Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; ...
2015-07-22
The formation of semiconductor heterojunctions and their high density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional (2D) crystalline semiconductors as building blocks in next generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate a process strategy for the formation of lithographically-patterned lateral semiconducting heterojunctions within a single 2D crystal. E-beam lithography is used to pattern MoSe 2 monolayer crystals with SiO 2, and the exposed locations are selectively and totally converted to MoS 2 using pulsed laser deposition (PLD) of sulfur in order to form MoSe 2/MoS 2 heterojunctions in predefinedmore » patterns. The junctions and conversion process are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This demonstration of lateral semiconductor heterojunction arrays within a single 2D crystal is an essential step for the lateral integration of 2D semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin circuitry.« less
NASA Astrophysics Data System (ADS)
van Zalinge, M. E.; Cashman, K. V.; Sparks, R. S. J.
2018-03-01
Broken crystals have been documented in many large-volume caldera-forming ignimbrites and can help to understand the role of crystal fragmentation in both eruption and compaction processes, the latter generally overlooked in the literature. This study investigates the origin of fragmented crystals in the > 1260 km3, crystal-rich Cardones ignimbrites located in the Central Andes. Observations of fragmented crystals in non-welded pumice clasts indicate that primary fragmentation includes extensive crystal breakage and an associated ca. 5 vol% expansion of individual crystals while preserving their original shapes. These observations are consistent with the hypothesis that crystals fragment in a brittle response to rapid decompression associated with the eruption. Additionally, we observe that the extent of crystal fragmentation increases with increasing stratigraphic depth in the ignimbrite, recording secondary crystal fragmentation during welding and compaction. Secondary crystal fragmentation aids welding and compaction in two ways. First, enhanced crystal fragmentation at crystal-crystal contacts accommodates compaction along the principal axis of stress. Second, rotation and displacement of individual crystal fragments enhances lateral flow in the direction(s) of least principal stress. This process increases crystal aspect ratios and forms textures that resemble mantled porphyroclasts in shear zones, indicating lateral flow adds to processes of compaction and welding alongside bubble collapse. In the Cardones ignimbrite, secondary fragmentation commences at depths of 175-250 m (lithostatic pressures 4-6 MPa), and is modulated by both the overlying crystal load and the time spent above the glass transition temperature. Under these conditions, the existence of force-chains can produce stresses at crystal-crystal contacts of a few times the lithostatic pressure. We suggest that documenting crystal textures, in addition to conventional welding parameters, can provide useful information about welding processes in thick crystal-rich ignimbrites.
NASA Astrophysics Data System (ADS)
Chae, Hee Jae; Seok, Ki Hwan; Lee, Sol Kyu; Joo, Seung Ki
2018-04-01
A novel inverted staggered metal-induced laterally crystallized (MILC) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with a combination of a planarized gate and an overlap/off-set at the source-gate/drain-gate structure were fabricated and characterized. While the MILC process is advantageous for fabricating inverted staggered poly-Si TFTs, MILC TFTs reveal higher leakage current than TFTs crystallized by other processes due to their high trap density of Ni contamination. Due to this drawback, the planarized gate and overlap/off-set structure were applied to inverted staggered MILC TFTs. The proposed device shows drastic suppression of leakage current and pinning phenomenon by reducing the lateral electric field and the space-charge limited current from the gate to the drain.
NASA Astrophysics Data System (ADS)
Miyao, Masanobu; Sadoh, Taizoh
2017-05-01
Recent progress in the crystal growth of group-IV-based semiconductor-on-insulators is reviewed from physical and technological viewpoints. Liquid-phase growth based on SiGe-mixing-triggered rapid-melting growth enables formation of hybrid (100) (110) (111)-orientation Ge-on-insulator (GOI) structures, which show defect-free GOI with very high carrier mobility (˜1040 cm2 V-1 s-1). Additionally, SiGe mixed-crystals with laterally uniform composition were obtained by eliminating segregation phenomena during the melt-back process. Low-temperature solid-phase growth has been explored by combining this process with ion-beam irradiation, additional doping of group-IV elements, metal induced lateral crystallization with/without electric field, and metal-induced layer exchange crystallization. These efforts have enabled crystal growth on insulators below 400 °C, achieving high carrier mobility (160-320 cm2 V-1 s-1). Moreover, orientation-controlled SiGe and Ge films on insulators have been obtained below the softening temperatures of conventional plastic films (˜300 °C). Detailed characterization provides an understanding of physical phenomena behind these crystal growth techniques. Applying these methods when fabricating next-generation electronics is also discussed.
Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy
NASA Technical Reports Server (NTRS)
Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.
2014-01-01
The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions. Contrast extinction analysis of these dislocation lines reveals they are edge type basal plane dislocations that track the growth direction. Polytype phase transition and stacking faults were observed by high-resolution TEM (HRTEM), in agreement with SWBXT and Raman scattering.
Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lupini, Andrew R.; Lee, Jaekwang; Basile, Leonardo; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; Ivanov, Ilia N.; Xiao, Kai; Yoon, Mina; Geohegan, David B.
2015-01-01
The formation of semiconductor heterojunctions and their high-density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional crystalline semiconductors as building blocks in next-generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate an approach for the formation of lithographically patterned arrays of lateral semiconducting heterojunctions within a single two-dimensional crystal. Electron beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser vaporization of sulfur to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are studied by Raman and photoluminescence spectroscopy, atomically resolved scanning transmission electron microscopy and device characterization. This demonstration of lateral heterojunction arrays within a monolayer crystal is an essential step for the integration of two-dimensional semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin devices. PMID:26198727
Lee, Lynn; Baek, Jangmi; Park, Kyung Sun; Lee, Yong-EunKoo; Shrestha, Nabeen K.; Sung, Myung M.
2017-01-01
We report a facile roll-printing method, geometrically confined lateral crystal growth, for the fabrication of large-scale, single-crystal CH3NH3PbI3 perovskite thin films. Geometrically confined lateral crystal growth is based on transfer of a perovskite ink solution via a patterned rolling mould to a heated substrate, where the solution crystallizes instantly with the immediate evaporation of the solvent. The striking feature of this method is that the instant crystallization of the feeding solution under geometrical confinement leads to the unidirectional lateral growth of single-crystal perovskites. Here, we fabricated single-crystal perovskites in the form of a patterned thin film (3 × 3 inch) with a high carrier mobility of 45.64 cm2 V−1 s−1. We also used these single-crystal perovskite thin films to construct solar cells with a lateral configuration. Their active-area power conversion efficiency shows a highest value of 4.83%, which exceeds the literature efficiency values of lateral perovskite solar cells. PMID:28691697
NASA Astrophysics Data System (ADS)
Gu, Jian
This thesis explores how nanopatterns can be used to control the growth of single-crystal silicon on amorphous substrates at low temperature, with potential applications on flat panel liquid-crystal display and 3-dimensional (3D) integrated circuits. I first present excimer laser annealing of amorphous silicon (a-Si) nanostructures on thermally oxidized silicon wafer for controlled formation of single-crystal silicon islands. Preferential nucleation at pattern center is observed due to substrate enhanced edge heating. Single-grain silicon is obtained in a 50 nm x 100 nm rectangular pattern by super lateral growth (SLG). Narrow lines (such as 20-nm-wide) can serve as artificial heterogeneous nucleation sites during crystallization of large patterns, which could lead to the formation of single-crystal silicon islands in a controlled fashion. In addition to eximer laser annealing, NanoPAtterning and nickel-induced lateral C&barbelow;rystallization (NanoPAC) of a-Si lines is presented. Single-crystal silicon is achieved by NanoPAC. The line width of a-Si affects the grain structure of crystallized silicon lines significantly. Statistics show that single-crystal silicon is formed for all lines with width between 50 nm to 200 nm. Using in situ transmission electron microscopy (TEM), nickel-induced lateral crystallization (Ni-ILC) of a-Si inside a pattern is revealed; lithography-constrained single seeding (LISS) is proposed to explain the single-crystal formation. Intragrain line and two-dimensional defects are also studied. To test the electrical properties of NanoPAC silicon films, sub-100 nm thin-film transistors (TFTs) are fabricated using Patten-controlled crystallization of Ṯhin a-Si channel layer and H&barbelow;igh temperature (850°C) annealing, coined PaTH process. PaTH TFTs show excellent device performance over traditional solid phase crystallized (SPC) TFTs in terms of threshold voltage, threshold voltage roll-off, leakage current, subthreshold swing, on/off current ratio, device-to-device uniformity etc. Two-dimensional device simulations show that PaTH TFTs are comparable to silicon-on-insulator (SOI) devices, making it a promising candidate for the fabrication of future high performance, low-power 3D integrated circuits. Finally, an ultrafast nanolithography technique, laser-assisted direct imprint (LADI) is introduced. LADI shows the ability of patterning nanostructures directly in silicon in nanoseconds with sub-10 nm resolution. The process has potential applications in multiple disciplines, and could be extended to other materials and processes.
Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.
Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien
2017-09-28
Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.
NASA Astrophysics Data System (ADS)
Natarajan, V.; Usharani, S.; Arivanandhan, M.; Anandan, P.; Hayakawa, Y.
2015-06-01
Although 4-aminobenzophenone (4-ABP) is the best derivative of benzophenone with 260 times higher second harmonic generation (SHG) efficiency than potassium dihydrogen phosphate (KDP), growth of high quality bulk crystal still remains a difficult task. In the present work, the effect of solvents on solubility and growth aspects of 4-ABP was investigated to grow inclusion free 4-ABP crystals. The growth processes were discussed based on solute-solvent interaction in two different growth media of ethyl acetate and ethanol. The growth rate and thereby solvent inclusions are relatively higher in ethyl acetate grown crystal than the crystal grown from ethanol. The structural, thermal and optical properties of 4-ABP crystals were studied. The enthalpy of 4-ABP melting process was estimated from differential thermal analysis. The optical transmission study shows that 4-ABP crystals grown from ethanol has high transparency compared to ethyl acetate grown sample due to solvent inclusion in the later crystal.
High-brightness tapered laser diodes with photonic crystal structures
NASA Astrophysics Data System (ADS)
Li, Yi; Du, Weichuan; Kun, Zhou; Gao, Songxin; Ma, Yi; Tang, Chun
2018-02-01
Beam quality of tapered laser diodes is limited by higher order lateral mode. On purpose of optimizing the brightness of tapered laser diodes, we developed a novel design of tapered diodes. This devices based on InGaAs/AlGaAs asymmetry epitaxial structure, containing higher order lateral mode filtering schemes especially photonic crystal structures, which fabricated cost effectively by using standard photolithography and dry etch processes. Meanwhile, the effects of photonic crystal structures on mode control are also investigated theoretically by FDBPM (Finite-Difference Beam Propagation Method) calculation. We achieved a CW optical output power of 6.9W at 940nm for a single emitter with 4 mm cavity length. A nearly diffraction limited beam of M2 ≍1.9 @ 0.5W has been demonstrated, and a highest brightness of β =75MW/(cm2 ·sr) was reached.
A new system for sodium flux growth of bulk GaN. Part I: System development
NASA Astrophysics Data System (ADS)
Von Dollen, Paul; Pimputkar, Siddha; Alreesh, Mohammed Abo; Albrithen, Hamad; Suihkonen, Sami; Nakamura, Shuji; Speck, James S.
2016-12-01
Though several methods exist to produce bulk crystals of gallium nitride (GaN), none have been commercialized on a large scale. The sodium flux method, which involves precipitation of GaN from a sodium-gallium melt supersaturated with nitrogen, offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. We successfully developed a novel apparatus for conducting crystal growth of bulk GaN using the sodium flux method which has advantages with respect to prior reports. A key task was to prevent sodium loss or migration from the growth environment while permitting N2 to access the growing crystal. We accomplished this by implementing a reflux condensing stem along with a reusable capsule containing a hermetic seal. The reflux condensing stem also enabled direct monitoring of the melt temperature, which has not been previously reported for the sodium flux method. Furthermore, we identified and utilized molybdenum and the molybdenum alloy TZM as a material capable of directly containing the corrosive sodium-gallium melt. This allowed implementation of a crucible-free system, which may improve process control and potentially lower crystal impurity levels. Nucleation and growth of parasitic GaN ("PolyGaN") on non-seed surfaces occurred in early designs. However, the addition of carbon in later designs suppressed PolyGaN formation and allowed growth of single crystal GaN. Growth rates for the (0001) Ga face (+c-plane) were up to 14 μm/h while X-ray omega rocking (ω-XRC) curve full width half-max values were 731″ for crystals grown using a later system design. Oxygen levels were high, >1019 atoms/cm3, possibly due to reactor cleaning and handling procedures.
Crucible-free pulling of germanium crystals
NASA Astrophysics Data System (ADS)
Wünscher, Michael; Lüdge, Anke; Riemann, Helge
2011-03-01
Commonly, germanium crystals are grown after the Czochralski (CZ) method. The crucible-free pedestal and floating zone (FZ) methods, which are widely used for silicon growth, are hardly known to be investigated for germanium. The germanium melt is more than twice as dense as liquid silicon, which could destabilize a floating zone. Additionally, the lower melting point and the related lower radiative heat loss is shown to reduce the stability especially of the FZ process with the consequence of a screw-like crystal growth. We found that the lower heat radiation of Ge can be compensated by the increased convective cooling of a helium atmosphere instead of the argon ambient. Under these conditions, the screw-like growth could be avoided. Unfortunately, the helium cooling deteriorates the melting behavior of the feed rod. Spikes appear along the open melt front, which touch on the induction coil. In order to improve the melting behavior, we used a lamp as a second energy source as well as a mixture of Ar and He. With this, we found a final solution for growing stable crystals from germanium by using both gases in different parts of the furnace. The experimental work is accompanied by the simulation of the stationary temperature field. The commercially available software FEMAG-FZ is used for axisymmetric calculations. Another tool for process development is the lateral photo-voltage scanning (LPS), which can determine the shape of the solid-liquid phase boundary by analyzing the growth striations in a lateral cut of a grown crystal. In addition to improvements of the process, these measurements can be compared with the calculated results and, hence, conduce to validate the calculation.
The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C.A.; Cohen, A.E.
2009-05-26
The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification, and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening, and data collection. At the Stanford Synchrotron Radiation Laboratory, a National User Facility that provides extremely brilliant X-ray photon beams for use in materials science, environmental science, and structural biology research, the incorporation of advanced robotics has enabled crystals to be screenedmore » in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Auto-Mounting System) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter's home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines.« less
Deformation relief evolution during sliding friction of Hadfield steel single crystal
NASA Astrophysics Data System (ADS)
Lychagin, D. V.; Filippov, A. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.
2017-12-01
The paper deals with the evolution of the deformation relief formed on lateral faces of single crystals of Hadfield steel during dry sliding friction. The use of single crystals with the predetermined orientation enables to analyze the development of shear systems subject to the duration of tribological tests. As the test duration increases, slip bands are curved and thicken in the near-surface region. After 24 hours of friction, single crystals of Hadfield steel demonstrate the maximum hardening. Afterwards, the wear process begins, which is followed by the repeated strain hardening of the specimens. After 48 hours of friction, the height of the deformation relief nearly halves on all of the three faces, as compared to that observed after 24 hours of friction. Differences in the propagation height of slip bands on the faces occur due to the uneven running-in as well as the complex involvement pattern of shear systems into the deformation process.
Study of defect structures in 6H-SiC a/m-plane pseudofiber crystals grown by hot-wall CVD epitaxy
Goue, Ouloide Y.; Raghothamachar, Balaji; Yang, Yu; ...
2015-11-25
Structural perfection of silicon carbide (SiC) single crystals is essential to achieve high-performance power devices. A new bulk growth process for SiC proposed by researchers at NASA Glenn Research Center, called large tapered crystal (LTC) growth, based on axial fiber growth followed by lateral expansion, could produce SiC boules with potentially as few as one threading screw dislocation per wafer. In this study, the lateral expansion aspect of LTC growth is addressed through analysis of lateral growth of 6H-SiC a/m-plane seed crystals by hot-wall chemical vapor deposition. Preliminary synchrotron white-beam x-ray topography (SWBXT) indicates that the as-grown boules match themore » polytype structure of the underlying seed and have a faceted hexagonal morphology with a strain-free surface marked by steps. SWBXT Laue diffraction patterns of transverse and axial slices of the boules reveal streaks suggesting the existence of stacking faults/polytypes, and this is confirmed by micro-Raman spectroscopy. Transmission x-ray topography of both transverse and axial slices reveals inhomogeneous strains at the seed–epilayer interface and linear features propagating from the seed along the growth direction. Micro-Raman mapping of an axial slice reveals that the seed contains high stacking disorder, while contrast extinction analysis (g·b and g·b×l) of the linear features reveals that these are mostly edge-type basal plane dislocations. Further high-resolution transmission electron microscopy investigation of the seed–homoepilayer interface also reveals nanobands of different SiC polytypes. A model for their formation mechanism is proposed. Lastly, the implication of these results for improving the LTC growth process is addressed.« less
NASA Astrophysics Data System (ADS)
Emoto, Akira; Kamei, Tadayoshi; Shioda, Tatsutoshi; Kawatsuki, Nobuhiro; Ono, Hiroshi
2009-06-01
We report the experimental results of two-dimensional patterning of colloidal crystals using edge-patterned cells. Solvent evaporation of a colloidal suspension from the edge of the cell induces self-organized crystallization of spherical colloidal particles. From a reservoir of colloidal suspension in the cell, different colloidal suspensions are injected repetitively. An edge-patterned substrate is introduced into the cell as an upper substrate. As a result, different colloidal crystals are alternately stacked in the lateral direction according to the edge pattern. The characteristics of cloning formation are specifically showed including deformations from the original pattern. This two-dimensional patterning of three-dimensional colloidal crystals by means of lateral autocloning is promising for the development of photonic crystal arrays for use in optic and photonic devices.
Methods for growth of relatively large step-free SiC crystal surfaces
NASA Technical Reports Server (NTRS)
Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)
2002-01-01
A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.
Giri, Gaurav; Park, Steve; Vosgueritchian, Michael; Shulaker, Max Marcel; Bao, Zhenan
2014-01-22
Patterns composed of solvent wetting and dewetting regions promote lateral confinement of solution-sheared and lattice-strained TIPS-pentacene crystals. This lateral confinement causes aligned crystal growth, and the smallest patterns of 0.5 μm wide solvent wetting regions promotes formation of highly strained, aligned, and single-crystalline TIPS-pentacene regions with mobility as high as 2.7 cm(2) V(-1) s(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Producing gallium arsenide crystals in space
NASA Technical Reports Server (NTRS)
Randolph, R. L.
1984-01-01
The production of high quality crystals in space is a promising near-term application of microgravity processing. Gallium arsenide is the selected material for initial commercial production because of its inherent superior electronic properties, wide range of market applications, and broad base of on-going device development effort. Plausible product prices can absorb the high cost of space transportation for the initial flights provided by the Space Transportation System. The next step for bulk crystal growth, beyond the STS, is planned to come later with the use of free flyers or a space station, where real benefits are foreseen. The use of these vehicles, together with refinement and increasing automation of space-based crystal growth factories, will bring down costs and will support growing demands for high quality GaAs and other specialty electronic and electro-optical crystals grown in space.
Noda, Isao; Roy, Anjan; Carriere, James; Sobieski, Brian J; Chase, D Bruce; Rabolt, John F
2017-07-01
Two-dimensional correlation analysis was applied to the time-dependent evolution of Raman spectra during the isothermal crystallization of bioplastic, poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] or PHBHx copolymer. Simultaneous Raman measurement of both carbonyl stretching and low-frequency crystalline lattice mode regions made it possible to carry out the highly informative hetero-mode correlation analysis. The crystallization process of PHBHx involves: (1) the early nucleation stage; (2) the primary growth of well-ordered crystals of PHBHx; and (3) the secondary crystal growth phase. The latter stage probably occurs in the inter-lamellar region, with an accompanying reduction of the amorphous component, which occurs most dominantly during the primary crystal growth. The development of a fully formed lamellar structure comprising the 2 1 helices occurs after the primary growth of crystals. In the later stage, secondary inter lamellar space crystallization occurs after the full formation of packed helices comprising the lamellae.
NASA Astrophysics Data System (ADS)
Stelian, Carmen; Velázquez, Matias; Veber, Philippe; Ahmine, Abdelmounaim; Sand, Jean-Baptiste; Buşe, Gabriel; Cabane, Hugues; Duffar, Thierry
2018-06-01
Lithium molybdate Li2MoO4 (LMO) crystals of mass ranging between 350 and 500 g are excellent candidates to build heat-scintillation cryogenic bolometers likely to be used for the detection of rare events in astroparticle physics. In this work, numerical modeling is applied in order to investigate the Czochralski growth of Li2MoO4 crystals in an inductive furnace. The numerical model was validated by comparing the numerical predictions of the crystal-melt interface shape to experimental visualization of the growth interface. Modeling was performed for two different Czochralski furnaces that use inductive heating. The simulation of the first furnace, which was used to grow Li2MoO4 crystals of 3-4 cm in diameter, reveals non-optimal heat transfer conditions for obtaining good quality crystals. The second furnace, which will be used to grow crystals of 5 cm in diameter, was numerically optimized in order to reduce the temperature gradients in the crystal and to avoid fast crystallization of the bath at the later stages of the growth process.
NASA Astrophysics Data System (ADS)
Greene, Brian Joseph
Thin film silicon on insulator fabrication is an increasingly important technology requirement for improving performance in future generation devices and circuits. One process for SOI fabrication that has recently been generating renewed interest is Lateral Solid Phase Epitaxy (LSPE) of silicon over oxide. This process involves annealing amorphous silicon that has been deposited on oxide patterned Si wafers. The (001) Si substrate forms the crystalline seed for epitaxial growth, permitting the generation of Si films that are both single crystal, and oriented to the substrate. This method is particularly attractive to fabrication that requires low temperature processing, because the Si films are deposited in the amorphous phase at temperatures near 525°C, and crystallized at temperatures near 570°C. It is also attractive for applications requiring three dimensional stacking of active silicon device layers, due to the relatively low temperatures involved. For sub-50 nm gate length MOSFET fabrication, an SOI thickness on the order of 10 nm will be required. One limitation of the LSPE process has been the need for thick films (0.5--2 mum) and/or heavy P doping (10 19--1020 cm-3) to increase the maximum achievable lateral growth distance, and therefore minimize the area on the substrate occupied by seed holes. This dissertation discusses the characterization and optimization of process conditions for large area LSPE silicon film growth, as well as efforts to adapt the traditional LSPE process to achieve ultra-thin SOI layers (Tsilicon ≤ 25 nm) while avoiding the use of heavy active doping layers. MOSFETs fabricated in these films that exhibit electron mobility comparable to the Universal Si MOS Mobility are described.
NASA Astrophysics Data System (ADS)
Long, Marianna M.; Bishop, John Bradford; Delucas, Lawrence J.; Nagabhushan, Tattanhalli L.; Reichert, Paul; Smith, G. David
1997-01-01
The Protein Crystal Growth Facility (PCF) is space-flight hardware that accommodates large scale protein crystal growth experiments using temperature change as the inductive step. Recent modifications include specialized instrumentation for monitoring crystal nucleation with laser light scattering. This paper reviews results from its first seven flights on the Space Shuttle, the last with laser light scattering instrumentation in place. The PCF's objective is twofold: (1) the production of high quality protein crystals for x-ray analysis and subsequent structure-based drug design and (2) preparation of a large quantity of relatively contaminant free crystals for use as time-release protein pharmaceuticals. The first three Shuttle flights with bovine insulin constituted the PCF's proof of concept, demonstrating that the space-grown crystals were larger and diffracted to higher resolution than their earth-grown counterparts. The later four PCF missions were used to grow recombinant human insulin crystals for x-ray analysis and continue productions trials aimed at the development of a processing facility for crystalline recombinant a-interferon.
NASA Astrophysics Data System (ADS)
Hu, Chieh; Chen, Jyh Chen; Nguyen, Thi Hoai Thu; Hou, Zhi Zhong; Chen, Chun Hung; Huang, Yen Hao; Yang, Michael
2018-02-01
In this study, the power ratio between the top and side heaters and the moving velocity of the side insulation are designed to control the shape of the crystal-melt interface during the growth process of a 1600 kg multi-crystalline silicon ingot. The power ratio and insulation gap are adjusted to ensure solidification of the melt. To ensure that the crystal-melt interface is slightly convex in relation to the melt during the entire solidification process, the power ratio should be augmented gradually in the initial stages while being held to a constant value in the middle stages. Initially the gap between the side and the bottom insulation is kept small to reduce thermal stress inside the seed crystals. However, the growth rate will be slow in the early stages of the solidification process. Therefore, the movement of the side insulation is fast in the initial stages but slower in the middle stages. In the later stages, the side insulation gap is fixed. With these modifications, the convexity of the crystal-melt interface in relation to the melt can be maintained during the growth process with an approximately 41% reduction in the thermal stress inside the growing ingot and an 80% reduction in dislocation density along the center line of the ingot compared with the original case.
Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers
Li, Xufan; Dong, Jichen; Idrobo, Juan C.; ...
2016-12-07
Understanding the atomistic mechanisms governing the growth of two-dimensional (2D) materials is of great importance in guiding the synthesis of wafer-sized, single-crystalline, high-quality 2D crystals and heterostructures. Etching, in many cases regarded as the reverse process of material growth, has been used to study the growth kinetics of graphene. In this paper, we explore a growth–etching–regrowth process of monolayer GaSe crystals, including single-crystalline triangles and irregularly shaped domains formed by merged triangles. We show that the etching begins at a slow rate, creating triangular, truncated triangular, or hexagonally shaped holes that eventually evolve to exclusively triangles that are rotated 60°more » with respect to the crystalline orientation of the monolayer triangular crystals. The regrowth occurs much faster than etching, reversibly filling the etched holes and then enlarging the size of the monolayer crystals. A theoretical model developed based on kinetic Wulff construction (KWC) theory and density functional theory (DFT) calculations accurately describe the observed morphology evolution of the monolayer GaSe crystals and etched holes during the growth and etching processes, showing that they are governed by the probability of atom attachment/detachment to/from different types of edges with different formation energies of nucleus/dents mediated by chemical potential difference Δμ between Ga and Se. Finally, our growth–etching–regrowth study provides not only guidance to understand the growth mechanisms of 2D binary crystals but also a potential method for the synthesis of large, shape-controllable, high-quality single-crystalline 2D crystals and their lateral heterostructures.« less
Boonna, Sureeporn; Tongta, Sunanta
2018-07-01
Structural transformation of crystallized debranched cassava starch prepared by temperature cycling (TC) treatment and then subjected to annealing (ANN), heat-moisture treatment (HMT) and dual hydrothermal treatments of ANN and HMT was investigated. The relative crystallinity, lateral crystal size, melting temperature and resistant starch (RS) content increased for all hydrothermally treated samples, but the slowly digestible starch (SDS) content decreased. The RS content followed the order: HMT → ANN > HMT > ANN → HMT > ANN > TC, respectively. The HMT → ANN sample showed a larger lateral crystal size with more homogeneity, whereas the ANN → HMT sample had a smaller lateral crystal size with a higher melting temperature. After cooking at 50% moisture, the increased RS content of samples was observed, particularly for the ANN → HMT sample. These results suggest that structural changes of crystallized debranched starch during hydrothermal treatments depend on initial crystalline characteristics and treatment sequences, influencing thermal stability, enzyme digestibility, and cooking stability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of Te doping on FeSe superconductor synthesized by powder-in-tube
NASA Astrophysics Data System (ADS)
Imaduddin, A.; Nisa, K.; Yudanto, S. D.; Nugraha, H.; Siswayanti, B.
2017-04-01
FeSe is a superconducting material, which has the simplest crystal structure among the Fe-based superconductors. It has no arsenic element, which is very harmful to the human body. In this study, we analyzed the effects of milling time and Te doping on FeSe superconductors. The synthesis of the samples were carried out using powder-in-tube method in a SS304 stainless steel tube. After the pressing process, followed by the sintering process at 500° C for 20 hours, the samples were removed from the tubes. Later, we analyzed its crystal structures, surfaces morphology and the superconductivity properties. Δ-FeSe phase (hexagonal, non-superconductor) and β-FeSe (tetragonal, superconductor) were formed in the samples, including minor phases of Fe and Fe3Se4. Te doping changed the crystal structure from β-FeSe and Δ-FeSe into FeSe0.5Te0.5. In addition, the onset critical temperature (TC, onset) shifted to higher temperature.
Ma, Meng; He, Zhoukun; Yang, Jinghui; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang
2011-11-01
In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.
Crystallization mechanisms of acicular crystals
NASA Astrophysics Data System (ADS)
Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane
2008-01-01
In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.
Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng
2015-10-28
Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.
Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth
Tang, Y. -H.; Golding, B.
2016-02-02
Here, we describe a method for lateral overgrowth of low-stress single crystal diamond by chemical vapor deposition (CVD). The process is initiated by deposition of a thin (550 nm) (001) diamond layer on Ir-buffered a-plane sapphire. The diamond is partially masked by periodic thermally evaporated Au stripes using photolithography. Lateral overgrowth of the Au occurs with extremely effective filtering of threading dislocations. Thermal stress resulting from mismatch of the low thermal expansion diamond and the sapphire substrate is largely accommodated by the ductile Au layer. The stress state of the diamond is investigated by Raman spectroscopy for two thicknesses: atmore » 10 μm where the film has just overgrown the Au mask and at 180 μm where the film thickness greatly exceeds the scale of the masking. For the 10-μm film, the Raman linewidth shows spatial oscillations with the period of the Au stripes with a factor of 2 to 3 reduction relative to the unmasked region. In a 180-μm thick diamond film, the overall surface stress was extremely low, 0.00 ± 0.16 GPa, obtained from the Raman shift averaged over the 7.5mm diameter of the crystal at its surface. We conclude that the metal mask protects the overgrown diamond layer from substrate-induced thermal stress and cracking. Lastly, it is also responsible for low internal stress by reducing dislocation density by several orders of magnitude.« less
Processes active in mafic magma chambers: The example of Kilauea Iki Lava Lake, Hawaii
Helz, R.T.
2009-01-01
Kilauea Iki lava lake formed in 1959 as a closed chamber of 40??million m3 of picritic magma. Repeated drilling and sampling of the lake allows recognition of processes of magmatic differentiation, and places time restrictions on the periods when they operated. This paper focuses on evidence for the occurrence of lateral convection in the olivine-depleted layer, and constraints on the timing of this process, as documented by chemical, petrographic and thermal data on drill core from the lake. Lateral convection appears to have occurred in two distinct layers within the most olivine-poor part of the lake, created a slightly olivine-enriched septum in the center of the olivine-depleted section. A critical marker for this process is the occurrence of loose clusters of augite microphenocrysts, which are confined to the upper half of the olivine-poor zone. This process, which took place between late 1962 and mid-1964, is inferred to be double-diffusive convection. Both this convection and a process of buoyant upwelling of minimum-density liquid from deep within the lake (Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594) result from the fact that melt density in Kilauea Iki compositions decreases as olivine and augite crystallize, above the incoming of plagioclase. The resulting density vs. depth profile creates (1) a region of gravitationally stable melt at the top of the chamber (the locus of double-diffusive convection) and (2) a region of gravitationally unstable melt at the base of the melt column (the source of upwelling minimum-density melt, Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594). By contrast the variation of melt density with temperature for the 1965 Makaopuhi lava lake does not show a decrease in density as temperature decreases, so neither process should have occurred in that lava lake. Because many mafic magmas crystallize significant olivine and/or pyroxene before they begin to crystallize plagioclase, the density relations observed for Kilauea Iki, and the processes that result from them, may be relevant to crystallization in other mafic magma chambers. The results for the 1965 Makaopuhi lava lake emphasize the role of bulk composition as a critical control on magmatic processes.
NASA Astrophysics Data System (ADS)
Elangovan, R.; Krishna, Kumar; Vishwakarma, Neeraj; Hari, K. R.; Ram Mohan, M.
2017-10-01
Field and petrographic studies are carried out to characterize the interactions of mafic and felsic magmas from Pithora region of the northeastern part of the Bastar Craton. The MMEs, syn-plutonic mafic dykes, cuspate contacts, magmatic flow textures, mingling and hybridization suggest the coeval emplacement of end member magmas. Petrographic evidences such as disequilibrium assemblages, resorption textures, quartz ocelli, rapakivi and poikilitic textures suggest magma mingling and mixing phenomena. Such features of mingling and mixing of the felsic and mafic magma manifest the magma chamber processes. Introduction of mafic magmas into the felsic magmas before initiation of crystallization of the latter, results in hybrid magmas under the influence of thermal and chemical exchange. The mechanical exchange occurs between the coexisting magmas due to viscosity contrast, if the mafic magma enters slightly later into the magma chamber, then the felsic magma starts to crystallize. Blobs of mafic magma form as MMEs in the felsic magma and they scatter throughout the pluton due to convection. At a later stage, if mafic magma enters the system after partial crystallization of felsic phase, mechanical interaction between the magmas leads to the formation of fragmented dyke or syn-plutonic mafic dyke. All these features are well-documented in the study area. Field and petrographic evidences suggest that the textural variations from Pithora region of Bastar Craton are the outcome of magma mingling, mixing and hybridization processes.
Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Han; Zhang, Xingwang; Chau, Fook Siong
2016-04-25
We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the futuremore » nanooptoelectromechanical systems.« less
State of the art of fine patterned Si TFT
NASA Astrophysics Data System (ADS)
Noguchi, Takashi
2003-05-01
Performance and relating subject for fine patterned Si TFT (Thin Film Transistor) are reviewed and discussed from a viewpoint of device and/or fabrication process based on reported results. Poly-Si TFTs fabricated on glass using low-temperature process are studied extensively for the application to LCD (Liquid Crystal Display) or OLED (Organic Light Emitting Diode) Display. Currently, the research target for the TFT application is emphasized on the highly functional system on glass or the display on flexible substrate by adopting an effective crystallizing technique of SPC (Solid Phase Crystallization) or ELC (Excimer Laser Crystallization). Improvement of device characteristics such as an enhancement of carrier mobility has been studied intensively by enlarging the grain size. Reduction of the voltage and shrinkage of the device size are the trend of Si LSI, which arise a peculiar issue of uniformity or an anisotropy problem for the device characteristics in the large grained poly-Si film. Some trial approaches for solving the issues such as nucleation control for the grain growth or lateral grain growth are proposed, so far. By overcoming the issues, coming SOP (System on Panel) era using the Si TFTs is expected.
Double Diffusive Convection in Materials Processing
NASA Technical Reports Server (NTRS)
Ramachandra, Narayanan; Leslie, Fred W.
1999-01-01
A great number of crystals grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity (g-jitter). As a specific example, past HgCdTe crystal growth space experiments by Lehoczky and co-workers indicate radial compositional asymmetry in the grown crystals. In the case of HgCdTe the rejected component into the melt upon solidification is HgTe which is denser than the melt. The space grown crystals indicate the presence of three dimensional flow with the heavier HgTe-rich material clearly aligned with the residual gravity (0.55-1.55 micro g) vector. This flow stems from double-diffusive convection, namely, thermal and solutal buoyancy driven flow in the melt. The study of double-diffusive convection is multi-faceted and rather vast. In our investigation, we seek to focus on one specific aspect of this discipline that is of direct relevance to materials processing especially crystal growth, namely, the side ways heating regime. This problem has been widely studied, both experimentally and numerically, in the context of solar ponds wherein the system is characterized by a linear salt (solutal) gradient with an imposed lateral temperature gradient. The induced flow instabilities arise from the wide disparity between the fluid thermal diffusivity and the solute diffusivity. The extension of the analysis to practical crystal growth applications has however not been rigorously made and understood. One subtle but important difference in crystal growth systems is the fact that die system solute gradient is non-linear (typically exponential). Besides, the crystal growth problem has the added complexities of solidification, both lateral and longitudinal thermal gradients and segregation phenomena in systems where binary and ternary compounds are being grown. This paper treats the side ways heating problem alone in a model fluid system. Results from detailed numerical calculations, mainly two dimensional are provided. The interactions between a non-linear solute gradient and an imposed transverse thermal gradient are investigated. The buoyancy effects are treated in the traditional Boussinesq approximation and also in a more complete density formulation to address recent concerns of the first approach especially in simulations of the system response in a reduced gravity environment. Detailed flow, temperature and solute field plots along with heat and mass transfer results are presented in the paper. Implications to practical crystal growth systems as discerned from the modeling results are also explored and reported.
NASA Technical Reports Server (NTRS)
Woese, C.
1998-01-01
A genetic annealing model for the universal ancestor of all extant life is presented; the name of the model derives from its resemblance to physical annealing. The scenario pictured starts when "genetic temperatures" were very high, cellular entities (progenotes) were very simple, and information processing systems were inaccurate. Initially, both mutation rate and lateral gene transfer levels were elevated. The latter was pandemic and pervasive to the extent that it, not vertical inheritance, defined the evolutionary dynamic. As increasingly complex and precise biological structures and processes evolved, both the mutation rate and the scope and level of lateral gene transfer, i.e., evolutionary temperature, dropped, and the evolutionary dynamic gradually became that characteristic of modern cells. The various subsystems of the cell "crystallized," i.e., became refractory to lateral gene transfer, at different stages of "cooling," with the translation apparatus probably crystallizing first. Organismal lineages, and so organisms as we know them, did not exist at these early stages. The universal phylogenetic tree, therefore, is not an organismal tree at its base but gradually becomes one as its peripheral branchings emerge. The universal ancestor is not a discrete entity. It is, rather, a diverse community of cells that survives and evolves as a biological unit. This communal ancestor has a physical history but not a genealogical one. Over time, this ancestor refined into a smaller number of increasingly complex cell types with the ancestors of the three primary groupings of organisms arising as a result.
Arafa, Mona F; El-Gizawy, Sanaa A; Osman, Mohamed A; El Maghraby, Gamal M
2016-08-01
Development of oral disintegrating tablets requires enhancement of drug dissolution and selection of sweetener. Co-crystallization of drugs with inert co-former is an emerging technique for enhancing dissolution rate. The benefit of this technique will become even greater if one of the sweeteners can act as co-crystal co-former to enhance dissolution and mask the taste. Accordingly, the objective of this work was to investigate the efficacy of sucralose as a potential co-crystal co-former for enhancing the dissolution rate of hydrochlorothiazide. This was extended to prepare oral disintegrating tablets. Co-crystallization was achieved after dissolving hydrochlorothiazide with increasing molar ratios of sucralose in the least amount of acetone. The co-crystallization products were characterized using Fourier transform infrared spectroscopy, differential thermal analysis and powder X-ray diffraction. These measurements indicated that co-crystallization process started at a drug sucralose molar ratio of 1:1 and completed at 1:2. The developed co-crystals exhibited faster drug dissolution compared with the control, with co-crystal containing the drug with sucralose at 1:2 molar ratio being optimum. The later was used to prepare fast disintegrating tablets. These tablets had acceptable physical characteristics and showed fast disintegration with subsequent rapid dissolution. The study introduced sucralose as co-crystal co-former for enhanced dissolution and masking the taste.
Ultrastructure Processing of Ordered Polymers
1990-01-18
from regenerated cellulose , then from synthetic polymer consisting of chemical raw materials derived from oils and coal. Since then, some scientists have...ordered crystal- line material, crystallite, throughout the fiber, which is composed of microfibrils and fibrils. The small crystallites are regularly...these flat ribbons appears to consist of smaller " microfibrils " of lateral dimension varying from 50-80 A, as described before(Figs. 15 and 16). These
NASA Astrophysics Data System (ADS)
Maas, C.; Hansen, U.
2016-12-01
During a later stage of the accretion about 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes of the mantle and could for example influence the presence and distribution of chemical heterogeneities in the Earth mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008].Our previous work in Cartesian geometry studied crystal settling in the polar and equatorial regions separately from each other and revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we recently developed a spherical shell model that allows for new insights into the crystal settling in-between the pole and the equator as well as the migration of crystals between these regions. Further the spherical model allows us to include the centrifugal force on the crystals, which significantly affects the lateral and radial distribution of crystals. All in all the first numerical experiments in spherical geometry agree with the results of Maas and Hansen [2015] and show that the crystal distribution crucially depends on latitude, rotational strength and crystal density. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008.C. Maas and U. Hansen. Effects of earth's rotation on the early dierentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth and Planetary Science Letters, 125(1):255-266, 1994.
Single-crystal diamond nanomechanical resonators with quality factors exceeding one million
NASA Astrophysics Data System (ADS)
Tao, Y.; Boss, J. M.; Moores, B. A.; Degen, C. L.
2014-04-01
Diamond has gained a reputation as a uniquely versatile material, yet one that is intricate to grow and process. Resonating nanostructures made of single-crystal diamond are expected to possess excellent mechanical properties, including high-quality factors and low dissipation. Here we demonstrate batch fabrication and mechanical measurements of single-crystal diamond cantilevers with thickness down to 85 nm, thickness uniformity better than 20 nm and lateral dimensions up to 240 μm. Quality factors exceeding one million are found at room temperature, surpassing those of state-of-the-art single-crystal silicon cantilevers of similar dimensions by roughly an order of magnitude. The corresponding thermal force noise for the best cantilevers is ~5·10-19 N Hz-1/2 at millikelvin temperatures. Single-crystal diamond could thus directly improve existing force and mass sensors by a simple substitution of resonator material. Presented methods are easily adapted for fabrication of nanoelectromechanical systems, optomechanical resonators or nanophotonic devices that may lead to new applications in classical and quantum science.
Zhao, Quan-Liang; He, Guang-Ping; Di, Jie-Jian; Song, Wei-Li; Hou, Zhi-Ling; Tan, Pei-Pei; Wang, Da-Wei; Cao, Mao-Sheng
2017-07-26
A flexible semitransparent energy harvester is assembled based on laterally aligned Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) single-crystal nanowires (NWs). Such a harvester presents the highest open-circuit voltage and a stable area power density of up to 10 V and 0.27 μW/cm 2 , respectively. A high pressure sensitivity of 0.14 V/kPa is obtained in the dynamic pressure sensing, much larger than the values reported in other energy harvesters based on piezoelectric single-crystal NWs. Furthermore, theoretical and finite element analyses also confirm that the piezoelectric voltage constant g 33 of PZT NWs is competitive to the lead-based bulk single crystals and ceramics, and the enhanced pressure sensitivity and power density are substantially linked to the flexible structure with laterally aligned PZT NWs. The energy harvester in this work holds great potential in flexible and transparent sensing and self-powered systems.
NASA Astrophysics Data System (ADS)
Žák, Jiří; Klomínský, Josef
2007-08-01
The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Bong-Gyoon; Watson, Zoe; Kang, Hannah
We describe a rapid and convenient method of growing streptavidin (SA) monolayer crystals directly on holey-carbon EM grids. As expected, these SA monolayer crystals retain their biotin-binding function and crystalline order through a cycle of embedding in trehalose and, later, its removal. This fact allows one to prepare, and store for later use, EM grids on which SA monolayer crystals serve as an affinity substrate for preparing specimens of biological macromolecules. In addition, we report that coating the lipid-tail side of trehalose-embedded monolayer crystals with evaporated carbon appears to improve the consistency with which well-ordered, single crystals are observed tomore » span over entire, 2 μm holes of the support films. Randomly biotinylated 70S ribosomes are used as a test specimen to show that these support films can be used to obtain a high-resolution cryo-EM structure« less
Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth
Brower, Landon J; Gentry, Lauren K; Napier, Amanda L
2017-01-01
Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation with nanoscale control over lateral and vertical dimensions. This research identified processing parameters to control the film morphology for surMOFs of HKUST-1 fabricated by codeposition and seeded deposition. Time and temperature were investigated to observe film formation, to control film thickness, and to tune morphology. Film thickness was investigated by ellipsometry, while film structure and film roughness were characterized by atomic force microscopy. Films formed via codeposition resulted in nanocrystallites anchored to the gold substrate. A dynamic process at the interface was observed with a low density of large particulates (above 100 nm) initially forming on the substrate; and over time these particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with controllable nanoscale dimensions can be designed and fabricated for integration of MOF systems directly into device architectures and sensor platforms. PMID:29181287
Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth.
Brower, Landon J; Gentry, Lauren K; Napier, Amanda L; Anderson, Mary E
2017-01-01
Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation with nanoscale control over lateral and vertical dimensions. This research identified processing parameters to control the film morphology for surMOFs of HKUST-1 fabricated by codeposition and seeded deposition. Time and temperature were investigated to observe film formation, to control film thickness, and to tune morphology. Film thickness was investigated by ellipsometry, while film structure and film roughness were characterized by atomic force microscopy. Films formed via codeposition resulted in nanocrystallites anchored to the gold substrate. A dynamic process at the interface was observed with a low density of large particulates (above 100 nm) initially forming on the substrate; and over time these particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with controllable nanoscale dimensions can be designed and fabricated for integration of MOF systems directly into device architectures and sensor platforms.
Balcom, B J; Petersen, N O
1993-01-01
We have systematically investigated the probe size and shape dependence of lateral diffusion in model dimyristoyl phosphatidylcholine membranes. Linear hydrophobic polymers, which differ in length by an order of magnitude, were used to explore the effect on the lateral diffusion coefficient of hydrodynamic restrictions in the bilayer interior. The polymers employed are isoprenoid alcohols--citronellol, solanesol, and dolichol. Tracer lateral diffusion coefficients were measured by fluorescence photobleaching recovery. Despite the large difference in lengths, the nitrobenzoxadiazole labelled alcohols all diffuse at the rate of lipid self-diffusion (5.0 x 10(-12) m2 s-1, 29 degrees C) in the liquid crystal phase. Companion measurements in isotropic polymer solution, in gel phase lipid membranes and with nonpolar fluorescent polyaromatic hydrocarbons, show a marked dependence of the lateral diffusion coefficient on the probe molecule size. Our results in the liquid crystal phase are in accord with free area theory which asserts that lateral diffusion in the membrane is restricted by the surface-free area. Probe molecules which are significantly longer than the host phospholipid, seven times longer in the case of dolichol, are still restricted in their lateral motion by the surface properties of the bilayer in the liquid crystal phase. Fluorescence quenching experiments indicate that the nitrobenzoxadiazole label does not reside at the aqueous interface, although it must reside in close proximity according to the diffusion measurements. PMID:8218892
A unique all-optic switch based on an innovatively designed liquid crystal waveguide
NASA Astrophysics Data System (ADS)
Nam, Sung-Hyun; Su, Wei-Hung; Chavez, Jesus; Yin, Shizhuo
2003-10-01
A unique, all-optic switch based on an innovatively designed planar lightwave circuit (PLC) is presented in this paper. The switching function is achieved by using ultra large birefringence of nematic liquid crystals (NLC) filled at the trench of waveguides. The trench at the crossing forms a waveguide mirror or a matching medium when extraordinary and ordinary refractive indices of NLC are employed, respectively. The major advantages of our unique design are: (1) the limitation that refractive index of liquid crystal must be less than that of waveguide material itself is eliminated so that conventional NCL material such as E7 can be used; (2) it is a self aligned fabrication process that alleviates the tight tolerance of later tilt error; (3) the design is thermally stable. The successful fabrication of this unqiue switch could result in an enabling element for the next generation all-optic networks.
NASA Technical Reports Server (NTRS)
Karpova, E. A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Three different types of ribosome crystals were grown by the vapor diffusion technique in hanging drops as described in (1,2). The ribosome is a large asymmetric RNA-protein complex (2.3 million Da), which is protein syntheses machinery of the cell. In this poster we would like to discuss the features of ribosome crystallization. Ribosomes were purified from the thermophilic bacteria Thermus thermophilus by centrifugation (3). Three types of crystals (needle, flat tetragonal and tetragonal-like pyramid) can be grown from the same solution; furthermore, in the same drop using 10-15% 2-methyl-2,4- pentanediol as a precipitant. The crystals appeared in 5-48 hours. The crystals were stable and can co-exist in solution over long period of time. The kinetics of appearance of different crystal forms was different: first the needle crystals were grown, then the tetragonal, and finally the tetragonal pyramids. Later studies of the process of ribosome crystal growth depending on supersaturation showed that low supersaturation results in the appearance of tetragonal plates or tetragonal-like pyramids. An electron microscopy study, together with computer modeling, has shown that crystals of different forms have a high probability of having the same unit cell parameters. According to these experiments the following conclusion can be dranvn: the level of supersaturation of the macromolecule in a crystallizing solution is one of the major factors for forming three-dimensional crystals convenient for X-rays diffraction analysis. From the same macromolecule solution, crystals of different forms can be grown at approximately the same conditions by varying the concentration of macromolecule in the solution. Ion-macromolecule and water-macromolecule interactions, apparently, play the main role in the formation of the unit cell of the crystals.
Contactless Growth of ZnSe Single Crystals by Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; George, M. A.; Feth, S.; Lehoczky, S. L.
1998-01-01
ZnSe crystals were grown by self-seeded physical vapor transport (PVT) technique in the horizontal configuration. The source materials were heat treated by H2 reduction to remove the oxide followed by baking under dynamic vacuum to adjust the source composition toward that of congruent sublimation. Contactless growth of ZnSe single crystals have been performed consistently using three different source materials. The crystals grew away from the wall during the later stage of the growth with large (110) facets tend to align parallel to the gravity direction. The Scanning Electron Micrography (SEM) micrographs and the Atomic Force Microscope (AFM) images showed that large (110) terraces and steps dominate the as-grown facets. The measured residual gas pressures in the processed ampoules agree well among various source materials and the major components were CO and H2. No preferred growth direction was found. The one-dimensional diffusion model on the mass flux of a multi-species PVT system was employed to analyze the conditions for contactless growth. The calculated thermal profile for supersaturation is very close to the thermal profile measured inside the empty furnace bore in the region of contactless growth. The effects of convective flows in the vapor phase inside the ampoule on the growth processes are discussed.
Han, Bong-Gyoon; Watson, Zoe; Kang, Hannah; ...
2016-06-15
We describe a rapid and convenient method of growing streptavidin (SA) monolayer crystals directly on holey-carbon EM grids. As expected, these SA monolayer crystals retain their biotin-binding function and crystalline order through a cycle of embedding in trehalose and, later, its removal. This fact allows one to prepare, and store for later use, EM grids on which SA monolayer crystals serve as an affinity substrate for preparing specimens of biological macromolecules. In addition, we report that coating the lipid-tail side of trehalose-embedded monolayer crystals with evaporated carbon appears to improve the consistency with which well-ordered, single crystals are observed tomore » span over entire, 2 μm holes of the support films. Randomly biotinylated 70S ribosomes are used as a test specimen to show that these support films can be used to obtain a high-resolution cryo-EM structure« less
NASA Astrophysics Data System (ADS)
He, Zhengran
A newly-developed p-type organic semiconductor 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS pentacene) demonstrates various advantages such as high mobility, air stability and solution processibility, but at the same time its application is restricted by major issues, such as crystal misorientation and performance variation of organic thin-film transistors (OTFTs). This dissertation demonstrates several different approaches to address these issues. As a result, both crystal orientation and areal coverage can be effectively improved, leading to an enhancement of average mobility and performance consistency of OTFTs. Chapter 1 presents an introduction and background of this dissertation. Chapter 2 explores the usage of inorganic silica nanoparticles to manipulate the morphology of TIPS pentacene thin films and the performance of solution-processed organic OTFTs. The resultant drop-cast films yield improved morphological uniformity at ~10% SiO2 loading, which also leads to a 3-fold increase in average mobility and nearly 4-times reduction in the ratio of standard deviation of mobility (μStdev) to average mobility (μAvg). The experimental results suggest that the SiO2 nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and that 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity. Chapter 3 discusses the utilization of air flow to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs. Under air-flow navigation (AFN), TIPS pentacene forms thin films with improved crystal orientation and increased areal coverage, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency. Chapter 4 investigates the critical roles of lateral and vertical phase separation in the performance of the next-generation organic and hybrid electronic devices. A novel method is demonstrated here to switch between lateral and vertical phase separation in semiconducting TIPS pentacene/ polymer blend films by simply varying the alkyl length of the polyacrylate polymer component. The phase separation modes depend on intermolecular interactions between small molecule TIPS pentacene and polymer additives. The blend film with a dominant vertical phase separation exhibits a significant enhancement in average mobility and performance consistency of organic OTFTs. Chapter 5 demonstrates an effective approach to improve both charge transport and performance consistency in solution-processed OTFTs by blending TIPS pentacene with a series of small-molecule additives: 4-butylbenzoic acid (BBA), 4-hexylbenzoic acid (HBA), and 4-octylbenzoic acid (OBA). These three small molecules share a benzoic acid moiety, but have different length of hydrophobic tails. The self-assembled interfacial layer of small molecules on the gate oxide surface leads to uniform deposition of TIPS pentacene crystal seeds and facilitates TIPS pentacene to grow along the tilted orientation of substrate, which results in a film of enhanced crystal orientation and areal coverage. OTFTs based on TIPS pentacene/small molecule blends demonstrate greatly improved average hole mobility and performance consistency, which correlates with the length of hydrophobic tail of the small-molecule additives. Chapter 6 summarizes the conclusions of this dissertation and the related future work.
Effects of Convective Transport of Solute and Impurities on Defect-Causing Kinetics Instabilities
NASA Technical Reports Server (NTRS)
Vekilov, Peter G.; Higginbotham, Henry Keith (Technical Monitor)
2001-01-01
For in-situ studies of the formation and evolution of step patterns during the growth of protein crystals, we have designed and assembled an experimental setup based on Michelson interferometry with the surface of the growing protein crystal as one of the reflective surfaces. The crystallization part of the device allows optical monitoring of a face of a crystal growing at temperature stable within 0.05 C in a developed solution flow of controlled direction and speed. The reference arm of the interferometer contains a liquid-crystal element that allows controlled shifts of the phase of the interferograms. We employ an image processing algorithm which combines five images with a pi/2 phase difference between each pair of images. The images are transferred to a computer by a camera capable of capturing 6-8 frames per second. The device allows data collection data regarding growth over a relatively large area (approximately .3 sq. mm) in-situ and in real time during growth. The estimated dept resolution of the phase shifting interferometry is about 100 A. The lateral resolution, depending on the zoom ratio, varies between 0.3 and 0.6 micrometers. We have now collected quantitative results on the onset, initial stages and development of instabilities in moving step trains on vicinal crystal surfaces at varying supersaturation, position on the facet, crystal size and temperature with the proteins ferritin, apoferritin and thaumatin. Comparisons with theory, especially with the AFM results on the molecular level processes, see below, allow tests of the rational for the effects of convective flows and, as a particular case, the lack thereof, on step bunching.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)
2004-01-01
The present invention is related to a method that enables and improves wide bandgap homoepitaxial layers to be grown on axis single crystal substrates, particularly SiC. The lateral positions of the screw dislocations in epitaxial layers are predetermined instead of random, which allows devices to be reproducibly patterned to avoid performance degrading crystal defects normally created by screw dislocations.
NASA Astrophysics Data System (ADS)
Ma, Xiaolong; Qu, Hongwei; Qi, Aiyi; Zhou, Xuyan; Ma, Pijie; Liu, Anjin; Zheng, Wanhua
2018-04-01
High power tapered lasers are designed and fabricated. A one-dimensional photonic crystal structure in the vertical direction is adopted to narrow the far field divergence. The thickness of the defect layer and the photonic crystal layers are optimized by analyzing the optical field theoretically. For tapered lasers, the continuous-wave power is 7.3 W and the pulsed power is 17 W. A maximum wall-plug efficiency of 46% under continuous-wave operation and 49.3% in pulsed mode are obtained. The beam divergences are around 11° and 6° for the vertical and lateral directions, respectively. High beam qualities are also obtained with a vertical M2 value of 1.78 and a lateral M2 value of 1.62. As the current increases, the lateral M2 value increases gradually while the vertical M2 value remains around 2.
NASA Astrophysics Data System (ADS)
Sohn, Y. K.; Son, M.; Jeong, J. O.; Jeon, Y. M.
2009-10-01
The Cretaceous Kusandong Tuff, Korea, is a thin (1-5 m thick) but laterally extensive (~ 200 km) silicic ignimbrite emplaced in a fluviolacustrine basin adjacent to a continental volcanic arc. The tuff has been used as an excellent key bed because of its great lateral continuity and unique lithology, characterized by the virtual absence of juvenile clasts and an abundance of quartz and feldspar crystals (up to 55-73 vol.%). The tuff is mostly massive and ungraded and locally shows crude internal layering, basal inverse grading and near-top normal grading of crystals, either erosional or non-erosional lower surfaces, and flat-lying to imbricated grain fabrics. Fragile intraformational clasts of mudstone and tuff are also included. These features provide only ambiguous information on the properties of the responsible pyroclastic density currents: i.e. whether they were dense and laminar or dilute and turbulent. The overall lateral continuity and sheet-like geometry of the tuff suggests, however, that the transport system of the currents was highly expanded, dilute, and turbulent. A plug-flow or slab-flow model cannot explain the origin of crude internal layering, imbricated grain fabrics, and the high crystal content, which is most likely the result of vigorous sorting processes within a dilute and turbulent current. Features indicative of deposition from a dense and laminar transporting medium are locally present, suggesting that a dense and laminar depositional system could develop locally at the base of the dilute and turbulent transport system. The virtual absence of juvenile clasts in the tuff is interpreted to be due to rapid ascent, sudden decompression, and full fragmentation of silicic magma into fine glass shards and crystals. Scarcity of basement-derived accidental components together with the absence of pumiceous fallout deposits beneath the tuff is interpreted to be due to shallow-level fragmentation of magma followed by immediate generation of pyroclastic density currents from shallow-level blasts at the onset of eruption. The eruption occurred through multiple vent sites in a short period of time, producing a seemingly single but actually composite ignimbrite unit. Such an eruption was probably possible because of a regional tectonic event within the basin or in its vicinity. It is proposed that a composite ignimbrite with the characteristics of the Kusandong Tuff can be an exemplary product of syntectonic volcanism that can provide an insight into the interpretation of structural and stratigraphic evolution of a sedimentary basin.
Fabrication of lateral lattice-polarity-inverted GaN heterostructure
NASA Astrophysics Data System (ADS)
Katayama, Ryuji; Kuge, Yoshihiro; Kondo, Takashi; Onabe, Kentaro
2007-04-01
Fabrication of the lateral polarity-inverted GaN heterostructure on sapphire (0 0 0 1) using a radio-frequency plasma enhanced molecular beam epitaxy is demonstrated. Its microscopic properties, which are closely related to the local polarity distribution, such as surface potentials, piezoelectric polarizations and residual carrier concentrations were investigated by Kelvin force microscopy and micro-Raman scattering. The successful inversion from Ga-polarity to N-polarity of GaN in a specific domain and its higher crystal perfection had been confirmed clearly by these microscopic analyses. The results were also fairly consistent with that of KOH etching experiments, which suggest the applicability of these processes to the fabrication of photonic nanostructures composed of nitride semiconductors.
Fluid and Crystallized Intelligence--Theory and Research in Later Adulthood.
ERIC Educational Resources Information Center
Willis, Sherry L.; Baltes, Paul B.
Two studies examined modifiability in intellectual functioning in older adults. The fluid-crystallized theory provided a theory base for the research. (Fluid intelligence follows a normative decline through adulthood, while crystallized intelligence remains stable or even increases.) In the first study thirty subjects (average age 69.2)…
Beam control of high-power broad-area photonic crystal lasers using ladderlike groove structure
NASA Astrophysics Data System (ADS)
Wang, Tao; Wang, Lijie; Shu, Shili; Tian, Sicong; Lu, Zefeng; Hou, Guanyu; Lu, Huanyu; Tong, Cunzhu; Wang, Lijun
2017-06-01
The high-power broad-area (BA) photonic bandgap crystal (PBC) diode laser is promising as a high-brightness laser source, however, it suffers from poor lateral beam quality owing to the intrinsic drawback of BA lasers. In this paper, a ladderlike groove structure (LLGS) was proposed to improve both the lateral beam quality and emission power of BA PBC lasers. An approximately 15.4% improvement in output power and 25.2% decrease in the lateral beam parameter product (BPP) were realized and the underlying mechanism was discussed. On the basis of the one-dimensional PBC epitaxial structure, a stable vertical far field was demonstrated.
Growth mechanism changes in pseudo-dewetted monolayer poly(ethylene oxide) crystallization
NASA Astrophysics Data System (ADS)
Zhu, Dun-Shen; Chen, Er-Qiang; Shi, An-Chang; Cheng, Stephen
2006-03-01
Crystal growth mechanism changes have been observed in pseudo-dewetted monolayers of low molecular weight (LMW) (PEO) on freshly cleaved hydrophilic mica surfaces [HPEO(4250) which have -OH groups at both ends and MHPEO(4700) which has one -OH and one -OCH3 as end groups]. X-ray scattering reflectivity measurements show a wetted monolayer of molten PEO with a thickness of ˜ 4.5 nm on the mica surface. Non-adsorbed PEO droplets sit on top of the wetted monolayer. A two-step process for PEO single crystal growth under isothermal conditions was identified utilizing in-situ atomic force microscopy at different crystallization temperatures (Tx). In the first step, the crystal grows within the droplet which supplies the molten PEO that participates in the crystal formation. In this second-step, the wetted monolayer at the growth front is depleted by about 1.5 - 2.5 nm. The growing crystal lateral sizes obey a power law of t^α (t: time). At a high Tx of 63 C for MHPEO(4700), the growth behavior obeys r t (α = 1). While in the case of HPEO(4250), its growth behavior follows r t^0.5 (α = 0.5) in the whole Tx range. With decreasing Tx, the growth of MHPEO(4700) falls into a scaling law of r t^α (0.5 < α < 1).
Method for reducing or eliminating interface defects in mismatched semiconductor epilayers
Fitzgerald, Jr., Eugene A.; Ast, Dieter G.
1992-01-01
The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10.times. critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.
Method for reducing or eliminating interface defects in mismatched semiconductor eiplayers
Fitzgerald, Jr., Eugene A.; Ast, Dieter G.
1991-01-01
The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10x critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.
Method for reducing or eliminating interface defects in mismatched semiconductor epilayers
Fitzgerald, E.A. Jr.; Ast, D.G.
1992-10-20
The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10[times] critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In[sub 0.05]Ga[sub 0.95]As/(001)GaAs interface was controlled by fabricating 2-[mu]m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500 [angstrom] of In[sub 0.05]Ga[sub 0.95]As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-[mu]m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 [mu]m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density. 7 figs.
Structures of the G85R Variant of SOD1 in Familial Amyotrophic Lateral Sclerosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Xiaohang; Antonyuk, Svetlana V.; Seetharaman, Sai V.
2008-07-21
Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood. Here we present structures of the human G85R SOD1 variant determined by single crystal x-ray diffraction. Alterations in structure of the metal-binding loop elements relative to the wild type enzyme suggest a molecular basis for the metal ionmore » deficiency of the G85R SOD1 protein observed in the central nervous system of transgenic mice and in purified recombinant G85R SOD1. These findings support the notion that metal-deficient and/or disulfide-reduced mutant SOD1 species contribute to toxicity in SOD1-linked amyotrophic lateral sclerosis.« less
Modelling of convective processes during the Bridgman growth of poly-silicon
NASA Astrophysics Data System (ADS)
Popov, V. N.
