Sample records for lateral deviation angle

  1. Long-term Outcomes After Same Amount of Bilateral Rectus Muscle Recession for Intermittent Exotropia With the Same Angle of Deviation.

    PubMed

    Lee, Haeng-Jin; Kim, Seong-Joon; Yu, Young Suk

    2018-06-18

    To evaluate long-term outcomes of homogenous bilateral rectus recession in patients with the same preoperative angle of deviation in intermittent exotropia and investigate factors associated with surgical outcomes. In this retrospective review, patients with the same preoperative angle of deviation who underwent bilateral 6-mm lateral rectus recession between January 2008 and January 2014 were observed for 2 or more years. Patients were classified into two groups based on deviation angle: success (orthophoria or exodeviation < 10 prism diopters [PD]) or recurrence (exodeviation ≥ 10 PD). Preoperative and postoperative ophthalmologic factors were compared between groups. The success and recurrence groups contained 50 and 49 patients, respectively. Preoperative maximum angle of deviation was 29.0 ± 1.8 PD at distance in the success group and 28.9 ± 1.8 PD in the recurrence group. Deviation at the 2-year follow-up was 3.7 ± 3.7 and 18.3 ± 5.3 PD in the success and recurrence groups, respectively (P < .001). Preoperative factors were not significantly different between groups except for presence of lateral incomitance; success group patients presented more lateral incomitance (P = .035). The success group also presented more esodeviation just after the operation and showed a more stable course during follow-up. Surgical outcomes of patients with 10 PD or more of esodeviation 1 week postoperatively were significantly more favorable than patients with less than 10 PD of esodeviation (P = .027, log-rank test). Presence of lateral incomitance and early postoperative overcorrection were significantly associated with favorable surgical outcome and should be considered when planning intermittent exotropia surgery. [J Pediatr Ophthalmol Strabismus. 201X;XX(X):XXXX.]. Copyright 2018, SLACK Incorporated.

  2. Factors predisposing to consecutive esotropia after surgery to correct intermittent exotropia.

    PubMed

    Jang, Jung Hyun; Park, Jung Min; Lee, Soo Jung

    2012-10-01

    To investigate the incidence of and factors predisposing to consecutive esotropia after intermittent exotropia surgery, and to prevent the onset of consecutive esotropia. We retrospectively surveyed 226 patients who had been followed up for more than 1 year after surgery for intermittent exotropia conducted between February 2005 and September 2010. Consecutive esotropia was defined as an esotropia of at least 10 prism diopters (PD) at distance or near at least once in 2 weeks after surgery. Presumed risk factors for consecutive esotropia were analyzed. Gender, age at surgery, average binocular spherical equivalent, anisometropia, high myopia, amblyopia, preoperative angle of deviation, vertical deviation, A-V pattern strabismus, exotropia type, type of surgery, stereopsis, and suppression were investigated to evaluate factors influencing the onset of consecutive esotropia. Consecutive esotropia occurred in 22 patients (9.7 %). Significant correlations with occurrence of the condition were found with high myopia (P = 0.013), amblyopia (P = 0.047), preoperative angle of deviation of 25-40 PD at distance (P = 0.016), deviation at distance - deviation at near > 10 PD (P = 0.041), lateral incomitance (P = 0.007), tenacious proximal convergence fusion type (P = 0.001), unilateral lateral rectus muscle recession and medial rectus muscle resection (P = 0.001). High myopia, amblyopia, and lateral incomitance were predisposing factors for consecutive esotropia. Furthermore, the preoperative angle of deviation at distance, differences between the angle of deviation at near and at distance, the type of intermittent exotropia, and the type of surgery affected the incidence of consecutive esotropia. More attention must be paid to patients with such factors.

  3. Experimental investigation of piercing of high-strength steels within a critical range of slant angle

    NASA Astrophysics Data System (ADS)

    Senn, S.; Liewald, M.

    2017-09-01

    Deep drawn parts often do have complex designs and, therefore, must be trimmed or punched subsequently in a second stage. Due to the complex part geometry, most punching areas do reveal critical slant angle (angle between part surface and ram movement direction) different to perpendicular direction. Piercing within a critical range of slant angle may lead to severe damage of the cutting tool. Consequently, expensive cam units are required to transform the ram moving direction in order to perform the piercing process perpendicularly to the local part surface. For modern sheet metals, however, the described critical angle of attack has not been investigated adequately until now. Therefore, cam units are used in cases in which regular piercing with high slant angle wouldn’t be possible. Purpose of this study is to investigate influencing factors and their effect on punch damage during piercing of high strength steels with slant angles. Therefore, a modular shearing tool was designed, which allows to simply switch die parts to vary cutting clearance and cutting angle. The target size of the study is to measure the lateral deviation of the punch which is monitored by an eddy current sensor. The sensor is located in the downholder and measures the lateral punch deviation in-line during manufacturing. The deviation is mainly influenced by slant angle of workpiece surface. In relation to slang angle and sheet thickness the clearance has a small influence on the measured punch deflection.

  4. Increased hallux angle in children and its association with insufficient length of footwear: a community based cross-sectional study.

    PubMed

    Klein, Christian; Groll-Knapp, Elisabeth; Kundi, Michael; Kinz, Wieland

    2009-12-17

    Wearing shoes of insufficient length during childhood has often been cited as leading to deformities of the foot, particularly to the development of hallux valgus disorders. Until now, these assumptions have not been confirmed through scientific research. This study aims to investigate whether this association can be statistically proven, and if children who wear shoes of insufficient length actually do have a higher risk of a more pronounced lateral deviation of the hallux. 858 pre-school children were included in the study. The study sample was stratified by sex, urban/rural areas and Austrian province. The hallux angle and the length of the feet were recorded. The inside length of the children's footwear (indoor shoes worn in pre-school and outdoor shoes) were assessed. Personal data and different anthropometric measurements were taken. The risk of hallux valgus deviation was statistically tested by a stepwise logistic regression analysis and the relative risk (odds ratio) for a hallux angle > or = 4 degrees was calculated. Exact examinations of the hallux angle could be conducted on a total of 1,579 individual feet. Only 23.9% out of 1,579 feet presented a straight position of the great toe. The others were characterized by lateral deviations (valgus position) at different degrees, equalling 10 degrees or greater in 14.2% of the children's feet.88.8% of 808 children examined wore indoor footwear that was of insufficient length, and 69.4% of 812 children wore outdoor shoes that were too short. A significant relationship was observed between the lengthwise fit of the shoes and the hallux angle: the shorter the shoe, the higher the value of the hallux angle. The relative risk (odds ratio) of a lateral hallux deviation of > or = 4 degrees in children wearing shoes of insufficient length was significantly increased. There is a significant relationship between the hallux angle in children and footwear that is too short in length. The fact that the majority of the children examined were wearing shoes of insufficient length makes the issue particularly significant. Our results emphasize the importance of ensuring that children's footwear fits properly.

  5. A Correlational Study of Scoliosis and Trunk Balance in Adult Patients with Mandibular Deviation

    PubMed Central

    Yang, Yang; Wang, Na; Wang, Wenyong; Ding, Yin; Sun, Shiyao

    2013-01-01

    Previous studies have confirmed that patients with mandibular deviation often have abnormal morphology of their cervical vertebrae. However, the relationship between mandibular deviation, scoliosis, and trunk balance has not been studied. Currently, mandibular deviation is usually treated as a single pathology, which leads to poor clinical efficiency. We investigated the relationship of spine coronal morphology and trunk balance in adult patients with mandibular deviation, and compared the finding to those in healthy volunteers. 35 adult patients with skeletal mandibular deviation and 10 healthy volunteers underwent anterior X-ray films of the head and posteroanterior X-ray films of the spine. Landmarks and lines were drawn and measured on these films. The axis distance method was used to measure the degree of scoliosis and the balance angle method was used to measure trunk balance. The relationship of mandibular deviation, spine coronal morphology and trunk balance was evaluated with the Pearson correlation method. The spine coronal morphology of patients with mandibular deviation demonstrated an “S” type curve, while a straight line parallel with the gravity line was found in the control group (significant difference, p<0.01). The trunk balance of patients with mandibular deviation was disturbed (imbalance angle >1°), while the control group had a normal trunk balance (imbalance angle <1°). There was a significant difference between the two groups (p<0.01). The degree of scoliosis and shoulder imbalance correlated with the degree of mandibular deviation, and presented a linear trend. The direction of mandibular deviation was the same as that of the lateral bending of thoracolumbar vertebrae, which was opposite to the direction of lateral bending of cervical vertebrae. Our study shows the degree of mandibular deviation has a high correlation with the degree of scoliosis and trunk imbalance, all the three deformities should be clinically evaluated in the management of mandibular deviation. PMID:23555836

  6. Quantitative Postural Analysis of Children With Congenital Visual Impairment.

    PubMed

    de Pádua, Michelle; Sauer, Juliana F; João, Silvia M A

    2018-01-01

    The aim of this study was to compare the postural alignment of children with visual impairment with that of children without visual impairment. The sample studied was 74 children of both sexes ages 5 to 12 years. Of these, 34 had visual impairment and 40 were control children. Digital photos from the standing position were used to analyze posture. Postural variables, such as tilt of the head, shoulder position, scapula position, lateral deviation of the spine, ankle position in the frontal plane and head posture, angle of thoracic kyphosis, angle of lumbar lordosis, pelvis position, and knee position in the frontal and sagittal planes, were measured with the Postural Assessment Software 0.63, version 36 (SAPO, São Paulo, Brazil), with markers placed in predetermined bony landmarks. The main results of this study showed that children with visual impairment have increased head tilt (P < .001), shoulder deviation in frontal plane (P = .004), lateral deviation of the spine (P < .001), changes in scapula position (P = .012), higher thoracic kyphosis (P = .004), and lower lumbar lordosis (P < .001). Visual impairment influences postural alignment. Children with visual impairment had increased head tilt, uneven shoulders, greater lateral deviation of the spine, thoracic kyphosis, lower lumbar lordosis, and more severe valgus deformities on knees. Copyright © 2017. Published by Elsevier Inc.

  7. Influence of lateral discomfort on the stability of traffic flow based on visual angle car-following model

    NASA Astrophysics Data System (ADS)

    Zheng, Liang; Zhong, Shiquan; Jin, Peter J.; Ma, Shoufeng

    2012-12-01

    Due to the poor road markings and irregular driving behaviors, not every vehicle is positioned in the center of the lane. The deviation from the center can cause discomfort to drivers in the neighboring lane, which is referred to as lateral discomfort (or lateral friction). Such lateral discomfort can be incorporated into the driver stimulus-response framework by considering the visual angle and its changing rate from the psychological viewpoint. In this study, a two-lane visual angle based car-following model is proposed and its stability condition is obtained through linear stability theory. Further derivations indicate that the neutral stability line of the model is asymmetry and four factors including the vehicle width and length, the lateral separation and the sensitivity regarding the changing rate of visual angle have large impacts on the stability of traffic flow. Numerical simulations further verify these theoretical results, and demonstrate that the behaviors of diverging, merging and lane changing can break the original steady state and cause traffic fluctuations. However, these fluctuations may be alleviated to some extent by reducing the lateral discomfort.

  8. An uncommon case of intermittent Pourfour du Petit Syndrome associated with acute angle-closure glaucoma successfully treated by laser iridotomy.

    PubMed

    Farci, Roberta; Napoli, Pietro Emanuele; Fossarello, Maurizio

    2017-07-03

    To describe a case of acute angle-closure glaucoma secondary to intermittent mydriasis related to Pourfour du Petit Syndrome caused by tracheal deviation. A 70-year-old Caucasian woman visited the Emergency Room of the University Eye Clinic complaining of blurring of vision and difficulty to move superior eyelid in her right eye. Examination revealed reactive mydriasis, and upper lid retraction on the right side. The rest of the ophthalmological examination was normal, and a cranial computed tomography (CT) did not identify any abnormalities. A cervical CT showed the presence of an accentuated lateral right convex deviation of the trachea, attributable to a fibrothorax. A right Pourfour du Petit syndrome was suspected. Although the mydriasis had in the meantime vanished, the patient was admitted to the Neurological Clinic. Five days later she suffered acute pain in her right eye. Ophthalmological examination of the right eye revealed conjunctival hyperemia, marked corneal edema, reduced depth of anterior chamber, permanent mydriasis. As assessed by Goldmann applanation tonometry, intraocular pressure (IOP) was 48 mm Hg. Fundus examination was normal in both eyes. Gonioscopy revealed angle closure in all quadrants. Slit lamp examination of the contralateral eye was normal; IOP was 10 mm Hg. After hypotensive medical therapy, iridotomy with YAG laser was performed. Thereafter, IOP stabilized at 12 mm Hg. This is the first report in the literature of a case of acute angle-closure glaucoma secondary to mydriasis related to Pourfour du Petit Syndrome caused by tracheal deviation.

  9. Improving excellence in scoliosis rehabilitation: a controlled study of matched pairs.

    PubMed

    Weiss, H-R; Klein, R

    2006-01-01

    Physiotherapy programmes so far mainly address the lateral deformity of scoliosis, a few aim at the correction of rotation and only very few address the sagittal profile. Meanwhile, there is evidence that correction forces applied in the sagittal plane are also able to correct the scoliotic deformity in the coronal and frontal planes. So it should be possible to improve excellence in scoliosis rehabilitation by the implementation of exercises to correct the sagittal deformity in scoliosis patients. An exercise programme (physio-logic exercises) aiming at a physiologic sagittal profile was developed to add to the programme applied at the centre or to replace certain exercises or exercising positions. To test the hypothesis that physio-logic exercises improve the outcome of Scoliosis Intensive Rehabilitation (SIR), the following study design was chosen: Prospective controlled trial of pairs of patients with idiopathic scoliosis matched by sex, age, Cobb angle and curve pattern. There were 18 patients in the treatment group (SIR + physio-logic exercises) and 18 patients in the control group (SIR only), all in matched pairs. Average Cobb angle in the treatment group was 34.5 degrees (SD 7.8) Cobb angle in the control group was 31.6 degrees (SD 5.8). Age in the treatment group was at average 15.3 years (SD 1.1) and in the control group 14.7 years (SD 1.3). Thirteen of the 18 patients in either group had a brace. Outcome parameter: average lateral deviation (mm), average surface rotation ( degrees ) and maximum Kyphosis angle ( degrees ) as evaluated with the help of surface topography (Formetric-system). Lateral deviation (mm) decreased significantly after the performance of the physio-logic programme and highly significantly in the physio-logic ADL posture; however, it was not significant after completion of the whole rehabilitation programme (2.3 vs 0.3 mm in the controls). Surface rotation improved at average 1.2 degrees in the treatment group and 0.8 degrees in the controls while Kyphosis angle did not improve in both groups. The physio-logic programme has to be regarded as a useful 'add on' to Scoliosis Rehabilitation with regards to the lateral deviation of the scoliotic trunk. A longitudinal controlled study is necessary to evaluate the long-term effect of the the physio-logic programme also with the help of X-rays.

  10. Acute effects of two different tennis sessions on dorsal and lumbar spine of adult players.

    PubMed

    Gallotta, Maria Chiara; Bonavolontà, Valerio; Emerenziani, Gian Pietro; Franciosi, Emanuele; Tito, Alessandro; Guidetti, Laura; Baldari, Carlo

    2015-01-01

    The aim of the study was to evaluate the dorsal and lumbar spine of expert and recreational tennis players before (pre) and after (post) two different training sessions. The sample consisted of 17 male tennis players, nine expert and eight recreational males (age 21.2 ± 1.6 years). We assessed the back surface by rasterstereography pre and post two different training sessions both lasting 1.5 h: a standard training and a specific over-shoulder shots training session, respectively. Lordotic and kyphotic angle, length, imbalance, inclination for trunk, pelvic torsion, left and right lateral deviation and surface rotation were measured. Tennis expertise (expert versus recreational) significantly affected the surface rotation and right lateral deviation (P < 0.05). Trunk length was affected by intervention (pre versus post) (P < 0.05). Left lateral deviation differed both for type of session (session 1 versus session 2) and intervention (P < 0.001, P < 0.05). Expert tennis players had higher values on surface rotation and right lateral deviation, around or just above physiological values (0-5° and 0-5 mm, respectively). Type of session significantly affected left lateral deviation, indicating that over-shoulder shots lead to a higher stress for the spine; the workload produced by both single sessions led to a shortening effect on trunk length. A single training session can induce acute modifications in some parameters of dorsal and lumbar spine of players.

  11. Predictor symbology in computer-generated pictorial displays

    NASA Technical Reports Server (NTRS)

    Grunwald, A. J.

