molenaar, Dylan

    2015-09-01

    Effort has been devoted to account for heteroscedasticity with respect to observed or latent moderator variables in item or test scores. For instance, in the multi-group generalized linear latent trait model, it could be tested whether the observed (polychoric) covariance matrix differs across the levels of an observed moderator variable. In the case that heteroscedasticity arises across the latent trait itself, existing models commonly distinguish between heteroscedastic residuals and a skewed trait distribution. These models have valuable applications in intelligence, personality and psychopathology research. However, existing approaches are only limited to continuous and polytomous data, while dichotomous data are common in intelligence and psychopathology research. Therefore, in present paper, a heteroscedastic latent trait model is presented for dichotomous data. The model is studied in a simulation study, and applied to data pertaining alcohol use and cognitive ability.

  19. Estimating and Visualizing Nonlinear Relations among Latent Variables: A Semiparametric Approach

    ERIC Educational Resources Information Center

    Pek, Jolynn; Sterba, Sonya K.; Kok, Bethany E.; Bauer, Daniel J.

    2009-01-01

    The graphical presentation of any scientific finding enhances its description, interpretation, and evaluation. Research involving latent variables is no exception, especially when potential nonlinear effects are suspect. This article has multiple aims. First, it provides a nontechnical overview of a semiparametric approach to modeling nonlinear…

  20. Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders

    2007-01-01

    Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models,…

  1. Meta-Analysis of Scale Reliability Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2013-01-01

    A latent variable modeling approach is outlined that can be used for meta-analysis of reliability coefficients of multicomponent measuring instruments. Important limitations of efforts to combine composite reliability findings across multiple studies are initially pointed out. A reliability synthesis procedure is discussed that is based on…

  2. Structural basis for the development of SARS 3CL protease inhibitors from a peptide mimic to an aza-decaline scaffold.

    PubMed

    Teruya, Kenta; Hattori, Yasunao; Shimamoto, Yasuhiro; Kobayashi, Kazuya; Sanjoh, Akira; Nakagawa, Atsushi; Yamashita, Eiki; Akaji, Kenichi

    2016-11-04

    Design of inhibitors against severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL(pro) ) is a potentially important approach to fight against SARS. We have developed several synthetic inhibitors by structure-based drug design. In this report, we reveal two crystal structures of SARS 3CL(pro) complexed with two new inhibitors based on our previous work. These structures combined with six crystal structures complexed with a series of related ligands reported by us are collectively analyzed. To these eight complexes, the structural basis for inhibitor binding was analyzed by the COMBINE method, which is a chemometrical analysis optimized for the protein-ligand complex. The analysis revealed that the first two latent variables gave a cumulative contribution ratio of r(2)  = 0.971. Interestingly, scores using the second latent variables for each complex were strongly correlated with root mean square deviations (RMSDs) of side-chain heavy atoms of Met(49) from those of the intact crystal structure of SARS-3CL(pro) (r = 0.77) enlarging the S2 pocket. The substantial contribution of this side chain (∼10%) for the explanation of pIC50 s was dependent on stereochemistry and the chemical structure of the ligand adapted to the S2 pocket of the protease. Thus, starting from a substrate mimic inhibitor, a design for a central scaffold for a low molecular weight inhibitor was evaluated to develop a further potent inhibitor. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 391-403, 2016. © 2015 Wiley Periodicals, Inc.

  3. Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling.

    PubMed

    Ding, Meng; Fan, Guolian

    2015-11-01

    We present new multilayer joint gait-pose manifolds (multilayer JGPMs) for complex human gait motion modeling, where three latent variables are defined jointly in a low-dimensional manifold to represent a variety of body configurations. Specifically, the pose variable (along the pose manifold) denotes a specific stage in a walking cycle; the gait variable (along the gait manifold) represents different walking styles; and the linear scale variable characterizes the maximum stride in a walking cycle. We discuss two kinds of topological priors for coupling the pose and gait manifolds, i.e., cylindrical and toroidal, to examine their effectiveness and suitability for motion modeling. We resort to a topologically-constrained Gaussian process (GP) latent variable model to learn the multilayer JGPMs where two new techniques are introduced to facilitate model learning under limited training data. First is training data diversification that creates a set of simulated motion data with different strides. Second is the topology-aware local learning to speed up model learning by taking advantage of the local topological structure. The experimental results on the Carnegie Mellon University motion capture data demonstrate the advantages of our proposed multilayer models over several existing GP-based motion models in terms of the overall performance of human gait motion modeling.

  4. The Relationship Between Executive Functions and Language Abilities in Children: A Latent Variables Approach

    PubMed Central

    Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M.; Weismer, Susan Ellis

    2017-01-01

    Purpose We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Method Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF components, inhibition, updating, and task-shifting, were each indexed using 2 nonverbal tasks. A latent variables approach was used to extract latent scores that represented each EF construct. Children were also administered common standardized language measures. Multiple regression analyses were conducted to examine the relationship between EF and language skills. Results Nonverbal updating was associated with the Receptive Language Index on the Clinical Evaluation of Language Fundamentals–Fourth Edition (CELF-4). When composites denoting lexical–semantic and syntactic abilities were derived, nonverbal inhibition (but not shifting or updating) was found to predict children's syntactic abilities. These relationships held when the effects of age, IQ, and socioeconomic status were controlled. Conclusions The study makes a methodological contribution by explicating a method by which researchers can use the latent variables approach when measuring EF performance in school-age children. The study makes a theoretical and a clinical contribution by suggesting that language performance may be related to domain-general EFs. PMID:28306755

  5. The Relationship Between Executive Functions and Language Abilities in Children: A Latent Variables Approach.

    PubMed

    Kaushanskaya, Margarita; Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M; Weismer, Susan Ellis

    2017-04-14

    We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF components, inhibition, updating, and task-shifting, were each indexed using 2 nonverbal tasks. A latent variables approach was used to extract latent scores that represented each EF construct. Children were also administered common standardized language measures. Multiple regression analyses were conducted to examine the relationship between EF and language skills. Nonverbal updating was associated with the Receptive Language Index on the Clinical Evaluation of Language Fundamentals-Fourth Edition (CELF-4). When composites denoting lexical-semantic and syntactic abilities were derived, nonverbal inhibition (but not shifting or updating) was found to predict children's syntactic abilities. These relationships held when the effects of age, IQ, and socioeconomic status were controlled. The study makes a methodological contribution by explicating a method by which researchers can use the latent variables approach when measuring EF performance in school-age children. The study makes a theoretical and a clinical contribution by suggesting that language performance may be related to domain-general EFs.

  6. Cognitive indicators of social anxiety in youth: a structural equation analysis.

    PubMed

    Rudy, Brittany M; Davis, Thompson E; Matthews, Russell A

    2014-01-01

    Previous studies have demonstrated significant relationships among various cognitive variables such as negative cognition, self-efficacy, and social anxiety. Unfortunately, few studies focus on the role of cognition among youth, and researchers often fail to use domain-specific measures when examining cognitive variables. Therefore, the purpose of the present study was to examine domain-specific cognitive variables (i.e., socially oriented negative self-referent cognition and social self-efficacy) and their relationships to social anxiety in children and adolescents using structural equation modeling techniques. A community sample of children and adolescents (n=245; 55.9% female; 83.3% Caucasian, 9.4% African American, 2% Asian, 2% Hispanic, 2% "other," and 1.2% not reported) completed questionnaires assessing social cognition and social anxiety symptomology. Three latent variables were created to examine the constructs of socially oriented negative self-referent cognition (as measured by the SONAS scale), social self-efficacy (as measured by the SEQSS-C), and social anxiety (as measured by the SPAI-C and the Brief SA). The resulting measurement model of latent variables fit the data well. Additionally, consistent with the study hypothesis, results indicated that social self-efficacy likely mediates the relationship between socially oriented negative self-referent cognition and social anxiety, and socially oriented negative self-referent cognition yields significant direct and indirect effects on social anxiety. These findings indicate that socially oriented negative cognitions are associated with youth's beliefs about social abilities and the experience of social anxiety. Future directions for research and study limitations, including use of cross-sectional data, are discussed. © 2013.

  7. Bayes Factor Covariance Testing in Item Response Models.

    PubMed

    Fox, Jean-Paul; Mulder, Joris; Sinharay, Sandip

    2017-12-01

    Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning the underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a unidimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated by testing the covariance components. The posterior distribution of common covariance components is obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This posterior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes factor tests have good properties for testing the underlying covariance structure of binary response data. The method is illustrated with two real data studies.

  8. Impact of marriage on HIV/AIDS risk behaviors among impoverished, at-risk couples: a multilevel latent variable approach.

    PubMed

    Stein, Judith A; Nyamathi, Adeline; Ullman, Jodie B; Bentler, Peter M

    2007-01-01

    Studies among normative samples generally demonstrate a positive impact of marriage on health behaviors and other related attitudes. In this study, we examine the impact of marriage on HIV/AIDS risk behaviors and attitudes among impoverished, highly stressed, homeless couples, many with severe substance abuse problems. A multilevel analysis of 368 high-risk sexually intimate married and unmarried heterosexual couples assessed individual and couple-level effects on social support, substance use problems, HIV/AIDS knowledge, perceived HIV/AIDS risk, needle-sharing, condom use, multiple sex partners, and HIV/AIDS testing. More variance was explained in the protective and risk variables by couple-level latent variable predictors than by individual latent variable predictors, although some gender effects were found (e.g., more alcohol problems among men). The couple-level variable of marriage predicted lower perceived risk, less deviant social support, and fewer sex partners but predicted more needle-sharing.

  9. Associations between the Classroom Learning Environment and Student Engagement in Learning 2: A Structural Equation Modelling Approach

    ERIC Educational Resources Information Center

    Harbaugh, Allen G.; Cavanagh, Robert F.

    2012-01-01

    This report is about the second of two phases in an investigation into associations between student engagement in classroom learning and the classroom-learning environment. Whereas the first phase utilized Rasch modelling (Cavanagh, 2012), this report uses latent variable modelling to explore the data. The investigations in both phases of this…

  10. A Latent Variable Approach to Determining the Structure of Executive Function in Preschool Children

    ERIC Educational Resources Information Center

    Miller, Michael R.; Giesbrecht, Gerald F.; Muller, Ulrich; McInerney, Robert J.; Kerns, Kimberly A.

    2012-01-01

    The composition of executive function (EF) in preschool children was examined using confirmatory factor analysis (CFA). A sample of 129 children between 3 and 5 years of age completed a battery of EF tasks. Using performance indicators of working memory and inhibition similar to previous CFA studies with preschoolers, we replicated a unitary EF…

  11. The Mediating Role of Mind Wandering in the Relationship between Working Memory Capacity and Reading Comprehension

    ERIC Educational Resources Information Center

    McVay, Jennifer C.

    2010-01-01

    The primary goal of this study was to investigate the mediating role of mind wandering in the relationship between working memory capacity (WMC) and reading comprehension as predicted by the executive-attention theory of WMC (e.g., Kane & Engle, 2003). I used a latent-variable, structural-equation-model approach with three WMC span tasks, seven…

  12. Latent Structure of Motor Abilities in Pre-School Children

    ERIC Educational Resources Information Center

    Vatroslav, Horvat

    2011-01-01

    The theoretical and practical knowledge which have so far been acquired through work with pre-school children pointed to the conclusion that the structures of the latent dimensions of the motor abilities differ greatly from such a structure, in pre-school children and adults alike. Establishing the latent structure of the motor abilities in…

  13. Psychometrics in Psychological Research: Role Model or Partner in Science?

    ERIC Educational Resources Information Center

    Sijtsma, Klaas

    2006-01-01

    This is a reaction to Borsboom's (2006) discussion paper on the issue that psychology takes so little notice of the modern developments in psychometrics, in particular, latent variable methods. Contrary to Borsboom, it is argued that latent variables are summaries of interesting data properties, that construct validation should involve studying…

  14. An Alternative Approach for Nonlinear Latent Variable Models

    ERIC Educational Resources Information Center

    Mooijaart, Ab; Bentler, Peter M.

    2010-01-01

    In the last decades there has been an increasing interest in nonlinear latent variable models. Since the seminal paper of Kenny and Judd, several methods have been proposed for dealing with these kinds of models. This article introduces an alternative approach. The methodology involves fitting some third-order moments in addition to the means and…

  15. Aptitude, Achievement and Competence in Medicine: A Latent Variable Path Model

    ERIC Educational Resources Information Center

    Collin, V. Terri; Violato, Claudio; Hecker, Kent

    2009-01-01

    To develop and test a latent variable path model of general achievement, aptitude for medicine and competence in medicine employing data from the Medical College Admission Test (MCAT), pre-medical undergraduate grade point average (UGPA) and demographic characteristics for competence in pre-clinical and measures of competence (United States…

  16. Evaluation of Reliability Coefficients for Two-Level Models via Latent Variable Analysis

    ERIC Educational Resources Information Center

    Raykov, Tenko; Penev, Spiridon

    2010-01-01

    A latent variable analysis procedure for evaluation of reliability coefficients for 2-level models is outlined. The method provides point and interval estimates of group means' reliability, overall reliability of means, and conditional reliability. In addition, the approach can be used to test simple hypotheses about these parameters. The…

  17. Evaluation of Scale Reliability with Binary Measures Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; Asparouhov, Tihomir

    2010-01-01

    A method for interval estimation of scale reliability with discrete data is outlined. The approach is applicable with multi-item instruments consisting of binary measures, and is developed within the latent variable modeling methodology. The procedure is useful for evaluation of consistency of single measures and of sum scores from item sets…

  18. Estimation of Latent Group Effects: Psychometric Technical Report No. 2.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.

    Conventional methods of multivariate normal analysis do not apply when the variables of interest are not observed directly, but must be inferred from fallible or incomplete data. For example, responses to mental test items may depend upon latent aptitude variables, which modeled in turn as functions of demographic effects in the population. A…

  19. Global Convergence of the EM Algorithm for Unconstrained Latent Variable Models with Categorical Indicators

    ERIC Educational Resources Information Center

    Weissman, Alexander

    2013-01-01

    Convergence of the expectation-maximization (EM) algorithm to a global optimum of the marginal log likelihood function for unconstrained latent variable models with categorical indicators is presented. The sufficient conditions under which global convergence of the EM algorithm is attainable are provided in an information-theoretic context by…

  20. Intraclass Correlation Coefficients in Hierarchical Designs: Evaluation Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2011-01-01

    Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…

  1. Evaluation of Weighted Scale Reliability and Criterion Validity: A Latent Variable Modeling Approach

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2007-01-01

    A method is outlined for evaluating the reliability and criterion validity of weighted scales based on sets of unidimensional measures. The approach is developed within the framework of latent variable modeling methodology and is useful for point and interval estimation of these measurement quality coefficients in counseling and education…

  2. Multilevel Latent Class Analysis: Parametric and Nonparametric Models

    ERIC Educational Resources Information Center

    Finch, W. Holmes; French, Brian F.

    2014-01-01

    Latent class analysis is an analytic technique often used in educational and psychological research to identify meaningful groups of individuals within a larger heterogeneous population based on a set of variables. This technique is flexible, encompassing not only a static set of variables but also longitudinal data in the form of growth mixture…

  3. Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion

    NASA Astrophysics Data System (ADS)

    Hamid, M. R. Ab; Sami, W.; Mohmad Sidek, M. H.

    2017-09-01

    Assessment of discriminant validity is a must in any research that involves latent variables for the prevention of multicollinearity issues. Fornell and Larcker criterion is the most widely used method for this purpose. However, a new method has emerged for establishing the discriminant validity assessment through heterotrait-monotrait (HTMT) ratio of correlations method. Therefore, this article presents the results of discriminant validity assessment using these methods. Data from previous study was used that involved 429 respondents for empirical validation of value-based excellence model in higher education institutions (HEI) in Malaysia. From the analysis, the convergent, divergent and discriminant validity were established and admissible using Fornell and Larcker criterion. However, the discriminant validity is an issue when employing the HTMT criterion. This shows that the latent variables under study faced the issue of multicollinearity and should be looked into for further details. This also implied that the HTMT criterion is a stringent measure that could detect the possible indiscriminant among the latent variables. In conclusion, the instrument which consisted of six latent variables was still lacking in terms of discriminant validity and should be explored further.

  4. Spurious Latent Classes in the Mixture Rasch Model

    ERIC Educational Resources Information Center

    Alexeev, Natalia; Templin, Jonathan; Cohen, Allan S.

    2011-01-01

    Mixture Rasch models have been used to study a number of psychometric issues such as goodness of fit, response strategy differences, strategy shifts, and multidimensionality. Although these models offer the potential for improving understanding of the latent variables being measured, under some conditions overextraction of latent classes may…

  5. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

    ERIC Educational Resources Information Center

    Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

    2013-01-01

    Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

  6. The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning.

    PubMed

    Kane, Michael J; Hambrick, David Z; Tuholski, Stephen W; Wilhelm, Oliver; Payne, Tabitha W; Engle, Randall W

    2004-06-01

    A latent-variable study examined whether verbal and visuospatial working memory (WM) capacity measures reflect a primarily domain-general construct by testing 236 participants in 3 span tests each of verbal WM. visuospatial WM, verbal short-term memory (STM), and visuospatial STM. as well as in tests of verbal and spatial reasoning and general fluid intelligence (Gf). Confirmatory' factor analyses and structural equation models indicated that the WM tasks largely reflected a domain-general factor, whereas STM tasks, based on the same stimuli as the WM tasks, were much more domain specific. The WM construct was a strong predictor of Gf and a weaker predictor of domain-specific reasoning, and the reverse was true for the STM construct. The findings support a domain-general view of WM capacity, in which executive-attention processes drive the broad predictive utility of WM span measures, and domain-specific storage and rehearsal processes relate more strongly to domain-specific aspects of complex cognition. ((c) 2004 APA, all rights reserved)

  7. Latent Constructs in Psychosocial Factors Associated with Cardiovascular Disease: An Examination by Race and Sex

    PubMed Central

    Clark, Cari Jo; Henderson, Kimberly M.; de Leon, Carlos F. Mendes; Guo, Hongfei; Lunos, Scott; Evans, Denis A.; Everson-Rose, Susan A.

    2012-01-01

    This study examines race and sex differences in the latent structure of 10 psychosocial measures and the association of identified factors with self-reported history of coronary heart disease (CHD). Participants were 4,128 older adults from the Chicago Health and Aging Project. Exploratory factor analysis (EFA) with oblique geomin rotation was used to identify latent factors among the psychosocial measures. Multi-group comparisons of the EFA model were conducted using exploratory structural equation modeling to test for measurement invariance across race and sex subgroups. A factor-based scale score was created for invariant factor(s). Logistic regression was used to test the relationship between the factor score(s) and CHD adjusting for relevant confounders. Effect modification of the relationship by race–sex subgroup was tested. A two-factor model fit the data well (comparative fit index = 0.986; Tucker–Lewis index = 0.969; root mean square error of approximation = 0.039). Depressive symptoms, neuroticism, perceived stress, and low life satisfaction loaded on Factor I. Social engagement, spirituality, social networks, and extraversion loaded on Factor II. Only Factor I, re-named distress, showed measurement invariance across subgroups. Distress was associated with a 37% increased odds of self-reported CHD (odds ratio: 1.37; 95% confidence intervals: 1.25, 1.50; p-value < 0.0001). This effect did not differ by race or sex (interaction p-value = 0.43). This study identified two underlying latent constructs among a large range of psychosocial variables; only one, distress, was validly measured across race–sex subgroups. This construct was robustly related to prevalent CHD, highlighting the potential importance of latent constructs as predictors of cardiovascular disease. PMID:22347196

  8. Mixture IRT Model with a Higher-Order Structure for Latent Traits

    ERIC Educational Resources Information Center

    Huang, Hung-Yu

    2017-01-01

    Mixture item response theory (IRT) models have been suggested as an efficient method of detecting the different response patterns derived from latent classes when developing a test. In testing situations, multiple latent traits measured by a battery of tests can exhibit a higher-order structure, and mixtures of latent classes may occur on…

  9. Cross-modal learning to rank via latent joint representation.

    PubMed

    Wu, Fei; Jiang, Xinyang; Li, Xi; Tang, Siliang; Lu, Weiming; Zhang, Zhongfei; Zhuang, Yueting

    2015-05-01

    Cross-modal ranking is a research topic that is imperative to many applications involving multimodal data. Discovering a joint representation for multimodal data and learning a ranking function are essential in order to boost the cross-media retrieval (i.e., image-query-text or text-query-image). In this paper, we propose an approach to discover the latent joint representation of pairs of multimodal data (e.g., pairs of an image query and a text document) via a conditional random field and structural learning in a listwise ranking manner. We call this approach cross-modal learning to rank via latent joint representation (CML²R). In CML²R, the correlations between multimodal data are captured in terms of their sharing hidden variables (e.g., topics), and a hidden-topic-driven discriminative ranking function is learned in a listwise ranking manner. The experiments show that the proposed approach achieves a good performance in cross-media retrieval and meanwhile has the capability to learn the discriminative representation of multimodal data.

  10. A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.

    2012-01-01

    A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…

  11. The Relationship between Executive Functions and Language Abilities in Children: A Latent Variables Approach

    ERIC Educational Resources Information Center

    Kaushanskaya, Margarita; Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M.; Weismer, Susan Ellis

    2017-01-01

    Purpose: We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Method: Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF…

  12. Interrater Agreement Evaluation: A Latent Variable Modeling Approach

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; von Eye, Alexander; Marcoulides, George A.

    2013-01-01

    A latent variable modeling method for evaluation of interrater agreement is outlined. The procedure is useful for point and interval estimation of the degree of agreement among a given set of judges evaluating a group of targets. In addition, the approach allows one to test for identity in underlying thresholds across raters as well as to identify…

  13. Cognitive Preconditions of Early Reading and Spelling: A Latent-Variable Approach with Longitudinal Data

    ERIC Educational Resources Information Center

    Preßler, Anna-Lena; Könen, Tanja; Hasselhorn, Marcus; Krajewski, Kristin

    2014-01-01

    The aim of the present study was to empirically disentangle the interdependencies of the impact of nonverbal intelligence, working memory capacities, and phonological processing skills on early reading decoding and spelling within a latent variable approach. In a sample of 127 children, these cognitive preconditions were assessed before the onset…

  14. An Alternative Two Stage Least Squares (2SLS) Estimator for Latent Variable Equations.

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.

    1996-01-01

    An alternative two-stage least squares (2SLS) estimator of the parameters in LISREL type models is proposed and contrasted with existing estimators. The new 2SLS estimator allows observed and latent variables to originate from nonnormal distributions, is consistent, has a known asymptotic covariance matrix, and can be estimated with standard…

  15. Classical Item Analysis Using Latent Variable Modeling: A Note on a Direct Evaluation Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2011-01-01

    A directly applicable latent variable modeling procedure for classical item analysis is outlined. The method allows one to point and interval estimate item difficulty, item correlations, and item-total correlations for composites consisting of categorical items. The approach is readily employed in empirical research and as a by-product permits…

  16. A Direct Latent Variable Modeling Based Method for Point and Interval Estimation of Coefficient Alpha

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A direct approach to point and interval estimation of Cronbach's coefficient alpha for multiple component measuring instruments is outlined. The procedure is based on a latent variable modeling application with widely circulated software. As a by-product, using sample data the method permits ascertaining whether the population discrepancy…

  17. Assets as a Socioeconomic Status Index: Categorical Principal Components Analysis vs. Latent Class Analysis.

    PubMed

    Sartipi, Majid; Nedjat, Saharnaz; Mansournia, Mohammad Ali; Baigi, Vali; Fotouhi, Akbar

    2016-11-01

    Some variables like Socioeconomic Status (SES) cannot be directly measured, instead, so-called 'latent variables' are measured indirectly through calculating tangible items. There are different methods for measuring latent variables such as data reduction methods e.g. Principal Components Analysis (PCA) and Latent Class Analysis (LCA). The purpose of our study was to measure assets index- as a representative of SES- through two methods of Non-Linear PCA (NLPCA) and LCA, and to compare them for choosing the most appropriate model. This was a cross sectional study in which 1995 respondents filled the questionnaires about their assets in Tehran. The data were analyzed by SPSS 19 (CATPCA command) and SAS 9.2 (PROC LCA command) to estimate their socioeconomic status. The results were compared based on the Intra-class Correlation Coefficient (ICC). The 6 derived classes from LCA based on BIC, were highly consistent with the 6 classes from CATPCA (Categorical PCA) (ICC = 0.87, 95%CI: 0.86 - 0.88). There is no gold standard to measure SES. Therefore, it is not possible to definitely say that a specific method is better than another one. LCA is a complicated method that presents detailed information about latent variables and required one assumption (local independency), while NLPCA is a simple method, which requires more assumptions. Generally, NLPCA seems to be an acceptable method of analysis because of its simplicity and high agreement with LCA.

  18. Variable-Length Computerized Adaptive Testing Using the Higher Order DINA Model

    ERIC Educational Resources Information Center

    Hsu, Chia-Ling; Wang, Wen-Chung

    2015-01-01

    Cognitive diagnosis models provide profile information about a set of latent binary attributes, whereas item response models yield a summary report on a latent continuous trait. To utilize the advantages of both models, higher order cognitive diagnosis models were developed in which information about both latent binary attributes and latent…

  19. Testing Manifest Monotonicity Using Order-Constrained Statistical Inference

    ERIC Educational Resources Information Center

    Tijmstra, Jesper; Hessen, David J.; van der Heijden, Peter G. M.; Sijtsma, Klaas

    2013-01-01

    Most dichotomous item response models share the assumption of latent monotonicity, which states that the probability of a positive response to an item is a nondecreasing function of a latent variable intended to be measured. Latent monotonicity cannot be evaluated directly, but it implies manifest monotonicity across a variety of observed scores,…

  20. The Effect of Latent Binary Variables on the Uncertainty of the Prediction of a Dichotomous Outcome Using Logistic Regression Based Propensity Score Matching.

    PubMed

    Szekér, Szabolcs; Vathy-Fogarassy, Ágnes

    2018-01-01

    Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.

  1. [Factors affecting maternal physical activities: an analysis based on the structural equation modeling].

    PubMed

    Liu, Yi; Luo, Bi-Ru

    2016-11-20

    To analyze the factors affecting maternal physical activities at different stages among pregnant women. Self-designed questionnaires were used to investigate the physical activities of women in different stages, including 650 in the first, 650 in the second, and 750 in the third trimester of pregnancy. The factors affecting maternal physical activities were analyzed using the structural equation model that comprised 4 latent variables (attitude, norm, behavioral attention and behavior) with observed variables that matched the latent variables. The participants ranged from 18 to 35 years of age. The women and their husbands, but not their mothers or mothers-in-law, were all well educated. The caregiver during pregnancy was mostly the mother followed by the husband. For traveling, the women in the first, second and third trimesters preferred walking, bus, and personal escort, respectively; the main physical activity was walking in all trimesters, and the women in different trimester were mostly sedentary, a greater intensity of exercise was associated with less exercise time. Structural equation modeling (SEM) analysis showed that the physical activities of pregnant women was affected by behavioral intention (with standardized regression coefficient of 0.372); attitude and subjective norms affected physical activity by indirectly influencing the behavior intention (standardized regression coefficients of 0.140 and 0.669). The pregnant women in different stages have inappropriate physical activities with insufficient exercise time and intensity. The subjective norms affects the physical activities of the pregnant women by influencing their attitudes and behavior intention indirectly, suggesting the need of health education of the caregivers during pregnancy.