2009-09-01
An original 3D model was used to numerically examine convective heat-and-mass transfer processes in the melt during the growth of polycrystalline silicon in vertical Bridgman configuration. The flow in the liquid was modelled using the Navier — Stokes equations in the Boussinesq approximation. The distribution of dissolved impurities was determined by solving the convective diffusion equation. The effects due to non-uniform heating of the lateral wall of the vessel and due to the shape of the crystallization front on the structure of melt flows and on the distribution of dissolved impurities in the liquid are examined.
NASA Astrophysics Data System (ADS)
Lazzerini, Giovanni Mattia; Paternò, Giuseppe Maria; Tregnago, Giulia; Treat, Neil; Stingelin, Natalie; Yacoot, Andrew; Cacialli, Franco
2016-02-01
We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of "molecular terraces" whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazzerini, Giovanni Mattia; Yacoot, Andrew; Paternò, Giuseppe Maria
2016-02-01
We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surfacemore » topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.« less
Lateral access to the holes of photonic crystal fibers selective filling and sensing applications
NASA Astrophysics Data System (ADS)
Cordeiro, Cristiano M. B.; Dos Santos, Eliane M.; Brito Cruz, C. H.; de Matos, Christiano J.; Ferreiira, Daniel S.
2006-09-01
A new, simple, technique is demonstrated to laterally access the cladding holes of solid-core photonic crystal fibers (PCFs) or the central hole of hollow-core PCFs by blowing a hole through the fiber wall (using a fusion splicer and the application of pressure). For both fiber types material was subsequently and successfully inserted into the holes. The proposed method compares favorably with other reported selective filling techniques in terms of simplicity and reproducibility. Also, since the holes are laterally filled, simultaneous optical access to the PCFs is possible, which can prove useful for practical sensing applications. As a proof-of-concept experiment, Rhodamine fluorescence measurements are shown.
NASA Astrophysics Data System (ADS)
Wiebe, R. A.; Jellinek, A. M.; Hodge, K. F.
2017-04-01
Ladder dikes are steep tabular bodies, typically a meter or less thick, composed of moderately dipping, concave upward, alternating dark (i.e. schlieren) and light bands oriented roughly perpendicular to the ladder dike margins. These structures occur widely but sparsely in granitic rocks and are found prominently in the Cathedral Peak granodiorite (CPG) of the Tuolumne Intrusive suite. Previous studies have interpreted that ladder dikes form as a result of processes including the downward flow of crystal mush in cracks within strong crystal mush or by upward flow in steep tubes that migrate within a strong crystal mush. Our new observations indicate that ladder dikes formed by downward flow of crystal mush in troughs or valleys, in a manner potentially comparable to trough bands in mafic layered intrusions. Extensions of the schlieren outward and upward away from the ladder dike margins into the host granite demonstrate that the host granite was deposited as mounds on both sides at the same time as the ladder dikes. Ladder dikes, therefore, record lateral flows of crystal mush on a magma chamber floor. Vertical exposures suggest these flows are on the order of ten meters thick. Some steep exposures on granite domes indicate multiple ladder dikes (and flows) over a stratigraphic height of 80-100 m. Later (stratigraphically higher) flows commonly deform and erode the top of an earlier flow, and granitic material rich in K-feldspar megacrysts has locally engulfed large blocks of ladder dikes, demonstrating that the megacrysts were also transported in flows. Flows in the CPG are directed away from the center of the pluton toward the western and eastern margins and apparently spread along a strong crystal mush floor and into a rheologically complex CPG magma. Whereas established dynamical models for spreading (single phase) gravity currents with simple and complex rheologies explain the elongate geometry, spacing and orientation of the tabular bodies, the origin and character of the downward flows required to explain the trough band schlieren structures is challenging. However, an intermittent and progressive deposition of trough bands, consistent with field observations, is potentially explained if the two-phase (crystals and melt) dynamics governing the response of the CPG magma to a new injection are considered.
Sequential structural and optical evolution of MoS2 by chemical synthesis and exfoliation
NASA Astrophysics Data System (ADS)
Kim, Ju Hwan; Kim, Jungkil; Oh, Si Duck; Kim, Sung; Choi, Suk-Ho
2015-06-01
Various types of MoS2 structures are successfully obtained by using economical and facile sequential synthesis and exfoliation methods. Spherically-shaped lumps of multilayer (ML) MoS2 are prepared by using a conventional hydrothermal method and were subsequently 1st-exfoliated in hydrazine while being kept in autoclave to be unrolled and separated into five-to-six-layer MoS2 pieces of several-hundred nm in size. The MoS2 MLs are 2nd-exfoliated in sodium naphthalenide under an Ar ambient to finally produce bilayer MoS2 crystals of ~100 nm. The sequential exfoliation processes downsize MoS2 laterally and reduce its number of layers. The three types of MoS2 allotropes exhibit particular optical properties corresponding to their structural differences. These results suggest that two-dimensional MoS2 crystals can be prepared by employing only chemical techniques without starting from high-pressure-synthesized bulk MoS2 crystals.
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; ...
2016-01-27
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V’s on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V’s of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. Themore » patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO 2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. In conclusion, the work presents an important advance towards universal integration of III–V’s on application-specific substrates by direct growth.« less
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager III, Joel W.; Chrzan, Daryl C.; Javey, Ali
2016-01-01
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–V's on application-specific substrates by direct growth. PMID:26813257
Hindered settling and the formation of layered intrusions
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Baur, Albrecht; Elburg, Marlina A.; Lindhuber, Matthias J.; Marks, Michael A. W.; Soesoo, Alvar; van Milligen, Boudewijn P.; Walte, Nicolas P.
2015-04-01
Layered intrusions are characterized by (often repetitive) layering on a range of scales. Many explanations for the formation of such layering have been proposed over the past decades. We investigated the formation of "mats" by hindered crystal settling, a model that was first suggested by Lauder (1964). The interaction of sinking and rising crystals leads to the amplification of perturbations in crystal density within a magma chamber, a process similar to the formation of traffic jams in dense traffic (Bons et al., 2015). Once these "crystal traffic jams" form they constitute a barrier for further settling of crystals. Between these barriers, the magma evolves in a semi-closed system in which stratification may develop by gravitational sorting. Barriers, and therefore layers, form sequentially during inward cooling of the magma chamber. Barring later equilibration, mineralogical and geochemical trends within the layers are repetitive, but with variations due to the random process of initial perturbation formation. Layers can form in the transition between two end-member regimes: (1) in a fast cooling and/or viscous magma crystals cannot sink or float a significant distance and minerals are distributed homogeneously throughout the chamber; (2) in a slow cooling and/or low-viscosity magma crystals can quickly settle at the top and bottom of the chamber and crystals concentrations are never high enough to form "traffic jams". As a result, heavy and light minerals get fully separated in the chamber. Between these two end members, crystals can sink and float a significant distance, but not the whole height of the magma chamber before entrapment in "traffic jams". We illustrate the development of layers with numerical models and compare the results with the layered nepheline syenites (kakortokites) of the Ilímaussaq intrusion in SW Greenland. References: Bons, P.D., Baur, A., Elburg, M.A., Lindhuber, M.J., Marks, M.A.W., Soesoo, A., van Milligen, B.P., Walte, N.P. 2015. Layered intrusions and traffic jams. Geology 43, 71-74 Lauder, W. 1964. Mat formation and crystal settling in magma. Nature 202, 1100-1101.
Nguyen, Christelle; Bazin, Dominique; Daudon, Michel; Chatron-Colliet, Aurore; Hannouche, Didier; Bianchi, Arnaud; Côme, Dominique; So, Alexander; Busso, Nathalie; Busso, Nathalie; Lioté, Frédéric; Ea, Hang-Korng
2013-01-01
Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages. CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process.
Diagenetic Crystal Growth in the Murray Formation, Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Kah, L. C.; Kronyak, R. E.; Ming, D. W.; Grotzinger, J. P.; Schieber, J.; Sumner, D. Y.; Edgett, K. S.
2015-01-01
The Pahrump region (Gale Crater, Mars) marks a critical transition between sedimentary environments dominated by alluvial-to-fluvial materials associated with the Gale crater rim, and depositional environments fundamentally linked to the crater's central mound, Mount Sharp. At Pahrump, the Murray formation consists of an approximately 14-meter thick succession dominated by massive to finely laminated mudstone with occasional interbeds of cross-bedded sandstone, and is best interpreted as a dominantly lacustrine environment containing tongues of prograding fluvial material. Murray formation mudstones contain abundant evidence for early diagenetic mineral precipitation and its subsequent removal by later diagenetic processes. Lenticular mineral growth is particularly common within lacustrine mudstone deposits at the Pahrump locality. High-resolution MAHLI images taken by the Curiosity rover permit detailed morphological and spatial analysis of these features. Millimeter-scale lenticular features occur in massive to well-laminated mudstone lithologies and are interpreted as pseudomorphs after calcium sulfate. The distribution and orientation of lenticular features suggests deposition at or near the sediment-water (or sediment-air) interface. Retention of chemical signals similar to host rock suggests that original precipitation was likely poikilotopic, incorporating substantial amounts of the primary matrix. Although poikilotopic crystal growth is common in burial environments, it also occurs during early diagenetic crystal growth within unlithified sediment where high rates of crystal growth are common. Loss of original calcium sulfate mineralogy suggests dissolution by mildly acidic, later-diagenetic fluids. As with lenticular voids observed at Meridiani by the Opportunity Rover, these features indicate that calcium sulfate deposition may have been widespread on early Mars; dissolution of depositional and early diagenetic minerals is a likely source for both calcium and sulfate ion-enrichment in burial fluids that precipitated in ubiquitous late-stage hydrofracture veins
Improved power and efficiency for tapered lasers with optimized photonic crystal structures
NASA Astrophysics Data System (ADS)
Ma, Xiaolong; Qu, Hongwei; Zhao, Shaoyu; Zhou, Xuyan; Lin, Yuzhe; Zheng, Wanhua
2017-10-01
High power and high beam quality laser sources are required in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, material processing and others. Tapered lasers can provide a high output power while keeping a high beam quality. However, the conventional tapered lasers suffer from a large vertical beam divergence. We have demonstrated 2-mm long tapered lasers with photonic crystal structures. A high beam quality and a narrow vertical divergence are achieved. In this paper, we optimized the photonic crystal structure and fabricated a 4-mm long tapered laser to further increase the output power and the wall-plug efficiency. Compared with our precious wafer, the optimized structure has a lower doping level to reduce the internal loss. The period of the photonic crystal structure and the thickness of the upper cladding are also reduced. The device has a 1-mm long ridge-waveguide section and a 3-mm long tapered section. The taper angle is 4°. An output power of 7.3 W is achieved with a peak wall-plug efficiency of 46% in continuous-wave mode. The threshold current is around 500 mA and the slope efficiency is 0.93 W/A. In pulsed mode, the output power is 15.6 W and the maximum wall-plug efficiency is 48.1%. The far-field divergence with full width at half maximum is 6.3° for the lateral direction at 3 A. The vertical far-field beam divergence is around 11° at different injection levels. High beam qualities are demonstrated by beam quality factor M2 of 1.52 for the lateral direction and 1.54 for the vertical direction.
NASA Astrophysics Data System (ADS)
Yun, Seung Jae; Lee, Yong Woo; Son, Se Wan; Byun, Chang Woo; Reddy, A. Mallikarjuna; Joo, Seung Ki
2012-08-01
A planarized thick copper (Cu) gate low temperature polycrystalline silicon (LTPS) thin film transistors (TFTs) is fabricated for ultra-large active-matrix organic light-emitting diode (AMOLED) displays. We introduce a damascene and chemical mechanical polishing process to embed a planarized Cu gate of 500 nm thickness into a trench and Si3N4/SiO2 multilayer gate insulator, to prevent the Cu gate from diffusing into the silicon (Si) layer at 550°C, and metal-induced lateral crystallization (MILC) technology to crystallize the amorphous Si layer. A poly-Si TFT with planarized thick Cu gate exhibits a field effect mobility of 5 cm2/Vs and a threshold voltage of -9 V, and a subthreshold swing (S) of 1.4 V/dec.
NASA Astrophysics Data System (ADS)
Fu, Yanan; Xie, Honglan; Deng, Biao; Du, Guohao; Xiao, Tiqiao
2017-06-01
The floatage self-assembly method was introduced with mixed solvent as the medium of polystyrene sphere suspension to fabricate the colloidal crystal. The three dimensional (3D) void system of the colloidal crystal was noninvasively characterized by synchrotron radiation phase-contrast computed tomography, and the quantitative image analysis was implemented aiming to the polystyrene sphere colloidal crystal. Comparing with gravity sedimentation method, the three samples fabricated from floatage self-assembly with mixed solvents have the lowest porosity, and when ethylene glycol and water were mixed with ratio of 1:1, the lowest porosity of 27.49% could be achieved, that has been very close to the minimum porosity of ordered 3D monodisperse sphere array (26%). In single slices, the porosities and fractal dimension for the voids were calculated. The results showed that two factors would significantly influence the porosity of the whole colloidal crystal: the first deposited sphere layer's orderliness and the sedimentation speed of the spheres. The floatage self-assembly could induce a stable close-packing process, resulted from the powerful nucleation force-lateral capillary force coupled with the mixed solvent to regulate the floating upward speed for purpose of matching the assembly rate.
GaAs/Ge crystals grown on Si substrates patterned down to the micron scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.
Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces.more » The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images.« less
NASA Astrophysics Data System (ADS)
Zaug, Joseph M.; Austin, Ryan A.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Goldman, Nir; Ferranti, Louis; Saw, Cheng K.; Swan, Raymond A.; Gross, Richard; Fried, Laurence E.
2018-05-01
We report experimental and computational studies of shock wave dynamics in single-crystal β-HMX on an ultrafast time scale. Here, a laser-based compression drive (˜1 ns in duration; stresses of up to ˜40 GPa) is used to propagate shock waves normal to the (110) and (010) lattice planes. Ultrafast time-domain interferometry measurements reveal distinct, time-dependent relationships between the shock wave velocity and particle velocity for each crystal orientation, which suggest evolving physical processes on a sub-nanosecond time scale. To help interpret the experimental data, elastic shock wave response was simulated using a finite-strain model of crystal thermoelasticity. At early propagation times (<500 ps), the model is in agreement with the data, which indicates that the mechanical response is dominated by thermoelastic deformation. The model agreement depends on the inclusion of nonlinear elastic effects in both the spherical and deviatoric stress-strain responses. This is achieved by employing an equation-of-state and a pressure-dependent stiffness tensor, which was computed via atomistic simulation. At later times (>500 ps), the crystal samples exhibit signatures of inelastic deformation, structural phase transformation, or chemical reaction, depending on the direction of wave propagation.
AB-stacked square-like bilayer ice in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn
2016-08-10
Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowder, M.A.; Sposili, R.S.; Cho, H.S.
Nonhydrogenated, n-channel, low-temperature-processed, single-crystal Si thin-film transistors (TFT`s) have been fabricated on Si thin films prepared via sequential lateral solidification (SLS). The device characteristics of the resulting SLS TFT`s exhibit properties and a level of performance that are superior to polycrystalline Si-based TFT`s and are comparable to similar devices fabricated on silicon-on-insulator (SOI) substrates or bulk-Si wafers. The authors attribute these high-performance device characteristics to the absence of high-angle grain-boundaries within the active channel portion of the TFT`s.
Advancements in silicon web technology
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Easoz, J.; Mchugh, J. P.; Piotrowski, P.; Hundal, R.
1987-01-01
Low defect density silicon web crystals up to 7 cm wide are produced from systems whose thermal environments are designed for low stress conditions using computer techniques. During growth, the average silicon melt temperature, the lateral melt temperature distribution, and the melt level are each controlled by digital closed loop systems to maintain thermal steady state and to minimize the labor content of the process. Web solar cell efficiencies of 17.2 pct AM1 have been obtained in the laboratory while 15 pct efficiencies are common in pilot production.
NASA Astrophysics Data System (ADS)
Wo, Songtao; Headrick, Randall L.; Anthony, John E.
2012-04-01
We have produced solution-processed thin films of 6,13-bis(tri-isopropyl-silylethynyl) pentacene with grain sizes from a few micrometers up to millimeter scale by lateral crystallization from a rectangular stylus. Grains are oriented along the crystallization direction, and the grain size transverse to the crystallization direction depends inversely on the writing speed, hence forming a regular array of oriented grain boundaries with controllable spacing. We utilize these controllable arrays to systematically study the role of large-angle grain boundaries in carrier transport and charge trapping in thin film transistors. The effective mobility scales with the grain size, leading to an estimate of the potential drop at individual large-angle grain boundaries of more than 1 volt. This result indicates that the structure of grain boundaries is not molecularly abrupt, which may be a general feature of solution-processed small molecule organic semiconductor thin films, where relatively high energy grain boundaries are typically formed. Transient measurements after switching from positive to negative gate bias or between large and small negative gate bias reveal reversible charge trapping, with time constants on the order of 10 s and trap densities that are correlated with grain boundary density. We suggest that charge diffusion along grain boundaries and other defects is the rate-determining mechanism of the reversible trapping.
NASA Astrophysics Data System (ADS)
Shao, Fenfen; Huynh, Trang; Somers, Anthony; Liu, Boyin; Fu, Jing; Muradoglu, Murat; Ng, Tuck Wah
2014-05-01
The drying of colloidal droplet suspensions is important in many realms of practical application and has sustained the interest of researchers over two decades. The arrangements of polystyrene and silica beads, both of diameter 1 μm, 10% by volume of solid deposited on normal glass (hydrophilic), and silicone (hydrophobic) surfaces evaporated from a suspension volume of 3 μL, were investigated. Doughnut shape depositions were found, imputing the influence of strong central circulation flows that resulted in three general regions. In the central region which had strong particle build-up, the top most layers of particle arrangement was confirmed to be disordered using power spectrum and radial distribution function analysis. On closer examination, this appeared more like frustrated attempts to crystallize into larger grains rather than beads arranging in a disordered fashion throughout the piling process. With an adapted micro-bulldozing operation to progressively remove layers of particles from the heap, we found that the later efforts to crystallize through lateral capillary inter-particle forces were liable to be undone once the particles contacted the disorganized particles underneath, which were formed out of the jamming of fast particles arriving at the surface.
Chemical vapor deposition of high-quality large-sized MoS 2 crystals on silicon dioxide substrates
Chen, Jianyi; Tang, Wei; Tian, Bingbing; ...
2016-03-31
Large-sized MoS 2 crystals can be grown on SiO 2/Si substrates via a two-stage chemical vapor deposition method. The maximum size of MoS 2 crystals can be up to about 305 μm. The growth method can be used to grow other transition metal dichalcogenide crystals and lateral heterojunctions. Additionally, the electron mobility of the MoS 2 crystals can reach ≈30 cm 2 V –1 s –1, which is comparable to those of exfoliated flakes.
Chemical Vapor Deposition of High-Quality Large-Sized MoS2 Crystals on Silicon Dioxide Substrates.
Chen, Jianyi; Tang, Wei; Tian, Bingbing; Liu, Bo; Zhao, Xiaoxu; Liu, Yanpeng; Ren, Tianhua; Liu, Wei; Geng, Dechao; Jeong, Hu Young; Shin, Hyeon Suk; Zhou, Wu; Loh, Kian Ping
2016-08-01
Large-sized MoS 2 crystals can be grown on SiO 2 /Si substrates via a two-stage chemical vapor deposition method. The maximum size of MoS 2 crystals can be up to about 305 μm. The growth method can be used to grow other transition metal dichalcogenide crystals and lateral heterojunctions. The electron mobility of the MoS 2 crystals can reach ≈30 cm 2 V -1 s -1 , which is comparable to those of exfoliated flakes.
NASA Astrophysics Data System (ADS)
Carlson, William D.
1989-09-01
The spatial disposition, compositional zoning profiles, and size distributions of garnet crystals in 11 specimens of pelitic schist from the Picuris Range of New Mexico (USA) demonstrate that the kinetics of intergranular diffusion controlled the nucleation and growth mechanisms of porphyroblasts in these rocks. An ordered disposition of garnet centers and a significant correlation between crystal radius and near-neighbor distances manifest suppressed nucleation of new crystals in diffusionally depleted zones surrounding pre-existing crystals. Compositional zoning profiles require diffusionally controlled growth, the rate of which increases exponentially as temperature increases with time; an acceleration factor for growth rate can be estimated from a comparison of compositional profiles for crystals of different sizes in each specimen. Crystal size distributions are interpreted as the result of nucleation rates that accelerate exponentially with increasing temperature early in the crystallization process, but decline in the later stages because of suppression effects in the vicinity of earlier-formed nuclei. Simulations of porphyroblast crystallization, based upon thermally accelerated diffusionally influenced nucleation kinetics and diffusionally controlled growth kinetics, quantitatively replicate textural relations in the rocks. The simulations employ only two variable parameters, which are evaluated by fitting of crystal size distributions. Both have physical significance. The first is an acceleration factor for nucleation, with a magnitude reflecting the prograde increase during the nucleation interval of the chemical affinity for the reaction in undepleted regions of the rock. The second is a measure of the relative sizes of the porphyroblast and the diffusionally depleted zone surrounding it. Crystal size distributions for the Picuris Range garnets correspond very closely to those in the literature from a variety of other localities for garnet and other minerals. The same kinetic model accounts quantitatively for crystal size distributions of porphyroblastic garnet, phlogopite, sphene, and pyroxene in rocks from both regional and contact metamorphic occurrences. These commonalities indicate that intergranular diffusion may be the dominant kinetic factor in the crystallization of porphyroblasts in a wide variety of metamorphic environments.
NASA Astrophysics Data System (ADS)
LeBoeuf, J. L.; Brodusch, N.; Gauvin, R.; Quitoriano, N. J.
2014-12-01
A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor-liquid-solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the {1 0 0} surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.
Effects of rotation on crystal settling in a terrestrial magma ocean: Spherical shell model
NASA Astrophysics Data System (ADS)
Maas, C.; Hansen, U.
2015-12-01
Like Moon or Mars, Earth experienced one or several deep magma ocean periods of globalextent in a later stage of its accretion. The crystallization of these magma oceans is of keyimportance for the chemical structure of Earth, the mantle evolution and the onset of platetectonics. Due to the fast rotation of early Earth and the small magma viscosity, rotationprobably had a profound effect on differentiation processes. For example, Matyska et al.[1994] propose that the distribution of heterogeneities like the two large low shear velocityprovinces (LLSVP) at the core mantle boundary is influenced by rotational dynamicsof early Earth. Further Garnero and McNamara [2008] suggest that the LLSVPs arevery long-living anomalies, probably reaching back to the time of differentiation andsolidification of Earth. However, nearly all previous studies neglect the effects of rotation.In our previous work using a Cartesian model, a strong influence of rotation as well asof latitude on the differentiation processes in an early magma ocean was revealed. Weshowed that crystal settling in an early stage of magma ocean crystallization cruciallydepends on latitude as well as on rotational strength and crystal density.In order to overcome the restrictions as to the geometry of the Cartesian model, we arecurrently developing a spherical model to simulate crystal settling in a rotating sphericalshell. This model will allow us not only to investigate crystal settling at the poles andthe equator, but also at latitudes in-between these regions, as well as the migration ofcrystals between poles and equator. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle.Science, 320(5876):626-628, 2008.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transferon the formation of megaplumes in the lower mantle. Earth and Planetary ScienceLetters, 125(1):255-266, 1994.
NASA Astrophysics Data System (ADS)
Tong, Huifen; Zhou, Yingying; Chang, Gang; Li, Pai; Zhu, Ruizhi; He, Yunbin
2018-06-01
Anatase TiO2 micro-crystals with 51% surface exposing highly active {0 0 1} facets are prepared by hydrothermal synthesis using TiF4 as Ti resource and HF as morphology control agent. In addition, anatase TiO2 single crystals exposing large {0 0 1} crystal facets are facilely synthesized with "green" NaF plus HCl replacing HF for the morphology control. A series of comparative experiments are carried out for separately studying the effects of F- and H+ concentrations on the growth of TiO2 crystals, which have not been understood very much in depth so far. The results indicate that both F- and H+ synergistically affect the synthesis of truncated anatase octahedrons, where F- is preferentially adsorbed on the {0 0 1} facets resulting in lateral growth of these facets and H+ adjusts the growth rate of anatase TiO2 along different orientations by tuning the hydrolysis rate. Based on this information, anatase TiO2 single crystals with small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are successfully prepared under optimal conditions ([H+]/[F-] = 20:1). Photocatalytic activities of the as-prepared products toward methylene blue photo-degradation are further tested. It is revealed that both crystal size and percentage of {0 0 1} facets are decisive for the photocatalytic performance, and the crystals with a small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are catalytically most active. This work has clarified the main factors that control the growth process and morphology of anatase TiO2 single crystals for achieving superior photocatalytic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savitha Pillai, S.; Kojima, H.; Itoh, M.
2015-08-17
We report lateral electric-field-driven sizable changes in the magnetoresistance of Co/Cu/Fe tri-layered wires on BaTiO{sub 3} single crystal. While the observed change is marginal in the tetragonal phase of BaTiO{sub 3}, it reaches over 40% in the orthorhombic and rhombohedral phases with an electric field of 66 kV/cm. We attribute it to possible electric-field-induced variations of the spin-dependent electronic structures, i.e., spin polarization, of the Fe via interfacial strain transfer from BaTiO{sub 3}. The contrasting results for the different phases of BaTiO{sub 3} are discussed, associated with the distinct aspects of the ferroelectric polarization switching processes in each phase.
Decision-making heuristics and biases across the life span.
Strough, Jonell; Karns, Tara E; Schlosnagle, Leo
2011-10-01
We outline a contextual and motivational model of judgment and decision-making (JDM) biases across the life span. Our model focuses on abilities and skills that correspond to deliberative, experiential, and affective decision-making processes. We review research that addresses links between JDM biases and these processes as represented by individual differences in specific abilities and skills (e.g., fluid and crystallized intelligence, executive functioning, emotion regulation, personality traits). We focus on two JDM biases-the sunk-cost fallacy (SCF) and the framing effect. We trace the developmental trajectory of each bias from preschool through middle childhood, adolescence, early adulthood, and later adulthood. We conclude that life-span developmental trajectories differ depending on the bias investigated. Existing research suggests relative stability in the framing effect across the life span and decreases in the SCF with age, including in later life. We highlight directions for future research on JDM biases across the life span, emphasizing the need for process-oriented research and research that increases our understanding of JDM biases in people's everyday lives. © 2011 New York Academy of Sciences.
Decision-making heuristics and biases across the life span
Strough, JoNell; Karns, Tara E.; Schlosnagle, Leo
2013-01-01
We outline a contextual and motivational model of judgment and decision-making (JDM) biases across the life span. Our model focuses on abilities and skills that correspond to deliberative, experiential, and affective decision-making processes. We review research that addresses links between JDM biases and these processes as represented by individual differences in specific abilities and skills (e.g., fluid and crystallized intelligence, executive functioning, emotion regulation, personality traits). We focus on two JDM biases—the sunk-cost fallacy (SCF) and the framing effect. We trace the developmental trajectory of each bias from preschool through middle childhood, adolescence, early adulthood, and later adulthood. We conclude that life-span developmental trajectories differ depending on the bias investigated. Existing research suggests relative stability in the framing effect across the life span and decreases in the SCF with age, including in later life. We highlight directions for future research on JDM biases across the life span, emphasizing the need for process-oriented research and research that increases our understanding of JDM biases in people’s everyday lives. PMID:22023568
NASA Technical Reports Server (NTRS)
Phillips, Vaughan T. J.; Andronache, Constantin; Sherwood, Steven C.; Bansemer, Aaron; Conant, William C.; Demott, Paul J.; Flagan, Richard C.; Heymsfield, Andy; Jonsson, Haflidi; Poellot, Micheal;
2005-01-01
Simulations of a cumulonimbus cloud observed in the Cirrus regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) with an advanced version of the Explicit Microphysics Model (EMM) are presented. The EMM has size-resolved aerosols and predicts the time evolution of sizes, bulk densities and axial ratios of ice particles. Observations by multiple aircraft in the troposphere provide inputs to the model, including observations of the ice nuclei and of the entire size distribution of condensation nuclei. Homogeneous droplet freezing is found to be the source of almost all of the ice crystals in the anvil updraught of this particular model cloud. Most of the simulated droplets that freeze to form anvil crystals appear to be nucleated by activation of aerosols far above cloud base in the interior of the cloud ("secondary" or "in cloud" droplet nucleation). This is partly because primary droplets formed at cloud base are invariably depleted by accretion before they can reach the anvil base in the updraught, which promotes an increase with height of the average supersaturation in the updraught aloft. More than half of these aerosols, activated far above cloud base, are entrained into the updraught of this model cloud from the lateral environment above about 5 km above mean sea level. This confirms the importance of remote sources of atmospheric aerosol for anvil glaciation. Other nucleation processes impinge indirectly upon the anvil glaciation by modifying the concentration of supercooled droplets in the upper levels of the mixed-phase region. For instance, the warm-rain process produces a massive indirect impact on the anvil crystal concentration, because it determines the mass of precipitation forming in the updraught. It competes with homogeneous freezing as a sink for cloud droplets. The effects from turbulent enhancement of the warm-rain process and from the nucleation processes on the anvil ice properties are assessed.
NASA Astrophysics Data System (ADS)
Lee, Sol Kyu; Seok, Ki Hwan; Park, Jae Hyo; Kim, Hyung Yoon; Chae, Hee Jae; Jang, Gil Su; Lee, Yong Hee; Han, Ji Su; Joo, Seung Ki
2016-06-01
Excimer laser annealing (ELA) is known to be the most common crystallization technology for the fabrication of low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) in the mass production industry. This technology, however, cannot be applied to bottom-gate (BG) TFTs, which are well developed for the liquid-crystal display (LCD) back-planes, because strong laser energy of ELA can seriously damage the other layers. Here, we propose a novel high-performance BG poly-Si TFT using Ni silicide seed-induced lateral crystallization (SILC). The SILC technology renders it possible to ensure low damage in the layers, smooth surface, and longitudinal large grains in the channel. It was observed that the electrical properties exhibited a steep subthreshold slope of 110 mV/dec, high field-effect mobility of 304 cm2/Vsec, high I on/ I off ratio of 5.9 × 107, and a low threshold voltage of -3.9 V.
Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining
NASA Astrophysics Data System (ADS)
Qiusheng, Y.; Senkai, C.; Jisheng, P.
2015-03-01
Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.
Nanoscale Strontium Titanate Sheets and Crystals
NASA Astrophysics Data System (ADS)
Tilka, Jack Andrew
The physical properties of materials are dominated by their structure and composition. Insight into the structure of complex oxide materials has the potential to improve our understanding and eventually control of their physical properties. This PhD thesis reports the development of characterization and fabrication techniques relevant to improving the scientific understanding of complex oxide materials. The work presented here has two components. I report a way to use ideas that were originally developed in semiconductor processing to control the elastic strain state and crystallization process of the model complex oxide SrTiO3. An additional component is an important series of advances in the analysis of diffraction patterns acquired with focused x-ray nanobeams. The fabrication and characterization of nanoscale SrTiO3 has been experimentally shown to allow the introduction of elastic strain into SrTiO3. The creation of thin SrTiO3 crystals from (001)-oriented SrTiO3 bulk single crystals using focused ion beam milling techniques yields sheets with submicron thickness and arbitrary orientation within the (001) plane. Synchrotron x-ray nanodiffraction experiments show that the SrTiO 3 sheets have rocking curves with angular widths less than 0.02°. These widths are less than a factor of two larger than bulk SrTiO3, which shows that the sheets are suitable substrates for epitaxial thin film growth. A precisely selected elastic strain can be introduced into the SrTiO 3 sheets using a silicon nitride stressor layer. Synchrotron x-ray nanodiffraction studies show that the strain introduced in the SrTiO3 sheets is on the order of 10-4, matching the predictions of an elastic model. This approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect not achievable in heteroepitaxy on rigid substrates. An additional fabrication technique is also evaluated here based on the crystallization of SrTiO3 from initially amorphous thin films. This process is known as solid-phase epitaxy in two-dimensional samples but is just beginning to be explored in more complex geometries. I report experiments in both homoepitaxy and heteroepitaxy including measurements of crystal growth rates and the crystallographic orientations of crystals formed in this way. The lateral growth rates are consistent with previously measured vertical growth. This result indicated that previous work on vertical solid-phase epitaxy could be extended into lateral solid-phase epitaxy, which has the power to be applied to complicated non-planar geometries. The highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale structural characterization of materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. I report here a series of methods that expand the range of physical problems that can be accurately captured by coherent x-ray optical simulations. My approach has been to expand simulations methods to include arbitrary x-ray incident angles and arbitrary epitaxial heterostructures. I first applied these methods to extract the misorientation of lattice planes and the strain of individual layers of Si/SiGe heterostructures relevant to applications in quantum electronics. Further applications reported in this thesis are in probing defects created in the processing of SrTiO3 and in measuring the change in lattice parameter introduced into strained SrTiO3 sheets. The systematic interpretation of nanobeam diffraction patterns aids in the fabrication of SrTiO3 nanostructures.
Origin of Aphyric Phonolitic Magmas: Natural Evidences and Experimental Constraints
NASA Astrophysics Data System (ADS)
Masotta, M.; Freda, C.; Gaeta, M.
2010-12-01
Large explosive phonolitic eruptions are commonly characterised by aphyric juvenile eruptive products. Taking into account the low density contrast among phonolitic composition and settling phases (i.e., feldspar and leucite), the almost complete lack of crystals in these differentiated compositions rises the question of which process could produce such an efficient crystal-melt separation. Seeking for an answer, we have investigated crystallization in presence of a thermal gradient as a possible mechanism for crystal-melt separation, considering both chemical and physical effects acting on a variably crystallized system. Using a natural tephri-phonolitic composition as starting material (M.te Aguzzo scoria cone, Sabatini Volcanic District, Central Italy), we have reproduced thermal gradient-driven crystallization in order to simulate the crystallization process in a thermally zoned magma chamber. Crystallization degree (paragenesis made of clinopyroxene±feldspars±leucite) as well as melt composition varies along the thermal gradient. In particular, melt composition ranges from the tephri-phonolitic starting composition at the bottom of the charge (hottest and aphyric zone) to phonolitic at the top (cooler and heterogeneously-crystallised zone). Backscattered images of experimental products clearly evidence: i) the aphyric tephri-phonolitic melt region at the bottom of the charge; ii) a drop-shaped crystal clustering in the middle zone; and iii) large aphyric belt and pockets (up to 100 µm wide) of phonolitic melt, with large deformed-shaped sanidine occurring at their margin, at the charge top region. The latter two features, resulting from solid-melt displacements, suggest that the segregation of phonolitic melt can be related to crystal sinking and compaction. On the other hand, the compositional variability of the melt along the thermal gradient is directly related to the crystallization degree, indicating that chemical diffusion and thermal migration have negligible effect at the experimental scale. Experimental results suggest that, in presence of a thermal gradient, a filter-press differentiation mechanism (i.e. sinking+compaction) is able to produce heterogeneous magma differentiation characterised by a wide range of melt compositions (in our case from tephri-phonolitic to phonolitic). Although the limitation due to the vertical shape of the charge and consequent shear effects occurring at the lateral walls (thus limiting the mobility of the crystal clusters), experimental duration of 24 h is enough to allow crystal-melt separation by means of settling and compaction, indicating that timescale for such a process is extremely rapid and effective at experimental conditions. Actually, experimental textures and phase relations are in good agreement with those observed in natural lithic enclaves (from Sabatini Volcanic District) representative of the crystallizing boundary layer of a phonolitic magma chamber. Thus, we speculate that gravitative collapses of a mushy zone from the magma chamber roof of a thermally zoned magma chamber may produce top accumulation of highly differentiated and aphyric melts.
NASA Astrophysics Data System (ADS)
Diehl, Stefan; Brinkmann, Kai-Thomas; Drexler, Peter; Dormenev, Valery; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg;
2017-11-01
The electromagnetic calorimeter (EMC) of the PANDA detector at the future FAIR facility comprises more than 15,000 lead tungstate (PWO) crystals. The barrel part will consist of 11 crystal geometries with different degree of tapering, which causes a non-uniformity in light collection as an interplay between the focusing and the internal absorption of the light. For the most tapered crystals the detected light is enhanced by 40%, if the scintillation process is created in the front part of the crystal. Due to the shower development and its fluctuations the non-uniformity leads to a reduction of the energy resolution. To reduce this effect, one lateral crystal side face has been de-polished to a roughness of 0.3 μm. Measurements confirm an increase of the light yield in the rear part of the crystal. In contrast, only a slight decrease can be observed in the front part. The overall non-uniformity is significantly reduced below 5%. This paper will discuss the experimental studies based on GEANT4 and optical simulations to understand the impact of a de-polished side face on the light collection. For consequences on the future performance, a 3×3 sub-array of de-polished crystals was directly studied using a tagged photon beam in the energy range from 50 MeV up to 800 MeV, respectively, performed at the tagged photon facility at MAMI, Mainz. The comparison to an array composed of polished crystals confirms a significant improvement of the constant term of the energy resolution from above 2 % down to 0.5 % and only a small increase of the statistical term. The results can be reproduced in GEANT4 simulations.
DNA Brick Crystals with Prescribed Depth
Ke, Yonggang; Ong, Luvena L.; Sun, Wei; Song, Jie; Dong, Mingdong; Shih, William M.; Yin, Peng
2014-01-01
We describe a general framework for constructing two-dimensional crystals with prescribed depth and sophisticated three-dimensional features. These crystals may serve as scaffolds for the precise spatial arrangements of functional materials for diverse applications. The crystals are self-assembled from single-stranded DNA components called DNA bricks. We demonstrate the experimental construction of DNA brick crystals that can grow to micron-size in the lateral dimensions with precisely controlled depth up to 80 nanometers. They can be designed to display user-specified sophisticated three-dimensional nanoscale features, such as continuous or discontinuous cavities and channels, and to pack DNA helices at parallel and perpendicular angles relative to the plane of the crystals. PMID:25343605
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeBoeuf, J. L., E-mail: jerome.leboeuf@mail.mcgill.ca; Brodusch, N.; Gauvin, R.
2014-12-28
A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30%more » single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the (1 0 0) surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.« less
Loney, R.A.; Himmelberg, G.R.
1992-01-01
The early Paleozoic Salt Chuck intrusion has petrographic and chemical characteristics that are similar to those of Cretaceous Alaskan-type ultramafic-mafic bodies. The intrusion is markedly discordant to the structure of the early Paleozoic Descon Formation, in which it has produced a rather indistinct contact aureole a few meters wide. Mineral assemblages, sequence of crystallization, and mineral chemistry suggest that the intrusion crystallized under low pressures (~2 kbar) with oxidation conditions near those of the NNO buffer, from a hydrous, silica-saturated, orthopyroxene-normative parental magma. The Salt Chuck deposit was probably formed by a two-stage process: 1) a stage of magmatic crystallization in which the sulfides and PGE accumulated in a disseminated manner in cumulus deposits, possibly largely in the gabbro, and 2) a later magmatic-hydrothermal stage during which the sulfides and PGE were remobilized and concentrated in veins and fracture-fillings. In this model, the source of the sulfides and PGE was the magma that produced the Salt Chuck intrusion. -from Authors
Complex igneous processes and the formation of the primitive lunar crustal rocks
NASA Technical Reports Server (NTRS)
Longhi, J.; Boudreau, A. E.
1979-01-01
Crystallization of a magma ocean with initial chondritic Ca/Al and REE ratios such as proposed by Taylor and Bence (TB, 1975), is capable of producing the suite of primitive crustal rocks if the magma ocean underwent locally extensive assimilation and mixing in its upper layers as preliminary steps in formation of an anorthositic crust. Lunar anorthosites were the earliest permanent crustal rocks to form the result of multiple cycles of suspension and assimilation of plagioclase in liquids fractionating olivine and pyroxene. There may be two series of Mg-rich cumulate rocks: one which developed as a result of the equilibration of anorthositic crust with the magma ocean; the other which formed in the later stages of the magma ocean during an epoch of magma mixing and ilmenite crystallization. This second series may be related to KREEP genesis. It is noted that crystallization of the magma ocean had two components: a low pressure component which produced a highly fractionated and heterogeneous crust growing downward and a high pressure component which filled in the ocean from the bottom up, mostly with olivine and low-Ca pyroxene.
Migration of Amphitheater-Headed Valleys in Kauai Basalts: Wailua Falls as a Case Example
NASA Astrophysics Data System (ADS)
Pederson, D. T.; Blay, C.
2006-12-01
Amphitheater-headed valleys in Kauai basalts migrate upstream primarily because of weathering processes. Basalt weathering rates are enhanced by the presence of water and/or vegetation. When both weathering process are present, weathering rates are greater than the sum of the two processes. Because waterfalls can create an environment where vegetation growth is greatly inhibited by the impact of falling water, weathering rates may be much greater on each side of the falls where vegetation can grow. Sources of water for weathering include groundwater discharge, waterfall spray, and condensation of atmospheric water. Because basalts weather rapidly in tropical environments, streams require only the capability to transport smaller particle sizes to sustain amphitheater migration. It should be noted that most waterfalls occupy only a small fraction of the amphitheater head which further supports weathering as the principal agent in amphitheater development and migration. Lava flows building shield volcanos are usually episodic with crystallization and possible weathering occurring before the next flow. The rate of cooling of a flow determines the crystal size of minerals and in combination with the magma chemistry the susceptibility of a flow to weathering process as well as the strength of the rock. With time, soils and topography will develop on the now crystallized flow. Because clays are a product of basalt weathering, soils when buried by later flows, represent low permeability layers. Additionally, new flows may follow (and bury) surface drainage systems resulting in localized thicker flows that cool more slowly and have different properties then the adjacent thinner flows. Consequently, most amphitheater heads have significant heterogenieties, especially in a vertical section representing multiple basalt flows. Wailua Falls on Kauai will be used as a field example of amphitheater weathering processes and migration.
Novel casting processes for single-crystal turbine blades of superalloys
NASA Astrophysics Data System (ADS)
Ma, Dexin
2018-03-01
This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from superalloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thinshell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimensional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.
Embryonic development of connections in turtle pallium.
Cordery, P; Molnár, Z
1999-10-11
We are interested in similarities and conserved mechanisms in early development of the reptilian and mammalian thalamocortical connections. We set out to analyse connectivity in embryonic turtle brains (Pseudemys scripta elegans, between stages 17 and 25), by using carbocyanine dye tracing. From the earliest stages studied, labelling from dorsal and ventral thalamus revealed backlabelled cells among developing thalamic fibres within the lateral forebrain bundle and striatum, which had similar morphology to backlabelled internal capsule cells in embryonic rat (Molnár and Cordery, 1999). However, thalamic crystal placements did not label cells in the dorsal ventricular ridge (DVR) at any stage examined. Crystal placements into both dorsal and lateral cortex labelled cells in the DVR and, reciprocally, DVR crystal placements labelled cells in the dorsal and lateral cortices. Retrograde labelling revealed that thalamic fibres arrive in the DVR and dorsal cortex by stage 19. The DVR received projections from the nucleus rotundus and the dorsal cortex exclusively from the perirotundal complex (including lateral geniculate nucleus). Thalamic fibres show this remarkable degree of specificity from the earliest stage we could examine with selective retrograde labelling (stage 19). Our study demonstrates that axons of similar cells are among the first to reach dorsal and ventral thalamus in mammals and reptiles. Our connectional analysis in turtle suggests that some cells of the mammalian primitive internal capsule are homologous to a cell group within the reptilian lateral forebrain bundle and striatum and that diverse vertebrate brains might use a highly conserved pattern of early thalamocortical development. Copyright 1999 Wiley-Liss, Inc.
Loferski, P.J.; Arculus, R.J.
1993-01-01
Multiphase inclusions, consisting of clinopyroxene+ilmenite+apatite, occur within cumulus plagioclase grains from anorthosites in the Stillwater Complex, Montana, and in other rocks from the Middle Banded series of the intrusion. The textures and constant modal mineralogy of the inclusions indicate that they were incorporated in the plagioclase as liquid droplets that later crystallized rather than as solid aggregates. Their unusual assemblage, including a distinctive manganiferous ilmenite and the presence of baddeleyite (ZrO2), indicates formation from an unusual liquid. A process involving silicater liquid immiscibility is proposed, whereby small globules of a liquid enriched in Mg, Fe, Ca, Ti, P, REE, Zr and Mn exsolved from the main liquid that gave rise to the anorthosites, became trapped in the plagioclase, and later crystallized to form the inclusions. The immiscibility could have occurred locally within compositional boundaries around crystallizing plagioclase grains or it could have occurred pervasively throughout the liquid. It is proposed that the two immiscible liquids were analogous, n terms of their melt structures, to immiscible liquid pairs reported in the literature both in experiments and in natural basalts. For the previously reported pairs, immiscibility is between a highly polymerized liquid, typically granitic in composition, and a depolymerized liquid, typically ferrobasaltic in composition. In the case of the anorthosites, the depolymerized liquid is represented by the inclusions, and the other liquid was a highly polymerized aluminosilicate melt with a high normative plagioclase content from which the bulk of the anorthosites crystallized. Crystallization of the anorthosites from this highly polymerized liquid accounts for various distinctive textural and chemical features of the anorthosites compared to other rocks in the Stillwater Complex. A lack of correlation between P contents and chondrite-normalized rare earth element (REE) ratios of plagioclase separates indicates that the amount of apatite in the inclusions is too low to affect the REE signature of the plagioclase separates. Nevertheless, workers should use caution when attempting REE modelling studies of cumulates having low REE contents, because apatite-bearing inclusions can potentially cause problems. ?? 1993 Springer-Verlag.
Characteristics of nanolite crystallization in volcanic pyroclasts
NASA Astrophysics Data System (ADS)
Mujin, M.; Nakamura, M.; Miyake, A.
2017-12-01
Crystal nucleation and initial growth in silicate melt may control the number density and later stage growth of crystals, such as twinning and morphology, and are therefore fundamental but still poorly understood processes in magma crystallization. Petrographic and experimental studies on groundmass microlites shed light on their importance for understanding eruption dynamics, but most studies did not focus on nanometer scale crystals. Recently, we reported "nanolites (30 nm-1 µm in width)" and "ultrananolites (< 30 nm in diameter)", which are nanoscale crystals with extremely high number density, in the interstices of microlites in pyroclasts. In this presentation, we summarize their mineralogical and petrological characteristics in pyroclasts of the 2011 eruption of Shinmoedake (Kirishima volcano group)1. By covering a wide size-range of crystals (down to 1 nm in diameter) based on scanning electron microscopy with tungsten filament (W-SEM), field emission (FE)-SEM, and transmission electron microscopy (TEM), we found a clear size gap (hiatus) in the size distribution and presence of minimum crystal size. In a dense juvenile fragment, crystals were absent or their number densities were too low to measure the sizes of pyroxene with a diameter of < 20 nm and a width of 30-100 nm, plagioclase with a width of < 100 nm, and Fe-Ti oxide with a diameter of 2-10 nm and a width of 20-100 nm. In pumice clasts, crystals smaller than 100 nm were not found. These observations show that nucleation of nanoscale crystals almost paused (froze) in the late stage of crystallization, possibly due to a decrease in undercooling, increase in interfacial free energy, and decrease in diffusivity in a dehydrated melt, whereas crystal growth was mostly continuous. Ultrananolites were found in pyroxene and Fe-Ti oxide; notably, these were spherical, whereas nanolites and microlites were rectangular. The observed ultrananolite-sized particles might partly include "subcritical clusters", which are particles smaller than the critical nucleation size assumed in the transient nucleation models. References 1) Mujin and Nakamura, 2014, Geology, v.42, p.611-614, and Mujin et al, in revision, Am. Min.
NASA Astrophysics Data System (ADS)
Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong
2018-04-01
We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.
Crystal Structure of the Japanese Encephalitis Virus Envelope Protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luca, Vincent C.; AbiMansour, Jad; Nelson, Christopher A.
2012-03-13
Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-{angstrom} resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimermore » in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.« less
Crystal structure of the Japanese encephalitis virus envelope protein.
Luca, Vincent C; AbiMansour, Jad; Nelson, Christopher A; Fremont, Daved H
2012-02-01
Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-Å resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.
Transient lateral photovoltaic effect in synthetic single crystal diamond
NASA Astrophysics Data System (ADS)
Prestopino, G.; Marinelli, M.; Milani, E.; Verona, C.; Verona-Rinati, G.
2017-10-01
A transient lateral photovoltaic effect (LPE) is reported for a metal-semiconductor structure of synthetic single crystal diamond (SCD). A SCD Schottky photodiode was specifically designed to measure a LPE under collimated irradiation from a tunable pulsed laser. A transient lateral photovoltage parallel to the Schottky junction was indeed detected. LPE on the p-type doped SCD side showed a non-linearity of 2% and a fast response time, with a rise time of 2 μs and a decay time of 12 μs. The position sensitivity (up to 30 mV/mm at a laser wavelength of 220 nm and a pulse energy density of 2.9 μJ/mm2) was measured as a function of laser wavelength, and an ultraviolet (UV)-to-visible contrast ratio of about four orders of magnitude with a sharp cutoff at 225 nm was observed. Our results demonstrate that a large LPE at UV wavelengths is achievable in synthetic single crystal diamond, potentially opening opportunities for the study and application of LPE in diamond and for the fabrication of high performance visible blind UV position sensitive detectors with high sensitivity and microsecond scale response time.
Ultralow-Threshold Electrically Pumped Quantum-Dot Photonic-Crystal Nanocavity Laser
2011-05-01
we demonstrate a quantum-dot photonic-crystal nanocavity laser in gallium arsenide pumped by a lateral p–i–n junction formed by ion implantation...330 nm layer of silicon nitride was then deposited on the sample using plasma-enhanced chemical vapour deposition (PECVD) to serve as a mask for ion
Stuffed Derivatives of Close-Packed Structures
ERIC Educational Resources Information Center
Douglas, Bodie E.
2007-01-01
Decades ago Buerger described and later Palmer reviewed stuffed silica crystal structures widely used by mineralogists. Many publications and books have discussed common crystal structures in terms of close-packing of one set of atoms or ions (P sites) with other atoms or ions in tetrahedral (T) or octahedral (O) sites. Douglas and Ho described…
Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques
NASA Technical Reports Server (NTRS)
Fathauer, R. W.; George, T.; Pike, W. T.
1992-01-01
We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.
Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting
NASA Astrophysics Data System (ADS)
Roeffaers, Maarten B. J.; Sels, Bert F.; Uji-I, Hiroshi; de Schryver, Frans C.; Jacobs, Pierre A.; de Vos, Dirk E.; Hofkens, Johan
2006-02-01
Catalytic processes on surfaces have long been studied by probing model reactions on single-crystal metal surfaces under high vacuum conditions. Yet the vast majority of industrial heterogeneous catalysis occurs at ambient or elevated pressures using complex materials with crystal faces, edges and defects differing in their catalytic activity. Clearly, if new or improved catalysts are to be rationally designed, we require quantitative correlations between surface features and catalytic activity-ideally obtained under realistic reaction conditions. Transmission electron microscopy and scanning tunnelling microscopy have allowed in situ characterization of catalyst surfaces with atomic resolution, but are limited by the need for low-pressure conditions and conductive surfaces, respectively. Sum frequency generation spectroscopy can identify vibrations of adsorbed reactants and products in both gaseous and condensed phases, but so far lacks sensitivity down to the single molecule level. Here we adapt real-time monitoring of the chemical transformation of individual organic molecules by fluorescence microscopy to monitor reactions catalysed by crystals of a layered double hydroxide immersed in reagent solution. By using a wide field microscope, we are able to map the spatial distribution of catalytic activity over the entire crystal by counting single turnover events. We find that ester hydrolysis proceeds on the lateral {1010} crystal faces, while transesterification occurs on the entire outer crystal surface. Because the method operates at ambient temperature and pressure and in a condensed phase, it can be applied to the growing number of liquid-phase industrial organic transformations to localize catalytic activity on and in inorganic solids. An exciting opportunity is the use of probe molecules with different size and functionality, which should provide insight into shape-selective or structure-sensitive catalysis and thus help with the rational design of new or more productive heterogeneous catalysts.
NASA Astrophysics Data System (ADS)
Stefan-Kharicha, Mihaela; Kharicha, Abdellah; Wu, Menghuai; Ludwig, Andreas
2018-02-01
The influence of the melt flow on the solidification structure is bilateral. The flow plays an important role in the solidification pattern, via the heat transfer, grain distribution, and segregations. On the other hand, the crystal structure, columnar or equiaxed, impacts the flow, via the thermosolutal convection, the drag force applied by the crystals on the melt flow, etc. As the aim of this research was to further explore the solidification-flow interaction, experiments were conducted in a cast cell (95 * 95 * 30 mm3), in which an ammonium chloride-water solution (between 27 and 31 wt pct NH4Cl) was observed as it solidified. The kinetic energy (KE) of the flow and the average flow velocity were calculated throughout the process. Measurements of the volume extension of the mush in the cell and the velocity of the solid front were also taken during the solidification experiment. During the mainly columnar experiments (8 cm liquid height) the flow KE continuously decreased over time. However, during the later series of experiments at higher liquid height (9.5 cm), the flow KE evolution presented a strong peak shortly after the start of solidification. This increase in the total flow KE correlated with the presence of falling equiaxed crystals. Generally, a clear correlation between the strength of the flow and the occurrence of equiaxed crystals was evident. The analysis of the results strongly suggests a fragmentation origin of equiaxed crystals appearing in the melt. The transition from purely columnar growth to a strongly equiaxed rain (CET) was found to be triggered by (a) the magnitude of the coupling between the flow intensity driven by the equiaxed crystals, and (b) the release and transport of the fragments by the same flow recirculating within the mushy zone.
Unique Crystallization of Fullerenes: Fullerene Flowers
Kim, Jungah; Park, Chibeom; Song, Intek; Lee, Minkyung; Kim, Hyungki; Choi, Hee Cheul
2016-01-01
Solution-phase crystallization of fullerene molecules strongly depends on the types of solvent and their ratios because solvent molecules are easily included in the crystal lattice and distort its structure. The C70 (solute)–mesitylene (solvent) system yields crystals with various morphologies and structures, such as cubes, tubes, and imperfect rods. Herein, using C60 and C70 dissolved in mesitylene, we present a novel way to grow unique flower-shaped crystals with six symmetric petals. The different solubility of C60 and C70 in mesitylene promotes nucleation of C70 with sixfold symmetry in the early stage, which is followed by co-crystallization of both C60 and C70 molecules, leading to lateral petal growth. Based on the growth mechanism, we obtained more complex fullerene crystals, such as multi-deck flowers and tube-flower complexes, by changing the sequence and parameters of crystallization. PMID:27561446
Lateral cavity photonic crystal surface emitting lasers with ultralow threshold and large power
NASA Astrophysics Data System (ADS)
Wang, Yufei; Qu, Hongwei; Zhou, Wenjun; Jiang, Bin; Zhang, Jianxin; Qi, Aiyi; Liu, Lei; Fu, Feiya; Zheng, Wanhua
2012-03-01
The Bragg diffraction condition of surface-emitting lasing action is analyzed and Γ2-1 mode is chosen for lasing. Two types of lateral cavity photonic crystal surface emitting lasers (LC-PCSELs) based on the PhC band edge mode lateral resonance and vertical emission to achieve electrically driven surface emitting laser without distributed Bragg reflectors in the long wavelength optical communication band are designed and fabricated. Deep etching techniques, which rely on the active layer being or not etched through, are adopted to realize the LC-PCSELs on the commercial AlGaInAs/InP multi-quantum-well (MQW) epitaxial wafer. 1553.8 nm with ultralow threshold of 667 A/cm2 and 1575 nm with large power of 1.8 mW surface emitting lasing actions are observed at room temperature, providing potential values for mass production with low cost of electrically driven PCSELs.
NASA Astrophysics Data System (ADS)
Zhong, Mianzeng; Zhou, Ke; Wei, Zhongming; Li, Yan; Li, Tao; Dong, Huanli; Jiang, Lang; Li, Jingbo; Hu, Wenping
2018-07-01
Orthorhombic MoO3 (α-MoO3) is a typical layered n-type semiconductor with optical band gap over 2.7 eV, which have been widely studied in catalysis, gas sensing, lithium-ion batteries, field-emission, photoelectrical, photochromic and electrochromic devices, supercapacitors and organic solar cells. However, the bottleneck of generation large size atomic thin two-dimensional (2D) α-MoO3 crystals remain challenging this field (normally several micrometers size). Herein, we developed a facile vapor–solid (VS) process for controllable growth of large-size 2D α-MoO3 single crystals with a few nanometers thick and over 300 μm in lateral size. High-performance solar-blind photodetectors were fabricated based on individual 2D α-MoO3 single crystal. The detectors demonstrate outstanding optoelectronic properties under solar-blind UV light (254 nm), with a photoresponsivity of 67.9 A W‑1, external quantum efficiency of 3.3 × 104%. More important, the devices showed strong in-plane anisotropy in optoelectronic response and transport properties, e.g. the photocurrent along b-axis was found to be 5 times higher than the values along c-axis under 254 nm UV light, and current ON/OFF ratio and mobility anisotropy is about 2 times high. Our work suggests an optimized synthesis routine for 2D crystals, and the great potential of 2D oxides in functional optoelectronics.
One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy
NASA Astrophysics Data System (ADS)
Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.
2018-01-01
Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the junctions. Our new approach offers greater flexibility and control than previous methods for continuous growth of transition-metal-dichalcogenide-based multi-junction lateral heterostructures. These findings could be extended to other families of two-dimensional materials, and establish a foundation for the development of complex and atomically thin in-plane superlattices, devices and integrated circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiusheng, Y., E-mail: qsyan@gdut.edu.cn; Senkai, C., E-mail: senkite@sina.com; Jisheng, P., E-mail: panjisheng@gdut.edu.cn
Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller,more » the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.« less
Formation of High-Quality μm-Order-Thick Poly-Si Films on Glass-Substrates by Flash Lamp Annealing
NASA Astrophysics Data System (ADS)
Ohdaira, Keisuke
Flash lamp annealing (FLA), millisecond-order discharge from Xe lamps, can form a few μm-thick polycrystalline Si (poly-Si) films by crystallizing precursor amorphous Si (a-Si) films prepared on low-cost substrates without serious thermal damage onto the whole glass substrates, thanks to its proper annealing duration. The FLA of a-Si films can induce lateral explosive crystallization (EC), self-catalytic crystallization driven by the release of latent heat. Periodic structures with a spacing of ˜1 μm are spontaneously left behind on and inside flash-lamp-crystallized (FLC) poly-Si films formed, when chemical-vapor-deposited (CVD) or sputtered a-Si films are used as precursor films. These microstructures result from the alternative emergence of two types of crystallization with different mechanisms during FLA: one is governed only by solid-phase nucleation (SPN) and the other includes SPN and partial liquid-phase epitaxy (LPE), resulting in the formation of grains with sizes of 10-500 nm. This rapid lateral crystallization leads to the complete preservation of abrupt dopant profiles, which is favorable for device fabrication. This particular crystallization also results in the suppression of hydrogen desorption during FLA, which realizes the formation of poly-Si films with hydrogen atoms on the order of 1021/cm3. Hydrogen atoms in poly-Si films probably act to reduce defect density, which can be on the order of 1016/cm3 after conventional furnace annealing in inert gas atmosphere. These features are suitable for the realization of high-efficiency thin-film poly-Si solar cells. Furthermore, a different type of EC can occur when using electron-beam-(EB-) evaporated a-Si films as precursor films. All the grains in the FLC poly-Si films formed stretch along lateral crystallization direction, and the length of grains is typically more than 10 μm. Based on the results of multi-pulse FLA technique, the velocity of EC is estimated to be ˜14 m/s, which corresponds to the speed of LPE at around the melting point of a-Si, indicating that this EC occurs completely in liquid phase. This approach to form large-grain poly-Si films can also contribute to realizing high-performance solar cells.
Fei, Linfeng; Hu, Yongming; Li, Xing; Song, Ruobing; Sun, Li; Huang, Haitao; Gu, Haoshuang; Chan, Helen L W; Wang, Yu
2015-02-18
Bismuth ferrite (BFO) nanofibers were synthesized via a sol-gel-based electrospinning process followed by thermal treatment. The influences of processing conditions on the final structure of the samples were investigated. Nanofibers prepared under optimized conditions were found to have a perovskite structure with good quality of crystallization and free of impurity phase. Ferroelectric and piezoelectric responses were obtained from individual nanofiber measured on a piezoelectric force microscope. A prototype photovoltaic device using laterally aligned BFO nanofibers and interdigital electrodes was developed and its performance was examined on a standard photovoltaic system. The BFO nanofibers were found to exhibit an excellent ferroelectric photovoltaic property with the photocurrent several times larger than the literature data obtained on BFO thin films.
Processing FeB03 glass-ceramics in space
NASA Technical Reports Server (NTRS)
Li, C. T.
1976-01-01
The possibility of preparing FeBO3 glass-ceramic in space is explored. A transparent glass-ceramic of FeBO3, due to its unique properties could be an excellent material for magneto-optic applications which currently utilize high price materials such as single crystals of Ga-YIG. The unique magneto-optic properties of FeBO3 were found to come from glass-ceramic but not from the glass form. It was anticipated and later confirmed that the FeBO3 glass-ceramics could not be prepared on earth. Phase separation and iron valence reduction, were identified as the two terrestrial manufacturing obstacles. Since the phase separation problem could be overcome by space processing, the preparation of FeBO3 glass-ceramic in space appears attractive.
Pulsed-Laser Crystallization of Ferroelectric/Piezoelectric Oxide Thin Films
NASA Astrophysics Data System (ADS)
Rajashekhar, Adarsh
Integration of ferroelectric/piezoelectric thin films, such as those of lead zirconate titanate (PZT), with temperature sensitive substrates (complementary metal oxide semiconductors (CMOS), or polymers) would benefit from growth at substrate temperatures below 400°C. However, high temperatures are usually required for obtaining good quality PZT films via conventional routes like rapid thermal processing (>550°C). Those conditions are not compatible either with polymer substrates or completed CMOS circuits and dictate exploration of alternative methods to realize integration with such substrates. In part of this work, factors influencing KrF excimer laser induced crystallization of amorphous sputtered Pb(Zr0.30Ti0.70)O3 thin films at substrate temperatures < 215°C were investigated. (111) Pt/Si substrates were utilized to understand the process window. Laser energy densities studied were in the range 35 - 85 mJ/cm2. The Pb content in the films was varied via the Ar gas pressure (in the range 5 mTorr - 9 mTorr) during sputtering of amorphous films. It was seen that a higher Pb content in the asdeposited films aided nucleation of the perovskite phase. Ozone-containing ambients (10% O3/90% O2) during the annealing promoted the formation of the metastable Pb-rich pyrochlore/fluorite phase, while annealing in pure oxygen produced the perovskite phase at relatively lower annealing laser energy densities. Heterogeneous nucleation from the substrate is favored on utilizing a layer-by-layer growth and crystallization process. Films were also grown on polymers using this method. Ferroelectric switching was demonstrated, but extensive process optimization would be needed to reduce leakage and porosity. Real time laser annealing during growth allows for scaling of the layer-by-layer growth process. A pulsed laser deposition system with in situ laser annealing was thus designed, built, and utilized to grow Pb(Zr 0.52Ti0.48)O3 thin films on a laser crystallized Pb(Zr0.20Ti0.80)O3 seed layer, at a temperature of 370°C. Polycrystalline 1.1 microm thick films exhibited columnar grains with small grain sizes ( 30 nm). The films showed well-saturated hysteresis loops (with a remanent polarization of 25 microC/cm2, and a coercive field of 50 kV/cm) and exhibited loss tangents <2.5% with a permittivity of 730. Film orientation could be controlled via the substrate choice; {111} Pb(Zr0.52Ti0.48)O3 films were grown on oriented (111) Pb(Zr0.30Ti0.70)O3 sol-gel seed layers, while epitaxial {001} films were prepared on (100) SrTiO 3 single crystals. In order to study the microstructure evolution in these films, in situ pulsed-laser annealing was used to grow crystalline lead zirconate titanate (PbZr0.52Ti0.48O3) thin films at a substrate temperature of 370°C on PbZr0.30Ti 0.70O3-buffered platinized silicon substrates. Transmission electron microscopy (TEM) analysis indicated that the films were well crystallized into columnar grains, but with pores segregated at the grain boundaries. Lateral densification of the grain columns was significantly improved by reducing the partial pressure of oxygen from 120 mTorr to 50 mTorr, presumably due to enhanced adatom mobility at the surface accompanying increased bombardment. It was found that varying the fractional annealing duration with respect to the deposition duration produced little effect on lateral grain growth. However, increasing the fractional annealing duration led to shift of 111 PZT X-ray diffraction peaks to higher 2theta values, suggesting residual in-plane tensile stresses in the films. Thermal simulations were used to understand the annealing process. Evolution of the film microstructure is described in terms of transient heating from the pulsed laser determining the nucleation events, while the energy of the arriving species dictates grain growth/coarsening.