    1981-01-01

    The display under investigation, is a tunnel display for the four-dimensional commercial aircraft approach-to-landing under instrument flight rules. It is investigated whether more complex predictive information such as a three-dimensional perspective vehicle symbol, predicting the future vehicle position as well as future vehicle attitude angles, contributes to a better system response, and suitable predictor laws for the predictor motions, are formulated. Methods for utilizing the predictor symbol in controlling the forward velocity of the aircraft in four-dimensional approaches, are investigated. The simulator tests show, that the complex perspective vehicle symbol yields improved damping in the lateral response as compared to a flat two-dimensional predictor cross, but yields generally larger vertical deviations. Methods of using the predictor symbol in controlling the forward velocity of the vehicle are shown to be effective. The tunnel display with superimposed perspective vehicle symbol yields very satisfactory results and pilot acceptance in the lateral control but is found to be unsatisfactory in the vertical control, as a result of too large vertical path-angle deviations.

  12. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guanglong; Xu, Yi; Cao, Yunjiu

    The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized d{sub eq} inmore » scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.« less

  13. On the Skill of Balancing While Riding a Bicycle

    PubMed Central

    Cain, Stephen M.; Ashton-Miller, James A.; Perkins, Noel C.

    2016-01-01

    Humans have ridden bicycles for over 200 years, yet there are no continuous measures of how skill differs between novice and expert. To address this knowledge gap, we measured the dynamics of human bicycle riding in 14 subjects, half of whom were skilled and half were novice. Each subject rode an instrumented bicycle on training rollers at speeds ranging from 1 to 7 m/s. Steer angle and rate, steer torque, bicycle speed, and bicycle roll angle and rate were measured and steering power calculated. A force platform beneath the roller assembly measured the net force and moment that the bicycle, rider and rollers exerted on the floor, enabling calculations of the lateral positions of the system centers of mass and pressure. Balance performance was quantified by cross-correlating the lateral positions of the centers of mass and pressure. The results show that all riders exhibited similar balance performance at the slowest speed. However at higher speeds, the skilled riders achieved superior balance performance by employing more rider lean control (quantified by cross-correlating rider lean angle and bicycle roll angle) and less steer control (quantified by cross-correlating steer rate and bicycle roll rate) than did novice riders. Skilled riders also used smaller steering control input with less variation (measured by average positive steering power and standard deviations of steer angle and rate) and less rider lean angle variation (measured by the standard deviation of the rider lean angle) independent of speed. We conclude that the reduction in balance control input by skilled riders is not due to reduced balance demands but rather to more effective use of lean control to guide the center of mass via center of pressure movements. PMID:26910774

  14. Endoscopic and computed tomographic evaluation of influence of nasal septal deviation on lateral wall of nose and its relation to sinus diseases.

    PubMed

    Poorey, V K; Gupta, Neha

    2014-09-01

    To correlate symptoms of deviated nasal septum (DNS) and chronic rhinosinusitis with the findings of nasal endoscopy and computed tomographic (CT) imaging. To evaluate the influence of degree of septal angle deviation on the severity of lateral nasal wall abnormalities. A prospective study was conducted on 67 patients with clinical evidence of DNS and chronic sinusitis attending ENT OPD between January 2012 and September 2013. All these patients underwent nasal endoscopy and CT scan PNS coronal sections. Direction and degree of DNS was recorded. Range of sinus mucosal thickening on CT scan films was also recorded. Chronic sinusitis is common in the age group between 21 and 40 years (50.74 %) with male preponderance (55.22 %), chief symptoms being nasal obstruction (86.56 %), headache (73.13 %) and nasal discharge (52.23 %). Left sided DNS is more common (64.17 %). Most of the patients have moderate DNS, i.e. 6°-10° (56.7 %), followed by severe (22.4 %) and then mild (20.9 %). DNS results in compensatory structural changes in the turbinates and/or lateral nasal wall which causes ostiomeatal complex (OMC) obstruction resulting in sinusitis. Contralateral concha bullosa and ethmoid bulla prominence was noted. Maxillary sinus is most commonly affected sinus (73.13 %). Patients with increasing septal angles were associated with a higher incidence of maxillary sinus mucosal changes (p < 0.05). Present study reemphasized the concept that septal deviation causes obstruction at OMC which results in an increased incidence and severity of bilateral chronic sinus disease.

  15. Acromegaly determination using discriminant analysis of the three-dimensional facial classification in Taiwanese.

    PubMed

    Wang, Ming-Hsu; Lin, Jen-Der; Chang, Chen-Nen; Chiou, Wen-Ko

    2017-08-01

    The aim of this study was to assess the size, angles and positional characteristics of facial anthropometry between "acromegalic" patients and control subjects. We also identify possible facial soft tissue measurements for generating discriminant functions toward acromegaly determination in males and females for acromegaly early self-awareness. This is a cross-sectional study. Subjects participating in this study included 70 patients diagnosed with acromegaly (35 females and 35 males) and 140 gender-matched control individuals. Three-dimensional facial images were collected via a camera system. Thirteen landmarks were selected. Eleven measurements from the three categories were selected and applied, including five frontal widths, three lateral depths and three lateral angular measurements. Descriptive analyses were conducted using means and standard deviations for each measurement. Univariate and multivariate discriminant function analyses were applied in order to calculate the accuracy of acromegaly detection. Patients with acromegaly exhibit soft-tissue facial enlargement and hypertrophy. Frontal widths as well as lateral depth and angle of facial changes were evident. The average accuracies of all functions for female patient detection ranged from 80.0-91.40%. The average accuracies of all functions for male patient detection were from 81.0-94.30%. The greatest anomaly observed was evidenced in the lateral angles, with greater enlargement of "nasofrontal" angles for females and greater "mentolabial" angles for males. Additionally, shapes of the lateral angles showed changes. The majority of the facial measurements proved dynamic for acromegaly patients; however, it is problematic to detect the disease with progressive body anthropometric changes. The discriminant functions of detection developed in this study could help patients, their families, medical practitioners and others to identify and track progressive facial change patterns before the possible patients go to the hospital, especially the lateral "angles" which can be calculated by relative point-to-point changes derived from 2D lateral imagery without the 3D anthropometric measurements. This study tries to provide a novel and easy method to detect acromegaly when the patients start to have awareness of abnormal appearance because of facial measurement changes, and it also suggests that undiagnosed patients be urged to go to the hospital as soon as possible for acromegaly early diagnosis.

  16. Effect of shoulder girdle strengthening on trunk alignment in patients with stroke.

    PubMed

    Awad, Amina; Shaker, Hussien; Shendy, Wael; Fahmy, Manal

    2015-07-01

    [Purpose] This study investigated the effect of shoulder girdle strengthening, particularly the scapular muscles, on poststroke trunk alignment. [Subjects and Methods] The study involved 30 patients with residual hemiparesis following cerebrovascular stroke. Patient assessment included measuring shoulder muscle peak torque, scapular muscles peak force, spinal lateral deviation angle, and motor functional performance. Patients were randomly allocated either to the control group or the study group and received an 18-session strengthening program including active resisted exercises for shoulder abductors and external rotators in addition to trunk control exercises. The study group received additional strengthening exercises for the scapular muscles. [Results] The two groups showed significant improvement in strength of all shoulder and scapular muscles, with higher improvement in the study group. Similarly, the lateral spinal deviation angles significantly improved in both groups, with significantly higher improvement in the study group. Transfer activity, sitting balance, upper limb functions, and hand movements significantly improved in the two groups, with higher improvement in the latter two functions in the study group. [Conclusion] Strengthening of shoulder girdle muscles, particularly scapular muscles, can significantly contribute to improving the postural alignment of the trunk in patients with poststroke hemiparesis.

  17. Skin reduction technique for correction of lateral deviation of the erect straight penis.

    PubMed

    Shaeer, Osama

    2014-07-01

    Lateral deviation of the erect straight penis (LDESP) refers to a penis that despite being straight in the erect state, points laterally, yet can be directed forward manually without the use of force. While LDESP should not impose a negative impact on sexual function, it may have a negative cosmetic impact. This work describes skin reduction technique (SRT) for correction of LDESP. Counseling was offered to males with LDESP after excluding other abnormalities. Surgery was performed in case of failed counseling. In the erect state, the degree and direction of LDESP were noted. Skin on the base of the penis on the contralateral side of LDESP was excised from the base of the penis and the edges approximated to correct LDESP. Further excision was repeated if needed. The incision was closed in two layers. Long-term efficacy of SRT was the main outcome measure. Out of 183 males with LDESP, 66.7% were not sexually active. Counseling relieved 91.8% of cases. Fifteen patients insisted on surgery, mostly from among the sexually active where the complaint was mutual from the patient and partner. SRT resulted in full correction of the angle of erection in 12 cases out of 15. Two had minimal recurrence, and one had major recurrence indicating re-SRT. LDESP is more common a complaint among those who have not experienced coital relationship, and is mostly relieved by counseling. However, sexually active males with this complaint are more difficult to relieve by counseling. A minority of patients may opt for surgical correction. SRT achieves a forward erection in such patients, is minimally invasive, and relatively safe, provided the angle of erection can be corrected manually without force. Shaeer O. Skin reduction technique for correction of lateral deviation of the erect straight penis. © 2014 International Society for Sexual Medicine.

  18. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    PubMed Central

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  19. Tree branching: Leonardo da Vinci's rule versus biomechanical models.

    PubMed

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.

  20. Triangular Resection of the Upper Lateral Cartilage for Middle Vault Deviation.

    PubMed

    Ryu, Gwanghui; Seo, Min Young; Lee, Kyung Eun; Hong, Sang Duk; Chung, Seung-Kyu; Dhong, Hun-Jong; Kim, Hyo Yeol

    2018-06-02

    Middle vault deviation has a significant effect on the aesthetic and functional aspects of the nose, and its management continues to be a challenge. Spreader graft and its modification techniques have been focused, but there has been scarce consideration for removing surplus portion and balancing the upper lateral cartilage (ULC). This study aimed to report the newly invented triangular-shaped resection technique ("triangular resection") of the ULC and to evaluate its efficacy for correcting middle vault deviation. A retrospective study included 17 consecutive patients who presented with middle vault deviation and underwent septorhinoplasty by using triangular resection at a tertiary academic hospital from February 2014 and March 2016. Their outcomes were evaluated pre- and postoperatively including medical photographs, acoustic rhinometry and subjective nasal obstruction using a 7-point Likert scale. The immediate outcomes were evaluated around 1 month after surgery, and long-term outcomes were available in 12 patients; the mean follow-up period was 9.1 months. Nasal tip deviation angle was reduced from 5.66º to 2.37º immediately (P<0.001). Middle vault deviation also improved from 169.50º to 177.24º (P<0.001). Long-term results were 2.49º (P=0.015) for nasal tip deviation and 178.68º (P=0.002) for middle vault deviation. The aesthetic outcome involved a complete correction in eight patients (47.1%), a minimally visible deviation in seven patients (41.2%) and a remaining residual deviation in two patients (11.8%). Pre- and postoperative minimal cross-sectional areas (summation of the right and left sides) were 0.86 and 1.07, respectively (P=0.021). Fifteen patients answered about their nasal obstruction symptoms and the median symptom score had alleviated from 6.0 to 3.0 (P=0.004). Triangular resection of the ULC is a simple and effective method for correcting middle vault deviation and balancing the ULCs without complications as internal nasal valve narrowing.

  1. [Modified Chevron osteotomy combined distal soft tissue reconstruction to treat high-grade bunionette deformity].

    PubMed

    Feng, S M; Wang, A G; Ding, P; Zhang, Z Y; Zhou, M M; Li, C K; Sun, Q Q

    2016-07-26

    To explore the surgical method of using the modified chevron osteotomy combined distal soft tissue reconstruction to treat high-grade bunionette deformity. From June 2013 to June 2015, the modified chevron osteotomy combined distal soft tissue reconstruction was used for surgical treatment of high-grade bunionette deformity in the Department of Hand and Foot Microsurgery in Xuzhou Central Hospital.Twenty-six patients with 28 feet high-grade bunionette deformity were hospitalized for treatment, with 3 male (3 feet) and 23 female (25 feet) cases, aged 22-73 (mean 47.1) years old.The average fourth-fifth intermetatarsal angle, lateral deviation of the fifth metatarsal angle and metatarsophalangeal-fifth angle were measured on the pre-and post- operative anterior to posterior weight-beating X rays of treated feet.The American Orthopaedic Foot and Ankle Society (AOFAS) Lesser Toe Metatarsophalangeal-Interphalangeal Scale was used to evaluate the post-operative outcomes. All of 26 patients were followed, with a mean 15.7 months (range 8-25 months). Primarily healing of the wound was achieved in all cases.No postoperative infection and nonunion on the osteotomy site was found during the follow-up time.The fracture healing time was 6-15 (mean 12.2) weeks.All the patients had satisfactory appearance and sensory function without callosum and metastatic metatarsalgia at the final follow-up.The post-operative fourth-fifth intermetatarsal angle, lateral deviation of the fifth metatarsal angle and metatarsophalangeal-fifth angle were significantly lesser than the pre-operative at the 6th week after operation, respectively [(5.5±1.7)°, (2.1±0.8)°, (5.7±2.6)°vs (16.4±4.2)°, (6.0±2.2)°, (10.5±7.4)°; all P<0.01]. The post-operative AOFAS score was significantly greater than the pre-operative [(87.1±6.7) vs (62.3±9.8) points, P<0.001]. The modified chevron osteotomy combined distal soft tissue reconstruction is a safe and easy treatment option for the high-grade bunionette deformity and provides patient satisfaction results.

  2. Analysis of using the tongue deviation angle as a warning sign of a stroke

    PubMed Central

    2012-01-01

    Background The symptom of tongue deviation is observed in a stroke or transient ischemic attack. Nevertheless, there is much room for the interpretation of the tongue deviation test. The crucial factor is the lack of an effective quantification method of tongue deviation. If we can quantify the features of the tongue deviation and scientifically verify the relationship between the deviation angle and a stroke, the information provided by the tongue will be helpful in recognizing a warning of a stroke. Methods In this study, a quantification method of the tongue deviation angle was proposed for the first time to characterize stroke patients. We captured the tongue images of stroke patients (15 males and 10 females, ranging between 55 and 82 years of age); transient ischemic attack (TIA) patients (16 males and 9 females, ranging between 53 and 79 years of age); and normal subjects (14 males and 11 females, ranging between 52 and 80 years of age) to analyze whether the method is effective. In addition, we used the receiver operating characteristic curve (ROC) for the sensitivity analysis, and determined the threshold value of the tongue deviation angle for the warning sign of a stroke. Results The means and standard deviations of the tongue deviation angles of the stroke, TIA, and normal groups were: 6.9 ± 3.1, 4.9 ± 2.1 and 1.4 ± 0.8 degrees, respectively. Analyzed by the unpaired Student’s t-test, the p-value between the stroke group and the TIA group was 0.015 (>0.01), indicating no significant difference in the tongue deviation angle. The p-values between the stroke group and the normal group, as well as between the TIA group and the normal group were both less than 0.01. These results show the significant differences in the tongue deviation angle between the patient groups (stroke and TIA patients) and the normal group. These results also imply that the tongue deviation angle can effectively identify the patient group (stroke and TIA patients) and the normal group. With respect to the visual examination, 40% and 32% of stroke patients, 24% and 16% of TIA patients, and 4% and 0% of normal subjects were found to have tongue deviations when physicians “A” and “B” examined them. The variation showed the essentiality of the quantification method in a clinical setting. In the receiver operating characteristic curve (ROC), the Area Under Curve (AUC, = 0.96) indicates good discrimination. The tongue deviation angle more than the optimum threshold value (= 3.2°) predicts a risk of stroke. Conclusions In summary, we developed an effective quantification method to characterize the tongue deviation angle, and we confirmed the feasibility of recognizing the tongue deviation angle as an early warning sign of an impending stroke. PMID:22908956

  3. Analysis of using the tongue deviation angle as a warning sign of a stroke.

    PubMed

    Wei, Ching-Chuan; Huang, Shu-Wen; Hsu, Sheng-Lin; Chen, Hsing-Chung; Chen, Jong-Shin; Liang, Hsinying

    2012-08-21

    The symptom of tongue deviation is observed in a stroke or transient ischemic attack. Nevertheless, there is much room for the interpretation of the tongue deviation test. The crucial factor is the lack of an effective quantification method of tongue deviation. If we can quantify the features of the tongue deviation and scientifically verify the relationship between the deviation angle and a stroke, the information provided by the tongue will be helpful in recognizing a warning of a stroke. In this study, a quantification method of the tongue deviation angle was proposed for the first time to characterize stroke patients. We captured the tongue images of stroke patients (15 males and 10 females, ranging between 55 and 82 years of age); transient ischemic attack (TIA) patients (16 males and 9 females, ranging between 53 and 79 years of age); and normal subjects (14 males and 11 females, ranging between 52 and 80 years of age) to analyze whether the method is effective. In addition, we used the receiver operating characteristic curve (ROC) for the sensitivity analysis, and determined the threshold value of the tongue deviation angle for the warning sign of a stroke. The means and standard deviations of the tongue deviation angles of the stroke, TIA, and normal groups were: 6.9 ± 3.1, 4.9 ± 2.1 and 1.4 ± 0.8 degrees, respectively. Analyzed by the unpaired Student's t-test, the p-value between the stroke group and the TIA group was 0.015 (>0.01), indicating no significant difference in the tongue deviation angle. The p-values between the stroke group and the normal group, as well as between the TIA group and the normal group were both less than 0.01. These results show the significant differences in the tongue deviation angle between the patient groups (stroke and TIA patients) and the normal group. These results also imply that the tongue deviation angle can effectively identify the patient group (stroke and TIA patients) and the normal group. With respect to the visual examination, 40% and 32% of stroke patients, 24% and 16% of TIA patients, and 4% and 0% of normal subjects were found to have tongue deviations when physicians "A" and "B" examined them. The variation showed the essentiality of the quantification method in a clinical setting. In the receiver operating characteristic curve (ROC), the Area Under Curve (AUC, = 0.96) indicates good discrimination. The tongue deviation angle more than the optimum threshold value (= 3.2°) predicts a risk of stroke. In summary, we developed an effective quantification method to characterize the tongue deviation angle, and we confirmed the feasibility of recognizing the tongue deviation angle as an early warning sign of an impending stroke.