  2. A Latent Variable Investigation of the Phonological Awareness Literacy Screening-Kindergarten Assessment: Construct Identification and Multigroup Comparisons between Spanish-Speaking English-Language Learners (ELLs) and Non-ELL Students

    ERIC Educational Resources Information Center

    Huang, Francis L.; Konold, Timothy R.

    2014-01-01

    Psychometric properties of the Phonological Awareness Literacy Screening for Kindergarten (PALS-K) instrument were investigated in a sample of 2844 first-time public school kindergarteners. PALS-K is a widely used English literacy screening assessment. Exploratory factor analysis revealed a theoretically defensible measurement structure that was…

  3. Longitudinal Analyses of a Hierarchical Model of Peer Social Competence for Preschool Children: Structural Fidelity and External Correlates

    ERIC Educational Resources Information Center

    Shin, Nana; Vaughn, Brian E.; Kim, Mina; Krzysik, Lisa; Bost, Kelly K.; McBride, Brent; Santos, Antonio J.; Peceguina, Ines; Coppola, Gabrielle

    2011-01-01

    Achieving consensus on the definition and measurement of social competence (SC) for preschool children has proven difficult in the developmental sciences. We tested a hierarchical model in which SC is assumed to be a second-order latent variable by using longitudinal data (N = 345). We also tested the degree to which peer SC at Time 1 predicted…

  4. Intra-Sensor Variability Study of two BLS 900 Scintillometers

    NASA Astrophysics Data System (ADS)

    Thiem, Christina; Mauder, Matthias; Chwala, Christian; Bernhardt, Matthias; Kunstmann, Harald; Schulz, Karsten

    2017-04-01

    The latent heat flux is an important validation parameter for satellite measurements and a wide variety of hydrological and meteorological numerical models. Scintillometers can provide references for such validations due to their ability to spatially integrate turbulent fluxes. Large-aperture near-infrared scintillometers are capable of determining spatial averages of the structure parameter of temperature and the sensible heat flux over path lengths up to 5 km. One way to derive both sensible and latent heat flux is to use a combined optical and microwave scintillometer system. With only an optical scintillometer and additional measurements of ground heat flux and net radiation, the latent heat flux can be calculated from the residual of the energy balance. Studies have shown, however, that in certain cases measurements from the same types of scintillometers differ due to minute differences in construction. In order to prove the robustness of the measurements of two near-infrared scintillometers for future studies, we compared their observations and validated them by comparison to the sensible heat flux derived from an eddy covariance system. In this study two boundary layer scintillometers (BLS; BLS900, Scintec, Rottenburg, Germany) were installed in a central European valley as part of the TERENO preAlpine observatory during the years 2013 and 2015. An independent measurement of the sensible and latent heat flux was obtained from a permanent eddy covariance system installed in the vicinity of the scintillometer path. The structure parameter of the refractive index and average sensible heat fluxes of both BLS units were compared with each other. In general, the BLS structure parameters correlated very well and the high correlation between the BLS-derived sensible heat fluxes and the eddy covariance-derived sensible heat fluxes encouraged further application of these scintillometers in separate experiments.

  5. Bayesian latent structure modeling of walking behavior in a physical activity intervention

    PubMed Central

    Lawson, Andrew B; Ellerbe, Caitlyn; Carroll, Rachel; Alia, Kassandra; Coulon, Sandra; Wilson, Dawn K; VanHorn, M Lee; St George, Sara M

    2017-01-01

    The analysis of walking behavior in a physical activity intervention is considered. A Bayesian latent structure modeling approach is proposed whereby the ability and willingness of participants is modeled via latent effects. The dropout process is jointly modeled via a linked survival model. Computational issues are addressed via posterior sampling and a simulated evaluation of the longitudinal model’s ability to recover latent structure and predictor effects is considered. We evaluate the effect of a variety of socio-psychological and spatial neighborhood predictors on the propensity to walk and the estimation of latent ability and willingness in the full study. PMID:24741000

  6. Growth Modeling with Non-Ignorable Dropout: Alternative Analyses of the STAR*D Antidepressant Trial

    PubMed Central

    Muthén, Bengt; Asparouhov, Tihomir; Hunter, Aimee; Leuchter, Andrew

    2011-01-01

    This paper uses a general latent variable framework to study a series of models for non-ignorable missingness due to dropout. Non-ignorable missing data modeling acknowledges that missingness may depend on not only covariates and observed outcomes at previous time points as with the standard missing at random (MAR) assumption, but also on latent variables such as values that would have been observed (missing outcomes), developmental trends (growth factors), and qualitatively different types of development (latent trajectory classes). These alternative predictors of missing data can be explored in a general latent variable framework using the Mplus program. A flexible new model uses an extended pattern-mixture approach where missingness is a function of latent dropout classes in combination with growth mixture modeling using latent trajectory classes. A new selection model allows not only an influence of the outcomes on missingness, but allows this influence to vary across latent trajectory classes. Recommendations are given for choosing models. The missing data models are applied to longitudinal data from STAR*D, the largest antidepressant clinical trial in the U.S. to date. Despite the importance of this trial, STAR*D growth model analyses using non-ignorable missing data techniques have not been explored until now. The STAR*D data are shown to feature distinct trajectory classes, including a low class corresponding to substantial improvement in depression, a minority class with a U-shaped curve corresponding to transient improvement, and a high class corresponding to no improvement. The analyses provide a new way to assess drug efficiency in the presence of dropout. PMID:21381817

  7. Gray matter correlates of creative potential: A latent variable voxel-based morphometry study

    PubMed Central

    Jauk, Emanuel; Neubauer, Aljoscha C.; Dunst, Beate; Fink, Andreas; Benedek, Mathias

    2015-01-01

    There is increasing research interest in the structural and functional brain correlates underlying creative potential. Recent investigations found that interindividual differences in creative potential relate to volumetric differences in brain regions belonging to the default mode network, such as the precuneus. Yet, the complex interplay between creative potential, intelligence, and personality traits and their respective neural bases is still under debate. We investigated regional gray matter volume (rGMV) differences that can be associated with creative potential in a heterogeneous sample of N = 135 individuals using voxel-based morphometry (VBM). By means of latent variable modeling and consideration of recent psychometric advancements in creativity research, we sought to disentangle the effects of ideational originality and fluency as two independent indicators of creative potential. Intelligence and openness to experience were considered as common covariates of creative potential. The results confirmed and extended previous research: rGMV in the precuneus was associated with ideational originality, but not with ideational fluency. In addition, we found ideational originality to be correlated with rGMV in the caudate nucleus. The results indicate that the ability to produce original ideas is tied to default-mode as well as dopaminergic structures. These structural brain correlates of ideational originality were apparent throughout the whole range of intellectual ability and thus not moderated by intelligence. In contrast, structural correlates of ideational fluency, a quantitative marker of creative potential, were observed only in lower intelligent individuals in the cuneus/lingual gyrus. PMID:25676914

  8. Partial Granger causality--eliminating exogenous inputs and latent variables.

    PubMed

    Guo, Shuixia; Seth, Anil K; Kendrick, Keith M; Zhou, Cong; Feng, Jianfeng

    2008-07-15

    Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.

  9. The Fixed-Links Model in Combination with the Polynomial Function as a Tool for Investigating Choice Reaction Time Data

    ERIC Educational Resources Information Center

    Schweizer, Karl

    2006-01-01

    A model with fixed relations between manifest and latent variables is presented for investigating choice reaction time data. The numbers for fixation originate from the polynomial function. Two options are considered: the component-based (1 latent variable for each component of the polynomial function) and composite-based options (1 latent…

  10. Estimation of Contextual Effects through Nonlinear Multilevel Latent Variable Modeling with a Metropolis-Hastings Robbins-Monro Algorithm

    ERIC Educational Resources Information Center

    Yang, Ji Seung; Cai, Li

    2014-01-01

    The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…

  11. Do Two or More Multicomponent Instruments Measure the Same Construct? Testing Construct Congruence Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Tong, Bing

    2016-01-01

    A latent variable modeling procedure is discussed that can be used to test if two or more homogeneous multicomponent instruments with distinct components are measuring the same underlying construct. The method is widely applicable in scale construction and development research and can also be of special interest in construct validation studies.…

  12. Improvement in latent variable indirect response modeling of multiple categorical clinical endpoints: application to modeling of guselkumab treatment effects in psoriatic patients.

    PubMed

    Hu, Chuanpu; Randazzo, Bruce; Sharma, Amarnath; Zhou, Honghui

    2017-10-01

    Exposure-response modeling plays an important role in optimizing dose and dosing regimens during clinical drug development. The modeling of multiple endpoints is made possible in part by recent progress in latent variable indirect response (IDR) modeling for ordered categorical endpoints. This manuscript aims to investigate the level of improvement achievable by jointly modeling two such endpoints in the latent variable IDR modeling framework through the sharing of model parameters. This is illustrated with an application to the exposure-response of guselkumab, a human IgG1 monoclonal antibody in clinical development that blocks IL-23. A Phase 2b study was conducted in 238 patients with psoriasis for which disease severity was assessed using Psoriasis Area and Severity Index (PASI) and Physician's Global Assessment (PGA) scores. A latent variable Type I IDR model was developed to evaluate the therapeutic effect of guselkumab dosing on 75, 90 and 100% improvement of PASI scores from baseline and PGA scores, with placebo effect empirically modeled. The results showed that the joint model is able to describe the observed data better with fewer parameters compared with the common approach of separately modeling the endpoints.

  13. On the Latent Variable Interpretation in Sum-Product Networks.

    PubMed

    Peharz, Robert; Gens, Robert; Pernkopf, Franz; Domingos, Pedro

    2017-10-01

    One of the central themes in Sum-Product networks (SPNs) is the interpretation of sum nodes as marginalized latent variables (LVs). This interpretation yields an increased syntactic or semantic structure, allows the application of the EM algorithm and to efficiently perform MPE inference. In literature, the LV interpretation was justified by explicitly introducing the indicator variables corresponding to the LVs' states. However, as pointed out in this paper, this approach is in conflict with the completeness condition in SPNs and does not fully specify the probabilistic model. We propose a remedy for this problem by modifying the original approach for introducing the LVs, which we call SPN augmentation. We discuss conditional independencies in augmented SPNs, formally establish the probabilistic interpretation of the sum-weights and give an interpretation of augmented SPNs as Bayesian networks. Based on these results, we find a sound derivation of the EM algorithm for SPNs. Furthermore, the Viterbi-style algorithm for MPE proposed in literature was never proven to be correct. We show that this is indeed a correct algorithm, when applied to selective SPNs, and in particular when applied to augmented SPNs. Our theoretical results are confirmed in experiments on synthetic data and 103 real-world datasets.

  14. Evidence for the Continuous Latent Structure of Mania in the Epidemiologic Catchment Area from Multiple Latent Structure and Construct Validation Methodologies

    PubMed Central

    Prisciandaro, James J.; Roberts, John E.

    2011-01-01

    Background Although psychiatric diagnostic systems have conceptualized mania as a discrete phenomenon, appropriate latent structure investigations testing this conceptualization are lacking. In contrast to these diagnostic systems, several influential theories of mania have suggested a continuous conceptualization. The present study examined whether mania has a continuous or discrete latent structure using a comprehensive approach including taxometric, information-theoretic latent distribution modeling (ITLDM), and predictive validity methodologies in the Epidemiologic Catchment Area (ECA) study. Methods Eight dichotomous manic symptom items were submitted to a variety of latent structural analyses; including factor analyses, taxometric procedures, and ITLDM; in 10,105 ECA community participants. Additionally, a variety of continuous and discrete models of mania were compared in terms of their relative abilities to predict outcomes (i.e., health service utilization, internalizing and externalizing disorders, and suicidal behavior). Results Taxometric and ITLDM analyses consistently supported a continuous conceptualization of mania. In ITLDM analyses, a continuous model of mania demonstrated 6:52:1 odds over the best fitting latent class model of mania. Factor analyses suggested that the continuous structure of mania was best represented by a single latent factor. Predictive validity analyses demonstrated a consistent superior ability of continuous models of mania relative to discrete models. Conclusions The present study provided three independent lines of support for a continuous conceptualization of mania. The implications of a continuous model of mania are discussed. PMID:20507671

  15. Using Design-Based Latent Growth Curve Modeling with Cluster-Level Predictor to Address Dependency

    ERIC Educational Resources Information Center

    Wu, Jiun-Yu; Kwok, Oi-Man; Willson, Victor L.

    2014-01-01

    The authors compared the effects of using the true Multilevel Latent Growth Curve Model (MLGCM) with single-level regular and design-based Latent Growth Curve Models (LGCM) with or without the higher-level predictor on various criterion variables for multilevel longitudinal data. They found that random effect estimates were biased when the…

  16. A Vernacular for Linear Latent Growth Models

    ERIC Educational Resources Information Center

    Hancock, Gregory R.; Choi, Jaehwa

    2006-01-01

    In its most basic form, latent growth modeling (latent curve analysis) allows an assessment of individuals' change in a measured variable X over time. For simple linear models, as with other growth models, parameter estimates associated with the a construct (amount of X at a chosen temporal reference point) and b construct (growth in X per unit…

  17. A Latent Transition Analysis Model for Assessing Change in Cognitive Skills

    ERIC Educational Resources Information Center

    Li, Feiming; Cohen, Allan; Bottge, Brian; Templin, Jonathan

    2016-01-01

    Latent transition analysis (LTA) was initially developed to provide a means of measuring change in dynamic latent variables. In this article, we illustrate the use of a cognitive diagnostic model, the DINA model, as the measurement model in a LTA, thereby demonstrating a means of analyzing change in cognitive skills over time. An example is…

  18. Examining Measurement Invariance and Differential Item Functioning with Discrete Latent Construct Indicators: A Note on a Multiple Testing Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; Marcoulides, George A.; Li, Tatyana; Menold, Natalja

    2018-01-01

    A latent variable modeling method for studying measurement invariance when evaluating latent constructs with multiple binary or binary scored items with no guessing is outlined. The approach extends the continuous indicator procedure described by Raykov and colleagues, utilizes similarly the false discovery rate approach to multiple testing, and…

  19. Alexithymia and psychosocial problems among Italian preadolescents. A latent class analysis approach.

    PubMed

    Mannarini, Stefania; Balottin, Laura; Toldo, Irene; Gatta, Michela

    2016-10-01

    The study, conducted on Italian preadolscents aged 11 to 13 belonging to the general population, aims to investigate the relationship between the emotional functioning, namely, alexithymia, and the risk of developing behavioral and emotional problems measured using the Strength and Difficulty Questionnaire. The latent class analysis approach allowed to identify two latent variables, accounting for the internalizing (emotional symptoms and difficulties in emotional awareness) and for the externalizing problems (conduct problems and hyperactivity, problematic relationships with peers, poor prosocial behaviors and externally oriented thinking). The two latent variables featured two latent classes: the difficulty in dealing with problems and the strength to face problems that was representative of most of the healthy participants with specific gender differences. Along with the analysis of psychopathological behaviors, the study of resilience and strengths can prove to be a key step in order to develop valuable preventive approaches to tackle psychiatric disorders. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  20. A Taxonomy of Latent Structure Assumptions for Probability Matrix Decomposition Models.

    ERIC Educational Resources Information Center

    Meulders, Michel; De Boeck, Paul; Van Mechelen, Iven

    2003-01-01

    Proposed a taxonomy of latent structure assumptions for probability matrix decomposition (PMD) that includes the original PMD model and a three-way extension of the multiple classification latent class model. Simulation study results show the usefulness of the taxonomy. (SLD)

  1. Evaluating aggregate effects of rare and common variants in the 1000 Genomes Project exon sequencing data using latent variable structural equation modeling.

    PubMed

    Nock, Nl; Zhang, Lx

    2011-11-29

    Methods that can evaluate aggregate effects of rare and common variants are limited. Therefore, we applied a two-stage approach to evaluate aggregate gene effects in the 1000 Genomes Project data, which contain 24,487 single-nucleotide polymorphisms (SNPs) in 697 unrelated individuals from 7 populations. In stage 1, we identified potentially interesting genes (PIGs) as those having at least one SNP meeting Bonferroni correction using univariate, multiple regression models. In stage 2, we evaluate aggregate PIG effects on trait, Q1, by modeling each gene as a latent construct, which is defined by multiple common and rare variants, using the multivariate statistical framework of structural equation modeling (SEM). In stage 1, we found that PIGs varied markedly between a randomly selected replicate (replicate 137) and 100 other replicates, with the exception of FLT1. In stage 1, collapsing rare variants decreased false positives but increased false negatives. In stage 2, we developed a good-fitting SEM model that included all nine genes simulated to affect Q1 (FLT1, KDR, ARNT, ELAV4, FLT4, HIF1A, HIF3A, VEGFA, VEGFC) and found that FLT1 had the largest effect on Q1 (βstd = 0.33 ± 0.05). Using replicate 137 estimates as population values, we found that the mean relative bias in the parameters (loadings, paths, residuals) and their standard errors across 100 replicates was on average, less than 5%. Our latent variable SEM approach provides a viable framework for modeling aggregate effects of rare and common variants in multiple genes, but more elegant methods are needed in stage 1 to minimize type I and type II error.

  2. Validation of a Latent Construct for Dementia in a Population-Wide Dataset from Singapore.

    PubMed

    Peh, Chao Xu; Abdin, Edimansyah; Vaingankar, Janhavi A; Verma, Swapna; Chua, Boon Yiang; Sagayadevan, Vathsala; Seow, Esmond; Zhang, YunJue; Shahwan, Shazana; Ng, Li Ling; Prince, Martin; Chong, Siow Ann; Subramaniam, Mythily

    2017-01-01

    The latent variable δ has been proposed as a proxy for dementia. Previous validation studies have been conducted using convenience samples. It is currently unknown how δ performs in population-wide data. To validate δ in Singapore using population-wide epidemiological study data on persons aged 60 and above. δ was constructed using items from the Community Screening Instrument for Dementia (CSI'D) and World Health Organization Disability Assessment Schedule (WHODAS II). Confirmatory factor analysis (CFA) was conducted to examine δ model fit. Convergent validity was examined with the Clinical Dementia Rating scale (CDR) and GMS-AGECAT dementia. Divergent validity was examined with GMS-AGECAT depression. The δ model demonstrated fit to the data, χ2(df) = 249.71(55), p < 0.001, CFI = 0.990, TLI = 0.997, RMSEA = 0.037. Latent variable δ was significantly associated with CDR and GMS-AGECAT dementia (range: β= 0.32 to 0.63), and was not associated with GMS-AGECAT depression. Compared to unadjusted models, δ model fit was poor when adjusted for age, gender, ethnicity, and education. The study found some support for δ as a proxy for dementia in Singapore based on population data. Both convergent and divergent validity were established. In addition, the δ model structure appeared to be influenced by age, gender, ethnicity, and education covariates.

  3. Stress Responsivity and the Structure of Common Mental Disorders: Transdiagnostic Internalizing and Externalizing Dimensions are Associated with Contrasting Stress Appraisal Biases

    PubMed Central

    Conway, Christopher C.; Starr, Lisa R.; Espejo, Emmanuel P.; Brennan, Patricia A.; Hammen, Constance

    2016-01-01

    Biased stress appraisals critically relate to the origins and temporal course of many—perhaps most—forms of psychopathology. We hypothesized that aberrant stress appraisals are linked directly to latent internalizing and externalizing traits that, in turn, predispose to multiple disorders. A high-risk community sample of 815 adolescents underwent semistructured interviews to assess clinical disorders and naturalistic stressors at ages 15 and 20. Participants and blind rating teams separately evaluated the threat associated with acute stressors occurring in the past year, and an appraisal bias index (i.e., discrepancy between subjective and team-rated threat) was generated. A two-factor (Internalizing and Externalizing) latent variable model provided an excellent fit to the diagnostic correlations. After adjusting for the covariation between the factors, adolescents’ threat overestimation prospectively predicted higher standing on Internalizing, whereas threat underestimation prospectively predicted elevations on Externalizing. Cross-sectional analyses replicated this pattern in early adulthood. Appraisals were not related to the residual portions of any diagnosis in the latent variable model, suggesting that the transdiagnostic dimensions mediated the connections between stress appraisal bias and disorder entities. We discuss implications for enhancing the efficiency of emerging research on the stress response and speculate how these findings, if replicated, might guide refinements to psychological treatments for stress-linked disorders. PMID:27819469

  4. Structural equation models to estimate risk of infection and tolerance to bovine mastitis.

    PubMed

    Detilleux, Johann; Theron, Léonard; Duprez, Jean-Noël; Reding, Edouard; Humblet, Marie-France; Planchon, Viviane; Delfosse, Camille; Bertozzi, Carlo; Mainil, Jacques; Hanzen, Christian

    2013-03-06

    One method to improve durably animal welfare is to select, as reproducers, animals with the highest ability to resist or tolerate infection. To do so, it is necessary to distinguish direct and indirect mechanisms of resistance and tolerance because selection on these traits is believed to have different epidemiological and evolutionary consequences. We propose structural equation models with latent variables (1) to quantify the latent risk of infection and to identify, among the many potential mediators of infection, the few ones that influence it significantly and (2) to estimate direct and indirect levels of tolerance of animals infected naturally with pathogens. We applied the method to two surveys of bovine mastitis in the Walloon region of Belgium, in which we recorded herd management practices, mastitis frequency, and results of bacteriological analyses of milk samples. Structural equation models suggested that, among more than 35 surveyed herd characteristics, only nine (age, addition of urea in the rations, treatment of subclinical mastitis, presence of dirty liner, cows with hyperkeratotic teats, machine stripping, pre- and post-milking teat disinfection, and housing of milking cows in cubicles) were directly and significantly related to a latent measure of bovine mastitis, and that treatment of subclinical mastitis was involved in the pathway between post-milking teat disinfection and latent mastitis. These models also allowed the separation of direct and indirect effects of bacterial infection on milk productivity. Results suggested that infected cows were tolerant but not resistant to mastitis pathogens. We revealed the advantages of structural equation models, compared to classical models, for dissecting measurements of resistance and tolerance to infectious diseases, here bovine mastitis. Using our method, we identified nine major risk factors that were directly associated with an increased risk of mastitis and suggested that cows were tolerant but not resistant to mastitis. Selection should aim at improved resistance to infection by mastitis pathogens, although further investigations are needed due to the limitations of the data used in this study.

  5. Examining the relationship between socio-economic status, WASH practices and wasting

    PubMed Central

    Raihan, Mohammad Jyoti; Farzana, Fahmida Dil; Sultana, Sabiha; Haque, Md Ahshanul; Rahman, Ahmed Shafiqur; Waid, Jillian L.; McCormick, Ben; Choudhury, Nuzhat; Ahmed, Tahmeed

    2017-01-01

    Childhood wasting is a global problem and is significantly more pronounced in low and middle income countries like Bangladesh. Socio Economic Status (SES) and Water, Sanitation and Hygiene (WASH) practices may be significantly associated with wasting. Most previous research is consistent about the role of SES, but the significance of WASH in the context of wasting remains ambiguous. The effect of SES and WASH on weight for length (WHZ) is examined using a Structural Equation Model (SEM) to explicitly describe the direct and indirect role of WASH in the context of SES.A nationally representative survey of 10,478 Bangladeshi children under 5 were examined. An expert defined SEM was used to construct latent variables for SES and WASH. The SEM included a direct pathway from SES to WHZ and an indirect pathway from SES to WHZ via WASH along with regression of relevant covariates on the outcome WHZ and the latent variables. Both SES (p<0.01) and WASH (p<0.05) significantly affect WHZ. SES (p<0.01) also significantly affects WASH. Other structural components showed that child’s age (p<0.01) affects WHZ and types of residence (p<0.01) affects SES. WASH practices at least partially mediate the association between SES and wasting status. WASH and SES are both significantly associated with WHZ. PMID:28278161

  6. High-Performance Psychometrics: The Parallel-E Parallel-M Algorithm for Generalized Latent Variable Models. Research Report. ETS RR-16-34

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2016-01-01

    This report presents results on a parallel implementation of the expectation-maximization (EM) algorithm for multidimensional latent variable models. The developments presented here are based on code that parallelizes both the E step and the M step of the parallel-E parallel-M algorithm. Examples presented in this report include item response…

  7. Cognitive Psychology Meets Psychometric Theory: On the Relation between Process Models for Decision Making and Latent Variable Models for Individual Differences

    ERIC Educational Resources Information Center

    van der Maas, Han L. J.; Molenaar, Dylan; Maris, Gunter; Kievit, Rogier A.; Borsboom, Denny

    2011-01-01

    This article analyzes latent variable models from a cognitive psychology perspective. We start by discussing work by Tuerlinckx and De Boeck (2005), who proved that a diffusion model for 2-choice response processes entails a 2-parameter logistic item response theory (IRT) model for individual differences in the response data. Following this line…

  8. Comparing Between- and Within-Group Variances in a Two-Level Study: A Latent Variable Modeling Approach to Evaluating Their Relationship

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Akaeze, Hope O.

    2017-01-01

    This note is concerned with examining the relationship between within-group and between-group variances in two-level nested designs. A latent variable modeling approach is outlined that permits point and interval estimation of their ratio and allows their comparison in a multilevel study. The procedure can also be used to test various hypotheses…

  9. The "g" Factor and Cognitive Test Session Behavior: Using a Latent Variable Approach in Examining Measurement Invariance Across Age Groups on the WJ III

    ERIC Educational Resources Information Center

    Frisby, Craig L.; Wang, Ze

    2016-01-01

    Data from the standardization sample of the Woodcock-Johnson Psychoeducational Battery--Third Edition (WJ III) Cognitive standard battery and Test Session Observation Checklist items were analyzed to understand the relationship between g (general mental ability) and test session behavior (TSB; n = 5,769). Latent variable modeling methods were used…

  10. Structural Variability of Tropospheric Growth Factors Transforming Mid-latitude Cyclones to Severe Storms over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2015-04-01

    The development of European surface wind storms out of normal mid-latitude cyclones is substantially influenced by upstream tropospheric growth factors over the Northern Atlantic. The main factors include divergence and vorticity advection in the upper troposphere, latent heat release and the presence of instabilities of short baroclinic waves of suitable wave lengths. In this study we examine a subset of these potential growth factors and their related influences on the transformation of extra-tropical cyclones into severe damage prone surface storm systems. Previous studies have shown links between specific growth factors and surface wind storms related to extreme cyclones. In our study we investigate in further detail spatial and temporal variability patterns of these upstream processes at different vertical levels of the troposphere. The analyses will comprise of the three growth factors baroclinicity, latent heat release and upper tropospheric divergence. Our definition of surface wind storms is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. We also make use of a well-established extra-tropical cyclone identification and tracking algorithm. These cyclone tracks form the base for a composite analysis of the aforementioned growth factors using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM). Our composite analysis corroborates previous similar studies but extends them by using an impact based algorithm for the identification of strong wind systems. Based on this composite analysis we further identify variability patterns for each growth factor most important for the transformation of a cyclone into a surface wind storm. We thus also address the question whether the link between storm intensity and related growth factor anomaly taking into account its spatial variability is stable and can be quantified. While the robustness of our preliminary results is generally dependent on the growth factor investigated, some examples include i) the overall availability of latent heat seems to be less important than its spatial structure around the cyclone core and ii) the variability of upper-tropospheric baroclinicity appears to be highest north of the surface position of the cyclone, especially for those that transform into a surface storm.