TIGRESS highly-segmented high-purity germanium clover detector
NASA Astrophysics Data System (ADS)
Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.
2005-05-01
The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.
NASA Astrophysics Data System (ADS)
Wang, Zhong-Jie; Ni, Wen; Li, Ke-Qing; Huang, Xiao-Yan; Zhu, Li-Ping
2011-08-01
The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag (NS) and blast furnace slag (BFS) with a small amount of quartz sand was investigated. A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process. The results show that the iron-rich system has much lower melting temperature, glass transition temperature ( T g), and glass crystallization temperature ( T c), which can result in a further energy-saving process. The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C. The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample. The crystallization process can be completed in a few minutes. A distinct boundary between the crystallized part and the non-crystallized part exists during the process. In the non-crystallized part showing a black colour, some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to T c. In the crystallized part showing a khaki colour, a compact structure is formed by augite crystals.
Brittle-viscous deformation of vein quartz under fluid-rich lower greenschist facies conditions
NASA Astrophysics Data System (ADS)
Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.
2015-06-01
We studied by Electron BackScatter Diffraction (EBSD) and optical microscopy a coarse-grained (ca. 0.5-6 mm) quartz vein embedded in a phyllonitic matrix to gain insights into the recrystallization mechanisms and the processes of strain localization in quartz deformed under lower greenschist facies conditions, broadly coincident with the brittle-viscous transition. The vein deformed during faulting along a phyllonitic thrust of Caledonian age within the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The phyllonite hosting the vein formed at the expense of a metabasaltic protolith through feldspar breakdown to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the quartz vein acted as a relatively rigid body. Viscous deformation in the vein was initially accommodated by quartz basal slip. Under the prevailing deformation conditions, however, dislocation glide- and possibly creep-accommodated deformation of quartz was inefficient, and this resulted in localized strain hardening. In response to the (1) hardening, (2) progressive and cyclic increase of the fluid pressure, and (3) increasing competence contrast between the vein and the weakly foliated host phyllonite, vein quartz crystals began to deform by brittle processes along specific, suitably oriented lattice planes, creating microgouges along microfractures. Nucleated new grains rapidly sealed these fractures as fluids penetrated the actively deforming system. The grains grew initially by solution precipitation and later by grain boundary migration. We suggest that the different initial orientation of the vein crystals led to strain accommodation by different mechanisms in the individual crystals, generating remarkably different microstructures. Crystals suitably oriented for basal slip, for example, accommodated strain mainly viscously and experienced only minor fracturing. Instead, crystals misoriented for basal slip hardened and deformed predominantly by domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms may vary through time in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.
Growth and transfer of monolithic horizontal nanowire superstructures onto flexible substrates
Wang, Zhong L; Xu, Sheng
2013-08-27
In a method of making a monolithic elongated nanowire, a mask polymer layer is applied to a selected crystal surface of a seed crystal. A plurality of spaced apart elongated openings is defined through the mask polymer layer, thereby exposing a corresponding plurality of portions of the crystal surface. The openings are disposed so as to be aligned with and parallel to a selected crystal axis of the seed crystal. The portions of the crystal surface are subjected to a chemical nutrient environment that causes crystalline material to grow from the plurality of portions for at least a period of time so that monocrystalline members grow from the elongated openings and until the monocrystalline members laterally expand so that each monocrystalline member grows into and merges with an adjacent one of the monocrystalline members, thereby forming a monolithic elongated nanowire.
NASA Astrophysics Data System (ADS)
Yeh, Wenchang
2017-08-01
Micro chevron laser beam annealing (μCLBA) of Si film and Ge film were introduced. Single crystal stripe with a dimension of several tens to hundreds μm in length and 3-8μm in width was formed in Si film or Ge film by scanning μCLBA over the film. Main boundaries in the c-Si stripe were Σ3 CSL twin boundary. Scanning speed of micro linear laser beam annealing (μLLBA) was varied from 0.05 m/s to 8m/s to investigate its influence to crystallinity. Even at 8m/s lateral growth taken place, however, crystal quality was better for slower lateral growth. Crystallization area per energy (APE) of μLLBA was evaluated and compared with other methods. It was found APE of μLLBA was larger than other method, especially for a display with low fill factor of TFT, APE can be several orders of magnitude larger.
Laterally-Biased Quantum IR Detectors
2013-10-23
Rocío San-Román, Adrián Hierro , Journal of Crystal Growth 323, (2011), 496-500. [3] Semiconductor Devices: Physics and Technology 2nd Ed., S.M. Sze...6] “Laterally biased double quantum well IR detector fabricated by MBE regrowth”, Álvaro Guzmán, Rocío San-Román, Adrián Hierro , 16th
NASA Astrophysics Data System (ADS)
Sato, Tadashi; Yamamoto, Kenichi; Kambara, Junji; Kitahara, Kuninori; Hara, Akito
2009-12-01
Hydrogenated nanocrystalline silicon (nc-Si:H) thin-film transistors (TFTs) have attracted attention for application to the operation of organic light-emitting diodes (OLEDs). The monolithic integration of nc-Si:H TFTs and polycrystalline silicon (poly-Si) TFTs and the use of nc-Si:H TFTs for operating an OLED are candidate technologies to achieve OLED system-on-glass. To develop such a system, it is necessary to fabricate poly-Si films without employing thermal dehydrogenation because hydrogen needs to be maintained in the channel region of nc-Si:H TFTs. In this study, we optimized the laser dehydrogenation process as a substitute for thermal dehydrogenation by using a diode-pumped solid-state continuous-wave green laser (Nd:YVO4, 2ω=532 nm) to fabricate large lateral poly-Si films with grain sizes of 3×20 µm2. The performance of poly-Si TFTs is well known to be sensitive to the quality of poly-Si films. In order to evaluate the electrical properties of poly-Si films, TFTs were fabricated by conventional processes. The field-effect mobility, threshold voltage, and S-value of the poly-Si TFTs were 220 cm2 V-1 s-1, -1.0 V, and 0.45 V/dec, respectively. The quality of the poly-Si film fabricated in this experiment was sufficiently high for the integration of peripheral circuits.
NASA Astrophysics Data System (ADS)
Couperthwaite, F.; Morgan, D. J.; Thordarson, T.; Shea, T.; Harvey, J.
2016-12-01
Diffusion modeling of erupted crystals is routine for investigating pre-eruptive timescales within magma storage bodies and magma transport systems. The technique typically produces results some time after a volcanic eruption has commenced. This contribution employs a user-friendly, easy-to-use method for deployment in near-real time during an eruption, enabling rapid timescale assessment whilst retaining reliability. A `stress test' was undertaken to simulate analysis during an evolving eruption involving multiple tephra layers, to test method performance and assess the rapidity with which timescale data could be retrieved. The first tephra cycle was completely processed in 25 working hours, significantly faster than current traditional methods. Traditional limitations include slow data processing rates, the measurement of crystal orientations and sectioning angles, crystal shape uncertainties, and the possibilities of crystal growth and/or changing boundary conditions. These constraints have been considered for the new methodology with corrections applied at a crystal population level. Tephra samples from Vatnaöldur, Iceland were the study material for the stress test. 39 magmatic timescales from Mg-Fe interdiffusion across 25 olivine crystals were retrieved from the basal tephra layer representing eruption onset. Timescales range from 400 days to 160 days with olivine cores giving Forsterite (Fo) values of 82-84 and rim values 79 indicating a single olivine population showing normal zoning (Mg-rich core). The distribution of timescales is consistent with a single pulse of magma migrating from depth into a shallow system 1year before eruption onset. Magma arrival slows, then ceases by 5 months before eruption with no new magma entering the system in the days and weeks immediately before eruption. At the time of abstract submission, work is ongoing regarding the signals from later tephra units, but preliminary results indicate tapping of a source with longer crustal residence. Being able to retrieve this information within a day or so of the start of an eruption has exciting implications for eruption monitoring and hazard mitigation.
Gordon Research Conference on Crystal Growth (1990)
1990-04-01
Labs, MH) 14. Cox Vapor Levitation Epitaxy of Quantum Wires and Wire-like Structures Using Laterally Propagating Surface Steps. (Bellcore, Red Bank) 15...introduced many new aspects of crystal growth, including strained layer superlattices, quantum cluster growth, and vertical zone melting of GaAs...Films 2. E. Bauser Semiconductor Liquid Phase Epitaxy: Growth and Properties of Layers and Heterostructures 3. M. L. Steigerwald Growth of Quantum
Potassium isotope variations in forearc boninite-series volcanics from Chichijima
NASA Astrophysics Data System (ADS)
Parendo, C. A.; Jacobsen, S. B.; Yamashita, K.; Okano, O.
2017-12-01
Variability in the K content of arc lavas is related to fundamental processes. These include (1) the transfer of material from the subducting slab to the mantle wedge, (2) melting occurring within the mantle wedge, and (3) differentiation processes, such as fractional crystallization, which greatly modify the compositions of magma bodies that erupt arc lavas. To explore these processes, samples from Chichijima, an island that is part of the Izu-Bonin forearc, were analyzed for 41K/39K ratios. Analyses were made using an Isoprobe-P MC-ICPMS equipped with a hexapole collision and reaction cell. Precisions obtained were typically about 0.05 ‰ (2SE). We have acquired 41K/39K ratios from eight samples. 41K/39K ratios are reported relative to an estimate of Bulk Silicate Earth. Six of the analyzed samples have 41K/39K ratios that span a range between -0.01 and -0.48 ‰. One sample has a much higher value, +0.44 ‰, and one a much lower value, -1.38 ‰. The samples are variably differentiated, with MgO content ranging approximately from 17 to 1 wt. %. An apparent trend is observed in which the most primitive lavas have 41K/39K ratios near 0.0 ‰ and more evolved lavas have more negative values. A working hypothesis is that 41K/39K ratios vary among these samples because of fractional crystallization. However, multiple other processes need to be considered, including, for some samples, possible post-emplacement alteration. If fractional crystallization is controlling 41K/39K ratios, this requires a precipitating mineral that both incorporates a substantial amount of K and fractionates 41K/39K ratios. Minerals that potentially meet these criteria include feldspars and micas. Effects on 41K/39K ratios may become more pronounced during the later stages of differentiation, when precipitating minerals incorporate more K. Further study will test this hypothesis and explore which minerals may be causing isotopic fractionation. If the fractional crystallization effects can be understood, then it should also be possible to see through these effects and estimate the 41K/39K ratios of the parental magmas.
Compression driven 2D nematic phase in a columnar Langmuir monolayer
NASA Astrophysics Data System (ADS)
El Abed, A.; Goldmann, M.
2012-08-01
Langmuir films of pyramidic liquid crystals were studied using surface pressure versus molecular area isotherms and synchrotron grazing incidence X-ray diffraction. The used molecule, named 3BCN/14, consists of a pyramidal central core to which are bound symmetrically six lateral C14 alkyl chains. These molecules spread spontaneously at the air-water interface in a metastable side-on phase which relax rapidly upon compression towards a stable edge-on phase. Our results suggest that the new edge-on phase consists of an in-plane organization of columns which are made of about 11 stacked edge-on molecules. This structure remains stable after several expansion-compression cycles. Comparing these results with those obtained previously on two other pyramidic liquid crystals with shorter and longer lateral alkyl chains, C9 and C15 respectively, we attribute the formation of the obtained 2D nematic phase to a suitable lateral chains length which allow for the establishing of strong short smectic order within of the 3BCN/14 columns.
Adaptation of in-situ microscopy for crystallization processes
NASA Astrophysics Data System (ADS)
Bluma, A.; Höpfner, T.; Rudolph, G.; Lindner, P.; Beutel, S.; Hitzmann, B.; Scheper, T.
2009-08-01
In biotechnological and pharmaceutical engineering, the study of crystallization processes gains importance. An efficient analytical inline sensor could help to improve the knowledge about these processes in order to increase efficiency and yields. The in-situ microscope (ISM) is an optical sensor developed for the monitoring of bioprocesses. A new application for this sensor is the monitoring in downstream processes, e.g. the crystallization of proteins and other organic compounds. This contribution shows new aspects of using in-situ microscopy to monitor crystallization processes. Crystals of different chemical compounds were precipitated from supersaturated solutions and the crystal growth was monitored. Exemplified morphological properties and different forms of crystals could be distinguished on the basis of offline experiments. For inline monitoring of crystallization processes, a special 0.5 L stirred tank reactor was developed and equipped with the in-situ microscope. This reactor was utilized to carry out batch experiments for crystallizations of O-acetylsalicyclic acid (ASS) and hen egg white lysozyme (HEWL). During the whole crystallization process, the in-situ microscope system acquired images directly from the crystallization broth. For the data evaluation, an image analysis algorithm was developed and implemented in the microscope analysis software.
Surface structure modification of single crystal graphite after slow, highly charged ion irradiation
NASA Astrophysics Data System (ADS)
Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.
2018-04-01
Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.
Determination of the True Lateral Grain Size in Organic–Inorganic Halide Perovskite Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Gordon A.; Heveran, Chelsea M.; Yang, Mengjin
Here, methylammonium lead iodide (MAPbI 3) thin films were examined via piezoresponse force microscopy (PFM) and nanoindentation (NI) to determine if long-range atomic order existed across the full width and depth of the apparent grains. And from the PFM, the piezoelectric response of the films was strongly correlated with low-index planes of the crystal structure and ferroelastic domains in macroscale solution-grown MAPbI 3 crystals, which implied long-range order near the top surface. From the NI, it was found that the induced cracks were straight and extended across the full width of the apparent grains, which indicated that the long-range ordermore » was not limited to the near-surface region, but extended through the film thickness. Interestingly, the two MAPbI 3 processes examined resulted in subtle differences in the extracted electro-mechanical and fracture properties, but exhibited similar power conversion efficiencies of >17% in completed devices.« less
Template-mediated nano-crystallite networks in semiconducting polymers.
Kwon, Sooncheol; Yu, Kilho; Kweon, Kyoungchun; Kim, Geunjin; Kim, Junghwan; Kim, Heejoo; Jo, Yong-Ryun; Kim, Bong-Joong; Kim, Jehan; Lee, Seoung Ho; Lee, Kwanghee
2014-06-18
Unlike typical inorganic semiconductors with a crystal structure, the charge dynamics of π-conjugated polymers (π-CPs) are severely limited by the presence of amorphous portions between the ordered crystalline regions. Thus, the formation of interconnected pathways along crystallites of π-CPs is desired to ensure highly efficient charge transport in printable electronics. Here we report the formation of nano-crystallite networks in π-CP films by employing novel template-mediated crystallization (TMC) via polaron formation and electrostatic interaction. The lateral and vertical charge transport of TMC-treated films increased by two orders of magnitude compared with pristine π-CPs. In particular, because of the unprecedented room temperature and solution-processing advantages of our TMC method, we achieve a field-effect mobility of 0.25 cm(2) V(-1) s(-1) using a plastic substrate, which corresponds to the highest value reported thus far. Because our findings can be applied to various π-conjugated semiconductors, our approach is universal and is expected to yield high-performance printable electronics.
Determination of the True Lateral Grain Size in Organic–Inorganic Halide Perovskite Thin Films
MacDonald, Gordon A.; Heveran, Chelsea M.; Yang, Mengjin; ...
2017-09-15
Here, methylammonium lead iodide (MAPbI 3) thin films were examined via piezoresponse force microscopy (PFM) and nanoindentation (NI) to determine if long-range atomic order existed across the full width and depth of the apparent grains. And from the PFM, the piezoelectric response of the films was strongly correlated with low-index planes of the crystal structure and ferroelastic domains in macroscale solution-grown MAPbI 3 crystals, which implied long-range order near the top surface. From the NI, it was found that the induced cracks were straight and extended across the full width of the apparent grains, which indicated that the long-range ordermore » was not limited to the near-surface region, but extended through the film thickness. Interestingly, the two MAPbI 3 processes examined resulted in subtle differences in the extracted electro-mechanical and fracture properties, but exhibited similar power conversion efficiencies of >17% in completed devices.« less
Regulation of pH During Amelogenesis.
Lacruz, Rodrigo S; Nanci, Antonio; Kurtz, Ira; Wright, J Timothy; Paine, Michael L
2010-02-01
During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.
Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors
NASA Astrophysics Data System (ADS)
Martín, S.; Quintana, B.; Barrientos, D.
2016-07-01
The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).
NASA Astrophysics Data System (ADS)
Díaz-Alvarado, Juan; Rodríguez, Natalia; Rodríguez, Carmen; Fernández, Carlos; Constanzo, Ítalo
2017-07-01
The orbicular granitoid of Caldera, located at the northern part of the Chilean Coastal Range, is a spectacular example of radial textures in orbicular structures. The orbicular body crops out as a 375 m2 tabular to lensoidal intrusive sheet emplaced in the Lower Jurassic Relincho pluton. The orbicular structures are 3-7 cm in diameter ellipsoids hosted in a porphyritic matrix. The orbicules are comprised by a Qtz-dioritic core (3-5 cm in diameter) composed by Pl + Hbl + Qtz + Bt ± Kfs with equiaxial textures and a gabbroic shell (2-3 cm in diameter) characterized by feathery and radiate textures with a plagioclase + hornblende paragenesis. The radial shell crystals are rooted and orthogonally disposed in the irregular contact with the core. The radial shell, called here inner shell, is in contact with the granodioritic equiaxial interorbicular matrix through a 2-3 mm wide poikilitic band around the orbicule (outer shell). The outer shell and the matrix surrounding the orbicules are characterized by the presence of large hornblende and biotite oikocrystals that include fine-grained rounded plagioclase and magnetite. The oikocrystals of both the outer shell and the matrix have a circumferential arrangement around the orbicule, i.e. orthogonal to the radial inner shell. The coarse-grained granodioritic interorbicular matrix present pegmatitic domains with large acicular hornblende and K-feldspar megacrysts. This work presents a review of the textural characteristics of the orbicules and a complete new mineral and whole-rock geochemical study of the different parts of the orbicular granitoid, together with thermobarometric and crystallographic data, and theoretical modeling of the crystallization and element partitioning processes. We propose a model for the formation of the orbicular radial textures consisting of several processes that are suggested to occur fast and consecutively: superheating, volatile exsolution, undercooling, geochemical fractionation and columnar and equiaxial crystallization. According to the obtained results, the formation of the orbicular granitoid of Caldera may have initiated 1) during the generation of a magmatic fracture in the crystallization front of the Relincho pluton, where the water released by the host crystal mush was dissolved in the new batch of dioritic magma. 2) The high influx of water-rich liquids induced superheating conditions in the newly intruding magma that became a depolymerized liquid, where the only solid particules were the small irregular fragments of the host mush dragged from the fracture walls. 3) Volatile exsolution promoted crystallization under undercooling conditions. 4) Undercooling and nucleation around the core (cold germs) involved the physical and geochemical fractionation between two sub-systems: a gabbroic sub-system that comprises the solid paragénesis with a residual water-rich liquid and a granodioritic sub-system. 5) The orbicules, including core and inner shell, behaved as viscous bodies (crystals + residual liquid) floating in the granodioritic magma. 6) Higher undercooling rates occurred at the starting stage, close to the liquidus, promoting columnar crystallization around the cores and formation of the shells. Conversely, in the granodioritic matrix sub-system, equiaxial crystallization was promoted by low relative crystallization rates. 7) The rest of the crystallization process evolved later in the outer shell and the matrix, as suggested by the poikilitic textures observed in both sides of the orbicule contact, and under conditions close to the solidus of both sub-systems (shell and matrix). The water-rich residual liquid expelled during the orbicular shell crystallization was mingled with the partially crystallized matrix magma, generating the pegmatitic domains with large Kfs megacrysts.
Development of a Self Aligned CMOS Process for Flash Lamp Annealed Polycrystalline Silicon TFTs
NASA Astrophysics Data System (ADS)
Bischoff, Paul
The emerging active matrix liquid crystal (AMLCD) display market requires a high performing semiconductor material to meet rising standards of operation. Currently amorphous silicon (a-Si) dominates the market but it does not have the required mobility for it to be used in AMLCD manufacturing. Other materials have been developed including crystallizing a-Si into poly-silicon. A new approach to crystallization through the use of flash lamp annealing (FLA) decreases manufacturing time and greatly improves carrier mobility. Previous work on FLA silicon for the use in CMOS transistors revealed significant lateral dopant diffusion into the channel greatly increasing the minimum channel length required for a working device. This was further confounded by the gate overlap due to misalignment during lithography patterning steps. Through the use of furnace dopant activation instead of FLA dopant activation and a self aligned gate the minimum size transistor can be greatly reduced. A new lithography mask and process flow were developed for the furnace annealing and self aligned gate. Fabrication of the self aligned devices resulted in oxidation of the Molybdenum self aligned gate. Further development is needed to successfully manufacture these devices. Non-self aligned transistors were made simultaneously with self aligned devices and used the furnace activation. These devices showed an increase in sheet resistance from 250 O to 800 O and lower mobility from 380 to 40.2 V/cm2s. The lower mobility can be contributed to an increase in implanted trap density indicating furnace annealing is an inferior activation method over FLA. The minimum transistor size however was reduced from 20 to 5 mum. With improvements in the self aligned process high performing small devices can be manufactured.
Ultrastructural studies of synthetic apatite crystals.
Arends, J; Jongebloed, W L
1979-03-01
In this paper a survey is given of some ultrastructural properties of synthetic hydroxyapatite. The preparation method by which single crystals with a length in the range of 0.1-3.0mm and a defined purity and stoïchiometry can be produced is given. Two groups of materials are considered in detail: carbonate-rich (greater than 0.1% CO3) and low-carbonate hydroxyapatites. The experiments on carbonate-rich material, being the most interesting from a biological point of view, show that acids attack at an active site in the hexagonal basal-plane of the crystals. Later on the crystals dissolve in the center of the crystal parallel to the c-axis forming tube-like structures. The active site can be protected from dissolution if the crystals are pretreated by EHDP or MFP. A comparison with lattice defect theory shows that most likely dislocations of the "hollow-core" type are responsible for the preferential dissolution.
Single crystal diamond membranes for nanoelectronics.
Bray, Kerem; Kato, Hiromitsu; Previdi, Rodolfo; Sandstrom, Russell; Ganesan, Kumaravelu; Ogura, Masahiko; Makino, Toshiharu; Yamasaki, Satoshi; Magyar, Andrew P; Toth, Milos; Aharonovich, Igor
2018-02-22
Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes has remained an unreachable goal. In this work we present a complete nanofabrication methodology for engineering high aspect ratio, electrically active single crystal diamond membranes. The membranes have large lateral directions, exceeding ∼500 × 500 μm 2 and are only several hundreds of nanometers thick. We further realize vertical single crystal p-n junctions made from the diamond membranes that exhibit onset voltages of ∼10 V and a current of several mA. Moreover, we deterministically introduce optically active color centers into the membranes, and demonstrate for the first time a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the electrically active single crystal diamond membranes offers new pathways for advanced nanophotonic, nanoelectronic and optomechanical devices employing diamond.
Effect of local structures on crystallization in deeply undercooled metallic glass-forming liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S. Q.; Li, M. Z., E-mail: maozhili@ruc.edu.cn; Wu, Z. W.
2016-04-21
The crystallization mechanism in deeply undercooled ZrCu metallic glass-forming liquids was investigated via molecular dynamics simulations. It was found that the crystallization process is mainly controlled by the growth of crystal nuclei formed by the BCC-like atomic clusters, consistent with experimental speculations. The crystallization rate is found to relate to the number of growing crystal nuclei in the crystallization process. The crystallization rate in systems with more crystal nuclei is significantly hindered by the larger surface fractions of crystal nuclei and their different crystalline orientations. It is further revealed that in the crystallization in deeply undercooled regions, the BCC-like crystalmore » nuclei are formed from the inside of the precursors formed by the FCC-like atomic clusters, and growing at the expense of the precursors. Meanwhile, the precursors are expanding at the expense of the outside atomic clusters. This process is consistent with the so-called Ostwald step rule. The atomic structures of metallic glasses are found to have significant impact on the subsequent crystallization process. In the Zr{sub 85}Cu{sub 15} system, the stronger spatial correlation of Cu atoms could hinder the crystallization processes in deeply undercooled regions.« less
Daels, Eva; Goderis, Bart; Matton, Valerie; Foubert, Imogen
2018-04-18
In literature there is good agreement on the health-promoting effects of phytosterols. However, addition of phytosterol esters (PEs) to lipid (containing food products) may influence its crystallization behavior. This study investigated the crystallization kinetics of palm oil (PO) after addition of PEs in high concentrations (≥10%). The isothermal crystallization of the PE-PO blends was analyzed at a temperature of 20 °C and at a supercooling of 18.7 °C using differential scanning calorimetry and time-resolved synchrotron X-ray diffraction. At increasing PE concentrations, PO crystallization at an isothermal temperature of 20 °C started later and was slower and a smaller amount of crystals were formed. Furthermore, a delay in polymorphic transition from α to β' was observed. When the blends were isothermally crystallized at a supercooling of 18.7 °C, only two of these effects remained: the delay in polymorphic transition and the decrease in crystalline content.
NASA Astrophysics Data System (ADS)
Zheng, Zhongchao; Seto, Tatsuru; Kim, Sanghong; Kano, Manabu; Fujiwara, Toshiyuki; Mizuta, Masahiko; Hasebe, Shinji
2018-06-01
The Czochralski (CZ) process is the dominant method for manufacturing large cylindrical single-crystal ingots for the electronics industry. Although many models and control methods for the CZ process have been proposed, they were only tested with small equipment and only a few industrial application were reported. In this research, we constructed a first-principle model for controlling industrial CZ processes that produce 300 mm single-crystal silicon ingots. The developed model, which consists of energy, mass balance, hydrodynamic, and geometrical equations, calculates the crystal radius and the crystal growth rate as output variables by using the heater input, the crystal pulling rate, and the crucible rise rate as input variables. To improve accuracy, we modeled the CZ process by considering factors such as changes in the positions of the crucible and the melt level. The model was validated with the operation data from an industrial 300 mm CZ process. We compared the calculated and actual values of the crystal radius and the crystal growth rate, and the results demonstrated that the developed model simulated the industrial process with high accuracy.
Laser Crystallization of Silicon Thin Films for Three-Dimensional Integrated Circuits
NASA Astrophysics Data System (ADS)
Ganot, Gabriel S.
Advanced sequential lateral solidification (SLS), as presented in this thesis, is a novel implementation of the previously-developed directional-SLS method, and is specifically aimed at addressing the microstructural non-uniformity issue that can be encountered in the directional solidification processing of continuous Si films. Films crystallized via the directional-SLS method, for instance, can contain physically distinct regions with varying densities of planar defects and/or crystallographic orientations. As a result, transistors fabricated within such films can potentially exhibit relatively poor device uniformity. To address this issue, we employ advanced SLS whereby Si films are prepatterned into closely-spaced, long, narrow stripes that are then crystallized via directional-SLS in the long-axis-direction of the stripe length. By doing so, one can create microstructurally distinct regions within each stripe, which are then placed within the active channel region of a device. It is shown that when the stripes are sufficiently narrow (less than 2 µm), a bi-crystal microstructure is observed. This is explained based on the change in the interface morphology as a consequence of enhanced heat flow at the edges of the stripe. It is suggested that this bi-crystal formation is beneficial to the approach, as it increases the effective number of stripes within the active channel region. One issue of fundamental and technological significance that is nearly always encountered in laser crystallization is the formation of structural defects, in general, and in particular, twins. Due to the importance of reducing the density of these defects in order to increase the performance of transistors, this thesis investigates the formation mechanism of twins in rapidly laterally solidified Si thin films. These defects have been characterized and examined in the past, but a physically consistent explanation has not yet been provided. To address this situation, we have carried out experiments using a particular version of SLS, namely dot-SLS. This specific technique is chosen because we identify that it is endowed with a fortuitous combination of experimental factors that enable the systematic examination of twinning in laterally grown Si thin films. Based on extensive microstructural analysis of dot-SLS-crystallized regions, we propose that it is the energetics associated with forming a new atomic layer (during growth) in either a twinned or non-twinned configuration heterogeneously at the oxide/film interface that dictate the formation (or absence) of twins. The second method presented in this thesis is that of advanced MPS. The basic MPS approach was originally conceived as a way to generate Si films for solar cells as it is capable of producing large, intragrain-defect-free regions that are predominantly (100) surface-textured. However, the location of the grain boundaries of these equiaxed grains is essentially random, and hence, transistors placed within the interior of the grains would exhibit differing performance compared to those that are place across the grain boundaries. To address this, advanced MPS is introduced and demonstrated as a means to manipulate solidification by seeding from {100} surface-oriented regions and to induce limited directional growth. This is accomplished using a continuous-wave laser with a Gaussian-shaped beam profile wherein a central, completely molten region is surrounded by a "mixed-phase-region'' undergoing MPS. The technique creates quasi-directional material that consists of large, elongated, parallel, {100} surface-oriented grains. This material is an improvement over previously generated directionally solidified materials, and can allow one to build devices without high angle grain boundaries that are within, and oriented perpendicular to, the active channel. The resulting microstructure is explained in terms of the non-uniform energy density distribution generated by the Gaussian-shaped laser beam, and the corresponding shape and growth of the solid/liquid interface. Based on the observations and considerations from these results, we propose and demonstrate a related scheme whereby a flash-lamp annealing system is utilized in order to induce the advanced MPS condition. This method can potentially time-efficiently crystallize, and create in the process, well-defined regions that are microstructurally suitable for the fabrication of 3D-ICs. (Abstract shortened by UMI.).
Crystallization in lactose refining-a review.
Wong, Shin Yee; Hartel, Richard W
2014-03-01
In the dairy industry, crystallization is an important separation process used in the refining of lactose from whey solutions. In the refining operation, lactose crystals are separated from the whey solution through nucleation, growth, and/or aggregation. The rate of crystallization is determined by the combined effect of crystallizer design, processing parameters, and impurities on the kinetics of the process. This review summarizes studies on lactose crystallization, including the mechanism, theory of crystallization, and the impact of various factors affecting the crystallization kinetics. In addition, an overview of the industrial crystallization operation highlights the problems faced by the lactose manufacturer. The approaches that are beneficial to the lactose manufacturer for process optimization or improvement are summarized in this review. Over the years, much knowledge has been acquired through extensive research. However, the industrial crystallization process is still far from optimized. Therefore, future effort should focus on transferring the new knowledge and technology to the dairy industry. © 2014 Institute of Food Technologists®
Crystalline folliculitis revealed by non-aqueous staining technique.
Siscos, Spyros Michael; Tran, Chi; Fischer, Ryan; Fraga, Garth
2017-07-15
Necrotizing infundibular crystalline folliculitis (NICF) is a rare superficial folliculitis characterized by expansive deposits of birefringent crystallized lipid. We report a case of NICF in a transplant patient presenting with folliculocentric acneiform papules across the lateral face and neck. Biopsy demonstrated intrafollicular crystalline deposits within an intact epidermis. Diagnostic crystals were identified using a non-aqueous histologic technique involving thick unstained sections. To our knowledge, this is the first report of NICF in a transplant patient. Our case suggests NICF is a follicular disorder and highlights a technique that may prevent loss of birefringent crystals and assist in facilitating accurate diagnosis.
Double-Diffusive Convection During Growth of Halides and Selenides
NASA Technical Reports Server (NTRS)
Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.
2015-01-01
Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of several materials such as mercurous chloride, mercurous bromide, mercurous iodide, lead chloride lead bromide, lead iodide, thallium arsenic selenide, gallium selenide, zince sulfide zinc selenide and several crystals into devices. We have used both Bridgman and physical vapor transport (PVT) crystal growth methods. In the past have examined PVT growth numerically for conditions where the boundary of the enclosure is subjected to a nonlinear thermal profile. Since past few months we have been working on binary and ternary materials such as selenoiodides, doped zinc sulfides and mercurous chloro bromide and mercurous bromoiodides. In the doped and ternary materials thermal and solutal convection play extremely important role during the growth. Very commonly striations and banding is observed. Our experiments have indicated that even in highly purified source materials, homogeneity in 1-g environment is very difficult. Some of our previous numerical studies have indicated that gravity level less than 10-4 (?-g) helps in controlling the thermosolutal convection. We will discuss the ground based growth results of HgClxBr(1-x) and ZnSe growth results for the mm thick to large cm size crystals. These results will be compared with our microgravity experiments performed with this class of materials. For both HgCl-HgBr and ZnS-ZnSe the lattice parameters of the mixtures obey Vagard's law in the studied composition range. The study demonstrates that properties are very anisotropic with crystal orientation, and performance achievement requires extremely careful fabrication to utilize highest figure of merit. In addition, some parameters such as crystal growth fabrication, processing time, resolution, field of view and efficiency will be described based on novel solid solution materials. It was predicted that very similar to the pure compounds solid solutions also have very large anisotropy, and very precise oriented and homogeneous bulk and thin film crystals is required to achieve maximum performance of laser or imagers. Some of the parameters controlling the homogeneity such as thermos-solutal convection driven forces can be controlled in microgravity environments to utilize the benefits of these unique materials.
Applications of ultrasound to chiral crystallization, resolution and deracemization.
Xiouras, Christos; Fytopoulos, Antonios; Jordens, Jeroen; Boudouvis, Andreas G; Van Gerven, Tom; Stefanidis, Georgios D
2018-05-01
Industrial synthesis of enantiopure compounds is nowadays heavily based on the separation of racemates through crystallization processes. Although the application of ultrasound in solution crystallization processes (sonocrystallization) has become a promising emerging technology, offering several benefits (e.g. reduction of the induction time and narrowing of the metastable zone width, control over the product size, shape and polymorphic modification), little attention has been paid so far to the effects of ultrasound on chiral crystallization processes. Several recent studies have reported on the application of acoustic energy to crystallization processes that separate enantiomers, ranging from classical (diastereomeric) resolution and preferential crystallization to new and emerging processes such as attrition-enhanced deracemization (Viedma ripening). A variety of interesting effects have been observed, which include among others, enhanced crystallization yield with higher enantiomeric purity crystals, spontaneous mirror symmetry breaking crystallization, formation of metastable conglomerate crystals and enhanced deracemization rates. The objective of this review is to provide an overview of the effects of ultrasound on chiral crystallization and outline several aspects of interest in this emerging field. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Ryo; JSPS Research Fellow, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083; Kai, Yuki
Formation of large-grain (≥30 μm) Ge crystals on insulating substrates is strongly desired to achieve high-speed thin-film transistors. For this purpose, we propose the methods of Sn-doping into amorphous-Ge combined with rapid-thermal-annealing (RTA) in the solid-liquid coexisting temperature region for the Ge-Sn alloy system. The densities of micro-crystal-nuclei formed in this temperature region become low by tuning the RTA temperature close to the liquidus curve, which enhances the lateral growth of GeSn. Thanks to the very small segregation coefficient of Sn, almost all Sn atoms segregate toward edges of the stripes during growth. Agglomeration of GeSn degrades the surface morphologies;more » however, it is significantly improved by lowering the initial Sn concentration. As a result, pure Ge with large crystal grains (∼40 μm) with smooth surface are obtained by optimizing the initial Sn concentration as low as 3 ∼ 5%. Lateral growth lengths are further increased through decreasing the number of nuclei in stripes by narrowing stripe width. In this way, high-crystallinity giant Ge crystals (∼200 μm) are obtained for the stripe width of 3 μm. This “Si-seed free” technique for formation of large-grain pure Ge crystals is very useful to realize high-performance thin-film devices on insulator.« less
Lee, Christopher M; Kafle, Kabindra; Park, Yong Bum; Kim, Seong H
2014-06-14
This study reports that the noncentrosymmetry and phase synchronization requirements of the sum frequency generation (SFG) process can be used to distinguish the three-dimensional organization of crystalline cellulose distributed in amorphous matrices. Crystalline cellulose is produced as microfibrils with a few nanometer diameters by plants, tunicates, and bacteria. Crystalline cellulose microfibrils are embedded in wall matrix polymers and assembled into hierarchical structures that are precisely designed for specific biological and mechanical functions. The cellulose microfibril assemblies inside cell walls are extremely difficult to probe. The comparison of vibrational SFG spectra of uniaxially-aligned and disordered films of cellulose Iβ nanocrystals revealed that the spectral features cannot be fully explained with the crystallographic unit structure of cellulose. The overall SFG intensity, the alkyl peak shape, and the alkyl/hydroxyl intensity ratio are sensitive to the lateral packing and net directionality of the cellulose microfibrils within the SFG coherence length scale. It was also found that the OH SFG stretch peaks could be deconvoluted to find the polymorphic crystal structures of cellulose (Iα and Iβ). These findings were used to investigate the cellulose crystal structure and mesoscale cellulose microfibril packing in intact plant cell walls, tunicate tests, and bacterial films.
NASA Astrophysics Data System (ADS)
Drikis, Ivars; Plate, Matiss; Sennikovs, Juris; Virbulis, Janis
2017-09-01
Simulations of 3D anisotropic stress are carried out in <100> and <111> oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is 5-11% higher in <111> crystals compared to <100> crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the <111> crystal has a higher azimuthal variation of stress along the triple point line ( 8%) than the <100> crystal ( 2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ridge compared with the round crystal.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Spry, Andrew J.; Trunek, Andrew J.; Powell, J. Anthony; Beheim, Glenn M.
2002-01-01
This paper reports initial demonstration of a cantilevered homoepitaxial growth process that places screw dislocations at predetermined lateral positions in on-axis 4H-SiC mesa epilayers. Thin cantilevers were grown extending toward the interior of hollow pre-growth mesa shapes etched into an on-axis 4H-SiC wafer, eventually completely coalescing to form roofed cavities. Each completely coalesced cavity exhibited either: 1) a screw dislocation growth spiral located exactly where final cantilever coalescence occurred, or 2) no growth spiral. The fact that growth spirals are not observed at any other position except the central coalescence point suggests that substrate screw dislocations, initially surrounded by the hollow portion of the pre-growth mesa shape, are relocated to the final coalescence point of the webbed epilayer roof. Molten potassium hydroxide etch studies revealed that properly grown webbed cantilevers exhibited no etch pits, confirming the superior crystal quality of the cantilevers.
NASA Astrophysics Data System (ADS)
Prakash, Abhishek; Piazolo, Sandra; Saha, Lopamudra; Bhattacharya, Abhijit; Pal, Durgesh Kumar; Sarkar, Saheli
2018-03-01
In the present study we investigate the microstructural development in mullite, quartz and garnet in an anatectic migmatite hosted within a Grenvillian-age shear zone in the Aravalli-Delhi Fold Belt. The migmatite exhibits three main deformation structures and fabrics (S1, S2, S3). Elongated garnet porphyroblasts are aligned parallel to the metatexite S2 layers and contain crenulation hinges defined by biotite-sillimanite-mullite-quartz (with S1 axial planar foliation). Microstructural evidence and phase equilibrium relations establish the garnet as a peritectic phase of incongruent melting by breakdown of biotite, sillimanite ± mullite and quartz at peak P-T of 8 kbar, 730 °C along a tight-loop, clockwise P-T path. Monazite dating establishes that the partial melting occurred between 1000 and 870 Ma. The absence of subgrains and systematic crystal lattice distortions in these garnets despite their elongation suggests growth pseudomorphing pre-existing 3-D networks of S1 biotite aggregates rather than high-temperature crystal plastic deformation which is noted in the S1 quartz grains that exhibit strong crystallographic preferred orientation (CPO), undulatory extinction and subgrains. Mode-I fractures in these garnet porphyroblasts induced by high melt pressure during late stage of partial melt crystallization are filled by retrograde biotite-sillimanite. Weak CPO and non-systematic crystal lattice distortions in the coarse quartz grains within the S2 leucosome domains indicate these crystallized during melt solidification without later crystal plastic deformation overprint. In the later stages of deformation (D3), strain was mostly accommodated in the mullite-biotite-sillimanite-rich restite domains forming S3 which warps around garnet and leucosome domains; consequently, fine-grained S3 quartz does not exhibit strong CPOs.
NASA Astrophysics Data System (ADS)
Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu
2011-06-01
In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.
NASA Astrophysics Data System (ADS)
Bauer, Helene; Rogowitz, Anna; Grasemann, Benhard; Decker, Kurt
2017-04-01
This study presents microstructural investigations of natural carbonate fault rocks that formed by a suite of different deformation processes, involving hydro-fracturing, dissolution-precipitation creep and cataclasis. Some fault rocks show also clear indications of crystal plastic deformation, which is quite unexpected, as the fault rocks were formed in an upper crustal setting, raising the question of possible strongly localised, low temperature ductile deformation in carbonate rocks. The investigated carbonate fault rocks are from an exhumed, sinistral strike-slip fault at the eastern segment of the Salzachtal-Ennstal-Mariazell-Puchberg (SEMP) fault system in the Northern Calcareous Alps (Austria). The SEMP fault system formed during eastward lateral extrusion of the Eastern Alps in the Oligocene to Lower Miocene. Based on vitrinite reflectance data form intramontane Teritary basins within the Northern Calcareous Alps, a maximum burial depth of 4 km for the investigated fault segment is estimated. The investigated fault accommodated sinistral slip of several hundreds of meters. Microstructural analysis of fault rocks includes scanning electron microscopy, optical microscopy and electron backscattered diffraction mapping. The data show that fault rocks underwent various stages of evolution including early intense veining (hydro-fracturing) and stylolite formation reworked by localised shear zones. Cross cutting relationship reveals that veins never cross cut clay seams accumulated along stylolites. We conclude that pressure solution processes occured after hydro-fracturing. Clay enriched zones localized further deformation, producing a network of small-scale clay-rich shear zones of up to 1 mm thickness anastomosing around carbonate microlithons, varying from several mm down to some µm in size. Clay seams consist of kaolinit, chlorite and illite matrix and form (sub) parallel zones in which calcite was dissolved. Beside pressure solution, calcite microlithons show also ductile deformation microstructures, including deformation twinning, undulose extinction, subgrain rotation recrystallization and even grain boundary migration. Especially coarse grained calcites from veins localized ductile deformation and record dislocation glide. The investigated fault rocks are excellent examples of frictional, pressure solution and crystal plastic deformation processes. We speculated that crystal plastic deformation typical for higher metamorphic shear zones in marbles, can be either produced under much lower temperature conditions or the temperature necessary for crystal plastic deformation was generated by frictional slip or strain heating within the fault zone.
NASA Astrophysics Data System (ADS)
Altay, Arzu
The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to complement the studies carried out on the calcium aluminate phases, energy-loss near-edge structure (ELNES) fingerprints of CA2 and CA6 were obtained. It was shown that it is possible to distinguish these phases from each other by comparing the ELNES fingerprints. Theoretical calculations of ELNES were used to assign spectral features to certain symmetry environments that can later be used to understand the structures of unknown materials.
Self-reporting inhibitors: single crystallization process to get two optically pure enantiomers.
Wan, Xinhua; Ye, Xichong; Cui, Jiaxi; Li, Bowen; Li, Na; Zhang, Jie
2018-05-22
Collection of two optically pure enantiomers in a single crystallization process can significantly increase the chiral separation efficiency but it's hard to realize nowadays. Herein we describe, for the first time, a self-reporting strategy for visualizing the crystallization process by a kind of dyed self-assembled inhibitors made from the copolymers with tri(ethylene glycol)-grafting polymethylsiloxane as main chains and poly(N6-methacryloyl-L-lysine) as side chains. When applied with seeds together for the fractional crystallization of conglomerates, the inhibitors can label the formation of the secondary crystals and guide us to completely separate the crystallization process of two enantiomers with colorless crystals as the first product and red crystals as the secondary product. This method leads to high optical purity of D/L-Asn·H2O (99.9 ee% for D-crystals and 99.5 ee% for L-crystals) in a single crystallization process. Moreover, it requires low feeding amount of additives and shows excellent recyclability. We foresee its great potential in developing novel chiral separation methods that can be used in different scales. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effect of pigeon yolk sac fluid on the growth behavior of calcium carbonate crystals.
Song, Juan; Cheng, Haixia; Shen, Xinyu; Tong, Hua
2015-03-01
Previous experiments have proved that thermodynamically unstable calcium carbonate vaterite can exist for long periods in the yolk sac of a pigeon embryo. The aim of this article was to demonstrate the effect of in vitro mineralization of yolk sac fluid on calcium carbonate by direct precipitation. Experiments were conducted using pigeon yolk sac fluid and using lecithin extracted from pigeon yolk sac fluid as a control to investigate the regulating effects of the organic components in the embryo on the formation of the calcium carbonate precipitate. Multiple characterization methods were employed to study the various morphological patterns, sizes, crystal growth, and crystal phase transformations of the calcium carbonate precipitates as regulated by the yolk sac fluid extracted at different stages of incubation. The experimental results demonstrate that as the incubation proceeds towards the later stages, the composition and environmental features of the yolk sac fluid become more favorable for the formation of relatively unstable calcium carbonate phases with high energies of the vaterite state. The experiments conducted with extracted lecithin as the template for crystal growth yielded similar results. A large amount of organic molecules with polar functional groups carried by the yolk sac fluid have strong effects and can both initially induce the crystallization and regulate the aggregation of calcium carbonate. Furthermore, this regulation process is found to be closely related to the lecithin contained in yolk sac fluid. These observations confirm the changes in yolk sac fluid composition during incubation have significant effects on the production of vaterite, which implicates the calcium transport during embryo growth. © 2015 Poultry Science Association Inc.
Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide
NASA Technical Reports Server (NTRS)
Stephen, Mark A. (Inventor)
2018-01-01
An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.
NASA Astrophysics Data System (ADS)
Hansen, Ulrich; Maas, Christian
2017-04-01
About 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes and could for example influence the presence and distribution of chemical heterogeneities in the Earth's mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008]. Previous work in Cartesian geometry revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we developed a spherical shell model that allows to study crystal settling in-between pole and equator as well as the migration of crystals between these regions. Further we included centrifugal forces on the crystals, which significantly affect the lateral and radial distribution of the crystals. Depending on the strength of rotation the particles accumulate at mid-latitude or at the equator. At high rotation rates the dynamics of fluid and particles are dominated by jet-like motions in longitudinal direction that have different directions on northern and southern hemisphere. All in all the first numerical experiments in spherical geometry agree with Maas and Hansen [2015] that the crystal distribution crucially depends on latitude, rotational strength and crystal density. References E. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008. C. Maas and U. Hansen. Eff ects of earth's rotation on the early di erentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015. C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth and Planetary Science Letters, 125(1):255-266, 1994.
Smejkal, Benjamin; Agrawal, Neeraj J; Helk, Bernhard; Schulz, Henk; Giffard, Marion; Mechelke, Matthias; Ortner, Franziska; Heckmeier, Philipp; Trout, Bernhardt L; Hekmat, Dariusch
2013-09-01
The potential of process crystallization for purification of a therapeutic monoclonal IgG1 antibody was studied. The purified antibody was crystallized in non-agitated micro-batch experiments for the first time. A direct crystallization from clarified CHO cell culture harvest was inhibited by high salt concentrations. The salt concentration of the harvest was reduced by a simple pretreatment step. The crystallization process from pretreated harvest was successfully transferred to stirred tanks and scaled-up from the mL-scale to the 1 L-scale for the first time. The crystallization yield after 24 h was 88-90%. A high purity of 98.5% was reached after a single recrystallization step. A 17-fold host cell protein reduction was achieved and DNA content was reduced below the detection limit. High biological activity of the therapeutic antibody was maintained during the crystallization, dissolving, and recrystallization steps. Crystallization was also performed with impure solutions from intermediate steps of a standard monoclonal antibody purification process. It was shown that process crystallization has a strong potential to replace Protein A chromatography. Fast dissolution of the crystals was possible. Furthermore, it was shown that crystallization can be used as a concentrating step and can replace several ultra-/diafiltration steps. Molecular modeling suggested that a negative electrostatic region with interspersed exposed hydrophobic residues on the Fv domain of this antibody is responsible for the high crystallization propensity. As a result, process crystallization, following the identification of highly crystallizable antibodies using molecular modeling tools, can be recognized as an efficient, scalable, fast, and inexpensive alternative to key steps of a standard purification process for therapeutic antibodies. Copyright © 2013 Wiley Periodicals, Inc.
Effect of Carbon Black on Elastomer Blends
NASA Astrophysics Data System (ADS)
Si, Mayu; Koga, Tadanori; Ji, Yuan; Seo, Young-Soo; Rafailovich, Miriam; Sokolov, Jonathan; Gerspacher, M.; Dias, A. J.; Karp, Kriss R.; Satija, Sushil; Lin, Min Y.
2003-03-01
The effects of untreated and heat-treated carbon black N299 on the interfacial properties of PB (Polybutadiene) and terpolymer BIMS [brominated Poly(isobutylene-co-methyl styrene)] were investigated by neutron reflectivity (NR) and lateral force microscopy (LFM). The NR results show that the addition of carbon black significantly slows down the interfacial broadening while heat-treated carbon black has less effect on slowing down the diffusion compared with untreated carbon black. These results were confirmed by the LFM data, which shows the magnitude of lateral force loop of heat-treated carbon black is bigger than that of untreated one. Ultra small and small angle neutron scattering (USANS and SANS) were used to probe the morphology and surface lateral force. Increasing volume concentration of carbon black to 5glass transition temperature of BIMS is also decreased, which was measured by Differential scanning Calorimeter (DSC). XRD analysis indicates that the heat treatment crystallizes the carbon black and strong graphitic peaks are observed. The large degree of crystallization decreases the interaction with the polymer matrix and hence minimizes the effect on the internal dynamics
NASA Astrophysics Data System (ADS)
Prostomolotov, A. I.; Verezub, N. A.; Voloshin, A. E.
2014-09-01
A thermo-gravitational convection and impurity transfer in the melt were investigated using a simplified numerical model for Bridgman GaSb(Te) crystal growth in microgravity conditions. Simplifications were as follows: flat melt/crystal interface, fixed melt sizes and only lateral ampoule heating. Calculations were carried out by Ansys®Fluent® code employing a two-dimensional Navier-Stokes-Boussinesq and heat and mass transfer equations in a coordinate system moving with the melt/crystal interface. The parametric dependence of the effective segregation coefficient Keff at the melt/crystal interface was studied for various ampoule sizes and for microgravity conditions. For the uprising one-vortex flow, the resulting dependences were presented as Keff vs. Vmax-the maximum velocity value. These dependences were compared with the formulas by Burton-Prim-Slichter's, Ostrogorsky-Muller's, as well as with the semi-analytical solutions.
NASA Technical Reports Server (NTRS)
Herren, B.
1992-01-01
In collaboration with a medical researcher at the University of Alabama at Birmingham, NASA's Marshall Space Flight Center in Huntsville, Alabama, under the sponsorship of the Microgravity Science and Applications Division (MSAD) at NASA Headquarters, is continuing a series of space experiments in protein crystal growth which could lead to innovative new drugs as well as basic science data on protein molecular structures. From 1985 through 1992, Protein Crystal Growth (PCG) experiments will have been flown on the Space Shuttle a total of 14 times. The first four hand-held experiments were used to test hardware concepts; later flights incorporated these concepts for vapor diffusion protein crystal growth with temperature control. This article provides an overview of the PCG program: its evolution, objectives, and plans for future experiments on NASA's Space Shuttle and Space Station Freedom.
Analysis of thickness dependent on crystallization kinetics in thin isotactic-polysterene films
NASA Astrophysics Data System (ADS)
Khairuddin
2016-11-01
Crystalliaztion kinetics of thin film of Isotactic Polysterene (it-PS) films has been studied. Thin PET films having thickness of 338, 533, 712, 1096, 1473, and 2185 A° were prepared by using spin-cast technique. The it-PS crystals were grown on Linkam-hostage in the temperature range 130-240°C with an interval of 10°C. The crystal growths are measured by optical microscopy in lateral direction. It was found that a substantial thickness dependence on crystallisation rate. The analysis using fitting technique based on theory crystal growth of Lauritzen-Hoffman showed that the fitting technique could not resolve to predict the mechanism controlling the thickness dependence on the rate of crystallisation. The possible reasons were due to the crystallisation rate varies with the type of crystals (smooth, rough, overgrowth terrace), and the crystallisation rate changes with the time of crystallisation.
NASA Astrophysics Data System (ADS)
Zhu, Qi; Li, Ji-Guang; Li, Xiaodong; Sun, Xudong; Qi, Yang; Zhu, Miaoyong; Sakka, Yoshio
2014-02-01
Layered rare-earth hydroxide (LRH) crystals of (Y0.95Eu0.05)2(OH)5NO3·nH2O with a lateral size of ˜ 300 μm and a thickness of ˜ 9 μm have been synthesized via a hydrothermal reaction of mixed nitrate solutions in the presence of mineralizer NH4NO3 at 200 °C for 24 h. LRH exhibits the ability to undergo intercalation and anion exchange with DS- (C12H25OSO3-) via hydrothermal treatment. Compared with traditional anion exchange at room temperature, hydrothermal processing not only shortens the anion exchange time from 720 to 24 h but also increases the basal spacing. The arrangements of DS- in the interlayer of LRH are significantly affected by the DS- concentration and reaction temperature, and the basal spacing of the LRH-DS sample in the crystal edge is assumed to be larger than that in the crystal center. A higher DS- concentration and reaction temperature both induce more intercalation of DS- anions into the interlayer gallery, thus yielding a larger basal spacing. Unilamellar nanosheets with a lateral size of ⩾60 μm and a thickness of ˜ 1.6 nm can be obtained by delaminating LRH-DS in formamide. The resultant unilamellar nanosheets are single crystalline. Transparent (Y0.95Eu0.05)2O3 phosphor films with a uniform [111] orientation and a layer thickness of ˜ 90 nm were constructed with the nanosheets as building blocks via spin-coating, followed by proper annealing. The oriented oxide film exhibits a strong red emission at 614 nm (the 5D0-7F2 transition of Eu3+), whose intensity is ˜ 2 times that of the powder form owing to the significant exposure of the (222) facets.
NASA Astrophysics Data System (ADS)
Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Garrido, Carlos J.
2017-04-01
Numerous forms of hydrated or basic magnesium carbonates occur in the complex MgO-CO2-H2O system. Mineral saturation states from low temperature hydrothermal fluids in Semail Ophiolite (Oman), Prony Bay (New Caledonia) and Lost City hydrothermal field (mid-Atlantic ridge) strongly indicate the presence of magnesium hydroxy-carbonate hydrates (e.g. hydromagnesite) and magnesium hydroxides (brucite). Study of formation mechanisms and morphological features of minerals forming in the MgO-CO2-H2O system could give insights into serpentinization-driven, hydrothermal, alkaline environments, which are related to early Earth conditions. Temperature, hydration degree, pH and fluid composition are crucial factors regarding the formation, coexistence and transformation of such mineral phases. The rate of supersaturation, on the other hand, is a fundamental parameter to understand nucleation and crystal growth processes. All these parameters can be examined in a solution using different crystallization techniques. In the present study, we applied different crystallization techniques to synthesize and monitor the crystallization of Mg-bearing carbonates and hydroxides under abiotic conditions. Various crystallization techniques (counter-diffusion, vapor diffusion and unseeded solution mixing) were used to screen the formation conditions of each phase, transformation processes and structural development. Mineral and textural characterization of the different synthesized phases were carried out by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Experimental investigation of the effect of pH level and silica content under variable reactant concentrations revealed the importance of Amorphous Magnesium Carbonate (AMC) in the formation of hydroxy-carbonate phases (hydromagnesite and dypingite). Micro-structural resemblance between AMC precursors and later stage crystalline phases highlights the critical role of internal molecule re-organization to form crystalline structures. Aggregation of AMC spherulites triggers biomimetic morphologies forming curling laminar structures and rings. The size and number of nesquehonite (MgCO3.3H2O) crystals are controlled by pH and Mg2+ ions at pH < 9. As pH increases, nesquehonite transforms to spherical, rosette-like dypingite and/or hydromagnesite. Crystallization experiments within silica gel impedes the normal growth of prismatic nesquehonite crystals and generates peculiar dendritic crystalline structures. Finally, vapor diffusion techniques resulted in synthesis of NH4+-bearing hydrated compounds after ammonium incorporation when [NH4+]/[Mg2+] ≥ 1 and ≥ 0.5M [NH4+]. Funding: We acknowledge funding from the People programme (Marie Curie Actions - ITN) of the European Union FP7 under REA Grant Agreement n˚ 608001.
Synthesis and carbon-13 NMR studies of liquid crystals
NASA Astrophysics Data System (ADS)
Sun, Hong
2000-08-01
The orientation of different segments of 4'-cyanophenyl 4-heptylbenzoate (7CPB) has been investigated using 13C NMR. The method of proton encoded local field (PELF) spectroscopy was used in combination with off-magic-angle spinning (OMAS) of the sample. High-resolution 2D spectra were obtained and the order parameters were calculated from the spectra. Linear relationships between the obtained order parameters and anisotropic chemical shifts determined by 1D 13C NMR were established and semi-empirical parameters were obtained. A 1:2 mixture of 7CPB and its chain-perfluorinated analog (7PFCPB) shows interesting phase behavior with changing of temperature. The mixture was studied by the use of 13C NMR and polarizing optical microscopy. The order parameters of 7CPB in the smectic A phase of the mixture were calculated using the semi-empirical parameters obtained by the 2D NMR method. Eight series of liquid crystals containing an electron- donating group at one end of a conjugated system and an electron-withdrawing group at the other end have been synthesized. The electron-donating group is 4- n-alkylpiperazinyl group, the electron- withdrawing group is nitro group and the conjugated system is diphenyldiazene with zero, one or two substituents on the phenyl rings. The substituents are -F, -Cl, and -CH3. Two series of compounds with cyano group as electron-withdrawing group were also synthesized. Most of the compounds synthesized are nematogenic and exhibit rather broad liquid crystalline ranges. The effects of the lateral substituents on the optical absorption and phase transition temperatures are correlated with their nature and position of substitution. Birefringence, dielectric anisotropy, elastic constant ratio and rise time of the liquid crystals were carried out using 10 wt% LC mixtures in E7. It has been found that lateral substituents have subtle effects on the properties. The presence of lateral substituents depresses melting points and clearing points of the liquid crystals. All the liquid crystals synthesized in this work have relatively large values of birefiringence, although the dielectric anisotropy values were not as high as desired. The incorporation of a fluorine atom onto the position neighboring the nitro group enhances the conjugation of the push-pull system and liquid crystals with better physical properties were obtained.
Lateral Growth Expansion of 4H/6H-SiC m-plane Pseudo Fiber Crystals by Hot Wall CVD Epitaxy
NASA Technical Reports Server (NTRS)
Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Powell, J. A.; Spry, David J.; Raghothamachar, Balaji; Dudley, Michael
2011-01-01
Lateral expansion of small mixed polytype 4H/6H-SiC slivers were realized by hot wall chemical vapor deposition (HWCVD). Small slivers cut from m-oriented ..11..00.. SiC boule slices containing regions of 4H and 6H SiC were exposed to HWCVD conditions using standard silane/propane chemistry for a period of up to eight hours. The slivers exhibited approximately 1500 microns (1.5 mm) of total lateral expansion. Initial analysis by synchrotron white beam x-ray topography (SWBXT) confirms, that the lateral growth was homoepitaxial, matching the polytype of the respective underlying region of the seed sliver.
Electromigration process for the purification of molten silicon during crystal growth
Lovelace, Alan M. Administrator of the National Aeronautics and Space; Shlichta, Paul J.
1982-01-01
A process for the purification of molten materials during crystal growth by electromigration of impurities to localized dirty zones. The process has particular applications for silicon crystal growth according to Czochralski techniques and edge-defined film-fed growth (EFG) conditions. In the Czochralski crystal growing process, the impurities are electromigrated away from the crystallization interface by applying a direct electrical current to the molten silicon for electromigrating the charged impurities away from the crystal growth interface. In the EFG crystal growth process, a direct electrical current is applied between the two faces which are used in forming the molten silicon into a ribbon. The impurities are thereby migrated to one side only of the crystal ribbon. The impurities may be removed or left in place. If left in place, they will not adversely affect the ribbon when used in solar collectors. The migration of the impurity to one side only of the silicon ribbon is especially suitable for use with asymmetric dies which preferentially crystallize uncharged impurities along one side or face of the ribbon.
Observation of a discrete time crystal.
Zhang, J; Hess, P W; Kyprianidis, A; Becker, P; Lee, A; Smith, J; Pagano, G; Potirniche, I-D; Potter, A C; Vishwanath, A; Yao, N Y; Monroe, C
2017-03-08
Spontaneous symmetry breaking is a fundamental concept in many areas of physics, including cosmology, particle physics and condensed matter. An example is the breaking of spatial translational symmetry, which underlies the formation of crystals and the phase transition from liquid to solid. Using the analogy of crystals in space, the breaking of translational symmetry in time and the emergence of a 'time crystal' was recently proposed, but was later shown to be forbidden in thermal equilibrium. However, non-equilibrium Floquet systems, which are subject to a periodic drive, can exhibit persistent time correlations at an emergent subharmonic frequency. This new phase of matter has been dubbed a 'discrete time crystal'. Here we present the experimental observation of a discrete time crystal, in an interacting spin chain of trapped atomic ions. We apply a periodic Hamiltonian to the system under many-body localization conditions, and observe a subharmonic temporal response that is robust to external perturbations. The observation of such a time crystal opens the door to the study of systems with long-range spatio-temporal correlations and novel phases of matter that emerge under intrinsically non-equilibrium conditions.
Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy
2016-01-01
Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems. PMID:27917410
Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy.
Marcellini, Moreno; Noirjean, Cecile; Dedovets, Dmytro; Maria, Juliette; Deville, Sylvain
2016-11-30
Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems.
Method for reducing energy losses in laser crystals
Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.
1992-03-24
A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.
Method for reducing energy losses in laser crystals
Atherton, L. Jeffrey; DeYoreo, James J.; Roberts, David H.
1992-01-01
A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light.
NASA Astrophysics Data System (ADS)
Currier, R. M.; Marsh, B. D.; Mittal, T.