  4. Lower-extremity biomechanics during forward and lateral stepping activities in older adults

    PubMed Central

    Wang, Man-Ying; Flanagan, Sean; Song, Joo-Eun; Greendale, Gail A.; Salem, George J.

    2012-01-01

    Objective To characterize the lower-extremity biomechanics associated with stepping activities in older adults. Design Repeated-measures comparison of kinematics and kinetics associated with forward step-up and lateral step-up activities. Background Biomechanical analysis may be used to assess the effectiveness of various ‘in-home activities’ in targeting appropriate muscle groups and preserving functional strength and power in elders. Methods Data were analyzed from 21 participants (mean 74.7 yr (standard deviation, 4.4 yr)) who performed the forward and lateral step-up activities while instrumented for biomechanical analysis. Motion analysis equipment, inverse dynamics equations, and repeated measures anovas were used to contrast the maximum joint angles, peak net joint moments, angular impulse, work, and power associated with the activities. Results The lateral step-up resulted in greater maximum knee flexion (P < 0.001) and ankle dorsiflexion angles (P < 0.01). Peak joint moments were similar between exercises. The forward step-up generated greater peak hip power (P < 0.05) and total work (P < 0.001); whereas, the lateral step-up generated greater impulse (P < 0.05), work (P < 0.01), and power (P < 0.05) at the knee and ankle. Conclusions In older adults, the forward step-up places greater demand on the hip extensors, while lateral step-up places greater demand on the knee extensors and ankle plantar flexors. PMID:12620784

  5. [The retrocapital osteotomy ("chevron") for correction of splayfoot with hallux valgus].

    PubMed

    Gabel, Michael

    2008-12-01

    Surgical treatment of hallux valgus deformity with a distal osteotomy of the first metatarsal to address an increased intermetatarsal angle (IMA) I-II. This procedure is combined with a soft-tissue procedure at the first metatarsophalangeal joint: realignment of the first ray, lateral displacement of the first metatarsal head above the sesamoids, rebalancing of the soft tissues at the metatarsophalangeal joint. Pain and soft-tissue inflammation at the bunion, impaired function of the metatarsophalangeal joint, and lateral deviation of the hallux. IMA I-II 10 degrees. Symptomatic osteoarthritis of the first metatarsophalangeal joint, assessed clinically or radiographically. Acute inflammation of the forefoot, osteoporosis of the first metatarsal. Vascular disturbance. Cosmetic indication only. Relative: hypermobility of the first ray, valgus malalignment of the hindfoot, previous retrocapital osteotomy. Lateral soft-tissue release. Resection of the medial pseudoexostosis. V-shaped osteotomy of the distal metatarsal I. Exostosectomy. Lateral displacement of the first metatarsal head. Screw fixation. Realignment of the metatarsophalangeal joint by tightening of the medial soft tissues. Postoperative shoe with full weight bearing. Active exercises of the foot and hallux. Physiotherapy. Prophylaxis of deep vein thrombosis depending on the degree of mobility. Radiographic control after 6 weeks. Bandage or orthosis to maintain toe alignment. IMA I-II was reduced from 13.6 degrees preoperatively to 6.6 degrees postoperatively. HVA decreased from 29.8 degrees to 8.2 degrees postoperatively.

  6. Radiographic Shape of Foot With Second Metatarsophalangeal Joint Dislocation Associated With Hallux Valgus.

    PubMed

    Kokubo, Tetsuro; Hashimoto, Takeshi; Suda, Yasunori; Waseda, Akeo; Ikezawa, Hiroko

    2017-12-01

    Second metatarsophalangeal (MTP) joint dislocation is associated with hallux valgus, and the treatment of complete dislocation can be difficult. The purpose of this study was to radiographically clarify the characteristic foot shape in the presence of second MTP joint dislocation. Weight-bearing foot radiographs of the 268 patients (358 feet) with hallux valgus were examined. They were divided into 2 groups: those with second MTP joint dislocation (study group = 179 feet) and those without dislocation (control group = 179 feet). Parameters measured included the hallux valgus angle (HVA), first-second intermetatarsal angle (IMA), second MTP joint angle, hallux interphalangeal angle (IPA), second metatarsal protrusion distance (MPD), metatarsus adductus angle (MAA), and the second metatarsal declination angle (2MDA). Furthermore, the dislocation group was divided into 3 subgroups according to second toe deviation direction: group M (medial type), group N (neutral type), and group L (lateral type). The IPA and the 2MDA were significantly greater in the study group than in the control group. By multiple comparison analysis, the IMA was greatest in group M and smallest in group L. The IPA was smaller and 2MDA greater in group N than in group L. The HVA and MAA in group L were greatest, and MPD in group L was smallest. The patients with second MTP joint dislocation associated with hallux valgus had greater hallux interphalangeal joint varus and a second metatarsal more inclined than with hallux valgus alone. The second toe deviated in a different direction according to the foot shape. Level III, retrospective comparative study.

  7. Eye-hand laterality and right thoracic idiopathic scoliosis.

    PubMed

    Catanzariti, Jean-François; Guyot, Marc-Alexandre; Agnani, Olivier; Demaille, Samantha; Kolanowski, Elisabeth; Donze, Cécile

    2014-06-01

    The adolescent idiopathic scoliosis (AIS) pathogenesis remains unknown. Certain studies have shown that there is a correlation between manual laterality and scoliotic deviation. A full study of manual laterality needs to be paired with one for visual dominance. With the aim of physiopathological research, we have evaluated the manual and visual laterality in AIS. A retrospective study from prospective data collection is used to evaluate the distribution of eye-hand laterality (homogeneous or crossed) of 65 right thoracic AIS (mean age 14.8 ± 1.8 years; mean Cobb angle: 32.8°) and a control group of 65 sex and age-matched (mean age 14.6 ± 1.8 years). The manual laterality was defined by the modified Edinburgh Handedness Inventory. The evaluation of the visual laterality is done using three tests (kaleidoscope test, hole-in-the-card test, distance-hole-in-the-card test). The group of right thoracic AIS presents a significantly higher frequency of crossed eye-hand laterality (63 %) than the control group (63 vs. 29.2 %; p < 0.001). In the AIS group, the most frequent association, within crossed laterality is "right hand dominant-left eye dominant" (82.9 %). There is no relationship with the Cobb angle. Those with right thoracic AIS show a higher occurrence of crossed eye-hand laterality. This could point physiopathological research of AIS towards functional abnormality of the optic chiasma through underuse of cross visual pathways, and in particular accessory optic pathways. It would be useful to explore this by carrying out research on AISs through neuroimaging and neurofunctional exploration.

  8. Reference Values for Human Posture Measurements Based on Computerized Photogrammetry: A Systematic Review.

    PubMed

    Macedo Ribeiro, Ana Freire; Bergmann, Anke; Lemos, Thiago; Pacheco, Antônio Guilherme; Mello Russo, Maitê; Santos de Oliveira, Laura Alice; de Carvalho Rodrigues, Erika

    The main objective of this study was to review the literature to identify reference values for angles and distances of body segments related to upright posture in healthy adult women with the Postural Assessment Software (PAS/SAPO). Electronic databases (BVS, PubMed, SciELO and Scopus) were assessed using the following descriptors: evaluation, posture, photogrammetry, physical therapy, postural alignment, postural assessment, and physiotherapy. Studies that performed postural evaluation in healthy adult women with PAS/SAPO and were published in English, Portuguese and Spanish, between the years 2005 and 2014 were included. Four studies met the inclusion criteria. Data from the included studies were grouped to establish the statistical descriptors (mean, variance, and standard deviation) of the body angles and distances. A total of 29 variables were assessed (10 in the anterior views, 16 in the lateral right and left views, and 3 in the posterior views), and its respective mean and standard deviation were calculated. Reference values for the anterior and posterior views showed no symmetry between the right and left sides of the body in the frontal plane. There were also small differences in the calculated reference values for the lateral view. The proposed reference values for quantitative evaluation of the upright posture in healthy adult women estimated in the present study using PAS/SAPO could guide future studies and help clinical practice. Copyright © 2017. Published by Elsevier Inc.

  9. Spine deviations and orthodontic treatment of asymmetric malocclusions in children

    PubMed Central

    2012-01-01

    Background The aim of this randomized clinical trial was to assess the effect of early orthodontic treatment for unilateral posterior cross bite in the late deciduous and early mixed dentition using orthopedic parameters. Methods Early orthodontic treatment was performed by initial maxillary expansion and subsequent activator therapy (Münster treatment concept). The patient sample was initially comprised of 80 patients with unilateral posterior cross bite (mean age 7.3 years, SD 2.1 years). After randomization, 77 children attended the initial examination appointment (therapy = 37, control = 40); 31 children in the therapy group and 35 children in the control group were monitored at the follow-up examination (T2). The mean interval between T1 and T2 was 1.1 years (SD 0.2 years). Rasterstereography was used for back shape analysis at T1 and T2. Using the profile, the kyphotic and lordotic angle, the surface rotation, the lateral deviation, pelvic tilt and pelvic torsion, statistical differences at T1 and T2 between the therapy and control groups were calculated (t-test). Our working hypothesis was, that early orthodontic treatment can induce negative therapeutic changes in body posture through thoracic and lumbar position changes in preadolescents with uniltaral cross bite. Results No clinically relevant differences between the control and the therapy groups at T1 and T2 were found for the parameters of kyphotic and lordotic angle, the surface rotation, lateral deviation, pelvic tilt, and pelvic torsion. Conclusions Our working hypothesis was tested to be not correct (within the limitations of this study). This randomized clinical trial demonstrates that in a juvenile population with unilateral posterior cross bite the selected early orthodontic treatment protocol does not affect negatively the postural parameters. Trial registration DRKS00003497 on DRKS PMID:22906114

  10. Is radiographic measurement of bony landmarks reliable for lateral meniscal sizing?

    PubMed

    Yoon, Jung-Ro; Kim, Taik-Seon; Lim, Hong-Chul; Lim, Hyung-Tae; Yang, Jae-Hyuk

    2011-03-01

    The accuracy of meniscal measurement methods is still in debate. The authors' protocol for radiologic measurements will provide reproducible bony landmarks, and this measurement method of the lateral tibial plateau will correlate with the actual anatomic value. Controlled laboratory study. Twenty-five samples of fresh lateral meniscus with attached proximal tibia were obtained during total knee arthroplasty. Each sample was obtained without damage to the meniscus and bony attachment sites. The inclusion criterion was mild to moderate osteoarthritis in patients with mechanical axis deviation of less than 15°. Knees with lateral compartment osteoarthritic change or injured or degenerated menisci were excluded. For the lateral tibial plateau length measurements, the radiographic beam was angled 10° caudally at neutral rotation, which allowed differentiation of the lateral plateau cortical margins from the medial plateau. The transition points were identified and used for length measurement. The values of length were then compared with the conventional Pollard method and the anatomic values. The width measurement was done according to Pollard's protocol. For each knee, the percentage deviation from the anatomic dimension was recorded. Intraobserver error and interobserver error were calculated. The deviation of the authors' radiographic length measurements from anatomic dimensions was 1.4 ± 1.1 mm. The deviation of Pollard's radiographic length measurements was 4.1 ± 2.0 mm. With respect to accuracy-which represents the frequency of measurements that fall within 10% of measurements-the accuracy of authors' length was 98%, whereas for Pollard's method it was 40%. There was a good correlation between anatomic meniscal dimensions and each radiologic plateau dimensions for lateral meniscal width (R(2) = .790) and the authors' lateral meniscal length (R(2) = .823) and fair correlation for Pollard's lateral meniscal length (R(2) = .660). The reliability of each radiologic measurement showed good reliability (intraclass correlation coefficients, .823 to .973). The authors tried to determine the best-fit equation for predicting meniscal size from Pollard's method of bone size, as follows: anatomic length = 0.52 × plateau length (according to Pollard's method) + 5.2, not as Pollard suggested (0.7 × Pollard's plateau length). Based on this equation-namely, the modified Pollard method-the percentage difference decreased, and the accuracy increased to 92%. Lateral meniscal length dimension can be accurately predicted from the authors' radiographic tibial plateau measurements. This study may provide valuable information in preoperative sizing of lateral meniscus in meniscal allograft transplantation.

  11. Computed tomography assessment of lateral pedicle wall perforation by free-hand subaxial cervical pedicle screw placement.

    PubMed

    Wang, Yingsong; Xie, Jingming; Yang, Zhendong; Zhao, Zhi; Zhang, Ying; Li, Tao; Liu, Luping

    2013-07-01

    To present the technique of free-hand subaxial cervical pedicle screw (CPS) placement without using intra-operative navigating devices, and to investigate the crucial factors for safe placement and avoidance of lateral pedicle wall perforation, by measuring and classifying perforations with postoperative computed tomography (CT) scan. The placement of CPS has generally been considered as technically demanding and associated with considerable lateral wall perforation rate. For surgeons without access to navigation systems, experience of safe free-hand technique for subaxial CPS placement is especially valuable. A total of 214 consecutive traumatic or degenerative patients with 1,024 CPS placement using the free-hand technique were enrolled. In the operative process, the lateral mass surface was decorticated. Then a small curette was used to identify the pedicle entrance by touching the cortical bone of the medial pedicle wall. It was crucial to keep the transverse angle and make appropriate adjustment with guidance of the resistance of the thick medial cortical bone. The hand drill should be redirected once soft tissue breach was palpated by a slim ball-tip prober. With proper trajectory, tapping, repeated palpation, the 26-30 mm screw could be placed. After the procedure, the transverse angle of CPS trajectory was measured, and perforation of the lateral wall was classified by CT scan: grade 1, perforation of pedicle wall by screw placement, with the external edge of screw deviating out of the lateral pedicle wall equal to or less than 2 mm and grade 2, critical perforation of pedicle wall by screw placement, large than 2 mm. A total of 129 screws (12.64 %) were demonstrated as lateral pedicle wall perforation, of which 101 screws (9.86 %) were classified as grade 1, whereas 28 screws (2.73 %) as grade 2. Among the segments involved, C3 showed an obviously higher perforating rate than other (P < 0.05). The difference between the anatomical pedicle transverse angle and the screw trajectory angle was higher in patients of grade 2 perforation than the others. In the 28 screws of grade 2 perforation verified by axial CT, 26 screws had been palpated as abnormal during operation. However, only 19 out of the 101 screws of grade 1 perforation had shown palpation alarming signs during operation. The average follow-up was 36.8 months (range 5-65 months). There was no symptom and sign of neurovascular injuries. Two screws (0.20 %) were broken, and one screw (0.10 %) loosen. Placement of screw through a correct trajectory may lead to grade 1 perforation, which suggests transversal expansion and breakage of the thinner lateral cortex, probably caused by mismatching of the diameter of 3.5 mm screws and the tiny cancellous bone cavity of pedicle. Grade 1 perforation is deemed as relatively safe to the vertebral artery. Grade 2 perforation means obvious deviation of the trajectory angle of hand drill, which directly penetrates into the transverse foramen, and the risk of vertebral artery injury (VAI) or development of thrombi caused by the irregular blood flow would be much greater compared to grade 1 perforation. Moreover, there are two crucial maneuvers for increasing accuracy of screw placement: identifying the precise entry point using a curette or hand drill to touch the true entrance of the canal after decortication, and guiding CPS trajectory on axial plane by the resistant of thick medial wall.