  11. Inferring oscillatory modulation in neural spike trains

    PubMed Central

    Arai, Kensuke; Kass, Robert E.

    2017-01-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak. PMID:28985231

  12. The role of cognitive reserve and memory self-efficacy in compensatory strategy use: A structural equation approach.

    PubMed

    Simon, Christa; Schmitter-Edgecombe, Maureen

    2016-08-01

    The use of compensatory strategies plays an important role in the ability of older adults to adapt to late-life memory changes. Even with the benefits associated with compensatory strategy use, little research has explored specific mechanisms associated with memory performance and compensatory strategies. Rather than an individual's objective memory performance directly predicting their use of compensatory strategies, it is possible that some other variables are indirectly influencing that relationship. The purpose of this study was to: (a) examine the moderating effects of cognitive reserve (CR) and (b) evaluate the potential mediating effects of memory self-efficacy on the relationship between objective memory performance and compensatory strategy use. Two structural equation models (SEM) were used to evaluate CR (latent moderator model) and memory self-efficacy (mediator model) in a sample of 155 community-dwelling older adults over the age of 55. The latent variable moderator model indicated that CR was not substantiated as a moderator variable in this sample (p = .861). However, memory self-efficacy significantly mediated the association between objective memory performance and compensatory strategy use (β = .22, 95% confidence interval, CI [.002, .437]). More specifically, better objective memory was associated with lower compensatory strategy use because of its relation to higher memory self-efficacy. These findings provide initial support for an explanatory framework of the relation between objective memory and compensatory strategy use in a healthy older adult population by identifying the importance of an individual's memory perceptions.

  13. Causal Indicators Can Help to Interpret Factors

    ERIC Educational Resources Information Center

    Bentler, Peter M.

    2016-01-01

    The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…

  14. The use of cognitive ability measures as explanatory variables in regression analysis.

    PubMed

    Junker, Brian; Schofield, Lynne Steuerle; Taylor, Lowell J

    2012-12-01

    Cognitive ability measures are often taken as explanatory variables in regression analysis, e.g., as a factor affecting a market outcome such as an individual's wage, or a decision such as an individual's education acquisition. Cognitive ability is a latent construct; its true value is unobserved. Nonetheless, researchers often assume that a test score , constructed via standard psychometric practice from individuals' responses to test items, can be safely used in regression analysis. We examine problems that can arise, and suggest that an alternative approach, a "mixed effects structural equations" (MESE) model, may be more appropriate in many circumstances.

  15. Effects of additional data on Bayesian clustering.

    PubMed

    Yamazaki, Keisuke

    2017-10-01

    Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Age-Related Changes in Visual Temporal Order Judgment Performance: Relation to Sensory and Cognitive Capacities

    PubMed Central

    Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry

    2010-01-01

    Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. PMID:20580644

  17. Age-related changes in visual temporal order judgment performance: Relation to sensory and cognitive capacities.

    PubMed

    Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry

    2010-08-06

    Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Elucidating the functional relationship between working memory capacity and psychometric intelligence: a fixed-links modeling approach for experimental repeated-measures designs.

    PubMed

    Thomas, Philipp; Rammsayer, Thomas; Schweizer, Karl; Troche, Stefan

    2015-01-01

    Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.

  19. Using the SRQ–20 Factor Structure to Examine Changes in Mental Distress Following Typhoon Exposure

    PubMed Central

    Stratton, Kelcey J.; Richardson, Lisa K.; Tran, Trinh Luong; Tam, Nguyen Thanh; Aggen, Steven H.; Berenz, Erin C.; Trung, Lam Tu; Tuan, Tran; Buoi, La Thi; Ha, Tran Thu; Thach, Tran Duc; Amstadter, Ananda B.

    2014-01-01

    Empirical research is limited regarding postdisaster assessment of distress in developing nations. This study aimed to evaluate the factor structure of the 20-item Self-Reporting Questionnaire (SRQ–20) before and after an acute trauma, Typhoon Xangsane, in order to examine changes in mental health symptoms in an epidemiologic sample of Vietnamese adults. The study examined a model estimating individual item factor loadings, thresholds, and a latent change factor for the SRQ–20's single “general distress” common factor. The covariates of sex, age, and severity of typhoon exposure were used to evaluate the disaster-induced changes in SRQ–20 scores while accounting for possible differences in the relationship between individual measurement scale items and the latent mental health construct. Evidence for measurement noninvariance was found. However, allowing sex and age effects on the pre-typhoon and post-typhoon factors accounted for much of the noninvariance in the SRQ–20 measurement structure. A test of no latent change failed, indicating that the SRQ–20 detected significant individual differences in distress between pre- and post-typhoon assessment. Conditioning on age and sex, several typhoon exposure variables differentially predicted levels of distress change, including evacuation, personal injury, and peri-event fear. On average, females and older individuals reported higher levels of distress than males and younger individuals, respectively. The SRQ–20 is a valid and reasonably stable instrument that may be used in postdisaster contexts to assess emotional distress and individual changes in mental health symptoms. PMID:24512425

  20. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    ERIC Educational Resources Information Center

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth…

  1. Using latent class analysis to model prescription medications in the measurement of falling among a community elderly population

    PubMed Central

    2013-01-01

    Background Falls among the elderly are a major public health concern. Therefore, the possibility of a modeling technique which could better estimate fall probability is both timely and needed. Using biomedical, pharmacological and demographic variables as predictors, latent class analysis (LCA) is demonstrated as a tool for the prediction of falls among community dwelling elderly. Methods Using a retrospective data-set a two-step LCA modeling approach was employed. First, we looked for the optimal number of latent classes for the seven medical indicators, along with the patients’ prescription medication and three covariates (age, gender, and number of medications). Second, the appropriate latent class structure, with the covariates, were modeled on the distal outcome (fall/no fall). The default estimator was maximum likelihood with robust standard errors. The Pearson chi-square, likelihood ratio chi-square, BIC, Lo-Mendell-Rubin Adjusted Likelihood Ratio test and the bootstrap likelihood ratio test were used for model comparisons. Results A review of the model fit indices with covariates shows that a six-class solution was preferred. The predictive probability for latent classes ranged from 84% to 97%. Entropy, a measure of classification accuracy, was good at 90%. Specific prescription medications were found to strongly influence group membership. Conclusions In conclusion the LCA method was effective at finding relevant subgroups within a heterogenous at-risk population for falling. This study demonstrated that LCA offers researchers a valuable tool to model medical data. PMID:23705639

  2. Childhood malnutrition in Egypt using geoadditive Gaussian and latent variable models.

    PubMed

    Khatab, Khaled

    2010-04-01

    Major progress has been made over the last 30 years in reducing the prevalence of malnutrition amongst children less than 5 years of age in developing countries. However, approximately 27% of children under the age of 5 in these countries are still malnourished. This work focuses on the childhood malnutrition in one of the biggest developing countries, Egypt. This study examined the association between bio-demographic and socioeconomic determinants and the malnutrition problem in children less than 5 years of age using the 2003 Demographic and Health survey data for Egypt. In the first step, we use separate geoadditive Gaussian models with the continuous response variables stunting (height-for-age), underweight (weight-for-age), and wasting (weight-for-height) as indicators of nutritional status in our case study. In a second step, based on the results of the first step, we apply the geoadditive Gaussian latent variable model for continuous indicators in which the 3 measurements of the malnutrition status of children are assumed as indicators for the latent variable "nutritional status".

  3. The Latent Structure of Attention Deficit/Hyperactivity Disorder in an Adult Sample

    PubMed Central

    Marcus, David K.; Norris, Alyssa L.; Coccaro, Emil F.

    2012-01-01

    The vast majority of studies that have examined the latent structure of attention deficit/hyperactivity disorder (ADHD) in children and adolescents have concluded that ADHD has a dimensional latent structure. In other words, ADHD symptomatology exists along a continuum and there is no natural boundary or qualitative distinction (i.e., taxon) separating youth with ADHD from those with subclinical inattention or hyperactivity/impulsivity problems. Although adult ADHD appears to be less prevalent than ADHD in youth (which could suggest a more severe adult ADHD taxon), researchers have yet to examine the latent structure of ADHD in adults. The present study used a sample (N = 600) of adults who completed a self-report measure of ADHD symptoms. The taxometric analyses revealed a dimensional latent structure for inattention, hyperactivity/impulsivity, and ADHD. These findings are consistent with previous taxometric studies that examined ADHD in children and adolescents, and with contemporary polygenic and multifactorial models of ADHD. PMID:22480749

  4. The latent structure of attention deficit/hyperactivity disorder in an adult sample.

    PubMed

    Marcus, David K; Norris, Alyssa L; Coccaro, Emil F

    2012-06-01

    The vast majority of studies that have examined the latent structure of attention deficit/hyperactivity disorder (ADHD) in children and adolescents have concluded that ADHD has a dimensional latent structure. In other words, ADHD symptomatology exists along a continuum and there is no natural boundary or qualitative distinction (i.e., taxon) separating youth with ADHD from those with subclinical inattention or hyperactivity/impulsivity problems. Although adult ADHD appears to be less prevalent than ADHD in youth (which could suggest a more severe adult ADHD taxon), researchers have yet to examine the latent structure of ADHD in adults. The present study used a sample (N = 600) of adults who completed a self-report measure of ADHD symptoms. The taxometric analyses revealed a dimensional latent structure for inattention, hyperactivity/impulsivity, and ADHD. These findings are consistent with previous taxometric studies that examined ADHD in children and adolescents, and with contemporary polygenic and multifactorial models of ADHD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Synergistic Effects of Expectancy and Value on Homework Engagement: The Case for a Within-Person Perspective.

    PubMed

    Nagengast, Benjamin; Trautwein, Ulrich; Kelava, Augustin; Lüdtke, Oliver

    2013-05-01

    Historically, expectancy-value models of motivation assumed a synergistic relation between expectancy and value: motivation is high only when both expectancy and value are high. Motivational processes were studied from a within-person perspective, with expectancies and values being assessed or experimentally manipulated across multiple domains and the focus being placed on intraindividual differences. In contrast, contemporary expectancy-value models in educational psychology concentrate almost exclusively on linear effects of expectancy and value on motivational outcomes, with a focus on between-person differences. Recent advances in latent variable methodology allow both issues to be addressed in observational studies. Using the expectancy-value model of homework motivation as a theoretical framework, this study estimated multilevel structural equation models with latent interactions in a sample of 511 secondary school students and found synergistic effects between domain-specific homework expectancy and homework value in predicting homework engagement in 6 subjects. This approach not only brings the "×" back into expectancy-value theory but also reestablishes the within-person perspective as the appropriate level of analysis for latent expectancy-value models.

  6. The association between physical environment and cycling to school among Turkish and Moroccan adolescents in Amsterdam.

    PubMed

    Mäki-Opas, Tomi E; de Munter, Jeroen; Maas, Jolanda; den Hertog, Frank; Kunst, Anton E

    2014-08-01

    This study examined the effect of physical environment on cycling to and from school among boys and girls of Turkish and Moroccan origin living in Amsterdam. The LASER study (n = 697) was an interview study that included information on cycling to and from school and the perceived physical environment. Objective information on physical environment was gathered from Statistics Netherlands and the Department for Research and Statistics at the Municipality of Amsterdam. Structural equation modelling with latent variables was applied, taking into account age, gender, self-assessed health, education, country of origin, and distance to school. For every unit increase in the latent variable scale for bicycle-friendly infrastructure, we observed a 21% increase in the odds for cycling to and from school. The association was only borderline statistically significant and disappeared after controlling for distance to school. The enjoyable environment was not associated with cycling to and from school after controlling for all background factors. Bicycle-friendly infrastructure and an enjoyable environment were not important factors for cycling to and from school among those with no cultural cycling background.

  7. [Study on HIV prevention related knowledge-motivation-psychological model in men who have sex with men, based on a structural equation model].

    PubMed

    Jiang, Y; Dou, Y L; Cai, A J; Zhang, Z; Tian, T; Dai, J H; Huang, A L

    2016-02-01

    Knowledge-motivation-psychological model was set up and tested through structural equation model to provide evidence on HIV prevention related strategy in Men who have Sex with Men (MSM). Snowball sampling method was used to recruit a total of 550 MSM volunteers from two MSM Non-Governmental Organizations in Urumqi, Xinjiang province. HIV prevention related information on MSM was collected through a questionnaire survey. A total of 477 volunteers showed with complete information. HIV prevention related Knowledge-motivation-psychological model was built under related experience and literature. Relations between knowledge, motivation and psychological was studied, using a ' structural equation model' with data from the fitting questionnaires and modification of the model. Structural equation model presented good fitting results. After revising the fitting index: RMSEA was 0.035, NFI was 0.965 and RFI was 0.920. Thereafter the exogenous latent variables would include knowledge, motivation and psychological effects. The endogenous latent variable appeared as prevention related behaviors. The standardized total effects of motivation, knowledge, psychological on prevention behavior were 0.44, 0.41 and 0.17 respectively. Correlation coefficient of motivation and psychological effects was 0.16. Correlation coefficient on knowledge and psychological effects was -0.17 (P<0.05). Correlation coefficient of knowledge and motivation did not show statistical significance. Knowledge of HIV and motivation of HIV prevention did not show any accordance in MSM population. It was necessary to increase the awareness and to improve the motivation of HIV prevention in MSM population.

  8. On Latent Growth Models for Composites and Their Constituents.

    PubMed

    Hancock, Gregory R; Mao, Xiulin; Kher, Hemant

    2013-09-01

    Over the last decade and a half, latent growth modeling has become an extremely popular and versatile technique for evaluating longitudinal change and its determinants. Most common among the models applied are those for a single measured variable over time. This model has been extended in a variety of ways, most relevant for the current work being the multidomain and the second-order latent growth models. Whereas the former allows for growth function characteristics to be modeled for multiple outcomes simultaneously, with the degree of growth characteristics' relations assessed within the model (e.g., cross-domain slope factor correlations), the latter models growth in latent outcomes, each of which has effect indicators repeated over time. But what if one has an outcome that is believed to be formative relative to its indicator variables rather than latent? In this case, where the outcome is a composite of multiple constituents, modeling change over time is less straightforward. This article provides analytical and applied details for simultaneously modeling growth in composites and their constituent elements, including a real data example using a general computer self-efficacy questionnaire.

  9. DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural activity

    PubMed Central

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2014-01-01

    Objective Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than three, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance DataHigh was developed to fulfill a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity. PMID:24216250

  10. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity

    NASA Astrophysics Data System (ADS)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2013-12-01

    Objective. Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  11. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity.

    PubMed

    Cowley, Benjamin R; Kaufman, Matthew T; Butler, Zachary S; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M

    2013-12-01

    Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  12. Modeling drivers of phosphorus loads in Chesapeake Bay tributaries and inferences about long-term change

    USGS Publications Warehouse

    Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer

    2018-01-01

    Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.

  13. Individuals at high risk for suicide are categorically distinct from those at low risk.

    PubMed

    Witte, Tracy K; Holm-Denoma, Jill M; Zuromski, Kelly L; Gauthier, Jami M; Ruscio, John

    2017-04-01

    Although suicide risk is often thought of as existing on a graded continuum, its latent structure (i.e., whether it is categorical or dimensional) has not been empirically determined. Knowledge about the latent structure of suicide risk holds implications for suicide risk assessments, targeted suicide interventions, and suicide research. Our objectives were to determine whether suicide risk can best be understood as a categorical (i.e., taxonic) or dimensional entity, and to validate the nature of any obtained taxon. We conducted taxometric analyses of cross-sectional, baseline data from 16 independent studies funded by the Military Suicide Research Consortium. Participants (N = 1,773) primarily consisted of military personnel, and most had a history of suicidal behavior. The Comparison Curve Fit Index values for MAMBAC (.85), MAXEIG (.77), and L-Mode (.62) all strongly supported categorical (i.e., taxonic) structure for suicide risk. Follow-up analyses comparing the taxon and complement groups revealed substantially larger effect sizes for the variables most conceptually similar to suicide risk compared with variables indicating general distress. Pending replication and establishment of the predictive validity of the taxon, our results suggest the need for a fundamental shift in suicide risk assessment, treatment, and research. Specifically, suicide risk assessments could be shortened without sacrificing validity, the most potent suicide interventions could be allocated to individuals in the high-risk group, and research should generally be conducted on individuals in the high-risk group. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Characterizing the genetic structure of a forensic DNA database using a latent variable approach.

    PubMed

    Kruijver, Maarten

    2016-07-01

    Several problems in forensic genetics require a representative model of a forensic DNA database. Obtaining an accurate representation of the offender database can be difficult, since databases typically contain groups of persons with unregistered ethnic origins in unknown proportions. We propose to estimate the allele frequencies of the subpopulations comprising the offender database and their proportions from the database itself using a latent variable approach. We present a model for which parameters can be estimated using the expectation maximization (EM) algorithm. This approach does not rely on relatively small and possibly unrepresentative population surveys, but is driven by the actual genetic composition of the database only. We fit the model to a snapshot of the Dutch offender database (2014), which contains close to 180,000 profiles, and find that three subpopulations suffice to describe a large fraction of the heterogeneity in the database. We demonstrate the utility and reliability of the approach with three applications. First, we use the model to predict the number of false leads obtained in database searches. We assess how well the model predicts the number of false leads obtained in mock searches in the Dutch offender database, both for the case of familial searching for first degree relatives of a donor and searching for contributors to three-person mixtures. Second, we study the degree of partial matching between all pairs of profiles in the Dutch database and compare this to what is predicted using the latent variable approach. Third, we use the model to provide evidence to support that the Dutch practice of estimating match probabilities using the Balding-Nichols formula with a native Dutch reference database and θ=0.03 is conservative. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Differential effects of two types of formative assessment in predicting performance of first-year medical students.

    PubMed

    Krasne, Sally; Wimmers, Paul F; Relan, Anju; Drake, Thomas A

    2006-05-01

    Formative assessments are systematically designed instructional interventions to assess and provide feedback on students' strengths and weaknesses in the course of teaching and learning. Despite their known benefits to student attitudes and learning, medical school curricula have been slow to integrate such assessments into the curriculum. This study investigates how performance on two different modes of formative assessment relate to each other and to performance on summative assessments in an integrated, medical-school environment. Two types of formative assessment were administered to 146 first-year medical students each week over 8 weeks: a timed, closed-book component to assess factual recall and image recognition, and an un-timed, open-book component to assess higher order reasoning including the ability to identify and access appropriate resources and to integrate and apply knowledge. Analogous summative assessments were administered in the ninth week. Models relating formative and summative assessment performance were tested using Structural Equation Modeling. Two latent variables underlying achievement on formative and summative assessments could be identified; a "formative-assessment factor" and a "summative-assessment factor," with the former predicting the latter. A latent variable underlying achievement on open-book formative assessments was highly predictive of achievement on both open- and closed-book summative assessments, whereas a latent variable underlying closed-book assessments only predicted performance on the closed-book summative assessment. Formative assessments can be used as effective predictive tools of summative performance in medical school. Open-book, un-timed assessments of higher order processes appeared to be better predictors of overall summative performance than closed-book, timed assessments of factual recall and image recognition.

  16. A Latent Heat Retrieval and its Effects on the Intensity and Structure Change of Hurricane Guillermo (1997). Part I: The Algorithm and Observations.

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Bourassa, mark A.; Reasor, Paul D.

    2011-01-01

    The release of latent heat in clouds is an essential part of the formation and I intensification ohurricanes. The community knows very little about the intensity and structure of latent heating due largely to inadequate observations. In this paper, a new method for retrieving the latent heating field in hurricanes from airborne Dopple radar is presented and fields from rapidly intensifying Hurricane Guillermo (1997) are shown.

  17. Three Approaches to Using Lengthy Ordinal Scales in Structural Equation Models: Parceling, Latent Scoring, and Shortening Scales

    ERIC Educational Resources Information Center

    Yang, Chongming; Nay, Sandra; Hoyle, Rick H.

    2010-01-01

    Lengthy scales or testlets pose certain challenges for structural equation modeling (SEM) if all the items are included as indicators of a latent construct. Three general approaches to modeling lengthy scales in SEM (parceling, latent scoring, and shortening) have been reviewed and evaluated. A hypothetical population model is simulated containing…

  18. Dimensionality of the Latent Structure and Item Selection via Latent Class Multidimensional IRT Models

    ERIC Educational Resources Information Center

    Bartolucci, F.; Montanari, G. E.; Pandolfi, S.

    2012-01-01

    With reference to a questionnaire aimed at assessing the performance of Italian nursing homes on the basis of the health conditions of their patients, we investigate two relevant issues: dimensionality of the latent structure and discriminating power of the items composing the questionnaire. The approach is based on a multidimensional item…

  19. Unraveling interrelationships among psychopathology symptoms, cognitive domains and insight dimensions in chronic schizophrenia.

    PubMed

    Xavier, Rose Mary; Pan, Wei; Dungan, Jennifer R; Keefe, Richard S E; Vorderstrasse, Allison

    2018-03-01

    Insight in schizophrenia is long known to have a complex relationship with psychopathology symptoms and cognition. However, very few studies have examined models that explain these interrelationships. In a large sample derived from the NIMH Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial (N=1391), we interrogated these interrelationships for potential causal pathways using structural equation modeling. Using the NIMH consensus model, latent variables were constructed for psychopathology symptom dimensions, including positive, negative, disorganized, excited and depressed from the Positive and Negative Syndrome Scale (PANSS) items. Neurocognitive variables were created from five predefined domains of working memory, verbal memory, reasoning, vigilance and processing speed. Illness insight and treatment insight were tested using latent variables constructed from the Illness and Treatment Attitude Questionnaire (ITAQ). Disorganized symptoms had the strongest effect on insight. Illness insight mediated the relationship of positive, depressed, and disorganized symptoms with treatment insight. Neurocognition mediated the relationship between disorganized and treatment insight and depressed symptoms and treatment insight. There was no effect of negative symptoms on either illness insight or treatment insight. Taken together, our results indicate overlapping and unique relational paths for illness and treatment insight dimensions, which could suggest differences in causal mechanisms and potential interventions to improve insight. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A general theoretical framework for interpreting patient-reported outcomes estimated from ordinally scaled item responses.

    PubMed

    Massof, Robert W

    2014-10-01

    A simple theoretical framework explains patient responses to items in rating scale questionnaires. Fixed latent variables position each patient and each item on the same linear scale. Item responses are governed by a set of fixed category thresholds, one for each ordinal response category. A patient's item responses are magnitude estimates of the difference between the patient variable and the patient's estimate of the item variable, relative to his/her personally defined response category thresholds. Differences between patients in their personal estimates of the item variable and in their personal choices of category thresholds are represented by random variables added to the corresponding fixed variables. Effects of intervention correspond to changes in the patient variable, the patient's response bias, and/or latent item variables for a subset of items. Intervention effects on patients' item responses were simulated by assuming the random variables are normally distributed with a constant scalar covariance matrix. Rasch analysis was used to estimate latent variables from the simulated responses. The simulations demonstrate that changes in the patient variable and changes in response bias produce indistinguishable effects on item responses and manifest as changes only in the estimated patient variable. Changes in a subset of item variables manifest as intervention-specific differential item functioning and as changes in the estimated person variable that equals the average of changes in the item variables. Simulations demonstrate that intervention-specific differential item functioning produces inefficiencies and inaccuracies in computer adaptive testing. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Application of Fourier transform infrared spectroscopy and orthogonal projections to latent structures/partial least squares regression for estimation of procyanidins average degree of polymerisation.

    PubMed

    Passos, Cláudia P; Cardoso, Susana M; Barros, António S; Silva, Carlos M; Coimbra, Manuel A

    2010-02-28

    Fourier transform infrared (FTIR) spectroscopy has being emphasised as a widespread technique in the quick assess of food components. In this work, procyanidins were extracted with methanol and acetone/water from the seeds of white and red grape varieties. A fractionation by graded methanol/chloroform precipitations allowed to obtain 26 samples that were characterised using thiolysis as pre-treatment followed by HPLC-UV and MS detection. The average degree of polymerisation (DPn) of the procyanidins in the samples ranged from 2 to 11 flavan-3-ol residues. FTIR spectroscopy within the wavenumbers region of 1800-700 cm(-1) allowed to build a partial least squares (PLS1) regression model with 8 latent variables (LVs) for the estimation of the DPn, giving a RMSECV of 11.7%, with a R(2) of 0.91 and a RMSEP of 2.58. The application of orthogonal projection to latent structures (O-PLS1) clarifies the interpretation of the regression model vectors. Moreover, the O-PLS procedure has removed 88% of non-correlated variations with the DPn, allowing to relate the increase of the absorbance peaks at 1203 and 1099 cm(-1) with the increase of the DPn due to the higher proportion of substitutions in the aromatic ring of the polymerised procyanidin molecules. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Variations in Care Quality Outcomes of Dying People: Latent Class Analysis of an Adult National Register Population.

    PubMed

    Öhlén, Joakim; Russell, Lara; Håkanson, Cecilia; Alvariza, Anette; Fürst, Carl Johan; Årestedt, Kristofer; Sawatzky, Richard

    2017-01-01

    Symptom relief is a key goal of palliative care. There is a need to consider complexities in symptom relief patterns for groups of people to understand and evaluate symptom relief as an indicator of quality of care at end of life. The aims of this study were to distinguish classes of patients who have different symptom relief patterns during the last week of life and to identify predictors of these classes in an adult register population. In a cross-sectional retrospective design, data were used from 87,026 decedents with expected deaths registered in the Swedish Register of Palliative Care in 2011 and 2012. Study variables were structured into patient characteristics, and processes and outcomes of quality of care. A latent class analysis was used to identify symptom relief patterns. Multivariate multinomial regression analyses were used to identify predictors of class membership. Five latent classes were generated: "relieved pain," "relieved pain and rattles," "relieved pain and anxiety," "partly relieved shortness of breath, rattles and anxiety," and "partly relieved pain, anxiety and confusion." Important predictors of class membership were age, sex, cause of death, and having someone present at death, individual prescriptions as needed (PRN) and expert consultations. Interindividual variability and complexity in symptom relief patterns may inform quality of care and its evaluation for dying people across care settings. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  3. The use of cognitive ability measures as explanatory variables in regression analysis

    PubMed Central

    Junker, Brian; Schofield, Lynne Steuerle; Taylor, Lowell J

    2015-01-01

    Cognitive ability measures are often taken as explanatory variables in regression analysis, e.g., as a factor affecting a market outcome such as an individual’s wage, or a decision such as an individual’s education acquisition. Cognitive ability is a latent construct; its true value is unobserved. Nonetheless, researchers often assume that a test score, constructed via standard psychometric practice from individuals’ responses to test items, can be safely used in regression analysis. We examine problems that can arise, and suggest that an alternative approach, a “mixed effects structural equations” (MESE) model, may be more appropriate in many circumstances. PMID:26998417

  4. Analysis of the impact path on factors of China's energy-related CO2 emissions: a path analysis with latent variables.