2010-12-01
The profusion of sills the world over offers a wide spectrum of geologic conditions under which to study emplacement mechanisms and the establishment of the initial conditions governing the subsequent magmatic evolution. Many diabase/dolerite sills are featureless bodies whose only record of solidification is contained in the variation of crystal size. But other sills formed of magma containing crystals entrained from earlier crystallization episodes often show a rich history of interaction between settling crystals and solidification fronts such that the physical history of differentiation can be readily observed. This work explores this aspect of sills using visco-elastic gelatin as country rock, molten wax as magma and tiny particles as phenocrysts. Magmatic sills form mechanically, when an ascending dike encounters a more rigid layer, is diverted laterally, and systematically inflates as guided along by the interface. In this manner, sills grow about the injection site, and can do so symmetrically or asymmetrically. The degree of asymmetry is affected by the dip angle of the interface. An angled interface implies a directional pressure gradient, and magma flows preferentially in the direction of decreasing pressure, in this case, up tilt. So, the greater the tilt, the greater the asymmetry. By experimentally producing sills in layered, tilted, media, we have investigated the influence of bed dip on sill morphology. Experiments were performed by injecting wax and particles into gelatin where the layers were poured at set angles to mimic tilted bedding. In addition to its visco-elastic properties, gelatin also has the added benefit of transparency, allowing for direct observation during the experiment and can be washed away later to reveal the exact details of the remaining solid. To emulate magma as a multi-phase slurry, a magmatic analog was used consisting of a mixture of molten wax near its liquidus and ultrafine glitter. Wax solidifies in response to thermal loss, as does the liquid portion of magma, affecting emplacement characteristics itself and preserving transient features that would otherwise be lost. The particles act as crystal cargo, and track magmatic flow within the sill. Surprisingly, even though the injection process is a single pulse, the wax-particle combination intimately records several internal lobes that might otherwise be interpreted as a multiple-pulse style emplacement. The end product is a handheld magmatic plumbing system that can be examined in full detail. There are many cases of sills in the geologic record where the original host rock bedding dip at the time of emplacement is unknown due perhaps to subsequent tectonism. In addition to the experiments providing insights on the magmatic evolution of slurries, they may thus also prove useful in inferring the original bed orientation.
NASA Astrophysics Data System (ADS)
Kawakatsu, K.; Iwamoto, Y.; Ebisu, S.; Hasegawa, M.; Hiraiwa, N.; Kawakatsu, T.; Kitano, A.; Masuta, T.; Ootsubo, H.; Wakazono, R.
2013-12-01
Cretaceous-Paleogene Granitoids in the inner zone of southwest Japan have been divided into two series: the magnetite series that is distributed mainly in the San-in belt and the ilmenite series that is distributed mainly in San-yo belt. For 8 years, we have been investigating the two series to clear their processes of magmatic differentiation. Recently, we discovered oscillatory zoned structure, exsolution lamellae of amphibole, and relics of pyroxene left in the core of amphibole from Harima granodiorite, Nunobiki granodiorite (San-yo belt) and Daito-Yokota quartz diorite (San-in belt). The amphibole that has microstructure coexists with magnetite, ilmenite and pyrrhotite. We compared the two series for crystallization and re-equilibrium by ion substitution using the microstructure of the amphibole as 'time measure' during the differentitation process of acidic magma. While magnetites and ilmenites coexist with the core of the amphiboles, the oxygen fugacity of the San-yo belt magma was low until the later stage of magmatic differentiation where H2S from the Earth's crust mixed with it. In the subsolidus process, hydrothermal solutions circulated. On the other hand, the oxygen fugacity of the San-in belt magma began to rise in the early stage of magmatic differentiation. In the later stage, mafic magma was contaminated with SO2. The rims of amphiboles coexist with pyrrhotites in both of belts. Furthermore, the re-equilibrium of minerals underwent progressive oxidation and hydrothermal fluid circulated actively in the subsolidus process. Bingie Bingie Point at New South Wares (Eurobodalla National Park) is a peninsula about a meter around. The plutonic rocks were formed in the Devonian period and belong to the magnetite series. They are classified I-type granitoids such as those found in the inner zone of southwest Japan. They have only trace amounts of oxide minerals and pyrrhotite. The amphiboles of the granitoids have oscillatory zoned structures at pale green rims. The structures are formed by the fluid circulations of intruded granodiorite magma. The relic pyroxene is left in the core of amphibole. These minerals were crystallized under stable conditions and the microstructures were developed in the amphiboles under the subsolidus conditions. These researches contribute to clarifying magmatic differentiation and are the foundation of understanding the exchange of substances in magmatic activity.
NASA Astrophysics Data System (ADS)
Liu, Wen-Hao; Jiang, Man-Rong; Zhang, Xiao-Jun; Xia, Yan; Algeo, Thomas J.; Li, Huan
2018-06-01
The Meishan iron deposit contains 338 Mt of iron-ore reserves at 39% Fe and represents the largest magnetite-apatite deposit in the Ningwu Basin of eastern China. Controversy has long existed about whether this deposit had a hydrothermal or iron-oxide melt origin. Iron mineralization is genetically related to plutons that are composed of gabbro-diorite, which were emplaced at 130 ± 1 Ma. These rocks have SiO2 contents of 51.72-54.60 wt%, Na2O contents of 3.47-4.04 wt%, K2O contents of 2.02-2.69 wt%, and K2O/Na2O ratios of 0.51-0.73. These rocks are enriched in LILEs and LREEs and depleted in Nb, Ta, and Ti, which indicates that the magma originated through partial melting of an enriched lithospheric mantle source in a subduction environment. A pattern of decreasing initial Sr isotopic ratios and increasing εNd(t) values with time in Early Cretaceous magmatic rocks of the Ningwu Basin may indicate incorporation of increasing proportions of asthenospheric mantle material into the source magma, which is consistent with the processes of lithospheric thinning and asthenospheric upwelling in eastern China related to Mesozoic subduction of the Paleo-Pacific Plate. Two stages of magnetite are found in the gabbro-diorite: (1) early-crystallized magnetite as euhedral-subhedral crystals in larger clinopyroxene crystals, and (2) later-crystallized magnetite and accompanying ilmenite grains in the voids between plagioclase and clinopyroxene crystals. The formation of magnetite before clinopyroxene, combined with the results of Fe-Ti oxide geothermometry and analysis of magnetite V content, indicates that the oxygen fugacity of the source magma was greater than ΔFMQ +2.2 at an early stage (>640 °C) but decreased to ΔFMQ -2.66 as abundant magnetite crystallized at a later stage (∼489 °C). The early crystallization of magnetite at a high oxygen fugacity does not support a Fenner evolution trend for the primitive magma and diminishes the likelihood of liquid immiscibility, which could have generated an iron-rich melt, and is thus inconsistent with an iron-oxide melt origin for the Meishan iron deposit. The δ34S values of pyrite (6.6-15.1‰) and anhydrite (15.6-16.9‰) in the deposit and the occurrence of evaporites under the volcanic rocks likely indicate that the iron ores and alteration rocks of the Meishan deposit were formed by the circulation of fluids of evaporitic origin driven by heat from the hypabyssal gabbro-diorite intrusives. In the late magmatic stage, oxygen fugacity decreased to a reducing range, triggering the reduction of sulfate to reduced sulfur and leading to local gold and pyrite mineralization.
Analysis of Spacelab-III Reconstructed Wavefronts by Non-Holographic Methods
NASA Technical Reports Server (NTRS)
Vikram, Chandra S.; Witherow, William K.; Rose, M. Franklin (Technical Monitor)
2001-01-01
Holography has been used in several past space missions. One popular experimental mode deals with study of fluid refractive properties in the crystal growth cell. The perceived advantage of holography is that it stores and reconstructs wavefronts so that a complete information is available later on ground. That means the wavefront can be analyzed not only by traditional holographic interferometry but other means as well. We have successfully demonstrated two such means being described here. One is deflectometry using a Ronchi grating and the other confocal optical processing. These results, using holograms from Spacelab-III mission dealing with triglycine sulfate crystal growth clearly demonstrate that a single hardware (holography) can do the task of several fluid experimental systems. Finally, not experimentally demonstrated, the possibility of some other analysis modes like speckle techniques and video holography using the reconstructed wavefronts have been described. Since only traditional holographic interferometry has been used in the past leading to the argument that non-holographic interferometry hardware in space could do the job, the present study firmly establishes advantage of holography.
To the problem about the origin of lunar maria and continents (Moessbauer investigations)
NASA Technical Reports Server (NTRS)
Malysheva, T. V.
1977-01-01
A comparative study of Mossbauer spectra of regolith returned by the Luna 16 and Luna 20 spacecraft is presented. The Mossbauer spectra of the mare regolith differs significantly for all fractions from the spectra for the same fractions of continental regolith. The total quantity of iron is 1.85 times greater in the mare regolith. There is 2.4 times less olivine in the mare region than in the continental region. The pyroxene component of the mare regolith is less homogeneous in composition (contains more augite and glass) and is present in larger quantities. Ilmenite was found only in the mare regolith. In the continental region, the predominant titanium-containing phase is ulvospinel. The mare regolith contains more metallic iron, which is more finely dispersed and contains less nickel. Troilite is found in the maria region. Based on these differences, it is concluded that the formation of continental rocks occurred at an earlier stage of crystallization from the melt and at higher temperatures and higher partial pressures of oxygen. The mare basalts crystallized from a more reduced magma, apparently in a later process.
Rheological Properties of Quasi-2D Fluids in Microgravity
NASA Technical Reports Server (NTRS)
Trittel, Torsten; Stannarius, Ralf; Eremin, Alexey; Harth, Kirsten; Clark, Noel A.; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2016-01-01
Freely suspended smectic films of sub-micrometer thickness and lateral extensions of several millimeters are used to study thermally driven convection and diffusion in the film plane. The experiments were performed during a six minute microgravity phase of a TEXUS suborbital rocket flight (Texus 52, launched April 27, 2015). The project served as a preliminary test for a planned ISS Experiment with liquid crystal films (OASIS), and in addition it provided new experimental data on smectic films exposed to in-plane thermal gradients.We find an attraction of the smectic material towards the cold edge of the film in a temperature gradient, similar to a Soret effect. This process is reversed when this edge is heated up again. Thermal convection driven by two thermocontacts in the film is practically absent, even at temperature gradients up to 10 Kmm, thermally driven convection sets in when the hot post reaches the transition temperature to the nematic phase.An additional experiment was performed under microgravity conditions to test the stability of liquid crystal bridges in different smectic phases.
Ultraviolet Laser-induced ignition of RDX single crystal
Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao
2016-01-01
The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854
McShane, Colleen M; Choi, Kyoung-Shin
2009-02-25
Cu(2)O electrodes composed of dendritic crystals were produced electrochemically using a slightly acidic medium (pH 4.9) containing acetate buffer. The buffer played a key role for stabilizing dendritic branching growth as a pH drop during the synthesis prevents formation of morphologically unstable branches and promotes faceted growth. Dendritic branching growth enabled facile coverage of the substrate with Cu(2)O while avoiding growth of a thicker Cu(2)O layer and increasing surface areas. The resulting electrodes showed n-type behavior by generating anodic photocurrent without applying an external bias (zero-bias photocurrent under short-circuit condition) in an Ar-purged 0.02 M K(2)SO(4) solution. The zero-bias photocurrent of crystalline dendritic electrodes was significantly higher than that of the electrodes containing micrometer-size faceted crystals deposited without buffer. In order to enhance photocurrent further a strategy of improving charge-transport properties by increasing dendritic crystal domain size was investigated. Systematic changes in nucleation density and size of the dendritic Cu(2)O crystals were achieved by altering the deposition potential, Cu(2+) concentration, and acetate concentration. Increasing dendritic crystal size consistently resulted in the improvement of photocurrent regardless of the method used to regulate crystal size. The electrode composed of dendritic crystals with the lateral dimension of ca. 12000 microm(2) showed more than 20 times higher zero-bias photocurrent than that composed of dendritic crystals with the lateral dimension of ca. 100 microm(2). The n-type nature of the Cu(2)O electrodes prepared by this study were confirmed by linear sweep voltammetry with chopped light and capacitance measurements (i.e., Mott-Schottky plots). The flatband potential in a 0.2 M K(2)SO(4) solution (pH 6) was estimated to be -0.78 vs Ag/AgCl reference electrode. The IPCE measured without applying an external bias was approximately 1% for the visible region. With appropriate doping studies and surface treatment to improve charge transport and interfacial kinetics more efficient n-type Cu(2)O electrodes will be prepared for use in various photoelectrochemical and photovoltaic devices.
NASA Astrophysics Data System (ADS)
Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.
2015-07-01
Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.
Aberrated surface soliton formation in a nonlinear 1D and 2D photonic crystal
Lysak, Tatiana M.; Trykin, Evgenii M.
2018-01-01
We discuss a novel type of surface soliton—aberrated surface soliton—appearance in a nonlinear one dimensional photonic crystal and a possibility of this surface soliton formation in two dimensional photonic crystal. An aberrated surface soliton possesses a nonlinear distribution of the wavefront. We show that, in one dimensional photonic crystal, the surface soliton is formed at the photonic crystal boundary with the ambient medium. Essentially, that it occupies several layers at the photonic crystal boundary and penetrates into the ambient medium at a distance also equal to several layers, so that one can infer about light energy localization at the lateral surface of the photonic crystal. In the one dimensional case, the surface soliton is formed from an earlier formed soliton that falls along the photonic crystal layers at an angle which differs slightly from the normal to the photonic crystal face. In the two dimensional case, the soliton can appear if an incident Gaussian beam falls on the photonic crystal face. The influence of laser radiation parameters, optical properties of photonic crystal layers and ambient medium on the one dimensional surface soliton formation is investigated. We also discuss the influence of two dimensional photonic crystal configuration on light energy localization near the photonic crystal surface. It is important that aberrated surface solitons can be created at relatively low laser pulse intensity and for close values of alternating layers dielectric permittivity which allows their experimental observation. PMID:29558497
Iu, Lawrence P L; Fan, Michelle C Y; Lam, Wai-Ching; Wong, Ian Y H
2018-02-09
Cytomegalovirus (CMV) retinitis is an opportunistic infection that primarily affects immunocompromised individuals. Intravitreal ganciclovir injection monotherapy or in combination with systemic anti-CMV therapy are effective treatments for CMV retinitis. Crystallization of ganciclovir after intravitreal injection is extremely rare. Only two cases had been reported in literature. Crystallization in only one eye after bilateral injections had not been reported before. We hereby report a case of intraocular ganciclovir crystallization in one eye after bilateral intravitreal injections, and repeated crystallization in the same eye after repeated injections. A 79-year-old patient had bilateral cytomegalovirus retinitis and received bilateral intravitreal ganciclovir injections of 2.5 mg in 0.05 ml sterile water. Fundus examination after injection showed formation of needle-shaped, golden-yellow crystals in the vitreous of right eye but not in left eye. The crystals dissolved spontaneously. Repeated bilateral intravitreal ganciclovir injections 4 days later resulted in repeated crystallization of ganciclovir in right eye but not in left eye. The crystals dissolved spontaneously and completely after 5 minutes. Visual acuity remained unchanged and intraocular pressure was normal. Intraocular ganciclovir crystallization could occur after intravitreal injections. It is important to perform fundus examination after injection. The crystals may dissolve rapidly and vitrectomy may not be necessary. Our case suggested intraocular ganciclovir crystallization is an idiosyncratic phenomenon, subjects to distinctive intraocular environment which could be different between two eyes of the same patient. The susceptible intraocular environment could be persistent leading to repeated crystallization.
Pseudo-One-Dimensional Magnonic Crystals for High-Frequency Nanoscale Devices
NASA Astrophysics Data System (ADS)
Banerjee, Chandrima; Choudhury, Samiran; Sinha, Jaivardhan; Barman, Anjan
2017-07-01
The synthetic magnonic crystals (i.e., periodic composites consisting of different magnetic materials) form one fascinating class of emerging research field, which aims to command the process and flow of information by means of spin waves, such as in magnonic waveguides. One of the intriguing features of magnonic crystals is the presence and tunability of band gaps in the spin-wave spectrum, where the high attenuation of the frequency bands can be utilized for frequency-dependent control on the spin waves. However, to find a feasible way of band tuning in terms of a realistic integrated device is still a challenge. Here, we introduce an array of asymmetric saw-tooth-shaped width-modulated nanoscale ferromagnetic waveguides forming a pseudo-one-dimensional magnonic crystal. The frequency dispersion of collective modes measured by the Brillouin light-scattering technique is compared with the band diagram obtained by numerically solving the eigenvalue problem derived from the linearized Landau-Lifshitz magnetic torque equation. We find that the magnonic band-gap width, position, and the slope of dispersion curves are controllable by changing the angle between the spin-wave propagation channel and the magnetic field. The calculated profiles of the dynamic magnetization reveal that the corrugation at the lateral boundary of the waveguide effectively engineers the edge modes, which forms the basis of the interactive control in magnonic circuits. The results represent a prospective direction towards managing the internal field distribution as well as the dispersion properties, which find potential applications in dynamic spin-wave filters and magnonic waveguides in the gigahertz frequency range.
Fluorbritholite-(Y) and yttrialite-(Y) from silexites of the Keivy alkali granites, Kola Peninsula
NASA Astrophysics Data System (ADS)
Lyalina, L. M.; Zozulya, D. R.; Savchenko, Ye. E.; Tarasov, M. P.; Selivanova, E. A.; Tarasova, E.
2014-12-01
Investigation of the morphology, anatomy, and chemical composition of fluorbritholite-(Y) and yttrialite-(Y) from silexites of the Keivy alkali granites in Kola Peninsula has shown that these minerals are the main REE concentrators in this area and that their content reaches 10-15 vol %. Britholite and yttrialite are associated with zircon, aeschynite-(Y), chevkinite-(Ce), fergusonite-(Y), thorite, monazite-(Ce), xenotime-(Y) and bastnaesite-(Ce). Three morphological types of fluorbritholite-(Y) have been identified: (I) subhedral crystals and grains, (II) anhedral grains intergrown with yttrialite-(Y), and (III) poikilitic crystals and skeletal aggregates. These morphological types of fluorbritholite-(Y) are characterized by successive (I to III type) decreases in P content down to the pure silicate fluorbritholite-(Y). Crystals of the first type are heterogenous: the P content decreases and the HREE content increases from core to rim. The total REE content increases insignificantly from types I to II and drastically decreases in fluorbritholite-(Y) of type III. The successive prevalence of HREE over LREE indicates the hydrothermal conditions of mineral crystallization. The chemical composition of yttrialite-(Y) is distinguished by the relatively high Th content and depletion in Al. The compositional trend (from core to rim) in heterogeneous grains of yttrialite-(Y) testifies that their heterogeneity was caused by metasomatic alteration of the mineral. The interrelation of fluorbritholite-(Y) and yttrialite-(Y) indicate that fluorbritholite-(Y) of types II and III were formed later than yttrialite-(Y). Evidence for fluorbritholite-(Y) and yttrialite-(Y) formation suggests the significant role of hydrothermal processes in the genesis of silexites.
In Situ High Temperature High Pressure MAS NMR Study on the Crystallization of AlPO 4 -5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zhenchao; Xu, Suochang; Hu, Mary Y.
2016-01-28
A damped oscillating crystallization process of AlPO4-5 at the presence of small amount of water is demonstrated by in situ high temperature high pressure multinuclear MAS NMR. Crystalline AlPO4-5 is formed from an intermediate semicrystalline phase via continuous rearrangement of the local structure of amorphous precursor gel. Activated water catalyzes the rearrangement via repeatedly hydrolysis and condensation reaction. Strong interactions between organic template and inorganic species facilitate the ordered rearrangement. During the crystallization process, excess water, phosphate, and aluminums are expelled from the precursor. The oscillating crystallization reflects mass transportation between the solid and liquid phase during the crystallization process.more » This crystallization process is also applicable to AlPO4-5 crystallized in the presence of a relatively large amount of water.« less
Evidence from mixed hydrate nucleation for a funnel model of crystallization.
Hall, Kyle Wm; Carpendale, Sheelagh; Kusalik, Peter G
2016-10-25
The molecular-level details of crystallization remain unclear for many systems. Previous work has speculated on the phenomenological similarities between molecular crystallization and protein folding. Here we demonstrate that molecular crystallization can involve funnel-shaped potential energy landscapes through a detailed analysis of mixed gas hydrate nucleation, a prototypical multicomponent crystallization process. Through this, we contribute both: (i) a powerful conceptual framework for exploring and rationalizing molecular crystallization, and (ii) an explanation of phenomenological similarities between protein folding and crystallization. Such funnel-shaped potential energy landscapes may be typical of broad classes of molecular ordering processes, and can provide a new perspective for both studying and understanding these processes.
Evidence from mixed hydrate nucleation for a funnel model of crystallization
Hall, Kyle Wm.; Carpendale, Sheelagh; Kusalik, Peter G.
2016-01-01
The molecular-level details of crystallization remain unclear for many systems. Previous work has speculated on the phenomenological similarities between molecular crystallization and protein folding. Here we demonstrate that molecular crystallization can involve funnel-shaped potential energy landscapes through a detailed analysis of mixed gas hydrate nucleation, a prototypical multicomponent crystallization process. Through this, we contribute both: (i) a powerful conceptual framework for exploring and rationalizing molecular crystallization, and (ii) an explanation of phenomenological similarities between protein folding and crystallization. Such funnel-shaped potential energy landscapes may be typical of broad classes of molecular ordering processes, and can provide a new perspective for both studying and understanding these processes. PMID:27790987
NASA Astrophysics Data System (ADS)
Zhao, Yanlin; Yao, Jun; Wang, Mi
2016-07-01
On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.
Kattner, W.T.
1959-08-11
A process is described for recovering tin from bronze comprising melting the bronze; slowly cooling the melted metal to from 280 to 240 deg C whereby eta- phase bronze crystallizes; separating the eta-bronze crystals from the liquid metal by mechanical means; melting the separated crystals; slowly cooling the melted eta-crystals to a temperature from 520 to 420 deg C whereby crystals of epsilonbronze precipitate; removing said epsilon-crystals from the remaining molten metal; and reintroducing the remaining molten metal into the process for eta-crystallization.
NASA Astrophysics Data System (ADS)
Maas, C.; Moeller, A.; Hansen, U.
2013-12-01
About 4.5 billion years ago the earth was covered by a heavily convecting and rotating global magma ocean which was caused by an impact of a mars-sized impactor in a later stage of the earth's accretion. After the separation of metal and silicate (see A. Möller, U. Hansen (2013)) and the formation of the earth's core it began to crystallize. Small silicate crystals emerge and grow by Ostwald Ripening when the fluid is supersaturated. This process results in shrinking of small crystals and growing of large crystals on behalf of the smaller ones. This leads to an altering of the crystal settling time. One question which is still under great debate is whether fractional or equilibrium crystallization occurred in the magma ocean. Fractional crystallization means that different mineral fractions settle one after the other which would lead to a strongly differentiated mantle after solidification of the magma ocean. In contrast to that equilibrium crystallization would result in a well mixed mantle. Whether fractional or equilibrium crystallization occurred is for example important for the starting model of plate tectonics or the understanding of the mantle development until today. To study the change of crystal radius in a convecting and rotating magma ocean we employed a 3D numerical model. Due to the low viscosity and strong rotation the influence of rotation on the early magma Ocean cannot be neglected. In the model the crystals are able to influence each other and the fluid flow. They are able to grow, shrink, vanish and form and gravitational, Coriolis and drag forces due to the fluid act on them. In our present work we study the crystal settling depending on different rotation rates and rotation axes with two configurations. For the polar setting the rotation axis is parallel, at the equator it is perpendicular to gravity. Low rotation at the pole leads to a large fraction of suspended crystals. With increasing rotation the crystals settle and form a thick layer at the bottom of the magma ocean. At the equator we find three regimes (see A. Möller, U. Hansen (2013)) depending on the rotation strength. At low rotation a high fraction of silicate crystals settle at the bottom. At higher rotation the crystals form a thick layer in the bottom 1/3 of box. At high rotation all crystals are suspended and we observe a ribbon structure in the middle of the box. With a second model we investigate growing and shrinking of crystals by Ostwald Ripening and include formation and melting. In general we observe the same behaviour and regimes as described above, however due to Ostwald Ripening the evolution of crystal radius with time depends on the strength of rotation and on the orientation of the rotation axis. Very first results show that at the pole the growth of the silicate crystals is limited. The resulting small radius leads to a slow crystal settling. At the equator the crystals are able to grow larger than at the pole and therefore settle faster. This could lead to an asymmetrical crystallization of the magma ocean. In an extreme case due to the different settling times this could lead to a well mixed mantle at the pole whereas at the equator the mantle could be strongly differentiated after the solidification of the magma ocean.
Non-isothermal crystallization kinetics of eucalyptus lignosulfonate/polyvinyl alcohol composite.
Ye, De-Zhan; Zhang, Xi; Gu, Shaojin; Zhou, Yingshan; Xu, Weilin
2017-04-01
The nonisothermal crystallinization kinetic was performed on Polyvinyl alcohol (PVA) mixed with eucalyptus lignosulfonate calcuim (HLS) as the biobased thermal stabilizer, which was systematically analyzed based on Jeziorny model, Ozawa equation and the Mo method. The results indicated that the entire crystallization process took place through two main stages involving the primary and secondary crystallization processes. The Mo method described nonisothermal crystallization behavior well. Based on the results of the half time for completing crystallization, k c value in Jeziorny model, F(T) value in Mo method and crystallization activation energy, it was concluded that low loading of HLS accelerated PVA crystallization process, however, the growth rate of PVA crystallization was impeded at high content of HLS. Copyright © 2017 Elsevier B.V. All rights reserved.
Band-like temperature dependence of mobility in a solution-processed organic semiconductor
NASA Astrophysics Data System (ADS)
Sakanoue, Tomo; Sirringhaus, Henning
2010-09-01
The mobility μ of solution-processed organic semiconductorshas improved markedly to room-temperature values of 1-5cm2V-1s-1. In spite of their growing technological importance, the fundamental open question remains whether charges are localized onto individual molecules or exhibit extended-state band conduction like those in inorganic semiconductors. The high bulk mobility of 100cm2V-1s-1 at 10K of some molecular single crystals provides clear evidence that extended-state conduction is possible in van-der-Waals-bonded solids at low temperatures. However, the nature of conduction at room temperature with mobilities close to the Ioffe-Regel limit remains controversial. Here we investigate the origin of an apparent `band-like', negative temperature coefficient of the mobility (dμ/dT<0) in spin-coated films of 6,13-bis(triisopropylsilylethynyl)-pentacene. We use optical spectroscopy of gate-induced charge carriers to show that, at low temperature and small lateral electric field, charges become localized onto individual molecules in shallow trap states, but that a moderate lateral electric field is able to detrap them resulting in highly nonlinear, low-temperature transport. The negative temperature coefficient of the mobility at high fields is not due to extended-state conduction but to localized transport limited by thermal lattice fluctuations.
Band-like temperature dependence of mobility in a solution-processed organic semiconductor.
Sakanoue, Tomo; Sirringhaus, Henning
2010-09-01
The mobility mu of solution-processed organic semiconductors has improved markedly to room-temperature values of 1-5 cm(2) V(-1) s(-1). In spite of their growing technological importance, the fundamental open question remains whether charges are localized onto individual molecules or exhibit extended-state band conduction like those in inorganic semiconductors. The high bulk mobility of 100 cm(2) V(-1) s(-1) at 10 K of some molecular single crystals provides clear evidence that extended-state conduction is possible in van-der-Waals-bonded solids at low temperatures. However, the nature of conduction at room temperature with mobilities close to the Ioffe-Regel limit remains controversial. Here we investigate the origin of an apparent 'band-like', negative temperature coefficient of the mobility (dmu/dT<0) in spin-coated films of 6,13-bis(triisopropylsilylethynyl)-pentacene. We use optical spectroscopy of gate-induced charge carriers to show that, at low temperature and small lateral electric field, charges become localized onto individual molecules in shallow trap states, but that a moderate lateral electric field is able to detrap them resulting in highly nonlinear, low-temperature transport. The negative temperature coefficient of the mobility at high fields is not due to extended-state conduction but to localized transport limited by thermal lattice fluctuations.
NASA Astrophysics Data System (ADS)
Frawley, Keara G.; Bakst, Ian; Sypek, John T.; Vijayan, Sriram; Weinberger, Christopher R.; Canfield, Paul C.; Aindow, Mark; Lee, Seok-Woo
2018-04-01
The plastic deformation and fracture mechanisms in single-crystalline CaFe2As2 has been studied using nanoindentation and density functional theory simulations. CaFe2As2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe2As2 has an atomic-scale layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe2As2 layers.
Frawley, Keara G.; Bakst, Ian; Sypek, John T.; ...
2018-04-10
In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frawley, Keara G.; Bakst, Ian; Sypek, John T.
In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less
NASA Astrophysics Data System (ADS)
Doukhan, N.; Doukhan, J. C.; Poirier, J. P.
1991-06-01
A crystal of clinopyroxene from the coarse-grained refractory inclusion Egg 6 of the Allende meteorite has been studied in detail by transmission electron microscopy. The pyroxene crystal contains euhedral, dislocation-free inclusions of pure spinel MgAl2O4, without any topotactic relation to the host. Extensive dislocation walls at equilibrium, characteristic of high-temperature anneal, are present in the crystal. Alteration products are occasionaly observed at the spinel-pyroxene interface close to regions where dislocation walls decorated with bubbles (or voids) are present. The bubbles, often in the shape of tubes along the dislocation lines, are thought to be due to the precipitation of a fluid migrating along the dislocations. The observations are compatible with crystallization of the refractory inclusions from the melt and with the existence of a later stage of metasomatism.
Varn, D P; Crutchfield, J P
2016-03-13
Erwin Schrödinger famously and presciently ascribed the vehicle transmitting the hereditary information underlying life to an 'aperiodic crystal'. We compare and contrast this, only later discovered to be stored in the linear biomolecule DNA, with the information-bearing, layered quasi-one-dimensional materials investigated by the emerging field of chaotic crystallography. Despite differences in functionality, the same information measures capture structure and novelty in both, suggesting an intimate coherence between the information character of biotic and abiotic matter-a broadly applicable physics of information. We review layered solids and consider three examples of how information- and computation-theoretic techniques are being applied to understand their structure. In particular, (i) we review recent efforts to apply new kinds of information measures to quantify disordered crystals; (ii) we discuss the structure of ice I in information-theoretic terms; and (iii) we recount recent investigations into the structure of tris(bicyclo[2.1.1]hexeno)benzene, showing how an information-theoretic analysis yields additional insight into its structure. We then illustrate a new Second Law of Thermodynamics that describes information processing in active low-dimensional materials, reviewing Maxwell's Demon and a new class of molecular devices that act as information catalysts. Lastly, we conclude by speculating on how these ideas from informational materials science may impact biology. © 2016 The Author(s).
Khan, Ajmal; Ballato, Arthur
2002-07-01
Piezoelectric coupling factors for langatate (La3Ga5.5Ta0.5O14) single-crystals driven by lateral-field-excitation have been calculated using the extended Christoffel-Bechmann method. Calculations were made using published materials constants. The results are presented in terms of the lateral piezoelectric coupling factor as functions of in-plane (azimuthal) rotation angle for the three simple thickness vibration modes of some non-rotated, singly-rotated, and doubly-rotated orientations. It is shown that lateral-field-excitation offers the potential to eliminate unwanted vibration modes and to achieve considerably greater piezoelectric coupling versus thickness-field-excitation for the rotated cuts considered and for a doubly-rotated cut that is of potential technological interest.
Thow, Megan E; Summers, Mathew J; Saunders, Nichole L; Summers, Jeffery J; Ritchie, Karen; Vickers, James C
2018-01-01
The strong link between early-life education and subsequent reduced risk of dementia suggests that education in later life could enhance cognitive function and may reduce age-related cognitive decline and protect against dementia. Episodic memory, working memory, executive function, and language processing performances were assessed annually over 4 years in 359 healthy older adults who attended university for a minimum of 12 months (intervention) and were compared against 100 healthy adult controls. Multiple group latent growth curve modeling revealed a significant improvement in language processing capacity over time in the intervention group. No changes were detected for episodic memory, working memory, or executive function. These results suggest that complex mental stimulation resulting from late-life further education results in improved crystallized knowledge but no changes to fluid cognitive functions.
Evidences of Multiple Magma Injections in Quaternary Balerang and Rajabasa Volcanoes, Indonesia
NASA Astrophysics Data System (ADS)
Hasibuan, R. F.; Ohba, T.; Abdurrachman, M.
2016-12-01
Quaternary Balerang and Rajabasa volcanoes are situated along the nearly north-south lineament with a most explosive Krakatau volcanic complex in the south and effusive Sukadana basalt plateau in the north. Some studies have elucidated that Krakatau volcano has multiple magma storage regions beneath together with evidences of magma mixing process. By considering these circumstances, it is necessary to know lateral variations of magmas and to characterize volcanic rocks from Rajabasa volcanic complex which is located between these distinct magmatic systems, in terms of magmatic processes and evolution. Methodologies we used are X-ray fluorescence to determine the whole rock chemistry, K-Ar isotope dating to determine the lifespan of the volcano, as well as EPMA analysis to obtain the chemical composition of minerals. The rock chemistry or TAS plot shows a linear trend, ranging from basaltic (51 wt.%) to rhyolitic (75 wt.%), indicating a chemical heterogeneity of magma. When SiO2 contents are correlated with the relative ages, we found a broad tendency that SiO2 contents progressively decrease with age. The Rajabasa volcano lifespan is known formed at 0.31 Ma while one of the youngest lava is identified erupted at 0.12 Ma. Some plagioclase crystals exhibit disequilibrium textures, like highly sieved core and clear rim regions, also overgrowth rim on the plagioclase and pyroxene crystals whose composition more primitive than the core's composition, indicating magmatic recharge events. Reverse zoning and resorption textures associated with compositional step zoning or progressive zoning are quite common as well in clinopyroxene and plagioclase crystals. By considering these evidences, we conclude that injection of a hotter basaltic magma into colder and more felsic magma occurred beneath the volcanoes.
Interactions between solidification and compositional convection in mushy layers
NASA Technical Reports Server (NTRS)
Worster, M. Grae
1994-01-01
Mushy layers are ubiquitous during the solidification of alloys. They are regions of mixed phase wherein solid crystals are bathed in the melt from which they grew. The matrix of crystals forms a porous medium through which the melt can flow, driven either by external forces or by its own buoyancy in a gravitational field. Buoyancy-driven convection of the melt depends both on temperature gradients, which are necessary for solidification, and on compositional gradients, which are generated as certain components of the alloy are preferentially incorporated in the solid phase and the remaining components are expelled into the melt. In fully liquid regions, the combined action of temperature and concentration on the density of the liquid can cause various forms of double-diffusive convection. However, in the interior of mushy regions the temperature and concentration are thermodynamically coupled so only single-diffusive convection can occur. Typically, the effect of composition on the buoyancy of the melt is much greater than the effect of temperature, and thus convection in mushy layers in driven primarily by the computational gradients within them. The rising interstitial liquid is relatively dilute, having come from colder regions of the mushy layer, where the liquidus concentration is lower, and can dissolve the crystal matrix through which it flows. This is the fundamental process by which chimneys are formed. It is a nonlinear process that requires the convective velocities to be sufficiently large, so fully fledged chimneys (narrow channels) might be avoided by means that weaken the flow. Better still would be to prevent convection altogether, since even weak convection will cause lateral, compositional inhomogeneities in castings. This report outlines three studies that examine the onset of convection within mushy layers.
NASA Astrophysics Data System (ADS)
Walter, Nathan; Zhang, Yang
Nucleation and crystal growth are understood to be activated processes involving the crossing of free-energy barriers. Attempts to capture the entire crystallization process over long timescales with molecular dynamic simulations have met major obstacles because of molecular dynamics' temporal constraints. Herein, we circumvent this temporal limitation by using a brutal-force, metadynamics-like, adaptive basin-climbing algorithm and directly sample the free-energy landscape of a model liquid Argon. The algorithm biases the system to evolve from an amorphous liquid like structure towards an FCC crystal through inherent structure, and then traces back the energy barriers. Consequently, the sampled timescale is macroscopically long. We observe that the formation of a crystal involves two processes, each with a unique temperature-dependent energy barrier. One barrier corresponds to the crystal nucleus formation; the other barrier corresponds to the crystal growth. We find the two processes dominate in different temperature regimes. Compared to other computation techniques, our method requires no assumptions about the shape or chemical potential of the critical crystal nucleus. The success of this method is encouraging for studying the crystallization of more complex
The effect factors of potassium dihydrogen phosphate crystallization in aqueous solution
NASA Astrophysics Data System (ADS)
Zhou, Cun; Sun, Fei; Liu, Xuzhao
2017-01-01
The effects of cooling rate and pH on the potassium dihydrogen phosphate crystallization process were studied by means of batch crystallization process. The experiment shows that with the increase of cooling rate, the metastable zone width increase and the induction period decrease. When the pH is 3.0, the metastable zone width and induction period are both the minimum, while the crystallization rate is the highest. The crystallization products were characterized by scanning election microscope. Potassium Dihydrogen Phosphate (KDP) is a kind of excellent nonlinear optical materials, and belongs to tetragonal system, and ideal shape is aggregate of tetragonal prism and tetragonal dipyramid, the (100) cone is alternating accumulation by double positive ions and double negative ions [1-4]. The crystals of aqueous solution method to grow have large electro-optical nonlinear coefficient and high loser-damaged threshold, and it is the only nonlinear optical crystal could be used in inertial confinement fusion (ICF), KDP crystals are the ideal system to study the native defects of complex oxide insulating material [5-7]. With the development of photovoltaic technology, KDP crystals growth and performance have become a research focus worldwide [8, 9]. The merits of the crystallization process directly affect the quality of KDP products, so the study of the effect of crystallization conditions has an important significance on industrial production. This paper studied the change rule of metastable zone width, induction period, crystallization rate and particle size distribution in crystal process, and discussed the technical condition of KDP crystallization.
NASA Astrophysics Data System (ADS)
Gualda, G. A. R.; Ghiorso, M. S.; Hurst, A. A.; Allen, M. C.; Bradshaw, R. W.
2017-12-01
For more than 40 years, the Bishop Tuff has been the archetypical example of a singular, zoned magma body that fed a supereruption. Early-erupted material is pyroxene-free and crystal poor (<20 wt. %), presumably erupted from the upper parts of the magma body; late-erupted material is orthopyroxene and clinopyroxene-bearing, commonly more crystal rich (up to 30 wt. % crystals), and presumably tapped magma from the lower portions of the magma body. Fe-Ti oxide compositions suggest higher crystallization temperatures for late-erupted magmas (as high as 820 °C) than for early-erupted magmas (as low as 700 °C). Pressures and temperatures derived from major element compositions of glass inclusions led Gualda & Ghiorso (2013, CMP) to suggest an alternative model of lateral juxtaposition of two main magma bodies - each one feeding early-erupted and late-erupted units. Chamberlain et al. (2015, JPet) and Evans et al. (2016, AmMin) recently disputed this interpretation. We present a large dataset of matrix glass compositions for 161 pumice clasts that span the stratigraphy of the deposit. We calculate crystallization pressures based on major-element glass compositions using rhyolite-MELTS geobarometry, and crystallization temperatures based on Zr in glass using zircon saturation geothermometry. We apply the same methods to 1538 major-element and 615 trace-element analyses from Chamberlain et al. The results overwhelmingly demonstrate that there is no difference in crystallization temperature or pressure between early and late-erupted magmas. Crystallization pressures and temperatures are unimodal, with modes of 150 MPa and 730 °C (calibration of Watson & Harrison). Our results strongly support lateral juxtaposition of two main magma bodies. Smaller units recognized by Chamberlain et al. crystallized at the same pressures as the main bodies - this suggests the coexistence of larger and smaller magma bodies at the time of the Bishop Tuff supereruption. We compare our findings for the Bishop Tuff with results for very large and supereruptions elsewhere in the world. We argue that supereruptions typically mobilize a complex patchwork of magma bodies that reside within specific levels of the crust. They reveal moments of high-melt productivity in the crust, unlike what we observe in the Earth today.
The Age of the intra-Danubian Suture (Southern Carpathians, Romania)
NASA Astrophysics Data System (ADS)
Balica, C.; Hann, H. P.; Chen, F.; Balintoni, I. C.; Zaharia, L.
2007-12-01
The Southern Carpathians, as an Alpine chain are formed of two domains, namely the Getic Domain (GD) and the Danubian Domain (DD). The basement of DD is represented by two terranes, named Dragsan and Lainici- Paius sutured through Tisovita-Iuti ophiolitic complex. The two terranes were invaded by large granitic plutons, some of them being dated as Late Proterozoic by U/Pb method. Yet, along the inferred suture there are four granitic bodies whose ages have been only assumed by their geological relations. From North to South the four bodies sampled for LA-ICP-MS zircon U/Pb dating are: Muntele Mic, Sfardinu, Cherbelezu and Ogradena. The previously CL imaged zircon crystals were ablated at the China's University of Geosciences facilities in Wuhan. The zircons from all samples showed quite complex structures, with many inherited cores or affected by lead loss processes. In order to get a mean age for every pluton, we used the weighted average plots by projecting the 206Pb/238U apparent ages. The crystallization age of the Poiana Marului pluton is around 326.7±7 Ma (MSWD 1.6). A set of sixteen apparent ages ranging between 400 to 648 Ma together with other tree points indicating 897, 1353 and 1693 Ma, represent inheritances. There was no observable lead loss process in this data set. The Sfardinu granite crystallized at 310±7.9 Ma (MSWD 4.8). The inheritances found in this sample are at 427 and 723 Ma, but an important lead loss process occurred later, as indicated by ten apparent ages between 240-292 Ma. Cherbelezu granite gave a crystallization mean age of 326.9±4.9 Ma (MSWD 1.9). A single inherited core appears at 502 Ma, yet eight apparent ages ranging between 239-295 Ma signalize again an important lead loss process. Other two ages at 176 and 193 Ma confirm the presence of this process. The Ogradena pluton zircons display two possible crystallization ages for the outer zones of zircon grains, at 356.6±7.8 Ma (twelve apparent ages, MSWD 12) and 314.1±7.8 Ma (nine apparent ages, MSWD 13) respectively. It is difficult to explain this situation, and we suppose the second figure as the probable crystallization age. Inheritances are represented by a number of 37 206Pb/238U apparent ages scattered between 400 and 612 Ma, only one apparent age of 265 Ma possibly proving the presence of lead loss. The geochemical parameters ASI, Fe-number and MALI calculated from the major oxides analyses showed that all four plutons are metaluminous and magnezian. Both Cherbelezu and Ogradena have a calcalkaline character near to alkalicalcic while Muntele Mic and Sfardinu are alkalicalcic. Geochemically, all four plutons are closed to Cordilleran type, main portion or a little inboard of it. Out of these data several conclusions can be drawn. The age of the intra-Danubian suture is late Visean to Bashkirian or late Variscan. Muntele Mic and Ogradena granites exhibit abundant Cadomian inheritances, while Cherbelezu and Sfardinu plutons seem affected by lead loss processes due to an important thermotectonic event happened during 250 to 290 Ma interval. The emplacement of the four plutons probably reflects a subductional process. Finally, the inheritances suggest a Gondwanan source for the anatectic material.
Melting processes of oligomeric α and β isotactic polypropylene crystals at ultrafast heating rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaojing; He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn; Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn
The melting behaviors of α (stable) and β (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of α- and β-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for α-more » and β-iPP are significantly different. The apparent melting points of α- and β-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of α-iPP crystal is always higher than that of β-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect α- and β-iPP crystals are finally predicted and it shows a good agreement with experimental result.« less
Zang, Yuguo; Kammerer, Bernd; Eisenkolb, Maike; Lohr, Katrin; Kiefer, Hans
2011-01-01
Crystallization conditions of an intact monoclonal IgG4 (immunoglobulin G, subclass 4) antibody were established in vapor diffusion mode by sparse matrix screening and subsequent optimization. The procedure was transferred to microbatch conditions and a phase diagram was built showing surprisingly low solubility of the antibody at equilibrium. With up-scaling to process scale in mind, purification efficiency of the crystallization step was investigated. Added model protein contaminants were excluded from the crystals to more than 95%. No measurable loss of Fc-binding activity was observed in the crystallized and redissolved antibody. Conditions could be adapted to crystallize the antibody directly from concentrated and diafiltrated cell culture supernatant, showing purification efficiency similar to that of Protein A chromatography. We conclude that crystallization has the potential to be included in downstream processing as a low-cost purification or formulation step. PMID:21966480
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanek, Kimberly A.; Patterson-West, Jennifer; Randolph, Peter S.
The host factor Hfq, as the bacterial branch of the Sm family, is an RNA-binding protein involved in the post-transcriptional regulation of mRNA expression and turnover. Hfq facilitates pairing between small regulatory RNAs (sRNAs) and their corresponding mRNA targets by binding both RNAs and bringing them into close proximity. Hfq homologs self-assemble into homo-hexameric rings with at least two distinct surfaces that bind RNA. Recently, another binding site, dubbed the `lateral rim', has been implicated in sRNA·mRNA annealing; the RNA-binding properties of this site appear to be rather subtle, and its degree of evolutionary conservation is unknown. An Hfq homologmore » has been identified in the phylogenetically deep-branching thermophileAquifex aeolicus(Aae), but little is known about the structure and function of Hfq from basal bacterial lineages such as the Aquificae. Therefore,AaeHfq was cloned, overexpressed, purified, crystallized and biochemically characterized. Structures ofAaeHfq were determined in space groupsP1 andP6, both to 1.5 Å resolution, and nanomolar-scale binding affinities for uridine- and adenosine-rich RNAs were discovered. Co-crystallization with U 6RNA reveals that the outer rim of theAaeHfq hexamer features a well defined binding pocket that is selective for uracil. ThisAaeHfq structure, combined with biochemical and biophysical characterization of the homolog, reveals deep evolutionary conservation of the lateral RNA-binding mode, and lays a foundation for further studies of Hfq-associated RNA biology in ancient bacterial phyla.« less
The crystallization of tough thermoplastic resins in the presence of carbon fibers
NASA Technical Reports Server (NTRS)
Theil, Michael H.
1988-01-01
The presence of carbon fibers increased the crystallization rates of both PEEK and PPS thermoplastic polymers. The effect was most pronounced at higher crystallization temperatures. Isothermal crystallization rates were analyzed by applying classical phenomenological nucleation theory. Unusually high values of the so-called Avrami exponent were found for neat PEEK. Isothermal crystallization of PEEK and PPS polymers produced crystalline samples having a wide variety of melting temperatures. The melting as observed by differential scanning calorimetry occurred as dual endotherms which were called primary (higher temperature) and secondary melting peaks. Each primary peak accounted for most of the crystallinity present. The secondary peaks represented the melting of crystallites formed later than those attributable to the primary endotherms. The presence of carbon fibers increased the thermal stability of both PEEK and PPS crystallites as manifested by higher temperatures for the primary melting peaks. This may be attributable to increased crystallite size, greater crystallite perfection, and/or favorable modification of the crystallite interface. Over the range studied, crystallization temperature strongly influenced the positions of the secondary peaks but not the primary peaks.
Multigigahertz range-Doppler correlative processing in crystals
NASA Astrophysics Data System (ADS)
Harris, Todd L.; Babbitt, Wm. R.; Merkel, Kristian D.; Mohan, R. Krishna; Cole, Zachary; Olson, Andy
2004-06-01
Spectral-spatial holographic crystals have the unique ability to resolve fine spectral features (down to kilohertz) in an optical waveform over a broad bandwidth (over 10 gigahertz). This ability allows these crystals to record the spectral interference between spread spectrum waveforms that are temporally separated by up to several microseconds. Such crystals can be used for performing radar range-Doppler processing with fine temporal resolution. An added feature of these crystals is the long upper state lifetime of the absorbing rare earth ions, which allows the coherent integration of multiple recorded spectra, yielding integration gain and significant processing gain enhancement for selected code sets, as well as high resolution Doppler processing. Parallel processing of over 10,000 beams could be achieved with a crystal the size of a sugar cube. Spectral-spatial holographic processing and coherent integration of up to 2.5 Gigabit per second coded waveforms and of lengths up to 2047 bits has previously been reported. In this paper, we present the first demonstration of Doppler processing with these crystals. Doppler resolution down to a few hundred Hz for broadband radar signals can be achieved. The processing can be performed directly on signals modulated onto IF carriers (up to several gigahertz) without having to mix the signals down to baseband and without having to employ broadband analog to digital conversion.
Development of Crystallizer for Advanced Aqueous Reprocessing Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadahiro Washiya; Atsuhiro Shibata; Toshiaki Kikuchi
2006-07-01
Crystallization is one of the remarkable technologies for future fuel reprocessing process that has safety and economical advantages. Japan Atomic Energy Agency (JAEA) (former Japan Nuclear Cycle Development Institute), Mitsubishi Material Corporation and Saitama University have been developing the crystallization process. In previous study, we carried out experimental studies with uranium, MOX and spent fuel conditions, and flowsheet analysis was considered. In association with these studies, an innovative continuous crystallizer and its system was developed to ensure high process performance. From the design study, an annular type continuous crystallizer was selected as the most promising design, and performance was confirmedmore » by small-scale test and engineering scale demonstration at uranium crystallization conditions. In this paper, the design study and the demonstration test results are described. (authors)« less
The influence of bacteria on struvite crystal habit and its importance in urinary stone formation
NASA Astrophysics Data System (ADS)
Clapham, L.; McLean, R. J. C.; Nickel, J. C.; Downey, J.; Costerton, J. W.
1990-07-01
Infection-induced urinary stones form as a result of a urinary tract infection by urease-producing bacteria. These stones are not totally crystalline in nature but rather consist of an agglomeration of bacteria, organic matrix, and crystal of struvite (MgNH 4PO 4· 6H 2O). Crystal formation is related to the ability of the bacteria to effect an increase in the urine pH. Another equally important bacterial role lies in their formation of a 'biofilm' which later becomes the organic matrix constituent of the stone. Results of the present in vitro study indicate that crystals are formed more readily if produced within the bacterial biofilm than in the surrounding urine. It is proposed that supersaturation, due in part to a bacterial-induced pH increase and in part to the metal binding tendency of the biofilm, leads to crystal formation via a gel growth mechanism within the biofilm itself. In time further bacterial cell division, microcolony.
Gur, Dvir; Palmer, Benjamin A; Leshem, Ben; Oron, Dan; Fratzl, Peter; Weiner, Steve; Addadi, Lia
2015-10-12
The fresh water fish neon tetra has the ability to change the structural color of its lateral stripe in response to a change in the light conditions, from blue-green in the light-adapted state to indigo in the dark-adapted state. The colors are produced by constructive interference of light reflected from stacks of intracellular guanine crystals, forming tunable photonic crystal arrays. We have used micro X-ray diffraction to track in time distinct diffraction spots corresponding to individual crystal arrays within a single cell during the color change. We demonstrate that reversible variations in crystal tilt within individual arrays are responsible for the light-induced color variations. These results settle a long-standing debate between the two proposed models, the "Venetian blinds" model and the "accordion" model. The insight gained from this biogenic light-induced photonic tunable system may provide inspiration for the design of artificial optical tunable systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crystallization kinetics of cocoa butter in the presence of sorbitan esters.
Sonwai, Sopark; Podchong, Pawitchaya; Rousseau, Dérick
2017-01-01
Cocoa butter crystallization in the presence of sorbitan mono- and triesters or canola oil was investigated. Solid-state surfactant esters accelerated early-stage cocoa butter solidification while suppressing later growth. Sorbitan tristearate showed the strongest effect, followed by sorbitan monostearate and sorbitan monopalmitate. Liquid-state surfactants suppressed cocoa butter crystallization at all time points, with sorbitan trioleate showing a stronger effect than sorbitan monooleate, which behaved in a similar fashion to canola oil. Via DSC, the palmitic and stearic-based surfactants only associated with cocoa butter's high-melting fraction, with the oleic acid-based surfactants and canola oil showing little influence. All sorbitan esters had little effect on polymorphism, whereas canola oil accelerated the form II-to-III-to-IV transition. The palmitic and stearic-based surfactants greatly reduced cocoa butter crystal size whereas the oleic acid-based surfactants and canola showed no notable effect. Overall, sorbitan esters impacted cocoa butter crystallization kinetics, though this depended on surfactant structure and concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spectral investigations of amino acid picrates
NASA Astrophysics Data System (ADS)
Briget Mary, M.; Sasirekha, V.; Ramakrishnan, V.
2006-10-01
FTIR and laser Raman spectra of β-alanine β-alaninium picrate and DL-phenylalanine DL-phenylalaninium picrate crystals of space group P1¯(C) have been me in the 4000-50 cm -1 range, at room temperature. The former crystal consists of β-alanine β-alaninium and the later DL-phenylalanine DL-phenylalaninium as cations. The presence of both carbonyl (C dbnd O) and carboxylate COO - groups in these crystals is the evidence for the existence of the zwitterion and the protonated forms. Factor group analysis has been made and the numbers of vibrational modes have been calculated. The tentative assignments of the observed bands are given. Fermi resonance has also been observed in one of the crystal β-alanine β-alaninium picrate. The picrate group forms the anion in both crystals and the characteristic bands ν asNO 2, ν sNO 2, and ν phenC-O stretching are observed in the spectra. These suggest that the picrate ion is unaffected by the presence of the cations.
Spectral investigations of amino acid picrates.
Briget Mary, M; Sasirekha, V; Ramakrishnan, V
2006-10-01
FTIR and laser Raman spectra of beta-alanine beta-alaninium picrate and dl-phenylalanine dl-phenylalaninium picrate crystals of space group P1 (C(i)) have been me in the 4000-50 cm(-1) range, at room temperature. The former crystal consists of beta-alanine beta-alaninium and the later dl-phenylalanine dl-phenylalaninium as cations. The presence of both carbonyl (CO) and carboxylate COO(-) groups in these crystals is the evidence for the existence of the zwitterion and the protonated forms. Factor group analysis has been made and the numbers of vibrational modes have been calculated. The tentative assignments of the observed bands are given. Fermi resonance has also been observed in one of the crystal beta-alanine beta-alaninium picrate. The picrate group forms the anion in both crystals and the characteristic bands nu(as)NO(2), nu(s)NO(2), and nu(phen)C-O stretching are observed in the spectra. These suggest that the picrate ion is unaffected by the presence of the cations.
Ueda, Keisuke; Higashi, Kenjirou; Kataoka, Makoto; Yamashita, Shinji; Yamamoto, Keiji; Moribe, Kunikazu
2014-10-01
The effects of drug-crystallization inhibitor in bile acid/lipid micelles solution on drug permeation was evaluated during the drug crystallization process. Hydroxypropyl methylcellulose acetate succinate (HPMC-AS) was used as a drug-crystallization inhibitor, which efficiently suppressed dexamethasone (DEX) crystallization in a gastrointestinal fluid model containing sodium taurocholate (NaTC) and egg-phosphatidylcholine (egg-PC). Changes of molecular state of supersaturated DEX during the DEX crystallization process was monitored in real time using proton nuclear magnetic resonance (1H NMR). It revealed that DEX distribution to bulk water and micellar phases formed by NaTC and egg-PC was not changed during the DEX crystallization process even in the presence of HPMC-AS. DEX permeation during DEX crystallization was evaluated using dissolution/permeability system. The combination of crystallization inhibition by HPMC-AS and micellar encapsulation by NaTC and egg-PC led to considerably higher DEX concentrations and improvement of DEX permeation at the beginning of the DEX crystallization process. Crystallization inhibition by HPMC-AS can efficiently work even in the micellar solution, where NaTC/egg-PC micelles encapsulates some DEX. It was concluded that a crystallization inhibitor contributed to improvement of permeation of a poorly water-soluble drug in gastrointestinal fluid. Copyright © 2014 Elsevier B.V. All rights reserved.
Raymond Gosling: the man who crystallized genes
2013-01-01
On April 25th 1953, three publications in Nature forever changed the face of the life sciences in reporting the structure of DNA. Sixty years later, Raymond Gosling shares his memories of the race to the double helix. PMID:23651528
Crystallization modifiers in lipid systems.
Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Miyasaki, Eriksen Koji; Domingues, Maria Aliciane Fontenele; Stroppa, Valter Luís Zuliani; de Oliveira, Glazieli Marangoni; Kieckbusch, Theo Guenter
2015-07-01
Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms with crystallization of fats and oils.
Effects of Gravity on Processing Heavy Metal Fluoride Fibers
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.
1997-01-01
The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.
Figuring process of potassium dihydrogen phosphate crystal using ion beam figuring technology.
Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin
2017-09-01
Currently, ion beam figuring (IBF) technology has presented many excellent performances in figuring potassium dihydrogen phosphate (KDP) crystals, such as it is a noncontact figuring process and it does not require polishing fluid. So, it is a very clean figuring process and does not introduce any impurities. However, the ion beam energy deposited on KDP crystal will heat the KDP crystal and may generate cracks on it. So, it is difficult directly using IBF technology to figure KDP crystal, as oblique incident IBF (OI-IBF) has lower heat deposition, higher removal rate, and smoother surface roughness compared to normal incident IBF. This paper studied the process of using OI-IBF to figure KDP crystal. Removal rates and removal functions at different incident angles were first investigated. Then heat depositions on a test work piece were obtained through experiments. To validate the figuring process, a KDP crystal with a size of 200 mm×200 mm×12 mm was figured by OI-IBF. After three iterations using the OI-IBF process, the surface error decreases from the initial values with PV 1.986λ RMS 0.438λ to PV 0.215λ RMS 0.035λ. Experimental results indicate that OI-IBF is feasible and effective to figure KDP crystals.
NASA Technical Reports Server (NTRS)
Larson, David J.; Casagrande, Luis G.; DiMarzio, Don; Alexander, J. Iwan D.; Carlson, Fred; Lee, Taipo; Dudley, Michael; Raghathamachar, Balaji
1998-01-01
The Orbital Processing of High-Quality Doped and Alloyed CdTe Compound Semiconductors program was initiated to investigate, quantitatively, the influences of gravitationally dependent phenomena on the growth and quality of bulk compound semiconductors. The objective was to improve crystal quality (both structural and compositional) and to better understand and control the variables within the crystal growth production process. The empirical effort entailed the development of a terrestrial (one-g) experiment baseline for quantitative comparison with microgravity (mu-g) results. This effort was supported by the development of high-fidelity process models of heat transfer, fluid flow and solute redistribution, and thermo-mechanical stress occurring in the furnace, safety cartridge, ampoule, and crystal throughout the melting, seeding, crystal growth, and post-solidification processing. In addition, the sensitivity of the orbital experiments was analyzed with respect to the residual microgravity (mu-g) environment, both steady state and g-jitter. CdZnTe crystals were grown in one-g and in mu-g. Crystals processed terrestrially were grown at the NASA Ground Control Experiments Laboratory (GCEL) and at Grumman Aerospace Corporation (now Northrop Grumman Corporation). Two mu-g crystals were grown in the Crystal Growth Furnace (CGF) during the First United States Microgravity Laboratory Mission (USML-1), STS-50, June 24 - July 9, 1992.
NASA Astrophysics Data System (ADS)
Zhang, Peng
The highly developed nano-fabrication techniques allow light to be modulated with photonic structures in a more intensive way. These photonic structures involve photonic crystals, metals supporting surface plasmon polaritons, metamaterials, etc. In this thesis work, three different ways for light manipulation are numerically investigated. First, the light propagation is modulated using a photonic crystal with Dirac cones. It is demonstrated that the zero-index behavior of this photonic crystal which happens for normal incident waves, is lost at oblique incidence. A new method combining complex-k band calculations and absorbing boundary conditions for Bloch modes is developed to analyze the Bloch mode interaction in details. Second, the mechanic states of graphene are modulated through the optical gradient force. This force is induced by the coupled surface plasmons on the double graphene sheets and is greatly enhanced in comparison to the regular waveguides. By applying different strengths of forces in accordance to the input power, the mechanic state transition is made possible, accompanied by an abrupt change in the transmission and reflection spectra. Third, the helicity/chirality of light is studied to modulate the lateral force on a small particle. A left-hand material slab which supports coherent TE ad TM plasmons simultaneously is introduced. By mixing the TE and TM surface plasmons with different relative phases, the lateral force on a chiral particle can be changed, which will be beneficial for chiral particle sorting.
Fundamental Studies of Crystal Growth of Microporous Materials
NASA Technical Reports Server (NTRS)
Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.
The Nucleation and Growth of Protein Crystals
NASA Technical Reports Server (NTRS)
Pusey, Marc
2004-01-01
Obtaining crystals of suitable size and high quality continues to be a major bottleneck in macromolecular crystallography. Currently, structural genomics efforts are achieving on average about a 10% success rate in going from purified protein to a deposited crystal structure. Growth of crystals in microgravity was proposed as a means of overcoming size and quality problems, which subsequently led to a major NASA effort in microgravity crystal growth, with the agency also funding research into understanding the process. Studies of the macromolecule crystal nucleation and growth process were carried out in a number of labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. Based upon experimental evidence, as well as simple starting assumptions, we have proposed that crystal nucleation occurs by a series of discrete self assembly steps, which 'set' the underlying crystal symmetry. This talk will review the model developed, and its origins, in our laboratory for how crystals nucleate and grow, and will then present, along with preliminary data, how we propose to use this model to improve the success rate for obtaining crystals from a given protein.
NASA Astrophysics Data System (ADS)
Zhu, X. A.; Tsai, C. T.
2000-09-01
Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.
High resolution electron microscopy study of crystal growth mechanisms in chicken bone composites
NASA Astrophysics Data System (ADS)
Cuisinier, F. J. G.; Steuer, P.; Brisson, A.; Voegel, J. C.
1995-12-01
The present study describes the early stages of chicken bone crystal growth, followed by high resolution electron microscopy (HREM). We have developed an original analysis procedure to determine the crystal structure. Images were first digitalized and selected areas were fast Fourier transformed. Numerical masks were selected around the most intense spots and the filtered signal was retransformed back to real space. The filtered images were then compared to computer calculated images to identify the inorganic mineral phase. Nanometer-sized particles were observed on amorphous areas. These particles have a structure loosely related to hydroxyapatite (HA) and a specific orientation. In a more advanced situation, the nanoparticles appeared to grow in two dimensions and to form plate-like crystals. These crystals seem, in a last growth step, to fuse by their (100) faces. These experimental observations allowed us to propose a four-step model for the development and growth of chicken bone crystals. The two initial stages are the ionic adsorption onto the organic substrate followed by the nucleation of nanometer-sized particles. The two following steps, i.e. two-dimensional growth of the nanoparticles leading to the formation of needle-like crystals, and the lateral fusion of these crystals by their (100) faces, are controlled only by spatial constraints inside the extracellular organic matrix.
NASA Astrophysics Data System (ADS)
Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.
2014-09-01
The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.