  12. Use of high-speed cinematography and computer generated gait diagrams for the study of equine hindlimb kinematics.

    PubMed

    Kobluk, C N; Schnurr, D; Horney, F D; Sumner-Smith, G; Willoughby, R A; Dekleer, V; Hearn, T C

    1989-01-01

    High-speed cinematography with computer aided analysis was used to study equine hindlimb kinematics. Eight horses were filmed at the trot or the pace. Filming was done from the side (lateral) and the back (caudal). Parameters measured from the lateral filming included the heights of the tuber coxae and tailhead, protraction and retraction of the hoof and angular changes of the tarsus and stifle. Abduction and adduction of the limb and tarsal height changes were measured from the caudal filming. The maximum and minimum values plus the standard deviations and coefficients of variations are presented in tabular form. Three gait diagrams were constructed to represent stifle angle versus tarsal angle, metatarsophalangeal height versus protraction-retraction (fetlock height diagram) and tuber coxae and tailhead height versus stride (pelvic height diagram). Application of the technique to the group of horses revealed good repeatability of the gait diagrams within a limb and the diagrams appeared to be sensitive indicators of left/right asymmetries.

  13. Walking patterns of hip arthroplasty patients: some observations on the medio-lateral excursions of the trunk.

    PubMed

    Vogt, L; Brettmann, K; Pfeifer, K; Banzer, W

    2003-04-08

    This study examined the angular gait kinematics of the trunk and the pelvis in the frontal plane and their amount of side-to-side asymmetry in patients after total hip replacement arthroplasty. The angular gait kinematics of 12 male hip arthroplasty patients (53-70 years) were compared to ten age-matched and ten young (24-35 years) male control subjects. Average step times and medio-lateral oscillation amplitudes of the pelvic and thoracic recordings were calculated for each step. Between successive steps the asymmetry ratio was computed and the mean angle around which the side-to-side oscillations occurred was compared to the angle in a symmetrical standing trial. ANOVA indicated no significant side differences in relative step cycle durations. Patients and senior controls had significantly (p<0.01) less pelvis side-to-side displacements than the younger controls. No significant between-group differences could be detected for the average asymmetry ratio. However, during walking the patients showed a significantly (p<0.01) increased lateral thorax and pelvis deviation. Hip replacement patients' thoracic and pelvic position is characterized by a lateral shift throughout the gait cycle, while left and right symmetry of angular movements amplitudes remain at about the same value of unimpaired subjects.

  14. The Effect of Sliding Humeral Osteotomy (SHO) on Frontal Plane Thoracic Limb Alignment: An Ex Vivo Canine Cadaveric Study.

    PubMed

    Breiteneicher, Adam H; Norby, Bo; Schulz, Kurt S; Kerwin, Sharon C; Hulse, Don A; Fox, Derek B; Saunders, W Brian

    2016-11-01

    To determine the effect of sliding humeral osteotomy (SHO) on frontal plane thoracic limb alignment in standing and recumbent limb positions. Canine cadaveric study. Canine thoracic limbs (n=15 limb pairs). Limbs acquired from healthy Labrador Retrievers euthanatized for reasons unrelated to this study were mounted in a limb press and aligned in a standing position followed by axial loading at 30% body weight. Frontal plane radiography was performed in standing and recumbent positions pre- and post-SHO. In the standing position, lateralization of the foot was measured pre- and post-SHO using a textured grid secured to the limb press base plate. Twelve thoracic limb alignment values (mean ± SD and 95% CI) were determined using the center of rotation of angulation (CORA) method were compared using linear mixed models to determine if significant differences existed between limb alignment values pre- or post-SHO, controlling for dog, limb, and limb position. Six of 12 standing or recumbent alignment values were significantly different pre- and post-SHO. SHO resulted in decreased mechanical lateral distal humeral angle and movement of the mechanical humeral radio-ulnar angle, radio-ulnar metacarpal angle, thoracic humeral angle, and elbow mechanical axis deviation toward coaxial limb alignment. In the standing position, the foot underwent significant lateralization post-SHO. SHO resulted in significant alteration in frontal plane thoracic limb alignment. Additional studies are necessary to determine if the changes reported using our ex vivo model occur following SHO in vivo. © Copyright 2016 by The American College of Veterinary Surgeons.

  15. Do CAS measurements correlate with EOS 3D alignment measurements in primary TKA?

    PubMed

    Meijer, Marrigje F; Boerboom, Alexander L; Bulstra, Sjoerd K; Reininga, Inge H F; Stevens, Martin

    2017-09-01

    Objective of this study was to compare intraoperative computer-assisted surgery (CAS) alignment measurements during total knee arthroplasty (TKA) with pre- and postoperative coronal alignment measurements using EOS 3D reconstructions. In a prospective study, 56 TKAs using imageless CAS were performed and coronal alignment measurements were recorded twice: before bone cuts were made and after implantation of the prosthesis. Pre- and postoperative coronal alignment measurements were performed using EOS 3D reconstructions. Thanks to the EOS radiostereography system, measurement errors due to malpositioning and deformity during acquisition are eliminated. CAS measurements were compared with EOS 3D reconstructions. Varus/valgus angle (VV), mechanical lateral distal femoral angle (mLDFA) and mechanical medial proximal tibial angle (mMPTA) were measured. Significantly different VV angles were measured pre- and postoperatively with CAS compared to EOS. For preoperative measurements, mLDFA did not differ significantly, but a significantly larger mMPTA in valgus was measured with CAS. Results of this study indicate that differences in alignment measurements between CAS measurements and pre- and postoperative EOS 3D are due mainly to the difference between weight-bearing and non-weight-bearing position and potential errors in validity and reliability of the CAS system. EOS 3D measurements overestimate VV angle in lower limbs with substantial mechanical axis deviation. For lower limbs with minor mechanical axis deviation as well as for mMPTA measurements, CAS measures more valgus than EOS. Eventually the results of this study are of clinical relevance, since it raises concerns regarding the validity and reliability of CAS systems in TKA. IIb.

  16. Low-Cost 3-D Flow Estimation of Blood With Clutter.

    PubMed

    Wei, Siyuan; Yang, Ming; Zhou, Jian; Sampson, Richard; Kripfgans, Oliver D; Fowlkes, J Brian; Wenisch, Thomas F; Chakrabarti, Chaitali

    2017-05-01

    Volumetric flow rate estimation is an important ultrasound medical imaging modality that is used for diagnosing cardiovascular diseases. Flow rates are obtained by integrating velocity estimates over a cross-sectional plane. Speckle tracking is a promising approach that overcomes the angle dependency of traditional Doppler methods, but suffers from poor lateral resolution. Recent work improves lateral velocity estimation accuracy by reconstructing a synthetic lateral phase (SLP) signal. However, the estimation accuracy of such approaches is compromised by the presence of clutter. Eigen-based clutter filtering has been shown to be effective in removing the clutter signal; but it is computationally expensive, precluding its use at high volume rates. In this paper, we propose low-complexity schemes for both velocity estimation and clutter filtering. We use a two-tiered motion estimation scheme to combine the low complexity sum-of-absolute-difference and SLP methods to achieve subpixel lateral accuracy. We reduce the complexity of eigen-based clutter filtering by processing in subgroups and replacing singular value decomposition with less compute-intensive power iteration and subspace iteration methods. Finally, to improve flow rate estimation accuracy, we use kernel power weighting when integrating the velocity estimates. We evaluate our method for fast- and slow-moving clutter for beam-to-flow angles of 90° and 60° using Field II simulations, demonstrating high estimation accuracy across scenarios. For instance, for a beam-to-flow angle of 90° and fast-moving clutter, our estimation method provides a bias of -8.8% and standard deviation of 3.1% relative to the actual flow rate.

  17. Reduction of deviation angle during occlusion therapy: in partially accommodative esotropia with moderate amblyopia.

    PubMed

    Chun, Bo Young; Kwon, Soon Jae; Chae, Sun Hwa; Kwon, Jung Yoon

    2007-09-01

    To evaluate changes in ocular alignment in partially accommodative esotropic children age ranged from 3 to 8 years during occlusion therapy for amblyopia. Angle measurements of twenty-two partially accommodative esotropic patients with moderate amblyopia were evaluated before and at 2 years after occlusion therapy. Mean deviation angle with glasses at the start of occlusion treatment was 19.45+/-5.97 PD and decreased to 12.14+/-12.96 PD at 2 years after occlusion therapy (p<0.01). After occlusion therapy, 9 (41%) cases were indications of surgery for residual deviation but if we had planned surgery before occlusion treatment, 18 (82%) of patients would have had surgery. There was a statistical relationship between increase of visual acuity ratio and decrease of deviation angle (r=-0.479, p=0.024). There was a significant reduction of deviation angle of partially accommodative esotropic patients at 2 years after occlusion therapy. Our results suggest that occlusion therapy has an influence on ocular alignment in partially accommodative esotropic patients with amblyopia.

  18. Design and experimental validation of linear and nonlinear vehicle steering control strategies

    NASA Astrophysics Data System (ADS)

    Menhour, Lghani; Lechner, Daniel; Charara, Ali

    2012-06-01

    This paper proposes the design of three control laws dedicated to vehicle steering control, two based on robust linear control strategies and one based on nonlinear control strategies, and presents a comparison between them. The two robust linear control laws (indirect and direct methods) are built around M linear bicycle models, each of these control laws is composed of two M proportional integral derivative (PID) controllers: one M PID controller to control the lateral deviation and the other M PID controller to control the vehicle yaw angle. The indirect control law method is designed using an oscillation method and a nonlinear optimisation subject to H ∞ constraint. The direct control law method is designed using a linear matrix inequality optimisation in order to achieve H ∞ performances. The nonlinear control method used for the correction of the lateral deviation is based on a continuous first-order sliding-mode controller. The different methods are designed using a linear bicycle vehicle model with variant parameters, but the aim is to simulate the nonlinear vehicle behaviour under high dynamic demands with a four-wheel vehicle model. These steering vehicle controls are validated experimentally using the data acquired using a laboratory vehicle, Peugeot 307, developed by National Institute for Transport and Safety Research - Department of Accident Mechanism Analysis Laboratory's (INRETS-MA) and their performance results are compared. Moreover, an unknown input sliding-mode observer is introduced to estimate the road bank angle.

  19. One-stage closure of isolated cleft palate with the Veau-Wardill-Kilner V to Y pushback procedure or the Cronin modification. III. Comparison of lateral craniofacial morphology.

    PubMed

    Heliövaara, A; Ranta, R

    1993-10-01

    The craniofacial morphology of 116 consecutive patients with isolated cleft palate was studied by means of lateral cephalograms at 17 to 20 years of age. One-stage hard- and soft-palate closure had been carried out at the mean age of 1.8 years by using the Veau-Wardill-Kilner or the Cronin mucoperiosteal palatal V-Y pushback technique. In the Veau-Wardill-Kilner group the cranial base was longer, the cranial base angle was larger, and the mandible longer and its ramus higher but less backward rotated. The patients with originally the most extensive clefts showed the most marked deviations in craniofacial morphology at adult age.

  20. Error compensation of single-antenna attitude determination using GNSS for Low-dynamic applications

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Yu, Chao; Cai, Miaomiao

    2017-04-01

    GNSS-based single-antenna pseudo-attitude determination method has attracted more and more attention from the field of high-dynamic navigation due to its low cost, low system complexity, and no temporal accumulated errors. Related researches indicate that this method can be an important complement or even an alternative to the traditional sensors for general accuracy requirement (such as small UAV navigation). The application of single-antenna attitude determining method to low-dynamic carrier has just started. Different from the traditional multi-antenna attitude measurement technique, the pseudo-attitude attitude determination method calculates the rotation angle of the carrier trajectory relative to the earth. Thus it inevitably contains some deviations comparing with the real attitude angle. In low-dynamic application, these deviations are particularly noticeable, which may not be ignored. The causes of the deviations can be roughly classified into three categories, including the measurement error, the offset error, and the lateral error. Empirical correction strategies for the formal two errors have been promoted in previous study, but lack of theoretical support. In this paper, we will provide quantitative description of the three type of errors and discuss the related error compensation methods. Vehicle and shipborne experiments were carried out to verify the feasibility of the proposed correction methods. Keywords: Error compensation; Single-antenna; GNSS; Attitude determination; Low-dynamic

  1. Immediate responses to backpack carriage on postural angles in young adults: A crossover randomized self-controlled study with repeated measures.

    PubMed

    Abaraogu, Ukachukwu O; Ezenwankwo, Elochukwu F; Nwadilibe, Ijeoma B; Nwafor, Geoffrey C; Ugwuele, Bianca O; Uzoh, Pascal C; Ani, Ifunanya; Amarachineke, Kinsley; Atuma, Collins; Ewelunta, Obed

    2017-01-01

    Heavy backpacks have been associated with various postural changes and consequently musculoskeletal disorders. We evaluated the immediate responses of varying backpack loads on cranio-vertebral angle (CVA), sagittal shoulder angle (SSA) and trunk forward lean (TFL) of young adults between the ages of 18-25 years. This was a 3×3 cross over randomized controlled study with repeated measures among a convenience sample of young adults (n = 30; 50% male, 50% female). Each participant in a standing posture was assessed at four different loads: no backpack, carrying backpack of 5%, 10%, and 15% of body weight (BW). A sagittal photograph was taken of the area of the body corresponding to spinal angle during each of these test conditions to allow for later analysis of postural deviations. Comparisons of the mean deviations of the different postural angles from baseline and between test conditions were made using ANOVA at p≤0.05. Generally, there was a trend toward a decrease in the CVA and TFL with increasing backpack loads. Specifically, a significant decrease was seen for TFL at10% and 15% BW loads when compared with no load condition. In contrast, the decrease in CVA was only significant between no load condition and 15% body weight load. The SSA remained unchanged with backpack weight within 15% BW. Whereas the SSA of young adults may not be upset by an acute loading with a backpack within 15% of body weight, a 15% BW backpack led to more forward posture of the head on the neck. In addition, backpack load as low as 10% BW is enough to cause an immediate forward lean of the trunk.

  2. Reduction of Deviation Angle During Occlusion Therapy: In Partially Accommodative Esotropia with Moderate Amblyopia

    PubMed Central

    Chun, Bo Young; Kwon, Soon Jae; Chae, Sun Hwa

    2007-01-01

    Purpose To evaluate changes in ocular alignment in partially accommodative esotropic children age ranged from 3 to 8 years during occlusion therapy for amblyopia. Methods Angle measurements of twenty-two partially accommodative esotropic patients with moderate amblyopia were evaluated before and at 2 years after occlusion therapy. Results Mean deviation angle with glasses at the start of occlusion treatment was 19.45±5.97 PD and decreased to 12.14±12.96 PD at 2 years after occlusion therapy (p<0.01). After occlusion therapy, 9 (41%) cases were indications of surgery for residual deviation but if we had planned surgery before occlusion treatment, 18 (82%) of patients would have had surgery. There was a statistical relationship between increase of visual acuity ratio and decrease of deviation angle (r=-0.479, p=0.024). Conclusions There was a significant reduction of deviation angle of partially accommodative esotropic patients at 2 years after occlusion therapy. Our results suggest that occlusion therapy has an influence on ocular alignment in partially accommodative esotropic patients with amblyopia. PMID:17804922

  3. Can different occlusal positions instantaneously impact spine and body posture? : A pilot study using rasterstereography for a three-dimensional evaluation.

    PubMed

    März, Karoline; Adler, Werner; Matta, Ragai-Edward; Wolf, Linda; Wichmann, Manfred; Bergauer, Bastian

    2017-05-01

    Orthodontists influence dental occlusion directly. To suggest any link between dental occlusion and body posture is highly contentious, as evidenced by the literature. Rasterstereography, an optical technique that enables three-dimensional (3D) body measurements to be collected, has not yet been used to impartially examine whether different occlusal positions could instantaneously alter spine and body posture. We therefore set out to use this technique to nonsubjectively evaluate this question under static conditions. Optical body scans were collected for 44 subjects, using the Diers formetric 4D system, for seven different mandible positions. In total, ten spinal and body posture parameters were assessed (trunk inclination, trunk imbalance, pelvic tilt, pelvic torsion, fleche cervicale, fleche lombaire, kyphotic angle, lordotic angle, surface rotation, and lateral deviation) for each mandible position and compared with scans performed with habitual intercuspation (HIC). Significant body posture deviations were found for the fleche cervicale (position of the mandible: right eccentrically), fleche lombaire (positions of the mandible: physiologic rest position, cotton rolls on both sides, bite elevation 1 mm), and the kyphotic angle (positions of the mandible: cotton rolls on both sides, right eccentrically). No other significant differences were detected. Data for the parameters that varied with different dental occlusions generated high standard deviations. Therefore, within the limitations of this pilot study, we could not conclusively associate dental occlusion to an instantaneous impact on the tested parameters. The posture changes that we detected could also have arisen from individual neuromuscular compensation; a possibility that must now be ruled-in, or out, by further research studies with a higher number of subjects.