    PubMed

    Chen, Wenhui; Lei, Yalin

    2017-02-01

    Identifying the impact path on factors of CO 2 emissions is crucial for the government to take effective measures to reduce carbon emissions. The most existing research focuses on the total influence of factors on CO 2 emissions without differentiating between the direct and indirect influence. Moreover, scholars have addressed the relationships among energy consumption, economic growth, and CO 2 emissions rather than estimating all the causal relationships simultaneously. To fill this research gaps and explore overall driving factors' influence mechanism on CO 2 emissions, this paper utilizes a path analysis model with latent variables (PA-LV) to estimate the direct and indirect effect of factors on China's energy-related carbon emissions and to investigate the causal relationships among variables. Three key findings emanate from the analysis: (1) The change in the economic growth pattern inhibits the growth rate of CO 2 emissions by reducing the energy intensity; (2) adjustment of industrial structure contributes to energy conservation and CO 2 emission reduction by raising the proportion of the tertiary industry; and (3) the growth of CO 2 emissions impacts energy consumption and energy intensity negatively, which results in a negative impact indirectly on itself. To further control CO 2 emissions, the Chinese government should (1) adjust the industrial structure and actively develop its tertiary industry to improve energy efficiency and develop low-carbon economy, (2) optimize population shifts to avoid excessive population growth and reduce energy consumption, and (3) promote urbanization steadily to avoid high energy consumption and low energy efficiency.

  5. On Fitting a Multivariate Two-Part Latent Growth Model

    PubMed Central

    Xu, Shu; Blozis, Shelley A.; Vandewater, Elizabeth A.

    2017-01-01

    A 2-part latent growth model can be used to analyze semicontinuous data to simultaneously study change in the probability that an individual engages in a behavior, and if engaged, change in the behavior. This article uses a Monte Carlo (MC) integration algorithm to study the interrelationships between the growth factors of 2 variables measured longitudinally where each variable can follow a 2-part latent growth model. A SAS macro implementing Mplus is developed to estimate the model to take into account the sampling uncertainty of this simulation-based computational approach. A sample of time-use data is used to show how maximum likelihood estimates can be obtained using a rectangular numerical integration method and an MC integration method. PMID:29333054

  6. Interaction between Helicobacter pylori and latent toxoplasmosis and demographic variables on cognitive function in young to middle-aged adults.

    PubMed

    Gale, Shawn D; Erickson, Lance D; Brown, Bruce L; Hedges, Dawson W

    2015-01-01

    Helicobacter pylori and latent toxoplasmosis are widespread diseases that have been associated with cognitive deficits and Alzheimer's disease. We sought to determine whether interactions between Helicobacter pylori and latent toxoplasmosis, age, race-ethnicity, educational attainment, economic status, and general health predict cognitive function in young and middle-aged adults. To do so, we used multivariable regression and multivariate models to analyze data obtained from the United States' National Health and Nutrition Examination Survey from the Centers for Disease Control and Prevention, which can be weighted to represent the US population. In this sample, we found that 31.6 percent of women and 36.2 percent of men of the overall sample had IgG Antibodies against Helicobacter pylori, although the seroprevalence of Helicobacter pylori varied with sociodemographic variables. There were no main effects for Helicobacter pylori or latent toxoplasmosis for any of the cognitive measures in models adjusting for age, sex, race-ethnicity, educational attainment, economic standing, and self-rated health predicting cognitive function. However, interactions between Helicobacter pylori and race-ethnicity, educational attainment, latent toxoplasmosis in the fully adjusted models predicted cognitive function. People seropositive for both Helicobacter pylori and latent toxoplasmosis - both of which appear to be common in the general population - appear to be more susceptible to cognitive deficits than are people seropositive for either Helicobacter pylori and or latent toxoplasmosis alone, suggesting a synergistic effect between these two infectious diseases on cognition in young to middle-aged adults.

  7. Global Empirical Model of the TEC Response to Geomagnetic Activity and Forcing from Below

    DTIC Science & Technology

    2014-04-01

    solar minimum conditions. Much of the attendant variability is attributable to upward-propagating solar tides excited by latent heating due to deep...Mukhtarov et al. (2010a) found strong evidence indicating that the auroral heating is a main origin of the lower thermospheric SPW1 structure. The...weaker than that of D0 (not shown here). All zonally symmetric tidal components show amplifications like stripes between -40o and -70o modip

  8. Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2009-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.

  9. The Relationship of Dairy Farm Eco-Efficiency with Intensification and Self-Sufficiency. Evidence from the French Dairy Sector Using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling.

    PubMed

    Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe

    2016-01-01

    We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm's capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate 'eco-efficiency' score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental 'sustainability' of intensive dairy farming depends on particular farming systems and circumstances, although we note that more self-sufficient farms may be preferable when they may benefit from relatively low land prices and agri-environment schemes aimed at maintaining grasslands.

  10. The Relationship of Dairy Farm Eco-Efficiency with Intensification and Self-Sufficiency. Evidence from the French Dairy Sector Using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling

    PubMed Central

    Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe

    2016-01-01

    We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm’s capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate ‘eco-efficiency’ score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental ‘sustainability’ of intensive dairy farming depends on particular farming systems and circumstances, although we note that more self-sufficient farms may be preferable when they may benefit from relatively low land prices and agri-environment schemes aimed at maintaining grasslands. PMID:27832199

  11. Latent lifestyle preferences and household location decisions

    NASA Astrophysics Data System (ADS)

    Walker, Joan L.; Li, Jieping

    2007-04-01

    Lifestyle, indicating preferences towards a particular way of living, is a key driver of the decision of where to live. We employ latent class choice models to represent this behavior, where the latent classes are the lifestyles and the choice model is the choice of residential location. Thus, we simultaneously estimate lifestyle groups and how lifestyle impacts location decisions. Empirical results indicate three latent lifestyle segments: suburban dwellers, urban dwellers, and transit-riders. The suggested lifestyle segments have intriguing policy implications. Lifecycle characteristics are used to predict lifestyle preferences, although there remain significant aspects that cannot be explained by observable variables.

  12. A longitudinal multilevel CFA-MTMM model for interchangeable and structurally different methods

    PubMed Central

    Koch, Tobias; Schultze, Martin; Eid, Michael; Geiser, Christian

    2014-01-01

    One of the key interests in the social sciences is the investigation of change and stability of a given attribute. Although numerous models have been proposed in the past for analyzing longitudinal data including multilevel and/or latent variable modeling approaches, only few modeling approaches have been developed for studying the construct validity in longitudinal multitrait-multimethod (MTMM) measurement designs. The aim of the present study was to extend the spectrum of current longitudinal modeling approaches for MTMM analysis. Specifically, a new longitudinal multilevel CFA-MTMM model for measurement designs with structurally different and interchangeable methods (called Latent-State-Combination-Of-Methods model, LS-COM) is presented. Interchangeable methods are methods that are randomly sampled from a set of equivalent methods (e.g., multiple student ratings for teaching quality), whereas structurally different methods are methods that cannot be easily replaced by one another (e.g., teacher, self-ratings, principle ratings). Results of a simulation study indicate that the parameters and standard errors in the LS-COM model are well recovered even in conditions with only five observations per estimated model parameter. The advantages and limitations of the LS-COM model relative to other longitudinal MTMM modeling approaches are discussed. PMID:24860515

  13. Taxometric Analysis as a General Strategy for Distinguishing Categorical from Dimensional Latent Structure

    ERIC Educational Resources Information Center

    McGrath, Robert E.; Walters, Glenn D.

    2012-01-01

    Statistical analyses investigating latent structure can be divided into those that estimate structural model parameters and those that detect the structural model type. The most basic distinction among structure types is between categorical (discrete) and dimensional (continuous) models. It is a common, and potentially misleading, practice to…

  14. On the role of precipitation latent heating in modulating the strength and width of the Hadley circulation

    NASA Astrophysics Data System (ADS)

    Mathew, Sneha Susan; Kumar, Karanam Kishore

    2018-05-01

    The latent heat released in the clouds over the tropics plays a vital role in driving the Hadley circulation (HC). The present study discusses the influence of latent heating (LH) on the HC parameters viz., centre, strength and total width by using precipitation LH profiles derived from the space-borne observations of the Precipitation Radar (PR) onboard Tropical Rain Measuring Mission (TRMM) and meridional stream function (MSF) derived from ECMWF-Interim reanalysis. The latitude of peak latent heating, width of the latent heating distribution and the total LH released within the ascending limb of the HC are estimated and their influence on the HC centre, strength and width is quantified, for the first time. The present results show that the latitude of peak LH significantly influences the position of the HC centre with correlation coefficient of 0.90. This high correlation between these two quantities seems to be due to their co-variability with the apparent motion of the Sun across the latitudes. The intensity of the HC in the NH as well as SH shows high correlation with the latitude of peak LH with coefficients - 0.85 and - 0.78, respectively. These results indicate that farther the latitude of peak LH from the equator in the summer hemisphere, stronger is the HC intensity in the winter hemisphere. The present analysis also reveals that the total LH released within the ascending limb of HC substantially influence the total width of the HC, with correlation coefficient 0.52, as compared to the other two LH parameters. This observation can be attributed to the fact that the HC is sensitive to the latent heat release in the mid-tropospheric levels in the tropics. An attempt is also made to investigate the degree of variability of these parameters after deseasonalization and results are discussed in the light of present understanding. The significance of the present study lies in providing the observational evidence for the influence of latent heating on the HC strength/width variability, quantitatively, for the first time using TRMM observations of precipitation latent heating.

  15. Assessing factors related to waist circumference and obesity: application of a latent variable model.

    PubMed

    Dalvand, Sahar; Koohpayehzadeh, Jalil; Karimlou, Masoud; Asgari, Fereshteh; Rafei, Ali; Seifi, Behjat; Niksima, Seyed Hassan; Bakhshi, Enayatollah

    2015-01-01

    Because the use of BMI (Body Mass Index) alone as a measure of adiposity has been criticized, in the present study our aim was to fit a latent variable model to simultaneously examine the factors that affect waist circumference (continuous outcome) and obesity (binary outcome) among Iranian adults. Data included 18,990 Iranian individuals aged 20-65 years that are derived from the third National Survey of Noncommunicable Diseases Risk Factors in Iran. Using latent variable model, we estimated the relation of two correlated responses (waist circumference and obesity) with independent variables including age, gender, PR (Place of Residence), PA (physical activity), smoking status, SBP (Systolic Blood Pressure), DBP (Diastolic Blood Pressure), CHOL (cholesterol), FBG (Fasting Blood Glucose), diabetes, and FHD (family history of diabetes). All variables were related to both obesity and waist circumference (WC). Older age, female sex, being an urban resident, physical inactivity, nonsmoking, hypertension, hypercholesterolemia, hyperglycemia, diabetes, and having family history of diabetes were significant risk factors that increased WC and obesity. Findings from this study of Iranian adult settings offer more insights into factors associated with high WC and high prevalence of obesity in this population.

  16. Latent variable modeling to analyze the effects of process parameters on the dissolution of paracetamol tablet

    PubMed Central

    Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Shi, Xinyuan; Qiao, Yanjiang

    2017-01-01

    ABSTRACT The dissolution is one of the critical quality attributes (CQAs) of oral solid dosage forms because it relates to the absorption of drug. In this paper, the influence of raw materials, granules and process parameters on the dissolution of paracetamol tablet was analyzed using latent variable modeling methods. The variability in raw materials and granules was understood based on the principle component analysis (PCA), respectively. A multi-block partial least squares (MBPLS) model was used to determine the critical factors affecting the dissolution. The results showed that the binder amount, the post granulation time, the API content in granule, the fill depth and the punch tip separation distance were the critical factors with variable importance in the projection (VIP) values larger than 1. The importance of each unit of the whole process was also ranked using the block importance in the projection (BIP) index. It was concluded that latent variable models (LVMs) were very useful tools to extract information from the available data and improve the understanding on dissolution behavior of paracetamol tablet. The obtained LVMs were also helpful to propose the process design space and to design control strategies in the further research. PMID:27689242

  17. Multiple indicators, multiple causes measurement error models

    DOE PAGES

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; ...

    2014-06-25

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  18. Multiple Indicators, Multiple Causes Measurement Error Models

    PubMed Central

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.

    2014-01-01

    Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535

  19. Multiple indicators, multiple causes measurement error models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  20. Adolescent substance use behavior and suicidal behavior for boys and girls: a cross-sectional study by latent analysis approach.

    PubMed

    Wang, Peng-Wei; Yen, Cheng-Fang

    2017-12-08

    Adolescent suicidal behavior may consist of different symptoms, including suicidal ideation, suicidal planning and suicidal attempts. Adolescent substance use behavior may contribute to adolescent suicidal behavior. However, research on the relationships between specific substance use and individual suicidal behavior is insufficient, as adolescents may not use only one substance or develop only one facet of suicidal behavior. Latent variables permit us to describe the relationships between clusters of related behaviors more accurately than studying the relationships between specific behaviors. Thus, the aim of this study was to explore how adolescent substance use behavior contributes to suicidal behavior using latent variables representing adolescent suicidal and substance use behaviors. A total of 13,985 adolescents were recruited using a stratified random sampling strategy. The participants indicated whether they had experienced suicidal ideation, planning and attempts and reported their cigarette, alcohol, ketamine and MDMA use during the past year. Latent analysis was used to examine the relationship between substance use and suicidal behavior. Adolescents who used any one of the above substances exhibited more suicidal behavior. The results of latent variables analysis revealed that adolescent substance use contributed to suicidal behavior and that boys exhibited more severe substance use behavior than girls. However, there was no gender difference in the association between substance use and suicidal behavior. Substance use behavior in adolescents is related to more suicidal behavior. In addition, the contribution of substance use to suicidal behavior does not differ between genders.

  1. Do gender and directness of trauma exposure moderate PTSD's latent structure?

    PubMed

    Frankfurt, Sheila B; Armour, Cherie; Contractor, Ateka A; Elhai, Jon D

    2016-11-30

    The PTSD diagnosis and latent structure were substantially revised in the transition from DSM-IV to DSM-5. However, three alternative models (i.e., anhedonia model, externalizing behavior model, and hybrid model) of PTSD fit the DSM-5 symptom criteria better than the DSM-5 factor model. Thus, the psychometric performance of the DSM-5 and alternative models' PTSD factor structure needs to be critically evaluated. The current study examined whether gender or trauma directness (i.e., direct or indirect trauma exposure) moderates the PTSD latent structure when using the DSM-5 or alternative models. Model performance was evaluated with measurement invariance testing procedures on a large undergraduate sample (n=455). Gender and trauma directness moderated the DSM-5 PTSD and externalizing behavior model and did not moderate the anhedonia and hybrid models' latent structure. Clinical implications and directions for future research are discussed. Published by Elsevier Ireland Ltd.

  2. Mokken scaling analysis of the Hospital Anxiety and Depression Scale in individuals with cardiovascular disease.

    PubMed

    Cosco, Theodore D; Doyle, Frank; Watson, Roger; Ward, Mark; McGee, Hannah

    2012-01-01

    The Hospital Anxiety and Depression Scale (HADS) is a prolifically used scale of anxiety and depression. The original bidimensional anxiety-depression latent structure of the HADS has come under significant scrutiny, with previous studies revealing one-, two-, three- and four-dimensional structures. The current study examines the latent structure of the HADS using a non-parametric item response theory method. Using data conglomerated from four independent studies of cardiovascular disease employing the HADS (n=893), Mokken scaling procedure was conducted to assess the latent structure of the HADS. A single scale consisting of 12 of 14 HADS items was revealed, indicating a unidimensional latent HADS structure. The HADS was initially intended to measure mutually exclusive levels of anxiety and depression; however, the current study indicates that a single dimension of general psychological distress is captured. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Examining the integrity of measurement of cognitive abilities in the prediction of achievement: Comparisons and contrasts across variables from higher-order and bifactor models.

    PubMed

    Benson, Nicholas F; Kranzler, John H; Floyd, Randy G

    2016-10-01

    Prior research examining cognitive ability and academic achievement relations have been based on different theoretical models, have employed both latent variables as well as observed variables, and have used a variety of analytic methods. Not surprisingly, results have been inconsistent across studies. The aims of this study were to (a) examine how relations between psychometric g, Cattell-Horn-Carroll (CHC) broad abilities, and academic achievement differ across higher-order and bifactor models; (b) examine how well various types of observed scores corresponded with latent variables; and (c) compare two types of observed scores (i.e., refined and non-refined factor scores) as predictors of academic achievement. Results suggest that cognitive-achievement relations vary across theoretical models and that both types of factor scores tend to correspond well with the models on which they are based. However, orthogonal refined factor scores (derived from a bifactor model) have the advantage of controlling for multicollinearity arising from the measurement of psychometric g across all measures of cognitive abilities. Results indicate that the refined factor scores provide more precise representations of their targeted constructs than non-refined factor scores and maintain close correspondence with the cognitive-achievement relations observed for latent variables. Thus, we argue that orthogonal refined factor scores provide more accurate representations of the relations between CHC broad abilities and achievement outcomes than non-refined scores do. Further, the use of refined factor scores addresses calls for the application of scores based on latent variable models. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  4. The algebraic theory of latent projectors in lambda matrices

    NASA Technical Reports Server (NTRS)

    Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.

    1981-01-01

    Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.

  5. Examining Factor Score Distributions to Determine the Nature of Latent Spaces

    ERIC Educational Resources Information Center

    Steinley, Douglas; McDonald, Roderick P.

    2007-01-01

    Similarities between latent class models with K classes and linear factor models with K-1 factors are investigated. Specifically, the mathematical equivalence between the covariance structure of the two models is discussed, and a Monte Carlo simulation is performed using generated data that represents both latent factors and latent classes with…

  6. Refining the Measurement of Distress Intolerance

    PubMed Central

    McHugh, R. Kathryn; Otto, Michael W.

    2012-01-01

    Distress intolerance is an important transdiagnostic variable that has long been implicated in the development and maintenance of psychological disorders. Self-report measurement strategies for distress intolerance have emerged from several different models of psychopathology and these measures have been applied inconsistently in the literature in the absence of a clear gold standard. The absence of a consistent assessment strategy has limited the ability to compare across studies and samples, thus hampering the advancement of this research agenda. This study evaluated the latent factor structure of existing measures of DI to examine the degree to which they are capturing the same construct. Results of confirmatory factor analysis in 3 samples totaling 400 participants provided support for a single factor latent structure. Individual items of these four scales were then correlated with this factor to identify those that best capture the core construct. Results provided consistent supported for 10 items that demonstrated the strongest concordance with this factor. The use of these 10 items as a unifying measure in the study of DI and future directions for the evaluation of its utility are discussed. PMID:22697451

  7. Scale Reliability Evaluation with Heterogeneous Populations

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A latent variable modeling approach for scale reliability evaluation in heterogeneous populations is discussed. The method can be used for point and interval estimation of reliability of multicomponent measuring instruments in populations representing mixtures of an unknown number of latent classes or subpopulations. The procedure is helpful also…

  8. Measurement of Psychological Disorders Using Cognitive Diagnosis Models

    ERIC Educational Resources Information Center

    Templin, Jonathan L.; Henson, Robert A.

    2006-01-01

    Cognitive diagnosis models are constrained (multiple classification) latent class models that characterize the relationship of questionnaire responses to a set of dichotomous latent variables. Having emanated from educational measurement, several aspects of such models seem well suited to use in psychological assessment and diagnosis. This article…

  9. Residual Structures in Latent Growth Curve Modeling

    ERIC Educational Resources Information Center

    Grimm, Kevin J.; Widaman, Keith F.

    2010-01-01

    Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…

  10. Assessing Impacts on Unplanned Hospitalisations of Care Quality and Access Using a Structural Equation Method: With a Case Study of Diabetes

    PubMed Central

    Congdon, Peter

    2016-01-01

    Background: Enhanced quality of care and improved access are central to effective primary care management of long term conditions. However, research evidence is inconclusive in establishing a link between quality of primary care, or access, and adverse outcomes, such as unplanned hospitalisation. Methods: This paper proposes a structural equation model for quality and access as latent variables affecting adverse outcomes, such as unplanned hospitalisations. In a case study application, quality of care (QOC) is defined in relation to diabetes, and the aim is to assess impacts of care quality and access on unplanned hospital admissions for diabetes, while allowing also for socio-economic deprivation, diabetes morbidity, and supply effects. The study involves 90 general practitioner (GP) practices in two London Clinical Commissioning Groups, using clinical quality of care indicators, and patient survey data on perceived access. Results: As a single predictor, quality of care has a significant negative impact on emergency admissions, and this significant effect remains when socio-economic deprivation and morbidity are allowed. In a full structural equation model including access, the probability that QOC negatively impacts on unplanned admissions exceeds 0.9. Furthermore, poor access is linked to deprivation, diminished QOC, and larger list sizes. Conclusions: Using a Bayesian inference methodology, the evidence from the analysis is weighted towards negative impacts of higher primary care quality and improved access on unplanned admissions. The methodology of the paper is potentially applicable to other long term conditions, and relevant when care quality and access cannot be measured directly and are better regarded as latent variables. PMID:27598184

  11. Assessing Impacts on Unplanned Hospitalisations of Care Quality and Access Using a Structural Equation Method: With a Case Study of Diabetes.

    PubMed

    Congdon, Peter

    2016-09-01

    Enhanced quality of care and improved access are central to effective primary care management of long term conditions. However, research evidence is inconclusive in establishing a link between quality of primary care, or access, and adverse outcomes, such as unplanned hospitalisation. This paper proposes a structural equation model for quality and access as latent variables affecting adverse outcomes, such as unplanned hospitalisations. In a case study application, quality of care (QOC) is defined in relation to diabetes, and the aim is to assess impacts of care quality and access on unplanned hospital admissions for diabetes, while allowing also for socio-economic deprivation, diabetes morbidity, and supply effects. The study involves 90 general practitioner (GP) practices in two London Clinical Commissioning Groups, using clinical quality of care indicators, and patient survey data on perceived access. As a single predictor, quality of care has a significant negative impact on emergency admissions, and this significant effect remains when socio-economic deprivation and morbidity are allowed. In a full structural equation model including access, the probability that QOC negatively impacts on unplanned admissions exceeds 0.9. Furthermore, poor access is linked to deprivation, diminished QOC, and larger list sizes. Using a Bayesian inference methodology, the evidence from the analysis is weighted towards negative impacts of higher primary care quality and improved access on unplanned admissions. The methodology of the paper is potentially applicable to other long term conditions, and relevant when care quality and access cannot be measured directly and are better regarded as latent variables.

  12. Improved Satellite Estimation of Near-Surface Humidity Using Vertical Water Vapor Profile Information

    NASA Astrophysics Data System (ADS)

    Tomita, H.; Hihara, T.; Kubota, M.

    2018-01-01

    Near-surface air-specific humidity is a key variable in the estimation of air-sea latent heat flux and evaporation from the ocean surface. An accurate estimation over the global ocean is required for studies on global climate, air-sea interactions, and water cycles. Current remote sensing techniques are problematic and a major source of errors for flux and evaporation. Here we propose a new method to estimate surface humidity using satellite microwave radiometer instruments, based on a new finding about the relationship between multichannel brightness temperatures measured by satellite sensors, surface humidity, and vertical moisture structure. Satellite estimations using the new method were compared with in situ observations to evaluate this method, confirming that it could significantly improve satellite estimations with high impact on satellite estimation of latent heat flux. We recommend the adoption of this method for any satellite microwave radiometer observations.

  13. The Road to Creative Achievement: A Latent Variable Model of Ability and Personality Predictors

    PubMed Central

    Jauk, Emanuel; Benedek, Mathias; Neubauer, Aljoscha C

    2014-01-01

    This study investigated the significance of different well-established psychometric indicators of creativity for real-life creative outcomes. Specifically, we tested the effects of creative potential, intelligence, and openness to experiences on everyday creative activities and actual creative achievement. Using a heterogeneous sample of 297 adults, we performed latent multiple regression analyses by means of structural equation modelling. We found openness to experiences and two independent indicators of creative potential, ideational originality and ideational fluency, to predict everyday creative activities. Creative activities, in turn, predicted actual creative achievement. Intelligence was found to predict creative achievement, but not creative activities. Moreover, intelligence moderated the effect of creative activities on creative achievement, suggesting that intelligence may play an important role in transforming creative activities into publically acknowledged creative achievements. This study supports the view of creativity as a multifaceted construct and provides an integrative model illustrating the potential interplay between its different facets. PMID:24532953

  14. Verbal task demands are key in explaining the relationship between paired-associate learning and reading ability.

    PubMed

    Clayton, Francina J; Sears, Claire; Davis, Alice; Hulme, Charles

    2018-07-01

    Paired-associate learning (PAL) tasks measure the ability to form a novel association between a stimulus and a response. Performance on such tasks is strongly associated with reading ability, and there is increasing evidence that verbal task demands may be critical in explaining this relationship. The current study investigated the relationships between different forms of PAL and reading ability. A total of 97 children aged 8-10 years completed a battery of reading assessments and six different PAL tasks (phoneme-phoneme, visual-phoneme, nonverbal-nonverbal, visual-nonverbal, nonword-nonword, and visual-nonword) involving both familiar phonemes and unfamiliar nonwords. A latent variable path model showed that PAL ability is captured by two correlated latent variables: auditory-articulatory and visual-articulatory. The auditory-articulatory latent variable was the stronger predictor of reading ability, providing support for a verbal account of the PAL-reading relationship. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. A new dimension of organizational justice: procedural voice.

    PubMed

    Jepsen, Denise; Rodwell, John

    2009-10-01

    Dimensionality of the Colquitt justice measures was investigated across a wide range of service occupations. Structural equation modeling of data from 410 survey respondents found support for the 4-factor model of justice (procedural, distributive, interpersonal, and informational), although significant improvement of model fit was obtained by including a new latent variable, "procedural voice," which taps employees' desire to express their views and feelings and influence results. The model was confirmed in a second sample (N = 505) in the same organization six months later.

  16. Interaction between Helicobacter pylori and Latent Toxoplasmosis and Demographic Variables on Cognitive Function in Young to Middle-Aged Adults

    PubMed Central

    Gale, Shawn D.; Erickson, Lance D.; Brown, Bruce L.; Hedges, Dawson W.