NASA Astrophysics Data System (ADS)
Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges
2012-07-01
Laser ablation ICP-MS analysis has been applied to many accessory minerals in order to understand better the process by which the rock formed and for provenance discrimination. We have determined trace element concentrations of Fe-oxides in massive sulfides that form Ni-Cu-PGE deposits at the base of the Sudbury Igneous Complex in Canada. The samples represent the crystallization products of fractionating sulfide liquids and consist of early-forming Fe-rich monosulfide solution (MSS) cumulates and residual Cu-rich intermediate solid solution (ISS). This study shows that Fe-oxide geochemistry is a sensitive petrogenetic indicator for the degree of fractionation of the sulfide liquid and provides an insight into the partitioning of elements between sulfide and Fe-oxide phases. In addition, it is useful in determining the provenance of detrital Fe-oxide. In a sulfide melt, all lithophile elements (Cr, Ti, V, Al, Mn, Sc, Nb, Ga, Ge, Ta, Hf, W and Zr) are compatible into Fe-oxide. The concentrations of these elements are highest in the early-forming Fe-oxide (titanomagnetite) which crystallized with Fe-rich MSS. Upon the continual crystallization of Fe-oxide from the sulfide liquid, the lithophile elements gradually decrease so that late-forming Fe-oxide (magnetite), which crystallized from the residual Cu-rich liquid, is depleted in these elements. This behavior is in contrast with Fe-oxides that crystallized from a fractionating silicate melt, whereby the concentration of incompatible elements, such as Ti, increases rather than decreases. The behavior of the chalcophile elements in magnetite is largely controlled by the crystallization of the sulfide minerals with only Ni, Co, Zn, Mo, Sn and Pb present above detection limit in magnetite. Nickel, Mo and Co are compatible in Fe-rich MSS and thus the co-crystallizing Fe-oxide is depleted in these elements. In contrast, magnetite that crystallized later from the fractionated liquid with Cu-rich ISS is enriched in Ni, Mo and Co because Fe-rich MSS is absent. The concentrations of Sn and Pb, which are incompatible with Fe-rich MSS, are highest in magnetite that formed from the fractionated Cu-rich liquid. At subsolidus temperatures, ilmenite exsolved from titanomagnetite whereas Al-spinel exsolved from the cores of some magnetite, locally redistributing the trace elements. However, during laser ablation ICP-MS analysis of these Fe-oxides both the magnetite and its exsolution products are ablated so that the analysis represents the original magmatic composition of the Fe-oxide that crystallized from the sulfide melt.
Analysis of channel confined selective area growth in evolutionary growth of GaN on SiO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Benjamin; Tsai, Miao-Chan; Song, Jie
2015-09-01
Here, we analyze the chemical vapor deposition of semiconductor crystals by selective area growth in a non-planar geometry. Specifically, the growth process in laterally and vertically confined masks forming single-crystal GaN on SiO2 by metal-organic chemical vapor deposition is considered in detail. A textured AlN seed is used to initiate growth of oriented GaN selectively through the mask, allowing the reduction of degrees of freedom by the evolutionary grain selection process. As shown by measurements of growth rates within the mask, the sub micron length scale of the channel opening is comparable to the mean free path of precursors inmore » the gas phase, resulting in transport characteristics that can be described by an intermediate flow regime between continuum and free-molecular. Mass transport is modeled through kinetic theory to explain the growth rate enhancements of more than a factor of two by changes in reactor pressure. The growth conditions that enable the modification of nucleation density within the channel are then discussed, and are measured by electron-back scatter diffraction of the nucleated grains on the AlN seed. Finally, the selectivity behavior using the low fill factor masks needed in these configurations has been optimized by control of precursor flow rates and the H2 enhanced etching of the polycrystalline GaN nuclei.« less
Monocrystalline CVD-diamond optics for high-power laser applications
NASA Astrophysics Data System (ADS)
Holly, C.; Traub, M.; Hoffmann, D.; Widmann, C.; Brink, D.; Nebel, C.; Gotthardt, T.; Sözbir, M. C.; Wenzel, C.
2016-03-01
The potential of diamond as an optical material for high-power laser applications in the wavelength regime from the visible spectrum (VIS) to the near infrared (NIR) is investigated. Single-crystal diamonds with lateral dimensions up to 7×7mm2 are grown with microwave plasma assisted chemical vapor deposition (MPACVD) in parallel with up to 60 substrates and are further processed to spherical optics for beam guidance and shaping. The synthetic diamonds offer superior thermal, mechanical and optical properties, including low birefringence, scattering and absorption, also around 1 μm wavelength. We present dielectric (AR and HR) coated single-crystal diamond optics which are tested under high laser power in the multi-kW regime. The thermally induced focal shift of the diamond substrates is compared to the focal shift of a standard collimating and focusing unit for laser cutting made of fused silica optics. Due to the high thermal conductivity and low absorption of the diamond substrates compared to the fused silica optics no additional focal shift caused by a thermally induced refractive index change in the diamond is observed in our experiments. We present experimental results regarding the performance of the diamond substrates with and without dielectric coatings under high power and the influences of growth induced birefringence on the optical quality. Finally, we discuss the potential of the presented diamond lenses for high-power applications in the field of laser materials processing.
Squaraine rotaxanes with boat conformation macrocycles.
Fu, Na; Baumes, Jeffrey M; Arunkumar, Easwaran; Noll, Bruce C; Smith, Bradley D
2009-09-04
Mechanical encapsulation of fluorescent, deep-red bis(anilino)squaraine dyes inside Leigh-type tetralactam macrocycles produces interlocked squaraine rotaxanes. The surrounding macrocycles are flexible and undergo rapid exchange of chair and boat conformations in solution. A series of X-ray crystal structures show how the rotaxane co-conformational exchange process involves simultaneous lateral oscillation of the macrocycle about the center of the encapsulated squaraine thread. Rotaxane macrocycles with 1,4-phenylene sidewalls and 2,6-pyridine dicarboxamide bridging units are more likely to adopt boat conformations in the solid state than analogous squaraine rotaxane systems with isophthalamide-containing macrocycles. A truncated squaraine dye, with a secondary amine attached directly to the central C(4)O(2) core, is less electrophilic than the extended bis(anilino)squaraine analogue, but it is still susceptible to chemical and photochemical bleaching. Its stability is greatly enhanced when it is encapsulated as an interlocked squaraine rotaxane. An X-ray crystal structure of this truncated squaraine rotaxane shows the macrocycle in a boat conformation, and NMR studies indicate that the boat is maintained in solution. Encapsulation as a rotaxane increases the dye's brightness by a factor of 6. The encapsulation process appears to constrain the dye and reduce deformation of the chromophore from planarity. This study shows how mechanical encapsulation as a rotaxane can be used as a rational design parameter to fine-tune the chemical and photochemical properties of squaraine dyes.
Squaraine Rotaxanes with Boat Conformation Macrocycles
Fu, Na; Baumes, Jeffrey M.; Arunkumar, Easwaran; Noll, Bruce C.; Smith, Bradley D.
2010-01-01
Mechanical encapsulation of fluorescent, deep-red bis(anilino)squaraine dyes inside Leigh-type tetralactam macrocycles produces interlocked squaraine rotaxanes. The surrounding macrocycles are flexible and undergo rapid exchange of chair and boat conformations in solution. A series of X-ray crystal structures show how the rotaxane co-conformational exchange process involves simultaneous lateral oscillation of the macrocycle about the center of the encapsulated squaraine thread. Rotaxane macrocycles with 1,4-phenylene-sidewalls and 2,6-pyridine dicarboxamide bridging units are more likely to adopt boat conformations in the solid-state than analogous squaraine rotaxane systems with isophthalamide-containing macrocycles. A truncated squaraine dye, with a secondary amine attached directly to the central C4O2 core, is less electrophilic than the extended bis(anilino)squaraine analogue, but it is still susceptible to chemical and photochemical bleaching. Its stability is greatly enhanced when it is encapsulated as an interlocked squaraine rotaxane. An X-ray crystal structure of this truncated squaraine rotaxane shows the macrocycle in a boat conformation, and NMR studies indicate that the boat is maintained in solution. Encapsulation as a rotaxane increases the dye’s brightness by a factor of six. The encapsulation process appears to constrain the dye and reduce deformation of the chromophore from planarity. This study shows how mechanical encapsulation as a rotaxane can be used as a rational design parameter to fine-tune the chemical and photochemical properties of squaraine dyes. PMID:19639940
Growth of high quality bulk size single crystals of inverted solubility lithium sulphate monohydrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silambarasan, A.; Rajesh, P., E-mail: rajeshp@ssn.edu.in; Ramasamy, P.
2015-06-24
The paper summarizes the processes of growing large lithium sulfate monohydrate (LSMH) single crystals. We have established a procedure to grow high quality bulk size single crystals of inverted solubility LSMH by a newly developed unidirectional crystallization technique called the Sankeranarayenan - Ramasamy (SR) method. The convective flow of crystal growth processes from solution and the conditions of growing crystals of various aspects were discussed. Good quality LSMH single crystal is grown of the size 20 mmX80 mm without cracks, localized-defects and inclusions. The as-grown crystals are suitable for piezoelectric and nonlinear optical applications.
Experimental analysis and modeling of melt growth processes
NASA Astrophysics Data System (ADS)
Müller, Georg
2002-04-01
Melt growth processes provide the basic crystalline materials for many applications. The research and development of crystal growth processes is therefore driven by the demands which arise from these specific applications; however, common goals include an increased uniformity of the relevant crystal properties at the micro- and macro-scale, a decrease of deleterious crystal defects, and an increase of crystal dimensions. As melt growth equipment and experimentation becomes more and more expensive, little room remains for improvements by trial and error procedures. A more successful strategy is to optimize the crystal growth process by a combined use of experimental process analysis and computer modeling. This will be demonstrated in this paper by several examples from the bulk growth of silicon, gallium arsenide, indium phosphide, and calcium fluoride. These examples also involve the most important melt growth techniques, crystal pulling (Czochralski methods) and vertical gradient freeze (Bridgman-type methods). The power and success of the above optimization strategy, however, is not limited only to the given examples but can be generalized and applied to many types of bulk crystal growth.
Gherras, Nesrine; Serris, Eric; Fevotte, Gilles
2012-12-15
Acoustic emission (AE) which has been successfully applied for monitoring a rather wide variety of solids elaboration processes was almost never evaluated in the field of industrial pharmaceutical crystallization. Few papers reported that solution crystallization processes give rise to acoustic emission signals that could be related to the development of the basic crystallization phenomena. This study is intended to demonstrate new perspectives opened up by the possible use of acoustic emission (AE) as a non-intrusive and non destructive sensor for monitoring solution crystallization with a particular focus being put on the presence of impurities in real industrial processes. The wealth of acquired AE information is highlighted and it is suggested that such information could allow the design of innovative multipurpose sensing strategies. It is shown notably that AE provides a very early detection of nucleation events, much before the onset of the so-called "nucleation burst". It is also shown that AE brings new insight into the effect of impurities on both the development of the crystallization process and the quality of the crystallized product. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oswald, Patrick; Ignés-Mullol, Jordi
2017-09-01
The performance of light-controlled liquid crystal anchoring surfaces depends on the nature of the photosensitive moieties and on the concentration of spacer units. Here, we study the kinetics of photosensitive liquid crystal cells that incorporate an azobenzene-based self-assembled monolayer. We characterize the photoinduced homeotropic-to-planar transition and the subsequent reverse relaxation in terms of the underlying isomerization of the photosensitive layer. We show that the response time can be precisely adjusted by tuning the lateral packing of azobenzene units by means of inert spacer molecules. Using simple kinetic assumptions and a well-known model for the energetics of liquid crystal anchoring we are able to capture the details of the optical microscopy experimental observations. Our analysis provides fitted values for all the relevant material parameters, including the zenithal and the azimuthal anchoring strength.
Method to simulate and analyse induced stresses for laser crystal packaging technologies.
Ribes-Pleguezuelo, Pol; Zhang, Site; Beckert, Erik; Eberhardt, Ramona; Wyrowski, Frank; Tünnermann, Andreas
2017-03-20
A method to simulate induced stresses for a laser crystal packaging technique and the consequent study of birefringent effects inside the laser cavities has been developed. The method has been implemented by thermo-mechanical simulations implemented with ANSYS 17.0. ANSYS results were later imported in VirtualLab Fusion software where input/output beams in terms of wavelengths and polarization were analysed. The study has been built in the context of a low-stress soldering technique implemented for glass or crystal optics packaging's called the solderjet bumping technique. The outcome of the analysis showed almost no difference between the input and output laser beams for the laser cavity constructed with an yttrium aluminum garnet active laser crystal, a second harmonic generator beta-barium borate, and the output laser mirror made of fused silica assembled by the low-stress solderjet bumping technique.
NASA Astrophysics Data System (ADS)
Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.
2016-04-01
In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.
Multiple period s-p hybridization in nano-strip embedded photonic crystal.
Han, Seunghoon; Lee, Il-Min; Kim, Hwi; Lee, Byoungho
2005-04-04
We report and analyze hybridization of s-state and p-state modes in photonic crystal one-dimensional defect cavity array. When embedding a nano-strip into a dielectric rod photonic crystal, an effective cavity array is made, where each cavity possesses two cavity modes: s-state and p-state. The two modes are laterally even versus the nano-strip direction, and interact with each other, producing defect bands, of which the group velocity becomes zero within the first Brillouin zone. We could model and describe the phenomena by using the tight-binding method, well agreeing with the plane-wave expansion method analysis. We note that the reported s- and p-state mode interaction corresponds to the hybridization of atomic orbital in solid-state physics. The concept of multiple period s-p hybridization and the proposed model can be useful for analyzing and developing novel photonic crystal waveguides and devices.
Influence of support morphology on the bonding of molecules to nanoparticles
Yim, Chi Ming; Pang, Chi L.; Hermoso, Diego R.; Dover, Coinneach M.; Muryn, Christopher A.; Maccherozzi, Francesco; Dhesi, Sarnjeet S.; Pérez, Rubén; Thornton, Geoff
2015-01-01
Supported metal nanoparticles form the basis of heterogeneous catalysts. Above a certain nanoparticle size, it is generally assumed that adsorbates bond in an identical fashion as on a semiinfinite crystal. This assumption has allowed the database on metal single crystals accumulated over the past 40 years to be used to model heterogeneous catalysts. Using a surface science approach to CO adsorption on supported Pd nanoparticles, we show that this assumption may be flawed. Near-edge X-ray absorption fine structure measurements, isolated to one nanoparticle, show that CO bonds upright on the nanoparticle top facets as expected from single-crystal data. However, the CO lateral registry differs from the single crystal. Our calculations indicate that this is caused by the strain on the nanoparticle, induced by carpet growth across the substrate step edges. This strain also weakens the CO–metal bond, which will reduce the energy barrier for catalytic reactions, including CO oxidation. PMID:26080433
Photonic crystal active and passive device components in III-V semiconductors
NASA Astrophysics Data System (ADS)
Sabarinathan, Jayshri
Photonic crystals (PC's) are emerging as potentially important candidates in propelling the development in planar photonic integrated circuits, high capacity optical fibers and nanoscopic lasers. Photonic crystals are expected to play a role analogous to that played by crystalline semiconductors in the development of electronic circuits. What makes these photonic crystals more interesting is that introducing "defects"---a missing period or phase slip, in the PC lattice introduces defect modes that lie within the bandgap of the PC. In this investigation, both two dimensional and three dimensional photonic crystals have been fabricated and studied using III-V compound semiconductors which are presently the most useful material systems for integrating with existing optoelectronic technology. A novel single step epitaxial technique to fabricate GaAs-based 3D photonic crystals with sub-micron feature size has been developed employing MBE growth on patterned substrates, ebeam and optical lithography, and lateral wet oxidation of AlGaAs. Transmission characteristics of the fabricated 3D PCs have been measured revealing a 10dB stopband centered at 1 mum for the smallest feature sizes. Electrically injected 2D photonic crystal defect microcavities were designed and fabricated to realize low threshold vertically emitting light sources. The electroluminescent devices were fabricated with GaAs- and InP-based quantum wells heterostructures with emission wavelengths at 0.94mum and 1.55 mum respectively. The light-current, spectral, near- and far-field characteristics of these devices have been studied in detail. The processing and high-aspect ratio etch techniques were carefully developed to create the 2D PCs embedded in the electrically injected apertures. Quantum dots with emission wavelength of 1.04 mum were incorporated into electrically injected 2D PC microcavities to study the electrical and optical confinement simultaneously provided in this configuration. Weak microcavity effects were observed in the fabricated devices. Passive 2D PC's with linear defects, which act as efficient waveguides to confine and channel light even around very sharp bends, have also been investigated. A novel microfluidic sensor using 2D GaAs-based photonic crystal waveguides to detect one or more fluids on the basis of their refractive index properties have been designed, fabricated and demonstrated for the first time.
Empowerment Evaluation: Yesterday, Today, and Tomorrow
ERIC Educational Resources Information Center
Fetterman, David; Wandersman, Abraham
2007-01-01
Empowerment evaluation continues to crystallize central issues for evaluators and the field of evaluation. A highly attended American Evaluation Association conference panel, titled "Empowerment Evaluation and Traditional Evaluation: 10 Years Later," provided an opportunity to reflect on the evolution of empowerment evaluation. Several…
Isothermal Crystallization Behavior of Cocoa Butter at 17 and 20 °C with and without Limonene.
Rigolle, Annelien; Goderis, Bart; Van Den Abeele, Koen; Foubert, Imogen
2016-05-04
Differential scanning calorimetry and real-time X-ray diffraction using synchrotron radiation were used to elucidate isothermal cocoa butter crystallization at 17 and 20 °C in the absence and presence of different limonene concentrations. At 17 °C, a three-step crystallization process was visible for pure cocoa butter, whereby first an unknown structure with long spacings between a 2L and 3L structure was formed that rapidly transformed into the more stable α structure, which in turn was converted into more stable β' crystals. At 20 °C, an α-mediated β' crystallization was observed. The addition of limonene resulted in a reduction of the amount of unstable crystals and an acceleration of polymorphic transitions. At 17 °C, the crystallization process was accelerated due to the acceleration of the formation of more stable polymorphic forms, whereas there were insufficient α crystals for an α-mediated β' nucleation at 20 °C, resulting in a slower crystallization process.
NASA Astrophysics Data System (ADS)
Fronczyk, Adam
2007-04-01
In this study, we report on a crystallization behavior of the Fe 95Si 5 metallic glasses using a differential scanning cabrimetry (DSC), and X-ray diffraction. The paper presents the results of experimental investigation of Fe 95Si 5 amorphous alloy, subjected to the crystallizing process by the isothermal annealing. The objective of the experiment was to determine changes in the structural parameters during crystallization process of the examined alloy. Crystalline diameter and the lattice constant of the crystallizing phase were used as parameters to evaluate structural changes in material.
Park, Jae Hyo; Son, Se Wan; Byun, Chang Woo; Kim, Hyung Yoon; Joo, So Na; Lee, Yong Woo; Yun, Seung Jae; Joo, Seung Ki
2013-10-01
In this work, non-volatile memory thin-film transistor (NVM-TFT) was fabricated by nickel silicide-induced laterally crystallized (SILC) polycrystalline silicon (poly-Si) as the active layer. The nickel seed silicide-induced crystallized (SIC) poly-Si was used as storage layer which is embedded in the gate insulator. The novel unit pixel of active matrix organic light-emitting diode (AMOLED) using NVM-TFT is proposed and investigated the electrical and optical performance. The threshold voltage shift showed 17.2 V and the high reliability of retention characteristic was demonstrated until 10 years. The retention time can modulate the recharge refresh time of the unit pixel of AMOLED up to 5000 sec.
Large-scale crystallization of proteins for purification and formulation.
Hekmat, Dariusch
2015-07-01
Since about 170 years, salts were used to create supersaturated solutions and crystallize proteins. The dehydrating effect of salts as well as their kosmotropic or chaotropic character was revealed. Even the suitability of organic solvents for crystallization was already recognized. Interestingly, what was performed during the early times is still practiced today. A lot of effort was put into understanding the underlying physico-chemical interaction mechanisms leading to protein crystallization. However, it was understood that already the solvation of proteins is a highly complex process not to mention the intricate interrelation of electrostatic and hydrophobic interactions taking place. Although many basic questions are still unanswered, preparative protein crystallization was attempted as illustrated in the presented case studies. Due to the highly variable nature of crystallization, individual design of the crystallization process is needed in every single case. It was shown that preparative crystallization from impure protein solutions as a capture step is possible after applying adequate pre-treatment procedures like precipitation or extraction. Protein crystallization can replace one or more chromatography steps. It was further shown that crystallization can serve as an attractive alternative means for formulation of therapeutic proteins. Crystalline proteins can offer enhanced purity and enable highly concentrated doses of the active ingredient. Easy scalability of the proposed protein crystallization processes was shown using the maximum local energy dissipation as a suitable scale-up criterion. Molecular modeling and target-oriented protein engineering may allow protein crystallization to become part of a platform purification process in the near future.
Purification of organic nonlinear optical materials for bulk crystal growth from melt
NASA Astrophysics Data System (ADS)
Gebre, Tesfaye; Bhat, Kamala N.; Batra, Ashok K.; Lal, Ravindra B.; Aggarwal, Mohan D.; Penn, Benjamin G.; Frazier, Donald O.
2002-10-01
The techniques developed for purification of nonlinear optical organic materials, such as benzil, 2-methyl-4-nitroaniline (MNA), Dicyanovinyl anisole (DIVA) and its derivatives, nitrophenyl prolinol (NPP) and other Schiff's base compounds, include Kugelrohy method, physical vapor transport, zone refining and recrystallization from the solvent are described. Purity of the materials is tested using differential thermal analysis, gas chromatograph/Mass detector, Fourier Transform Infrared spectroscopy and melting point measurements. The purified materials were later used in the growth of single crystal by Bridgman-Stockbarger and Czochralski techniques.
NASA Astrophysics Data System (ADS)
Ma, N.; Walker, J. S.
2000-01-01
This paper presents a model for the unsteady transport of a dopant during the vertical Bridgman crystal growth process with a planar crystal-melt interface and with an axial magnetic field, and investigates the effects of varying different process variables on the crystal composition. The convective mass transport due to the buoyant convection in the melt produces nonuniformities in the concentration in both the melt and the crystal. The convective mass transport plays an important role for all magnetic field strengths considered. Diffusive mass transport begins to dominate for a magnetic flux density of 4 T and a fast growth rate, producing crystals which have an axial variation of the radially averaged crystal composition approaching that of the diffusion-controlled limit. Dopant distributions for several different combinations of process parameters are presented.
Maghsoodi, Maryam
2015-01-01
Crystallization is often used for manufacturing drug substances. Advances of crystallization have achieved control over drug identity and purity, but control over the physical form remains poor. This review discusses the influence of solvents used in crystallization process on crystal habit and agglomeration of crystals with potential implication for dissolution. According to literature it has been known that habit modification of crystals by use of proper solvents may enhance the dissolution properties by changing the size, number and the nature of crystal faces exposed to the dissolution medium. Also, the faster dissolution rate of drug from the agglomerates of crystals compared with the single crystals may be related to porous structure of the agglomerates and consequently their better wettability. It is concluded from this review that in-depth understanding of role of the solvents in crystallization process can be applied to engineering of crystal habit or crystal agglomeration, and predictably dissolution improvement in poorly soluble drugs. PMID:25789214
Pandalaneni, K; Amamcharla, J K
2016-07-01
Lactose accounts for about 75 and 85% of the solids in whey and deproteinized whey, respectively. Production of lactose is usually carried out by a process called crystallization. Several factors including rate of cooling, presence of impurities, and mixing speed influence the crystal size characteristics. To optimize the lactose crystallization process parameters to maximize the lactose yield, it is important to monitor the crystallization process. However, efficient in situ tools to implement at concentrations relevant to the dairy industry are lacking. The objective of the present work was to use a focused beam reflectance measurement (FBRM) system for in situ monitoring of lactose crystallization at supersaturated concentrations (wt/wt) 50, 55, and 60% at 20 and 30°C. The FBRM data were compared with Brix readings collected using a refractometer during isothermal crystallization. Chord length distributions obtained from FBRM in the ranges of <50 µm (fine crystals) and 50 to 300 µm (coarse crystals) were recorded and evaluated in relation to the extent of crystallization and rate constants deduced from the refractometer measurements. Extent of crystallization and rate constants increased with increasing supersaturation concentration and temperature. The measured fine crystal counts from FBRM increased at higher supersaturated concentration and temperature during isothermal crystallization. On the other hand, coarse counts were observed to increase with decreasing supersaturated concentration and temperature. Square weighted chord length distribution obtained from FBRM showed that as concentration increased, a decrease in chord lengths occurred at 20°C and similar observations were made from microscopic images. The robustness of FBRM in understanding isothermal lactose crystallization at various concentrations and temperatures was successfully assessed in the study. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Solubility and crystallization of xylose isomerase from Streptomyces rubiginosus
NASA Astrophysics Data System (ADS)
Vuolanto, Antti; Uotila, Sinikka; Leisola, Matti; Visuri, Kalevi
2003-10-01
We have studied the crystallization and crystal solubility of xylose isomerase (XI) from Streptomyces rubiginosus. In this paper, we show a rational approach for developing a large-scale crystallization process for XI. Firstly, we measured the crystal solubility in salt solutions with respect to salt concentration, temperature and pH. In ammonium sulfate the solubility of XI decreased logarithmically when increasing the salt concentration. Surprisingly, the XI crystals had a solubility minimum at low concentration of magnesium sulfate. The solubility of XI in 0.17 M magnesium sulfate was less than 0.5 g l -1. The solubility of XI increased logarithmically when increasing the temperature. We also found a solubility minimum around pH 7. This is far from the isoelectric point of XI (pH 3.95). Secondly, based on the solubility study, we developed a large-scale crystallization process for XI. In a simple and economical cooling crystallization of XI from 0.17 M magnesium sulfate solution, the recovery of crystalline active enzyme was over 95%. Moreover, we developed a process for production of uniform crystals and produced homogenous crystals with average crystal sizes between 12 and 360 μm.
Development of a sorption rate technique for single zeolite crystals using an electrodynamic balance
NASA Astrophysics Data System (ADS)
Welegala, Mark Joseph
Conventional means for evaluating intracrystalline diffusion in zeolites are complicated by extracrystalline mass transport resistances, crystallite size distribution, sorption heat effects, and finite instrument response times. A potentially direct means of overcoming these problems is to study sorption uptake on a single crystal suspended within a flowing gas stream in an electrodynamic balance (EDB). The objectives of this research were to design, build and investigate the viability of using such a device for obtaining diffusion coefficients from simple sorbate/zeolite systems, by computing the sorption uptake curve from the levitation voltage as a function of time. The initial electronic cell design was strongly influenced by flow mixing considerations. Accordingly, the conventional bihyperboloid electrode configuration was discarded in favor of novel four-ring (4R), and later two-ring/two-screen (2R/2S) designs with cylindrical interior geometries. A detailed numerical model based on the Method of Discrete Charges (MDC) was developed and used to aid in the design and operational understanding of these cells. Several 2R/2S designs were built and tested, including teflon/mica composite and ceramic cells capable of withstanding up to 750oF, for in situ activation of the zeolites. The diffusion of carbon dioxide in zeolite A was selected for testing due to the large differential weight change (10-20%) which occurs at ambient conditions and the availability of reliable experimental diffusion results (Yucel and Ruthven, 1980a). In addition to the carbon dioxide sorbate, water on zeolite 4A and a system relatively immune to atmospheric contamination, CO2 on activated carbon were also studied. Laboratory 4A crystals of up to 45 μm were grown using Charnell's method. These large solid particles were captured using a dry charging technique, and held during elevated temperature dehydration. Preliminary experimentation introduced externally dried crystals to the cell chamber in 0.5-3 minutes. Only minimal desorption results with carbon dioxide and later, adsorption for water vapor, were obtained. Further experiments revealed that crystal contamination from laboratory air can be considerable in less than one minute, thereby preadsorbing airborne water vapor. The experimental methodology was changed to include in situ heating. Subsequent attempts to circumvent laser heating of the particle had limited success. Particle loss, (due to excessive charge loss) and cell material degradation limited the process to null point temperatures of approximately 260oC, which is insufficient for complete zeolite dehydration. Early, it was demonstrated that gas compositions could be switched while flowing without losing the particle. However, the resulting concentration transient imposes an ultimate limitation on the technique for application to rapidly diffusing systems. Also, the fact that the technique is gravimetric requires that the diffusing species must be appreciably adsorbed at ambient conditions. Thus the single crystal sorption apparatus based on the electrodynamic containment device would appear to have use primarily for strongly adsorbed and slowly diffusing species. (Abstract shortened by UMI.)
Bouschen, Werner; Schulz, Oliver; Eikel, Daniel; Spengler, Bernhard
2010-02-01
Matrix preparation techniques such as air spraying or vapor deposition were investigated with respect to lateral migration, integration of analyte into matrix crystals and achievable lateral resolution for the purpose of high-resolution biological imaging. The accessible mass range was found to be beyond 5000 u with sufficient analytical sensitivity. Gas-assisted spraying methods (using oxygen-free gases) provide a good compromise between crystal integration of analyte and analyte migration within the sample. Controlling preparational parameters with this method, however, is difficult. Separation of the preparation procedure into two steps, instead, leads to an improved control of migration and incorporation. The first step is a dry vapor deposition of matrix onto the investigated sample. In a second step, incorporation of analyte into the matrix crystal is enhanced by a controlled recrystallization of matrix in a saturated water atmosphere. With this latter method an effective analytical resolution of 2 microm in the x and y direction was achieved for scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS). Cultured A-498 cells of human renal carcinoma were successfully investigated by high-resolution MALDI imaging using the new preparation techniques. Copyright 2010 John Wiley & Sons, Ltd.
The Use of Atomic-Force Microscopy for Studying the Crystallization Process of Amorphous Alloys
NASA Astrophysics Data System (ADS)
Elmanov, G. N.; Ivanitskaya, E. A.; Dzhumaev, P. S.; Skrytniy, V. I.
The crystallization process of amorphous alloys is accompanied by the volume changes as a result of structural phase transitions. This leads to changes in the surface topography, which was studied by atomic force microscopy (AFM). The changes of the surface topography, structure and phase composition during multistage crystallization process of the metallic glasses with composition Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 (AWS BNi2) has been investigated. The obtained results on changing of the surface topography in crystallization process are in good agreement with the data of X-ray diffraction analysis (XRD). The nature of redistribution of some alloy components in the crystallization process has been suggested.
Preparative crystallization of a single chain antibody using an aqueous two-phase system.
Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois
2014-11-01
A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration. © 2014 Wiley Periodicals, Inc.
A Low-Cost System Based on Image Analysis for Monitoring the Crystal Growth Process.
Venâncio, Fabrício; Rosário, Francisca F do; Cajaiba, João
2017-05-31
Many techniques are used to monitor one or more of the phenomena involved in the crystallization process. One of the challenges in crystal growth monitoring is finding techniques that allow direct interpretation of the data. The present study used a low-cost system, composed of a commercial webcam and a simple white LED (Light Emitting Diode) illuminator, to follow the calcium carbonate crystal growth process. The experiments were followed with focused beam reflectance measurement (FBRM), a common technique for obtaining information about the formation and growth of crystals. The images obtained in real time were treated with the red, blue, and green (RGB) system. The results showed a qualitative response of the system to crystal formation and growth processes, as there was an observed decrease in the signal as the growth process occurred. Control of the crystal growth was managed by increasing the viscosity of the test solution with the addition of monoethylene glycol (MEG) at 30% and 70% in a mass to mass relationship, providing different profiles of the RGB average curves. The decrease in the average RGB value became slower as the concentration of MEG was increased; this reflected a lag in the growth process that was proven by the FBRM.
Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; Fischetti, Robert F.
2014-01-01
The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce. PMID:25484844
Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; ...
2014-11-18
The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates amore » collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.« less
Effects of Gravity on ZBLAN Glass Crystallization
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Ethridge, Edwin C.; Smith, G. A.; Workman, G.
2003-01-01
The effects of gravity on the crystallization of ZrF4-BaF2-LaF3-AlF3- NaF glasses have been studied utilizing NASA's KC135 and a sounding rocket, Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.
Effects of Gravity on ZBLAN Glass Crystallization
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.; Workman, Gary
2004-01-01
The effects of gravity on the crystallization of ZrF(4)-BaF(2)-LaF(3)-AIF(3)-NaF glasses have been studied using the NASA KC-135 and a sounding rocket. Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.
NASA Astrophysics Data System (ADS)
Bai, Zhong-Jie; Zhong, Hong; Zhu, Wei-Guang; Hu, Wen-Jun; Chen, Cai-Jie
2018-04-01
A giant Fe-Ti oxide deposit hosted by the Wuben mafic intrusion has recently been discovered in the Pan-Xi area of the Emeishan Large Igneous Province (ELIP). The evolved compositions of the gangue minerals within the Fe-Ti oxide ores indicate that they formed during later stages of magma differentiation than those within the neighboring Panzhihua intrusion or other ore-bearing intrusions in this area. The rocks from the Wuben intrusion and MZb of the Panzhihua intrusion contain compositionally similar silicate minerals and have similar titanomagnetite/ilmenite ratios, suggesting that the former is related to and probably connected to the latter by subsurface magmatic conduits. This indicates that unconsolidated minerals that formed in the MZb flowed as crystal slurries into the Wuben magma chamber during the later stages of evolution of the parental magma. The later secondary enrichment of Fe-Ti oxides by mechanical redistribution and the sorting of crystals as a result of density and size differences generated the Wuben massive Fe-Ti oxide bodies. The ilmenite was commonly saturated in the magma at late stage of differentiation in the ELIP, thereby the associated deposit contains much higher contents of ilmenite. This indicates that future exploration for Fe-Ti oxide mineralization in the ELIP should not merely focus on the lower parts of large layered intrusions but should also include nearby relatively small intrusions or even the upper parts of large intrusions, especially as ilmenite-enriched Fe-Ti oxide deposits may have greater economic value than ilmenite-poor deposits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durocher, S.; Al-Aasm, I.S.
1997-06-01
Petrographic, chemical, and isotopic studies of the Mississippian (Visean) upper Debolt Formation in the Blueberry field, British Columbia, Canada, reveal that dolomitization was the result of several diagenetic events and that neomorphic alteration of these dolomites significantly modified their original chemical signatures. These studies also demonstrate how tectonics play an important role in controlling and modifying reservoir dolomites in the area. Petrographic investigations have documented two early dolomite phases, (1) early matrix dolomite and (2) pervasive dolomite, and two later generations, (3) coarse cement and (4) pseudomorphic replacement of crinoids. Early matrix dolomite occurs as small (average 25 {mu}m) subhedralmore » to euhedral crystals that replace the matrix of carbonate mudstones, wackestones, and packstones. Petrographic evidence suggests that early matrix dolomite had a relatively early, precompaction origin, possibly from marine fluids. However, geochemical evidence indicates that later fluids have altered their original geochemical signatures. Pervasive dolomite, which forms the reservoir intercrystalline porosity, occurs with planar-s and planar-e textures. Planar-s crystals typically have a dirty appearance and exhibit homogeneous dull brown/red cathodoluminescence colors. Planar-e crystals may appear with a cloudy core and a clear rim, and under cathodoluminescence display an irregular dull brown/red core and a thin, bright red rim. Due to the spatial distribution pattern of pervasive dolomite with respect to the overlying unconformity surface, its paleogeographic distribution and close temporal relationship with meteoric diagenetic events, pervasive dolomite formed from a mixture of seawater and meteoric fluids. However, alteration of their primary chemistry by later fluids is indicated by their depleted {delta}{sup 18}O values and radiogenic {sup 87}Sr/{sup 86}Sr ratios.« less
NASA Astrophysics Data System (ADS)
Nanev, Christo N.; Petrov, Kostadin P.
2017-12-01
The use of the classical nucleation-growth-separation principle (NGSP) was restricted hitherto to nucleation kinetics studies only. A novel application of the NGSP is proposed. To reduce crystal polydispersity internal seeding of equally-sized crystals is suggested, the advantage being avoidance of crystal grinding, sieving and any introduction of impurities. In the present study, size distributions of grown insulin crystals are interpreted retrospectively to select the proper nucleation stage parameters. The conclusion is that when steering a crystallization process aimed at reducing crystal polydispersity, the shortest possible nucleation stage duration has to be chosen because it renders the closest size distribution of the nucleated crystal seeds. Causes of inherent propensity to increasing crystal polydispersity during prolonged growth are also explored. Step sources of increased activity, present in some crystals while absent in others, are pointed as the major polydispersity cause. Insulin crystal morphology is also considered since it determines the dissolution rate of a crystalline medicine.
Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics.
La Spina, G; Burton, M; De' Michieli Vitturi, M; Arzilli, F
2016-12-12
Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were <1 h. Using these new constraints on disequilibrium plagioclase crystallization we also reproduce observed crystal abundances for different basaltic eruptions. The strong relation between magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism.
Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics
La Spina, G.; Burton, M.; de' Michieli Vitturi, M.; Arzilli, F.
2016-01-01
Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1–2 h, whereas ascent times were <1 h. Using these new constraints on disequilibrium plagioclase crystallization we also reproduce observed crystal abundances for different basaltic eruptions. The strong relation between magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism. PMID:27941750
Furnham, Adrian; Monsen, Jeremy; Ahmetoglu, Gorkan
2009-12-01
Both ability (measured by power tests) and non-ability (measured by preference tests) individual difference measures predict academic school outcomes. These include fluid as well as crystalized intelligence, personality traits, and learning styles. This paper examines the incremental validity of five psychometric tests and the sex and age of pupils to predict their General Certificate in Secondary Education (GCSE) test results. The aim was to determine how much variance ability and non-ability tests can account for in predicting specific GCSE exam scores. The sample comprised 212 British schoolchildren. Of these, 123 were females. Their mean age was 15.8 years (SD 0.98 years). Pupils completed three self-report tests: the Neuroticism-Extroversion-Openness-Five-Factor Inventory (NEO-FFI) which measures the 'Big Five' personality traits, (Costa & McCrae, 1992); the Typical Intellectual Engagement Scale (Goff & Ackerman, 1992) and a measure of learning style, the Study Process Questionnaire (SPQ; Biggs, 1987). They also completed two ability tests: the Wonderlic Personnel Test (Wonderlic, 1992) a short measure of general intelligence and the General Knowledge Test (Irving, Cammock, & Lynn, 2001) a measure of crystallized intelligence. Six months later they took their (10th grade) GCSE exams comprising four 'core' compulsory exams as well as a number of specific elective subjects. Correlational analysis suggested that intelligence was the best predictors of school results. Preference test measures accounted for relatively little variance. Regressions indicated that over 50% of the variance in school exams for English (Literature and Language) and Maths and Science combined could be accounted for by these individual difference factors. Data from less than an hour's worth of testing pupils could predict school exam results 6 months later. These tests could, therefore, be used to reliably inform important decisions about how pupils are taught.
Crystallization processes in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, Roman, E-mail: roman.svoboda@upce.cz; Bezdička, Petr; Gutwirth, Jan
2015-01-15
Highlights: • Crystallization kinetics of Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass was studied in dependence on particle size by DSC. • All studied fractions were described in terms of the SB autocatalytic model. • Relatively high amount of Te enhances manifestation of bulk crystallization mechanisms. • XRD analysis of samples crystallized under different conditions showed correlation with DSC data. • XRD analysis revealed a new crystallization mechanism indistinguishable by DSC. - Abstract: Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis were used to study crystallization in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass under non-isothermal conditions as a function of the particlemore » size. The crystallization kinetics was described in terms of the autocatalytic Šesták–Berggren model. An extensive discussion of all aspects of a full-scale kinetic study of a crystallization process was undertaken. Dominance of the crystallization process originating from mechanically induced strains and heterogeneities was confirmed. Substitution of Se by Te was found to enhance the manifestation of the bulk crystallization mechanisms (at the expense of surface crystallization). The XRD analysis showed significant dependence of the crystalline structural parameters on the crystallization conditions (initial particle size of the glassy grains and applied heating rate). Based on this information, a new microstructural crystallization mechanism, indistinguishable by DSC, was proposed.« less
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Zhou, Weidong; Ma, Zhenqiang
2009-12-01
This paper reports the realization of flexible RF/microwave PIN diodes and switches using transferrable single-crystal Si nanomembranes (SiNM) that are monolithically integrated on low-cost, flexible plastic substrates. High frequency response is obtained through the realization of low parasitic resistance achieved with heavy ion implantation before nanomembrane release and transfer. The flexible lateral SiNM PIN diodes exhibit typical rectifying characteristics with insertion loss and isolation better than 0.9 dB and 19.6 dB, respectively, from DC to 5 GHz, as well as power handling up to 22.5 dBm without gain compression. A single-pole single-throw (SPST) flexible RF switch employing shunt-series PIN diode configuration has achieved insertion loss and isolation better than 0.6 dB and 22.9 dB, respectively, from DC to 5 GHz. Furthermore, the SPST microwave switch shows performance improvement and robustness under mechanical deformation conditions. The study demonstrates the considerable potential of using properly processed transferrable SiNM for microwave passive components. Future investigations on transferrable SiNMs will lead to eventual realization of monolithic microwave integrated systems on low-cost flexible substrates.
NASA Astrophysics Data System (ADS)
Garratt, E.; Nikoobakht, B.
2015-08-01
Recent breakthroughs in deterministic approaches to the fabrication of nanowire arrays have demonstrated the possibility of fabricating such networks using low-cost scalable methods. In this regard, we have developed a scalable growth platform for lateral fabrication of nanocrystals with high precision utilizing lattice match and symmetry. Using this planar architecture, a number of homo- and heterostructures have been demonstrated including ZnO nanowires grown over GaN. The latter combination produces horizontal, epitaxially formed crystals aligned in the plane of the substrate containing a very low number of intrinsic defects. We use such ordered structures as model systems in the interests of gauging the interfacial structural dynamics in relation to external stimuli. Nanosecond pulses of focused ion beams are used to slightly modify the substrate surface and selectively form lattice disorders in the path of nanowire growth to examine the nanocrystal, namely: its directionality and lattice defects. High resolution electron microscopies are used to reveal some interesting structural effects; for instance, a minimum threshold of surface defects that can divert nanowires. We also discuss data indicating formation of surface strains and show their mitigation during the growth process.
NASA Astrophysics Data System (ADS)
Toko, K.; Kusano, K.; Nakata, M.; Suemasu, T.
2017-10-01
A composition tunable Si1-xGex alloy has a wide range of applications, including in electronic and photonic devices. We investigate the Al-induced layer exchange (ALILE) growth of amorphous Si1-xGex on an insulator. The ALILE allowed Si1-xGex to be large grained (> 50 μm) and highly (111)-oriented (> 95%) over the whole composition range by controlling the growth temperature (≤ 400 °C). From a comparison with conventional solid-phase crystallization, we determined that such characteristics of the ALILE arose from the low activation energy of nucleation and the high frequency factor of lateral growth. The Si1-xGex layers were highly p-type doped, whereas the process temperatures were low, thanks to the electrically activated Al atoms with the amount of solid solubility limit. The electrical conductivities approached those of bulk single crystals within one order of magnitude. The resulting Si1-xGex layer on an insulator is useful not only for advanced SiGe-based devices but also for virtual substrates, allowing other materials to be integrated on three-dimensional integrated circuits, glass, and even a plastic substrate.
Hutnik, Nina; Kozik, Anna; Mazienczuk, Agata; Piotrowski, Krzysztof; Wierzbowska, Boguslawa; Matynia, Andrzej
2013-07-01
Continuous DT MSMPR (Draft Tube Mixed Suspension Mixed Product Removal) crystallizer was provided with typical wastewater from phosphorus mineral fertilizers industry (pH < 4, 0.445 mass % of PO4(3-), inorganic impurities presence), dissolved substrates (magnesium and ammonium chlorides) and solution alkalising the environment of struvite MgNH4PO4·6H2O reaction crystallization process. Research ran in constant temperature 298 K assuming stoichiometric proportions of substrates or 20% excess of magnesium ions. Influence of pH (8.5-10) and mean residence time (900-3600 s) on product size distribution, its chemical composition, crystals shape, size-homogeneity and process kinetics was identified. Crystals of mean size ca. 25-37 μm and homogeneity CV 70-83% were produced. The largest crystals, of acceptable homogeneity, were produced using 20% excess of magnesium ions, pH 9 and mean residence time 3600 s. Under these conditions nucleation rate did not exceed 9 × 10(7) 1/(s m(3)) according to SIG (Size Independent Growth) MSMPR kinetic model. Linear crystal growth rate was 4.27 × 10(-9) m/s. Excess of magnesium ions influenced struvite reaction crystallization process yield advantageously. Concentration of phosphate(V) ions decreased from 0.445 to 9.2 × 10(-4) mass %. This can be regarded as a very good process result. In product crystals, besides main component - struvite, all impurities from wastewater were detected analytically. Copyright © 2013 Elsevier Ltd. All rights reserved.
Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions
NASA Astrophysics Data System (ADS)
Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.
2015-01-01
A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals oriented optimally for basal slip accommodated strain mainly viscously and experienced only minor fracturing. Instead, the crystals misoriented for basal slip hardened and deformed by pervasive domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms vary transiently in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.
NASA Astrophysics Data System (ADS)
Zhang, Haodong; van Pelt, Thomas; Nalin Mehta, Ankit; Bender, Hugo; Radu, Iuliana; Caymax, Matty; Vandervorst, Wilfried; Delabie, Annelies
2018-07-01
Tin disulfide (SnS2) is a n-type semiconductor with a hexagonally layered crystal structure and has promising applications in nanoelectronics, optoelectronics and sensors. Such applications require the deposition of SnS2 with controlled crystallinity and thickness control at monolayer level on large area substrate. Here, we investigate the nucleation and growth mechanism of two-dimensional (2D) SnS2 by chemical vapor deposition (CVD) using SnCl4 and H2S as precursors. We find that the growth mechanism of 2D SnS2 is different from the classical layer-by-layer growth mode, by which monolayer-thin 2D transition metal dichalcogenides can be formed. In the initial nucleation stage, isolated 2D SnS2 domains of several monolayers high are formed. Next, 2D SnS2 crystals grow laterally while keeping a nearly constant height until layer closure is achieved, due to the higher reactivity of SnS2 crystal edges than basal planes. We infer that the thickness of the 2D SnS2 crystals is determined by the height of initial SnS2 islands. After layer closure, SnS2 grows on grain boundaries and results in 3D growth mode, accompanied by spiral growth. Our findings suggest an approach to prepare 2D SnS2 with a controlled thickness of several monolayers and add more knowledge on the nucleation and growth mechanism of 2D materials.
Chatterjee, Arindam; Gupta, Madan Mohan; Srivastava, Birendra
2017-01-01
Tablets have been choice of manufacturers over the years due to their comparatively low cost of manufacturing, packaging, shipping, and ease of administration; also have better stability and can be considered virtually tamper proof. A major challenge in formulation development of the tablets extends from lower solubility of the active agent to the elaborated manufacturing procedures for obtaining a compressible granular material. Moreover, the validation and documentation increases, as the numbers of steps increases for an industrially acceptable granulation process. Spherical crystallization (SC) is a promising technique, which encompass the crystallization, agglomeration, and spheronization phenomenon in a single step. Initially, two methods, spherical agglomeration, and emulsion solvent diffusion, were suggested to get a desired result. Later on, the introduction of modified methods such as crystallo-co-agglomeration, ammonia diffusion system, and neutralization techniques overcame the limitations of the older techniques. Under controlled conditions such as solvent composition, mixing rate and temperature, spherical dense agglomerates cluster from particles. Application of the SC technique includes production of compacted spherical particles of drug having improved uniformity in shape and size of particles, good bulk density, better flow properties as well as better solubility so SC when used on commercial scale will bring down the production costs of pharmaceutical tablet and will increase revenue for the pharmaceutical industries in the competitive market. This review summarizes the technologies available for SC and also suggests the parameters for evaluation of a viable product.
Single-crystal silicon optical fiber by direct laser crystallization
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...
2016-12-05
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
The RIASEC Profile of Foreign Language Teachers
ERIC Educational Resources Information Center
Swanson, Peter B.
2008-01-01
Vocational choice appears to crystallize during adolescence and one's career aspirations begin to take shape later. Over 40 years ago Holland studied incoming freshman to match vocational aspirations to vocational preference profiles. Individuals seeking to become foreign language teachers were assigned a Social, Artistic, Enterprising vocational…
Gypsum ground: a new occurrence of gypsum sediment in playas of central Australia
NASA Astrophysics Data System (ADS)
Xiang Yang Chen; Bowler, James M.; Magee, John W.
1991-06-01
There are many playas (dry salt lakes) in arid central Australia (regional rainfall about 250 mm/y and pan evaporation around 3000 mm/y). Highly soluble salts, such as halite, only appear as a thin (several centimetres thick), white, ephemeral efflorescent crust on the dry surface. Gypsum is the major evaporite precipitating both at present and preserved in sediment sequences. One type of gypsum deposit forms a distinctive surface feature, which is here termed "gypsum ground". It consists of a thick (up to 80 cm) gypsum zone which rises from the surrounding smooth white playa surface and is overlain by a heaved brown crust. The gypsum zone, with an average gypsum content above 60%, consists of pure gypsum sublayers and interlayered clastic bands of sandy clay. The gypsum crystals are highly corroded, especially in the direction parallel to the c-axis and on the upper sides where illuviated clay has accumulated in corrosion hollows. Overgrowth parallel to the a- and b-axes is very common, forming highly discoidal habits. These secondary changes (corrosion and overgrowth) are well-developed in the vadose zone and absent from crystals below the long-term watertable (depth around 40 cm). These crystal characteristics indicate a rainwater leaching process. At Lake Amadeus, one of the largest playas (800 km 2) of central Australia, such gypsum ground occupies 16% of the total area. The gypsum ground is interpreted as an alteration of a pre-existing gypsum deposit which probably extended across the whole playa before breaking down, leaving a playa marginal terrace and several terrace islands within the gypsum ground. This pre-existing gypsum deposit, preserved in the residual islands, consists of pure, pale, sand-sized lenticular crystals. It is believed to have been deposited during an episode of high regional watertable, causing active groundwater seepage and more frequent surface brine in the playa. A later fall in watertable, probably resulting from climatic change, caused the degradation of the gypsum deposit by dissolution and leaching processes. The common distribution of the gypsum ground and marginal terraces in the playas of central Australia demonstrates the extent of this hydrologic and climatic history.
Dewetting During the Crystal Growth of (Cd,Zn)Te:In Under Microgravity
NASA Astrophysics Data System (ADS)
Sylla, Lamine; Fauler, Alex; Fiederle, Michael; Duffar, Thierry; Dieguez, Ernesto; Zanotti, Lucio; Zappettini, Andrea; Roosen, GÉrald
2009-08-01
The phenomenon of ldquodewettingrdquo associated with the Vertical Bridgman (VB) crystal growth technique leads to the growth of a crystal without contact with the crucible. One dramatic consequence of this modified VB process is the reduction of structural defects within the crystal. It has been observed in several microgravity experiments for different semiconductor crystals. This work is concentrated on the growth of high resistivity (Cd,Zn)Te:In (CZT) crystals by achieving the phenomenon of dewetting under microgravity condition and its application in the processing of CZT detectors. Two Cd0.9Zn0.1Te:In crystals were grown in space on the Russian FOTON satellite in the POLIZON-M facility in September 2007 (mission M3). At the end of the preliminary melting phase of one crystal, a Rotating Magnetic Field (RMF) was applied in order to reduce the typical tellurium clusters within the melt before the pulling. The other crystal was superheated with 20 K above the melting point before the pulling. A third reference crystal has been grown on the ground in similar thermal conditions. Profiles measurements of the space grown crystals surface gave the evidence of a successful dewetting during the crystal growth. Characterization methods such as IR microscopy and CoReMa have been performed on the three crystals. CZT detectors have been processed from the grown part of the different crystals. The influence of the dewetting on the material quality and the detector properties completes the study.
Observation of a discrete time crystal
NASA Astrophysics Data System (ADS)
Zhang, J.; Hess, P. W.; Kyprianidis, A.; Becker, P.; Lee, A.; Smith, J.; Pagano, G.; Potirniche, I.-D.; Potter, A. C.; Vishwanath, A.; Yao, N. Y.; Monroe, C.
2017-03-01
Spontaneous symmetry breaking is a fundamental concept in many areas of physics, including cosmology, particle physics and condensed matter. An example is the breaking of spatial translational symmetry, which underlies the formation of crystals and the phase transition from liquid to solid. Using the analogy of crystals in space, the breaking of translational symmetry in time and the emergence of a ‘time crystal’ was recently proposed, but was later shown to be forbidden in thermal equilibrium. However, non-equilibrium Floquet systems, which are subject to a periodic drive, can exhibit persistent time correlations at an emergent subharmonic frequency. This new phase of matter has been dubbed a ‘discrete time crystal’. Here we present the experimental observation of a discrete time crystal, in an interacting spin chain of trapped atomic ions. We apply a periodic Hamiltonian to the system under many-body localization conditions, and observe a subharmonic temporal response that is robust to external perturbations. The observation of such a time crystal opens the door to the study of systems with long-range spatio-temporal correlations and novel phases of matter that emerge under intrinsically non-equilibrium conditions.
Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.
Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho
2016-04-18
We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.
Supercrystallization of KCl from solution irradiated by soft X-rays
NASA Astrophysics Data System (ADS)
Janavičius, A. J.; Rinkūnas, R.; Purlys, R.
2016-10-01
The X-rays influence on KCl crystallization in a saturated water solution has been investigated for the aim of comparing it with previously considered NaCl crystallization. The rate of crystallization has been measured in the drying drop in the solution activated by the irradiation. We have measured the influence of the irradiation time of the solution on the rates of KCl crystallization as well as the beginning of the crystallization processes on drying drops. For a longer irradiation time of the solution early crystallization in the drops occurs. A saturated water solution of KCl was irradiated with the diffractometer DRON-3M (Russian device) and this had a great influence on the two-step processes of crystallization. The ionization of the solution by soft X-rays can produce ions, metastable radicals in water, excited crystals' seeds and vacancies in growing crystals by Auger's effect. The X-rays generate a very fast crystallization in the drying drop.
Assembly of P3HT/CdSe nanowire networks in an insulating polymer host.
Heo, Kyuyoung; Miesch, Caroline; Na, Jun-Hee; Emrick, Todd; Hayward, Ryan C
2018-06-27
Nanoparticles may act as compatibilizing agents for blending of immiscible polymers, leading to changes in blend morphology through a variety of mechanisms including interfacial adsorption, aggregation, and nucleation of polymer crystals. Herein, we report an approach to define highly structured donor/acceptor networks based on poly(3-hexylthiophene) (P3HT) and CdSe quantum dots (QDs) by demixing from an insulating polystyrene (PS) matrix. The incorporation of QDs led to laterally phase-separated co-continuous structures with sub-micrometer dimensions, and promoted crystallization of P3HT, yielding highly interconnected P3HT/QD hybrid nanowires embedded in the polymer matrix. These nanohybrid materials formed by controlling phase separation, interfacial activity, and crystallization within ternary donor/acceptor/insulator blends, offer attractive morphologies for potential use in optoelectronics.
Fundamental Studies of Crystal Growth of Microporous Materials
NASA Technical Reports Server (NTRS)
Singh, Ramsharan; Doolittle, John, Jr.; Payra, Pramatha; Dutta, Prabir K.; George, Michael A.; Ramachandran, Narayanan; Schoeman, Brian J.
2003-01-01
Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (a) Nature of the molecular units responsible for the crystal nuclei formation; (b) Nature of the nuclei and nucleation process; (c) Growth process of the nuclei into crystal; (d) Morphological control and size of the resulting crystal; (e) Surface structure of the resulting crystals; and (f) Transformation of frameworks into other frameworks or condensed structures.
Fluid Physics and Macromolecular Crystal Growth in Microgravity
NASA Technical Reports Server (NTRS)
Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.; Helliwell, J.; Rose, M. Franklin (Technical Monitor)
2000-01-01
The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows.
NASA Astrophysics Data System (ADS)
Mohammadi, Akram; Inadama, Naoko; Yoshida, Eiji; Nishikido, Fumihiko; Shimizu, Keiji; Yamaya, Taiga
2017-09-01
We have developed a four-layer depth of interaction (DOI) detector with single-side photon readout, in which segmented crystals with the patterned reflector insertion are separately identified by the Anger-type calculation. Optical conditions between segmented crystals, where there is no reflector, affect crystal identification ability. Our objective of this work was to improve crystal identification performance of the four-layer DOI detector that uses crystals segmented with a recently developed laser processing technique to include laser processed boundaries (LPBs). The detector consisted of 2 × 2 × 4mm3 LYSO crystals and a 4 × 4 array multianode photomultiplier tube (PMT) with 4.5 mm anode pitch. The 2D position map of the detector was calculated by the Anger calculation method. At first, influence of optical condition on crystal identification was evaluated for a one-layer detector consisting of a 2 × 2 crystal array with three different optical conditions between the crystals: crystals stuck together using room temperature vulcanized (RTV) rubber, crystals with air coupling and segmented crystals with LPBs. The crystal array with LPBs gave the shortest distance between crystal responses in the 2D position map compared with the crystal array coupled with RTV rubber or air due to the great amount of cross-talk between segmented crystals with LPBs. These results were used to find optical conditions offering the optimum distance between crystal responses in the 2D position map for the four-layer DOI detector. Crystal identification performance for the four-layer DOI detector consisting of an 8 × 8 array of crystals segmented with LPBs was examined and it was not acceptable for the crystals in the first layer. The crystal identification was improved for the first layer by changing the optical conditions between all 2 × 2 crystal arrays of the first layer to RTV coupling. More improvement was observed by combining different optical conditions between all crystals of the first layer and some crystals of the second and the third layers of the segmented array.
Silicon carbide - Progress in crystal growth
NASA Technical Reports Server (NTRS)
Powell, J. Anthony
1987-01-01
Recent progress in the development of two processes for producing large-area high-quality single crystals of SiC is described: (1) a modified Lely process for the growth of the alpha polytypes (e.g., 6H SiC) initially developed by Tairov and Tsvetkov (1978, 1981) and Ziegler et al. (1983), and (2) a process for the epitaxial growth of the beta polytype on single-crystal silicon or other substrates. Growth of large-area cubic SiC on Si is described together with growth of defect-free beta-SiC films on alpha-6H SiC crystals and TiC lattice. Semiconducting qualities of silicon carbide crystals grown by various techniques are discussed.
Understanding the structure of chocolate
NASA Astrophysics Data System (ADS)
Schenk, H.; Peschar, R.
2004-10-01
Crystallization of cocoa-butter in the β phase from the melt under static conditions is only possible using the memory effect of cocoa-butter. Under all other conditions polymorphs with lower melting temperatures develop, whereas the β phase is the preferred one in chocolate. SAXS experiments proved 1,3-distearoyl-2-oleoylglycerol seeds with triple chain-length packing initiate the β-crystallization. Models for the different phases may be based on the crystal structure determinations of triacylglycerols. A new, patented, way of chocolate making is in development in which the traditional tempering process is replaced by another pre-crystallization process. The process is based on the use of seed crystals in the liquid phase and driven by a feedback system.
Crystallization Pathways in Biomineralization
NASA Astrophysics Data System (ADS)
Weiner, Steve; Addadi, Lia
2011-08-01
A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.
Formation of 2D-PhCs with missing holes based on Si-layers by EBL
NASA Astrophysics Data System (ADS)
Utkin, D. E.; Shklyev, A. A.; Tsarev, A. V.; Latyshev, A. V.
2017-11-01
The fabrication of the periodic structures, that is two-dimensional photonic crystals (2D PhCs) based on Si-materials by electron beam lithography (EBL) technique has been studied. We have investigated basic lithography processes such as designing, exposition, development, etching and others. The developed top-down approach allows close-packed arrays of elements and holes to be formed in nanometre range. This can be used to produce 2D PhCs with emitting micro-cavities (missing holes) with lateral size parameters with an accuracy of about 2% in the Si (100) substrate and in silicon-on-insulator structures. Such accuracy is expected to be sufficient for obtaining the cavities-coupling radiation interference from large areas of 2D PhCs.
Quantifying the Relationship between Curvature and Electric Potential in Lipid Bilayers.
Bruhn, Dennis S; Lomholt, Michael A; Khandelia, Himanshu
2016-06-02
Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular dynamics simulations, we show that headgroup dipole moments, the lateral pressure profile across the bilayer, and spontaneous curvature all systematically change with increasing membrane potentials. In particular, there is a linear dependence between the bending moment (the product of bending rigidity and spontaneous curvature) and the applied membrane potentials. We show that biologically relevant membrane potentials can induce biologically relevant curvatures corresponding to radii of around 500 nm. The implications of flexoelectricity in lipid bilayers are thus likely to be of considerable consequence both in biology and in model lipid bilayer systems.
Microlens frames for laser diode arrays
Skidmore, J.A.; Freitas, B.L.
1999-07-13
Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.
Microlens frames for laser diode arrays
Skidmore, Jay A.; Freitas, Barry L.
1999-01-01
Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter.
Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio
NASA Astrophysics Data System (ADS)
Yeganeh-Haeri, Amir; Weidner, Donald J.; Parise, John B.
1992-07-01
Laser Brillouin spectroscopy was used to determine the adiabatic single-crystal elastic stiffness coefficients of silicon dioxide (SiO_2) in the α-cristobalite structure. This SiO_2 polymorph, unlike other silicas and silicates, exhibits a negative Poisson's ratio; α-cristobalite contracts laterally when compressed and expands laterally when stretched. Tensorial analysis of the elastic coefficients shows that Poisson's ratio reaches a maximum value of -0.5 in some directions, whereas averaged values for the single-phased aggregate yield a Poisson's ratio of -0.16.
Patterning technology for solution-processed organic crystal field-effect transistors
Li, Yun; Sun, Huabin; Shi, Yi; Tsukagoshi, Kazuhito
2014-01-01
Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recentdevelopment in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed. PMID:27877656
Progressive freezing and sweating in a test unit
NASA Astrophysics Data System (ADS)
Ulrich, J.; Özoğuz, Y.
1990-01-01
Crystallization from melts is applied in several fields like waste water treatment, fruit juice or liquid food concentration and purification of organic chemicals. Investigations to improve the understanding, the performance and the control of the process have been carried out. The experimental unit used a vertical tube with a falling film on the outside. With an specially designed measuring technique process controlling parameters have been studied. The results demonstrate the dependency of those parameters upon each other and indicate the way to control the process by controlling the dominant parameter. This is the growth rate of the crystal coat. A further purification of the crystal layer can be achieved by introducing the procedure of sweating, which is a controlled partial melting of the crystal coat. Here again process parameters have been varied and results are presented. The strong effect upon the final purity of the product by an efficient executed sweating which is effectively tuned on the crystallization procedure should save crystallization steps, energy and time.
ERIC Educational Resources Information Center
Phillip, Cyndi
2016-01-01
Five initiatives launched during Cyndi Phillip's term as American Association of School Librarians (AASL) President (2006-2007) continue to have an impact on school librarians ten years later. They include the rewriting of AASL's learning standards, introduction of the SKILLS Act, the presentation of the Crystal Apple Award to Scholastic Library…
NASA Astrophysics Data System (ADS)
Kogarko, L. N..