  4. Parametric Blade Study Test Report Rotor Configuration. Number 2

    DTIC Science & Technology

    1988-11-01

    Incidence Angle (100% N) .............. 51 9 Rotor Relative Inlet Mach Number (100% N) ... 51 1G Rotor Loss Coefficient (100% N) ............. 52 11 Rotor...Diffusion Factor (100% N) ............. 52 12 Rotor Deviation Angle (100% N) .............. 53 13 Stator Incidence Angle (100% N) ............. 53 14...78 50 Stator Deviation Angle (90% N) .............. 79 51 Stator Loss Coefficient (90% N) ............. 79 52 Static Pressure Distribution

  5. Correlation between Extraocular Muscle Size Measured by Computed Tomography and the Vertical Angle of Deviation in Thyroid Eye Disease

    PubMed Central

    Lee, Ju-Yeun; Bae, Kunho; Park, Kyung-Ah; Lyu, In Jeong; Oh, Sei Yeul

    2016-01-01

    The aim of this study was to investigate extraocular muscle (EOM) volume and cross-sectional area using computed tomography (CT), and to determine the relationship between EOM size and the vertical angle of deviation in thyroid eye disease (TED). Twenty-nine TED patients (58 orbits) with vertical strabismus were enrolled in the study. All patients underwent complete ophthalmic examination including prism, alternate cover, and Krimsky tests. Orbital CT scans were also performed on each patient. Digital image analysis was used to quantify superior rectus (SR) and inferior rectus (IR) muscle cross-sectional areas and volumes. Measurements were compared with those of controls. The correlation between muscle size and degree of vertical angle deviation was evaluated. The mean vertical angle of deviation was 26.2 ± 4.1 prism diopters. The TED group had a greater maximum cross-sectional area and EOM volume in the SR and IR than the control group (all p<0.001). Area and volume of the IR were correlated with the angle of deviation, but the SR alone did not show a significant correlation. The maximum cross-sectional area and volume of [Right IR + Left SR − Right SR − Left IR] was strongly correlated with the vertical angle of deviation (P<0.001). Quantitative CT of the orbit with evaluation of the area and volume of EOMs may be helpful in anticipating and monitoring vertical strabismus in TED patients. PMID:26820406

  6. Correlation between Extraocular Muscle Size Measured by Computed Tomography and the Vertical Angle of Deviation in Thyroid Eye Disease.

    PubMed

    Lee, Ju-Yeun; Bae, Kunho; Park, Kyung-Ah; Lyu, In Jeong; Oh, Sei Yeul

    2016-01-01

    The aim of this study was to investigate extraocular muscle (EOM) volume and cross-sectional area using computed tomography (CT), and to determine the relationship between EOM size and the vertical angle of deviation in thyroid eye disease (TED). Twenty-nine TED patients (58 orbits) with vertical strabismus were enrolled in the study. All patients underwent complete ophthalmic examination including prism, alternate cover, and Krimsky tests. Orbital CT scans were also performed on each patient. Digital image analysis was used to quantify superior rectus (SR) and inferior rectus (IR) muscle cross-sectional areas and volumes. Measurements were compared with those of controls. The correlation between muscle size and degree of vertical angle deviation was evaluated. The mean vertical angle of deviation was 26.2 ± 4.1 prism diopters. The TED group had a greater maximum cross-sectional area and EOM volume in the SR and IR than the control group (all p<0.001). Area and volume of the IR were correlated with the angle of deviation, but the SR alone did not show a significant correlation. The maximum cross-sectional area and volume of [Right IR + Left SR - Right SR - Left IR] was strongly correlated with the vertical angle of deviation (P<0.001). Quantitative CT of the orbit with evaluation of the area and volume of EOMs may be helpful in anticipating and monitoring vertical strabismus in TED patients.

  7. Nonlinear elastic effects on the energy flux deviation of ultrasonic waves in gr/ep composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1992-01-01

    The effects of nonlinear elasticity on energy flux deviation in undirectional gr/ep composites are examined. The shift in the flux deviation is modeled using acoustoelasticity theory and the second- and third-order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress are considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3), while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1). For both conditions, the change in the energy flux deviation angle from the condition of zero applied stress is computed over the range of propagation directions of 0 to 60 deg from the fiber axis at two-degree intervals. A positive flux deviation angle implies the energy deviates away from the fiber direction toward the x1 axis, while a negative deviation means that the energy deviates toward the fibers. Over this range of fiber orientation angles, the energy of the quasi-longitudinal and pure mode transverse waves deviates toward the fibers, while that of the quasi-transverse mode deviates away from the fibers.

  8. Operative Treatment of Fifth Metatarsal Jones Fractures (Zones II and III) in the NBA.

    PubMed

    O'Malley, Martin; DeSandis, Bridget; Allen, Answorth; Levitsky, Matthew; O'Malley, Quinn; Williams, Riley

    2016-05-01

    Proximal fractures of the fifth metatarsal (zone II and III) are common in the elite athlete and can be difficult to treat because of a tendency toward delayed union, nonunion, or refracture. The purpose of this case series was to report our experience in treating 10 NBA players, determine the healing rate, return to play, refracture rate, and role of foot type in these athletes. The records of 10 professional basketball players were retrospectively reviewed. Seven athletes underwent standard percutaneous internal fixation with bone marrow aspirate concentrate (BMAC) whereas the other 3 had open bone grafting primarily in addition to fixation and BMAC. Radiographic features evaluated included fourth-fifth intermetatarsal, fifth metatarsal lateral deviation, calcaneal pitch, and metatarsus adductus angles. Radiographic healing was observed at an overall average of 7.5 weeks and return to play was 9.8 weeks. Three athletes experienced refractures. There were no significant differences in clinical features or radiographic measurements except that the refracture group had the highest metatatarsus adductus angles. Most athletes were pes planus and 9 of 10 had a bony prominence under the fifth metatarsal styloid. This is the largest published series of operatively treated professional basketball players who exemplify a specific patient population at high risk for fifth metatarsal fracture. These players were large and possessed a unique foot type that seemed to be associated with increased risk of fifth metatarsal fracture and refracture. This foot type had forefoot metatarsus adductus and a fifth metatarsal that was curved with a prominent base. We continue to use standard internal fixation with bone marrow aspirate but advocate additional prophylactic open bone grafting in patients with high fourth-to-fifth intermetatarsal, fifth metatarsal lateral deviation, and metatarsus adductus angles as well as prominent fifth metatarsal styloids in order to improve fracture healing and potentially decrease the risk of refracture. Level IV, case series. © The Author(s) 2016.

  9. Assessment of four midcarpal radiologic determinations.

    PubMed

    Cho, Mickey S; Battista, Vincent; Dubin, Norman H; Pirela-Cruz, Miguel

    2006-03-01

    Several radiologic measurement methods have been described for determining static carpal alignment of the wrist. These include the scapholunate, radiolunate, and capitolunate angles. The triangulation method is an alternative radiologic measurement which we believe is easier to use and more reproducible and reliable than the above mentioned methods. The purpose of this study is to assess the intraobserver reproducibility and interobserver reliability of the triangulation method, scapholunate, radiolunate, and capitolunate angles. Twenty orthopaedic residents and staff at varying levels of training made four radiologic measurements including the scapholunate, radiolunate and capitolunate angles as well as the triangulation method on five different lateral, digitized radiographs of the wrist and forearm in neutral radioulnar deviation. Thirty days after the initial measurements, the participants repeated the four radiologic measurements using the same radiographs. The triangulation method had the best intra-and-interobserver agreement of the four methods tested. This agreement was significantly better than the capitolunate and radiolunate angles. The scapholunate angle had the next best intraobserver reproducibility and interobserver reliability. The triangulation method has the best overall observer agreement when compared to the scapholunate, radiolunate, and capitolunate angles in determining static midcarpal alignment. No comment can be made on the validity of the measurements since there is no radiographic gold standard in determining static carpal alignment.

  10. Prosthetically guided maxillofacial surgery: evaluation of the accuracy of a surgical guide and custom-made bone plate in oncology patients after mandibular reconstruction.

    PubMed

    Mazzoni, Simona; Marchetti, Claudio; Sgarzani, Rossella; Cipriani, Riccardo; Scotti, Roberto; Ciocca, Leonardo

    2013-06-01

    The aim of the present study was to evaluate the accuracy of prosthetically guided maxillofacial surgery in reconstructing the mandible with a free vascularized flap using custom-made bone plates and a surgical guide to cut the mandible and fibula. The surgical protocol was applied in a study group of seven consecutive mandibular-reconstructed patients who were compared with a control group treated using the standard preplating technique on stereolithographic models (indirect computer-aided design/computer-aided manufacturing method). The precision of both surgical techniques (prosthetically guided maxillofacial surgery and indirect computer-aided design/computer-aided manufacturing procedure) was evaluated by comparing preoperative and postoperative computed tomographic data and assessment of specific landmarks. With regard to midline deviation, no significant difference was documented between the test and control groups. With regard to mandibular angle shift, only one left angle shift on the lateral plane showed a statistically significant difference between the groups. With regard to angular deviation of the body axis, the data showed a significant difference in the arch deviation. All patients in the control group registered greater than 8 degrees of deviation, determining a facial contracture of the external profile at the lower margin of the mandible. With regard to condylar position, the postoperative condylar position was better in the test group than in the control group, although no significant difference was detected. The new protocol for mandibular reconstruction using computer-aided design/computer-aided manufacturing prosthetically guided maxillofacial surgery to construct custom-made guides and plates may represent a viable method of reproducing the patient's anatomical contour, giving the surgeon better procedural control and reducing procedure time. Therapeutic, III.

  11. Truck driver informational overload, fiscal year 1992. Final report, 1 July 1991-30 September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacAdam, C.C.

    1992-09-01

    The document represents the final project report for a study entitled 'Truck Driver Informational Overload' sponsored by the Motor Vehicle Manufacturers Association through its Motor Truck Research Committee and associated Operations/Performance Panels. As stated in an initial project statement, the objective of the work was to provide guidance for developing methods for measuring driving characteristics during information processing tasks. The contents of the report contain results from two basic project activities: (1) a literature review on multiple task performance driver information overload, and (2) a description of driving simulator side-task experiments and a discussion of findings from tests conducted withmore » eight subjects. Two of the key findings from a set of disturbance-input tests conducted with the simulator and the eight test subjects were that: (1) standard deviations of vehicle lateral position and heading (yaw) angle measurements showed the greatest sensitivity to the presence of side-task activities during basic information processing tasks, and (2) corresponding standard deviations of driver steering activity, vehicle yaw rate, and lateral acceleration measurements were seen to be largely insensitive indicators of side-task activity.« less

  12. The anterior tilt angle of the proximal tibia epiphyseal plate: a significant radiological finding in young children with trampoline fractures.

    PubMed

    Stranzinger, Enno; Leidolt, Lars; Eich, Georg; Klimek, Peter Michael

    2014-08-01

    Evaluation of the anterior tilt angle of the proximal tibia epiphyseal plate in young children, which suffered a trampoline fracture in comparison with a normal population. 62 children (31 females, 31 males) between 2 and 5 years of age (average 2 years 11 months, standard deviation 11 months) with radiographs in two views of the tibia were included in this retrospective study. 25 children with proximal tibia fractures were injured with a history of jumping on a trampoline. All other causes for tibia fractures were excluded. A normal age-mapped control cohort of 37 children was compared. These children had neither evidence of a trampoline related injury nor a fracture of the tibia. The anterior tilt angle of the epiphyseal plate of the tibia was defined as an angle between the proximal tibia physis and the distal tibia physis on a lateral view. Two radiologists evaluated all radiographs for fractures and measured the anterior tilt angle in consensus. An unpaired Student's t-test was used for statistical analysis (SPSS). Original reports were reviewed and compared with the radiological findings and follow-up radiographs. In the normal control group, the average anterior tilt angle measured -3.2°, SD ± 2.8°. The children with trampoline fractures showed an anterior tilt of +4.4°, SD ± 2.9°. The difference was statistically significant, P<0.0001. In 6 patients (24% of all patients with confirmed fractures) the original report missed to diagnose the proximal tibial fracture. Young children between 2 and 5 years of age are at risk for proximal tibia fractures while jumping on a trampoline. These fractures may be very subtle and difficult to detect on initial radiographs. Measurement of the anterior tilt angle of the proximal tibia epiphyseal plate on lateral radiographs is supportive for interpreting correctly trampoline fractures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Class III malocclusion with complex problems of lateral open bite and severe crowding successfully treated with miniscrew anchorage and lingual orthodontic brackets.

    PubMed

    Yanagita, Takeshi; Kuroda, Shingo; Takano-Yamamoto, Teruko; Yamashiro, Takashi

    2011-05-01

    In this article, we report the successful use of miniscrews in a patient with an Angle Class III malocclusion, lateral open bite, midline deviation, and severe crowding. Simultaneously resolving such problems with conventional Class III treatment is difficult. In this case, the treatment procedure was even more challenging because the patient preferred to have lingual brackets on the maxillary teeth. As a result, miniscrews were used to facilitate significant asymmetric tooth movement in the posterior and downward directions; this contributed to the camouflage of the skeletal mandibular protrusion together with complete resolution of the severe crowding and lateral open bite. Analysis of the jaw motion showed that irregularities in chewing movement were also resolved, and a stable occlusion was achieved. Improvements in the facial profile and dental arches remained stable at the 18-month follow-up. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation.

    PubMed

    Helms, Gunther; Dathe, Henning; Dechent, Peter

    2008-03-01

    From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20 degrees . Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7 degrees and 20 degrees flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. (c) 2008 Wiley-Liss, Inc.

  15. Probing the evolution of the EAS muon content in the atmosphere with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2017-10-01

    The evolution of the muon content of very high energy air showers (EAS) in the atmosphere is investigated with data of the KASCADE-Grande observatory. For this purpose, the muon attenuation length in the atmosphere is obtained to Λμ = 1256 ± 85-232+229 (syst) g/cm2 from the experimental data for shower energies between 1016.3 and 1017.0 eV. Comparison of this quantity with predictions of the high-energy hadronic interaction models QGSJET-II-02, SIBYLL 2.1, QGSJET-II-04 and EPOS-LHC reveals that the attenuation of the muon content of measured EAS in the atmosphere is lower than predicted. Deviations are, however, less significant with the post-LHC models. The presence of such deviations seems to be related to a difference between the simulated and the measured zenith angle evolutions of the lateral muon density distributions of EAS, which also causes a discrepancy between the measured absorption lengths of the density of shower muons and the predicted ones at large distances from the EAS core. The studied deficiencies show that all four considered hadronic interaction models fail to describe consistently the zenith angle evolution of the muon content of EAS in the aforesaid energy regime.

  16. Build Angle: Does It Influence the Accuracy of 3D-Printed Dental Restorations Using Digital Light-Processing Technology?

    PubMed

    Osman, Reham B; Alharbi, Nawal; Wismeijer, Daniel

    The aim of this study was to evaluate the effect of the build orientation/build angle on the dimensional accuracy of full-coverage dental restorations manufactured using digital light-processing technology (DLP-AM). A full dental crown was digitally designed and 3D-printed using DLP-AM. Nine build angles were used: 90, 120, 135, 150, 180, 210, 225, 240, and 270 degrees. The specimens were digitally scanned using a high-resolution optical surface scanner (IScan D104i, Imetric). Dimensional accuracy was evaluated using the digital subtraction technique. The 3D digital files of the scanned printed crowns (test model) were exported in standard tessellation language (STL) format and superimposed on the STL file of the designed crown [reference model] using Geomagic Studio 2014 (3D Systems). The root mean square estimate (RMSE) values were evaluated, and the deviation patterns on the color maps were further assessed. The build angle influenced the dimensional accuracy of 3D-printed restorations. The lowest RMSE was recorded for the 135-degree and 210-degree build angles. However, the overall deviation pattern on the color map was more favorable with the 135-degree build angle in contrast with the 210-degree build angle where the deviation was observed around the critical marginal area. Within the limitations of this study, the recommended build angle using the current DLP system was 135 degrees. Among the selected build angles, it offers the highest dimensional accuracy and the most favorable deviation pattern. It also offers a self-supporting crown geometry throughout the building process.

  17. Deviation characteristics of specular reflectivity of micro-rough surface from Fresnel's equation

    NASA Astrophysics Data System (ADS)

    Zhang, W. J.; Qiu, J.; Liu, L. H.