    2015-01-01

    Helicobacter pylori and latent toxoplasmosis are widespread diseases that have been associated with cognitive deficits and Alzheimer’s disease. We sought to determine whether interactions between Helicobacter pylori and latent toxoplasmosis, age, race-ethnicity, educational attainment, economic status, and general health predict cognitive function in young and middle-aged adults. To do so, we used multivariable regression and multivariate models to analyze data obtained from the United States’ National Health and Nutrition Examination Survey from the Centers for Disease Control and Prevention, which can be weighted to represent the US population. In this sample, we found that 31.6 percent of women and 36.2 percent of men of the overall sample had IgG Antibodies against Helicobacter pylori, although the seroprevalence of Helicobacter pylori varied with sociodemographic variables. There were no main effects for Helicobacter pylori or latent toxoplasmosis for any of the cognitive measures in models adjusting for age, sex, race-ethnicity, educational attainment, economic standing, and self-rated health predicting cognitive function. However, interactions between Helicobacter pylori and race-ethnicity, educational attainment, latent toxoplasmosis in the fully adjusted models predicted cognitive function. People seropositive for both Helicobacter pylori and latent toxoplasmosis – both of which appear to be common in the general population – appear to be more susceptible to cognitive deficits than are people seropositive for either Helicobacter pylori and or latent toxoplasmosis alone, suggesting a synergistic effect between these two infectious diseases on cognition in young to middle-aged adults. PMID:25590622

  17. Analyzing Longitudinal Item Response Data via the Pairwise Fitting Method

    ERIC Educational Resources Information Center

    Fu, Zhi-Hui; Tao, Jian; Shi, Ning-Zhong; Zhang, Ming; Lin, Nan

    2011-01-01

    Multidimensional item response theory (MIRT) models can be applied to longitudinal educational surveys where a group of individuals are administered different tests over time with some common items. However, computational problems typically arise as the dimension of the latent variables increases. This is especially true when the latent variable…

  18. Discrimination, work outcomes, and mental health among women of color: The protective role of womanist attitudes.

    PubMed

    Velez, Brandon L; Cox, Robert; Polihronakis, Charles J; Moradi, Bonnie

    2018-03-01

    With a sample of employed women of color (N = 276), we tested the associations of sexist and racist discrimination with poor work outcomes (job-related burnout and turnover intentions) and mental health outcomes (i.e., psychological distress). Drawing from the Theory of Work Adjustment, Organizational Support Theory, and scholarship on discrimination, we tested perceived person-organization (P-O) fit, perceived organizational support, and self-esteem as mediators of the associations of workplace discrimination with the outcomes. Based on intersectionality scholarship, womanist attitudes were tested as a moderator. Participants provided cross-sectional data via an online survey. Latent variable structural equation modeling results indicated that a second-order latent workplace discrimination variable yielded better fit to the data than modeling sexist and racist discrimination separately. Workplace discrimination was directly and indirectly (via the mediating role of self-esteem) associated with higher psychological distress. Furthermore, workplace discrimination was indirectly associated with poor work outcomes through the mediating roles of perceived P-O fit, perceived organizational support, and self-esteem. Last, moderation analyses indicated that higher womanist attitudes weakened the direct association of workplace discrimination with psychological distress. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Estimating the ratio of multivariate recurrent event rates with application to a blood transfusion study.

    PubMed

    Ning, Jing; Rahbar, Mohammad H; Choi, Sangbum; Piao, Jin; Hong, Chuan; Del Junco, Deborah J; Rahbar, Elaheh; Fox, Erin E; Holcomb, John B; Wang, Mei-Cheng

    2017-08-01

    In comparative effectiveness studies of multicomponent, sequential interventions like blood product transfusion (plasma, platelets, red blood cells) for trauma and critical care patients, the timing and dynamics of treatment relative to the fragility of a patient's condition is often overlooked and underappreciated. While many hospitals have established massive transfusion protocols to ensure that physiologically optimal combinations of blood products are rapidly available, the period of time required to achieve a specified massive transfusion standard (e.g. a 1:1 or 1:2 ratio of plasma or platelets:red blood cells) has been ignored. To account for the time-varying characteristics of transfusions, we use semiparametric rate models for multivariate recurrent events to estimate blood product ratios. We use latent variables to account for multiple sources of informative censoring (early surgical or endovascular hemorrhage control procedures or death). The major advantage is that the distributions of latent variables and the dependence structure between the multivariate recurrent events and informative censoring need not be specified. Thus, our approach is robust to complex model assumptions. We establish asymptotic properties and evaluate finite sample performance through simulations, and apply the method to data from the PRospective Observational Multicenter Major Trauma Transfusion study.

  20. Interpretational confounding is due to misspecification, not to type of indicator: comment on Howell, Breivik, and Wilcox (2007).

    PubMed

    Bollen, Kenneth A

    2007-06-01

    R. D. Howell, E. Breivik, and J. B. Wilcox (2007) have argued that causal (formative) indicators are inherently subject to interpretational confounding. That is, they have argued that using causal (formative) indicators leads the empirical meaning of a latent variable to be other than that assigned to it by a researcher. Their critique of causal (formative) indicators rests on several claims: (a) A latent variable exists apart from the model when there are effect (reflective) indicators but not when there are causal (formative) indicators, (b) causal (formative) indicators need not have the same consequences, (c) causal (formative) indicators are inherently subject to interpretational confounding, and (d) a researcher cannot detect interpretational confounding when using causal (formative) indicators. This article shows that each claim is false. Rather, interpretational confounding is more a problem of structural misspecification of a model combined with an underidentified model that leaves these misspecifications undetected. Interpretational confounding does not occur if the model is correctly specified whether a researcher has causal (formative) or effect (reflective) indicators. It is the validity of a model not the type of indicator that determines the potential for interpretational confounding. Copyright 2007 APA, all rights reserved.

  1. The Effects of Educational Diversity in a National Sample of Law Students: Fitting Multilevel Latent Variable Models in Data With Categorical Indicators.

    PubMed

    Gottfredson, Nisha C; Panter, A T; Daye, Charles E; Allen, Walter F; Wightman, Linda F

    2009-01-01

    Controversy surrounding the use of race-conscious admissions can be partially resolved with improved empirical knowledge of the effects of racial diversity in educational settings. We use a national sample of law students nested in 64 law schools to test the complex and largely untested theory regarding the effects of educational diversity on student outcomes. Social scientists who study these outcomes frequently encounter both latent variables and nested data within a single analysis. Yet, until recently, an appropriate modeling technique has been computationally infeasible, and consequently few applied researchers have estimated appropriate models to test their theories, sometimes limiting the scope of their research question. Our results, based on disaggregated multilevel structural equation models, show that racial diversity is related to a reduction in prejudiced attitudes and increased perceived exposure to diverse ideas and that these effects are mediated by more frequent interpersonal contact with diverse peers. These findings provide support for the idea that administrative manipulation of educational diversity may lead to improved student outcomes. Admitting a racially/ethnically diverse student body provides an educational experience that encourages increased exposure to diverse ideas and belief systems.

  2. Ecological Models of Sexual Satisfaction among Lesbian/Bisexual and Heterosexual Women

    PubMed Central

    Henderson, Alison W.; Simoni, Jane M.

    2014-01-01

    Sexual satisfaction is an integral component of sexual health and well-being, yet we know little about which factors contribute to it among lesbian/bisexual women. To examine a proposed ecological model of sexual satisfaction, we conducted an internet survey of married heterosexual women and lesbian/bisexual women in committed same-sex relationships. Structural equation modeling included five final latent variables for heterosexual women and seven final latent variables for lesbian/bisexual women. Overall, results indicated that, for both groups of women, a similar constellation of factors (depressive symptoms, relationship satisfaction, sexual functioning, and social support) was related to sexual satisfaction. In lesbian/bisexual women, internalized homophobia was an additional factor. Contrary to expectations, the presence of children in the home and a history of childhood sexual abuse did not contribute significantly to the model for either group. Findings support the idea that gender socialization may influence sexual satisfaction more than socialization around sexual orientation. Additionally, given that for both groups of women relationship satisfaction explained a substantial amount of variance in sexual satisfaction, sexual concerns may be better addressed at the relationship than the individual level. PMID:18574685

  3. Mediation in dyadic data at the level of the dyads: a Structural Equation Modeling approach.

    PubMed

    Ledermann, Thomas; Macho, Siegfried

    2009-10-01

    An extended version of the Common Fate Model (CFM) is presented to estimate and test mediation in dyadic data. The model can be used for distinguishable dyad members (e.g., heterosexual couples) or indistinguishable dyad members (e.g., homosexual couples) if (a) the variables measure characteristics of the dyadic relationship or shared external influences that affect both partners; if (b) the causal associations between the variables should be analyzed at the dyadic level; and if (c) the measured variables are reliable indicators of the latent variables. To assess mediation using Structural Equation Modeling, a general three-step procedure is suggested. The first is a selection of a good fitting model, the second a test of the direct effects, and the third a test of the mediating effect by means of bootstrapping. The application of the model along with the procedure for assessing mediation is illustrated using data from 184 couples on marital problems, communication, and marital quality. Differences with the Actor-Partner Interdependence Model and the analysis of longitudinal mediation by using the CFM are discussed.

  4. [Path analysis of lifestyle habits to the metabolic syndrome].

    PubMed

    Zhu, Zhen-xin; Zhang, Cheng-qi; Tang, Fang; Song, Xin-hong; Xue, Fu-zhong

    2013-04-01

    To evaluate the relationship between lifestyle habits and the components of metabolic syndrome (MS). Based on the routine health check-up system in a certain Center for Health Management of Shandong Province, a longitudinal surveillance health check-up cohort from 2005 to 2010 was set up. There were 13 225 urban workers in Jinan included in the analysis. The content of the survey included demographic information, medical history, lifestyle habits, body mass index (BMI) and the level of blood pressure, fasting blood-glucose, and blood lipid, etc. The distribution of BMI, blood pressure, fasting blood-glucose, blood lipid and lifestyle habits between MS patients and non-MS population was compared, latent variables were extracted by exploratory factor analysis to determine the structure model, and then a partial least squares path model was constructed between lifestyle habits and the components of MS. Participants'age was (46.62 ± 12.16) years old. The overall prevalence of the MS was 22.43% (2967/13 225), 26.49% (2535/9570) in males and 11.82% (432/3655) in females. The prevalence of the MS was statistically different between males and females (χ(2) = 327.08, P < 0.01). Between MS patients and non-MS population, the difference of dietary habits was statistically significant (χ(2) = 166.31, P < 0.01) in MS patients, the rate of vegetarian, mixed and animal food was 23.39% (694/2967), 42.50% (1261/2967) and 34.11% (1012/2967) respectively, while in non-MS population was 30.80% (3159/10 258), 46.37% (4757/10 258), 22.83% (2342/10 258) respectively. Their alcohol consumption has statistical difference (χ(2) = 374.22, P < 0.01) in MS patients, the rate of never or past, occasional and regular drinking was 27.37% (812/2967), 24.71% (733/2967), 47.93% (1422/2967) respectively, and in non-MS population was 39.60% (4062/10 258), 31.36% (3217/10 258), 29.04% (2979/10 258) respectively. The difference of their smoking status was statistically significant (χ(2) = 115.86, P < 0.01) in MS patients, the rate of never or past, occasional and regular smoking was 59.72% (1772/2967), 6.24% (185/2967), 34.04% (1010/2967) respectively, while in non-MS population was 70.03% (7184/10 258), 5.35% (549/10 258), 24.61% (2525/10 258) respectively. Both lifestyle habits and the components of MS were attributable to only one latent variable. After adjustment for age and gender, the path coefficient between the latent component of lifestyle habits and the latent component of MS was 0.22 with statistical significance (t = 6.46, P < 0.01) through bootstrap test. Reliability and validity of the model:the lifestyle latent variable: average variance extracted was 0.53, composite reliability was 0.77 and Cronbach's a was 0.57. The MS latent variable: average variance extracted was 0.45, composite reliability was 0.76 and Cronbach's a was 0.59. Unhealthy lifestyle habits are closely related to MS. Meat diet, excessive drinking and smoking are risk factors for MS.

  5. Does Attention-Deficit/Hyperactivity Disorder Have a Dimensional Latent Structure? A Taxometric Analysis

    PubMed Central

    Marcus, David K.; Barry, Tammy D.

    2010-01-01

    An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667–1078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators, for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD. PMID:20973595

  6. Does attention-deficit/hyperactivity disorder have a dimensional latent structure? A taxometric analysis.

    PubMed

    Marcus, David K; Barry, Tammy D

    2011-05-01

    An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667 and 1,078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD.

  7. Beyond logistic regression: structural equations modelling for binary variables and its application to investigating unobserved confounders.

    PubMed

    Kupek, Emil

    2006-03-15

    Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100) random sample of the data generated and on a real data set. SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.

  8. Association between latent toxoplasmosis and cognition in adults: a cross-sectional study.

    PubMed

    Gale, S D; Brown, B L; Erickson, L D; Berrett, A; Hedges, D W

    2015-04-01

    Latent infection from Toxoplasma gondii (T. gondii) is widespread worldwide and has been associated with cognitive deficits in some but not all animal models and in humans. We tested the hypothesis that latent toxoplasmosis is associated with decreased cognitive function in a large cross-sectional dataset, the National Health and Nutrition Examination Survey (NHANES). There were 4178 participants aged 20-59 years, of whom 19.1% had IgG antibodies against T. gondii. Two ordinary least squares (OLS) regression models adjusted for the NHANES complex sampling design and weighted to represent the US population were estimated for simple reaction time, processing speed and short-term memory or attention. The first model included only main effects of latent toxoplasmosis and demographic control variables, and the second added interaction terms between latent toxoplasmosis and the poverty-to-income ratio (PIR), educational attainment and race-ethnicity. We also used multivariate models to assess all three cognitive outcomes in the same model. Although the models evaluating main effects only demonstrated no association between latent toxoplasmosis and the cognitive outcomes, significant interactions between latent toxoplasmosis and the PIR, between latent toxoplasmosis and educational attainment, and between latent toxoplasmosis and race-ethnicity indicated that latent toxoplasmosis may adversely affect cognitive function in certain groups.

  9. Repeatability and Reproducibility of Decisions by Latent Fingerprint Examiners

    PubMed Central

    Ulery, Bradford T.; Hicklin, R. Austin; Buscaglia, JoAnn; Roberts, Maria Antonia

    2012-01-01

    The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. We tested latent print examiners on the extent to which they reached consistent decisions. This study assessed intra-examiner repeatability by retesting 72 examiners on comparisons of latent and exemplar fingerprints, after an interval of approximately seven months; each examiner was reassigned 25 image pairs for comparison, out of total pool of 744 image pairs. We compare these repeatability results with reproducibility (inter-examiner) results derived from our previous study. Examiners repeated 89.1% of their individualization decisions, and 90.1% of their exclusion decisions; most of the changed decisions resulted in inconclusive decisions. Repeatability of comparison decisions (individualization, exclusion, inconclusive) was 90.0% for mated pairs, and 85.9% for nonmated pairs. Repeatability and reproducibility were notably lower for comparisons assessed by the examiners as “difficult” than for “easy” or “moderate” comparisons, indicating that examiners' assessments of difficulty may be useful for quality assurance. No false positive errors were repeated (n = 4); 30% of false negative errors were repeated. One percent of latent value decisions were completely reversed (no value even for exclusion vs. of value for individualization). Most of the inter- and intra-examiner variability concerned whether the examiners considered the information available to be sufficient to reach a conclusion; this variability was concentrated on specific image pairs such that repeatability and reproducibility were very high on some comparisons and very low on others. Much of the variability appears to be due to making categorical decisions in borderline cases. PMID:22427888

  10. Transdiagnostic Factors and Mediation of the Relationship Between Perceived Racial Discrimination and Mental Disorders.

    PubMed

    Rodriguez-Seijas, Craig; Stohl, Malki; Hasin, Deborah S; Eaton, Nicholas R

    2015-07-01

    Multivariable comorbidity research indicates that many common mental disorders are manifestations of 2 latent transdiagnostic factors, internalizing and externalizing. Environmental stressors are known to increase the risk for experiencing particular mental disorders, but their relationships with transdiagnostic disorder constructs are unknown. The present study investigated one such stressor, perceived racial discrimination, which is robustly associated with a variety of mental disorders. To examine the direct and indirect associations between perceived racial discrimination and common forms of psychopathology. Quantitative analysis of 12 common diagnoses that were previously assessed in a nationally representative sample (N = 5191) of African American and Afro-Caribbean adults in the United States, taken from the National Survey of American Life, and used to test the possibility that transdiagnostic factors mediate the effects of discrimination on disorders. The data were obtained from February 2001 to March 2003. Latent variable measurement models, including factor analysis, and indirect effect models were used in the study. Mental health diagnoses from reliable and valid structured interviews and perceived race-based discrimination. While perceived discrimination was positively associated with all examined forms of psychopathology and substance use disorders, latent variable indirect effects modeling revealed that almost all of these associations were significantly mediated by the transdiagnostic factors. For social anxiety disorder and attention-deficit/hyperactivity disorder, complete mediation was found. The pathways linking perceived discrimination to psychiatric disorders were not direct but indirect (via transdiagnostic factors). Therefore, perceived discrimination may be associated with risk for myriad psychiatric disorders due to its association with transdiagnostic factors.

  11. The Latent Structure of Impulsivity: Impulsive Choice, Impulsive Action, and Impulsive Personality Traits

    PubMed Central

    MacKillop, James; Weafer, Jessica; Gray, Joshua; Oshri, Assaf; Palmer, Abraham; de Wit, Harriet

    2016-01-01

    Rationale Impulsivity has been strongly linked to addictive behaviors, but can be operationalized in a number of ways that vary considerably in overlap, suggesting multidimensionality. Objective This study tested the hypothesis that the latent structure among multiple measures of impulsivity would reflect three broad categories: impulsive choice, reflecting discounting of delayed rewards; impulsive action, reflecting ability to inhibit a prepotent motor response; and impulsive personality traits, reflecting self-reported attributions of self-regulatory capacity. Methods The study used a cross-sectional confirmatory factor analysis of multiple impulsivity assessments. Participants were 1252 young adults (62% female) with low levels of addictive behavior who were assessed in individual laboratory rooms at the University of Chicago and the University of Georgia. The battery comprised a delay discounting task, Monetary Choice Questionnaire, Conners Continuous Performance Test, Go/NoGo Task, Stop Signal Task, Barratt Impulsivity Scale, and the UPPS-P Impulsive Behavior Scale. Results The hypothesized three-factor model provided the best fit to the data, although Sensation Seeking was excluded from the final model. The three latent factors were largely unrelated to each other and were variably associated with substance use. Conclusions These findings support the hypothesis that diverse measures of impulsivity can broadly be organized into three categories that are largely distinct from one another. These findings warrant investigation among individuals with clinical levels of addictive behavior and may be applied to understanding the underlying biological mechanisms of these categories. PMID:27449350

  12. Examining the Latent Structure of the Delis-Kaplan Executive Function System.

    PubMed

    Karr, Justin E; Hofer, Scott M; Iverson, Grant L; Garcia-Barrera, Mauricio A

    2018-05-04

    The current study aimed to determine whether the Delis-Kaplan Executive Function System (D-KEFS) taps into three executive function factors (inhibition, shifting, fluency) and to assess the relationship between these factors and tests of executive-related constructs less often measured in latent variable research: reasoning, abstraction, and problem solving. Participants included 425 adults from the D-KEFS standardization sample (20-49 years old; 50.1% female; 70.1% White). Eight alternative measurement models were compared based on model fit, with test scores assigned a priori to three factors: inhibition (Color-Word Interference, Tower), shifting (Trail Making, Sorting, Design Fluency), and fluency (Verbal/Design Fluency). The Twenty Questions, Word Context, and Proverb Tests were predicted in separate structural models. The three-factor model fit the data well (CFI = 0.938; RMSEA = 0.047), although a two-factor model, with shifting and fluency merged, fit similarly well (CFI = 0.929; RMSEA = 0.048). A bifactor model fit best (CFI = 0.977; RMSEA = 0.032) and explained the most variance in shifting indicators, but rarely converged among 5,000 bootstrapped samples. When the three first-order factors simultaneously predicted the criterion variables, only shifting was uniquely predictive (p < .05; R2 = 0.246-0.408). The bifactor significantly predicted all three criterion variables (p < .001; R2 = 0.141-242). Results supported a three-factor D-KEFS model (i.e., inhibition, shifting, and fluency), although shifting and fluency were highly related (r = 0.696). The bifactor showed superior fit, but converged less often than other models. Shifting best predicted tests of reasoning, abstraction, and problem solving. These findings support the validity of D-KEFS scores for measuring executive-related constructs and provide a framework through which clinicians can interpret D-KEFS results.

  13. Representing general theoretical concepts in structural equation models: The role of composite variables

    USGS Publications Warehouse

    Grace, J.B.; Bollen, K.A.

    2008-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.

  14. Measurement and structural relations of an authoritative school climate model: A multi-level latent variable investigation.

    PubMed

    Konold, Timothy R; Cornell, Dewey

    2015-12-01

    This study tested a conceptual model of school climate in which two key elements of an authoritative school, structure and support variables, are associated with student engagement in school and lower levels of peer aggression. Multilevel multivariate structural modeling was conducted in a statewide sample of 48,027 students in 323 public high schools who completed the Authoritative School Climate Survey. As hypothesized, two measures of structure (Disciplinary Structure and Academic Expectations) and two measures of support (Respect for Students and Willingness to Seek Help) were associated with higher student engagement (Affective Engagement and Cognitive Engagement) and lower peer aggression (Prevalence of Teasing and Bullying) on both student and school levels of analysis, controlling for the effects of school demographics (school size, percentage of minority students, and percentage of low income students). These results support the extension of authoritative school climate model to high school and guide further research on the conditions for a positive school climate. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  15. Ordinal probability effect measures for group comparisons in multinomial cumulative link models.

    PubMed

    Agresti, Alan; Kateri, Maria

    2017-03-01

    We consider simple ordinal model-based probability effect measures for comparing distributions of two groups, adjusted for explanatory variables. An "ordinal superiority" measure summarizes the probability that an observation from one distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model. The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It equals Φ(β/2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities, for standard normal cdf Φ and effect β that is the coefficient of the group indicator variable. For the more general latent variable model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1+exp(β)] with the log-log link and equals approximately exp(β/2)/[1+exp(β/2)] with the logit link, where β is the group effect. Another ordinal superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures directly for ordinal models for the observed response that need not assume corresponding latent response models. We present confidence intervals for the measures and illustrate with an example. © 2016, The International Biometric Society.

  16. Electronic effects on melting: Comparison of aluminum cluster anions and cations

    NASA Astrophysics Data System (ADS)

    Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.

    2009-07-01

    Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35-70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered" roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts.

  17. Investigating Factorial Invariance of Latent Variables Across Populations When Manifest Variables Are Missing Completely

    PubMed Central

    Widaman, Keith F.; Grimm, Kevin J.; Early, Dawnté R.; Robins, Richard W.; Conger, Rand D.

    2013-01-01

    Difficulties arise in multiple-group evaluations of factorial invariance if particular manifest variables are missing completely in certain groups. Ad hoc analytic alternatives can be used in such situations (e.g., deleting manifest variables), but some common approaches, such as multiple imputation, are not viable. At least 3 solutions to this problem are viable: analyzing differing sets of variables across groups, using pattern mixture approaches, and a new method using random number generation. The latter solution, proposed in this article, is to generate pseudo-random normal deviates for all observations for manifest variables that are missing completely in a given sample and then to specify multiple-group models in a way that respects the random nature of these values. An empirical example is presented in detail comparing the 3 approaches. The proposed solution can enable quantitative comparisons at the latent variable level between groups using programs that require the same number of manifest variables in each group. PMID:24019738

  18. On the measurement of stability in over-time data.

    PubMed

    Kenny, D A; Campbell, D T

    1989-06-01

    In this article, autoregressive models and growth curve models are compared. Autoregressive models are useful because they allow for random change, permit scores to increase or decrease, and do not require strong assumptions about the level of measurement. Three previously presented designs for estimating stability are described: (a) time-series, (b) simplex, and (c) two-wave, one-factor methods. A two-wave, multiple-factor model also is presented, in which the variables are assumed to be caused by a set of latent variables. The factor structure does not change over time and so the synchronous relationships are temporally invariant. The factors do not cause each other and have the same stability. The parameters of the model are the factor loading structure, each variable's reliability, and the stability of the factors. We apply the model to two data sets. For eight cognitive skill variables measured at four times, the 2-year stability is estimated to be .92 and the 6-year stability is .83. For nine personality variables, the 3-year stability is .68. We speculate that for many variables there are two components: one component that changes very slowly (the trait component) and another that changes very rapidly (the state component); thus each variable is a mixture of trait and state. Circumstantial evidence supporting this view is presented.

  19. Exploratory factor analysis of pathway copy number data with an application towards the integration with gene expression data.

    PubMed

    van Wieringen, Wessel N; van de Wiel, Mark A

    2011-05-01

    Realizing that genes often operate together, studies into the molecular biology of cancer shift focus from individual genes to pathways. In order to understand the regulatory mechanisms of a pathway, one must study its genes at all molecular levels. To facilitate such study at the genomic level, we developed exploratory factor analysis for the characterization of the variability of a pathway's copy number data. A latent variable model that describes the call probability data of a pathway is introduced and fitted with an EM algorithm. In two breast cancer data sets, it is shown that the first two latent variables of GO nodes, which inherit a clear interpretation from the call probabilities, are often related to the proportion of aberrations and a contrast of the probabilities of a loss and of a gain. Linking the latent variables to the node's gene expression data suggests that they capture the "global" effect of genomic aberrations on these transcript levels. In all, the proposed method provides an possibly insightful characterization of pathway copy number data, which may be fruitfully exploited to study the interaction between the pathway's DNA copy number aberrations and data from other molecular levels like gene expression.

  20. Correcting Measurement Error in Latent Regression Covariates via the MC-SIMEX Method

    ERIC Educational Resources Information Center

    Rutkowski, Leslie; Zhou, Yan

    2015-01-01

    Given the importance of large-scale assessments to educational policy conversations, it is critical that subpopulation achievement is estimated reliably and with sufficient precision. Despite this importance, biased subpopulation estimates have been found to occur when variables in the conditioning model side of a latent regression model contain…

  1. On the Power of Multivariate Latent Growth Curve Models to Detect Correlated Change

    ERIC Educational Resources Information Center

    Hertzog, Christopher; Lindenberger, Ulman; Ghisletta, Paolo; Oertzen, Timo von

    2006-01-01

    We evaluated the statistical power of single-indicator latent growth curve models (LGCMs) to detect correlated change between two variables (covariance of slopes) as a function of sample size, number of longitudinal measurement occasions, and reliability (measurement error variance). Power approximations following the method of Satorra and Saris…

  2. Assessing Change in Latent Skills across Time with Longitudinal Cognitive Diagnosis Modeling: An Evaluation of Model Performance

    ERIC Educational Resources Information Center

    Kaya, Yasemin; Leite, Walter L.

    2017-01-01

    Cognitive diagnosis models are diagnostic models used to classify respondents into homogenous groups based on multiple categorical latent variables representing the measured cognitive attributes. This study aims to present longitudinal models for cognitive diagnosis modeling, which can be applied to repeated measurements in order to monitor…

  3. On the Relation between the Linear Factor Model and the Latent Profile Model

    ERIC Educational Resources Information Center

    Halpin, Peter F.; Dolan, Conor V.; Grasman, Raoul P. P. P.; De Boeck, Paul

    2011-01-01

    The relationship between linear factor models and latent profile models is addressed within the context of maximum likelihood estimation based on the joint distribution of the manifest variables. Although the two models are well known to imply equivalent covariance decompositions, in general they do not yield equivalent estimates of the…

  4. (Latent) Transitions to Learning at University: A Latent Profile Transition Analysis of First-Year Japanese Students

    ERIC Educational Resources Information Center

    Fryer, Luke K.