2012-04-01
In the center of Kola Peninsula there are two large layered intrusions of agpaitic nepheline syenites - Khibina and Lovozero. . The Khibina alkaline massif (Kola Peninsula,Russia) hosts the world's largest and economically most important apatite deposit. The Khibina massif is a complex multiphase body built up from a number of ring-like and conical intrusions. The apatite bearing intrusion is ring-like and is represented by a layered body of ijolitic composition with a thickness of about 1 - 2 km. The upper zone is represented by different types of apatite ores. These rocks consist of 60-90% euhedral very small (tenths of mm)apatite crystals. The lower zone has mostly ijolitic composition. The lower zone grades into underlying massive urtite consisting of 75-90% large (several mm) euhedral nepheline. Our experimental studies of systems with apatite demonstrated the near-eutectic nature of the apatite-bearing intrusion, resulting in practically simultaneous crystallization of nepheline, apatite and pyroxene. The mathematical model of the formation of the layered apatite-bearing intrusion based on the processes of sedimentation under the conditions of steady state convection taking account of crystal sizes is proposed. Under the conditions of steady-state convection large crystals of nepheline continuously had been settling forming massive underlying urtite whereas smaller crystals of pyroxenes, nepheline and apatite had been stirred in the convecting melt. During the cooling the intensity of convection decreased causing a settling of smaller crystals of nepheline and pyroxene and later very small crystalls of apatite in the upper part of alkaline magma chamber. The Lovozero massif, the largest of the Globe layered peralkaline intrusion, comprises super-large rare-metal (Nb, Ta, REE) deposit. The main ore mineral is loparite (Na, Ce, Ca)2 (Ti, Nb)2O6 which was mined during many years. The composition of cumulus loparite changed systematically upward through the intrusion with an increase in Na, Sr, Nb, Th, Nb/Ta, U/Th and decrease in REE, Zr, V, Zn, Ba and Ti. Our investigation indicates that the formation of loparite ore was the result of several factors including the chemical evolution of highly alkaline magmatic system and mechanical accumulation of loparite at the base of convecting unit.
Crystallization Dynamics of Organolead Halide Perovskite by Real-Time X-ray Diffraction.
Miyadera, Tetsuhiko; Shibata, Yosei; Koganezawa, Tomoyuki; Murakami, Takurou N; Sugita, Takeshi; Tanigaki, Nobutaka; Chikamatsu, Masayuki
2015-08-12
We analyzed the crystallization process of the CH3NH3PbI3 perovskite by observing real-time X-ray diffraction immediately after combining a PbI2 thin film with a CH3NH3I solution. A detailed analysis of the transformation kinetics demonstrated the fractal diffusion of the CH3NH3I solution into the PbI2 film. Moreover, the perovskite crystal was found to be initially oriented based on the PbI2 crystal orientation but to gradually transition to a random orientation. The fluctuating characteristics of the crystallization process of perovskites, such as fractal penetration and orientational transformation, should be controlled to allow the fabrication of high-quality perovskite crystals. The characteristic reaction dynamics observed in this study should assist in establishing reproducible fabrication processes for perovskite solar cells.
Modeling of dislocation dynamics in germanium Czochralski growth
NASA Astrophysics Data System (ADS)
Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.
2017-06-01
Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.
Quantification of the intrusion process at Kīlauea volcano, Hawai'i
NASA Astrophysics Data System (ADS)
Wright, Thomas L.; Marsh, Bruce
2016-12-01
The characteristic size of two types of intrusions identified beneath Kīlauea's East Rift zone are uniquely estimated by combining time constraints from fractional crystallization and the rates of magma solidification during cooling. Some intrusions were rapidly emplaced as dikes, but stalled before reaching the surface, and cooled and crystallized to feed later fractionated eruptions. More specifically, using the observed time interval between initial emplacement and eruption of fractionated lava, whose degree of fractionation is estimated from petrologic mixing calculations, the extent of solidification or cooling needed to produce this amount of fractionation can be directly inferred. And from the known erupted volumes the spatial extent or size of this fractionated volume can be analytically related to the full size of the source body itself. Two examples yield dike widths of 82 and 68 m. Other intrusions remain close to the east rift magma transport path and are observed to last for decades or longer as viable magma bodies that may participate in feeding later eruptions. The thickness of semi-permanent reservoirs near the East Rift Zone magma transport path can be estimated by assuming a resupply rate that is sufficiently frequent to restrict cooling to < 10 °C. It is inferred that both types of intrusions likely began as dike offshoots from the East Rift Zone magma transport path, but the frequently resupplied bodies may have later been converted to sills or laccoliths of heights estimated at 43-62 m. Our modeled intrusions contrast with models of rapidly emplaced thinner dikes feeding shallow intrusions, which are accompanied by intense rift earthquake swarms and are often associated with eruptions. These calculations show that long-term heating of the wallrock of the magma transport paths serves to slow conduit cooling, which may be partly responsible for sustaining long East Rift Zone eruptions. Adjacent to the vertical transport path beneath Kīlauea's summit, the combined effects of heating and ever-increasing magma supply rate may have forced a commensurate enlarging of the conduit, perhaps explaining the occurrence of a temporary burst of deep (5-15 km) long-period earthquake swarms between 1987 and 1992.
Resonance-enhanced optical forces between coupled photonic crystal slabs.
Liu, Victor; Povinelli, Michelle; Fan, Shanhui
2009-11-23
The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.
High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure
NASA Astrophysics Data System (ADS)
Yan, Xiaodong; Esqueda, Ivan S.; Ma, Jiahui; Tice, Jesse; Wang, Han
2018-01-01
In this work, we study the high critical breakdown field in β-Ga2O3 perpendicular to its (100) crystal plane using a β-Ga2O3/graphene vertical heterostructure. Measurements indicate a record breakdown field of 5.2 MV/cm perpendicular to the (100) plane that is significantly larger than the previously reported values on lateral β-Ga2O3 field-effect-transistors (FETs). This result is compared with the critical field typically measured within the (100) crystal plane, and the observed anisotropy is explained through a combined theoretical and experimental analysis.
Light-assisted templated self assembly using photonic crystal slabs.
Mejia, Camilo A; Dutt, Avik; Povinelli, Michelle L
2011-06-06
We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably trapped periodic patterns of particles are dependent on wavelength and polarization. Tuning the wavelength or polarization of the light source may thus allow the formation and reconfiguration of patterns. We expect that this technique may be used to design all-optically reconfigurable photonic devices.
1988-05-02
G. and J. Chiovini. Decaffeination Process . U.S. Patent 4,251.559; 17 February 1981. 43. Friedrich, J.P.. G.R. List, and A.J. Leakin. Petroleum...0 CONTRACT REPORT BRL-CR-606 EXPLORATORY DEVELOPMENT ON A NEW PROCESS TO PRODUCE IMPROVED RDX CRYSTALS: SUPERCRITICAL FLUID ANTI-SOLVENT...CCESSION NO. 11. TITLE (icnude Sun• y Uasuihcanon) I . • EXPLORATORY DEVELOPMENT ON A NEW PROCESS TO PRODUCE IMPROVED RDX CRYSTALS: SUPERCRITICAL
Porosity Evolution in a Creeping Single Crystal (Preprint)
2012-08-01
1] indicated that the growth of initially present processing induced voids in a nickel based single crystal superalloy played a significant role in...processing induced voids in a nickel based single crystal superalloy played a significant role in limiting creep life. Also, creep tests on single...experimental observations of creep deformation and failure of a nickel based single crystal superalloy, [1, 2]. Metallographic observations have shown that Ni
2014-10-01
offer a practical solution to calculating the grain -scale hetero- geneity present in the deformation field. Consequently, crystal plasticity models...process/performance simulation codes (e.g., crystal plasticity finite element method). 15. SUBJECT TERMS ICME; microstructure informatics; higher...iii) protocols for direct and efficient linking of materials models/databases into process/performance simulation codes (e.g., crystal plasticity
Ultra-Pure Water and Extremophilic Bacteria interactions with Germanium Surfaces
NASA Astrophysics Data System (ADS)
Sah, Vasu R.
Supported by a consortium of semiconductor industry sponsors, an international "TIE" project among 5 National Science Foundation (NSF) Industry/university Cooperative Research Centers discovered that a particular extremophilic microbe, Pseudomonas syzygii, persists in the UltraPure Water (UPW) supplies of chip fabrication facilities (FABs) and can bio-corrode germanium wafers to produce microbe-encased optically transparent crystals. Considered as potentially functional "biochips", this investigation explored mechanisms for the efficient and deliberate production of such microbe-germania adducts as a step toward later testing of their properties as sensors or switches in bioelectronic or biophotonic circuits. Recirculating UPW (Ultra-Pure Water) and other purified water, laminar-flow loops were developed across 50X20x1mm germanium (Ge) prisms, followed by subsequent examination of the prism surfaces using Multiple Attenuated Internal Reflection InfraRed (MAIR-IR) spectroscopy, Contact Potential measurements, Differential Interference Contrast Light Microscopy (DICLM), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDS), and Electron Spectroscopy for Chemical Analysis (ESCA; XPS). P. syzygii cultures originally obtained from a working FAB at University of Arizona were successfully grown on R2A minimal nutrient media. They were found to be identical to the microbes in stored UPW from the same facility, such microbes routinely capable of nucleation and entrapment within GeO2 crystals on the Ge flow surfaces. Optimum flow rates and exposure times were 1 ml/minute (3.2 s-1 shear rate) for 4 days at room temperature, producing densest crystal arrays at the prism central zones 2-3 cm from the flow inlets. Other flow rates and exposure times have higher shear rate which induces a different nucleation mechanism and saturation of crystal formation. Nucleation events began with square and circular oxide deposits surrounding active attached bacteria, presumably in response to diffusing or spreading metabolic products. They germinated into amorphous germania moats around square crystalline growths incorporating bacteria in the ring centers, sometimes in multiples. Further distances of UPW flow along the prism faces showed both amorphous phase dissolution and crystal "ripening", followed by some crystal shedding and downstream secondary collections of crystal clusters. Microscopic viewing allowed micromanipulator-directed fine wire contacts with individual crystals to assess their electrical characteristics, with limited data due to the ceramic-like refractory properties of the germania crystals. A schematic is presented for the events of nucleation and crystal growth observed, offering the interpretation that Ge oxidation to GeO2 occurs from UV-dissociated water corroding the Ge surface while releasing protons that can drive the metabolic processes keeping the extremophilic organisms alive. It is likely that other extremophilic microorganisms can be similarly entrapped within semiconductor crystals. Further work is now required to discriminate between nucleation by microbial exudates and by the microbial surfaces directly, and to interrogate the crystals grown with advanced electronic and biophotonic probes.
NASA Astrophysics Data System (ADS)
Dong, Yuanyuan; Zorman, Christian; Molian, Pal
2003-09-01
A femtosecond pulsed Ti:sapphire laser with a pulse width of 120 fs, a wavelength of 800 nm and a repetition rate of 1 kHz was employed for direct write patterning of single crystalline 3C-SiC thin films deposited on Si substrates. The ablation mechanism of SiC was investigated as a function of pulse energy. At high pulse energies (>1 µJ), ablation occurred via thermally dominated processes such as melting, boiling and vaporizing of single crystalline SiC. At low pulse energies, the ablation mechanism involved a defect-activation process that included the accumulation of defects, formation of nano-particles and vaporization of crystal boundaries, which contributed to well-defined and debris-free patterns in 3C-SiC thin films. The interactions between femtosecond laser pulses and the intrinsic lattice defects in epitaxially grown 3C-SiC films led to the generation of nano-particles. Micromechanical structures such as micromotor rotors and lateral resonators were patterned into 3C-SiC films using the defect-activation ablation mechanism.
GaSe1-xSx and GaSe1-xTex thick crystals for broadband terahertz pulses generation
NASA Astrophysics Data System (ADS)
Nazarov, M. M.; Yu. Sarkisov, S.; Shkurinov, A. P.; Tolbanov, O. P.
2011-08-01
We demonstrate the possibility of broadband THz pulse generation in mixed GaSe1-xSx and GaSe1-xTex crystals. The ordinary and extraordinary refractive indices of the crystals have been measured by the terahertz time-domain spectroscopy method, those values strongly influence the efficiency of THz generation process. The high birefringence and transparency of pure GaSe and mixed crystals allow optical rectification of femtosecond laser pulses in the several millimeters thick crystal using the еее interaction process (with two pumping waves and generated THz wave all having extraordinary polarization in the crystal).
Positron source position sensing detector and electronics
Burnham, Charles A.; Bradshaw, Jr., John F.; Kaufman, David E.; Chesler, David A.; Brownell, Gordon L.
1985-01-01
A positron source, position sensing device, particularly with medical applications, in which positron induced gamma radiation is detected using a ring of stacked, individual scintillation crystals, a plurality of photodetectors, separated from the scintillation crystals by a light guide, and high resolution position interpolation electronics. Preferably the scintillation crystals are several times more numerous than the photodetectors with each crystal being responsible for a single scintillation event from a received gamma ray. The light guide will disperse the light emitted from gamma ray absorption over several photodetectors. Processing electronics for the output of the photodetectors resolves the location of the scintillation event to a fraction of the dimension of each photodetector. Because each positron absorption results in two 180.degree. oppositely traveling gamma rays, the detection of scintillation in pairs permits location of the positron source in a manner useful for diagnostic purposes. The processing electronics simultaneously responds to the outputs of the photodetectors to locate the scintillations to the source crystal. While it is preferable that the scintillation crystal include a plurality of stacked crystal elements, the resolving power of the processing electronics is also applicable to continuous crystal scintillators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
Flowsheet Analysis of U-Pu Co-Crystallization Process as a New Reprocessing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shunji Homma; Jun-ichi Ishii; Jiro Koga
2006-07-01
A new fuel reprocessing system by U-Pu co-crystallization process is proposed and examined by flowsheet analysis. This reprocessing system is based on the fact that hexavalent plutonium in nitric acid solution is co-crystallized with uranyl nitrate, whereas it is not crystallized when uranyl nitrate does not exist in the solution. The system consists of five steps: dissolution of spent fuel, plutonium oxidation, U-Pu co-crystallization as a co-decontamination, re-dissolution of the crystals, and U re-crystallization as a U-Pu separation. The system requires a recycling of the mother liquor from the U-Pu co-crystallization step and the appropriate recycle ratio is determined bymore » flowsheet analysis such that the satisfactory decontamination is achieved. Further flowsheet study using four different compositions of LWR spent fuels demonstrates that the constant ratio of plutonium to uranium in mother liquor from the re-crystallization step is achieved for every composition by controlling the temperature. It is also demonstrated by comparing to the Purex process that the size of the plant based on the proposed system is significantly reduced. (authors)« less
NASA Astrophysics Data System (ADS)
Glushkova, Anastasia V.; Poimanova, Elena Yu.; Bruevich, Vladimir V.; Luponosov, Yuriy N.; Ponomarenko, Sergei A.; Paraschuk, Dmitry Yu.
2017-08-01
Thiophene-phenylene co-oligomers (TPCO) single crystals are promising materials for organic light-emitting devices, e.g., light-emitting transistors (OLETs), due to their ability to combine high luminescence and efficient charge transport. However, optical confinement in platy single crystals strongly decreases light emission from their top surface degrading the device performance. To avoid optical waveguiding, single crystals thinner than 100 nm would be beneficial. Herein, we report on solution-processed ultrathin single crystals of TPCO and study their charge transport properties. As materials we used 1,4-bis(5'-hexyl-2,2'-bithiophene-5-yl)benzene (DH-TTPTT) and 1,4-bis(5'-decyl-2,2'-bithiophene-5-yl)benzene (DD-TTPTT). The ultrathin single crystals were studied by optical polarization, atomic-force, and transmission electron microscopies, and as active layers in organic field effect transistors (OFET). The OFET hole mobility was increased tenfold for the oligomer with longer alkyl substituents (DD-TTPTT) reaching 0.2 cm2/Vs. Our studies of crystal growth indicate that if the substrate is wetted, it has no significant effect on the crystal growth. We conclude that solution-processed ultrathin TPCO single crystals are a promising platform for organic optoelectronic field-effect devices.
Kim, Jae-Hong; Oh, Seunghan; Uhm, Soo-Hyuk
2016-01-01
The aim of this study is to quantify the effect of the crystallization process on lithium disilicate ceramic crowns fabricated using a computer-aided design/computer-aided manufacturing (CAD/CAM) system and to determine whether the effect of crystallization is clinically acceptable by comparing values of fit before and after the crystallization process. The mandibular right first molar was selected as the abutment for the experiments. Fifteen working models were prepared. Lithium disilicate crowns appropriate for each abutment were prepared using a commercial CAD/CAM system. Gaps in the marginal area and 4 internal areas of each crown were measured twice-before and after crystallization-using the silicone replica technique. The mean values of fit before and after crystallization were analyzed using a paired t-test to examine whether the conversion that occurred during crystallization affected marginal and internal gaps (α = 0.05). Gaps increased in the marginal area and decreased in the internal areas after crystallization. There were statistically significant differences in all of the investigated areas (P < 0.05). None of the values for marginal and internal fit of lithium disilicate CAD/CAM crowns after crystallization exceeded 120 μm, which is the clinically acceptable threshold.
Shape Evolution of Detached Bridgman Crystals Grown in Microgravity
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2015-01-01
Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. In microgravity, the parameters that influence the existence of a stable gap are the growth angle of the solidifying crystal, the contact angle between the melt and the crucible wall, and the pressure difference across the meniscus. During actual crystal growth, the initial crystal radius will not have the precise value required for stable detached growth. Beginning with a crystal diameter that differs from stable conditions, numerical calculations are used to analyze the transient crystal growth process. Depending on the initial conditions and growth parameters, the crystal shape will either evolve towards attachment at the crucible wall, towards a stable gap width, or inwards towards eventual collapse of the meniscus. Dynamic growth stability is observed only when the sum of the growth and contact angles exceeds 180 degrees.
Protein crystal growth in microgravity
NASA Technical Reports Server (NTRS)
Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.
1989-01-01
Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.
NASA Astrophysics Data System (ADS)
Nakashima, Ryosuke; Shin, Ryota; Hanafusa, Hiroaki; Higashi, Seiichiro
2017-06-01
We have successfully generated ultra high-power thermal plasma jet (Super TPJ: s-TPJ) by increasing the Ar gas supply pressure to 0.4 MPa and the flow rate to 18 L/min. DC arc discharge was stably performed under a supply power of 4.6 kW. The peak power density of s-TPJ reached 64.1 kW/cm2 and enabled us to melt and recrystallize amorphous silicon (a-Si) films on quartz substrates with a scanning speed as high as 8000 mm/s. Under ultra high-speed scanning faster than 3000 mm/s, we observed granular crystal growth (GCG) competing with conventional high-speed lateral crystallization (HSLC). When further high speed scanning was performed, we observed a significant increase in grain density, which suggests spontaneous nucleation in undercooled molten Si as the origin of GCG. When we crystallized an isolated pattern of 6 × 6 µm2 under GCG conditions, single crystalline growth was successfully achieved.
NASA Astrophysics Data System (ADS)
Scafè, Raffaele; Pellegrini, Rosanna; Puccini, Marco; Cinti, Maria N.; Pani, Roberto
2017-10-01
This work deals with the rejection of events interacting more than one time in a crystal array, by using the method introduced in the paper R. Scafè et al. (2016). In particular the grade of symmetry of charge distributions along the X and Y axes was successfully used for discrimination. Results are presented regarding a 10 × 10 LuYAP:Ce array of 2 × 2 × 10mm3 crystal-pixels coupled to a H10966 Hamamatsu 8 × 8 multi-anode assembly under gamma-ray irradiation from a Co-57 radioisotopic source. Filtered pulse-height spectra are shown characterized by relevant rejection of low-amplitude events. In this region of spectrum, asymmetrical charge distributions were measured due to lutetium and yttrium X-rays escape from lateral walls of crystal-pixels. Events from Lu-176 self activity above the Co-57 photoelectric peak were also rejected. Similar results are reasonably expected at PET photon energy.
Site-controlled crystalline InN growth from the V-pits of a GaN substrate
NASA Astrophysics Data System (ADS)
Kuo, Chien-Ting; Hsu, Lung-Hsing; Lai, Yung-Yu; Cheng, Shan-Yun; Kuo, Hao-Chung; Lin, Chien-Chung; Cheng, Yuh-Jen
2017-05-01
A site-controlled crystalline InN growth from the V-pits of a GaN substrate was investigated. The V- pits were fabricated by epitaxial lateral growth of GaN over SiO2 disks patterned on a sapphire substrate. InN crystals were found to preferably grow on the inclined {10-11} crystal planes of the V-pits. A V-pit size of 1 μm or less can provide precise site-controlled InN nucleation at the V-pit bottom, while no InN was grown on the rest of the exposed GaN surfaces. The site-controlled nucleation is attributed to the low surface energy point created by the converging six {10-11} crystal facets at the V-pit bottom. When In source supply is below a certain value, this V-pit bottom is the only location able to aggregate enough active sources to start nucleation, thereby providing site-controlled crystal growth.
Direct observation of interface instability during crystal growth
NASA Technical Reports Server (NTRS)
Tiller, W. A.; Feigelson, R. S.; Elwell, D.
1982-01-01
The general aim of this investigation was to study interface stability and solute segregation phenomena during crystallization of a model system. Emphasis was to be placed on direct observational studies partly because this offered the possibility at a later stage of performing related experiments under substantially convection-free conditions in the space shuttle. The major achievements described in this report are: (1) the development of a new model system for fundamental studies of crystal growth from the melt and the measurement of a range of material parameters necessary for comparison of experiment with theory. (2) The introduction of a new method of measuring segregation coefficient using absorption of a laser beam by the liquid phase. (3) The comparison of segregation in crystals grown by gradient freezing and by pulling from the melt. (4) The introduction into the theory of solute segregation of an interface field term and comparison with experiment. (5) The introduction of the interface field term into the theories of constitutional supercooling and morphological stability and assessment of its importance.
Reusability of contaminated seed crystal for cast quasi-single crystalline silicon ingots
NASA Astrophysics Data System (ADS)
Li, Zaoyang; Liu, Lijun; Zhou, Genshu
2015-04-01
Reusing seed crystal is beneficial for reducing the production costs for cast quasi-single crystalline (QSC) silicon ingots. We numerically investigate the reusability of seed crystal in the casting processes with quartz crucible and silicon feedstock of different purities. The reused seed crystal is recycled from the standard QSC ingot and has been highly contaminated by iron impurity. Transient simulations of iron transport are carried out and special attention is paid to the diffusion and distribution characteristics of iron impurity at the ingot bottom. The heights of the bottom iron contaminated region are compared for silicon ingots grown from normal and recycled seed crystals. The results show that the purity of quartz crucible can influence the reusability of seed crystal more significantly than that of the feedstock. The recycled seed crystal with high iron concentration can be reused for casting processes with standard crucible, whereas it is not recommended for reusing for processes with pure crucible.
NASA Astrophysics Data System (ADS)
Sliwinski, J. T.; Bachmann, O.; Dungan, M. A.; Huber, C.; Deering, C. D.; Lipman, P. W.; Martin, L. H. J.; Liebske, C.
2017-05-01
Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up ( 50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic ( 62-65 wt% SiO2) ignimbrite with an estimated erupted volume of 500 km3 and an average of 45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from 750 to >800 °C) of an upper crustal mush in response to hotter recharge from below. Zircon U-Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location 0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures ( 710-760 °C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.
Method for the growth of large low-defect single crystals
NASA Technical Reports Server (NTRS)
Powell, J. Anthony (Inventor); Neudeck, Philip G. (Inventor); Trunek, Andrew J. (Inventor); Spry, David J. (Inventor)
2008-01-01
A method and the benefits resulting from the product thereof are disclosed for the growth of large, low-defect single-crystals of tetrahedrally-bonded crystal materials. The process utilizes a uniquely designed crystal shape whereby the direction of rapid growth is parallel to a preferred crystal direction. By establishing several regions of growth, a large single crystal that is largely defect-free can be grown at high growth rates. This process is particularly suitable for producing products for wide-bandgap semiconductors, such as SiC, GaN, AlN, and diamond. Large low-defect single crystals of these semiconductors enable greatly enhanced performance and reliability for applications involving high power, high voltage, and/or high temperature operating conditions.
Processing materials in space - The history and the future
NASA Technical Reports Server (NTRS)
Chassay, Roger; Carswell, Bill
1987-01-01
The development of materials processing in space, and some of the Soyuz, Apollo, Skylab, and Shuttle orbital materials experiments are reviewed. Consideration is given to protein crystal growth, electrophoresis, low-gravity isoelectric focusing, phase partitioning, a monodisperse latex reactor, semiconductor crystal growth, solution crystal growth, the triglycine sulfate experiment, vapor crystal growth experiments, the mercuric iodide experiment, electronic and electrooptical materials, organic thin films and crystalline solids, deep undercooling of metals and alloys, magnetic materials, immiscible materials, metal solidification research, reluctant glass-forming materials, and containerless glass formation. The space processing apparatuses and ground facilities, for materials processing are described. Future facilities for commercial research, development, and manufacturing in space are proposed.
NASA Astrophysics Data System (ADS)
Nguyen, Tran Phu; Chuang, Hsiao-Tsun; Chen, Jyh-Chen; Hu, Chieh
2018-02-01
In this study, the effect of the power history on the shape of a sapphire crystal and the thermal stress during the Kyropoulos process are numerically investigated. The simulation results show that the thermal stress is strongly dependent on the power history. The thermal stress distributions in the crystal for all growth stages produced with different power histories are also studied. The results show that high von Mises stress regions are found close to the seed of the crystal, the highly curved crystal surface and the crystal-melt interface. The maximum thermal stress, which occurs at the crystal-melt interface, increases significantly in value as the crystal expands at the crown. After this, there is reduction in the maximum thermal stress as the crystal lengthens. There is a remarkable enhancement in the maximum von Mises stress when the crystal-melt interface is close to the bottom of the crucible. There are two obvious peaks in the maximum Von Mises stress, at the end of the crown stage and in the final stage, when cracking defects can form. To alleviate this problem, different power histories are considered in order to optimize the process to produce the lowest thermal stress in the crystal. The optimal power history is found to produce a significant reduction in the thermal stress in the crown stage.
Jarmer, Daniel J; Lengsfeld, Corinne S; Anseth, Kristi S; Randolph, Theodore W
2005-12-01
Poly (sebacic anhydride) (PSA) was used as a growth inhibitor to selectively modify habit of griseofulvin crystals formed via the Precipitation with a compressed-fluid antisolvent (PCA) process. PSA and griseofulvin were coprecipitated within a PCA injector, which provided efficient mixing between the solution and compressed antisolvent process streams. Griseofulvin crystal habit was modified from acicular to bipyramidal when the mass ratio of PSA/griseofulvin in the solution feed stream was
Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material
Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,
2013-09-03
A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.
Production of extreme-purity aluminum and silicon by fractional crystallization processing
NASA Astrophysics Data System (ADS)
Dawless, R. K.; Troup, R. L.; Meier, D. L.; Rohatgi, A.
1988-06-01
Large scale fractional crystallization is used commercially at Alcoa to produce extreme purity aluminum (99.999+% Al). The primary market is sputtering targets used to make interconnects for integrated circuits. For some applications the impurities uranium and thorium are reduced to less than 1 ppbw to avoid "soft errors" associated with α particle emission. The crystallization process achieves segregation coefficients which are close to theoretical at normal yields, and this, coupled with the scale of the units, allows practical production of this material. The silicon purification process involves crystallization of Si from molten aluminum alloys containing about 30% silicon. The crystallites from this process are further treated to remove residual Al and an extreme purity ingot is obtained. This material is considered suitable for single crystal or ribbon type photovoltaic cells and for certain IC applications, including highly doped substrates used for epitaxial growth. In production of both extreme purity Al and Si, impurities are rejected to the remaining melt as the crystals form and some separation is achieved by draining this downgraded melt from the unit. Purification of this downgrade by crystallization has also been demonstrated for both systems and is important for achieving high recoveries.
Effect of Viscosity on the Crystallization of Undercooled Liquids
NASA Technical Reports Server (NTRS)
2003-01-01
There have been numerous studies of glasses indicating that low-gravity processing enhances glass formation. NASA PI s are investigating the effect of low-g processing on the nucleation and crystal growth rates. Dr. Ethridge is investigating a potential mechanism for glass crystallization involving shear thinning of liquids in 1-g. For shear thinning liquids, low-g (low convection) processing will enhance glass formation. The study of the viscosity of glass forming substances at low shear rates is important to understand these new crystallization mechanisms. The temperature dependence of the viscosity of undercooled liquids is also very important for NASA s containerless processing studies. In general, the viscosity of undercooled liquids is not known, yet knowledge of viscosity is required for crystallization calculations. Many researchers have used the Turnbull equation in error. Subsequent nucleation and crystallization calculations can be in error by many orders of magnitude. This demonstrates the requirement for better methods for interpolating and extrapolating the viscosity of undercooled liquids. This is also true for undercooled water. Since amorphous water ice is the predominant form of water in the universe, astrophysicists have modeled the crystallization of amorphous water ice with viscosity relations that may be in error by five orders-of-magnitude.
Growing Larger Crystals for Neutron Diffraction
NASA Technical Reports Server (NTRS)
Pusey, Marc
2003-01-01
Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.
NASA Astrophysics Data System (ADS)
VanTongeren, J. A.
2017-12-01
Oceanic crust is formed when mantle-derived magmas are emplaced at the ridge axis, a zone of intense rifting and extension. Magmas begin to cool and crystallize on-axis, forming what is termed the "Mush Zone", a region of partially molten rocks. Several attempts have been made to understand the nature of the Mush Zone at fast spreading mid-ocean ridges, specifically how much partial melt exists and how far off-axis the Mush Zone extends. Geophysical estimates of P-wave velocity perturbations at the East Pacific Rise show a region of low velocity approximately 1.5-2.5 km off-axis, which can be interpreted to be the result of higher temperature [e.g. Dunn et al., 2000, JGR] or the existence of partial melt. New petrological and geochemical data and methods allow for the calculation of the lateral extent of the Mush Zone in the lower oceanic crust on exposed sections collected from the Oman ophiolite, a paleo-fast/intermediate spreading center. I will present new data quantifying the crystallization temperatures of gabbros from the Wadi Khafifah section of lower oceanic gabbros from the Oman ophiolite. Crystallization temperatures are calculated with the newly developed plagioclase-pyroxene REE thermometer of Sun and Liang [2017, Contrib. Min. Pet.]. There does not appear to be any systematic change in the crystallization temperature of lower crustal gabbros with depth in the crust. In order to quantify the duration of crystallization and the lateral extent of the Mush Zone of the lower crust, crystallization temperatures are paired with estimates of the solidus temperature and cooling rate determined from the same sample, previously constrained by the Ca diffusion in olivine geothermometer/ geospeedometer [e.g. VanTongeren et al., 2008 EPSL]. There is no systematic variation in the closure temperature of Ca in olivine, or the cooling rate to the 800°C isotherm. These results show that gabbros throughout the lower crust of the Oman ophiolite remain in a partially molten state for an average of 10,000 years. Assuming a paleo-spreading rate similar to that of the East Pacific Rise, this translates to a "Mush Zone" of partially molten rock up to 1 km off-axis, slightly less than the low velocity zone observed geophysically on the East Pacific Rise.
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Forsythe, Elizabeth L.; Johns, Michael R.; Pusey, Marc L.; White, Edward T.
1998-01-01
Bulk crystallization in stirred vessels is used industrially for the recovery and purification of many inorganic and organic materials. Although much has been written on the crystallization of proteins for X-ray diffraction analysis, very little has been reported on the application of bulk crystallization in stirred vessels. In this study, a 1-liter, seeded, stirred, batch crystallizer was used with ovalbumin as a model protein to test the feasibility of this crystallization method as a recovery and purification process for proteins. Results were obtained for ovalbumin solubility, nucleation thresholds, crystal breakage and crystal growth kinetics in bulk solution under a range of operating conditions of pH and ammonium sulphate concentration (Judge et al., 1996). Experiments were also performed to determine the degree of purification that can be achieved by the crystallization of ovalbumin from a mixture of proteins. The effect of the presence of these proteins upon the ovalbumin crystal growth kinetics was also investigated (Judge et al., 1995). All of these aspects are essential for the design of bulk crystallization processes which have not previously been reported for proteins. Results from a second study that investigated the effect of structurally different proteins on the solubility, crystal growth rates and crystal purity of chicken egg white lysozyme are also presented (Judge et al., 1997). In this case face growth rates were measured using lysozyme purified by liquid chromatography and the effect of the addition of specific protein impurities were observed on the (110) and (101) crystal faces. In these two studies the results are presented to show the feasibility and purifying ability of crystallization as a production process for proteins.
Ma, Xiaowei; Zhang, Manyu; Liang, Chongyun; Li, Yuesheng; Wu, Jingjing; Che, Renchao
2015-11-04
Iron oxides are very promising anode materials based on conversion reactions for lithium-ion batteries (LIBs). During conversion processes, the crystal structure and composition of the electrode material are drastically changed. Surprisingly, in our study, inheritance of a crystallographic orientation was found during lithiation/delithiation processes of single-crystal α-Fe2O3 nanocubes by ex situ transmission electron microscopy. Single-crystal α-Fe2O3 was first transformed into numerous Fe nanograins embedded in a Li2O matrix, and then the conversion between Fe and FeO nanograins became the main reversible electrochemical reaction for energy storage. Interestingly, these Fe/FeO nanograins had almost the same crystallographic orientation, indicating that the lithiated/delithiated products can inherit the crystallographic orientation of single-crystal α-Fe2O3. This finding is important for understanding the detailed electrochemical conversion processes of iron oxides, and this feature may also exist during lithiation/delithiation processes of other transition-metal oxides.
Modelling morphology evolution during solidification of IPP in processing conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantani, R., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it; De Santis, F., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it; Speranza, V., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it
During polymer processing, crystallization takes place during or soon after flow. In most of cases, the flow field dramatically influences both the crystallization kinetics and the crystal morphology. On their turn, crystallinity and morphology affect product properties. Consequently, in the last decade, researchers tried to identify the main parameters determining crystallinity and morphology evolution during solidification In processing conditions. In this work, we present an approach to model flow-induced crystallization with the aim of predicting the morphology after processing. The approach is based on: interpretation of the FIC as the effect of molecular stretch on the thermodynamic crystallization temperature; modelingmore » the molecular stretch evolution by means of a model simple and easy to be implemented in polymer processing simulation codes; identification of the effect of flow on nucleation density and spherulites growth rate by means of simple experiments; determination of the condition under which fibers form instead of spherulites. Model predictions reproduce most of the features of final morphology observed in the samples after solidification.« less
NASA Astrophysics Data System (ADS)
Zuo, Biao; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping
2016-06-01
Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng
2016-06-21
Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films,more » with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.« less
Fundamental Studies of the Mechanical Behavior of Microelectronic Thin Film Materials
1991-01-01
scanning, wafer curvature technique to study the kinetics of crystallization of amorphous silicon. When a thin film of amorphous silicon crystallizes...the film and the kinetics of the crystallization process. We find the tensile stress in the film to increase by about 500 MPa when crystallization...occurs. This is a very large stress that could have significance for device processing and applications. By measuring the kinetics of this stress change
Space processing of crystals for opto-electronic devices: The case for solution growth
NASA Technical Reports Server (NTRS)
Hayden, S. C.; Cross, L. E.
1975-01-01
The results obtained during a six month program aimed at determining the viability of space processing in the 1980's of dielectric-elastic-magnetic single crystals were described. The results of this program included: identification of some important emerging technologies dependent on dielectric-elastic-magnetic crystals, identification of the impact of intrinsic properties and defects in the single crystals on system performance, determination of a sensible common basis for the many crystals of this class, and identification of the benefits of micro-gravity and some initial experimental evidence that these benefits can be realized in space. It is concluded that advanced computers and optical communications are at a development stage for high demand of dielectric-elastic-magnetic single crystals in the mid-1980's. Their high unit cost and promise for significantly increased perfection by growth in space justified pursuit of space processing.
Rahaman, Md Saifur; Mavinic, Donald S; Meikleham, Alexandra; Ellis, Naoko
2014-03-15
The cost associated with the disposal of phosphate-rich sludge, the stringent regulations to limit phosphate discharge into aquatic environments, and resource shortages resulting from limited phosphorus rock reserves, have diverted attention to phosphorus recovery in the form of struvite (MAP: MgNH4PO4·6H2O) crystals, which can essentially be used as a slow release fertilizer. Fluidized-bed crystallization is one of the most efficient unit processes used in struvite crystallization from wastewater. In this study, a comprehensive mathematical model, incorporating solution thermodynamics, struvite precipitation kinetics and reactor hydrodynamics, was developed to illustrate phosphorus depletion through struvite crystal growth in a continuous, fluidized-bed crystallizer. A thermodynamic equilibrium model for struvite precipitation was linked to the fluidized-bed reactor model. While the equilibrium model provided information on supersaturation generation, the reactor model captured the dynamic behavior of the crystal growth processes, as well as the effect of the reactor hydrodynamics on the overall process performance. The model was then used for performance evaluation of the reactor, in terms of removal efficiencies of struvite constituent species (Mg, NH4 and PO4), and the average product crystal sizes. The model also determined the variation of species concentration of struvite within the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) were used to evaluate the reactor performance. The model predictions provided a reasonably good fit with the experimental results for PO4-P, NH4-N and Mg removals. Predicated average crystal sizes also matched fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation and process optimization of struvite crystallization in a fluidized-bed reactor. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Paulino, A S; Rauber, G; Campos, C E M; Maurício, M H P; de Avillez, R R; Capobianco, G; Cardoso, S G; Cuffini, S L
2013-05-13
Deflazacort (DFZ), a derivate of prednisolone, is a poorly soluble drug which has been proposed to have major advantages over other corticosteroids. Poorly soluble drugs present limited bioavailability due to their low solubility and dissolution rate and several strategies have been developed in order to find ways to improve them. In general, pharmaceutical laboratories use a micronized process to reduce the particle size in order to increase the dissolution of the drugs. However, this process causes changes such as polymorphic transitions, particle agglomeration and a reduction in fluidity and wettability. These solid-state properties affect the dissolution behavior and stability performance of drugs. Crystallization techniques are widely used in the pharmaceutical industry and antisolvent crystallization has been used to obtain ultrafine particles. In this study, DFZ was investigated in terms of its antisolvent crystallization in different solvents and under various preparation conditions (methanol/water ratio, stirring and evaporation rate, etc.), in order to compare the physicochemical properties between crystallized samples and raw materials available on the Brazilian market with and without micronization. Crystalline structure, morphology, and particle size, and their correlation with the Intrinsic Dissolution Rate (IDR) and dissolution profile as relevant biopharmaceutical properties were studied. Crystallization conditions were achieved which provided crystalline samples of hollow-shaped crystals with internal channels, which increased the dissolution rate of DFZ. The antisolvent crystallization process allowed the formation of hollow crystals, which demonstrated a better dissolution profile than the raw material (crystalline and micronized), making this a promising technique as a crystallization strategy for improving the dissolution and thus the bioavailability of poorly soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Yanyan; Zhao, Jianlin; Di, Jianglei; Jiang, Hongzhen; Wang, Qian; Wang, Jun; Guo, Yunzhu; Yin, Dachuan
2012-07-30
We report a real-time measurement method of the solution concentration variation during the growth of protein-lysozyme crystals based on digital holographic interferometry. A series of holograms containing the information of the solution concentration variation in the whole crystallization process is recorded by CCD. Based on the principle of double-exposure holographic interferometry and the relationship between the phase difference of the reconstructed object wave and the solution concentration, the solution concentration variation with time for arbitrary point in the solution can be obtained, and then the two-dimensional concentration distribution of the solution during crystallization process can also be figured out under the precondition which the refractive index is constant through the light propagation direction. The experimental results turns out that it is feasible to in situ, full-field and real-time monitor the crystal growth process by using this method.
Fluid Physics and Macromolecular Crystal Growth in Microgravity
NASA Technical Reports Server (NTRS)
Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.
2000-01-01
The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows. Buoyancy driven convection results from density differences between the bulk solution and fluid close to the crystal surface which has been depleted of macromolecules due to crystal growth. Schlieren photograph of a growing lysozyme crystal illustrating a 'growth plume' resulting from buoyancy driven convection. Both sedimentation and buoyancy driven convection have a negative effect on crystal growth and microgravity is seen as a way to both greatly reduce sedimentation and provide greater stability for 'depletion zones' around growing crystals. Some current crystal growth hardware however such as those based on a vapor diffusion techniques, may also be introducing unwanted Marangoni convection which becomes more pronounced in microgravity. Negative effects of g-jitter on crystal growth have also been observed. To study the magnitude of fluid flows around growing crystals we have attached a number of different fluorescent probes to lysozyme molecules. At low concentrations, less than 40% of the total protein, the probes do not appear to effect the crystal growth process. By using these probes we expect to determine not only the effect of induced flows due to crystal growth hardware design but also hope to optimize crystallization hardware so that destructive flows are minimized both on the ground and in microgravity.
Real-time processing of interferograms for monitoring protein crystal growth on the Space Station
NASA Technical Reports Server (NTRS)
Choudry, A.; Dupuis, N.
1988-01-01
The possibility of using microscopic interferometric techniques to monitor the growth of protein crystals on the Space Station is studied. Digital image processing techniques are used to develop a system for the real-time analysis of microscopic interferograms of nucleation sites during protein crystal growth. Features of the optical setup and the image processing system are discussed and experimental results are presented.
NASA Technical Reports Server (NTRS)
Wang, Jai-Ching; Watring, D.; Lehoczky. S. L.; Su, C. H.; Gillies, D.; Szofran, F.; Sha, Y. G.; Sha, Y. G.
1999-01-01
Infrared detected materials, such as Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te have energy gaps almost linearly proportional to their composition. Due to the wide separation of liquidus and solidus curves of their phase diagram, there are compositional segregation in both of the axial and radial directions of these crystals grown in the Bridgman system unidirectionally with constant growth rate. It is important to understand the mechanisms, which affect lateral segregation such that large radially uniform composition crystal can be produced. Following Coriel, etc's treatment, we have developed a theory to study the effect of a curved melt-solid interface shape on lateral composition distribution. The model is considered to be a cylindrical system with azimuthal symmetry and a curved melt-solid interface shape which can be expressed as a linear combination of a series of Bessell's functions. The results show that melt-solid interface shape has a dominant effect on the lateral composition distribution of these systems. For small values of beta, the solute concentration at the melt-solid interface scales linearly with interface shape with a proportional constant of the produce of beta and (1 -k), where beta = VR/D, with V as growth velocity, R as the sample radius, D as the diffusion constant and k as the distribution constant. A detailed theory will be presented. A computer code has been developed and simulations have been performed and compared with experimental results. These will be published in another paper.
NASA Technical Reports Server (NTRS)
Wang, Jai-Ching; Watring, Dale A.; Lehoczky, Sandor L.; Su, Ching-Hua; Gillies, Don; Szofran, Frank
1999-01-01
Infrared detector materials, such as Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te have energy gaps almost linearly proportional to its composition. Due to the wide separation of liquidus and solidus curves of their phase diagram, there are compositional segregations in both of axial and radial directions of these crystals grown in the Bridgman system unidirectionally with constant growth rate. It is important to understand the mechanisms which affect lateral segregation such that large uniform radial composition crystal is possible. Following Coriell, etc's treatment, we have developed a theory to study the effect of a curved melt-solid interface shape on the lateral composition distribution. The system is considered to be cylindrical system with azimuthal symmetric with a curved melt-solid interface shape which can be expressed as a linear combination of a series of Bessell's functions. The results show that melt-solid interface shape has a dominate effect on lateral composition distribution of these systems. For small values of b, the solute concentration at the melt-solid interface scales linearly with interface shape with a proportional constant of the product of b and (1 - k), where b = VR/D, with V as growth velocity, R as sample radius, D as diffusion constant and k as distribution constant. A detailed theory will be presented. A computer code has been developed and simulations have been performed and compared with experimental results. These will be published in another paper.
A novel dual-frequency imaging method for intravascular ultrasound applications.
Qiu, Weibao; Chen, Yan; Wong, Chi-Man; Liu, Baoqiang; Dai, Jiyan; Zheng, Hairong
2015-03-01
Intravascular ultrasound (IVUS), which is able to delineate internal structures of vessel wall with fine spatial resolution, has greatly enriched the knowledge of coronary atherosclerosis. A novel dual-frequency imaging method is proposed in this paper for intravascular imaging applications. A probe combined two ultrasonic transducer elements with different center frequencies (36 MHz and 78 MHz) is designed and fabricated with PMN-PT single crystal material. It has the ability to balance both imaging depth and resolution, which are important imaging parameters for clinical test. A dual-channel imaging platform is also proposed for real-time imaging, and this platform has been proven to support programmable processing algorithms, flexible imaging control, and raw RF data acquisition for IVUS applications. Testing results show that the -6 dB axial and lateral imaging resolutions of low-frequency ultrasound are 78 and 132 μm, respectively. In terms of high-frequency ultrasound, axial and lateral resolutions are determined to be as high as 34 and 106 μm. In vitro intravascular imaging on healthy swine aorta is conducted to demonstrate the performance of the dual-frequency imaging method for IVUS applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Geologic Mapping, Volcanic Stages and Magmatic Processes in Hawaiian Volcanoes
NASA Astrophysics Data System (ADS)
Sinton, J. M.
2005-12-01
The concept of volcanic stages arose from geologic mapping of Hawaiian volcanoes. Subaerial Hawaiian lava successions can be divided generally into three constructional phases: an early (shield) stage dominated by thin-bedded basaltic lava flows commonly associated with a caldera; a later (postshield) stage with much thicker bedded, generally lighter colored lava flows commonly containing clinopyroxene; calderas are absent in this later stage. Following periods of quiescence of a half million years or more, some Hawaiian volcanoes have experienced renewed (rejuvenated) volcanism. Geological and petrographic relations irrespective of chemical composition led to the identification of mappable units on Niihau, Kauai, Oahu, Molokai, Maui and Hawaii, which form the basis for this 3-fold division of volcanic activity. Chemical data have complicated the picture. There is a growing tendency to assign volcanic stage based on lava chemistry, principally alkalicity, into tholeiitic shield, alkalic postshield, and silica undersaturated rejuvenation, despite the evidence for interbedded tholeiitic and alkalic basalts in many shield formations, and the presence of mildly tholeiitic lavas in some postshield and rejuvenation formations. A consistent characteristic of lava compositions from most postshield formations is evidence for post-melting evolution at moderately high pressures (3-7 kb). Thus, the mapped shield to postshield transitions primarily reflect the disappearance of shallow magma chambers (and associated calderas) in Hawaiian volcanoes, not the earlier (~100 ka earlier in Waianae Volcano) decline in partial melting that leads to the formation of alkalic parental magmas. Petrological signatures of high-pressure evolution are high-temperature crystallization of clinopyroxene and delayed crystallization of plagioclase, commonly to <3 % MgO. Petrologic modeling using pMELTS and MELTS algorithms allows for quantification of the melting and fractionation conditions giving rise to various Hawaiian lithologies. This analysis indicates that the important magmatic process that links geologic mapping to volcanic stage is thermal state of the volcano, as manifest by depth of magma evolution. The only criterion for rejuvenation volcanism is the presence of a significant time break (more than several hundred thousand years) preceding eruption.
Cottignoli, Valentina; Agrosì, Giovanna; Familiari, Giuseppe; Salvador, Loris
2015-01-01
Despite recent advances, mineralization site, its microarchitecture, and composition in calcific heart valve remain poorly understood. A multiscale investigation, using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectrometry (EDS), from micrometre up to nanometre, was conducted on human severely calcified aortic and mitral valves, to provide new insights into calcification process. Our aim was to evaluate the spatial relationship existing between bioapatite crystals, their local growing microenvironment, and the presence of a hierarchical architecture. Here we detected the presence of bioapatite crystals in two different mineralization sites that suggest the action of two different growth processes: a pathological crystallization process that occurs in biological niches and is ascribed to a purely physicochemical process and a matrix-mediated mineralized process in which the extracellular matrix acts as the template for a site-directed nanocrystals nucleation. Different shapes of bioapatite crystallization were observed at micrometer scale in each microenvironment but at the nanoscale level crystals appear to be made up by the same subunits. PMID:26509159
Novel activation process for Mg-implanted GaN
NASA Astrophysics Data System (ADS)
Hashimoto, Shin; Nakamura, Takao; Honda, Yoshio; Amano, Hiroshi
2014-02-01
A novel activation process for Mg-implanted GaN was demonstrated. As opposed to the conventional thermal annealing process, an H2/NH3 alternating supply annealing process achieved better optical activation, stronger near-ultraviolet luminescence and weaker yellow luminescence in the photoluminescence spectroscopy. After this process, small hexagonal hillocks were observed on the surface, which indicated that crystal regrowth was induced by this process, consisting of decomposition of GaN by H2 supplies and re-crystallization by NH3 supplies. It was revealed that the implanted Mg could easily be located at the activation site by means of crystal regrowth by this process.
NASA Astrophysics Data System (ADS)
Zhuang, Han; Lim, Siak Piang; Lee, Heow Pueh
2009-06-01
Droplet quartz crystal microbalance has been demonstrated to be a promising tool for accessing material properties of fluids as well as the diverse solid-fluid interface phenomena. However, a microliter droplet localized on the surface of the electrodes of finite lateral size may cause a nonuniform distribution of the plane velocity, which may lead to surface normal fluid flow and generate the compressional waves above the crystal surface. In the present article, we report systematical investigation on both resonance frequency and dissipation measurements with reference to the small droplets of silicone oils spreading on the surface of the quartz crystal microbalance. Significant cyclical variations in the resonant frequency and resistance of the crystal have been observed as the characteristic sizes of the silicone oil droplets are close to specific values known to favor compressional wave generation. The experimental results have been compared with the theoretical values predicted by the finite element computation associated with a simple hydrodynamic model. Good agreement between theory and experiment has been obtained. The finding indicates that the small droplets on the crystal surface can act as resonant cavities for the compressional wave generation and that the greatest propensity to exhibit periodical resonance behavior in the frequency and dissipation measurements is at droplet height of λc/2 above the crystal surface.
Yuki, T; Amano, Y; Kushiyama, Y; Takahashi, Y; Ose, T; Moriyama, I; Fukuhara, H; Ishimura, N; Koshino, K; Furuta, K; Ishihara, S; Adachi, K; Kinoshita, Y
2006-05-01
Pit pattern diagnosis is important for endoscopic detection of dysplastic Barrett's lesions, though using magnification endoscopy can be difficult and laborious. We investigated the usefulness of a modified crystal violet chromoendoscopy procedure and utilised a new pit pattern classification for diagnosis of dysplastic Barrett's lesions. A total of 1,030 patients suspected of having a columnar lined oesophagus were examined, of whom 816 demonstrated a crystal violet-stained columnar lined oesophagus. The early group of patients underwent 0.05% crystal violet chromoendoscopy, while the later group was examined using 0.03% crystal violet with 3.0% acetate. A targeted biopsy of the columnar lined oesophagus was performed using crystal violet staining after making a diagnosis of closed or open type pit pattern with a newly proposed system of classification. The relationship between type of pit pattern and histologically identified dysplastic Barrett's lesions was evaluated. Dysplastic Barrett's lesions were identified in biopsy samples with an open type pit pattern with a sensitivity of 96.0%. Further, Barrett's mucosa with the intestinal predominant mucin phenotype was closely associated with the open type pit pattern (sensitivity 81.9%, specificity 95.6%). The new pit pattern classification for diagnosis of Barrett's mucosa was found to be useful for identification of cases with dysplastic lesions and possible malignant potential using a crystal violet chromoendoscopic procedure.
NASA Astrophysics Data System (ADS)
Kugele, Daniel; Dörr, Dominik; Wittemann, Florian; Hangs, Benjamin; Rausch, Julius; Kärger, Luise; Henning, Frank
2017-10-01
The combination of thermoforming processes of continuous-fiber reinforced thermoplastics and injection molding offers a high potential for cost-effective use in automobile mass production. During manufacturing, the thermoplastic laminates are initially heated up to a temperature above the melting point. This is followed by continuous cooling of the material during the forming process, which leads to crystallization under non-isothermal conditions. To account for phase change effects in thermoforming simulation, an accurate modeling of the crystallization kinetics is required. In this context, it is important to consider the wide range of cooling rates, which are observed during processing. Consequently, this paper deals with the experimental investigation of the crystallization at cooling rates varying from 0.16 K/s to 100 K/s using standard differential scanning calorimetry (DSC) and fast scanning calorimetry (Flash DSC). Two different modeling approaches (Nakamura model, modified Nakamura-Ziabicki model) for predicting crystallization kinetics are parameterized according to DSC measurements. It turns out that only the modified Nakamura-Ziabicki model is capable of predicting crystallization kinetics for all investigated cooling rates. Finally, the modified Nakamura-Ziabicki model is validated by cooling experiments using PA6-CF laminates with embedded temperature sensors. It is shown that the modified Nakamura-Ziabicki model predicts crystallization at non-isothermal conditions and varying cooling rates with a good accuracy. Thus, the study contributes to a deeper understanding of the non-isothermal crystallization and presents an overall method for modeling crystallization under process conditions.
NASA Astrophysics Data System (ADS)
Um, Jun Shik
During the 2006 Tropical Warm Pool International Cloud Experiment conducted in the region near Darwin, Australia, the Scaled Composites Proteus aircraft executed spiral profiles and flew horizontal legs through aging cirrus, fresh anvils, and cirrus of unknown origin. Data from 27 Jan., 29 Jan., and 2 Feb., when all the microphysical probes a Cloud and Aerosol Spectrometer (CAS), a Cloud Droplet Probe (CDP), a Cloud Imaging Probe (CIP), and a Cloud Particle Imager (CPI) were working, are used to investigate whether a single parameterization can be used to characterize tropical cirrus in terms of prognostic variables used in large-scale models, to calculate the single-scattering properties (scattering phase function P11 and asymmetry parameter g) of aggregates and small ice crystals that more closely match observed ice crystals, and to quantify the influences of small ice crystals on the bulk scattering properties of tropical cirrus. A combination of CDP (D < 50 mum), fits (50 < D < 125 microm), and CIP (D > 125 mum) distributions is used to represent ice crystal size distributions. The CDP measurements are used for small ice crystals because comparison between the CAS and CDP suggested the CAS was artificially amplifying small ice crystal concentrations by detecting remnants of shattered large ice crystals. Artifacts in CIP images are removed or corrected and then CIP measurements are used to represent large ice crystals. Because of the uncertainties in both the CPI and CIP for 50 < D < 125 mum, the incomplete gamma fitting method with the CDP (D < 50 mum) and CIP (D > 125 mum) measurements as input is used to characterize these distributions. A new quasi-automatic habit classification scheme is developed. For all days, small quasi-spheres dominated the contributions from all ice crystal sizes (D > 0 mum, by number) for all 3 days. The areal fraction (D > 200 mum) from bullet rosettes and their aggregates was 48% and 60% for 27 and 29 Jan., respectively, but only 7% for 2 Feb, whereas the fraction of aggregates of plates was 46.2% for 2 Feb. and only 7.2% and 1% for 27 and 29 Jan., respectively. The difference in ice crystal habits sampled on the different days is likely associated with the difference between fresh anvil cirrus on 2 Feb. and aged cirrus bands on the 27 and 29 of Jan. Because of variations in microphysical properties (i.e., number concentration, median mass dimension, and fit variables of gamma distributions) it is also shown that variables in addition to ice water content and temperature are required to represent the characteristics of cirrus with different origins in large-scale models. Aggregates of bullet rosettes and aggregates of plates are shown to scatter more light in the lateral and backward scattering region and less light in the forward scattering region compared to their component crystals, leading to a decrease in g for aggregates. To represent the three-dimensional shape of aggregates of plates, three parameters, the aggregation index ( AI), the area ratio (AR), and the normalized projected area (An), are introduced and the single-scattering properties of aggregates of plates are shown to depend heavily on AI. A new model (budding Bucky ball, 3B) for the shape of small ice crystals is developed based on the shapes of ice analogues grown in laboratory experiments. The 3B scatters more light in the lateral, and backward direction and less in the forward direction compared with other existing models currently used to describe small crystal shape (i.e., Gaussian random sphere and droxtal). The combination of the reduction in the forward scattering and enhancement in the lateral and backward scattering causes 11.13% and 8.74% decreases in g for the 3B compared with that for Gaussian random sphere and droxtal, respectively. The impacts of variations in small ice crystal shapes and concentrations on bulk scattering properties of tropical cirrus are quantified. The calculated mean asymmetry parameter ḡ for the fresh anvil (i.e., 2 Feb) is larger than that for cirrus bands of varying ages (i.e., 27 and 29 Jan.) for -60 < T < -45°C and -45 < T < -30°C where the fractional contributions of small ice crystals to total cross sectional area are small. The impact using different models for small ice crystals on ḡ is largest at lower temperatures (T < -60°C). The impact of enhanced number concentrations of small ice crystals on the bulk scattering properties depends on the assumed shapes of small ice crystals, which is largest (smallest) in the temperature ranges of -45 < T < -30 T (T < -60°C) where the CAS/CDP ratio of N of small ice crystals is maximum (minimum).
Optical analysis of crystal growth
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Passeur, Andrea; Harper, Sabrina
1994-01-01
Processing and data reduction of holographic images from Spacelab presents some interesting challenges in determining the effects of microgravity on crystal growth processes. Evaluation of several processing techniques, including the Computerized Holographic Image Processing System and the image processing software ITEX150, will provide fundamental information for holographic analysis of the space flight data.
New Deep Reactive Ion Etching Process Developed for the Microfabrication of Silicon Carbide
NASA Technical Reports Server (NTRS)
Evans, Laura J.; Beheim, Glenn M.
2005-01-01
Silicon carbide (SiC) is a promising material for harsh environment sensors and electronics because it can enable such devices to withstand high temperatures and corrosive environments. Microfabrication techniques have been studied extensively in an effort to obtain the same flexibility of machining SiC that is possible for the fabrication of silicon devices. Bulk micromachining using deep reactive ion etching (DRIE) is attractive because it allows the fabrication of microstructures with high aspect ratios (etch depth divided by lateral feature size) in single-crystal or polycrystalline wafers. Previously, the Sensors and Electronics Branch of the NASA Glenn Research Center developed a DRIE process for SiC using the etchant gases sulfur hexafluoride (SF6) and argon (Ar). This process provides an adequate etch rate of 0.2 m/min and yields a smooth surface at the etch bottom. However, the etch sidewalls are rougher than desired, as shown in the preceding photomicrograph. Furthermore, the resulting structures have sides that slope inwards, rather than being precisely vertical. A new DRIE process for SiC was developed at Glenn that produces smooth, vertical sidewalls, while maintaining an adequately high etch rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Knorring, O.; Hornung, G.
1961-06-17
Two hafnia zircons were examined in detail, one from Mtoko in Southern Rhodesia, containing 21% HfO/sub 2/, and the other from Karibib in South-West Africa, with 31% HfO/sub 2/. In both cases the zircons are associated with the later tantalum-rich phase of mineralization. The Mtoko zircon forms small, mauve- colored, independent crystals in the albitic zone of the pegmatite. The zircon from Karibib occurs in larger reddish-brown masses, partly intergrown with minute manganotantalite crystals and set in a matrix of lithium-bearing mica, albite, quartz and kaolinized feldspar. Some crystals show dominant pyramid faces, with a suppressed prism. Both zircons exhibitmore » an intense golden-yellow fluorescence in UV light. The zircon from Karibib was found to be only weakly radioactive. Data are given concerning various properties of the two zircons. (P.C.H.)« less
Hands-Free Transcranial Color Doppler Probe
NASA Technical Reports Server (NTRS)
Chin, Robert; Madala, Srihdar; Sattler, Graham
2012-01-01
Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design.
A crossover in anisotropic nanomechanochemistry of van der Waals crystals
NASA Astrophysics Data System (ADS)
Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Shimojo, Fuyuki; Vashishta, Priya
2015-12-01
In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10-13 s from the passage of shock front, lateral collision produces NO2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10-12 s, shock normal to multilayers becomes more reactive, producing H2O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zenger, D.H.
Unocal's Superior [number sign]1 Vanderhoof 97-foot (29.6 m) core consists of 63 feet (19.2 m) of the upper part of the C' burrowed member (BM) overlain by 34 feet (10.4 m) of the C' laminated member (LM) of the productive Red River Formation. The LM is mainly laminated, anhydritic, stylolitic, essentially unfossiliferous dolomudstone to calcareous dolomudstone with more minor dolomitic lime mudstone. The unit represents a restricted, hypersaline, inner shelf environment. The BM is burrow-mottled (Thalassinoides ), skeletal, dolomitic wackestone to grainstone matrix to calcareous dolowackestone (burrow fills) and represents near-normal salinity, inner shelf conditions. Dolomite is primarily replacive andmore » in the LM occurs as 25--50 [mu]m rhombs floating in mudstone or associated with stylolites, and as nonplanar, polymodal (5--50 [mu]m) crystals in totally dolomitized intervals. Most BM dolomite consists of 20--160 [mu]m, primarily nonplanar crystals in the largely replaced burrow fills; it also occurs as crystals that are disseminated or focused along stylolites (as in LM), as large crystals selectively and pseudomorphically replacing echinoderm fragments, and more rarely as late-stage, void-filling saddle dolomite. Previous theories of dolomitization have invoked descending brines. Geochemical data, in particular depleted [delta][sup 18]O and relatively low amounts of trace elements Sr and Na, but high Fe and Mn content, reveal that if brines were responsible for early diagenetic replacement, the dolomite has not retained such geochemical memory; rather it has undergone modification, acquiring later diagenetic, burial signatures. Possibly more of the replacement itself was later and deeper than previously thought.« less
Wu, Yiming; Hu, Xiaomin; Ge, Yong; Zheng, Dasheng; Yuan, Zhiming
2012-05-01
Bacillus sphaericus has been used with great success in mosquito control programs worldwide. Under conditions of nutrient limitation, it undergoes sporulation via a series of well defined morphological stages. However, only a small number of genes involved in sporulation have been identified. To identify genes associated with sporulation, and to understand the relationship between sporulation and crystal protein synthesis, a random mariner-based transposon insertion mutant library of B. sphaericus strain 2297 was constructed and seven sporulation-defective mutants were selected. Sequencing of the DNA flanking of the transposon insertion identified several genes involved in sporulation. The morphologies of mutants were determined by electron microscopy and synthesis of crystal proteins was analyzed by SDS-PAGE and Western blot. Four mutants blocked at early stages of sporulation failed to produce crystal proteins and had lower larvicidal activity. However, the other three mutants were blocked at later stages and were able to form crystal proteins, and the larvicidal activity was similar to wild type. These results indicated that crystal protein synthesis in B. sphaericus is dependent on sporulation initiation. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Flow-Directed Crystallization for Printed Electronics.