    2015-07-01

    Specular reflectivity is an important radiative property in thermal engineering applications and reflection-based optical constant determinations, yet it will be influenced by surface micro-roughness which cannot be completely removed during the polishing process. In this work, we examined the deviation characteristics of the specular reflectivity of micro-rough surfaces from that predicted by the Fresnel's equation under the assumption of smooth surface. The effects of incident angle and relative roughness were numerically investigated for both 1D and 2D micro randomly rough surfaces using full wave analysis under the condition that the relative roughness is smaller than 0.05. For transverse magnetic (TM) wave incidence, it is observed that the deviation of specular reflectivity dramatically rises as the incident angle approaches to the pseudo Brewster's angle, which violates the prediction based on Rayleigh criterion. While for the transverse electric (TE) wave incidence, the deviation of the specular reflectivity is much smaller and decreases monotonically with the increase of incident angle, which agrees with the predication from Rayleigh criterion. Generally, the deviation of specular reflectivity for both TM and TE increases with the relative roughness as commonly expected.

  18. Measuring acetabular component position on lateral radiographs - ischio-lateral method.

    PubMed

    Pulos, Nicholas; Tiberi Iii, John V; Schmalzried, Thomas P

    2011-01-01

    The standard method for the evaluation of arthritis and postoperative assessment of arthroplasty treatment is observation and measurement from plain films, using the flm edge for orientation. A more recent employment of an anatomical landmark, the ischial tuberosity, has come into use as orientation for evaluation and is called the ischio-lateral method. In this study, the use of this method was evaluated as a first report to the literature on acetabular component measurement using a skeletal reference with lateral radiographs. Postoperative radiographs of 52 hips, with at least three true lateral radiographs taken at different time periods, were analyzed. Component position was measured with the historical method (using the flm edge for orientation) and with the new method using the ischio-lateral method. The mean standard deviation (SD) for the historical approach was 3.7° and for the ischio-lateral method, 2.2° (p < 0.001). With the historical method, 19 (36.5%) hips had a SD greater than ± 4°, compared to six hips (11.5%) with the ischio-lateral method. By using a skeletal reference, the ischio-lateral method provides a more consistent measurement of acetabular component position. The high intra-class correlation coefficients for both intra- and inter-observer reliability indicate that the angle measured with this simple method, which employs no further technology, increased time, or cost, is consistent and reproducible for multiple observers.

  19. Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng

    2018-03-01

    Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 < 10-13m-2/3), the beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.

  20. A Novel Method of Quantitative Anterior Chamber Depth Estimation Using Temporal Perpendicular Digital Photography

    PubMed Central

    Zamir, Ehud; Kong, George Y.X.; Kowalski, Tanya; Coote, Michael; Ang, Ghee Soon

    2016-01-01

    Purpose We hypothesize that: (1) Anterior chamber depth (ACD) is correlated with the relative anteroposterior position of the pupillary image, as viewed from the temporal side. (2) Such a correlation may be used as a simple quantitative tool for estimation of ACD. Methods Two hundred sixty-six phakic eyes had lateral digital photographs taken from the temporal side, perpendicular to the visual axis, and underwent optical biometry (Nidek AL scanner). The relative anteroposterior position of the pupillary image was expressed using the ratio between: (1) lateral photographic temporal limbus to pupil distance (“E”) and (2) lateral photographic temporal limbus to cornea distance (“Z”). In the first chronological half of patients (Correlation Series), E:Z ratio (EZR) was correlated with optical biometric ACD. The correlation equation was then used to predict ACD in the second half of patients (Prediction Series) and compared to their biometric ACD for agreement analysis. Results A strong linear correlation was found between EZR and ACD, R = −0.91, R2 = 0.81. Bland-Altman analysis showed good agreement between predicted ACD using this method and the optical biometric ACD. The mean error was −0.013 mm (range −0.377 to 0.336 mm), standard deviation 0.166 mm. The 95% limits of agreement were ±0.33 mm. Conclusions Lateral digital photography and EZR calculation is a novel method to quantitatively estimate ACD, requiring minimal equipment and training. Translational Relevance EZ ratio may be employed in screening for angle closure glaucoma. It may also be helpful in outpatient medical clinic settings, where doctors need to judge the safety of topical or systemic pupil-dilating medications versus their risk of triggering acute angle closure glaucoma. Similarly, non ophthalmologists may use it to estimate the likelihood of acute angle closure glaucoma in emergency presentations. PMID:27540496

  1. Individual case photogrammetric calibration of the Hirschberg Ratio (HR) for corneal light reflection test strabometry.

    PubMed

    Romano, Paul E

    2006-01-01

    The HR (prism diopters [PD] per mm of corneal light reflection test [CLRT] asymmetry for strabometry) varies in humans from 14 to 24 PD/mm, but is totally unpredictable. Photo(grammetric) HR calibration in (of) each case facilitates acceptable strabometry precision and accuracy. Take 3 flash photos of the patient with both the preferred eye and then the deviating eye fixating straight ahead and then again with the deviation eye fixing at (+/-5-10 PD) the strabismic angle on a metric rule (stick) one meter away from the camera lens (where 1 cm = 1 PD). On these 3 photos, make four precise measurements of the position of the CLR with reference to the limbus: In the deviating eye fixing straight ahead and fixating at the angle of deviation. Divide the mm difference in location into the change in the angle of fixation to determine the HR for this patient at this angle. Then determine the CLR position in both the deviating eye and the fixing eye in the straight ahead primary position picture. Apply the calculated calibrated HR to the asymmetry of the CLRs in primary position to determine the true strabismic deviation. This imaging method insures accurate Hirschberg CLRT strabometry in each case, determining the deviation in "free space", under conditions of normal binocular viewing, uncontaminated by the artifacts or inaccuracies of other conventional strabometric methods or devices. So performed, the Hirschberg CLRT is the gold standard of strabometry.

  2. [Research on lateral shearing interferometer for field monitoring of natural gas pipeline leak].

    PubMed

    Zhang, Xue-Feng; Gao, Yu-Bin

    2012-09-01

    Aimed at the mechanical scanning spectroscopy equipment with poor anti-interference and anti-jamming ability, which affects the accuracy of its natural gas pipeline leak detection in the wild, a new type of lateral shearing interferometer system was designed. The system uses a beam splitter to get optical path difference by a mechanical scanning part, and it cancel the introduction of external vibration interference through the linkage between the two beam splitterw. The interference intensity of interference fringes produced was calculated, and analysis of a rotating beam splitter corresponds to the angle of the optical path difference function, solving for the maximum angle of the forward rotation and reverse rotation, which is the maximum optical path range. Experiments using the gas tank deflated simulated natural gas pipeline leak process, in the interference conditions, and the test data of the type WQF530 spectrometer and the new type of lateral shearing interferometer system were comparedt. The experimental results show that the relative error of both systems is about 1% in indoor conditions without interference. However, in interference environment, the error of WQF530 type spectrometer becomes larger, more than 10%, but the error of the new type of lateral shearing interferometer system is still below 5%. The detection accuracy of the type WQF530 spectrometer decreased significantly due to the environment. Therefore, the seismic design of the system can effectively offset power deviation and half-width increases of center wavelength caused by external interference, and compared to conventional mechanical scanning interferometer devices the new system is more suitable for field detection.

  3. Secondary flow spanwise deviation model for the stators of NASA middle compressor stages

    NASA Technical Reports Server (NTRS)

    Roberts, W. B.; Sandercock, D. M.

    1984-01-01

    A model of the spanwise variation of deviation for stator blades is presented. Deviation is defined as the difference between the passage mean flow angle and the metal angle at the outlet of a blade element of an axial compressor stage. The variation of deviation is taken as the difference above or below that predicted by blade element, (i.e., two-dimensional) theory at any spanwise location. The variation of deviation is dependent upon the blade camber, solidity and inlet boundary layer thickness at the hub or tip end-wall, and the blade channel aspect ratio. If these parameters are known or can be calculated, the model provides a reasonable approximation of the spanwise variation of deviation for most compressor middle stage stators operating at subsonic inlet Mach numbers.

  4. Accuracy of a real-time surgical navigation system for the placement of quad zygomatic implants in the severe atrophic maxilla: A pilot clinical study.

    PubMed

    Hung, Kuo-Feng; Wang, Feng; Wang, Hao-Wei; Zhou, Wen-Jie; Huang, Wei; Wu, Yi-Qun

    2017-06-01

    A real-time surgical navigation system potentially increases the accuracy when used for quad-zygomatic implant placement. To evaluate the accuracy of a real-time surgical navigation system when used for quad zygomatic implant placement. Patients with severely atrophic maxillae were prospectively recruited. Four trajectories for implants were planned, and zygomatic implants were placed using a real-time surgical navigation system. The planned-placed distance deviations at entry (entry deviation)points, exit (exit deviation) points, and angle deviation of axes (angle deviation) were measured on fused operation images. The differences of all the deviations between different groups, classified based on the lengths and locations of implants, were analysed. A P value of < 0.05 indicated statistical significance. Forty zygomatic implants were placed as planned in 10 patients. The entry deviation, exit deviation and angle deviation were 1.35 ± 0.75 mm, 2.15 mm ± 0.95 mm, and 2.05 ± 1.02 degrees, respectively. The differences of all deviations were not significant, irrespective of the lengths (P = .259, .158, and .914, respectively) or locations of the placed implants (P = .698, .072, and .602, respectively). A real-time surgical navigation system used for the placement of quad zygomatic implants demonstrated a high level of accuracy with only minimal planned-placed deviations, irrespective of the lengths or locations of the implants. © 2017 Wiley Periodicals, Inc.

  5. The natural angle between the hand and handle and the effect of handle orientation on wrist radial/ulnar deviation during maximal push exertions.

    PubMed

    Young, Justin G; Lin, Jia-Hua; Chang, Chien-Chi; McGorry, Raymond W

    2013-01-01

    The purpose of this experiment was to quantify the natural angle between the hand and a handle, and to investigate three design factors: handle rotation, handle tilt and between-handle width on the natural angle as well as resultant wrist radial/ulnar deviation ('RUD') for pushing tasks. Photographs taken of the right upper limb of 31 participants (14 women and 17 men) performing maximal seated push exertions on different handles were analysed. Natural hand/handle angle and RUD were assessed. It was found that all of the three design factors significantly affected natural handle angle and wrist RUD, but participant gender did not. The natural angle between the hand and the cylindrical handle was 65 ± 7°. Wrist deviation was reduced for handles that were rotated 0° (horizontal) and at the narrow width (31 cm). Handles that were tilted forward 15° reduced radial deviation consistently (12-13°) across handle conditions. Manual materials handling (MMH) tasks involving pushing have been related to increased risk of musculoskeletal injury. This study shows that handle orientation influences hand and wrist posture during pushing, and suggests that the design of push handles on carts and other MMH aids can be improved by adjusting their orientation to fit the natural interface between the hand and handle.

  6. The Calibration of the Corneal Light Reflex to Estimate the Degree of an Angle of Deviation.

    PubMed

    Tengtrisorn, Supaporn; Tangkijwongpaisarn, Sitthi; Burachokvivat, Somporn

    2015-12-01

    To measure the conversion factor for the size of an angle of deviation from the clinical photographs of the corneal light reflex. In this cross-sectional study, 19 normal subjects with 20/20 visual acuity were photographed with a digital camera while staring at targets placed five prism diopters (PD) apart from one another on a screen. The subjects were tested at a distance of 1 meter (m) and 4 m from a screen. Measurement of the corneal light reflex displacement for each fixed target was obtained from the photographs. The calibration of the corneal light reflex displacement in millimeters (mm) against the angle of deviation in PD was then analyzed with repeated measure linear regression analysis. At 1 m, the values of 0.047 mm/PD and 0.058 mm/PD were obtained as the conversion factor from reflex displacement to deviated angle for the nasal side and temporal side respectively. At 4 m, the values were 0.050 mm/PD and 0.064 mm/PD for the nasal side and the temporal side respectively. There were significant differences between the values obtained at the different distances, regardless of nasal or temporal side. Conversion factors were presented for estimating the strabismic angle at different distances and gazes. For clinical practice, the use of photographs to estimate the strabismic angle should use different values for different distances and strabismic types.

  7. Effects of athletic training on the spinal curvature in child athletes.

    PubMed

    Betsch, Marcel; Furian, Thimm; Quack, Valentin; Rath, Björn; Wild, Michael; Rapp, Walter

    2015-01-01

    The purpose of this study was to examine the spinal posture in young athletes depending on training intensity. The spinal curvature of 245 children, age 8 to 12 years, was evaluated using rasterstereography. According to their weekly training time group 1 (mean age: 9.54 ± 1.18) did 2-6, group 2 (mean age: 9.49 ± 0.87) did 6-15 and group 3 (mean age: 9.68 ± 0.87) did over 15 hours of training. Group 1 had a significantly higher weight (p = 0.028) (33.86 ± 7. kg) than those of the more active groups (30.67 ± 6.49 kg and 29.46 ± 4.33 kg). The mean kyphotic angle decreased significantly (p < 0.001) with the amount of training per week from 46.86 ± 8.2° in group 1 to 40.08 ± 8° in group 3. We also found a significant decrease (p = 0.047) in lateral deviation with training from group 1 with 5.3 ± 3 mm to group 2 with 4.1 ± 1.6 mm. The results of our study suggest that higher training time can be associated with lower weight and decreases in thoracic kyphosis and lateral deviation of the spine.

  8. Relationship between the occlusal plane corresponding to the lateral borders of the tongue and ala-tragus line in edentulous patients.

    PubMed

    Ghosn, Carole Abi; Zogheib, Carla; Makzoumé, Joseph E

    2012-09-01

    Definitions of the ala-tragus line (ATL) cause confusion, because the exact points of reference for this line do not agree. This study determined the relationship between the prosthetic occlusal plane (OP) corresponding to the lateral borders of the tongue and ATL which was established by using the inferior border of the ala of the nose and (1) the superior border of the tragus (ATL 1), (2) the tip (ATL 2) and (3) the inferior border of the tragus (ATL 3). Neutral zone moldings using phonation and autopolymerizing acrylic resin were recorded and leveled with the lateral borders of the tongue. Lateral cephalometric radiographs were taken of each subject by a standard method. Tracings were obtained on acetate paper to show the prosthetic OP and the three ATLs. The relationship between the prosthetic OP and each of ATL was measured for each subject. Mean and standard deviation values were then calculated for the relationship. Statistical analysis was performed using repeated measure analysis of variance followed by Bonferroni pairwise comparisons and Student's t-test (α = 0.05). Significant difference was found between the three mean angles (p = 0.001). There was no significant difference between the mean angle (5.00° ± 4.38) formed by OP and ATL 2, and the mean angle (4.90° ± 3.50) formed by OP and ATL 3 (p = 1.00) which revealed the smallest. The findings of this study indicated that ATLs, extending from the inferior border of the ala of the nose to (1) the tip of the tragus of the ear, and (2) the inferior border of the tragus presented the closest relationship to the prosthetic OP corresponding to the lateral borders of the tongue. When the ATL is used for orientation of the OP in denture construction, it would seem preferable to define it as running from the inferior border of the ala of the nose to the tip or to the inferior border of the tragus of the ear.

  9. Large incidence angle and defocus influence cat's eye retro-reflector

    NASA Astrophysics Data System (ADS)

    Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Yang, Ji-guang; Zheng, Yong-hui

    2014-11-01

    Cat's eye lens make the laser beam retro-reflected exactly to the opposite direction of the incidence beam, called cat's eye effect, which makes rapid acquiring, tracking and pointing of free space optical communication possible. Study the influence of cat's eye effect to cat's eye retro-reflector at large incidence angle is useful. This paper analyzed the process of how the incidence angle and focal shit affect effective receiving area, retro-reflected beam divergence angle, central deviation of cat's eye retro-reflector at large incidence angle and cat's eye effect factor using geometrical optics method, and presented the analytic expressions. Finally, numerical simulation was done to prove the correction of the study. The result shows that the efficiency receiving area of cat's eye retro-reflector is mainly affected by incidence angle when the focal shift is positive, and it decreases rapidly when the incidence angle increases; the retro-reflected beam divergence and central deviation is mainly affected by focal shift, and within the effective receiving area, the central deviation is smaller than beam divergence in most time, which means the incidence beam can be received and retro-reflected to the other terminal in most time. The cat's eye effect factor gain is affected by both incidence angle and focal shift.

  10. Effect of stress on energy flux deviation of ultrasonic waves in GR/EP composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis (fiber axis) and the x1 for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers a new nondestructive technique of evaluating stress in composites.

  11. Nasal Sculpting: Calculated and Predictable Tip Elevation With Cephalic Trim

    PubMed Central

    Redstone, Jeremiah S.; Nguyen, Jonathan; North, Durham Alan; Hazani, Ron; Drury, Brad; Yoder, Eric M.; Cooperman, Ross D.; Yoder, Virginia; Little, Jarrod A.; Florman, Larry D.; Wilhelmi, Bradon J.