    2017-01-01

    During the past decade, quantitative researchers have examined the first-year university experience from both variable-centred and person-centred perspectives. These studies have, however, generally been cross-sectional and therefore often failed to address how student learning changes during this transition. Furthermore, research has been…

  5. A Comparison of Four Approaches to Account for Method Effects in Latent State-Trait Analyses

    ERIC Educational Resources Information Center

    Geiser, Christian; Lockhart, Ginger

    2012-01-01

    Latent state-trait (LST) analysis is frequently applied in psychological research to determine the degree to which observed scores reflect stable person-specific effects, effects of situations and/or person-situation interactions, and random measurement error. Most LST applications use multiple repeatedly measured observed variables as indicators…

  6. Variation in working memory capacity, fluid intelligence, and episodic recall: a latent variable examination of differences in the dynamics of free recall.

    PubMed

    Unsworth, Nash

    2009-09-01

    A latent variable analysis was conducted to examine the nature of individual differences in the dynamics of free recall and cognitive abilities. Participants performed multiple measures of free recall, working memory capacity (WMC), and fluid intelligence (gF). For each free recall task, recall accuracy, recall latency, and number of intrusion errors were determined, and latent factors were derived for each. It was found that recall accuracy was negatively related to both recall latency and number of intrusions, and recall latency and number of intrusions were positively related. Furthermore, latent WMC and gF factors were positively related to recall accuracy, but negatively related to recall latency and number of intrusions. Finally, a cluster analysis revealed that subgroups of participants with deficits in focusing the search had deficits in recovering degraded representations or deficits in monitoring the products of retrieval. The results are consistent with the idea that variation in the dynamics of free recall, WMC, and gF are primarily due to differences in search set size, but differences in recovery and monitoring are also important.

  7. Measuring psychosocial environments using individual responses: an application of multilevel factor analysis to examining students in schools.

    PubMed

    Dunn, Erin C; Masyn, Katherine E; Jones, Stephanie M; Subramanian, S V; Koenen, Karestan C

    2015-07-01

    Interest in understanding how psychosocial environments shape youth outcomes has grown considerably. School environments are of particular interest to prevention scientists as many prevention interventions are school-based. Therefore, effective conceptualization and operationalization of the school environment is critical. This paper presents an illustration of an emerging analytic method called multilevel factor analysis (MLFA) that provides an alternative strategy to conceptualize, measure, and model environments. MLFA decomposes the total sample variance-covariance matrix for variables measured at the individual level into within-cluster (e.g., student level) and between-cluster (e.g., school level) matrices and simultaneously models potentially distinct latent factor structures at each level. Using data from 79,362 students from 126 schools in the National Longitudinal Study of Adolescent to Adult Health (formerly known as the National Longitudinal Study of Adolescent Health), we use MLFA to show how 20 items capturing student self-reported behaviors and emotions provide information about both students (within level) and their school environment (between level). We identified four latent factors at the within level: (1) school adjustment, (2) externalizing problems, (3) internalizing problems, and (4) self-esteem. Three factors were identified at the between level: (1) collective school adjustment, (2) psychosocial environment, and (3) collective self-esteem. The finding of different and substantively distinct latent factor structures at each level emphasizes the need for prevention theory and practice to separately consider and measure constructs at each level of analysis. The MLFA method can be applied to other nested relationships, such as youth in neighborhoods, and extended to a multilevel structural equation model to better understand associations between environments and individual outcomes and therefore how to best implement preventive interventions.

  8. Structural equation modeling of the inflammatory response to traffic air pollution

    PubMed Central

    Baja, Emmanuel S.; Schwartz, Joel D.; Coull, Brent A.; Wellenius, Gregory A.; Vokonas, Pantel S.; Suh, Helen H.

    2015-01-01

    Several epidemiological studies have reported conflicting results on the effect of traffic-related pollutants on markers of inflammation. In a Bayesian framework, we examined the effect of traffic pollution on inflammation using structural equation models (SEMs). We studied measurements of C-reactive protein (CRP), soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble intracellular adhesion molecule-1 (sICAM-1) for 749 elderly men from the Normative Aging Study. Using repeated measures SEMs, we fit a latent variable for traffic pollution that is reflected by levels of black carbon, carbon monoxide, nitrogen monoxide and nitrogen dioxide to estimate its effect on a latent variable for inflammation that included sICAM-1, sVCAM-1 and CRP. Exposure periods were assessed using 1-, 2-, 3-, 7-, 14- and 30-day moving averages previsit. We compared our findings using SEMs with those obtained using linear mixed models. Traffic pollution was related to increased inflammation for 3-, 7-, 14- and 30-day exposure periods. An inter-quartile range increase in traffic pollution was associated with a 2.3% (95% posterior interval (PI): 0.0–4.7%) increase in inflammation for the 3-day moving average, with the most significant association observed for the 30-day moving average (23.9%; 95% PI: 13.9–36.7%). Traffic pollution adversely impacts inflammation in the elderly. SEMs in a Bayesian framework can comprehensively incorporate multiple pollutants and health outcomes simultaneously in air pollution–cardiovascular epidemiological studies. PMID:23232970

  9. Structural Equation Modeling: A Framework for Ocular and Other Medical Sciences Research

    PubMed Central

    Christ, Sharon L.; Lee, David J.; Lam, Byron L.; Diane, Zheng D.

    2017-01-01

    Structural equation modeling (SEM) is a modeling framework that encompasses many types of statistical models and can accommodate a variety of estimation and testing methods. SEM has been used primarily in social sciences but is increasingly used in epidemiology, public health, and the medical sciences. SEM provides many advantages for the analysis of survey and clinical data, including the ability to model latent constructs that may not be directly observable. Another major feature is simultaneous estimation of parameters in systems of equations that may include mediated relationships, correlated dependent variables, and in some instances feedback relationships. SEM allows for the specification of theoretically holistic models because multiple and varied relationships may be estimated together in the same model. SEM has recently expanded by adding generalized linear modeling capabilities that include the simultaneous estimation of parameters of different functional form for outcomes with different distributions in the same model. Therefore, mortality modeling and other relevant health outcomes may be evaluated. Random effects estimation using latent variables has been advanced in the SEM literature and software. In addition, SEM software has increased estimation options. Therefore, modern SEM is quite general and includes model types frequently used by health researchers, including generalized linear modeling, mixed effects linear modeling, and population average modeling. This article does not present any new information. It is meant as an introduction to SEM and its uses in ocular and other health research. PMID:24467557

  10. Extending Structural Analyses of the Rosenberg Self-Esteem Scale to Consider Criterion-Related Validity: Can Composite Self-Esteem Scores Be Good Enough?

    PubMed

    Donnellan, M Brent; Ackerman, Robert A; Brecheen, Courtney

    2016-01-01

    Although the Rosenberg Self-Esteem Scale (RSES) is the most widely used measure of global self-esteem in the literature, there are ongoing disagreements about its factor structure. This methodological debate informs how the measure should be used in substantive research. Using a sample of 1,127 college students, we test the overall fit of previously specified models for the RSES, including a newly proposed bifactor solution (McKay, Boduszek, & Harvey, 2014 ). We extend previous work by evaluating how various latent factors from these structural models are related to a set of criterion variables frequently studied in the self-esteem literature. A strict unidimensional model poorly fit the data, whereas models that accounted for correlations between negatively and positively keyed items tended to fit better. However, global factors from viable structural models had similar levels of association with criterion variables and with the pattern of results obtained with a composite global self-esteem variable calculated from observed scores. Thus, we did not find compelling evidence that different structural models had substantive implications, thereby reducing (but not eliminating) concerns about the integrity of the self-esteem literature based on overall composite scores for the RSES.

  11. A STUDY OF THE EFFECTS OF PARENTAL AWARENESS AND EXPERIENCE ON DRINKING WATER POLICIES IN ELEMENTARY SCHOOLS

    NASA Astrophysics Data System (ADS)

    Yamamura, Sombo; Ohnuki, Maromi; Nagaoka, Hiroshi

    Recently increased number of elementary school pupils brings drinks from home for their hydration at school and this phenomenon indicates the change of the role of water supply at schools. In order to investigate the potential causes and the structure of the problem, an online survey targeting mothers of grade-schoolers was carried out, taking account of psychological factors of mothers as well as their decision making process. In the questionnaire preparation, latent variables and observable variables were assumed. The identified results include: difference exists on people's choice of drinking water; more parents in western Japan wish pupils bring drinks and some parents in eastern Japan wish the same. Covariance structure analysis identified a causalmodel; in which parents' frustration to schools associated with decreased reliability to tap water cause parents' advice to pupils take drink from home. Policy makers are expected to make the most of the result of analysis.

  12. Validation of the conceptual research utilization scale: an application of the standards for educational and psychological testing in healthcare.

    PubMed

    Squires, Janet E; Estabrooks, Carole A; Newburn-Cook, Christine V; Gierl, Mark

    2011-05-19

    There is a lack of acceptable, reliable, and valid survey instruments to measure conceptual research utilization (CRU). In this study, we investigated the psychometric properties of a newly developed scale (the CRU Scale). We used the Standards for Educational and Psychological Testing as a validation framework to assess four sources of validity evidence: content, response processes, internal structure, and relations to other variables. A panel of nine international research utilization experts performed a formal content validity assessment. To determine response process validity, we conducted a series of one-on-one scale administration sessions with 10 healthcare aides. Internal structure and relations to other variables validity was examined using CRU Scale response data from a sample of 707 healthcare aides working in 30 urban Canadian nursing homes. Principal components analysis and confirmatory factor analyses were conducted to determine internal structure. Relations to other variables were examined using: (1) bivariate correlations; (2) change in mean values of CRU with increasing levels of other kinds of research utilization; and (3) multivariate linear regression. Content validity index scores for the five items ranged from 0.55 to 1.00. The principal components analysis predicted a 5-item 1-factor model. This was inconsistent with the findings from the confirmatory factor analysis, which showed best fit for a 4-item 1-factor model. Bivariate associations between CRU and other kinds of research utilization were statistically significant (p < 0.01) for the latent CRU scale score and all five CRU items. The CRU scale score was also shown to be significant predictor of overall research utilization in multivariate linear regression. The CRU scale showed acceptable initial psychometric properties with respect to responses from healthcare aides in nursing homes. Based on our validity, reliability, and acceptability analyses, we recommend using a reduced (four-item) version of the CRU scale to yield sound assessments of CRU by healthcare aides. Refinement to the wording of one item is also needed. Planned future research will include: latent scale scoring, identification of variables that predict and are outcomes to conceptual research use, and longitudinal work to determine CRU Scale sensitivity to change.

  13. Bark beetle-induced tree mortality alters stand energy budgets due to water budget changes

    NASA Astrophysics Data System (ADS)

    Reed, David E.; Ewers, Brent E.; Pendall, Elise; Frank, John; Kelly, Robert

    2018-01-01

    Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle ( D endroctonus ponderosae) outbreak and its associated blue stain fungi ( Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine ( Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater confidence in measurements for all dynamic disturbances.

  14. From loss to loneliness: The relationship between bereavement and depressive symptoms.

    PubMed

    Fried, Eiko I; Bockting, Claudi; Arjadi, Retha; Borsboom, Denny; Amshoff, Maximilian; Cramer, Angélique O J; Epskamp, Sacha; Tuerlinckx, Francis; Carr, Deborah; Stroebe, Margaret

    2015-05-01

    Spousal bereavement can cause a rise in depressive symptoms. This study empirically evaluates 2 competing explanations concerning how this causal effect is brought about: (a) a traditional latent variable explanation, in which loss triggers depression which then leads to symptoms; and (b) a novel network explanation, in which bereavement directly affects particular depression symptoms which then activate other symptoms. We used data from the Changing Lives of Older Couples (CLOC) study and compared depressive symptomatology, assessed via the 11-item Center for Epidemiologic Studies Depression Scale (CES-D), among those who lost their partner (N = 241) with a still-married control group (N = 274). We modeled the effect of partner loss on depressive symptoms either as an indirect effect through a latent variable, or as a direct effect in a network constructed through a causal search algorithm. Compared to the control group, widow(er)s' scores were significantly higher for symptoms of loneliness, sadness, depressed mood, and appetite loss, and significantly lower for happiness and enjoyed life. The effect of partner loss on these symptoms was not mediated by a latent variable. The network model indicated that bereavement mainly affected loneliness, which in turn activated other depressive symptoms. The direct effects of spousal loss on particular symptoms are inconsistent with the predictions of latent variable models, but can be explained from a network perspective. The findings support a growing body of literature showing that specific adverse life events differentially affect depressive symptomatology, and suggest that future studies should examine interventions that directly target such symptoms. (c) 2015 APA, all rights reserved).

  15. The Interface Between Theory and Data in Structural Equation Models

    USGS Publications Warehouse

    Grace, James B.; Bollen, Kenneth A.

    2006-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite, for representing general concepts. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling general relationships of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially reduced form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influences of suites of variables are often of interest.

  16. A longitudinal study of mortality and air pollution for São Paulo, Brazil.

    PubMed

    Botter, Denise A; Jørgensen, Bent; Peres, Antonieta A Q

    2002-09-01

    We study the effects of various air-pollution variables on the daily death counts for people over 65 years in São Paulo, Brazil, from 1991 to 1993, controlling for meteorological variables. We use a state space model where the air-pollution variables enter via the latent process, and the meteorological variables via the observation equation. The latent process represents the potential mortality due to air pollution, and is estimated by Kalman filter techniques. The effect of air pollution on mortality is found to be a function of the variation in the sulphur dioxide level for the previous 3 days, whereas the other air-pollution variables (total suspended particulates, nitrogen dioxide, carbon monoxide, ozone) are not significant when sulphur dioxide is in the equation. There are significant effects of humidity and up to lag 3 of temperature, and a significant seasonal variation.

  17. The Effects of Model Misspecification and Sample Size on LISREL Maximum Likelihood Estimates.

    ERIC Educational Resources Information Center

    Baldwin, Beatrice

    The robustness of LISREL computer program maximum likelihood estimates under specific conditions of model misspecification and sample size was examined. The population model used in this study contains one exogenous variable; three endogenous variables; and eight indicator variables, two for each latent variable. Conditions of model…

  18. Development of a scale to measure adherence to self-monitoring of blood glucose with latent variable measurement.

    PubMed

    Wagner, J A; Schnoll, R A; Gipson, M T

    1998-07-01

    Adherence to self-monitoring of blood glucose (SMBG) is problematic for many people with diabetes. Self-reports of adherence have been found to be unreliable, and existing paper-and-pencil measures have limitations. This study developed a brief measure of SMBG adherence with good psychometric properties and a useful factor structure that can be used in research and in practice. A total of 216 adults with diabetes responded to 30 items rated on a 9-point Likert scale that asked about blood monitoring habits. In part I of the study, items were evaluated and retained based on their psychometric properties. The sample was divided into exploratory and confirmatory halves. Using the exploratory half, items with acceptable psychometric properties were subjected to a principal components analysis. In part II of the study, structural equation modeling was used to confirm the component solution with the entire sample. Structural modeling was also used to test the relationship between these components. It was hypothesized that the scale would produce four correlated factors. Principal components analysis suggested a two-component solution, and confirmatory factor analysis confirmed this solution. The first factor measures the degree to which patients rely on others to help them test and thus was named "social influence." The second component measures the degree to which patients use physical symptoms of blood glucose levels to help them test and thus was named "physical influence." Results of the structural model show that the components are correlated and make up the higher-order latent variable adherence. The resulting 15-item scale provides a short, reliable way to assess patient adherence to SMBG. Despite the existence of several aspects of adherence, this study indicates that the construct consists of only two components. This scale is an improvement on previous measures of adherence because of its good psychometric properties, its interpretable factor structure, and its rigorous empirical development.

  19. Investigating the Latent Structure of the Teacher Efficacy Scale

    ERIC Educational Resources Information Center

    Wagler, Amy; Wagler, Ron

    2013-01-01

    This article reevaluates the latent structure of the Teacher Efficacy Scale using confirmatory factor analyses (CFAs) on a sample of preservice teachers from a public university in the U.S. Southwest. The fit of a proposed two-factor CFA model with an error correlation structure consistent with internal/ external locus of control is compared to…

  20. A Systematic Approach for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling

    ERIC Educational Resources Information Center

    Ding, Cherng G.; Jane, Ten-Der; Wu, Chiu-Hui; Lin, Hang-Rung; Shen, Chih-Kang

    2017-01-01

    It has been pointed out in the literature that misspecification of the level-1 error covariance structure in latent growth modeling (LGM) has detrimental impacts on the inferences about growth parameters. Since correct covariance structure is difficult to specify by theory, the identification needs to rely on a specification search, which,…

  1. Using the Graded Response Model to Control Spurious Interactions in Moderated Multiple Regression

    ERIC Educational Resources Information Center

    Morse, Brendan J.; Johanson, George A.; Griffeth, Rodger W.

    2012-01-01

    Recent simulation research has demonstrated that using simple raw score to operationalize a latent construct can result in inflated Type I error rates for the interaction term of a moderated statistical model when the interaction (or lack thereof) is proposed at the latent variable level. Rescaling the scores using an appropriate item response…

  2. Randomization-Based Inference about Latent Variables from Complex Samples: The Case of Two-Stage Sampling

    ERIC Educational Resources Information Center

    Li, Tiandong

    2012-01-01

    In large-scale assessments, such as the National Assessment of Educational Progress (NAEP), plausible values based on Multiple Imputations (MI) have been used to estimate population characteristics for latent constructs under complex sample designs. Mislevy (1991) derived a closed-form analytic solution for a fixed-effect model in creating…

  3. Squeezing Interval Change From Ordinal Panel Data: Latent Growth Curves With Ordinal Outcomes

    ERIC Educational Resources Information Center

    Mehta, Paras D.; Neale, Michael C.; Flay, Brian R.

    2004-01-01

    A didactic on latent growth curve modeling for ordinal outcomes is presented. The conceptual aspects of modeling growth with ordinal variables and the notion of threshold invariance are illustrated graphically using a hypothetical example. The ordinal growth model is described in terms of 3 nested models: (a) multivariate normality of the…

  4. www.common-metrics.org: a web application to estimate scores from different patient-reported outcome measures on a common scale.

    PubMed

    Fischer, H Felix; Rose, Matthias

    2016-10-19

    Recently, a growing number of Item-Response Theory (IRT) models has been published, which allow estimation of a common latent variable from data derived by different Patient Reported Outcomes (PROs). When using data from different PROs, direct estimation of the latent variable has some advantages over the use of sum score conversion tables. It requires substantial proficiency in the field of psychometrics to fit such models using contemporary IRT software. We developed a web application ( http://www.common-metrics.org ), which allows estimation of latent variable scores more easily using IRT models calibrating different measures on instrument independent scales. Currently, the application allows estimation using six different IRT models for Depression, Anxiety, and Physical Function. Based on published item parameters, users of the application can directly estimate latent trait estimates using expected a posteriori (EAP) for sum scores as well as for specific response patterns, Bayes modal (MAP), Weighted likelihood estimation (WLE) and Maximum likelihood (ML) methods and under three different prior distributions. The obtained estimates can be downloaded and analyzed using standard statistical software. This application enhances the usability of IRT modeling for researchers by allowing comparison of the latent trait estimates over different PROs, such as the Patient Health Questionnaire Depression (PHQ-9) and Anxiety (GAD-7) scales, the Center of Epidemiologic Studies Depression Scale (CES-D), the Beck Depression Inventory (BDI), PROMIS Anxiety and Depression Short Forms and others. Advantages of this approach include comparability of data derived with different measures and tolerance against missing values. The validity of the underlying models needs to be investigated in the future.

  5. Hierarchical Naive Bayes for genetic association studies.

    PubMed

    Malovini, Alberto; Barbarini, Nicola; Bellazzi, Riccardo; de Michelis, Francesca

    2012-01-01

    Genome Wide Association Studies represent powerful approaches that aim at disentangling the genetic and molecular mechanisms underlying complex traits. The usual "one-SNP-at-the-time" testing strategy cannot capture the multi-factorial nature of this kind of disorders. We propose a Hierarchical Naïve Bayes classification model for taking into account associations in SNPs data characterized by Linkage Disequilibrium. Validation shows that our model reaches classification performances superior to those obtained by the standard Naïve Bayes classifier for simulated and real datasets. In the Hierarchical Naïve Bayes implemented, the SNPs mapping to the same region of Linkage Disequilibrium are considered as "details" or "replicates" of the locus, each contributing to the overall effect of the region on the phenotype. A latent variable for each block, which models the "population" of correlated SNPs, can be then used to summarize the available information. The classification is thus performed relying on the latent variables conditional probability distributions and on the SNPs data available. The developed methodology has been tested on simulated datasets, each composed by 300 cases, 300 controls and a variable number of SNPs. Our approach has been also applied to two real datasets on the genetic bases of Type 1 Diabetes and Type 2 Diabetes generated by the Wellcome Trust Case Control Consortium. The approach proposed in this paper, called Hierarchical Naïve Bayes, allows dealing with classification of examples for which genetic information of structurally correlated SNPs are available. It improves the Naïve Bayes performances by properly handling the within-loci variability.

  6. Multilevel Higher-Order Item Response Theory Models

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung

    2014-01-01

    In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…

  7. Nonlinear and Quasi-Simplex Patterns in Latent Growth Models

    ERIC Educational Resources Information Center

    Bianconcini, Silvia

    2012-01-01

    In the SEM literature, simplex and latent growth models have always been considered competing approaches for the analysis of longitudinal data, even if they are strongly connected and both of specific importance. General dynamic models, which simultaneously estimate autoregressive structures and latent curves, have been recently proposed in the…

  8. The Impact of Noninvariant Intercepts in Latent Means Models

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.

    2013-01-01

    Latent means methods such as multiple-indicator multiple-cause (MIMIC) and structured means modeling (SMM) allow researchers to determine whether or not a significant difference exists between groups' factor means. Strong invariance is typically recommended when interpreting latent mean differences. The extent of the impact of noninvariant…

  9. Decoding of human hand actions to handle missing limbs in neuroprosthetics.

    PubMed

    Belić, Jovana J; Faisal, A Aldo

    2015-01-01

    The only way we can interact with the world is through movements, and our primary interactions are via the hands, thus any loss of hand function has immediate impact on our quality of life. However, to date it has not been systematically assessed how coordination in the hand's joints affects every day actions. This is important for two fundamental reasons. Firstly, to understand the representations and computations underlying motor control "in-the-wild" situations, and secondly to develop smarter controllers for prosthetic hands that have the same functionality as natural limbs. In this work we exploit the correlation structure of our hand and finger movements in daily-life. The novelty of our idea is that instead of averaging variability out, we take the view that the structure of variability may contain valuable information about the task being performed. We asked seven subjects to interact in 17 daily-life situations, and quantified behavior in a principled manner using CyberGlove body sensor networks that, after accurate calibration, track all major joints of the hand. Our key findings are: (1) We confirmed that hand control in daily-life tasks is very low-dimensional, with four to five dimensions being sufficient to explain 80-90% of the variability in the natural movement data. (2) We established a universally applicable measure of manipulative complexity that allowed us to measure and compare limb movements across tasks. We used Bayesian latent variable models to model the low-dimensional structure of finger joint angles in natural actions. (3) This allowed us to build a naïve classifier that within the first 1000 ms of action initiation (from a flat hand start configuration) predicted which of the 17 actions was going to be executed-enabling us to reliably predict the action intention from very short-time-scale initial data, further revealing the foreseeable nature of hand movements for control of neuroprosthetics and tele operation purposes. (4) Using the Expectation-Maximization algorithm on our latent variable model permitted us to reconstruct with high accuracy (<5-6° MAE) the movement trajectory of missing fingers by simply tracking the remaining fingers. Overall, our results suggest the hypothesis that specific hand actions are orchestrated by the brain in such a way that in the natural tasks of daily-life there is sufficient redundancy and predictability to be directly exploitable for neuroprosthetics.

  10. Incorporating imperfect detection into joint models of communites: A response to Warton et al.

    USGS Publications Warehouse

    Beissinger, Steven R.; Iknayan, Kelly J.; Guillera-Arroita, Gurutzeta; Zipkin, Elise; Dorazio, Robert; Royle, Andy; Kery, Marc

    2016-01-01

    Warton et al. [1] advance community ecology by describing a statistical framework that can jointly model abundances (or distributions) across many taxa to quantify how community properties respond to environmental variables. This framework specifies the effects of both measured and unmeasured (latent) variables on the abundance (or occurrence) of each species. Latent variables are random effects that capture the effects of both missing environmental predictors and correlations in parameter values among different species. As presented in Warton et al., however, the joint modeling framework fails to account for the common problem of detection or measurement errors that always accompany field sampling of abundance or occupancy, and are well known to obscure species- and community-level inferences.

  11. Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies

    NASA Astrophysics Data System (ADS)

    Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu

    2015-09-01

    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.

  12. Uncovering a latent multinomial: Analysis of mark-recapture data with misidentification

    USGS Publications Warehouse

    Link, W.A.; Yoshizaki, J.; Bailey, L.L.; Pollock, K.H.

    2010-01-01

    Natural tags based on DNA fingerprints or natural features of animals are now becoming very widely used in wildlife population biology. However, classic capture-recapture models do not allow for misidentification of animals which is a potentially very serious problem with natural tags. Statistical analysis of misidentification processes is extremely difficult using traditional likelihood methods but is easily handled using Bayesian methods. We present a general framework for Bayesian analysis of categorical data arising from a latent multinomial distribution. Although our work is motivated by a specific model for misidentification in closed population capture-recapture analyses, with crucial assumptions which may not always be appropriate, the methods we develop extend naturally to a variety of other models with similar structure. Suppose that observed frequencies f are a known linear transformation f = A???x of a latent multinomial variable x with cell probability vector ?? = ??(??). Given that full conditional distributions [?? | x] can be sampled, implementation of Gibbs sampling requires only that we can sample from the full conditional distribution [x | f, ??], which is made possible by knowledge of the null space of A???. We illustrate the approach using two data sets with individual misidentification, one simulated, the other summarizing recapture data for salamanders based on natural marks. ?? 2009, The International Biometric Society.

  13. Uncovering a Latent Multinomial: Analysis of Mark-Recapture Data with Misidentification

    USGS Publications Warehouse

    Link, W.A.; Yoshizaki, J.; Bailey, L.L.; Pollock, K.H.

    2009-01-01

    Natural tags based on DNA fingerprints or natural features of animals are now becoming very widely used in wildlife population biology. However, classic capture-recapture models do not allow for misidentification of animals which is a potentially very serious problem with natural tags. Statistical analysis of misidentification processes is extremely difficult using traditional likelihood methods but is easily handled using Bayesian methods. We present a general framework for Bayesian analysis of categorical data arising from a latent multinomial distribution. Although our work is motivated by a specific model for misidentification in closed population capture-recapture analyses, with crucial assumptions which may not always be appropriate, the methods we develop extend naturally to a variety of other models with similar structure. Suppose that observed frequencies f are a known linear transformation f=A'x of a latent multinomial variable x with cell probability vector pi= pi(theta). Given that full conditional distributions [theta | x] can be sampled, implementation of Gibbs sampling requires only that we can sample from the full conditional distribution [x | f, theta], which is made possible by knowledge of the null space of A'. We illustrate the approach using two data sets with individual misidentification, one simulated, the other summarizing recapture data for salamanders based on natural marks.

  14. Variable Importance in Multivariate Group Comparisons.

    ERIC Educational Resources Information Center

    Huberty, Carl J.; Wisenbaker, Joseph M.