Qu, Ge; Kwok, Justin J; Diao, Ying
2016-12-20
The solution printability of organic semiconductors (OSCs) represents a distinct advantage for materials processing, enabling low-cost, high-throughput, and energy-efficient manufacturing with new form factors that are flexible, stretchable, and transparent. While the electronic performance of OSCs is not comparable to that of crystalline silicon, the solution processability of OSCs allows them to complement silicon by tackling challenging aspects for conventional photolithography, such as large-area electronics manufacturing. Despite this, controlling the highly nonequilibrium morphology evolution during OSC printing remains a challenge, hindering the achievement of high electronic device performance and the elucidation of structure-property relationships. Many elegant morphological control methodologies have been developed in recent years including molecular design and novel processing approaches, but few have utilized fluid flow to control morphology in OSC thin films. In this Account, we discuss flow-directed crystallization as an effective strategy for controlling the crystallization kinetics during printing of small molecule and polymer semiconductors. Introducing the concept of flow-directed crystallization to the field of printed electronics is inspired by recent advances in pharmaceutical manufacturing and flow processing of flexible-chain polymers. Although flow-induced crystallization is well studied in these areas, previous findings may not apply directly to the field of printed electronics where the molecular structures (i.e., rigid π-conjugated backbone decorated with flexible side chains) and the intermolecular interactions (i.e., π-π interactions, quadrupole interactions) of OSCs differ substantially from those of pharmaceuticals or flexible-chain polymers. Another critical difference is the important role of solvent evaporation in open systems, which defines the flow characteristics and determines the crystallization kinetics and pathways. In other words, flow-induced crystallization is intimately coupled with the mass transport processes driven by solvent evaporation during printing. In this Account, we will highlight these distinctions of flow-directed crystallization for printed electronics. In the context of solution printing of OSCs, the key issue that flow-directed crystallization addresses is the kinetics mismatch between crystallization and various transport processes during printing. We show that engineering fluid flows can tune the kinetics of OSC crystallization by expediting the nucleation and crystal growth processes, significantly enhancing thin film morphology and device performance. For small molecule semiconductors, nucleation can be enhanced and patterned by directing the evaporative flux via contact line engineering, and defective crystal growth can be alleviated by enhancing mass transport to yield significantly improved coherence length and reduced grain boundaries. For conjugated polymers, extensional and shear flow can expedite nucleation through flow-induced conformation change, facilitating the control of microphase separation, degree of crystallinity, domain alignment, and percolation. Although the nascent concept of flow-directed solution printing has not yet been widely adopted in the field of printed electronics, we anticipate that it can serve as a platform technology in the near future for improving device performance and for systematically tuning thin film morphology to construct structure-property relationships. From a fundamental perspective, it is imperative to develop a better understanding of the effects of fluid flow and mass transport on OSC crystallization as these processes are ubiquitous across all solution processing techniques and can critically impact charge transport properties.
Vapor Growth of Binary and Ternary Chalcogenides in Preparation for Microgravity Experiments
NASA Technical Reports Server (NTRS)
Su, C.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
In the bulk crystal growth of some technologically important semiconducting chalcopyrites, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials. The realization of routine production of high-quality single crystals of these semiconductors requires a fundamental, systematic and in-depth study on the PVT growth process and crystal growth by vapor transport in low gravity offers a set of unique conditions for this study. Previously, two reasons have been put forward to account for this. The first is weight-related reductions in crystal strain and defects. These are thought to be caused by the weight of the crystals during processing at elevated temperatures and retained on cooling, particularly for materials with a low yield strength. The second, and more general, reason is related to the reduction in density-gradient driven convection. The PVT crystal growth process consists of essentially three processes: sublimation of the source material, transport of the vapor species and condensation of the vapor species to form the crystal. The latter two processes can be affected by the convection caused by gravitational accelerations on Earth. Reductions in such convection in low gravity is expected to yield a nearly diffusion-limited growth condition which results in more uniform growth rates (on the microscopic scale) and hence greater crystalline perfection and compositional homogeneity. The reduction of convective contamination by performing flight experiments in a reduced gravity environment will help to understand the relation between fluid phase processes (growth parameters) and defect and impurity incorporation in grown crystals.
NASA Astrophysics Data System (ADS)
Zheng, Zhiping; Yu, Yongtao; Gong, Shuping; Fu, Qiuyun; Zhou, Dongxiang
2013-05-01
The Electro Dynamic Gradient (EDG) method has been proved to be a feasible way to grow TlBr crystals in our previous work. In this research, the influence of thermal conditions such as cooling rate during growth process on the crystal performance was investigated. Crystals of approximately 12 mm diameter were obtained by the EDG method at different cooling rates during the growth process, and the quality of the crystals was routinely evaluated by X-ray diffraction (XRD), infrared (IR) and ultraviolet (UV) transmission, I-V measurement and energy response spectrum. The results proved that thermal conditions during growth had a profound influence on the characteristics of the crystals.
Solution-Phase Processes of Macromolecular Crystallization
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Minamitani, Elizabeth Forsythe
2004-01-01
We have proposed, for the tetragonal form of chicken egg lysozyme, that solution phase assembly processes are needed to form the growth units for crystal nucleation and growth. The starting point for the self-association process is the monomeric protein, and the final crystallographic symmetry is defined by the initial dimerization interactions of the monomers and subsequent n-mers formed, which in turn are a function of the crystallization conditions. It has been suggested that multimeric proteins generally incorporate the underlying multimers symmetry into the final crystallographic symmetry. We posed the question of what happens to a protein that is known to grow as an n-mer when it is placed in solution conditions where it is monomeric. The trypsin-treated, or cut, form of the protein canavalin (CCAN) has been shown to nucleate and grow crystals as a trimer from neutral to slightly acidic solutions. Under these conditions the solution is composed almost wholly of trimers. The insoluble protein can be readily dissolved by weakly basic solution, which results in a solution that is monomeric. There are three possible outcomes to an attempt at crystallization of the protein under monomeric (high pH) conditions: 1) we will obtain the same crystals as under trimer conditions, but at different protein concentrations governed by the self association equilibria; 2) we will obtain crystals having a different symmetry, based upon a monomeric growth unit; 3) we will not obtain crystals. Obtaining the first result would be indicative that the solution-phase self-association process is critical to the crystal nucleation and growth process. The second result would be less clear, as it may also reflect a pH-dependent shift in the trimer-trimer molecular interactions. The third result, particularly for experiments in the transition pH's between trimeric and monomeric CCAN, would indicate that the monomer does not crystallize, and that solution phase self association is not part of the crystal nucleation and growth path. Results are presented for crystallization experiments of CCAN over the pH 6.8 to 9.6 range.
Analytics of crystal growth in space
NASA Technical Reports Server (NTRS)
Wilcox, W. R.; Chang, C. E.; Shlichta, P. J.; Chen, P. S.; Kim, C. K.
1974-01-01
Two crystal growth processes considered for spacelab experiments were studied to anticipate and understand phenomena not ordinarily encountered on earth. Computer calculations were performed on transport processes in floating zone melting and on growth of a crystal from solution in a spacecraft environment. Experiments intended to simulate solution growth at micro accelerations were performed.
NASA Astrophysics Data System (ADS)
Choi, Byung Sang
Compared to overwhelming technical data available in other advanced technologies, knowledge about particle technology, especially in particle synthesis from a solution, is still poor due to the lack of available equipment to study crystallization phenomena in a crystallizer. Recent technical advances in particle size measurement such as Coulter counter and laser light scattering have made in/ex situ study of some of particle synthesis, i.e., growth, attrition, and aggregation, possible with simple systems. Even with these advancements in measurement technology, to grasp fully the crystallization phenomena requires further theoretical and technical advances in understanding such particle synthesis mechanisms. Therefore, it is the motive of this work to establish the general processing parameters and to produce rigorous experimental data with reliable performance and characterization that rigorously account for the crystallization phenomena of nucleation, growth, aggregation, and breakage including their variations with time and space in a controlled continuous mixed-suspension mixed-product removal (CMSMPR) crystallizer. This dissertation reports the results and achievements in the following areas: (1) experimental programs to support the development and validation of the phenomenological models and generation of laboratory data for the purpose of testing, refining, and validating the crystallization process, (2) development of laboratory well-mixed crystallizer system and experimental protocols to generate crystal size distribution (CSD) data, (3) the effects of feed solution concentration, crystallization temperature, feed flow rate, and mixing speed, as well as different types of mixers resulting in the evolution of CSDs with time from a concentrated brine solution, (4) with statistically designed experiments the effects of processing variables on the resultant particle structure and CSD at steady state were quantified and related to each of those operating conditions by studying the detailed crystallization processes, such as nucleation, growth, and breakage, as well as agglomeration. The purification of CaCl2 solution involving the crystallization of NaCl from the solution mixture of CaCl2, KCl, and NaCl as shipped from Dow Chemical, Ludington, in a CMSMPR crystallizer was studied as our model system because of its nucleation and crystal growth tendencies with less agglomeration. This project also generated a significant body of experimental data that are available at URL that is http://www.che.utah.edu/˜ring/CrystallizationWeb.
Re-Os Isotopic Constraints on the Chemical Evolution and Differentiation of the Martian Mantle
NASA Technical Reports Server (NTRS)
Brandon, Alan D.; Walker, Richard J.
2002-01-01
The (187)Re-187Os isotopic systematics of SNC meteorites, thought to be from Mars, provide valuable information regarding the chemical processes that affected the Martian mantle, particularly with regard to the relative abundances of highly siderophile elements (HSE). Previously published data (Birck and Allegre 1994, Brandon et al. 2000), and new data obtained since these studies, indicate that the HSE and Os isotopic composition of the Martian mantle was primarily set in its earliest differentiation history. If so, then these meteorites provide key constraints on the processes that lead to variation in HSE observed in not only Mars, but also Earth, the Moon and other rocky bodies in the Solar System. Processes that likely have an effect on the HSE budgets of terrestrial mantles include core formation, magma ocean crystallization, development of juvenile crust, and the addition of a late veneer. Each of these processes will result in different HSE variation and the isotopic composition of mantle materials and mantle derived lavas. Two observations on the SNC data to present provide a framework for which to test the importance of each of these processes. First, the concentrations of Re and Os in SNC meteorites indicate that they are derived from a mantle that has similar concentrations to the Earth's mantle. Such an observation is consistent with a model where a chondritic late veneer replenished the Earth and Martian mantles subsequent to core formation on each planet. Alternative models to explain this observation do exist, but will require additional data to test the limitations of each. Second, Re-Os isotopic results from Brandon et al. (2000) and new data presented here, show that initial yos correlates with variations in the short-lived systems of (182)Hf- (182)W and (142)Sm-142Nd in the SNC meteorites (epsilon(sub W) and epsilon(sub 142Nd)). These systematics require an isolation of mantle reservoirs during the earliest differentiation history of Mars, and subsequent inefficient mixing between these reservoirs. These data show that models for the origin of isotopic variation for SNC meteorites require at least two long-lived mantle reservoirs, and possibly three. The range in the projected present day gamma(sub Os) of these reservoirs is from -5.4+/-2.6, to +4+/-1. The isotopic systematics of these reservoirs may be linked to development of cumulate crystal piles in a Martian magma ocean and variable amounts of late stage intercumulus melt. In this model, fractional crystallization of olivine and possibly other phases with slightly subchondritic Re/Os, from a solidifying magma ocean, resulted in a lower Re/Os ratio early cumulates, and a resultant low gamma(sub Os). Later cumulates or evolved melts crystallized with higher Re/Os ratios to produce the mantle reservoir(s) with consequent higher gamma(sub Os). Crystallization of the Martian magma ocean followed earliest core formation, as indicated by the correlation of epsilon(sub W) with epsilon(sub 142Nd) and initial gamma(sub Os).
Two distinct crystallization processes in supercooled liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tane, Masakazu, E-mail: mtane@sanken.osaka-u.ac.jp; Kimizuka, Hajime; Ichitsubo, Tetsu
2016-05-21
Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al{sub 2}O{sub 3} model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al{sub 2}O{sub 3} exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquidmore » does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport.« less
NASA Astrophysics Data System (ADS)
Sullivan, S.; Nenes, A.
2015-12-01
Measurements of the in-cloud ice nuclei concentration can be three or four orders of magnitude less than those of the in-cloud ice crystal number concentration. Different secondary formation processes, active after initial ice nucleation, have been proposed to explain this discrepancy, but their relative importance, and even the exact physics of each mechanism, are still unclear. We construct a simple bin microphysics model (2IM) including depositional growth, the Hallett-Mossop process, ice-ice collisions, and ice-ice aggregation, with temperature- and supersaturation-dependent efficiencies for each process. 2IM extends the time-lag collision model of Yano and Phillips to additional bins and incorporates the aspect ratio evolution of Jensen and Harrington. Model output and measured ice crystal size distributions are compared to answer three questions: (1) how important is ice-ice aggregation relative to ice-ice collision around -15°C, where the Hallett-Mossop process is no longer active; (2) what process efficiencies lead to the best reproduction of observed ice crystal size distributions; and (3) does ice crystal aspect ratio affect the dominant secondary formation process. The resulting parameterization is intended for eventual use in larger-scale mixed-phase cloud schemes.
The Sr, Nd and O isotopic studies of the 1991 1995 eruption at Unzen, Japan
NASA Astrophysics Data System (ADS)
Chen, Chang-Hwa; Nakada, Setsuya; Shieh, Yuch-Ning; DePaolo, Donald J.
1999-04-01
The magma generation at Unzen volcano may be considered as the product of crustal material mixed with mantle magma accompanied by fractional crystallization (AFC). The magma in the Unzen volcano is estimated to consist of about 50-80% of residual magma ( F) and about 30-70% assimilated crustal material ( A) relative to the original magma. Concerning the 1991-1995 eruption, it is estimated that the magma formed as the result of mixing of about 50-60% crustal material and about 55-65% of residual magma. An alternative magma eruption model for the 1991-1995 eruption is proposed here. In the early stage, the isotopic characteristics of 1991 eruption are defined by AFC process in the deeper magma chamber. Later, the magma ascended through the conduit and quiescently stayed for a long time in a shallow reservoir before eruption. The minerals continuously crystallized as phenocrysts especially at the chilled top and outer margin in the shallow chamber. The crystallized phenocryst mush was reworked into the central part of the magma chamber by means of magma convection and rapid magma ascent. Therefore, the reaction between phenocrysts and melt occurs only in internal chemical disequilibrium in the magma chamber. In contrast, the isotopic compositions of the original magma shall be little influenced by the above processes throughout its eruptive history. The 1991-1995 eruptive rocks of the Unzen volcano show their characteristics in Sr and Nd isotopic values independent of their two previous eruptions. However, the isotopic values of early eruptive product could represent the original magma value. This result also supports the previous work of Chen et al. (1993) [Chen, C.H., DePaolo, D.J., Nakada, S., Shieh, Y.N., 1993. Relationship between eruption volume and neodymium isotopic composition at Unzen volcano. Nature 362, 831-834], that suggested the ɛNd of early or precursory eruptive products could be a qualitative indicator of the maximum size of a continuing or impending eruption.
NASA Technical Reports Server (NTRS)
McCanta, M. C.; Rutherford, M. J.
2003-01-01
Knowledge of the oxidation state of a magma is critical as it is one of the parameters which controls the nature and composition of the resulting crystals. In terrestrial magmatic systems, oxygen fugacity (fo2) is known to vary by over nine orders of magnitude. With variations of this magnitude, understanding the compositional differences, phase changes, and crystallization sequence variations, caused by the magma fo2, is essential in deciphering the origin of all igneous rocks. Magmatic oxidation state is of great importance in that it reflects the degree of oxidation of the source region and can provide insight into magmatic processes, such as metasomatism, degassing, and assimilation, which may have changed them. Carmichael [1991] argues that most magmas are unlikely to have their redox states altered from those of their source region. This assumption allows for estimation of the oxidation state of planetary interiors. Conversely, it is known that the fo2 of the magma can be affected by other processes, which occur outside of the source region and therefore, the oxidation state may record those too. Processes which could overprint source region fugacities include melt dehydrogenation or other volatile loss, water or melt infiltration, or assimilation of oxidized or reduced wallrock. Understanding which of these processes is responsible for the redox state of a magma can provide crucial information regarding igneous processes and other forces active in the region. The composition of the SNC basalts and their widely varying proposed oxidation states raise some interesting questions. Do the SNC meteorites have an oxidized or reduced signature? What was the oxygen fugacity of the SNC source region at the time of melt generation? Is the fugacity calculated for the various SNC samples the fugacity of the magma source region or was it overprinted by later events? Are there different oxidation states in the Martian interior or a single one? This proposal seeks to address all of these questions.
Sequential changes in biliary lipids and gallbladder ion transport during gallstone formation.
Giurgiu, D I; Saunders-Kirkwood, K D; Roslyn, J J; Abedin, M Z
1997-01-01
OBJECTIVE: This study sought to correlate gallbladder (GB) Na+ and Cl-) fluxes with biliary lipid composition during the various stages of gallstone (GS) formation. SUMMARY BACKGROUND DATA: GS formation is associated with altered GB ion transport and increased biliary lipid and Ca2+ concentrations. Nonetheless, the longitudinal relationship between ion transport and biliary lipid changes during GS formation has not been defined. METHODS: Prairie dogs were fed standard (n = 18) or 1.2% cholesterol-enriched (n = 30) diets for 4 to 21 days. Hepatic and GB bile were analyzed for lipids and Ca2+. Animals were designated either Pre-Crystal, Crystal, or GS based on absence or presence of crystals or GS, respectively. GBs were mounted in Ussing chambers, electrophysiologic parameters were recorded, and unidirectional Na+ and Cl- fluxes measured. RESULTS: Short-circuit current and potential difference were similar during Pre-Crystal and Crystal stages but significantly reduced during GS stage compared to controls and Pre-Crystals. Transepithelial resistance was similar in all groups. Net Na+ absorption was increased during Pre-Crystal but decreased during GS stage due to increased mucosa-to-serosa and serosa-to-mucosa flux, respectively. Increased serosa-to-mucosa flux of both Na+ and Cl- characterized the Crystal stage. Biliary lipids and Ca2+ increased progressively during various stages of GS formation and correlated positively with unidirectional fluxes of Na+ and Cl-. CONCLUSION: GB epithelial ion transport changes sequentially during GS formation, with the early Pre-Crystal stage characterized by increased Na+ absorption, and the later Crystal stage accompanied by prosecretory stimuli on Na+ and Cl- fluxes, which may be due to elevated GB bile Ca2+ and total bile acids. Images Figure 1. Figure 3. Figure 4. PMID:9114797
Spray printing of organic semiconducting single crystals
NASA Astrophysics Data System (ADS)
Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim
2016-11-01
Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.
Passive particle dosimetry. [silver halide crystal growth
NASA Technical Reports Server (NTRS)
Childs, C. B.
1977-01-01
Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.
NASA Technical Reports Server (NTRS)
2003-01-01
In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.
NASA Astrophysics Data System (ADS)
Koshiro, Yoko; Watanabe, Manabu; Takai, Rikuo; Hagiwara, Tomoaki; Suzuki, Toru
Size and shape of ice crystals in frozen food materials are very important because they affect not only quality of foods but also the viability of industrial processing such as freeze-drying of concentration. In this study, 30%wt sucrose solution is used as test samples. For examining the effect of stabilizerspectine and xantan gum is added to the sucrose solution. They are frozen on the cold stage of microscope to be observed their growing ice crystals under the circumstance of -10°C. Their size and shape are measured and quantitatively evaluated by applying fractal analysis. lce crystal of complicated shape has large fractal dimension, and vice versa. It successflly categorized the ice crystals into two groups; one is a group of large size and complicated shape, and the other is a group of small size and plain shape. The critical crystal size between the two groups is found to become larger with increasing holding time. It suggests a phenomenological model for metamorphoses process of ice crystals. Further, it is indicated that xantan gum is able to suppress the smoothing of ice crystals.
The Lunar Magma Ocean: Sharpening the Focus on Process and Composition
NASA Technical Reports Server (NTRS)
Rapp, J. F.; Draper, D. S.
2014-01-01
The currently accepted model for the formation of the lunar anorthositic crust is by flotation from a crystallizing lunar magma ocean (LMO) shortly following lunar accretion. Anorthositic crust is globally distributed and old, whereas the mare basalts are younger and derived from a source region that has experienced plagioclase extraction. Several attempts at modelling such a crystallization sequence have been made [e.g. 1, 2], but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. This abstract presents results from our ongoing ex-periments simulating LMO crystallization and address-ing a range of variables. We investigate two bulk com-positions, which span most of the range of suggested lunar bulk compositions, from the refractory element enriched Taylor Whole Moon (TWM) [3] to the more Earth-like Lunar Primitive Upper Mantle (LPUM) [4]. We also investigate two potential crystallization mod-els: Fully fractional, where crystallizing phases are separated from the magma as they form and sink (or float in the case of plagioclase) throughout magma ocean solidification; and a two-step process suggested by [1, 5] with an initial stage of equilibrium crystalliza-tion, where crystals remain entrained in the magma before the crystal burden increases viscosity enough that convection slows and the crystals settle, followed by fractional crystallization. Here we consider the frac-tional crystallization part of this process; the equilibri-um cumulates having been determined by [6].
NASA Astrophysics Data System (ADS)
Bryukvina, L. I.; Martynovich, E. F.
2012-12-01
The specific features of light- and temperature-induced formation of metallic nanoparticles in γ-irradiated LiF and NaF crystals have been investigated. Atomic force microscope images of nanoparticles of different sizes and in different locations have been presented. The relation between the crystal processing regimes and properties of the nanoparticles formed has been revealed. The optical properties of the processed crystals have been analyzed. The thermo- and light-stimulated processes underlying the formation of metallic nanoparticles in aggregation of the color centers and their decay due to the recovery of the crystal lattice have been studied.
Can Solution Supersaturation Affect Protein Crystal Quality?
NASA Technical Reports Server (NTRS)
Gorti, Sridhar
2013-01-01
The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.
Magma plumbing for the 2014-2015 Holuhraun eruption, Iceland
NASA Astrophysics Data System (ADS)
Geiger, Harri; Mattsson, Tobias; Deegan, Frances M.; Troll, Valentin R.; Burchardt, Steffi; Gudmundsson, Ólafur; Tryggvason, Ari; Krumbholz, Michael; Harris, Chris
2016-08-01
The 2014-2015 Holuhraun eruption on Iceland was located within the Askja fissure swarm but was accompanied by caldera subsidence in the Bárðarbunga central volcano 45 km to the southwest. Geophysical monitoring of the eruption identified a seismic swarm that migrated from Bárðarbunga to the Holuhraun eruption site over the course of two weeks. In order to better understand this lateral connection between Bárðarbunga and Holuhraun, we present mineral textures and compositions, mineral-melt-equilibrium calculations, whole rock and trace element data, and oxygen isotope ratios for selected Holuhraun samples. The Holuhraun lavas are compositionally similar to recorded historical eruptions from the Bárðarbunga volcanic system but are distinct from the historical eruption products of the nearby Askja system. Thermobarometry calculations indicate a polybaric magma plumbing system for the Holuhraun eruption, wherein clinopyroxene and plagioclase crystallized at average depths of ˜17 km and ˜5 km, respectively. Crystal resorption textures and oxygen isotope variations imply that this multilevel plumbing system facilitated magma mixing and assimilation of low-δ18O Icelandic crust prior to eruption. In conjunction with the existing geophysical evidence for lateral migration, our results support a model of initial vertical magma ascent within the Bárðarbunga plumbing system followed by lateral transport of aggregated magma batches within the upper crust to the Holuhraun eruption site.
Electrochemical deposition of silver crystals aboard Skylab 4
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Facemire, B. R.; Johnston, M. H.; Gates, D. W.
1976-01-01
Silver crystals were grown aboard Skylab 4 by an electro-chemical reaction and subsequently returned to earth for comparison with crystals grown at 1- and 5-g. Both the Skylab and earth-grown crystals show a variety of structures. Certain tendencies in structure dependency on gravity level, however, can be discerned. In addition, downward growing dendrite streamers; upward growing chunky crystal streamers; growth along an air/liquid interface; and ribbon, film, and fiber crystal habits were observed in experiments conducted on the ground with solutions of varying concentrations. It was also observed that the crystal structures of space and ground electro-deposited silver crystals were very similar to the structures of germanium selenide and germanium telluride crystals grown in space and on the ground by a vapor transport technique. Consideration of the data leads to the conclusions that: (1) the rate of electrochemical displacement of silver ions from a 5 percent aqueous solution by copper is predominantly diffussion controlled in space and kinetically controlled in 1- and higher-g because of augmentation of mass transport by convection; (2) downward and upward crystal streamers are the result of gravity-driven convection, the flow patterns of which can be delineated. Lateral growths along an air/liquid interface are the result of surface-tension-driven convection, the pattern of which also can be delineated; (3) electrolysis in space or low-g environments can produce either dendritic crystals with more perfect microcrystalline structures or massive, single crystals with fewer defects than those grown on ground or at higher g-levels. Ribbons or films of space-grown silicon crystals would find a ready market for electronic substrate and photocell applications. Space-grown dendritic, metal crystals present the possibility of unique catalysts. Large perfect crystals of various materials are desired for a number of electronic and optical applications; and (4) vapor transport growth of germanium selenide and germanium telluride is affected by convection mechanisms similar to the mechanisms hypothesized for the electrochemical deposition of silver crystals. Evidence and considerations leading to the preceding summaries and conclusions are presented. The implications of the findings and conclusions for technological applications are discussed, and recommendations for further experiments are presented.
NASA Astrophysics Data System (ADS)
Barbieri, E.; Brunelli, D.; Hellebrand, E.; Johnson, K. T.; Paganelli, E.
2011-12-01
The lower oceanic crust largely consists of cumulates, representing crystallization products from melt that erupt on the ocean floor. Removal of interstitial melt from the cumulate minerals is believed to be efficient, driven by compaction. Reaction between percolating melts and cumulate minerals can result in micron-to-meter-scale variations in the phase assemblage and composition. Here we report on the results of a highly detailed petrological study of a sequence of lower crustal gabbroic rocks, using textural and chemical criteria to reconstruct the complex interplay between reactive melts and a highly crystallized gabbroic mush. The exceptionally well-preserved gabbroic sequence was recovered during IODP Legs 304 and 305 at the Atlantis Massif. These gabbros are characterized by high-frequency magmatic refilling of a mush zone, as attested by the cm-m thick succession of magmatic layers, with sharp to diffuse contact. The main gabbroic body (between 300 and 1100 mbsf ) is bounded by two layers of olivine rich troctolites interpreted as pervasively fluxed mantle rocks. Closely spaced sampling of the intervals 930-980 and 1130-1190 mbsf reveal evolved gabbroic lithologies closely interspersed with more primitive members. Olivine and plagioclase consumption is accompanied by progressive crystallization of clinopyroxene (cpx) and later orthopyroxene (opx). Both initially appear as interstitial grains, followed by poikilitic and granophyric textures. The onset of reactive percolation is often associated with deformation, recorded as kink bands in relict olivine and plagioclase and wavy mineral contacts wet by thin cpx layers. As a result, plagioclase and olivine chadacrysts in cpx and opx have resorbed appearance (rounded deformed chadacrysts in large undeformed oikocrysts). Typical chemical signatures of this incomplete resorption are high Ni in pyroxene-hosted low-Fo olivines. Resorbed plagioclases have higher REE and positive Sr correlation with Ba attesting to a progressive equilibration with evolved melts. Simple fractional accumulation in a closed system is unable to fit the observed cpx and opx trends. Large deviations from linear correlations require an influx of primitive material in an ongoing differentiating system. Based on the observed consumption of the primitive assemblage we calculate high rates of assimilation of primitive cumulates. However, the assimilation ratio estimated from cpx trace element contents is much higher than that required to fit the opx trends. These observations attest for a multistage evolution of the sampled rocks: the process starts as near-fractional crystallization, reaching high degrees of crystallinity before melt percolation induces olivine and plagioclase resorption, increasing porosity and crystallizing clinopyroxene. The subsequent crystallization of opx is characterized by a decrease of the assimilation rate and porosity reduction.As such reactive signatures have been reported from other oceanic gabbros, AFC processes in the lower oceanic crust are possibly widespread and may strongly contribute to the compositional systematic observed in global MORB.
Invited review liquid crystal models of biological materials and silk spinning.
Rey, Alejandro D; Herrera-Valencia, Edtson E
2012-06-01
A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. Copyright © 2011 Wiley Periodicals, Inc.
2-(4-Bromobenzyl)-5,11,17,23-tetra-tert-butyl-25,26,27,28-tetramethoxycalix[4]arene
Fischer, Conrad; Lin, Guisheng; Seichter, Wilhelm; Weber, Edwin
2009-01-01
In the title compound, C55H69BrO4, the calixarene molecule displays a ‘partial cone’ conformation bearing the lateral substituent in a sterically favorable equatorial arrangement between two syn-orientated arene units. The crystal packing is stabilized by weak C—H⋯π contacts, involving one tert-butyl group, and π–stacking interactions of the lateral bromobenzene units [centroid–centroid distance = 3.706 (1) Å]. PMID:21582956
Computational Simulations of the Lateral-Photovoltage-Scanning-Method
NASA Astrophysics Data System (ADS)
Kayser, S.; Lüdge, A.; Böttcher, K.
2018-05-01
The major task for the Lateral-Photovoltage-Scanning-Method is to detect doping striations and the shape of the solid-liquid-interface of an indirect semiconductor crystal. This method is sensitive to the gradient of the charge carrier density. Attempting to simulate the signal generation of the LPS-Method, we are using a three dimensional Finite Volume approach for solving the van Roosbroeck equations with COMSOL Multiphysics in a silicon sample. We show that the simulated LPS-voltage is directly proportional to the gradient of a given doping distribution, which is also the case for the measured LPS-voltage.
NASA Astrophysics Data System (ADS)
Zhang, Fangkun; Liu, Tao; Wang, Xue Z.; Liu, Jingxiang; Jiang, Xiaobin
2017-02-01
In this paper calibration model building based on using an ATR-FTIR spectroscopy is investigated for in-situ measurement of the solution concentration during a cooling crystallization process. The cooling crystallization of L-glutamic Acid (LGA) as a case is studied here. It was found that using the metastable zone (MSZ) data for model calibration can guarantee the prediction accuracy for monitoring the operating window of cooling crystallization, compared to the usage of undersaturated zone (USZ) spectra for model building as traditionally practiced. Calibration experiments were made for LGA solution under different concentrations. Four candidate calibration models were established using different zone data for comparison, by using a multivariate partial least-squares (PLS) regression algorithm for the collected spectra together with the corresponding temperature values. Experiments under different process conditions including the changes of solution concentration and operating temperature were conducted. The results indicate that using the MSZ spectra for model calibration can give more accurate prediction of the solution concentration during the crystallization process, while maintaining accuracy in changing the operating temperature. The primary reason of prediction error was clarified as spectral nonlinearity for in-situ measurement between USZ and MSZ. In addition, an LGA cooling crystallization experiment was performed to verify the sensitivity of these calibration models for monitoring the crystal growth process.
Chen, Shaoshan; He, Deyu; Wu, Yi; Chen, Huangfei; Zhang, Zaijing; Chen, Yunlei
2016-10-01
A new non-aqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the convergence rules of the surface error of an initial single-point diamond turning (SPDT)-finished KDP crystal after MRF polishing. Currently, the SPDT process contains spiral cutting and fly cutting. The main difference of these two processes lies in the morphology of intermediate-frequency turning marks on the surface, which affects the convergence rules. The turning marks after spiral cutting are a series of concentric circles, while the turning marks after fly cutting are a series of parallel big arcs. Polishing results indicate that MRF polishing can only improve the low-frequency errors (L>10 mm) of a spiral-cutting KDP crystal. MRF polishing can improve the full-range surface errors (L>0.01 mm) of a fly-cutting KDP crystal if the polishing process is not done more than two times for single surface. We can conclude a fly-cutting KDP crystal will meet better optical performance after MRF figuring than a spiral-cutting KDP crystal with similar initial surface performance.
Rotons, Superfluidity, and Helium Crystals
NASA Astrophysics Data System (ADS)
Balibar, Sébastien
2006-09-01
Fritz London understood that quantum mechanics could show up at the macroscopic level, and, in 1938, he proposed that superfluidity was a consequence of Bose-Einstein condensation. However, Lev Landau never believed in London's ideas; instead, he introduced quasiparticles to explain the thermodynamics of superfluid 4He and a possible mechanism for its critical velocity. One of these quasiparticles, a crucial one, was his famous "roton" which he considered as an elementary vortex. At the LT0 conference (Cambridge, 1946), London criticized Landau and his "theory based on the shaky grounds of imaginary rotons". Despite their rather strong disagreement, Landau was awarded the London prize in 1960, six years after London's death. Today, we know that London and Landau had both found part of the truth: BEC takes place in 4He, and rotons exist. In my early experiments on quantum evaporation, I found direct evidence for the existence of rotons and for evaporation processes in which they play the role of photons in the photoelectric effect. But rotons are now considered as particular phonons which are nearly soft, due to some local order in superfluid 4He. Later we studied helium crystals which are model systems for the general study of crystal surfaces, but also exceptional systems with unique quantum properties. In our recent studies of nucleation, rotons show their importance again: by using acoustic techniques, we have extended the study of liquid 4He up to very high pressures where the liquid state is metastable, and we wish to demonstrate that the vanishing of the roton gap may destroy superfluidity and trigger an instability towards the crystalline state.
NASA Astrophysics Data System (ADS)
Fiorentini, M. L.; Beresford, S. W.; Stone, W. E.; Deloule, E.
2012-07-01
Komatiites are ancient volcanic rocks, mostly over 2.7 billion years old, which formed through >30% partial melting of the mantle. This study addresses the crucial relationship between volcanology and physical manifestation of primary magmatic water content in komatiites of the Agnew-Wiluna greenstone belt, Western Australia, and documents the degassing processes that occurred during the emplacement and crystallization of these magmas. The Agnew-Wiluna greenstone belt of Western Australia contains three co-genetic komatiite units that (1) display laterally variable volcanological features, including thick cumulates and spinifex-textured units, and (2) were emplaced as both lava flows and intrusions at various locations. Komatiite sills up to 500 m thick contain widespread occurrence of hydromagmatic amphibole in orthocumulate- and mesocumulate-textured rocks, which contain ca. 40-50 wt% MgO and <3 wt% TiO2. Conversely, komatiite flows do not contain any volatile-bearing mineral phases: ~150-m-thick flows only contain vesicles, amygdales and segregation structures, whereas <5-10-m-thick flows lack any textural and petrographic evidence of primary volatile contents. The main results of this study demonstrate that komatiites from the Agnew-Wiluna greenstone belt, irrespective of their initial water content, have degassed upon emplacement, flow and crystallization. More importantly, data show that komatiite flows most likely degassed more water than komatiite intrusions. Komatiite degassing may have indirectly influenced numerous physical and chemical parameters of the water from the primordial oceans and hence indirectly contributed to the creation of a complex zonation at the interface between water and seafloor.
Zhao, Huijie; Wang, Ziye; Jia, Guorui; Zhang, Ying; Xu, Zefu
2017-10-02
The acousto-optic tunable filter (AOTF) with wide wavelength range and high spectral resolution has long crystal and two transducers. A longer crystal length leads to a bigger chromatic focal shift and the double-transducer arrangement induces angular mutation in diffracted beam, which increase difficulty in longitudinal and lateral chromatic aberration correction respectively. In this study, the two chromatic aberrations are analyzed quantitatively based on an AOTF optical model and a novel catadioptric dual-path configuration is proposed to correct both the chromatic aberrations. The test results exhibit effectiveness of the optical configuration for this type of AOTF-based imaging spectrometer.
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena
2011-04-11
We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. © 2011 Optical Society of America
Time Strengthening of Crystal Nanocontacts
NASA Astrophysics Data System (ADS)
Mazo, Juan J.; Dietzel, Dirk; Schirmeisen, Andre; Vilhena, J. G.; Gnecco, Enrico
2017-06-01
We demonstrate how an exponentially saturating increase of the contact area between a nanoasperity and a crystal surface, occurring on time scales governed by the Arrhenius equation, is consistent with measurements of the static friction and lateral contact stiffness on a model alkali-halide surface at different temperatures in ultrahigh vacuum. The "contact ageing" effect is attributed to atomic attrition and is eventually broken by thermally activated slip of the nanoasperity on the surface. The combination of the two effects also leads to regions of strengthening and weakening in the velocity dependence of the friction, which are well-reproduced by an extended version of the Prandtl-Tomlinson model.
Magnetically tunable unidirectional waveguide based on magnetic photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Weiwei; Wang, Jiafu, E-mail: wangjiafu1981@126.com, E-mail: qushaobo@mail.xjtu.edu.cn; Wang, Jun
2016-08-01
In this letter, we presented a magnetically tunable ferrite-loaded unidirectional waveguide based on magnetic photonic crystals. Two rows of ferrite rods are symmetrically arranged near the two lateral sides of the rectangular waveguide, where they are biased with static magnetic fields with the same amplitude and opposite directions along the rod axis. Since the magnetic one-way transmission is induced by the magnetic surface plasmon resonance, the operating band of the unidirectional waveguide can be tuned by changing the biased magnetic field intensity. To validate the design, a prototype was fabricated and measured. Both the simulation and experiment results verify themore » unidirectional transmission property.« less
Formation of crystal-like structures and branched networks from nonionic spherical micelles
NASA Astrophysics Data System (ADS)
Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.
2015-12-01
Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.
Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Brebrick, Robert F.; Volz, Martin P.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin P.; Shih, Hung-Dah
2001-01-01
Crystal growth by vapor transport has several distinct advantages over melt growth techniques. Among various potential benefits from material processing in reduced gravity the followings two are considered to be related to crystal growth by vapor transport: (1) elimination of the crystal weight and its influence on the defect formation and (2) reduction of natural buoyancy-driven convective flows arising from thermally and/ or solutally induced density gradient in fluids. The previous results on vapor crystal growth of semiconductors showed the improvements in surface morphology, crystalline quality, electrical properties and dopant distribution of the crystals grown in reduced gravity as compared to the crystals grown on Earth. But the mechanisms, which are responsible for the improvements and cause the gravitational effects on the complicated and coupled processes of vapor mass transport and growth kinetics, are not well understood.
Solution-processed, Self-organized Organic Single Crystal Arrays with Controlled Crystal Orientation
Kumatani, Akichika; Liu, Chuan; Li, Yun; Darmawan, Peter; Takimiya, Kazuo; Minari, Takeo; Tsukagoshi, Kazuhito
2012-01-01
A facile solution process for the fabrication of organic single crystal semiconductor devices which meets the demand for low-cost and large-area fabrication of high performance electronic devices is demonstrated. In this paper, we develop a bottom-up method which enables direct formation of organic semiconductor single crystals at selected locations with desired orientations. Here oriented growth of one-dimensional organic crystals is achieved by using self-assembly of organic molecules as the driving force to align these crystals in patterned regions. Based upon the self-organized organic single crystals, we fabricate organic field effect transistor arrays which exhibit an average field-effect mobility of 1.1 cm2V−1s−1. This method can be carried out under ambient atmosphere at room temperature, thus particularly promising for production of future plastic electronics. PMID:22563523
Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.
Bell, Peter; Vandenberghe, Luk H; Wilson, James M
2014-06-01
Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.
Crystals and Crystals: On the Mythology of Magmatic Processes
NASA Astrophysics Data System (ADS)
Marsh, B.
2008-12-01
The intimate records of the deep functioning of magmatic systems reside in the temporal and spatial records of magma flux, composition and crystal load. The records for a single system are piecemeal: Plutons show good spatial records, but poor temporal records. Volcanoes give through lava sequences good temporal records, but no spatial context. Because of this dichotomy, two, almost mutually exclusive, branches of magmatology have developed, whereas in Nature there is only a single process. The processes envisioned in these schools necessary to deliver the end rock record are distinct. It is our tools and historic perspectives that have steered the science, not the subject itself. Due to this approach an almost mythical conception of how magmas function has become commonplace. The circumvention of this dilemma rests in carefully evaluating the records on hand in the light of a broad understanding of the fundamental mechanics of how magma lives and dies. It is these basic principles that promise to unify plutonic and volcanic evidence to reveal the full nature of magmatism on all scales. The two most basic features of all magmatic processes are the universal presence of solidification fronts and the presence or absence of a crystal cargo. Almost without exception (e.g., shallow pressure quenching) all first generation crystals grow in marginal solidification fronts (SFs) bordering all magmas. The package of isotherms bounded by the liquidus and solidus define SFs, which propagate in response to the rate of cooling. All physical and chemical processes occurring within SFs compete with the advancement or retreat of solidification. SFs are governed by crystallinity regimes: Suspension Zone (<25 % xtals), Capture Front (~25 %), Mush Zone (25-55%), Rigidity Front (~55%; Critical Crystallinity), and Rigid Crust Zone (>55% xtals). Magmas are laced with nuclei that multiply and grow when overtaken. Crystal growth rates are bounded; tiny crystals reside at the front of SFs and big crystals at the rear. It is unlikely that crystals can ever escape SFs once beyond the Capture Front, and crystals that do fall (singly or in plumes) from the leading edge of SFs may suffer resorbtion upon transit through deeper, hotter magma. Above all, differentiation is severely limited as there is no crystallization in the central, hottest part of the body, and the crystals that are available for separation are tiny and have little effect on melt composition. Recall, ~50% loss of olivine enhances silica by 5%, but this places this magma at Critical Crystallinity. Phenocrysts come from disrupted SFs and are essential to read as such; they may come from a wide range of P's and T's. Ragged old crystals rolling about for untold numbers of flushing times record specious process times; telling more about transport and crystal-chemical noise in the system than the life of typical, first generation crystallization processes. Yet, noise is a system characteristic as is exemplified by the disharmonious isotope heritage of neighbor phenocrysts. Differentiation mainly comes from the sudden loss of a dynamically entrained load of crystals of diverse heritage equilibrating with the 'carrier' magma. Big crystals carrying fluid inclusions, for example, come from deep within SFs where residual melt is low and enriched and not from the central, early, primitive magma. All systems show these characteristics. They are exceedingly important to recognize and to put in the context of the power, longevity, and geometry of the system. Not recognizing them for what they are and what they are not recording only builds mythological magmatic systems.
Evolution of the Shape of Detached GeSi Crystals in Microgravity
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2013-01-01
A series of GeSi crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. An objective of these experiments is to understand the mechanisms of detached Bridgman growth, a process in which a gap exists between the growing semiconductor crystal and the crucible wall. Crystals grown without wall contact have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus.
Altan, Irem; Charbonneau, Patrick; Snell, Edward H.
2016-01-01
Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. PMID:26792536
Crystallization screening: the influence of history on current practice.
Luft, Joseph R; Newman, Janet; Snell, Edward H
2014-07-01
While crystallization historically predates crystallography, it is a critical step for the crystallographic process. The rich history of crystallization and how that history influences current practices is described. The tremendous impact of crystallization screens on the field is discussed.
Fusco, Diana; Barnum, Timothy J.; Bruno, Andrew E.; Luft, Joseph R.; Snell, Edward H.; Mukherjee, Sayan; Charbonneau, Patrick
2014-01-01
X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis. PMID:24988076
Fusco, Diana; Barnum, Timothy J; Bruno, Andrew E; Luft, Joseph R; Snell, Edward H; Mukherjee, Sayan; Charbonneau, Patrick
2014-01-01
X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis.
Doubled heterogeneous crystal nucleation in sediments of hard sphere binary-mass mixtures
NASA Astrophysics Data System (ADS)
Löwen, Hartmut; Allahyarov, Elshad
2011-10-01
Crystallization during the sedimentation process of a binary colloidal hard spheres mixture is explored by Brownian dynamics computer simulations. The two species are different in buoyant mass but have the same interaction diameter. Starting from a completely mixed system in a finite container, gravity is suddenly turned on, and the crystallization process in the sample is monitored. If the Peclet numbers of the two species are both not too large, crystalline layers are formed at the bottom of the cell. The composition of lighter particles in the sedimented crystal is non-monotonic in the altitude: it is first increasing, then decreasing, and then increasing again. If one Peclet number is large and the other is small, we observe the occurrence of a doubled heterogeneous crystal nucleation process. First, crystalline layers are formed at the bottom container wall which are separated from an amorphous sediment. At the amorphous-fluid interface, a secondary crystal nucleation of layers is identified. This doubled heterogeneous nucleation can be verified in real-space experiments on colloidal mixtures.
NASA Astrophysics Data System (ADS)
Ma, Ronghui; Zhang, Hui; Larson, David J.; Mandal, Krishna C.
2004-05-01
The growth process of potassium bromide (KBr) single crystals in a vertical Bridgman furnace has been studied numerically using an integrated model that combines formulation of global heat transfer and thermal elastic stresses. The global heat transfer sub-model accounts for conduction, convection and interface movement in the multiphase system. Using the elastic stress sub-model, thermal stresses in the growing crystal caused by the non-uniform temperature distribution is predicted. Special attention is directed to the interaction between the crystal and the ampoule. The global temperature distribution in the furnace, the flow pattern in the melt and the interface shapes are presented. We also investigate the effects of the natural convection and rotational forced convection on the shape of the growth fronts. Furthermore, the state of the thermal stresses in the crystal is studied to understand the plastic deformation mechanisms during the cooling process. The influence of the wall contact on thermal stresses is also addressed.
Dehydration and crystallization kinetics of zirconia-yttria gels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, S.; Muraleedharan, R.V.; Roy, S.K.
1995-02-01
Zirconia and zirconia-yttria gels containing 4 and 8 mol% yttria were obtained by coprecipitation and drying at 373 K. The dehydration and crystallization behavior of the dried gels was studied by DSC, TG, and XRD. The gels undergo elimination of water over a wide temperature range of 373--673 K. The peak temperature of the endotherm corresponding to dehydration and the kinetic constants for the process were not influenced by the yttria content of the gel. The enthalpy of dehydration observed was in good agreement with the heat of vaporization data. The dehydration was followed by a sharp exothermic crystallization process.more » The peak temperature of the exotherm and the activation energy of the process increased with an increase in yttria content, while the enthalpy of crystallization showed a decrease. The ``glow effect`` reduced with increasing yttria content. Pure zirconia crystallizes in the tetragonal form while the zirconia containing 4 and 8 mol% yttria appears to crystallize in the cubic form.« less
Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.
Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro
2016-01-19
We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, P. Manish; Brannigan, James A., E-mail: jab@ysbl.york.ac.uk; Prabhune, Asmita
The production, crystallization and characterization of three inactive mutants of penicillin V acylase from B. sphaericus in their respective precursor and processed forms are reported. The space groups are different for the native enzyme and the mutants. The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants willmore » provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme.« less
1992-06-25
Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco
NASA Technical Reports Server (NTRS)
1992-01-01
Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco
Accessing thermoplastic processing windows in metallic glasses using rapid capacitive discharge
Kaltenboeck, Georg; Harris, Thomas; Sun, Kerry; Tran, Thomas; Chang, Gregory; Schramm, Joseph P.; Demetriou, Marios D.; Johnson, William L.
2014-01-01
The ability of the rapid-capacitive discharge approach to access optimal viscosity ranges in metallic glasses for thermoplastic processing is explored. Using high-speed thermal imaging, the heating uniformity and stability against crystallization of Zr35Ti30Cu7.5Be27.5 metallic glass heated deeply into the supercooled region is investigated. The method enables homogeneous volumetric heating of bulk samples throughout the entire supercooled liquid region at high rates (~105 K/s) sufficient to bypass crystallization throughout. The crystallization onsets at temperatures in the vicinity of the “crystallization nose” were identified and a Time-Temperature-Transformation diagram is constructed, revealing a “critical heating rate” for the metallic glass of ~1000 K/s. Thermoplastic process windows in the optimal viscosity range of 100–104 Pa·s are identified, being confined between the glass relaxation and the eutectic crystallization transition. Within this process window, near-net forging of a fine precision metallic glass part is demonstrated. PMID:25269892
Transmission Electron Microscopy of Bombyx Mori Silk Fibers
NASA Astrophysics Data System (ADS)
Shen, Y.; Martin, D. C.
1997-03-01
The microstructure of B. Mori silk fibers before and after degumming was examined by TEM, selected area electron diffraction (SAED), WAXS and low voltage SEM. SEM micrographs of the neat cocoon revealed a network of pairs of twisting filaments. After degumming, there were only individual filaments showing a surface texture consistent with an oriented fibrillar structure in the fiber interior. WAXS patterns confirmed the oriented beta-sheet crystal structure common to silkworm and spider silks. Low dose SAED results were fully consistent with the WAXS data, and revealed that the crystallographic texture did not vary significantly across the fiber diameter. TEM observations of microtomed fiber cross sections indicated a somewhat irregular shape, and also revealed a 0.5-2 micron sericin coating which was removed by the degumming process. TEM observations of the degummed silk fiber showed banded features with a characteristic spacing of nominally 600 nm along the fiber axis. These bands were oriented in a roughly parabolic or V-shape pointing along one axis within a given fiber. We hypothesize that this orientation is induced by the extrusion during the spinning process. Equatorial DF images revealed that axial and lateral sizes of the β-sheet crystallites in silk fibroin ranged from 20 to 170 nm and from 1 to 24 nm, respectively. Crazes developed in the degummed silk fiber parallel to the fiber direction. The formation of these crazes suggests that there are significant lateral interactions between fibrils in silk fibers.
Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul
2013-11-01
This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.
Chen, Xin; Shu, Jiapei; Chen, Qing
2017-04-24
Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.
NASA Astrophysics Data System (ADS)
Willcock, M. A. W.; Bargossi, G. M.; Weinberg, R. F.; Gasparotto, G.; Cas, R. A. F.; Giordano, G.; Marocchi, M.
2015-11-01
Intra-caldera settings record a wealth of information on caldera-forming processes, yet field study is rarely possible due to lack of access and exposure. The Permian Ora Formation, Italy, preserves > 1000 m of vertical section through its intra-caldera succession. This provides an excellent opportunity to detail its mineralogical and geochemical architecture and gain understanding of the eruption evolution and insight into the pre-eruptive magma system. Detailed juvenile clast phenocryst and matrix crystal fragment point count and image analysis data, coupled with bulk-rock chemistry and single mineral compositional data, show that the Ora ignimbrite succession is rhyolitic (72.5-77.7% SiO2), crystal-rich (~ 25-57%; average 43%) and has a constant main mineral population (volcanic quartz + sanidine + plagioclase + biotite). Although a seemingly homogeneous ignimbrite succession, important subtle but detectable lateral and vertical variations in modal mineralogy and bulk-rock major and trace elements are identified here. The Ora Formation is comprised of multiple lithofacies, dominated by four densely welded ignimbrite lithofacies. They are crystal-rich, typically lithic-poor (< 2%), and juvenile clast-bearing (average 20%). The ignimbrite lithofacies are distinguished by variation in crystal fragment size and abundance and total lithic content. The intra-caldera stratigraphic architecture shows both localised and some large-scale lithofacies correlation, however, it does not conform to a 'layer-cake' stratigraphy. The intra-caldera succession is divided into two depo-centres: Southern and Northern, with proximal extra-caldera deposits preserved to the south and north of the system. The Southern and Northern intra-caldera ignimbrite successions are discriminated by variations in total biotite crystal abundance. Detailed mineralogical and chemical data records decreases across the caldera system from south to north in biotite phenocrysts in the groundmass of juvenile clasts (average 12-2%), matrix biotite (average 7.5-2%) and plagioclase crystal fragments (average 18-6%), and total crystal fragment abundance in the matrix (average 47-37%); a biotite compositional change to iron-rich (0.57-0.78 Fe); and bulk-rock element decreases in Fe2O3, MgO, P2O5, Ce, Hf, V, La and Zr, and increases in SiO2, Y and Nb, with TiO2. Together, the changes enable subtle distinction of the Southern and Northern successions, indicating that the Northern deposits are more evolved. Furthermore, the data reveals discrimination within the Northern succession, with the northwestern extra-caldera fine-crystal-rich lithofacies, having a distinct texture, componentry and composition. The componentry variation, mineralogical and chemical ranges identified here are consistent with an eruption from a heterogeneous magma system. Our results suggest that the Ora magma was likely stored in multiple chambers within a genetically related magma reservoir network. The mineralogical and chemical architecture together with stratigraphic relationships, enable interpretation of eruption sequence. Caldera eruption is proposed to have commenced in the south and progressed to the north, forming the two pene-contemporaneous caldera depressions. Moreover, this data illustrates heterogeneity and local zonation from base-to-top of the main intra-caldera and extra-caldera successions. These variations together with crystal fragment size variations between ignimbrite lithofacies support the hypothesis of a multi-vent eruption process, incremental caldera in-filling by subtly compositionally different pyroclastic flow pulses, and a lower intensity eruption style (Willcock et al., 2013, 2014).
Understanding Crystal Populations: The Role of Textural Analysis in Determining Magmatic Timescales
NASA Astrophysics Data System (ADS)
Jerram, D. A.
2006-12-01
Crystal populations in igneous rocks that erupt at the Earths surface act as records of magma chamber processes at depth, predominantly recording episodes of growth/nucleation and geochemical changes within the host body. Detailed inspection of such crystal populations, however, reveals a complex crystal cargo that comprises crystals which have grown directly from the host, crystals that have spent one or more protracted periods being isolated from the host magma and crystals that originated from a completely different magma body and/or country rock. To further interrogate this crystal cargo we can use textural analysis techniques to fully quantify the crystal population and gather important information about the population, such as crystal morphology, spatial distribution and size relationships. When quantified, such data can be used to better constrain the different components of the resultant crystal population and how they relate to each other. Additionally, by combining textural analysis information with geochemical analysis, a powerful measure of magma timescales and magma chamber processes results. In this contribution the different types of textural analysis techniques in 2D and 3D are introduced with examples from both plutonic and volcanic systems presented to highlight the roll of this approach to quantifying magma timescales.
NASA Astrophysics Data System (ADS)
Bateman, R.
1995-09-01
While hybridized granitoid magmas are readily identifiable, the mechanisms of hybridization in large crustal magma chambers are so not clearly understood. Characteristic features of hybrid granitoids are (1) both the granitoid and included enclaves are commonly hybrids, as shown by mineralogy, geochemistry and isotopes; (2) mixing seen in zoned plutons and synplutonic dykes and enclaves occurred early; (3) zoned plagioclase phenocrysts commonly show very complex life histories of growth and dissolution; (4) mafic end-members in hybrids are commonly fractionated magmas and (5) stratification in subvolcanic granitoid magma chambers is not uncommon, and stratification has been identified in some deeper level plutons. Hybridization must overcome the tendency to form a stable stratification of dense mafic magma underlying less dense felsic magma. Experimental work with magma analogues and theoretical considerations reveal very severe thermal, rheological and dynamical limitations on mixing: only very similar (composition, temperature) magmas are likely to mix to homogeneity, and only moderately silicic hybrids are likely to be produced. However, "impossibly" silicic hybrids do exist. Synchronous, interactive fractional crystallization and hybridization may provide a mechanism for hybridization of magmas, in the following manner. A mafic magma intrudes into the base of a stratified felsic magma and is cooled against it. Crystallization of the upper boundary layer of the mafic magma yields an eventually buoyant residual melt that overturns and mixes with an adjacent stratum of the felsic magma chamber. Subsequently, melt released by crystallization pf this, now-hybrid zone mixes with adjacent, more felsic zones. Thus, a suite of hybrid magmas are progressively formed. Density inhibitions are overcome by the generation of relatively low density residual melts. As crystallization proceeds, later injections are preserved as dykes and enclaves composed of hybrid magma. In this process, only physically adjacent and dynamically-thermally similar magmas directly interact, and so may mix to homogeneity. Finally, not simply felsic and mafic endmembers mix, but a whole suite of "intermediate" endmembers participate, ranging from relatively mafic through to felsic pairs of magmas. Direct mixing between the primary magmas only occurs at the beginning.
Crystallization screening: the influence of history on current practice
Luft, Joseph R.; Newman, Janet; Snell, Edward H.
2014-01-01
While crystallization historically predates crystallography, it is a critical step for the crystallographic process. The rich history of crystallization and how that history influences current practices is described. The tremendous impact of crystallization screens on the field is discussed. PMID:25005076
Modeling of Cloud/Radiation Processes for Large-Scale Clouds and Tropical Anvils
1994-05-31
Bergeron- Findeisen process. The saturation vapor pressure over ice is less than 2.4. Radiative transfer parameterization that over water. As a result, ice...nucleation to generate ice dN ) ’- if T>- -20 0C crystals, depositional growth to simulate the T•’= 0j At (3.7) Bergeron- Findeisen process, sublimation...and (0 if T< - 200C. melting of ice crystals, and gravitational settling to deplete the ice crystals. The Bergeron- Findeisen Here, N, +,,, and N, are
Process for Forming a High Temperature Single Crystal Canted Spring
NASA Technical Reports Server (NTRS)
DeMange, Jeffrey J (Inventor); Ritzert, Frank J (Inventor); Nathal, Michael V (Inventor); Dunlap, Patrick H (Inventor); Steinetz, Bruce M (Inventor)
2017-01-01
A process for forming a high temperature single crystal canted spring is provided. In one embodiment, the process includes fabricating configurations of a rapid prototype spring to fabricate a sacrificial mold pattern to create a ceramic mold and casting a canted coiled spring to form at least one canted coil spring configuration based on the ceramic mold. The high temperature single crystal canted spring is formed from a nickel-based alloy containing rhenium using the at least one coil spring configuration.
The Surface Layer of a Crystal and Its Specific Role in the Process of Melt Formation
NASA Astrophysics Data System (ADS)
Sobolev, R. N.
2018-04-01
A crystal becomes melted in a few stages. The structure of the crystal surface differs from that of its interior. Therefore, as its interior is gradually involved in the melting process, the phase transition temperature becomes higher. The melting point becomes constant when all atoms have the same number of unsaturated bonds.
NASA Astrophysics Data System (ADS)
Herlach, Dieter M.; Kobold, Raphael; Klein, Stefan
2018-03-01
Glass formation of a liquid undercooled below its melting temperature requires the complete avoidance of crystal nucleation and subsequent crystal growth. Even though they are not part of the glass formation process, a detailed knowledge of both processes involved in crystallization is mandatory to determine the glass-forming ability of metals and metallic alloys. In the present work, methods of containerless processing of drops by electrostatic and electromagnetic levitation are applied to undercool metallic melts prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. A freely suspended drop offers the additional benefit of showing the rapid crystallization process of an undercooled melt in situ by proper diagnostic means. As a reference, crystal nucleation and dendrite growth in the undercooled melt of pure Zr are experimentally investigated. Equivalently, binary Zr-Cu, Zr-Ni and Zr-Pd and ternary Zr-Ni-Cu alloys are studied, whose glass-forming abilities differ. The experimental results are analyzed within classical nucleation theory and models of dendrite growth. The findings give detailed knowledge about the nucleation-undercooling statistics and the growth kinetics over a large range of undercooling.
Low-cost single-crystal turbine blades, volume 2
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Dennis, R. E.; Heath, B. R.
1984-01-01
The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.
A flow-free droplet-based device for high throughput polymorphic crystallization.
Yang, Shih-Mo; Zhang, Dapeng; Chen, Wang; Chen, Shih-Chi
2015-06-21
Crystallization is one of the most crucial steps in the process of pharmaceutical formulation. In recent years, emulsion-based platforms have been developed and broadly adopted to generate high quality products. However, these conventional approaches such as stirring are still limited in several aspects, e.g., unstable crystallization conditions and broad size distribution; besides, only simple crystal forms can be produced. In this paper, we present a new flow-free droplet-based formation process for producing highly controlled crystallization with two examples: (1) NaCl crystallization reveals the ability to package saturated solution into nanoliter droplets, and (2) glycine crystallization demonstrates the ability to produce polymorphic crystallization forms by controlling the droplet size and temperature. In our process, the saturated solution automatically fills the microwell array powered by degassed bulk PDMS. A critical oil covering step is then introduced to isolate the saturated solution and control the water dissolution rate. Utilizing surface tension, the solution is uniformly packaged in the form of thousands of isolating droplets at the bottom of each microwell of 50-300 μm diameter. After water dissolution, individual crystal structures are automatically formed inside the microwell array. This approach facilitates the study of different glycine growth processes: α-form generated inside the droplets and γ-form generated at the edge of the droplets. With precise temperature control over nanoliter-sized droplets, the growth of ellipsoidal crystalline agglomerates of glycine was achieved for the first time. Optical and SEM images illustrate that the ellipsoidal agglomerates consist of 2-5 μm glycine clusters with inner spiral structures of ~35 μm screw pitch. Lastly, the size distribution of spherical crystalline agglomerates (SAs) produced from microwells of different sizes was measured to have a coefficient variation (CV) of less than 5%, showing crystal sizes can be precisely controlled by microwell sizes with high uniformity. This new method can be used to reliably fabricate monodispersed crystals for pharmaceutical applications.
Ileus caused by cholesterol crystal embolization: A case report.
Azuma, Shunjiro; Ikenouchi, Maiko; Akamatsu, Takuji; Seta, Takeshi; Urai, Shunji; Uenoyama, Yoshito; Yamashita, Yukitaka
2016-03-28
Cholesterol crystal embolization (CCE) is a rare systemic embolism caused by formation of cholesterol crystals from atherosclerotic plaques. CCE usually occurs during vascular manipulation, such as vascular surgery or endovascular catheter manipulation, or due to anticoagulation or thrombolytic therapy. We report a rare case of intestinal obstruction caused by spontaneous CCE. An 81-year-old man with a history of hypertension was admitted for complaints of abdominal pain, bloating, and anorexia persisting for 4 mo. An abdominal computed tomography revealed intestinal ileus. His symptoms were immediately relieved by an ileus tube insertion, and he was discharged 6 d later. However, these symptoms immediately reappeared and persisted, and partial resection of the small intestine was performed. A histopathological examination indicated that small intestine obstruction was caused by CCE. At the 12-mo follow-up, the patient showed no evidence of CCE recurrence. Thus, in cases of intestinal obstruction, CCE should also be considered.
Hom, Geoffrey K.; Lassila, J. Kyle; Thomas, Leonard M.; Mayo, Stephen L.
2005-01-01
Our goal was to compute a stable, full-sequence design of the Drosophila melanogaster engrailed homeodomain. Thermal and chemical denaturation data indicated the design was significantly more stable than was the wild-type protein. The data were also nearly identical to those for a similar, later full-sequence design, which was shown by NMR to adopt the homeodomain fold: a three-helix, globular monomer. However, a 1.65 Å crystal structure of the design described here turned out to be of a completely different fold: a four-helix, rodlike tetramer. The crystallization conditions included ~25% dioxane, and subsequent experiments by circular dichroism and sedimentation velocity analytical ultracentrifugation indicated that dioxane increases the helicity and oligomerization state of the designed protein. We attribute at least part of the discrepancy between the target fold and the crystal structure to the presence of a high concentration of dioxane. PMID:15741348
Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers
NASA Astrophysics Data System (ADS)
Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan
2018-04-01
Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.
Stability of Detached Solidification
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.; Croell, A.
2009-01-01
Bridgman crystal growth can be conducted in the so-called "detached" solidification regime, where the growing crystal is detached from the crucible wall. A small gap between the growing crystal and the crucible wall, of the order of 100 micrometers or less, can be maintained during the process. A meniscus is formed at the bottom of the melt between the crystal and crucible wall. Under proper conditions, growth can proceed without collapsing the meniscus. The meniscus shape plays a key role in stabilizing the process. Thermal and other process parameters can also affect the geometrical steady-state stability conditions of solidification. The dynamic stability theory of the shaped crystal growth process has been developed by Tatarchenko. It consists of finding a simplified autonomous set of differential equations for the radius, height, and possibly other process parameters. The problem then reduces to analyzing a system of first order linear differential equations for stability. Here we apply a modified version of this theory for a particular case of detached solidification. Approximate analytical formulas as well as accurate numerical values for the capillary stability coefficients are presented. They display an unexpected singularity as a function of pressure differential. A novel approach to study the thermal field effects on the crystal shape stability has been proposed. In essence, it rectifies the unphysical assumption of the model that utilizes a perturbation of the crystal radius along the axis as being instantaneous. It consists of introducing time delay effects into the mathematical description and leads, in general, to stability over a broader parameter range. We believe that this novel treatment can be advantageously implemented in stability analyses of other crystal growth techniques such as Czochralski and float zone methods.
Research experiences on materials science in space aboard Salyut and Mir
NASA Technical Reports Server (NTRS)
Regel, Liya L.