    2015-01-01

    Background: Rhinoplasty techniques to affect nasal tip rotation are well described. Cephalic alar trim is a powerful method for achieving tip elevation. Previous studies and texts provide aesthetic guidelines for nasolabial angles. Often, surgeon experience determines the degree of lower lateral cartilage resection to achieve optimal results. This study analyzes the change in tip elevation with measured resections of the lower lateral cartilages. This can aid the surgeon in accurately predicting the effect of cephalic alar trim on tip elevation. Methods: Ten fresh cadaveric dissections were performed to determine the change in nasolabial angles after cephalic trim of the lower lateral cartilage. Closed rhinoplasty technique was performed using marginal and intercartilaginous incisions to expose the lower lateral cartilage. Caliper measurements of the lower lateral cartilage were recorded. Serial cephalic trim was performed in 25% increments. True lateral photographs were obtained before and after each serial excision. Nasolabial angle measurements were obtained using a digital goniometer for digital photo analysis. Results: Four female and 6 male cadavers were evaluated. The mean initial nasolabial angle was 106° ± 2°. The mean lower lateral cartilage width was 9.45 ± 1.38 mm. Serial 25% reductions in lower lateral cartilage height resulted in a mean total nasolabial angle change of 7.4°, 12.9°, and 19.6°, respectively. The mean incremental change in the nasolabial angle was 6.47° ± 1.25°. Conclusion: The nasolabial angle is an essential aesthetic feature. Cephalic trim is a key maneuver in affecting the nasolabial angle. A 25% lower lateral cartilage cephalic trim correlates with an average change in the nasolabial angle of 6.47°. Knowledge of the cephalic trim to nasolabial angle relationship aids in achieving desired tip elevation. PMID:26171091

  12. Using DTSA-II to simulate and interpret energy dispersive spectra from particles.

    PubMed

    Ritchie, Nicholas W M

    2010-06-01

    A high quality X-ray spectrum image of a 3.3 mum diameter sphere of K411 glass resting on a copper substrate was collected at 25 keV. The same sample configuration was modeled using the NISTMonte Monte Carlo simulation of electron and X-ray transport as is integrated into the quantitative X-ray microanalysis software package DTSA-II. The distribution of measured and simulated X-ray intensity compare favorably for all the major lines present in the spectra. The simulation is further examined to investigate the influence of angle-of-incidence, sample thickness, and sample diameter on the generated and measured X-ray intensity. The distribution of generated X-rays is seen to deviate significantly from a naive model which assumes that the distribution of generated X-rays is similar to bulk within the volume they share in common. It is demonstrated that the angle at which the electron beam strikes the sample has nonnegligible consequences. It is also demonstrated that within the volume that the bulk and particle share in common that electrons, which have exited and later reentered the particle volume, generate a significant fraction of the X-rays. Any general model of X-ray generation in particles must take into account the lateral spread of the scattered electron beam.

  13. Comparison between medial rectus pulley fixation and augmented recession in children with convergence excess and variable-angle infantile esotropia.

    PubMed

    Fouad, Heba M; Abdelhakim, Mohamad A; Awadein, Ahmed; Elhilali, Hala

    2016-10-01

    To compare the outcomes of medial rectus (MR) muscle pulley fixation and augmented recession in children with convergence excess esotropia and variable-angle infantile esotropia. This was a prospective randomized interventional study in which children with convergence excess esotropia or variable-angle infantile esotropia were randomly allocated to either augmented MR muscle recession (augmented group) or MR muscle pulley posterior fixation (pulley group). In convergence excess, the MR recession was based on the average of distance and near angles of deviation with distance correction in the augmented group, and on the distance angle of deviation in the pulley group. In variable-angle infantile esotropia, the MR recession was based on the average of the largest and smallest angles in the augmented group and on the smallest angle in the pulley group. Pre- and postoperative ductions, versions, pattern strabismus, smallest and largest angles of deviation, and angle disparity were analyzed. Surgery was performed on 60 patients: 30 underwent bilateral augmented MR recession, and 30 underwent bilateral MR recession with pulley fixation. The success rate was statistically significantly higher (P = 0.037) in the pulley group (70%) than in the augmented group (40%). The postoperative smallest and largest angles and the angle disparity were statistically significantly lower in the pulley group than the augmented group (P < 0.01). Medial rectus muscle pulley fixation is a useful surgical step for addressing marked variability of the angle in variable angle esotropia and convergence excess esotropia. Copyright © 2016 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  14. Comparative study of navigated versus freehand osteochondral graft transplantation of the knee.

    PubMed

    Koulalis, Dimitrios; Di Benedetto, Paolo; Citak, Mustafa; O'Loughlin, Padhraig; Pearle, Andrew D; Kendoff, Daniel O

    2009-04-01

    Osteochondral lesions are a common sports-related injury for which osteochondral grafting, including mosaicplasty, is an established treatment. Computer navigation has been gaining popularity in orthopaedic surgery to improve accuracy and precision. Navigation improves angle and depth matching during harvest and placement of osteochondral grafts compared with conventional freehand open technique. Controlled laboratory study. Three cadaveric knees were used. Reference markers were attached to the femur, tibia, and donor/recipient site guides. Fifteen osteochondral grafts were harvested and inserted into recipient sites with computer navigation, and 15 similar grafts were inserted freehand. The angles of graft removal and placement as well as surface congruity (graft depth) were calculated for each surgical group. The mean harvesting angle at the donor site using navigation was 4 degrees (standard deviation, 2.3 degrees ; range, 1 degrees -9 degrees ) versus 12 degrees (standard deviation, 5.5 degrees ; range, 5 degrees -24 degrees ) using freehand technique (P < .0001). The recipient plug removal angle using the navigated technique was 3.3 degrees (standard deviation, 2.1 degrees ; range, 0 degrees -9 degrees ) versus 10.7 degrees (standard deviation, 4.9 degrees ; range, 2 degrees -17 degrees ) in freehand (P < .0001). The mean navigated recipient plug placement angle was 3.6 degrees (standard deviation, 2.0 degrees ; range, 1 degrees -9 degrees ) versus 10.6 degrees (standard deviation, 4.4 degrees ; range, 3 degrees -17 degrees ) with freehand technique (P = .0001). The mean height of plug protrusion under navigation was 0.3 mm (standard deviation, 0.2 mm; range, 0-0.6 mm) versus 0.5 mm (standard deviation, 0.3 mm; range, 0.2-1.1 mm) using a freehand technique (P = .0034). Significantly greater accuracy and precision were observed in harvesting and placement of the osteochondral grafts in the navigated procedures. Clinical studies are needed to establish a benefit in vivo. Improvement in the osteochondral harvest and placement is desirable to optimize clinical outcomes. Navigation shows great potential to improve both harvest and placement precision and accuracy, thus optimizing ultimate surface congruity.

  15. Morphologic evaluation and classification of facial asymmetry using 3-dimensional computed tomography.

    PubMed

    Baek, Chaehwan; Paeng, Jun-Young; Lee, Janice S; Hong, Jongrak

    2012-05-01

    A systematic classification is needed for the diagnosis and surgical treatment of facial asymmetry. The purposes of this study were to analyze the skeletal structures of patients with facial asymmetry and to objectively classify these patients into groups according to these structural characteristics. Patients with facial asymmetry and recent computed tomographic images from 2005 through 2009 were included in this study, which was approved by the institutional review board. Linear measurements, angles, and reference planes on 3-dimensional computed tomograms were obtained, including maxillary (upper midline deviation, maxilla canting, and arch form discrepancy) and mandibular (menton deviation, gonion to midsagittal plane, ramus height, and frontal ramus inclination) measurements. All measurements were analyzed using paired t tests with Bonferroni correction followed by K-means cluster analysis using SPSS 13.0 to determine an objective classification of facial asymmetry in the enrolled patients. Kruskal-Wallis test was performed to verify differences among clustered groups. P < .05 was considered statistically significant. Forty-three patients (18 male, 25 female) were included in the study. They were classified into 4 groups based on cluster analysis. Their mean age was 24.3 ± 4.4 years. Group 1 included subjects (44% of patients) with asymmetry caused by a shift or lateralization of the mandibular body. Group 2 included subjects (39%) with a significant difference between the left and right ramus height with menton deviation to the short side. Group 3 included subjects (12%) with atypical asymmetry, including deviation of the menton to the short side, prominence of the angle/gonion on the larger side, and reverse maxillary canting. Group 4 included subjects (5%) with severe maxillary canting, ramus height differences, and menton deviation to the short side. In this study, patients with asymmetry were classified into 4 statistically distinct groups according to their anatomic features. This diagnostic classification method will assist in treatment planning for patients with facial asymmetry and may be used to explore the etiology of these variants of facial asymmetry. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. A determination of the absolute radiant energy of a Robertson-Berger meter sunburn unit

    NASA Astrophysics Data System (ADS)

    DeLuisi, John J.; Harris, Joyce M.

    Data from a Robertson-Berger (RB) sunburn meter were compared with concurrent measurements obtained with an ultraviolet double monochromator (DM), and the absolute energy of one sunburn unit measured by the RB-meter was determined. It was found that at a solar zenith angle of 30° one sunburn unit (SU) is equivalent to 35 ± 4 mJ cm -2, and at a solar zenith angle of 69°, one SU is equivalent to 20 ± 2 mJ cm -2 (relative to a wavelength of 297 nm), where the rate of change is non-linear. The deviation is due to the different response functions of the RB-meter and the DM system used to simulate the response of human skin to the incident u.v. solar spectrum. The average growth rate of the deviation with increasing solar zenith angle was found to be 1.2% per degree between solar zenith angles 30 and 50° and 2.3% per degree between solar zenith angles 50 and 70°. The deviations of response with solar zenith angle were found to be consistent with reported RB-meter characteristics.

  17. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    PubMed

    Chen, Mao Wei; Wu, Jiang Hao; Sun, Mao

    2017-01-01

    In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  18. Effect of Stress on Energy Flux Deviation of Ultrasonic Waves in Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis fiber axis) and the x1 axis for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers new nondestructive technique of evaluating stress in composites.

  19. [Basic and clinical studies of pressure-independent damaging factors of open angle glaucoma].

    PubMed

    Araie, Makoto

    2011-03-01

    Pathogenesis of open-angle glaucoma involves both pressure-dependent damaging factors and pressure-independent damaging factors. The high prevalence of open-angle glaucoma with normal pressure (normal-tension glaucoma) in Japan implies that treatment of pressure-independent damaging factors in Japanese open-angle glaucoma patients is of importance. In an attempt to investigate the roles of pressure-independent damaging factors in open-angle glaucoma, we carried out basic and clinical studies and obtained the following results. 1. The rate of deterioration of visual field after trabeculectomy in normal tension glaucoma patients with post-operative intraocular pressure (IOP) of 10 mmHg was found to be -0.25 dB/year of mean deviation (MD), suggesting that contribution of pressure-independent damaging factors to the deterioration of MD in open-angle glaucoma is around -0.25 dB/year of mean deviation (MD). 2. Experiments using isolated purified cultured retinal ganglion cells (RGCs) indicated that calcium-channel blockers and some of antiglaucoma drugs showed neuroprotective effects on RGCs at concentrations of 0.01 microM or higher. 3. In mice, damage to RGCs resulted in secondary degeneration of neurons and activation of glial cells in the lateral geniculate nucleous (LGN) and superior colliculus, and these secondary changes in the central nervous system (CNS) due to RGC damage was partly ameliorated by systemic administration of memantine. 4. Mice experimental high IOP glaucoma models could be established using laser irradiation of the limbal area, and the usefulness of Tonolab in IOP measurements of mice eye was confirmed. 5. Monkey experimental high IOP glaucoma models revealed that in the glaucomatous optic nerve head vaso-constrictive reactions to an alpha-1 agonist was abolished, while vasodilative reaction to a prostaglandin FP receptor agonist was retained. 6. In monkeys with experimental high IOP glaucoma, secondary damage to neurons in the LGN and the glial reaction to it were also found, similar to the mice experiments. In living monkeys the glial reaction in the LGN could be observed by means of positron emission tomography. 7. In the LGN of monkeys with experimental high IOP glaucoma, the M-cell system was preferentially damaged in the early stage, while in the later stages both the M- and P-cell systems were damaged. 8. In a single-instituted prospective double-blinded clinical trial, oral administration of nilvadipine at 4 mg/day, a DHP calcium-channel blocker, was found to significantly retard the visual field progression in normal tension glaucoma patients over 3 years, while significantly increasing the choroidal and optic nerve blood flow by about 35%. 9. A multi-instituted prospective double-blinded clinical trial in normal tension glaucoma patients revealed that the rate of MD deterioration under monotherapy with either topical nipradilol or timolol was around -0.05 dB/year, thought to be considerably slower than -0.25 dB/year, the commonly estimated rate of MD deterioration by pressure-independent damaging factors. The current results indicate the possibility of treatment of pressure-independent damaging factors of open-angle glaucoma in Japanese open-angle glaucoma patients with oral nilvadipine and topical anti-glaucoma agents.

  20. Lateral column length in adult flatfoot deformity.

    PubMed

    Kang, Steve; Charlton, Timothy P; Thordarson, David B

    2013-03-01

    In adult acquired flatfoot deformity, it is unclear whether the lateral column length shortens with progression of the deformity, whether it is short to begin with, or whether it is short at all. To our knowledge, no previous study has examined the lateral column length of patients with adult acquired flatfoot deformity compared to a control population. The purpose of our study was to compare the lateral column length in patients with and without adult acquired flatfoot deformity to see if there was a significant difference. The study was a retrospective radiographic review of 2 foot and ankle fellowship-trained orthopaedic surgeons' patients with adult flatfoot deformity. Our study population consisted of 75 patients, 85 feet (28 male, 57 female) with adult flatfoot deformity with a mean age of 64 (range, 23-93). Our control population consisted of 57 patients and 70 feet (23 male, 47 female) without flatfoot deformity with a mean age of 61 (range, 40-86 years). Weightbearing anteroposterior (AP) and lateral foot radiographs were analyzed for each patient, and the following measurements were made: medial and lateral column lengths, talonavicular uncoverage angle, talus-first metatarsal angle, calcaneal pitch angle, and medial and lateral column heights. An unpaired t test was used to analyze the measurements between the groups. Ten patients' radiographs were remeasured, and correlation coefficients were obtained to assess the reliability of the measuring techniques. For the flatfoot group, the mean medial and lateral column lengths on the AP radiograph were 108.6 mm and 95.8 mm, respectively; the mean talo-navicular uncoverage angle was 26.2 degrees; and the mean talus-first metatarsal angle was 20.0 degrees. In the control group, the mean medial and lateral column lengths on the AP radiograph were 108.8 mm and 96.5 mm, respectively; the mean talo-navicular uncoverage angle was 8.2 degrees; and the mean talus-first metatarsal angle was 7.7 degrees. On the lateral radiograph in the flatfoot group, the mean medial and lateral column lengths were 167.2 mm and 166.6 mm, respectively; the mean medial and lateral column heights were 16.0 mm and 14.7 mm, respectively; the mean calcaneal pitch angle was 15.6 degrees; and the talus-first metatarsal angle was 10.3 degrees and for the control group, the mean medial and lateral column lengths were 165.3 mm and 163.5 mm, respectively; the mean medial and lateral column heights were 22.8 mm and 13.1 mm, respectively; the mean calcaneal pitch angle was 22.4 degrees; and the talus-first metatarsal angle was -3.6 degrees. None of the differences in measurements for medial and lateral column lengths between the flatfoot and control groups achieved statistical significance. However, statistically significant differences between the 2 groups were observed in the measurements for medial and lateral column heights, talo-navicular uncoverage angle, calcaneal pitch angle, and talus-first metatarsal angle. There is no difference in lateral column lengths between patients with and without adult flatfoot deformity. The perceived shortened lateral column is likely due to forefoot abduction and hindfoot valgus deformities that are associated with adult flatfoot deformity. Level III, comparative series.

  1. Windage Jump of a Rocket Fired Nearly Vertically

    DTIC Science & Technology

    1947-12-16

    Angular Velocity and Small Initial Yaw", by A. 3. Peters, August l?u5. —~ >- .■^’i*’:v^-X ’^ In thj jliBs^.cal «ind ♦.hsory (■•• Gr»n...Deviations Since the angle of projection was taken as #/2, the angular deviation fron the vertical In the moving reference frame at time t^ is...the angle of projection may easily be rewovedc ?hat- ever the angle of projection, the results may be applied without change to the angular effects

  2. Experimental Measurements and Comparison of Cable Performance for Mine Hunting Applications

    NASA Astrophysics Data System (ADS)

    Mangum, Katherine

    2005-11-01

    The Naval Surface Warfare Center (NSWCCD) conducted testing of multiple faired synthetic cables in the High Speed Basin in April, 2005. The objective of the test was to determine the hydrodynamic characteristics of bare cables, ribbon faired cables, and cables with extruded plastic ``strakes.'' Faired cables are used to gain on-station time and improve performance of the MH-60 Helicopter when towing mine hunting vehicles. Drag and strum were compared for all cases. Strum was quantified by computing standard deviations of lateral cable acceleration amplitudes. Drag coefficients were calculated using cable tension and angle readings. While the straked cables strummed less than the bare synthetic cable, they did not reduce strum levels as well as ribbon fairing at steep cable angles for speeds of 10, 15, 20 and 25 knots. The drag coefficient of the straked cables was calculated to be higher than that of a bare cable, although further testing is needed to determine an exact number.