    1992-01-01

    Interpretations of relative variable importance in multivariate analysis of variance are discussed, with attention to (1) latent construct definition; (2) linear discriminant function scores; and (3) grouping variable effects. Two numerical ranking methods are proposed and compared by the bootstrap approach using two real data sets. (SLD)

  15. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study.

    PubMed

    Stenbæk, Dea Siggaard; Dam, Vibeke Høyrup; Fisher, Patrick MacDonald; Hansen, Nanna; Hjordt, Liv Vadskjær; Frokjaer, Vibe Gedsoe

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17) or the latent construct of global 5-HT4R levels (all p-values > .37). Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits.

  16. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study

    PubMed Central

    Fisher, Patrick MacDonald; Hansen, Nanna; Hjordt, Liv Vadskjær; Frokjaer, Vibe Gedsoe

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17) or the latent construct of global 5-HT4R levels (all p-values > .37). Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits. PMID:28880910

  17. Are reflective models appropriate for very short scales? Proofs of concept of formative models using the Ten-Item Personality Inventory.

    PubMed

    Myszkowski, Nils; Storme, Martin; Tavani, Jean-Louis

    2018-04-27

    Because of their length and objective of broad content coverage, very short scales can show limited internal consistency and structural validity. We argue that it is because their objectives may be better aligned with formative investigations than with reflective measurement methods that capitalize on content overlap. As proofs of concept of formative investigations of short scales, we investigate the Ten Item Personality Inventory (TIPI). In Study 1, we administered the TIPI and the Big Five Inventory (BFI) to 938 adults, and fitted a formative Multiple Indicator Multiple Causes model, which consisted of the TIPI items forming 5 latent variables, which in turn predicted the 5 BFI scores. These results were replicated in Study 2, on a sample of 759 adults, with, this time, the Revised NEO Personality Inventory (NEO-PI-R) as the external criterion. The models fit the data adequately, and moderate to strong significant effects (.37<|β|<.69, all p<.001) of all 5 latent formative variables on their corresponding BFI and NEOPI-R scores were observed. This study presents a formative approach that we propose to be more consistent with the aims of scales with broad content and short length like the TIPI. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  18. The Mediating Roles of Rejection Sensitivity and Proximal Stress in the Association Between Discrimination and Internalizing Symptoms Among Sexual Minority Women.

    PubMed

    Dyar, Christina; Feinstein, Brian A; Eaton, Nicholas R; London, Bonita

    2018-01-01

    The negative impact of discrimination on mental health among lesbian, gay, and bisexual populations has been well documented. However, the possible mediating roles of sexual orientation rejection sensitivity and rejection-based proximal stress in the association between discrimination and internalizing symptoms remain unclear. Rejection-based proximal stress is a subset of proximal stressors that are theorized to arise from concerns about and expectations of sexual orientation-based rejection and discrimination. Drawing on minority stress theory, we tested potential mediating effects using indirect effects structural equation modeling in a sample of 300 sexual minority women. Results indicated that the indirect effect of discrimination on internalizing symptoms (a latent variable indicated by depression and anxiety symptoms) through sexual orientation rejection sensitivity and rejection-based proximal stress (a latent variable indicated by preoccupation with stigma, concealment motivation, and difficulty developing a positive sexual identity) was significant. Additionally, the indirect effects of discrimination on rejection-based proximal stress through sexual orientation rejection sensitivity and of sexual orientation rejection sensitivity on internalizing symptoms through rejection-based proximal stress were also significant. These findings indicate that sexual orientation rejection sensitivity plays an important role in contributing to rejection-based proximal stress and internalizing symptoms among sexual minority women.

  19. Euclidean chemical spaces from molecular fingerprints: Hamming distance and Hempel's ravens.

    PubMed

    Martin, Eric; Cao, Eddie

    2015-05-01

    Molecules are often characterized by sparse binary fingerprints, where 1s represent the presence of substructures and 0s represent their absence. Fingerprints are especially useful for similarity calculations, such as database searching or clustering, generally measuring similarity as the Tanimoto coefficient. In other cases, such as visualization, design of experiments, or latent variable regression, a low-dimensional Euclidian "chemical space" is more useful, where proximity between points reflects chemical similarity. A temptation is to apply principal components analysis (PCA) directly to these fingerprints to obtain a low dimensional continuous chemical space. However, Gower has shown that distances from PCA on bit vectors are proportional to the square root of Hamming distance. Unlike Tanimoto similarity, Hamming similarity (HS) gives equal weight to shared 0s as to shared 1s, that is, HS gives as much weight to substructures that neither molecule contains, as to substructures which both molecules contain. Illustrative examples show that proximity in the corresponding chemical space reflects mainly similar size and complexity rather than shared chemical substructures. These spaces are ill-suited for visualizing and optimizing coverage of chemical space, or as latent variables for regression. A more suitable alternative is shown to be Multi-dimensional scaling on the Tanimoto distance matrix, which produces a space where proximity does reflect structural similarity.

  20. A Model of Young Children's Social Cognition: Linkages Between Latent Structures and Discrete Processing

    ERIC Educational Resources Information Center

    Meece, Darrell

    1999-01-01

    This study proposes a model of associations between young children's social cognition and their social behavior with peers. In this model, two latent structures -children's representations of peer relationships and emotion regulation -- predict children's competent, prosocial, withdrawn, and aggressive behavior. Moreover, the model proposes that…

  1. The Latent Structure of Secure Base Script Knowledge

    ERIC Educational Resources Information Center

    Waters, Theodore E. A.; Fraley, R. Chris; Groh, Ashley M.; Steele, Ryan D.; Vaughn, Brian E.; Bost, Kelly K.; Veríssimo, Manuela; Coppola, Gabrielle; Roisman, Glenn I.

    2015-01-01

    There is increasing evidence that attachment representations abstracted from childhood experiences with primary caregivers are organized as a cognitive script describing secure base use and support (i.e., the "secure base script"). To date, however, the latent structure of secure base script knowledge has gone unexamined--this despite…

  2. Multilevel Latent Class Analysis for Large-Scale Educational Assessment Data: Exploring the Relation between the Curriculum and Students' Mathematical Strategies

    ERIC Educational Resources Information Center

    Fagginger Auer, Marije F.; Hickendorff, Marian; Van Putten, Cornelis M.; Béguin, Anton A.; Heiser, Willem J.

    2016-01-01

    A first application of multilevel latent class analysis (MLCA) to educational large-scale assessment data is demonstrated. This statistical technique addresses several of the challenges that assessment data offers. Importantly, MLCA allows modeling of the often ignored teacher effects and of the joint influence of teacher and student variables.…

  3. Consequences of Ignoring Guessing when Estimating the Latent Density in Item Response Theory

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2008-01-01

    In Ramsay-curve item response theory (RC-IRT), the latent variable distribution is estimated simultaneously with the item parameters. In extant Monte Carlo evaluations of RC-IRT, the item response function (IRF) used to fit the data is the same one used to generate the data. The present simulation study examines RC-IRT when the IRF is imperfectly…

  4. Nonlinear Structured Growth Mixture Models in M"plus" and OpenMx

    ERIC Educational Resources Information Center

    Grimm, Kevin J.; Ram, Nilam; Estabrook, Ryne

    2010-01-01

    Growth mixture models (GMMs; B. O. Muthen & Muthen, 2000; B. O. Muthen & Shedden, 1999) are a combination of latent curve models (LCMs) and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. GMMs are often fit with linear, latent basis, multiphase, or polynomial change models…

  5. Use of Latent Profile Analysis in Studies of Gifted Students

    ERIC Educational Resources Information Center

    Mammadov, Sakhavat; Ward, Thomas J.; Cross, Jennifer Riedl; Cross, Tracy L.

    2016-01-01

    To date, in gifted education and related fields various conventional factor analytic and clustering techniques have been used extensively for investigation of the underlying structure of data. Latent profile analysis is a relatively new method in the field. In this article, we provide an introduction to latent profile analysis for gifted education…

  6. Software for the Application of Discrete Latent Structure Models to Item Response Data.

    ERIC Educational Resources Information Center

    Haertel, Edward H.

    These FORTRAN programs and MATHEMATICA routines were developed in the course of a research project titled "Achievement and Assessment in School Science: Modeling and Mapping Ability and Performance." Their use is described in other publications from that project, including "Latent Traits or Latent States? The Role of Discrete Models…

  7. Higher-Order Item Response Models for Hierarchical Latent Traits

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming

    2013-01-01

    Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…

  8. An introduction to mixture item response theory models.

    PubMed

    De Ayala, R J; Santiago, S Y

    2017-02-01

    Mixture item response theory (IRT) allows one to address situations that involve a mixture of latent subpopulations that are qualitatively different but within which a measurement model based on a continuous latent variable holds. In this modeling framework, one can characterize students by both their location on a continuous latent variable as well as by their latent class membership. For example, in a study of risky youth behavior this approach would make it possible to estimate an individual's propensity to engage in risky youth behavior (i.e., on a continuous scale) and to use these estimates to identify youth who might be at the greatest risk given their class membership. Mixture IRT can be used with binary response data (e.g., true/false, agree/disagree, endorsement/not endorsement, correct/incorrect, presence/absence of a behavior), Likert response scales, partial correct scoring, nominal scales, or rating scales. In the following, we present mixture IRT modeling and two examples of its use. Data needed to reproduce analyses in this article are available as supplemental online materials at http://dx.doi.org/10.1016/j.jsp.2016.01.002. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  9. Space-time latent component modeling of geo-referenced health data.

    PubMed

    Lawson, Andrew B; Song, Hae-Ryoung; Cai, Bo; Hossain, Md Monir; Huang, Kun

    2010-08-30

    Latent structure models have been proposed in many applications. For space-time health data it is often important to be able to find the underlying trends in time, which are supported by subsets of small areas. Latent structure modeling is one such approach to this analysis. This paper presents a mixture-based approach that can be applied to component selection. The analysis of a Georgia ambulatory asthma county-level data set is presented and a simulation-based evaluation is made. Copyright (c) 2010 John Wiley & Sons, Ltd.

  10. The effects of rurality on substance use disorder diagnosis: A multiple-groups latent class analysis.

    PubMed

    Brooks, Billy; McBee, Matthew; Pack, Robert; Alamian, Arsham

    2017-05-01

    Rates of accidental overdose mortality from substance use disorder (SUD) have risen dramatically in the United States since 1990. Between 1999 and 2004 alone rates increased 62% nationwide, with rural overdose mortality increasing at a rate 3 times that seen in urban populations. Cultural differences between rural and urban populations (e.g., educational attainment, unemployment rates, social characteristics, etc.) affect the nature of SUD, leading to disparate risk of overdose across these communities. Multiple-groups latent class analysis with covariates was applied to data from the 2011 and 2012 National Survey on Drug Use and Health (n=12.140) to examine potential differences in latent classifications of SUD between rural and urban adult (aged 18years and older) populations. Nine drug categories were used to identify latent classes of SUD defined by probability of diagnosis within these categories. Once the class structures were established for rural and urban samples, posterior membership probabilities were entered into a multinomial regression analysis of socio-demographic predictors' association with the likelihood of SUD latent class membership. Latent class structures differed across the sub-groups, with the rural sample fitting a 3-class structure (Bootstrap Likelihood Ratio Test P value=0.03) and the urban fitting a 6-class model (Bootstrap Likelihood Ratio Test P value<0.0001). Overall the rural class structure exhibited less diversity in class structure and lower prevalence of SUD in multiple drug categories (e.g. cocaine, hallucinogens, and stimulants). This result supports the hypothesis that different underlying elements exist in the two populations that affect SUD patterns, and thus can inform the development of surveillance instruments, clinical services, and prevention programming tailored to specific communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Using confirmatory factor analysis to understand executive control in preschool children: sources of variation in emergent mathematic achievement

    PubMed Central

    Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A.; Sheffield, Tiffany D.; Nelson, Jennifer Mize

    2010-01-01

    Latent variable modeling methods have demonstrated utility for understanding the structure of executive control (EC) across development. These methods are utilized to better characterize the relation between EC and mathematics achievement in the preschool period, and to understand contributing sources of individual variation. Using the sample and battery of laboratory tasks described in Wiebe, Espy and Charak (2008), latent EC was related strongly to emergent mathematics achievement in preschool, and was robust after controlling for crystallized intellectual skills. The relation between crystallized skills and emergent mathematics differed between girls and boys, although the predictive association between EC and mathematics did not. Two dimensions of the child’s social environment contributed to mathematics achievement: social network support through its relation to EC and environmental stressors through its relation with crystallized skills. These findings underscore the need to examine the dimensions, mechanisms, and individual pathways that influence the development of early competence in basic cognitive processes that underpin early academic achievement. PMID:21676089

  12. The Rosenberg Self-Esteem Scale: a bifactor answer to a two-factor question?

    PubMed

    McKay, Michael T; Boduszek, Daniel; Harvey, Séamus A

    2014-01-01

    Despite its long-standing and widespread use, disagreement remains regarding the structure of the Rosenberg Self-Esteem Scale (RSES). In particular, concern remains regarding the degree to which the scale assesses self-esteem as a unidimensional or multidimensional (positive and negative self-esteem) construct. Using a sample of 3,862 high school students in the United Kingdom, 4 models were tested: (a) a unidimensional model, (b) a correlated 2-factor model in which the 2 latent variables are represented by positive and negative self-esteem, (c) a hierarchical model, and (d) a bifactor model. The totality of results including item loadings, goodness-of-fit indexes, reliability estimates, and correlations with self-efficacy measures all supported the bifactor model, suggesting that the 2 hypothesized factors are better understood as "grouping" factors rather than as representative of latent constructs. Accordingly, this study supports the unidimensionality of the RSES and the scoring of all 10 items to produce a global self-esteem score.

  13. Incorporating Measurement Non-Equivalence in a Cross-Study Latent Growth Curve Analysis

    PubMed Central

    Flora, David B.; Curran, Patrick J.; Hussong, Andrea M.; Edwards, Michael C.

    2009-01-01

    A large literature emphasizes the importance of testing for measurement equivalence in scales that may be used as observed variables in structural equation modeling applications. When the same construct is measured across more than one developmental period, as in a longitudinal study, it can be especially critical to establish measurement equivalence, or invariance, across the developmental periods. Similarly, when data from more than one study are combined into a single analysis, it is again important to assess measurement equivalence across the data sources. Yet, how to incorporate non-equivalence when it is discovered is not well described for applied researchers. Here, we present an item response theory approach that can be used to create scale scores from measures while explicitly accounting for non-equivalence. We demonstrate these methods in the context of a latent curve analysis in which data from two separate studies are combined to create a single longitudinal model spanning several developmental periods. PMID:19890440

  14. Predictive Validity of Explicit and Implicit Threat Overestimation in Contamination Fear

    PubMed Central

    Green, Jennifer S.; Teachman, Bethany A.

    2012-01-01

    We examined the predictive validity of explicit and implicit measures of threat overestimation in relation to contamination-fear outcomes using structural equation modeling. Undergraduate students high in contamination fear (N = 56) completed explicit measures of contamination threat likelihood and severity, as well as looming vulnerability cognitions, in addition to an implicit measure of danger associations with potential contaminants. Participants also completed measures of contamination-fear symptoms, as well as subjective distress and avoidance during a behavioral avoidance task, and state looming vulnerability cognitions during an exposure task. The latent explicit (but not implicit) threat overestimation variable was a significant and unique predictor of contamination fear symptoms and self-reported affective and cognitive facets of contamination fear. On the contrary, the implicit (but not explicit) latent measure predicted behavioral avoidance (at the level of a trend). Results are discussed in terms of differential predictive validity of implicit versus explicit markers of threat processing and multiple fear response systems. PMID:24073390

  15. Latent constructs model explaining the attachment-linked variation in autobiographical remembering.

    PubMed

    Öner, Sezin; Gülgöz, Sami

    2016-01-01

    In the current study, we proposed a latent constructs model to characterise the qualitative aspects of autobiographical remembering and investigated the structural relations in the model that may vary across individuals. Primarily, we focused on the memories of romantic relationships and argued that attachment anxiety and avoidance would be reflected in the ways that individuals encode, rehearse, or remember autobiographical memories in close relationships. Participants reported two positive and two negative relationship-specific memories and rated the characteristics for each memory. As predicted, the basic memory model yielded appropriate fit, indicating that event characteristics (EC) predicted the frequency of rehearsal (RC) and phenomenology at retrieval (PC). When attachment variables were integrated, the model showed that rehearsal mediated the link between anxiety and PC, especially for negative memories. On the other hand, for avoidance EC was the key factor mediating the link between avoidance and RC, as well as PC. Findings were discussed with respect to autobiographical memory functions emphasising a systematically, integrated framework.

  16. The mechanisms mediating the effects of poverty on children's intellectual development.

    PubMed

    Guo, G; Harris, K M

    2000-11-01

    Although adverse consequences of poverty for children are documented widely, little is understood about the mechanisms through which the effects of poverty disadvantage young children. In this analysis we investigate multiple mechanisms through which poverty affects a child's intellectual development. Using data from the NLSY and structural equation models, we have constructed five latent factors (cognitive stimulation, parenting style, physical environment, child's ill health at birth, and ill health in childhood) and have allowed these factors, along with child care, to mediate the effects of poverty and other exogenous variables. We produce two main findings. First, the influence of family poverty on children's intellectual development is mediated completely by the intervening mechanisms measured by our latent factors. Second, our analysis points to cognitive stimulation in the home, and (to a lesser extent) to parenting style, physical environment of the home, and poor child health at birth, as mediating factors that are affected by lack of income and that influence children's intellectual development.

  17. Using confirmatory factor analysis to understand executive control in preschool children: sources of variation in emergent mathematic achievement.

    PubMed

    Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A; Sheffield, Tiffany D; Nelson, Jennifer Mize

    2011-07-01

    Latent variable modeling methods have demonstrated utility for understanding the structure of executive control (EC) across development. These methods are utilized to better characterize the relation between EC and mathematics achievement in the preschool period, and to understand contributing sources of individual variation. Using the sample and battery of laboratory tasks described in Wiebe, Espy and Charak (2008), latent EC was related strongly to emergent mathematics achievement in preschool, and was robust after controlling for crystallized intellectual skills. The relation between crystallized skills and emergent mathematics differed between girls and boys, although the predictive association between EC and mathematics did not. Two dimensions of the child 's social environment contributed to mathematics achievement: social network support through its relation to EC and environmental stressors through its relation with crystallized skills. These findings underscore the need to examine the dimensions, mechanisms, and individual pathways that influence the development of early competence in basic cognitive processes that underpin early academic achievement. © 2010 Blackwell Publishing Ltd.

  18. Estimation of diagnostic test accuracy without full verification: a review of latent class methods

    PubMed Central

    Collins, John; Huynh, Minh

    2014-01-01

    The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification. PMID:24910172

  19. Adolescent emotionality and effortful control: Core latent constructs and links to psychopathology and functioning

    PubMed Central

    Snyder, Hannah R.; Gulley, Lauren D.; Bijttebier, Patricia; Hartman, Catharina A.; Oldehinkel, Albertine J.; Mezulis, Amy; Young, Jami F.; Hankin, Benjamin L.

    2015-01-01

    Temperament is associated with important outcomes in adolescence, including academic and interpersonal functioning and psychopathology. Rothbart’s temperament model is among the most well-studied and supported approaches to adolescent temperament, and contains three main components: positive emotionality (PE), negative emotionality (NE), and effortful control (EC). However, the latent factor structure of Rothbart’s temperament measure for adolescents, the Early Adolescent Temperament Questionnaire Revised (EATQ-R, Ellis & Rothbart, 2001) has not been definitively established. To address this problem and investigate links between adolescent temperament and functioning, we used confirmatory factor analysis to examine the latent constructs of the EATQ-R in a large combined sample. For EC and NE, bifactor models consisting of a common factor plus specific factors for some sub-facets of each component fit best, providing a more nuanced understanding of these temperament dimensions. The nature of the PE construct in the EATQ-R is less clear. Models replicated in a hold-out dataset. The common components of high NE and low EC where broadly associated with increased psychopathology symptoms, and poor interpersonal and school functioning, while specific components of NE were further associated with corresponding specific components of psychopathology. Further questioning the construct validity of PE as measured by the EATQ-R, PE factors did not correlate with construct validity measures in a way consistent with theories of PE. Bringing consistency to the way the EATQ-R is modeled and using purer latent variables has the potential to advance the field in understanding links between dimensions of temperament and important outcomes of adolescent development. PMID:26011660

  20. Adolescent emotionality and effortful control: Core latent constructs and links to psychopathology and functioning.

    PubMed

    Snyder, Hannah R; Gulley, Lauren D; Bijttebier, Patricia; Hartman, Catharina A; Oldehinkel, Albertine J; Mezulis, Amy; Young, Jami F; Hankin, Benjamin L

    2015-12-01

    Temperament is associated with important outcomes in adolescence, including academic and interpersonal functioning and psychopathology. Rothbart's temperament model is among the most well-studied and supported approaches to adolescent temperament, and contains 3 main components: positive emotionality (PE), negative emotionality (NE), and effortful control (EC). However, the latent factor structure of Rothbart's temperament measure for adolescents, the Early Adolescent Temperament Questionnaire Revised (EATQ-R; Ellis & Rothbart, 2001) has not been definitively established. To address this problem and investigate links between adolescent temperament and functioning, we used confirmatory factor analysis to examine the latent constructs of the EATQ-R in a large combined sample. For EC and NE, bifactor models consisting of a common factor plus specific factors for some subfacets of each component fit best, providing a more nuanced understanding of these temperament dimensions. The nature of the PE construct in the EATQ-R is less clear. Models replicated in a hold-out dataset. The common components of high NE and low EC where broadly associated with increased psychopathology symptoms, and poor interpersonal and school functioning, while specific components of NE were further associated with corresponding specific components of psychopathology. Further questioning the construct validity of PE as measured by the EATQ-R, PE factors did not correlate with construct validity measures in a way consistent with theories of PE. Bringing consistency to the way the EATQ-R is modeled and using purer latent variables has the potential to advance the field in understanding links between dimensions of temperament and important outcomes of adolescent development. (c) 2015 APA, all rights reserved).

  1. Malingering as a Categorical or Dimensional Construct: The Latent Structure of Feigned Psychopathology as Measured by the SIRS and MMPI-2

    ERIC Educational Resources Information Center

    Walters, Glenn D.; Rogers, Richard; Berry, David T. R.; Miller, Holly A.; Duncan, Scott A.; McCusker, Paul J.; Payne, Joshua W.; Granacher, Robert P., Jr.

    2008-01-01

    The 6 nonoverlapping primary scales of the Structured Interview of Reported Symptoms (SIRS) were subjected to taxometric analysis in a group of 1,211 criminal and civil examinees in order to investigate the latent structure of feigned psychopathology. Both taxometric procedures used in this study, mean above minus below a cut (MAMBAC) and maximum…

  2. Association between social capital, health-related quality of life, and mental health: a structural-equation modeling approach

    PubMed Central

    Hassanzadeh, Jafar; Asadi-Lari, Mohsen; Baghbanian, Abdolvahab; Ghaem, Haleh; Kassani, Aziz; Rezaianzadeh, Abbas

    2016-01-01

    Aim To explore the association(s) between demographic factors, socioeconomic status (SES), social capital, health-related quality of life (HRQoL), and mental health among residents of Tehran, Iran. Methods The pooled data (n = 31 519) were extracted from a population-based survey Urban Health Equity Assessment and Response Tool-2 (Urban HEART-2) conducted in Tehran in 2011. Mental health, social capital, and HRQoL were assessed using the 28-item General Health Questionnaire (GHQ-28), social capital questionnaire, and Short-Form Health Survey (SF-12), respectively. The study used a multistage sampling method. Social capital, HRQoL, and SES were considered as latent variables. The association between these latent variables, demographic factors, and mental health was determined by structural-equation modeling (SEM). Results The mean age and mental health score were 44.48 ± 15.87 years and 23.33 ± 11.10 (range, 0-84), respectively. The prevalence of mental disorders was 41.76% (95% confidence interval 41.21-42.30). The SEM model showed that age was directly associated with social capital (P = 0.016) and mental health (P = 0.001). Sex was indirectly related to mental health through social capital (P = 0.018). SES, HRQoL, and social capital were associated both directly and indirectly with mental health status. Conclusion This study suggests that changes in social capital and SES can lead to positive changes in mental health status and that individual and contextual determinants influence HRQoL and mental health. PMID:26935615

  3. Spiritual Intimacy, Marital Intimacy, and Physical/Psychological Well-Being: Spiritual Meaning as a Mediator

    PubMed Central

    Holland, Karen J.; Lee, Jerry W.; Marshak, Helen H.; Martin, Leslie R.

    2015-01-01

    Objective Intimacy is an essential part of marital relationships, spiritual relationships, and is also a factor in well-being, but there is little research simultaneously examining the links among spiritual intimacy, marital intimacy, and well-being. Methods Structural equation modeling was used to examine associations among the latent variables—spiritual intimacy, marital intimacy, spiritual meaning, and well-being—in a cross-sectional study of 5,720 married adults aged 29–100 years (M = 58.88, SD = 12.76, 59% female). All participants were from the Adventist Health Study-2, Biopsychosocial Religion and Health Study. Results In the original structural model, all direct associations between the three latent variables of spiritual intimacy, marital intimacy, and well-being were significantly positive indicating that there was a significant relationship among spiritual intimacy, marital intimacy, and well-being. When spiritual meaning was added as a mediating variable, the direct connections of spiritual intimacy to marital intimacy and to well-being became weakly negative. However, the indirect associations of spiritual intimacy with marital intimacy and with well-being were then strongly positive through spiritual meaning. This indicates that the relationship among spiritual intimacy, marital intimacy, and well-being was primarily a result of the meaning that spiritual intimacy brought to one’s marriage and well-being, and that without spiritual meaning greater spirituality could negatively influence one’s marriage and well-being. Conclusions These findings suggest the central place of spiritual meaning in understanding the relationship of spiritual intimacy to marital intimacy and to well-being. PMID:27453769

  4. Latent structure and reliability analysis of the measure of body apperception: cross-validation for head and neck cancer patients.

    PubMed

    Jean-Pierre, Pascal; Fundakowski, Christopher; Perez, Enrique; Jean-Pierre, Shadae E; Jean-Pierre, Ashley R; Melillo, Angelica B; Libby, Rachel; Sargi, Zoukaa

    2013-02-01

    Cancer and its treatments are associated with psychological distress that can negatively impact self-perception, psychosocial functioning, and quality of life. Patients with head and neck cancers (HNC) are particularly susceptible to psychological distress. This study involved a cross-validation of the Measure of Body Apperception (MBA) for HNC patients. One hundred and twenty-two English-fluent HNC patients between 20 and 88 years of age completed the MBA on a Likert scale ranging from "1 = disagree" to "4 = agree." We assessed the latent structure and internal consistency reliability of the MBA using Principal Components Analysis (PCA) and Cronbach's coefficient alpha (α), respectively. We determined convergent and divergent validities of the MBA using correlations with the Hospital Anxiety and Depression Scale (HADS), observer disfigurement rating, and patients' clinical and demographic variables. The PCA revealed a coherent set of items that explained 38 % of the variance. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.73 and the Bartlett's test of sphericity was statistically significant (χ (2) (28) = 253.64; p < 0.001), confirming the suitability of the data for dimension reduction analysis. The MBA had good internal consistency reliability (α = 0.77) and demonstrated adequate convergent and divergent validities based on statistically significant moderate correlations with the HADS (p < 0.01) and observer rating of disfigurement (p < 0.026) and nonstatistically significant correlations with patients' clinical and demographic variables: tumor location, age at diagnosis, and birth place (all p (s) > 0.05). The MBA is a valid and reliable screening measure of body apperception for HNC patients.