1992-01-01
From 1980 through 1991 approximately 500 materials processing experiments were performed aboard the space stations Salyut 6, Salyut 7 and Mir. This includes work on catalysts, polymers, metals and alloys, optical materials, superconductors, electronic crystals, thin film semiconductors, super ionic crystals, ceramics, and protein crystals. Often the resulting materials were surprisingly superior to those prepared on earth. The Soviets were the first to fabricate a laser (CdS) from a crystal grown in space, the first to grow a heterostructure in space, the first super ionic crystal in space, the first crystals of CdTe and its alloys, the first zeolite crystals, the first protein crystals, the first chromium disilicide glass, etc. The results were used to optimize terrestrial materials processing operations in Soviet industry. The characteristics of these three space stations are reviewed, along with the advantages of a space station for materials research, and the problems encountered by the materials scientists who used them. For example, the stations and the materials processing equipment were designed without significant input from the scientific community that would be using them. It is pointed out that successful results have been achieved also by materials processing at high gravity in large centrifuges. This research is also continuing around the world, including at Clarkson University. It is recommended that experiments be conducted in centrifuges in space, in order to investigate the acceleration regime between earth's gravity and the microgravity achieved in orbiting space stations. One cannot expect to understand the influence of gravity on materials processing from only two data points, earth's gravity and microgravity. One must also understand the influence of fluctuations in acceleration on board space stations, the so-called 'g-jitter.' This paper is presented in outline and graphical form.
Overview: Experimental studies of crystal nucleation: Metals and colloids.
Herlach, Dieter M; Palberg, Thomas; Klassen, Ina; Klein, Stefan; Kobold, Raphael
2016-12-07
Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. Experimental results demonstrate the power of these methods not only for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the physical nature of heterogeneous versus homogeneous nucleation and nucleation of phases nucleated under non-equilibrium conditions. The results are analyzed within classical nucleation theory that defines the activation energy of homogeneous nucleation in terms of the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the potential of colloidal suspensions as model systems for the crystallization process. The nucleation process of colloids is observed in situ by optical observation and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal nucleation.
Crystallization and X-ray diffraction of crystals formed in water-plasticized amorphous lactose.
Jouppila, K; Kansikas, J; Roos, Y H
1998-01-01
Effects of storage time and relative humidity on crystallization and crystal forms produced from amorphous lactose were investigated. Crystallization was observed from time-dependent loss of sorbed water and increasing intensities of peaks in X-ray diffraction patterns. The rate of crystallization increased with increasing storage relative humidity. Lactose crystallized mainly as alpha-lactose monohydrate and anhydrous crystals with alpha- and beta-lactose in a molar ratio of 5:3. The results suggested that the crystal form was defined by the early nucleation process. The crystallization data are important in modeling of crystallization phenomena and prediction of stability of lactose-containing food and pharmaceutical materials.
NASA Astrophysics Data System (ADS)
Choi, Tae-Youl
Ultra-short pulsed laser radiation has been shown to be effective for precision materials processing and surface micro-modification. One of advantages is the substantial reduction of the heat penetration depth, which leads to minimal lateral damage. Other advantages include non-thermal nature of ablation process, controlled ablation and ideal characteristics for precision micro-structuring. Yet, fundamental questions remain unsolved regarding the nature of melting and ablation mechanisms in femtosecond laser processing of materials. In addition to micro engineering problems, nano-structuring and nano-fabrication are emerging fields that are of particular interest in conjunction with femtosecond laser processing. A comprehensive experimental study as well as theoretical development is presented to address these issues. Ultra-short pulsed laser irradiation was used to crystallize 100 nm amorphous silicon (a-Si) films. The crystallization process was observed by time-resolved pump-and-probe reflection imaging in the range of 0.2 ps to 100 ns. The in-situ images in conjunction with post-processed SEM and AFM mapping of the crystallized structure provide evidence for non-thermal ultra-fast phase transition and subsequent surface-initiated crystallization. Mechanisms of ultra-fast laser-induced ablation on crystalline silicon and copper are investigated by time-resolved pump-and-probe microscopy in normal imaging and shadowgraph arrangements. A one-dimensional model of the energy transport is utilized to predict the carrier temperature and lattice temperature as well as the electron and vapor flux emitted from the surface. The temporal delay between the pump and probe pulses was set by a precision translation stage up to about 500 ps and then extended to the nanosecond regime by an optical fiber assembly. The ejection of material was observed at several picoseconds to tens of nanoseconds after the main (pump) pulse by high-resolution, ultra-fast shadowgraphs. The ultrashort laser pulse accompanied by the pre-pulse induces air breakdown that can be detrimental to materials processing. A time-resolved pump-and-probe experiment provides distinct evidence for the occurrence of an air plasma and air breakdown. This highly nonlinear phenomenon takes place before the commencement of the ablation process, which is traced beyond elapsed time of the order of 10 ps with respect to the ablating pulse. The nonlinear refractive index of the generated air plasma is calculated as a function of electron density. The self-focusing of the main pulse is identified by the third order nonlinear susceptibility. A crystalline silicon sample is subjected to two optically separated ultra-fast laser pulses of full-width-half-maximum (FWHM) duration of about 80 femtoseconds. These pulses are delivered at wavelength, lambda = 800 nm. Femtosecond-resolved imaging pump-and-probe experiments in reflective and Schlieren configurations have been performed to investigate plasma dynamics and shock wave propagation during the sample ablation process. By using a diffractive optical element (DOE) for beam shaping, microchannels were fabricated. A super-long working distance objective lens was used to machine silicon materials in the sub-micrometer scale. As an extension of micro-machining, the finite difference time domain (FDTD) method is used to assess the feasibility of using near-field distribution of laser light. Gold coated films were machined with nano-scale dimensions and characterized with atomic force microscopy (AFM).
NASA Astrophysics Data System (ADS)
Gray, Nathan W.; Perez-Rubio, Victor; Bolke, Joseph G.; Alexander, W. B.
2014-10-01
Focal plane arrays (FPAs) made on InSb wafers are the key cost-driving component in IR imaging systems. The electronic and crystallographic properties of the wafer directly determine the imaging device performance. The "facet effect" describes the non-uniform electronic properties of crystals resulting from anisotropic dopant segregation during bulk growth. When the segregation coefficient of dopant impurities changes notably across the melt/solid interface of a growing crystal the result is non-uniform electronic properties across wafers made from these crystals. The effect is more pronounced in InSb crystals grown on the (111) axis compared with other orientations and crystal systems. FPA devices made on these wafers suffer costly yield hits due to inconsistent device response and performance. Historically, InSb crystal growers have grown approximately 9-19 degree off-axis from the (111) to avoid the facet effect and produced wafers with improved uniformity of electronic properties. It has been shown by researchers in the 1960s that control of the facet effect can produce uniform small diameter crystals. In this paper, we share results employing a process that controls the facet effect when growing large diameter crystals from which 4, 5, and 6" wafers can be manufactured. The process change resulted in an increase in wafers yielded per crystal by several times, all with high crystal quality and uniform electronic properties. Since the crystals are grown on the (111) axis, manufacturing (111) oriented wafers is straightforward with standard semiconductor equipment and processes common to the high-volume silicon wafer industry. These benefits result in significant manufacturing cost savings and increased value to our customers.
4D porosity evolution during solid-solid replacement reaction in mineral system (KBr, KCl)
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Hamilton, Andrea; Koehn, Daniel; Shipton, Zoe
2017-04-01
An extensive understanding of the controlling mechanisms of phase transformation is key in geosciences to better predicting the evolution of the physical parameters of rocks (porosity, permeability, and rheology) from centimetre-scale (e.g. fingering in siltstones) to kilometer-scale (e.g. Dolostone geobodies), in both the diagenetic and metamorphic domains. This contribution reports the 4D monitoring of a KBr crystal at different time steps during an experimental, fluid-mediated replacement reaction with KCl. Volumes are reconstructed based on density contrast using non-destructive X-ray Computed Tomography (XCT) at a resolution of 3 microns. A sample of KBr was immersed in a static bath of saturated KCl at room temperature and pressure. 5 scans were performed during the reaction at 5, 10, 20, 35 and 55 minutes, until 50% of the original crystal was replaced. As a control experiment, two samples reacted continuously for 15 and 55 minutes, respectively. Each 3D dataset was reconstructed to visualize and quantify the different mineral phases, the porosity distribution and connectivity, along with the reaction front morphology. In the case of successive baths, results show that the front morphology evolves from rough with small fingers to flat and thick during the reaction, suggesting a switch between advection and diffusion controlled reactant distribution through time. This switch is also reflected in the mass evolution and the rate of propagation of the replaced zone, being rapid in the first 20 minutes before reaching steady state. The porosity develops perpendicular to the crystal wall, suggesting a self-organization process governed by advection, before connecting laterally. While the reaction changes from advection controlled to diffusion controlled, the direction of the connected pores becomes parallel to the crystal walls. This phenomenon is not observed when the crystal is reacting discontinuously for 55 minutes. In the latter case, self-organization similar to extended fingering is observed, suggesting the advection to diffusion switch is related to the successive stop of reaction progress for scanning. In both cases, when considering only the reacting zone of the crystal, we can estimate the porosity created by Br-Cl substitution at 30%. The evolution of connected porosity distribution helps to understand how fluid flow can migrate in a transforming rock, for example during dolomitisation, a phenomenon extensively observed in sedimentary basins.
Durability of building stones against artificial salt crystallization
NASA Astrophysics Data System (ADS)
Min, K.; Park, J.; Han, D.
2005-12-01
Salts have been known as the most powerful weathering agents, especially when combined with frost action. Salt crystallization test along with freezing-thawing test and acid immersion test was carried out to assess the durability of building stones against weathering. Granite, limestone, marble and basalt were sampled from different quarries in south Korea for this study. One cycle of artificial salt crystallization test was composed of immersion of cored rock specimens in oversaturated solutions of CaCl2, KCl, NaCl and Na2SO4, respectively for 15 hours and successive drying in an oven of 105°C for 3 hours and cooling at room temperature. Tests were performed up to 30 cycles, and specific gravity and ultrasonic velocity were measured after experiencing every 10 cycles and uniaxial compressive strength was measured only after 30 cycles. During the repeated Na2SO4 salt crystallization, some rock samples were gradually deformed excessively and burst after 20 to 30 cycles of test. The variation patterns of physical properties during the salt crystallization tests are too variable to generalize the effect of salt weathering on physical properties but limestone, marble and basalt samples showed relatively greater change of physical properties than granite samples. The recrystallized salts were well observed in the cracks of rock samples through the scanning electron microscope. In the all salt crystallization tests, apparent specific gravities for all tested samples increased generally but not so significantly due to recrystallization of salts. It can be inferred that filling the pores with salt crystals cause the increase of ultrasonic velocity during the early stage of salt crystallization and then in later stages the repeated cycles of salt crystallization result in development of cracks leading decrease of ultrasonic velocity for some rock samples.
Rango, A.; Foster, J.; Josberger, E.G.; Erbe, E.F.; Pooley, C.; Wergin, W.P.
2003-01-01
Snow crystals, which form by vapor deposition, occasionally come in contact with supercooled cloud droplets during their formation and descent. When this occurs, the droplets adhere and freeze to the snow crystals in a process known as accretion. During the early stages of accretion, discrete snow crystals exhibiting frozen cloud droplets are referred to as rime. If this process continues, the snow crystal may become completely engulfed in frozen cloud droplets. The resulting particle is known as graupel. Light microscopic investigations have studied rime and graupel for nearly 100 years. However, the limiting resolution and depth of field associated with the light microscope have prevented detailed descriptions of the microscopic cloud droplets and the three-dimensional topography of the rime and graupel particles. This study uses low-temperature scanning electron microscopy to characterize the frozen precipitates that are commonly known as rime and graupel. Rime, consisting of frozen cloud droplets, is observed on all types of snow crystals including needles, columns, plates, and dendrites. The droplets, which vary in size from 10 to 100 μm, frequently accumulate along one face of a single snow crystal, but are found more randomly distributed on aggregations consisting of two or more snow crystals (snowflakes). The early stages of riming are characterized by the presence of frozen cloud droplets that appear as a layer of flattened hemispheres on the surface of the snow crystal. As this process continues, the cloud droplets appear more sinuous and elongate as they contact and freeze to the rimed crystals. The advanced stages of this process result in graupel, a particle 1 to 3 mm across, composed of hundreds of frozen cloud droplets interspersed with considerable air spaces; the original snow crystal is no longer discernible. This study increases our knowledge about the process and characteristics of riming and suggests that the initial appearance of the flattened hemispheres may result from impact of the leading face of the snow crystal with cloud droplets. The elongated and sinuous configurations of frozen cloud droplets that are encountered on the more advanced stages suggest that aerodynamic forces propel cloud droplets to the trailing face of the descending crystal where they make contact and freeze.
Burgener, Matthias; Aboulfadl, Hanane; Labat, Gaël Charles; Bonin, Michel; Sommer, Martin; Sankolli, Ravish; Wübbenhorst, Michael; Hulliger, Jürg
2016-05-01
180° orientational disorder of molecular building blocks can lead to a peculiar spatial distribution of polar properties in molecular crystals. Here we present two examples [4-bromo-4'-nitrobiphenyl (BNBP) and 4-bromo-4'-cyanobiphenyl (BCNBP)] which develop into a bipolar final growth state. This means orientational disorder taking place at the crystal/nutrient interface produces domains of opposite average polarity for as-grown crystals. The spatial inhomogeneous distribution of polarity was investigated by scanning pyroelectric microscopy (SPEM), phase-sensitive second harmonic microscopy (PS-SHM) and selected volume X-ray diffraction (SVXD). As a result, the acceptor groups (NO2 or CN) are predominantly present at crystal surfaces. However, the stochastic process of polarity formation can be influenced by adding a symmetrical biphenyl to a growing system. For this case, Monte Carlo simulations predict an inverted net polarity compared with the growth of pure BNBP and BCNBP. SPEM results clearly demonstrate that 4,4'-dibromobiphenyl (DBBP) can invert the polarity for both crystals. Phenomena reported in this paper belong to the most striking processes seen for molecular crystals, demonstrated by a stochastic process giving rise to symmetry breaking. We encounter here further examples supporting the general thesis that monodomain polar molecular crystals for fundamental reasons cannot exist.
Kim, Jae-Hong; Oh, Seunghan; Uhm, Soo-Hyuk
2016-01-01
The aim of this study is to quantify the effect of the crystallization process on lithium disilicate ceramic crowns fabricated using a computer-aided design/computer-aided manufacturing (CAD/CAM) system and to determine whether the effect of crystallization is clinically acceptable by comparing values of fit before and after the crystallization process. The mandibular right first molar was selected as the abutment for the experiments. Fifteen working models were prepared. Lithium disilicate crowns appropriate for each abutment were prepared using a commercial CAD/CAM system. Gaps in the marginal area and 4 internal areas of each crown were measured twice—before and after crystallization—using the silicone replica technique. The mean values of fit before and after crystallization were analyzed using a paired t-test to examine whether the conversion that occurred during crystallization affected marginal and internal gaps (α = 0.05). Gaps increased in the marginal area and decreased in the internal areas after crystallization. There were statistically significant differences in all of the investigated areas (P < 0.05). None of the values for marginal and internal fit of lithium disilicate CAD/CAM crowns after crystallization exceeded 120 μm, which is the clinically acceptable threshold. PMID:27123453
NASA Astrophysics Data System (ADS)
Kaulina, Tatiana
2013-04-01
The possibility of direct dating of the deformation process is critical for understanding of orogenic belts evolution. Establishing the age of deformation by isotopic methods is indispensable in the case of uneven deformation overlapping, when later deformation inherits the structural plan of the early strains, and to distinguish them on the basis of the structural data only is impossible. A good example of zircon from the shear zones is zircon formed under the eclogite facies conditions. On the one hand, the composition of zircon speaks about its formation simultaneously to eclogitic paragenesis (Rubatto, Herman, 1999; Rubatto et al., 2003). On the other hand, geological studies show that mineral reactions of eclogitization are often held only in areas of shear deformations, which provides access of fluid to the rocks (Austrheim, 1987; Jamtveit et al., 2000; Bingen et al., 2004). Zircons from mafic and ultramafic rocks of the Tanaelv and Kolvitsa belts (Kola Peninsula, the Baltic Shield) have showed that the metamorphic zircon growth is probably controlled by the metamorphic fluid regime, as evidenced by an increase of zircon quantity with the degree of shearing. The internal structure of zircon crystals can provide an evidence of zircon growth synchronous with shearing. The studied crystals have a sector zoning and often specific "patchy" zoning (Fig. 1), which speaks about rapid change of growth conditions. Such internal structure can be compared with the "snowball" garnet structure reflecting the rotation of crystals during their growth under a shift. Rapidly changing crystallization conditions can also be associated with a small amount of fluid, where supersaturation is changing even at a constant temperature. Thus, the growth of metamorphic zircon in shear zones is more likely to occur in the fluid flow synchronous with deformation. A distinctive feature of zircons in these conditions is isometric shape and sector "patchy" zoning. The work was supported by Russian Foundation of Basic Research (project: 13-05-00035.) and the DES-6 program.
McFadden, C; Bartz, J; Akselrod, M; Sawakuchi, G
2012-06-01
To construct a custom confocal laser scanning microscope (CLSM) capable of resolving individual proton tracks in the volume of an Al 2 O 3 :C,Mg fluorescent nuclear track detector (FNTD). The spatial resolution of the FNTD technique is at the sub-micrometer scale. Therefore the FNTD technique has the potential to perform radiation measurements at the cell nucleus scale. The crystal volume of an FNTD contains defects which become fluorescent F 2 + centers after trapping delta electrons from ionizing radiation. These centers have an absorption band centered at 620 nm and an emission band in the near infrared. Events of energy deposition in the crystal are read-out using a CLSM with sub-micrometer spatial resolution. Excitation light from a 635 nm laser is focused in the crystal volume by an objective lens. Fluorescence is collected back through the same path, filtered through a dichroic mirror, and focused through a small pinhole onto an avalanche photodiode. Lateral scanning of the focal point is performed with a scanning mirror galvanometer, and axial scanning is performed using a stepper-motor stage. Control of electronics and image acquisition was performed using a custom built LabVIEW VI and further image processing was done using Java. The system was used to scan FNTDs exposed to a 6 MV x-ray beam and an unexposed FNTD. Fluorescence images above the unexposed background were obtained at scan depths ranging from 5 - 10 micrometer below the crystal surface using a 100 micrometer pinhole size. Further work needs to be done to increase the resolution and the signal to noise ratio of the images so that energy deposition events may be identified more easily. Natural Sciences and Engineering Research Council of Canada. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Guetschow, H. A.; Nelson, B. K.
2002-12-01
Depth of crystal fractionation influences the chemical evolution of ocean island basalts and has significant implications for the physical structures of these volcanoes. In contrast to dominantly shallow systems such as Hawaii, a range of fractionation depths have been reported for Canary Islands lavas. Magmas erupted on La Palma preserve fluid- and melt-inclusion evidence for high-pressure (> 10 kbar) crystallization (Klügel et al., 1998; Hansteen et al., 1998; Nikogosian et al., 2002). If high-pressure fractional crystallization were an early and dominant process, it would generate specific patterns in rock and phase chemistry of eruptive sequences. Alkalic basalts from Taburiente volcano display coherent major element trends consistent with evolution dominated by fractional crystallization while their phenocryst compositions, trace elements, and isotopic trends require mixing between multiple sources. The current model confirms the importance of both fractionation and mixing to achieve the full range of lavas observed. A low-pressure (1 kbar) thermodynamic fractional crystallization model performed with the MELTS (Ghiorso and Sack, 1995) software closely reproduces major element trends from two stratigraphic sequences. This model also predicts the observed sequence of groundmass clinopyroxene compositions and phenocryst zoning reversals. In all low pressure simulations, olivine remains a modally significant liquidus phase during the first 20% and last 30% of the crystallization sequence, resulting in a negative correlation between the CaO and Fo content of olivine. These results are consistent with the presence of olivine phenocrysts that bear petrographic evidence of early crystallization, as well as observed compositional trends of groundmass olivine and clinopyroxene in Taburiente lavas. MELTS models that include an initial period of high pressure (12 kbar) clinopyroxene fractionation produce major element trends comparable to the low pressure model, but also produce high modal volumes of low CaO, high MgO clinopyroxene that are not observed in sections we studied. Removal of such a large quantity of clinopyroxene from the liquid increases the TiO2 and CaO of later-crystallized clinopyroxene to concentrations not observed in our studied sections, and restricts the MgO and FeO* to smaller ranges than observed. Olivine fractionation is restricted to short duration and low abundance late in the crystallization sequence, which is not evident petrographically. The total compositional range of clinopyroxene and olivine crystals observed throughout this suite of rocks is larger than any generated by a single-source MELTS model. Combined with stratigraphically controlled Pb isotope variations it indicates magma mixing and fractionation at low pressures dominates the petrologic diversity in these sections. Hansteen, TH, Klügel, A., Schmincke, H.-U, 1998. Contrib. Min. Pet. 132, 48-64. Klügel, A, 1998. Contrib. Min. Pet. 131, 237-257. Nikogosian, IK, Elliott, T, Touret, JLR. 2002. Chem. Geo. 183, 169-193. Ghiorso, MS, and Sack, RO. Contrib. Min. Pet. 119, 197-212.
Non-isothermal Crystallization Kinetics of Mold Fluxes for Casting High-Aluminum Steels
NASA Astrophysics Data System (ADS)
Zhou, Lejun; Li, Huan; Wang, Wanlin; Wu, Zhaoyang; Yu, Jie; Xie, Senlin
2017-12-01
This paper investigates the crystallization behavior of CaO-SiO2- and CaO-Al2O3-based mold fluxes for casting high-aluminum steels using single hot thermocouple technology, developed kinetic models, and scanning electron microscope. The results showed that the crystallization ability of the typical CaO-SiO2-based Flux A (CaO/SiO2 0.62, Al2O3 2 mass pct) is weaker than that of CaO-Al2O3-based Flux B (CaO/SiO2 4.11, Al2O3 31.9 mass pct) because of its higher initial crystallization temperature. The crystallization kinetics of Flux A was "surface nucleation and growth, interface reaction control" in the overall non-isothermal crystallization process, whereas that of Flux B was "constant nucleation rate, 1-dimensional growth, diffusion control, in the primary crystallization stage, and then transformed into constant nucleation rate, 3-dimensional growth, interface reaction control in the secondary crystallization stage." The energy dispersive spectroscopy results for Flux B suggested that the variations in the crystallization kinetics for Flux B are due to different crystals precipitating in the primary (BaCa2Al8O15) and secondary (CaAl2O4) crystallization periods during the non-isothermal crystallization process.
Investigation of Cd1-xMgxTe as possible materials for X and gamma ray detectors
NASA Astrophysics Data System (ADS)
Mycielski, Andrzej; Kochanowska, Dominika M.; Witkowska-Baran, Marta; Wardak, Aneta; Szot, Michał; Domagała, Jarosław; Witkowski, Bartłomiej S.; Jakieła, Rafał; Kowalczyk, Leszek; Witkowska, Barbara
2018-06-01
In recent years, a series of investigations has been devoted to a possibility of using crystals based on CdTe with addition of magnesium (Mg) for X and gamma radiation detectors. Since we have had wide technological possibilities of preparing crystals and investigating their properties, we performed crystallizations of the crystals mentioned above. Thereafter, we investigated selected properties of the obtained materials. The crystallization processes were performed by using the Low Pressure Bridgman (LPB) method. The elements used: Cd, Te, Mg were of the highest purity available at present. In order to obtain reliable conclusions the crystallization processes were carried out at identical technological conditions. The details of our technological method and the results of the investigation of physical properties of the samples are presented below.
Baughman, Richard J.
1992-01-01
A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.
Recovering and recycling uranium used for production of molybdenum-99
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, Sean Douglas; May, Iain; Copping, Roy
A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated targetmore » suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.« less
40 CFR 409.11 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.11 Specialized... or related to the concentration and crystallization of sugar solutions. (c) The term product shall mean crystallized refined sugar. ...
40 CFR 409.11 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.11 Specialized... or related to the concentration and crystallization of sugar solutions. (c) The term product shall mean crystallized refined sugar. ...
40 CFR 409.11 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.11 Specialized... or related to the concentration and crystallization of sugar solutions. (c) The term product shall mean crystallized refined sugar. ...
40 CFR 409.11 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.11 Specialized... or related to the concentration and crystallization of sugar solutions. (c) The term product shall mean crystallized refined sugar. ...
Schicks, J M; Ziemann, M A; Lu, H; Ripmeester, J A
2010-12-01
Natural gas hydrates usually are found in the form of structure I, encasing predominantly methane in the hydrate lattices as guest molecules, sometimes also minor amount of higher hydrocarbons, CO2 or H2S. Raman spectroscopy is an approved tool to determine the composition of the hydrate phase. Thus, in this study Raman spectroscopic analyses have been applied to hydrate samples obtained from Integrated Ocean Drilling Program (IODP) Expedition 311 in two different approaches: studying the samples randomly taken from the hydrate core, and--as a new application--mapping small areas on the surface of clear hydrate crystals. The results obtained imply that the gas composition of hydrate, in terms of relative concentrations of CH4 and H2S, is not homogeneous over a core or even within a crystal. The mapping method yielded results with very high lateral resolution, indicating the coexistence of different phases with the same structure but different compositions within a hydrate crystal. Copyright © 2010 Elsevier B.V. All rights reserved.
Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale
NASA Astrophysics Data System (ADS)
Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.
2014-10-01
The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoli; Todeschini, Matteo; Bastos da Silva Fanta, Alice; Liu, Lintao; Jensen, Flemming; Hübner, Jörg; Jansen, Henri; Han, Anpan; Shi, Peixiong; Ming, Anjie; Xie, Changqing
2018-09-01
The applications of Au thin films and their adhesion layers often suffer from a lack of sufficient information about the chemical states of adhesion layers and about the high-lateral-resolution crystallographic morphology of Au nanograins. Here, we demonstrate the in-depth evolution of the chemical states of adhesive layers at the interfaces and the crystal orientation mapping of gold nanograins with a lateral resolution of less than 10 nm in a Ti/Au/Cr tri-layer thin film system. Using transmission electron microscopy, the variation in the interdiffusion at Cr/Au and Ti/Au interfaces was confirmed. From X-ray photoelectron spectroscopy (XPS) depth profiling, the chemical states of Cr, Au and Ti were characterized layer by layer, suggesting the insufficient oxidation of the adhesive layers. At the interfaces the Au 4f peaks shift to higher binding energies and this behavior can be described by a proposed model based on electron reorganization and substrate-induced final-state neutralization in small Au clusters supported by the partially oxidized Ti layer. Utilizing transmission Kikuchi diffraction (TKD) in a scanning electron microscope, the crystal orientation of Au nanograins between two adhesion layers was non-destructively characterized with sub-10 nm spatial resolution. The results provide nanoscale insights into the Ti/Au/Cr thin film system and contribute to our understanding of its behavior in nano-optic and nano-electronic devices.
Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace
NASA Astrophysics Data System (ADS)
Bergfelds, Kristaps; Sabanskis, Andrejs; Virbulis, Janis
2018-05-01
The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.
Influence of heat conducting substrates on explosive crystallization in thin layers
NASA Astrophysics Data System (ADS)
Schneider, Wilhelm
2017-09-01
Crystallization in a thin, initially amorphous layer is considered. The layer is in thermal contact with a substrate of very large dimensions. The energy equation of the layer contains source and sink terms. The source term is due to liberation of latent heat in the crystallization process, while the sink term is due to conduction of heat into the substrate. To determine the latter, the heat diffusion equation for the substrate is solved by applying Duhamel's integral. Thus, the energy equation of the layer becomes a heat diffusion equation with a time integral as an additional term. The latter term indicates that the heat loss due to the substrate depends on the history of the process. To complete the set of equations, the crystallization process is described by a rate equation for the degree of crystallization. The governing equations are then transformed to a moving co-ordinate system in order to analyze crystallization waves that propagate with invariant properties. Dual solutions are found by an asymptotic expansion for large activation energies of molecular diffusion. By introducing suitable variables, the results can be presented in a universal form that comprises the influence of all non-dimensional parameters that govern the process. Of particular interest for applications is the prediction of a critical heat loss parameter for the existence of crystallization waves with invariant properties.
In Situ μGISAXS: II. Thaumatin Crystal Growth Kinetic
Gebhardt, Ronald; Pechkova, Eugenia; Riekel, Christian; Nicolini, Claudio
2010-01-01
The formation of thaumatin crystals by Langmuir-Blodgett (LB) film nanotemplates was studied by the hanging-drop technique in a flow-through cell by synchrotron radiation micrograzing-incidence small-angle x-ray scattering. The kinetics of crystallization was measured directly on the interface of the LB film crystallization nanotemplate. The evolution of the micrograzing-incidence small-angle x-ray scattering patterns suggests that the increase in intensity in the Yoneda region is due to protein incorporation into the LB film. The intensity variation suggests several steps, which were modeled by system dynamics based on first-order differential equations. The kinetic data can be described by two processes that take place on the LB film, a first, fast, process, attributed to the crystal growth and its detachment from the LB film, and a second, slower process, attributed to an unordered association and conversion of protein on the LB film. PMID:20713011
Indium (In)- and tin (Sn)-based metal induced crystallization (MIC) on amorphous germanium (α-Ge)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Dong-Ho; Park, Jin-Hong, E-mail: jhpark9@skku.edu
Highlights: • In- and Sn-based MIC phenomenon on amorphous (α)-Ge is newly reported. • The In- and Sn-MIC phenomenon respectively started at 250 °C and 400 °C. • The Sn-MIC process presents higher sheet resistance and bigger crystal grains. - Abstract: In this paper, metal-induced crystallization (MIC) phenomenon on α-Ge by indium (In) and tin (Sn) are thoroughly investigated. In- and Sn-MIC process respectively started at 250 °C and 400 °C. Compared to the previously reported MIC samples including In-MIC, Sn-MIC process presented higher sheet resistance (similar to that of SPC) and bigger crystal grains above 50 nm (slightly smallermore » than that of SPC). According to SIMS analysis, Sn atoms diffused more slowly into Ge than In at 400 °C, providing lower density of heterogeneous nuclei induced by metals and consequently larger crystal grains.« less
NASA Astrophysics Data System (ADS)
Domonik, A.; Słaby, E.; Śmigielski, M.
2012-04-01
A self-similarity parameter, the Hurst exponent (H) (called also roughness exponent) has been used to show the long-range dependence of element behaviour during the processes. The H value ranges between 0 and 1; a value of 0.5 indicates a random distribution indistinguishable from noise. For values greater or less than 0.5, the system shows non-linear dynamics. H < 0.5 represents anti-persistent (more chaotic) behaviour, whereas H > 0.5 corresponds to increasing persistence (less chaotic). Such persistence is characterized as an effect of a long-term memory, and thus by a large degree of positive correlation. In theory, the preceding data constantly affect the next in the whole temporal series. Applied to chaotic dynamics, the system shows a subtle sensitivity to initial conditions. The process can show some degree of chaos, due to local variations, but generally, the trend preserves its persistent character through time. If the exponent value is low, the process shows frequent and sudden reversals e.g. the trends of such a process show mutual negative correlation of the succeding values in the data series. Thus, the system can be described as having a high degree of deterministic chaos. Alkali feldspar megacrysts grown from mixed magmas and recrystallized due to interaction with fluids have been selected for the study (Słaby et al., 2011). Hurst exponent variability has been calculated within some primary-magmatic and secondary-recrystallized crystal domains for some elements redistributed by crystal fluid interaction. Based on the Hurst exponent value two different processes can easily be recognized. In the core of the megacrysts the element distribution can be ascribed to magmatic growth. By contrast, the marginal zones can relate to inferred late crystal-fluid interactions. Both processes are deterministic, not random. The spatial distribution of elements in the crystal margins is irregular, with high-H values identifying the process as persistent. The trace element distributions in feldspar cores are almost homogeneous and only relatively small and irregular variations in trace element contents makes their growth morphology slightly patchy. Despite homogenization the fractal statistics reveal that trace elements were incorporated chaotically into the growing crystal. The anti-persistent chaotic behaviour of elements during magmatic growth of the feldspars progressively changes into persistent behaviour within domains, where re-crystallization reaction took place. Elements demonstrate variable dynamics of this exchange corresponding to increasing persistency. This dynamics is different for individual elements compared to analogical, observed for crystallization process proceeding from mixed magmas. Consequently, it appears that fractal statistics clearly discriminate between two different processes, with contrasted element behaviour during these processes. One process is magma crystallization and it is recorded in the core of the megacrysts; the second is recorded in the crystal rims and along cleavages and cracks, such that it can be related to a post-crystallization process linked to fluid percolation. Słaby, E., Martin, H., Hamada, M., Śmigielski, M., Domonik, A., Götze, J., Hoefs, J., Hałas, S., Simon, K., Devidal, J-L., Moyen, J-F., Jayananda, M. (2011) Evidence in Archaean alkali-feldspar megacrysts for high-temperature interaction with mantle fluids. Journal of Petrology (on line). doi:10.1093/petrology/egr056
Imaging transport phenomena during lysozyme protein crystal growth by the hanging drop technique
NASA Astrophysics Data System (ADS)
Sethia Gupta, Anamika; Gupta, Rajive; Panigrahi, P. K.; Muralidhar, K.
2013-06-01
The present study reports the transport process that occurs during the growth of lysozyme protein crystals by the hanging drop technique. A rainbow schlieren technique has been employed for imaging changes in salt concentration. A one dimensional color filter is used to record the deflection of the light beam. An optical microscope and an X-ray crystallography unit are used to characterize the size, tetragonal shape and Bravais lattice constants of the grown crystals. A parametric study on the effect of drop composition, drop size, reservoir height and number of drops on the crystal size and quality is reported. Changes in refractive index are not large enough to create a meaningful schlieren image in the air gap between the drop and the reservoir. However, condensation of fresh water over the reservoir solution creates large changes in the concentration of NaCl, giving rise to clear color patterns in the schlieren images. These have been analyzed to obtain salt concentration profiles near the free surface of the reservoir solution as a function of time. The diffusion of fresh water into the reservoir solution at the early stages of crystal growth followed by the mass flux of salt from the bulk solution towards the free surface has been recorded. The overall crystal growth process can be classified into two regimes, as demarcated by the changes in slope of salt concentration within the reservoir. The salt concentration in the reservoir equilibrates at long times when the crystallization process is complete. Thus, transport processes in the reservoir emerge as the route to monitor protein crystal growth in the hanging drop configuration. Results show that crystal growth rate is faster for a higher lysozyme concentration, smaller drops, and larger reservoir heights.
Competition of the connectivity with the local and the global order in polymer melts and crystals
NASA Astrophysics Data System (ADS)
Bernini, S.; Puosi, F.; Barucco, M.; Leporini, D.
2013-11-01
The competition between the connectivity and the local or global order in model fully flexible chain molecules is investigated by molecular-dynamics simulations. States with both missing (melts) and high (crystal) global order are considered. Local order is characterized within the first coordination shell (FCS) of a tagged monomer and found to be lower than in atomic systems in both melt and crystal. The role played by the bonds linking the tagged monomer to FCS monomers (radial bonds), and the bonds linking two FCS monomers (shell bonds) is investigated. The detailed analysis in terms of Steinhardt's orientation order parameters Ql (l = 2 - 10) reveals that increasing the number of shell bonds decreases the FCS order in both melt and crystal. Differently, the FCS arrangements organize the radial bonds. Even if the molecular chains are fully flexible, the distribution of the angle formed by adjacent radial bonds exhibits sharp contributions at the characteristic angles θ ≈ 70°, 122°, 180°. The fractions of adjacent radial bonds with θ ≈ 122°, 180° are enhanced by the global order of the crystal, whereas the fraction with 70° ≲ θ ≲ 110° is nearly unaffected by the crystallization. Kink defects, i.e., large lateral displacements of the chains, are evidenced in the crystalline state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuto, M.; Kewalramani, S.; Wang, S.
2011-02-07
We report an experimental demonstration of a strategy for inducing two-dimensional (2D) crystallization of charged nanoparticles on oppositely charged fluid interfaces. This strategy aims to maximize the interfacial adsorption of nanoparticles, and hence their lateral packing density, by utilizing a combination of weakly charged particles and a high surface charge density on the planar interface. In order to test this approach, we investigated the assembly of cowpea mosaic virus (CPMV) on positively charged lipid monolayers at the aqueous solution surface, by means of in situ X-ray scattering measurements at the liquid-vapor interface. The assembly was studied as a function ofmore » the solution pH, which was used to vary the charge on CPMV, and of the mole fraction of the cationic lipid in the binary lipid monolayer, which set the interface charge density. The 2D crystallization of CPMV occurred in a narrow pH range just above the particle's isoelectric point, where the particle charge was weakly negative, and only when the cationic-lipid fraction in the monolayer exceeded a threshold. The observed 2D crystals exhibited nearly the same packing density as the densest lattice plane within the known 3D crystals of CPMV. The above electrostatic approach of maximizing interfacial adsorption may provide an efficient route to the crystallization of nanoparticles at aqueous interfaces.« less
Naffakh, Mohammed; Marco, Carlos; Gómez, Marián A; Jiménez, Ignacio
2009-05-21
The dynamic crystallization kinetics of polyphenylene sulfide (PPS) nanocomposites with inorganic fullerene WS2 nanopartices (IF-WS2) content varying from 0.05 to 8 wt % has been studied using differential scanning calorimetry (DSC). The analysis of the crystallization at different cooling rates demonstrates that the completely isokinetic description of the crystallization process is not possible. However, the isoconversional methods in combination with the JMAEK equation provide a better understanding of the kinetics of the dynamic crystallization process. The addition of IF-WS2 influences the crystallization kinetics of PPS but in ways unexpected for polymer nanocomposites. A drastic change from retardation to promotion of crystallization is observed with increasing nanoparticle content. In the same way, the results of the nucleation activity and the effective energy barrier confirmed the unique dependence of the crystallization behavior of PPS on composition. In addition, the morphological data obtained from the polarized optical microscopy (POM) and time-resolved synchrotron X-ray diffraction is consistent with results of the crystallization kinetics of PPS/IF-WS2 nanocomposites.
A Polymer Visualization System with Accurate Heating and Cooling Control and High-Speed Imaging
Wong, Anson; Guo, Yanting; Park, Chul B.; Zhou, Nan Q.
2015-01-01
A visualization system to observe crystal and bubble formation in polymers under high temperature and pressure has been developed. Using this system, polymer can be subjected to a programmable thermal treatment to simulate the process in high pressure differential scanning calorimetry (HPDSC). With a high-temperature/high-pressure view-cell unit, this system enables in situ observation of crystal formation in semi-crystalline polymers to complement thermal analyses with HPDSC. The high-speed recording capability of the camera not only allows detailed recording of crystal formation, it also enables in situ capture of plastic foaming processes with a high temporal resolution. To demonstrate the system’s capability, crystal formation and foaming processes of polypropylene/carbon dioxide systems were examined. It was observed that crystals nucleated and grew into spherulites, and they grew at faster rates as temperature decreased. This observation agrees with the crystallinity measurement obtained with the HPDSC. Cell nucleation first occurred at crystals’ boundaries due to CO2 exclusion from crystal growth fronts. Subsequently, cells were nucleated around the existing ones due to tensile stresses generated in the constrained amorphous regions between networks of crystals. PMID:25915031
Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT
NASA Astrophysics Data System (ADS)
Kirpo, Maksims
2013-05-01
Silicon crystals for high efficiency solar cells are produced mainly by the Czochralski (CZ) crystal growth method. Computer simulations of the CZ process established themselves as a basic tool for optimization of the growth process which allows to reduce production costs keeping high quality of the crystalline material. The author shows the application of the general Computational Fluid Dynamics (CFD) code ANSYS FLUENT to solution of the static two-dimensional (2D) axisymmetric global model of the small industrial furnace for growing of silicon crystals with a diameter of 100 mm. The presented numerical model is self-sufficient and incorporates the most important physical phenomena of the CZ growth process including latent heat generation during crystallization, crystal-melt interface deflection, turbulent heat and mass transport, oxygen transport, etc. The demonstrated approach allows to find the heater power for the specified pulling rate of the crystal but the obtained power values are smaller than those found in the literature for the studied furnace. However, the described approach is successfully verified with the respect to the heater power by its application for the numerical simulations of the real CZ pullers by "Bosch Solar Energy AG".
Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; LaPointe, Michael R.
2012-01-01
Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.
40 CFR 409.11 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing Subcategory § 409.11... associated with or related to the concentration and crystallization of sugar solutions. (c) The term product shall mean crystallized refined sugar. ...
DNA-mediated nanoparticle crystallization into Wulff polyhedra
NASA Astrophysics Data System (ADS)
Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.; Schmucker, Abrin L.; Pals, Bridget C.; de La Cruz, Monica Olvera; Mirkin, Chad A.
2014-01-01
Crystallization is a fundamental and ubiquitous process much studied over the centuries. But although the crystallization of atoms is fairly well understood, it remains challenging to predict reliably the outcome of molecular crystallization processes that are complicated by various molecular interactions and solvent involvement. This difficulty also applies to nanoparticles: high-quality three-dimensional crystals are mostly produced using drying and sedimentation techniques that are often impossible to rationalize and control to give a desired crystal symmetry, lattice spacing and habit (crystal shape). In principle, DNA-mediated assembly of nanoparticles offers an ideal opportunity for studying nanoparticle crystallization: a well-defined set of rules have been developed to target desired lattice symmetries and lattice constants, and the occurrence of features such as grain boundaries and twinning in DNA superlattices and traditional crystals comprised of molecular or atomic building blocks suggests that similar principles govern their crystallization. But the presence of charged biomolecules, interparticle spacings of tens of nanometres, and the realization so far of only polycrystalline DNA-interconnected nanoparticle superlattices, all suggest that DNA-guided crystallization may differ from traditional crystal growth. Here we show that very slow cooling, over several days, of solutions of complementary-DNA-modified nanoparticles through the melting temperature of the system gives the thermodynamic product with a specific and uniform crystal habit. We find that our nanoparticle assemblies have the Wulff equilibrium crystal structure that is predicted from theoretical considerations and molecular dynamics simulations, thus establishing that DNA hybridization can direct nanoparticle assembly along a pathway that mimics atomic crystallization.
Rapakivi texture from the O'Leary Porphyry, Arizona (U.S.A.)
NASA Astrophysics Data System (ADS)
Bladh, K. Laing
1980-03-01
The rhyodactic O’Leary Porphyry which forms the Pleistocene (0.233±0.37 m.y.) volcanic domes of O’Leary Peak and Darton Dome in the San Francisco Volcanic Field (northern Arizona, U.S.A.) contains sanidine phenocrysts with oligoclase mantles (rapakivi texture). Rapakivi texture occurs worldwide in silicic rocks of many ages and has been attributed to various igneous and metamorphic processes. The O’Leary Porphyry contains both mantled and unmantled sanidine (both are Or63-69 Ab30-36An1), oligoclase and quartz phenocrysts, labradorite (An53Ab45Or2) and kaersutite xenocrysts and andesite xenoliths. The compositional range of oligoclase is the same (An11-26Ab70-80Orr-10) for the rapakivi mantles, the oligoclase phenocrysts, and the oligoclase crystals poikilitic within sanidines. Most mantles are discontinuous. The sanidine appears to have been resorbed prior to mantling. Experimental melting studies on the O’Leary Prophyry show that, for a 15 wgt.% water system, plagioclase crystallized prior to sanidine and quartz crystallized last. The O’Leary Porphyry, although inhomogeneous, plots on a Q-Or-Ab-An diagram well within the plagioclase stability field. Poikilitic plagioclases within sanidines further support crystallization of plagioclase prior to sanidine in the O’Leary Porphyry. Exsolution of a ternary feldspar to form a plagioclase mantle is the most commonly accepted igneous theory of rapakivi texture formation but has been eliminated as the origin of the O’Leary Porphyry rapakivi. Petrologic models by Tuttle and Bowen and by Stewart are rejected for the O’Leary rapakivi because of inconsistencies with the O’Leary occurrences. Two theories are viable for the O’Leary rapakivi texture. First, is a decrease in water vapor pressure which would enlarge the plagioclase stability field possibility causing mantling of metastable sanidines. The second and preferred theory is that of an addition of sodium and calcium by basification (chemical assimilation without melting) of the xenoliths within the O’Leary Porphyry. This would move the bulk composition of the melt into the plagioclase field possibly resulting in crystallization of plagioclase on sanidine crystals. Diffusion of sodium and calcium from the xenoliths to sanidine would result in mantling only those crystals near to the xenoliths. Later, convection would result in distribution throughout the melt of rapakivi, unmantled sanidines, and xenolithic kaersutite as is seen in the porphyry. Basic xenoliths are extremely common in rapakivi-bearing rocks. Those within the O’Leary Porphyry are andesitic and show resorption, and in some areas of O’Leary Peak itself, have been drawn out into schlieren.
King, James Claude
1976-01-13
The disclosure is directed to a method for processing quartz used in fabricating crystal resonators such that transient frequency change of resonators exposed to pulse irradiation is virtually eliminated. The method involves heating the crystal quartz in a hydrogen-free atmosphere while simultaneously applying an electric field in the Z-axis direction of the crystal. The electric field is maintained during the cool-down phase of the process.
Growing Organic Crystals By The Czochralski Method
NASA Technical Reports Server (NTRS)
Shields, Angela; Frazier, Donald O.; Penn, Benjamin G.; Aggarwal, M. D.; Wang, W. S.
1994-01-01
Apparatus grows high-quality single crystals of organic compounds by Czochralski method. In Czochralski process, growing crystal lifted from middle of molten material without touching walls. Because of low melting temperatures of organic crystals, glass vessels usable. Traditional method for inorganic semiconductors adapted to optically nonlinear organic materials.
NASA Technical Reports Server (NTRS)
Gatsonis, Nikos A.; Alexandrou, Andreas; Shi, Hui; Ongewe, Bernard; Sacco, Albert, Jr.
1999-01-01
Crystals grown from liquid solutions have important industrial applications. Zeolites, for instance, a class of crystalline aluminosilicate materials, form the backbone of the chemical process industry worldwide, as they are used as adsorbents and catalysts. Many of the phenomena associated with crystal growth processes are not well understood due to complex microscopic and macroscopic interactions. Microgravity could help elucidate these phenomena and allow the control of defect locations, concentration, as well as size of crystals. Microgravity in an orbiting spacecraft could help isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation. In addition, crystals will stay essentially suspended in the nutrient pool under a diffusion-limited growth condition. This is expected to promote larger crystals by allowing a longer residence time in a high-concentration nutrient field. Among other factors, the crystal size distribution depends on the nucleation rate and crystallization. These two are also related to the "gel" polymerization/depolymerization rate. Macroscopic bulk mass and flow transport and especially gravity, force the crystals down to the bottom of the reactor, thus forming a sedimentation layer. In this layer, the growth rate of the crystals slows down as crystals compete for a limited amount of nutrients. The macroscopic transport phenomena under certain conditions can, however, enhance the nutrient supply and therefore, accelerate crystal growth. Several zeolite experiments have been performed in space with mixed results. The results from our laboratory have indicated an enhancement in size of 30 to 70 percent compared to the best ground based controls, and a reduction of lattice defects in many of the space grown crystals. Such experiments are difficult to interpret, and cannot be easily used to derive empirical or other laws since many physical parameters are simultaneously involved in the process. At the same time, however, there is increased urgency to develop such an understanding in order to more accurately quantify the process. In order to better understand the results obtained from our prior space experiments, and design future experiments, a detailed fluid dynamic model simulating the crystal growth mechanism is required. This will not only add to the fundamental knowledge on the crystallization of zeolites, but also be useful in predicting the limits of size and growth of these important industrial materials. Our objective is to develop macro/microscopic theoretical and computational models to study the effect of transport phenomena in the growth of crystals grown in solutions. Our effort has concentrated so far in the development of separate macroscopic and microscopic models. The major highlights of our accomplishments are described.
Growth kinetics of disk-shaped copper islands in electrochemical deposition.
Guo, Lian; Zhang, Shouliang; Searson, Peter
2009-05-01
The ability to independently dictate the shape and crystal orientation of islands in electrocrystallization remains a significant challenge. The main reason for this is that the complex interplay between the substrate, nucleation, and surface chemistry is not fully understood. Here we report on the kinetics of island growth for copper on ruthenium oxide. The small nucleation overpotential leads to enhanced lateral growth and the formation of hexagonal disk-shaped islands. The amorphous substrate allows the nuclei to achieve the thermodynamically favorable orientation, i.e., a 111 surface normal. Island growth follows power law kinetics in both lateral and vertical directions. At shorter times, the two growth exponents are equal to 1/2 whereas at longer times lateral growth slows down while vertical growth speeds up. We propose a growth mechanism, wherein the lateral growth of disk-shaped islands is initiated by attachment of Cu adatoms on the ruthenium oxide surface onto the island periphery while vertical growth is initiated by two-dimensional nucleation on the top terrace and followed by lateral step propagation. These results indicate three criteria for enhanced lateral growth in electrodeposition: (i) a substrate that leads to a small nucleation overpotential, (ii) fast adatom surface diffusion on substrate to promote lateral growth, and (iii) preferential anion adsorption to stabilize the basal plane.
Computational crystallization.
Altan, Irem; Charbonneau, Patrick; Snell, Edward H
2016-07-15
Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Determination of struvite crystallization mechanisms in urine using turbidity measurement.
Triger, Aurélien; Pic, Jean-Stéphane; Cabassud, Corinne
2012-11-15
Sanitation improvement in developing countries could be achieved through wastewater treatment processes. Nowadays alternative concepts such as urine separate collection are being developed. These processes would be an efficient way to reduce pollution of wastewater while recovering nutrients, especially phosphorus, which are lost in current wastewater treatment methods. The precipitation of struvite (MgNH(4)PO(4)∙6H(2)O) from urine is an efficient process yielding more than 98% phosphorus recovery with very high reaction rates. The work presented here aims to determine the kinetics and mechanisms of struvite precipitation in order to supply data for the design of efficient urine treatment processes. A methodology coupling the resolution of the population balance equation to turbidity measurement was developed, and batch experiments with synthetic and real urine were performed. The main mechanisms of struvite crystallization were identified as crystal growth and nucleation. A satisfactory approximation of the volumetric crystal size distribution was obtained. The study has shown the low influence on the crystallization process of natural organic matter contained in real urine. It has also highlighted the impact of operational parameters. Mixing conditions can create segregation and attrition which influence the nucleation rate, resulting in a change in crystals number, size, and thus final crystal size distribution (CSD). Moreover urine storage conditions can impact urea hydrolysis and lead to spontaneous struvite precipitation in the stock solution also influencing the final CSD. A few limits of the applied methodology and of the proposed modelling, due to these phenomena and to the turbidity measurement, are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ultrafast Direct Modulation of a Single-Mode Photonic Crystal Nanocavity Light-Emitting Diode
2011-11-15
nanocavity laser with world record low threshold of 208 nW based on a lateral p-i-n junction defined by ion implantation in gallium arsenide6. This...recombination effects are mini- mized. In contrast, at room temperature, thermal excitation of car- riers depopulates the quantum dots much quicker than does Pur
The Flipped Classroom Model and Academic Achievement: A Pre and Posttest Comparison Groups Study
ERIC Educational Resources Information Center
Wenzler, Heather Rebecca
2017-01-01
Student academic achievement is of prime concern in the American education system because academic success (i.e. achievement) has been shown to be a predictor of success in later life and is crystallized in the United States Department of Education's mission statement "...to promote student achievement and preparation for global…
Study of Polymer Crystallization by Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Jeong, Hyuncheol
When a polymer is confined under the submicron length scale, confinement size and interfaces can significantly impact the crystallization kinetics and resulting morphology. The ability to tune the morphology of confined polymer systems is of critical importance for the development of high-performance polymer microelectronics. The wisdom from the research on confined crystallization suggests that it would be beneficial to have a processing route in which the crystallization of polymers is driven by interface and temperature effects at a nanometer-scale confinement. In practice, for atomic and small-molecular systems, physical vapor deposition (PVD) has been recognized as the most successful processing route for the precise control of the film structure at surface utilizing confinement effects. While standard PVD technologies are not generally applicable to the deposition of the chemically fragile macromolecules, the development of matrix-assisted pulsed laser evaporation (MAPLE) now enables the non-destructive PVD of high-molecular weight polymers. In this thesis work, we investigated the use of MAPLE for the precise control of the crystallization of polymer films at a molecular level. We also sought to decipher the rules governing the crystallization of confined polymers, by using MAPLE as a tool to form confined polymer systems onto substrates with a controlled temperature. We first explored the early stages of film growth and crystallization of poly(ethylene oxide) (PEO) at the substrate surface formed by MAPLE. The unique mechanism of film formation in MAPLE, the deposition of submicron-sized polymer droplets, allowed for the manifestation of confinement and substrate effects in the crystallization of MAPLE-deposited PEO. Furthermore, we also focused on the property of the amorphous PEO film formed by MAPLE, showing the dependence of polymer crystallization kinetics on the thermal history of the amorphous phase. Lastly, we probed how MAPLE processing affected the semi-crystalline structure in MAPLE-deposited polyethylene (PE) films. Depositing PE at various temperatures remarkably allowed for the tunability of the melting temperature and crystallinity of the PE films, thus manipulating the semi-crystalline structure. By comparing the structure of PE formed by different processing routes, i.e., MAPLE and melt-crystallization, we discussed how processing routes affect the development of semi-crystalline phase in polymer films.
Monitoring and modeling of ultrasonic wave propagation in crystallizing mixtures
NASA Astrophysics Data System (ADS)
Marshall, T.; Challis, R. E.; Tebbutt, J. S.
2002-05-01
The utility of ultrasonic compression wave techniques for monitoring crystallization processes is investigated in a study of the seeded crystallization of copper II sulfate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution and the changing nature of the continuous phase. A scattering model is used to predict the ultrasonic attenuation as crystallization proceeds. Experiments confirm that modeled attenuation is in agreement with measured results.
Chen, Shaoshan; Li, Shengyi; Peng, Xiaoqiang; Hu, Hao; Tie, Guipeng
2015-02-20
A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing a KDP crystal. MRF polishing is easy to result in the embedding of carbonyl iron (CI) powders; meanwhile, Fe contamination on the KDP crystal surface will affect the laser induced damage threshold seriously. This paper puts forward an appropriate MRF polishing process to avoid the embedding. Polishing results show that the embedding of CI powders can be avoided by controlling the polishing parameters. Furthermore, on the KDP crystal surface, magnetorheological fluids residua inevitably exist after polishing and in which the Fe contamination cannot be removed completely by initial ultrasonic cleaning. To solve this problem, a kind of ion beam figuring (IBF) polishing is introduced to remove the impurity layer. Then the content of Fe element contamination and the depth of impurity elements are measured by time of flight secondary ion mass spectrometry. The measurement results show that there are no CI powders embedding in the MRF polished surface and no Fe contamination after the IBF polishing process, respectively. That verifies the feasibility of MRF polishing-IBF polishing (cleaning) for processing a KDP crystal.
NASA Astrophysics Data System (ADS)
Debela, Tekalign T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Jiang, J. Z.
2017-05-01
The crystallization process of liquid metals is studied using ab initio molecular dynamics simulations. The evolution of short-range order during quenching in Pb and Zn liquids is compared with body-centered cubic (bcc) Nb and V, and hexagonal closed-packed (hcp) Mg. We found that the fraction and type of the short-range order depends on the system under consideration, in which the icosahedral symmetry seems to dominate in the body-centered cubic metals. Although the local atomic structures in stable liquids are similar, liquid hcp-like Zn, bcc-like Nb and V can be deeply supercooled far below its melting point before crystallization while the supercooled temperature range in liquid Pb is limited. Further investigations into the nucleation process reveal the process of polymorph selection. In the body-centered cubic systems, the polymorph selection occurs in the supercooled state before the nucleation is initiated, while in the closed-packed systems it starts at the time of onset of crystallization. Atoms with bcc-like lattices in all studied supercooled liquids are always detected before the polymorph selection. It is also found that the bond orientational ordering is strongly correlated with the crystallization process in supercooled Zn and Pb liquids.
NASA Technical Reports Server (NTRS)
Singh, N. B.; Duval, W. M.
1991-01-01
Physical vapor transport processes were studied for the purpose of identifying the magnitude of convective effects on the crystal growth process. The effects of convection on crystal quality were were studied by varying the aspect ratio and those thermal conditions which ultimately affect thermal convection during physical vapor transport. An important outcome of the present study was the observation that the convection growth rate increased up to a certain value and then dropped to a constant value for high aspect ratios. This indicated that a very complex transport had occurred which could not be explained by linear stability theory. Better quality crystals grown at a low Rayleigh number confirmed that improved properties are possible in convectionless environments.
Co-crystallization of cholesterol and calcium phosphate as related to atherosclerosis
NASA Astrophysics Data System (ADS)
Hirsch, Danielle; Azoury, Reuven; Sarig, Sara
1990-09-01
Calcification of atherosclerotic plaques occurs very frequently and aggravates the disease. In biological systems, epitaxial relationships between crystal structures may be important in nucleating the deposit of a solid phase. The biologically preferred calcium phosphate species, apatite, and cholesterol crystal have structurally compatible crystallographic faces which allow epitaxial growth of one crystal upon another. The present study describes a new approach to explore, in vitro, the crystallization processes of calcium phosphate (CaP) with cholesterol (CS) and cholestanol (CN) which are related to atherosclerosis. Aqueous solutions containing calcium and phosphate ions or CaP crystals as hydroxyapatite were added into saturated ethanolic solutions of CS or CS and 10% CN. After precipitation, crystals were collected and analyzed by nuclear magnetic resonance (NMR), infra-red (IR), X-ray, scanning electron microscope (SEM-LINK), differential scanning calorimeter (DSC) and atomic absorption. The principal result is the well-formed crystals precipitation when an aqueous solution and CaP seed crystals were added to saturated solutions of CS and 10% CN. Cholesterol-cholestanol dihydrate (CC2W) crystals precipitated in the presence of CaP seeds were compared to the CC2W crystals obtained without the mineral compound. The results of this comparison indicate a special link between crystals of CaP and CC2W, and support the epitaxial relationship between the two kinds of crystals. The potential of CC2W crystals to be precipitated by CaP seed crystals prove likewise the possible significant role of the cholestanol metabolite in the process of cholesterol crystallization and calcification in the arteries.
Wang, Feng; Tzanakis, Iakovos; Eskin, Dmitry; Mi, Jiawei; Connolley, Thomas
2017-11-01
The cavitation-induced fragmentation of primary crystals formed in Al alloys were investigated for the first time by high-speed imaging using a novel experimental approach. Three representative primary crystal types, Al 3 Ti, Si and Al 3 V with different morphologies and mechanical properties were first extracted by deep etching of the corresponding Al alloys and then subjected to ultrasonic cavitation processing in distilled water. The dynamic interaction between the cavitation bubbles and primary crystals was imaged in situ and in real time. Based on the recorded image sequences, the fragmentation mechanisms of primary crystals were studied. It was found that there are three major mechanisms by which the primary crystals were fragmented by cavitation bubbles. The first one was a slow process via fatigue-type failure. A cyclic pressure exerted by stationary pulsating bubbles caused the propagation of a crack pre-existing in the primary crystal to a critical length which led to fragmentation. The second mechanism was a sudden process due to the collapse of bubbles in a passing cavitation cloud. The pressure produced upon the collapse of the cloud promoted rapid monotonic crack growth and fast fracture in the primary crystals. The third observed mechanism was normal bending fracture as a result of the high pressure arising from the collapse of a bubble cloud and the crack formation at the branch connection points of dendritic primary crystals. The fragmentation of dendrite branches due to the interaction between two freely moving dendritic primary crystals was also observed. A simplified fracture analysis of the observed phenomena was performed. The specific fragmentation mechanism for the primary crystals depended on their morphology and mechanical properties. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Thermal crystallization mechanism of silk fibroin protein
NASA Astrophysics Data System (ADS)
Hu, Xiao
In this thesis, the thermal crystallization mechanism of silk fibroin protein from Bombyx mori silkworm, was treated as a model for the general study of protein based materials, combining theories from both biophysics and polymer physics fields. A systematic and scientific path way to model the dynamic beta-sheet crystallization process of silk fibroin protein was presented in the following sequence: (1) The crystallinity, fractions of secondary structures, and phase compositions in silk fibroin proteins at any transition stage were determined. Two experimental methods, Fourier transform infrared spectroscopy (FTIR) with Fourier self-deconvolution, and specific reversing heat capacity, were used together for the first time for modeling the static structures and phases in the silk fibroin proteins. The protein secondary structure fractions during the crystallization were quantitatively determined. The possibility of existence of a "rigid amorphous phase" in silk protein was also discussed. (2) The function of bound water during the crystallization process of silk fibroin was studied using heat capacity, and used to build a silk-water dynamic crystallization model. The fundamental concepts and thermal properties of silk fibroin with/without bound water were discussed. Results show that intermolecular bound water molecules, acting as a plasticizer, will cause silk to display a water-induced glass transition around 80°C. During heating, water is lost, and the change of the microenvironment in the silk fibroin chains induces a mesophase prior to thermal crystallization. Real time FTIR during heating and isothermal holding above Tg show the tyrosine side chain changes only during the former process, while beta sheet crystallization occurs only during the latter process. Analogy is made between the crystallization of synthetic polymers according to the four-state scheme of Strobl, and the crystallization process of silk fibroin, which includes an intermediate precursor stage before crystallization. (3) The beta-sheet crystallization kinetics in silk fibroin protein were measured using X-ray, FTIR and heat flow, and the structure reveals the formation mechanism of the silk crystal network. Avrami kinetics theories, which were established for studies of synthetic polymer crystal growth, were for the first time extended to investigate protein self-assembly in multiblock silk fibroin samples. The Avrami exponent, n, was close to two for all methods, indicating formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in most synthetic homopolymers. A microphase separation pattern after chymotrypsin enzyme biodegradation was shown in the protein structures using scanning electron microscopy. A model was then used to explain the crystallization of silk fibroin protein by analogy to block copolymers. (4) The effects of metal ions during the crystallization of silk fibroin was investigated using thermal analysis. Advanced thermal analysis methods were used to analyze the thermal protein-metallic ion interactions in silk fibroin proteins. Results show that K+ and Ca2+ metallic salts play different roles in silk fibroin proteins, which either reduce (K+) or increase (Ca2+ ) the glass transition (Tg) of pure silk protein and affect the thermal stability of this structure.
NASA Astrophysics Data System (ADS)
Parellada-Monreal, L.; Castro-Hurtado, I.; Martínez-Calderón, M.; Rodriguez, A.; Olaizola, S. M.; Gamarra, D.; Lozano, J.; Mandayo, G. G.
2018-05-01
ZnO thin film sputtered on alumina substrate is processed by Direct Laser Interference Patterning (DLIP). The heat transfer equation has been simulated for interference patterns with a period of 730 nm and two different fluences (85 mJ/cm2 and 165 mJ/cm2). A thermal threshold of 900 K, where crystal modification occurs has been calculated, indicating a lateral and depth processing around 173 nm and 140 nm, respectively. The experimentally reproduced samples have been analyzed from the structural and composition point of view and compared to conventional thermal treatments at three different temperatures (600 °C, 700 °C and 800 °C). Promising properties have been observed for the laser treated samples, such as low influence on the thin film/substrate interface, an improvement of the crystallographic structure, as well as a decrease of the oxygen content from O/Zn = 2.10 to 1.38 for the highest fluence, getting closer to the stoichiometry. The DLIP characteristics could be suitable for the replacement of annealing process in the case of substrates that cannot achieve high temperatures as most of flexible substrates.