  5. Disease phobia and disease conviction are separate dimensions underlying hypochondriasis.

    PubMed

    Fergus, Thomas A; Valentiner, David P

    2010-12-01

    The current study uses data from a large nonclinical college student sample (N = 503) to examine a structural model of hypochondriasis (HC). This model predicts the distinctiveness of two dimensions (disease phobia and disease conviction) purported to underlie the disorder, and that these two dimensions are differentially related to variables important to health anxiety and somatoform disorders, respectively. Results were generally consistent with the hypothesized model. Specifically, (a) body perception variables (somatosensory amplification and anxiety sensitivity - physical) emerged as significant predictors of disease phobia, but not disease conviction; (b) emotion dysregulation variables (cognitive avoidance and cognitive reappraisal) emerged as significant predictors of disease conviction, but not disease phobia; and (c) both disease phobia and disease conviction independently predicted medical utilization. Further, collapsing disease phobia and disease conviction onto a single latent factor provided an inadequate fit to the data. Conceptual and therapeutic implications of these results are discussed. 2010 Elsevier Ltd. All rights reserved.

  6. Which Are the Determinants of Online Students' Efficiency in Higher Education?

    NASA Astrophysics Data System (ADS)

    Castillo-Merino, David; Serradell-Lopez, Enric; González-González, Inés

    International literature shows that the positive effect on students performance from the adoption of innovations in the technology of teaching and learning do not affect all teaching methods and learning styles equally, as it depends on university strategy and policy towards Information and Communication Technologies (ICT) adoption, students abilities, technology uses in the educational process by teachers and students, or the selection of a methodology that matches with digital uses. This paper provides empirical answers to these questions with data from online students at the Open University of Catalonia (UOC). An empirical model based on structural equations has been defined to explain complex relationships between variables. Our results show that motivation is the main variable affecting online students' performance. It appears as a latent variable influenced by students' perception of efficiency, a driver for indirect positive and significant effect on students' performance from students' ability in ICT uses.

  7. Unconstrained Structural Equation Models of Latent Interactions: Contrasting Residual- and Mean-Centered Approaches

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Wen, Zhonglin; Hau, Kit-Tai; Little, Todd D.; Bovaird, James A.; Widaman, Keith F.

    2007-01-01

    Little, Bovaird and Widaman (2006) proposed an unconstrained approach with residual centering for estimating latent interaction effects as an alternative to the mean-centered approach proposed by Marsh, Wen, and Hau (2004, 2006). Little et al. also differed from Marsh et al. in the number of indicators used to infer the latent interaction factor…

  8. A Taxometric Study of the Latent Structure of Disgust Sensitivity: Converging Evidence for Dimensionality

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Broman-Fulks, Joshua J.

    2007-01-01

    Disgust sensitivity has recently been implicated as a specific vulnerability factor for several anxiety-related disorders. However, it is not clear whether disgust sensitivity is a dimensional or categorical phenomenon. The present study examined the latent structure of disgust by applying three taxometric procedures (maximum eigenvalue, mean…

  9. Some Factor Analytic Approximations to Latent Class Structure.

    ERIC Educational Resources Information Center

    Dziuban, Charles D.; Denton, William T.

    Three procedures, alpha, image, and uniqueness rescaling, were applied to a joint occurrence probability matrix. That matrix was the basis of a well-known latent class structure. The values of the recurring subscript elements were varied as follows: Case 1 - The known elements were input; Case 2 - The upper bounds to the recurring subscript…

  10. The Latent Structure of Psychopathy in Youth: A Taxometric Investigation

    ERIC Educational Resources Information Center

    Vasey, Michael W.; Kotov, Roman; Frick, Paul J.; Loney, Bryan R.

    2005-01-01

    Using taxometric procedures, the latent structure of psychopathy was investigated in two studies of children and adolescents. Prior studies have identified a taxon (i.e., a natural category) associated with antisocial behavior in adults as well as children and adolescents. However, features of this taxon suggest that it is not psychopathy but…

  11. Heterogeneity in the Latent Structure of PTSD Symptoms among Canadian Veterans

    ERIC Educational Resources Information Center

    Naifeh, James A.; Richardson, J. Don; Del Ben, Kevin S.; Elhai, Jon D.

    2010-01-01

    The current study used factor mixture modeling to identify heterogeneity (i.e., latent classes) in 2 well-supported models of posttraumatic stress disorder's (PTSD) factor structure. Data were analyzed from a clinical sample of 405 Canadian veterans evaluated for PTSD. Results were consistent with our hypotheses. Each PTSD factor model was best…

  12. Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein

    PubMed Central

    1995-01-01

    The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation. PMID:7593177

  13. Modeling the Trajectory of Analgesic Demand Over Time After Total Knee Arthroplasty Using the Latent Curve Analysis.

    PubMed

    Lo, Po-Han; Tsou, Mei-Yung; Chang, Kuang-Yi

    2015-09-01

    Patient-controlled epidural analgesia (PCEA) is commonly used for pain relief after total knee arthroplasty (TKA). This study aimed to model the trajectory of analgesic demand over time after TKA and explore its influential factors using latent curve analysis. Data were retrospectively collected from 916 patients receiving unilateral or bilateral TKA and postoperative PCEA. PCEA demands during 12-hour intervals for 48 hours were directly retrieved from infusion pumps. Potentially influential factors of PCEA demand, including age, height, weight, body mass index, sex, and infusion pump settings, were also collected. A latent curve analysis with 2 latent variables, the intercept (baseline) and slope (trend), was applied to model the changes in PCEA demand over time. The effects of influential factors on these 2 latent variables were estimated to examine how these factors interacted with time to alter the trajectory of PCEA demand over time. On average, the difference in analgesic demand between the first and second 12-hour intervals was only 15% of that between the first and third 12-hour intervals. No significant difference in PCEA demand was noted between the third and fourth 12-hour intervals. Aging tended to decrease the baseline PCEA demand but body mass index and infusion rate were positively correlated with the baseline. Only sex significantly affected the trend parameter and male individuals tended to have a smoother decreasing trend of analgesic demands over time. Patients receiving bilateral procedures did not consume more analgesics than their unilateral counterparts. Goodness of fit analysis indicated acceptable model fit to the observed data. Latent curve analysis provided valuable information about how analgesic demand after TKA changed over time and how patient characteristics affected its trajectory.

  14. Deconstructing sub-clinical psychosis into latent-state and trait variables over a 30-year time span.

    PubMed

    Rössler, Wulf; Hengartner, Michael P; Ajdacic-Gross, Vladeta; Haker, Helene; Angst, Jules

    2013-10-01

    Our aim was to deconstruct the variance underlying the expression of sub-clinical psychosis symptoms into portions associated with latent time-dependent states and time-invariant traits. We analyzed data of 335 subjects from the general population of Zurich, Switzerland, who had been repeatedly measured between 1979 (age 20/21) and 2008 (age 49/50). We applied two measures of sub-clinical psychosis derived from the SCL-90-R, namely schizotypal signs (STS) and schizophrenia nuclear symptoms (SNS). Variance was decomposed with latent state-trait analysis and associations with covariates were examined with generalized linear models. At ages 19/20 and 49/50, the latent states underlying STS accounted for 48% and 51% of variance, whereas for SNS those estimates were 62% and 50%. Between those age classes, however, expression of sub-clinical psychosis was strongly associated with stable traits (75% and 89% of total variance in STS and SNS, respectively, at age 27/28). Latent states underlying variance in STS and SNS were particularly related to partnership problems over almost the entire observation period. STS was additionally related to employment problems, whereas drug-use was a strong predictor of states underlying both syndromes at age 19/20. The latent trait underlying expression of STS and SNS was particularly related to low sense of mastery and self-esteem and to high depressiveness. Although most psychosis symptoms are transient and episodic in nature, the variability in their expression is predominantly caused by stable traits. Those time-invariant and rather consistent effects are particularly influential around age 30, whereas the occasion-specific states appear to be particularly influential at ages 20 and 50. © 2013.

  15. a Latent Variable Path Analysis Model of Secondary Physics Enrollments in New York State.

    NASA Astrophysics Data System (ADS)

    Sobolewski, Stanley John

    The Percentage of Enrollment in Physics (PEP) at the secondary level nationally has been approximately 20% for the past few decades. For a more scientifically literate citizenry as well as specialists to continue scientific research and development, it is desirable that more students enroll in physics. Some of the predictor variables for physics enrollment and physics achievement that have been identified previously includes a community's socioeconomic status, the availability of physics, the sex of the student, the curriculum, as well as teacher and student data. This study isolated and identified predictor variables for PEP of secondary schools in New York. Data gathered by the State Education Department for the 1990-1991 school year was used. The source of this data included surveys completed by teachers and administrators on student characteristics and school facilities. A data analysis similar to that done by Bryant (1974) was conducted to determine if the relationships between a set of predictor variables related to physics enrollment had changed in the past 20 years. Variables which were isolated included: community, facilities, teacher experience, number of type of science courses, school size and school science facilities. When these variables were isolated, latent variable path diagrams were proposed and verified by the Linear Structural Relations computer modeling program (LISREL). These diagrams differed from those developed by Bryant in that there were more manifest variables used which included achievement scores in the form of Regents exam results. Two criterion variables were used, percentage of students enrolled in physics (PEP) and percent of students enrolled passing the Regents physics exam (PPP). The first model treated school and community level variables as exogenous while the second model treated only the community level variables as exogenous. The goodness of fit indices for the models was 0.77 for the first model and 0.83 for the second model. No dramatic differences were found between the relationship of predictor variables to physics enrollment in 1972 and 1991. New models indicated that smaller school size, enrollment in previous science and math courses and other school variables were more related to high enrollment rather than achievement. Exogenous variables such as community size were related to achievement. It was shown that achievement and enrollment were related to a different set of predictor variables.

  16. Fitting a Mixture Rasch Model to English as a Foreign Language Listening Tests: The Role of Cognitive and Background Variables in Explaining Latent Differential Item Functioning

    ERIC Educational Resources Information Center

    Aryadoust, Vahid

    2015-01-01

    The present study uses a mixture Rasch model to examine latent differential item functioning in English as a foreign language listening tests. Participants (n = 250) took a listening and lexico-grammatical test and completed the metacognitive awareness listening questionnaire comprising problem solving (PS), planning and evaluation (PE), mental…

  17. An All-Fragments Grammar for Simple and Accurate Parsing

    DTIC Science & Technology

    2012-03-21

    Tsujii. Probabilistic CFG with latent annotations. In Proceedings of ACL, 2005. Slav Petrov and Dan Klein. Improved Inference for Unlexicalized Parsing. In...Proceedings of NAACL-HLT, 2007. Slav Petrov and Dan Klein. Sparse Multi-Scale Grammars for Discriminative Latent Variable Parsing. In Proceedings of...EMNLP, 2008. Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning Accurate, Compact, and Interpretable Tree Annotation. In Proceedings

  18. Structural equation model analysis for the evaluation of overall driving performance: A driving simulator study focusing on driver distraction.

    PubMed

    Papantoniou, Panagiotis

    2018-04-03

    The present research relies on 2 main objectives. The first is to investigate whether latent model analysis through a structural equation model can be implemented on driving simulator data in order to define an unobserved driving performance variable. Subsequently, the second objective is to investigate and quantify the effect of several risk factors including distraction sources, driver characteristics, and road and traffic environment on the overall driving performance and not in independent driving performance measures. For the scope of the present research, 95 participants from all age groups were asked to drive under different types of distraction (conversation with passenger, cell phone use) in urban and rural road environments with low and high traffic volume in a driving simulator experiment. Then, in the framework of the statistical analysis, a correlation table is presented investigating any of a broad class of statistical relationships between driving simulator measures and a structural equation model is developed in which overall driving performance is estimated as a latent variable based on several individual driving simulator measures. Results confirm the suitability of the structural equation model and indicate that the selection of the specific performance measures that define overall performance should be guided by a rule of representativeness between the selected variables. Moreover, results indicate that conversation with the passenger was not found to have a statistically significant effect, indicating that drivers do not change their performance while conversing with a passenger compared to undistracted driving. On the other hand, results support the hypothesis that cell phone use has a negative effect on driving performance. Furthermore, regarding driver characteristics, age, gender, and experience all have a significant effect on driving performance, indicating that driver-related characteristics play the most crucial role in overall driving performance. The findings of this study allow a new approach to the investigation of driving behavior in driving simulator experiments and in general. By the successful implementation of the structural equation model, driving behavior can be assessed in terms of overall performance and not through individual performance measures, which allows an important scientific step forward from piecemeal analyses to a sound combined analysis of the interrelationship between several risk factors and overall driving performance.

  19. The conjoint influence of home enriched environment and lead exposure on children's cognition and behaviour in a Mexican lead smelter community.

    PubMed

    Moodie, Sue; Ialongo, Nick; López, Patricia; Rosado, Jorge; García-Vargas, Gonzalo; Ronquillo, Dolores; Kordas, Katarzyna

    2013-01-01

    A range of studies has been conducted on the detrimental effects of lead in mining and smelting communities. The neurocognitive and behavioural health effects of lead on children are well known. This research characterized the conjoint influence of lead exposure and home enriched environment on neurocognitive function and behaviour for first-grade children living in a Mexican lead smelter community. Structural equation models were used for this analysis with latent outcome variables, Cognition and Behaviour, constructed based on a battery of assessments administered to the first-grade children, their parents, and teachers. Structural equation modelling was used to describe complex relationships of exposure and health outcomes in a manner that permitted partition of both direct and indirect effects of the factors being measured. Home Environment (a latent variable constructed from information on mother's education and support of school work and extracurricular activities), and child blood lead concentration each had a main significant effect on cognition and behaviour. However, there were no statistically significant moderation relationships between lead and Home Environment on these latent outcomes. Home Environment had a significant indirect mediation effect between lead and both Cognition and Behaviour (p-value<0.001). The mediation model had a good fit with Root Mean Square Error of Approximation <0.0001 and a Weighted Root Mean Square Residual of 0.895. These results were highly significant and suggest that Home Environment has a moderate mediation effect with respect to lead effects on Behaviour (β=0.305) and a lower mediation effect on Cognition (β=0.184). The extent of home enrichment in this study was most highly related to the mother's support of schoolwork and slightly less by the mother's support of extracurricular activities or mother's education. Further research may be able to develop approaches to support families to make changes within their home and child rearing practices, or advocate for different approaches to support their child's behaviour to reduce the impact of lead exposure on children's cognitive and behavioural outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Data-driven subtypes of major depressive disorder: a systematic review

    PubMed Central

    2012-01-01

    Background According to current classification systems, patients with major depressive disorder (MDD) may have very different combinations of symptoms. This symptomatic diversity hinders the progress of research into the causal mechanisms and treatment allocation. Theoretically founded subtypes of depression such as atypical, psychotic, and melancholic depression have limited clinical applicability. Data-driven analyses of symptom dimensions or subtypes of depression are scarce. In this systematic review, we examine the evidence for the existence of data-driven symptomatic subtypes of depression. Methods We undertook a systematic literature search of MEDLINE, PsycINFO and Embase in May 2012. We included studies analyzing the depression criteria of the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) of adults with MDD in latent variable analyses. Results In total, 1176 articles were retrieved, of which 20 satisfied the inclusion criteria. These reports described a total of 34 latent variable analyses: 6 confirmatory factor analyses, 6 exploratory factor analyses, 12 principal component analyses, and 10 latent class analyses. The latent class techniques distinguished 2 to 5 classes, which mainly reflected subgroups with different overall severity: 62 of 71 significant differences on symptom level were congruent with a latent class solution reflecting severity. The latent class techniques did not consistently identify specific symptom clusters. Latent factor techniques mostly found a factor explaining the variance in the symptoms depressed mood and interest loss (11 of 13 analyses), often complemented by psychomotor retardation or fatigue (8 of 11 analyses). However, differences in found factors and classes were substantial. Conclusions The studies performed to date do not provide conclusive evidence for the existence of depressive symptom dimensions or symptomatic subtypes. The wide diversity of identified factors and classes might result either from the absence of patterns to be found, or from the theoretical and modeling choices preceding analysis. PMID:23210727

  1. Epstein-Barr Virus Latent Membrane Protein 1 Genetic Variability in Peripheral Blood B Cells and Oropharyngeal Fluids

    PubMed Central

    Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R.; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F.

    2014-01-01

    ABSTRACT We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. IMPORTANCE This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed. PMID:24429365

  2. Epstein-Barr virus latent membrane protein 1 genetic variability in peripheral blood B cells and oropharyngeal fluids.

    PubMed

    Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F; Luzuriaga, Katherine

    2014-04-01

    We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed.

  3. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect.

    PubMed

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT.

  4. Using Multigroup-Multiphase Latent State-Trait Models to Study Treatment-Induced Changes in Intra-Individual State Variability: An Application to Smokers' Affect

    PubMed Central

    Geiser, Christian; Griffin, Daniel; Shiffman, Saul

    2016-01-01

    Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT. PMID:27499744

  5. A latent class distance association model for cross-classified data with a categorical response variable.

    PubMed

    Vera, José Fernando; de Rooij, Mark; Heiser, Willem J

    2014-11-01

    In this paper we propose a latent class distance association model for clustering in the predictor space of large contingency tables with a categorical response variable. The rows of such a table are characterized as profiles of a set of explanatory variables, while the columns represent a single outcome variable. In many cases such tables are sparse, with many zero entries, which makes traditional models problematic. By clustering the row profiles into a few specific classes and representing these together with the categories of the response variable in a low-dimensional Euclidean space using a distance association model, a parsimonious prediction model can be obtained. A generalized EM algorithm is proposed to estimate the model parameters and the adjusted Bayesian information criterion statistic is employed to test the number of mixture components and the dimensionality of the representation. An empirical example highlighting the advantages of the new approach and comparing it with traditional approaches is presented. © 2014 The British Psychological Society.

  6. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. Additional information is included in the original extended abstract.

  7. Decayed and missing teeth and oral-health-related factors: predicting depression in homeless people.

    PubMed

    Coles, Emma; Chan, Karen; Collins, Jennifer; Humphris, Gerry M; Richards, Derek; Williams, Brian; Freeman, Ruth

    2011-08-01

    The objective of the study was to determine the effect of dental health status, dental anxiety and oral-health-related quality of life (OHRQoL) upon homeless people's experience of depression. A cross-sectional survey was conducted on a sample of homeless people in seven National Health Service Boards in Scotland. All participants completed a questionnaire to assess their depression, dental anxiety and OHRQoL using reliable and valid measures. Participants had an oral examination to assess their experience of tooth decay (decayed and missing teeth). Latent variable path analysis was conducted to determine the effects of dental health status on depression via dental anxiety and OHRQoL using intensive resampling methods. A total of 853 homeless people participated, of which 70% yielded complete data sets. Three latent variables, decayed and missing teeth, dental anxiety (Modified Dental Anxiety Scale: five items) and depression (Center for Epidemiological Studies Depression Scale: two factors), and a single variable for OHRQoL (Oral Health Impact Profile total scale) were used in a hybrid structural equation model. The variable decayed and missing teeth was associated with depression through indirect pathways (total standardised indirect effects=0.44, P<.001), via OHRQoL and dental anxiety (χ²=75.90, df=40, comparative fit index=0.985, Tucker-Lewis index=0.977, root mean square error of approximation=0.051 [90% confidence interval: 0.037-0.065]). Depression in Scottish homeless people is related to dental health status and oral-health-related factors. Decayed and missing teeth may influence depression primarily through the psychological constructs of OHRQoL and, to a lesser extent, dental anxiety. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. How the 2SLS/IV estimator can handle equality constraints in structural equation models: a system-of-equations approach.

    PubMed

    Nestler, Steffen

    2014-05-01

    Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.

  9. A Bayesian Approach to More Stable Estimates of Group-Level Effects in Contextual Studies.

    PubMed

    Zitzmann, Steffen; Lüdtke, Oliver; Robitzsch, Alexander

    2015-01-01

    Multilevel analyses are often used to estimate the effects of group-level constructs. However, when using aggregated individual data (e.g., student ratings) to assess a group-level construct (e.g., classroom climate), the observed group mean might not provide a reliable measure of the unobserved latent group mean. In the present article, we propose a Bayesian approach that can be used to estimate a multilevel latent covariate model, which corrects for the unreliable assessment of the latent group mean when estimating the group-level effect. A simulation study was conducted to evaluate the choice of different priors for the group-level variance of the predictor variable and to compare the Bayesian approach with the maximum likelihood approach implemented in the software Mplus. Results showed that, under problematic conditions (i.e., small number of groups, predictor variable with a small ICC), the Bayesian approach produced more accurate estimates of the group-level effect than the maximum likelihood approach did.

  10. Sex Differences in Latent Cognitive Abilities Ages 6 to 59: Evidence from the Woodcock-Johnson III Tests of Cognitive Abilities

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; Reynolds, Matthew R.; Patel, Puja G.; Ridley, Kristen P.

    2008-01-01

    Sex differences in the latent general and broad cognitive abilities underlying the Woodcock-Johnson Tests of Cognitive Abilities were investigated for children, youth, and adults ages 6 through 59. A developmental, multiple indicator-multiple cause, structural equation model was used to investigate sex differences in latent cognitive abilities as…

  11. Sex Differences in Latent Cognitive Abilities Ages 5 to 17: Evidence from the Differential Ability Scales--Second Edition

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; Reynolds, Matthew R.; Roberts, Lisa G.; Winter, Amanda L.; Austin, Cynthia A.

    2011-01-01

    Sex differences in the latent general and broad cognitive abilities underlying the Differential Ability Scales, Second Edition were investigated for children and youth ages 5 through 17. Multi-group mean and covariance structural equation modeling was used to investigate sex differences in latent cognitive abilities as well as changes in these…

  12. An Assessment of Character and Leadership Development Latent Factor Structures through Confirmatory Factor, Item Response Theory, and Latent Class Analyses

    ERIC Educational Resources Information Center

    Higginbotham, David L.

    2013-01-01

    This study leveraged the complementary nature of confirmatory factor (CFA), item response theory (IRT), and latent class (LCA) analyses to strengthen the rigor and sophistication of evaluation of two new measures of the Air Force Academy's "leader of character" definition--the Character Mosaic Virtues (CMV) and the Leadership Mosaic…

  13. Precipitation Processes Derived from TRMM Satellite Data, Cloud Resolving Model and Field Campaigns

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid. and solid water. Present large-scale weather and climate models can simulate cloud latent heat release only crudely thus reducing their confidence in predictions on both global and regional scales. In this paper, NASA Tropical Rainfall Measuring (TRMM) precipitation radar (PR) derived rainfall information and the Goddard Convective and Stratiform Heating (CSH) algorithm used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to October 2000. Rainfall latent heating and radar reflectively structure between ENSO (1997-1998 winter) and non-ENSO (1998-1999 winter) periods are examined and compared. The seasonal variation of heating over various geographic locations (i.e. Indian ocean vs west Pacific; Africa vs S. America) are also analyzed. In addition, the relationship between rainfall latent heating maximum heating level), radar reflectively and SST are examined.

  14. Taxometric and Factor Analytic Models of Anxiety Sensitivity among Youth: Exploring the Latent Structure of Anxiety Psychopathology Vulnerability

    ERIC Educational Resources Information Center

    Bernstein, Amit; Zvolensky, Michael J.; Stewart, Sherry; Comeau, Nancy

    2007-01-01

    This study represents an effort to better understand the latent structure of anxiety sensitivity (AS), a well-established affect-sensitivity individual difference factor, among youth by employing taxometric and factor analytic approaches in an integrative manner. Taxometric analyses indicated that AS, as indexed by the Child Anxiety Sensitivity…

  15. Structural Relationships between Social Activities and Longitudinal Trajectories of Depression among Older Adults

    ERIC Educational Resources Information Center

    Hong, Song-Iee; Hasche, Leslie; Bowland, Sharon

    2009-01-01

    Purpose: This study examines the structural relationships between social activities and trajectories of late-life depression. Design and Methods: Latent class analysis was used with a nationally representative sample of older adults (N = 5,294) from the Longitudinal Study on Aging II to classify patterns of social activities. A latent growth curve…

  16. Factor Structure Invariance of the Kaufman Adolescent and Adult Intelligence Test across Male and Female Samples

    ERIC Educational Resources Information Center

    Immekus, Jason C.; Maller, Susan J.

    2010-01-01

    Multisample confirmatory factor analysis (MCFA) and latent mean structures analysis (LMS) were used to test measurement invariance and latent mean differences on the Kaufman Adolescent and Adult Intelligence Scale[TM] (KAIT) across males and females in the standardization sample. MCFA found that the parameters of the KAIT two-factor model were…

  17. Robust Bayesian clustering.

    PubMed

    Archambeau, Cédric; Verleysen, Michel

    2007-01-01

    A new variational Bayesian learning algorithm for Student-t mixture models is introduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to outliers. The Student-t distribution has heavier tails than the Gaussian distribution and is therefore less sensitive to any departure of the empirical distribution from Gaussianity. As a consequence, the Student-t distribution is suitable for constructing robust mixture models. In this work, we formalize the Bayesian Student-t mixture model as a latent variable model in a different way from Svensén and Bishop [Svensén, M., & Bishop, C. M. (2005). Robust Bayesian mixture modelling. Neurocomputing, 64, 235-252]. The main difference resides in the fact that it is not necessary to assume a factorized approximation of the posterior distribution on the latent indicator variables and the latent scale variables in order to obtain a tractable solution. Not neglecting the correlations between these unobserved random variables leads to a Bayesian model having an increased robustness. Furthermore, it is expected that the lower bound on the log-evidence is tighter. Based on this bound, the model complexity, i.e. the number of components in the mixture, can be inferred with a higher confidence.

  18. Application of Generative Autoencoder in De Novo Molecular Design.

    PubMed

    Blaschke, Thomas; Olivecrona, Marcus; Engkvist, Ola; Bajorath, Jürgen; Chen, Hongming

    2018-01-01

    A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. A unifying framework for marginalized random intercept models of correlated binary outcomes

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian M.

    2013-01-01

    We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood-based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data with exchangeable correlation structures. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized random intercept models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts. PMID:25342871

  20. Social cognitive mediators of parent-child sexual communication.

    PubMed

    Evans, W Douglas; Blitstein, Jonathan L; Davis, Kevin C

    2011-07-01

    To test a social cognitive behavior change model and identify mediators of the effects of the Parents Speak Up National Campaign (PSUNC) on parent-child sexual communication. Investigators used 5 waves of data from an online randomized controlled trial. Latent variables were developed based on item response theory and confirmatory factor analysis. Structural equation modeling was used to test mediation. Outcome expectations mediated effects of social norms and self-efficacy on sexual communication. Other hypothesized mediators were not confirmed. Interventions to promote parent-child sexual communication should target outcome expectations. Future research should investigate parents' health information seeking.

Top