  3. At similar angles, slope walking has a greater fall risk than stair walking.

    PubMed

    Sheehan, Riley C; Gottschall, Jinger S

    2012-05-01

    According to the CDC, falls are the leading cause of injury for all age groups with over half of the falls occurring during slope and stair walking. Consequently, the purpose of this study was to compare and contrast the different factors related to fall risk as they apply to these walking tasks. More specifically, we hypothesized that compared to level walking, slope and stair walking would have greater speed standard deviation, greater ankle dorsiflexion, and earlier peak activity of the tibialis anterior. Twelve healthy, young male participants completed level, slope, and stair trials on a 25-m walkway. Overall, during slope and stair walking, medial-lateral stability was less, anterior-posterior stability was less, and toe clearance was greater in comparison to level walking. In addition, there were fewer differences between level and stair walking than there were between level and slope walking, suggesting that at similar angles, slope walking has a greater fall risk than stair walking. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Radar sea reflection for low-e targets

    NASA Astrophysics Data System (ADS)

    Chow, Winston C.; Groves, Gordon W.

    1998-09-01

    Modeling radar signal reflection from a wavy sea surface uses a realistic characteristic of the large surface features and parameterizes the effect of the small roughness elements. Representation of the reflection coefficient at each point of the sea surface as a function of the Specular Deviation Angle is, to our knowledge, a novel approach. The objective is to achieve enough simplification and retain enough fidelity to obtain a practical multipath model. The 'specular deviation angle' as used in this investigation is defined and explained. Being a function of the sea elevations, which are stochastic in nature, this quantity is also random and has a probability density function. This density function depends on the relative geometry of the antenna and target positions, and together with the beam- broadening effect of the small surface ripples determined the reflectivity of the sea surface at each point. The probability density function of the specular deviation angle is derived. The distribution of the specular deviation angel as function of position on the mean sea surface is described.

  5. Unilateral Recession-Resection Surgery for Infantile Esotropia: Survival of Motor Outcomes and Postoperative Drifts.

    PubMed

    Chatzistefanou, Klio I; Brouzas, Dimitrios; Droutsas, Konstantinos D; Koutsandrea, Chryssanthi; Chimonidou, Eleutheria

    2017-05-10

    To outline the short- and long-term motor outcomes of unilateral medial rectus muscle recession and lateral rectus muscle resection for the correction of moderate angle infantile esotropia. A retrospective study of 109 consecutive patients with moderate angle infantile esotropia treated with graded unilateral recession-resection surgery. Criteria for successful motor outcome included alignment ±10Δ from orthophoria. Outcome evaluation was a comparison of successful alignment versus an overcorrection or undercorrection at eight weeks postoperatively as well as on the final follow-up examination. The mean preoperative deviation was 35.5 prism diopters (Δ) and mean follow-up time was 4.9 years. At the eight-week postoperative examination, 99 patients (89.9%) were successfully aligned, as opposed to 75 of 95 patients (78.9%) at the final postoperative visit (P=0.041). There was no statistically significant difference between the rate of early versus late undercorrections (7.3% versus 12.5%, P=0.267) or overcorrections (2.7% versus 8.3%, P=0.125). Ten patients had an esotropic drift over time and 10 patients had an exotropic drift. Recurrent esotropia was associated with high hyperopia and presumed infantile esotropia diagnostic entity. The Kaplan-Meier estimate of survivorship of a successful motor outcome was 75.5% at five years and 71% at 15 years postoperatively. The mean response to surgery was 2.9Δ per mm of muscle recessed and resected and was positively related to the preoperative angle of deviation (R=0.615). The unilateral recession-resection procedure for the correction of infantile esotropia is shown to be associated with a favorable survival of motor outcomes and a relatively balanced rate of undercorrections versus overcorrections tending to be maintained through the follow-up period.

  6. Clinical Implications of Septal Deviation in Lateralized Olfaction

    PubMed Central

    Choi, Yoon-Seok; Ryu, Yoon-Jong; Rhee, Jihye; Seok, Jungirl; Han, Sungjun; Jin, Hong Ryul; Kim, Dae Woo

    2016-01-01

    Objectives Results of butanol threshold tests (BTTs) have shown that birhinal olfaction tends to converge toward monorhinal olfaction of the dominant nostril. However, birhinal olfaction may also be worse than dominant-side monorhinal olfaction. The goal of our study was to investigate the effect of deviated nasal septum on birhinal olfaction in patients with lateralized olfaction and to examine the effect of septoplasty in these patients. Methods A retrospective study with planned data collection was conducted in 518 patients who underwent BTTs. Lateralized olfaction was defined as monorhinal BTT scores that differed by >2 between sides. Underestimated birhinal olfaction was defined as a birhinal BTT score >2 lower than the dominant nostril monorhinal BTT score. Patients with lateralized olfaction were divided into 2 groups: group 1, underestimated birhinal olfaction; and group 2, without underestimated birhinal olfaction. Results Among 518 patients, 112 with lateralized olfaction were enrolled in this study. Group 1 included 23 patients (20.5%) and group 2 included 89 patients (79.5%). The severity of septal deviation (ratio of the distance of narrower side to wider side) did not differ between the 2 groups. Septal deviation to the dominant nostril was more common in group 1 than group 2 (73.9% vs. 37.6%; P=0.002). Five patients with septal deviation to the dominant nostril with underestimated birhinal olfaction underwent septoplasty. Improved lateralized olfaction occurred in all 5 patients postoperatively (P=0.041). Conclusion Septal deviation of the dominant nostril in patients with lateralized olfaction is associated with underestimated birhinal olfaction. Septoplasty may improve olfaction by increasing airflow in the dominant olfactory side. PMID:26976025

  7. Diffuse idiopathic skeletal hyperostosis association with thoracic spine kyphosis: a cross-sectional study for the Health Aging and Body Composition Study.

    PubMed

    Nardo, Lorenzo; Lane, Nancy E; Parimi, Neeta; Cawthon, Peggy M; Fan, Bo; Shepherd, John; Cauley, Jane; Zucker-Levin, Audrey; Murphy, Rachel A; Katzman, Wendy B

    2014-11-15

    A descriptive study of the association between diffuse idiopathic skeletal hyperostosis (DISH) and kyphosis. To investigate the association of DISH with Cobb angle of kyphosis in a large cohort of older subjects from the Health Aging and Body Composition Study. DISH and thoracic kyphosis are well-defined radiographical findings in spines of older individuals. Characteristics of DISH (ossifications between vertebral segments) reflect changes of spine anatomy and physiology that may be associated with Cobb angle of kyphosis. Using data from 1172 subjects aged 70 to 79 years, we measured DISH and Cobb angle of kyphosis from computed tomographic lateral scout scans. Characteristics of participants with and without DISH were assessed using the χ² and t tests. Association between DISH and Cobb angle was analyzed using linear regression. Cobb angle and DISH relationship was assessed at different spine levels (thoracic and lumbar). DISH was identified on computed tomographic scout scan in 152 subjects with 101 cases in only the thoracic spine and 51 in both thoracic and lumbar spine segments. The mean Cobb angle of kyphosis in the analytic sample was 31.3° (standard deviation = 11.2). The presence of DISH was associated with a greater Cobb angle of 9.1° and 95% confidence interval (95% CI) (5.6-12.6) among African Americans and a Cobb angle of 2.9° and 95% CI (0.5-5.2) among Caucasians compared with those with no DISH. DISH in the thoracic spine alone was associated with a greater Cobb angle of 10.6° and 95% CI (6.5-14.7) in African Americans and a Cobb angle of 3.8° and 95% CI (1.0-6.5) in Caucasians compared with those with no DISH. DISH is associated with greater Cobb angle of kyphosis, especially when present in the thoracic spine alone. The association of DISH with Cobb angle is stronger within the African American population.

  8. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-01

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also indicating the dosimetric differences are small when a field is delivered at different gantry angles. Utilizing the online beam delivery records, the gantry angle dependencies of the PBS beam delivery were assessed and quantified. The study confirms the variations of the physical properties to be sufficiently small within the clinical tolerances without taking into account the gantry angle variation.

  9. Numerical Investigations of Slip Phenomena in Centrifugal Compressor Impellers

    NASA Astrophysics Data System (ADS)

    Huang, Jeng-Min; Luo, Kai-Wei; Chen, Ching-Fu; Chiang, Chung-Ping; Wu, Teng-Yuan; Chen, Chun-Han

    2013-03-01

    This study systematically investigates the slip phenomena in the centrifugal air compressor impellers by CFD. Eight impeller blades for different specific speeds, wrap angles and exit blade angles are designed by compressor design software to analyze their flow fields. Except for the above three variables, flow rate and number of blades are the other two. Results show that the deviation angle decreases as the flow rate increases. The specific speed is not an important parameter regarding deviation angle or slip factor for general centrifugal compressor impellers. The slip onset position is closely related to the position of the peak value in the blade loading factor distribution. When no recirculation flow is present at the shroud, the variations of slip factor under various flow rates are mainly determined by difference between maximum blade angle and exit blade angle, Δβmax-2. The solidity should be of little importance to slip factor correlations in centrifugal compressor impellers.

  10. Effect of Foot Progression Angle and Lateral Wedge Insole on a Reduction in Knee Adduction Moment.

    PubMed

    Tokunaga, Ken; Nakai, Yuki; Matsumoto, Ryo; Kiyama, Ryoji; Kawada, Masayuki; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Maeda, Tetsuo

    2016-10-01

    This study evaluated the effect of foot progression angle on the reduction in knee adduction moment caused by a lateral wedged insole during walking. Twenty healthy, young volunteers walked 10 m at their comfortable velocity wearing a lateral wedged insole or control flat insole in 3 foot progression angle conditions: natural, toe-out, and toe-in. A 3-dimensional rigid link model was used to calculate the external knee adduction moment, the moment arm of ground reaction force to knee joint center, and the reduction ratio of knee adduction moment and moment arm. The result indicated that the toe-out condition and lateral wedged insole decreased the knee adduction moment in the whole stance phase. The reduction ratio of the knee adduction moment and the moment arm exhibited a close relationship. Lateral wedged insoles decreased the knee adduction moment in various foot progression angle conditions due to decrease of the moment arm of the ground reaction force. Moreover, the knee adduction moment during the toe-out gait with lateral wedged insole was the smallest due to the synergistic effect of the lateral wedged insole and foot progression angle. Lateral wedged insoles may be a valid intervention for patients with knee osteoarthritis regardless of the foot progression angle.

  11. Should the position of the patellar component replicate the vertical median ridge of the native patella?

    PubMed

    Lee, Rae Hyeong; Jeong, Hae Won; Lee, Jin Kyu; Choi, Choong Hyeok

    2017-01-01

    In total knee arthroplasty (TKA), the position of the patellar component can affect patellar tracking. However, the patellar component cannot always replicate the original high point of the patella because of anatomical variance. This study investigated whether altering the highest point of the patella can affect outcomes of primary TKA, especially in patients having a patella with a far-medialized median ridge. A retrospective review was performed for 177 knees (143 patients) treated with primary TKA between July 2011 and March 2014. Group 1 (34 knees) had the patellar component displaced over three millimeters from the median ridge, while Group 2 (143 knees) had the patellar component placed on the original median ridge position. The one-year follow-up outcomes were reviewed, including: patellar tilt angle, Knee Society Score, Feller Patellar Score, and modified Kujala Anterior Knee Pain Score. Mean (±standard deviation) displacement of the patellar component in Group 1 was 3.97±0.97mm lateral to the original position of the median ridge, with a significant decrease in lateral patellar tilt angle (P<0.001). Lateral patellar tilt showed a positive correlation with the medialization of the patellar component (P<0.001, r=0.401). Ability to rise from a chair was better in Group 1 (P=0.025). There were no other between-group differences in other clinical outcomes. There should be no need for the patellar component to replicate the original highest point of the native patella in primary TKA. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Correlation of 3D Shift and 3D Tilt of the Patella in Patients With Recurrent Dislocation of the Patella and Healthy Volunteers: An In Vivo Analysis Based on 3-Dimensional Computer Models.

    PubMed

    Yamada, Yuzo; Toritsuka, Yukiyoshi; Nakamura, Norimasa; Horibe, Shuji; Sugamoto, Kazuomi; Yoshikawa, Hideki; Shino, Konsei

    2017-11-01

    The concepts of lateral deviation and lateral inclination of the patella, characterized as shift and tilt, have been applied in combination to evaluate patellar malalignment in patients with patellar dislocation. It is not reasonable, however, to describe the 3-dimensional (3D) positional relation between the patella and the femur according to measurements made on 2-dimensional (2D) images. The current study sought to clarify the relation between lateral deviation and inclination of the patella in patients with recurrent dislocation of the patella (RDP) by redefining them via 3D computer models as 3D shift and 3D tilt. Descriptive laboratory study. Altogether, 60 knees from 56 patients with RDP and 15 knees from 10 healthy volunteers were evaluated. 3D shift and tilt of the patella were analyzed with 3D computer models created by magnetic resonance imaging scans obtained at 10° intervals of knee flexion (0°-50°). 3D shift was defined as the spatial distance between the patellar reference point and the midsagittal plane of the femur; it is expressed as a percentage of the interepicondylar width. 3D tilt was defined as the spatial angle between the patellar reference plane and the transepicondylar axis. Correlations between the 2 parameters were assessed with the Pearson correlation coefficient. The patients' mean Pearson correlation coefficient was 0.895 ± 0.186 (range, -0.073 to 0.997; median, 0.965). In all, 56 knees (93%) had coefficients >0.7 (strong correlation); 1 knee (2%), >0.4 (moderate correlation); 2 knees (3%), >0.2 (weak correlation); and 1 knee (2%), <0.2 (no correlation). The mean correlation coefficient of the healthy volunteers was 0.645 ± 0.448 (range, -0.445 to 0.982; median, 0.834). A statistically significant difference was found in the distribution of the correlation coefficients between the patients and the healthy volunteers ( P = .0034). When distribution of the correlation coefficients obtained by the 3D analyses was compared with that by the 2D (conventional) analyses, based on the bisect offset index and patellar tilt angle, the 3D analyses showed statistically higher correlations between the lateral deviation and inclination of the patella ( P < .01). 3D shift and 3D tilt of the patella were moderately or strongly correlated in 95% of patients with RDP at 0° to 50° of knee flexion. It is not always necessary to use both parameters when evaluating patellar alignment, at least for knees with RDP at 0° to 50° of flexion. Such a description may enable surgeons to describe patellar alignment more simply, leading to a better, easier understanding of the characteristics of each patient with RDP.

  13. Accuracy comparison of guided surgery for dental implants according to the tissue of support: a systematic review and meta-analysis.

    PubMed

    Raico Gallardo, Yolanda Natali; da Silva-Olivio, Isabela Rodrigues Teixeira; Mukai, Eduardo; Morimoto, Susana; Sesma, Newton; Cordaro, Luca

    2017-05-01

    To systematically assess the current dental literature comparing the accuracy of computer-aided implant surgery when using different supporting tissues (tooth, mucosa, or bone). Two reviewers searched PubMed (1972 to January 2015) and the Cochrane Central Register of Controlled Trials (Central) (2002 to January 2015). For the assessment of accuracy, studies were included with the following outcome measures: (i) angle deviation, (ii) deviation at the entry point, and (iii) deviation at the apex. Eight clinical studies from the 1602 articles initially identified met the inclusion criteria for the qualitative analysis. Four studies (n = 599 implants) were evaluated using meta-analysis. The bone-supported guides showed a statistically significant greater deviation in angle (P < 0.001), entry point (P = 0.01), and the apex (P = 0.001) when compared to the tooth-supported guides. Conversely, when only retrospective studies were analyzed, not significant differences are revealed in the deviation of the entry point and apex. The mucosa-supported guides indicated a statistically significant greater reduction in angle deviation (P = 0.02), deviation at the entry point (P = 0.002), and deviation at the apex (P = 0.04) when compared to the bone-supported guides. Between the mucosa- and tooth-supported guides, there were no statistically significant differences for any of the outcome measures. It can be concluded that the tissue of the guide support influences the accuracy of computer-aided implant surgery. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Regionally variant collagen alignment correlates with viscoelastic properties of the disc of the human temporomandibular joint.

    PubMed

    Gutman, Shawn; Kim, Daniel; Tarafder, Solaiman; Velez, Sergio; Jeong, Julia; Lee, Chang H

    2018-02-01

    To determine the regionally variant quality of collagen alignment in human TMJ discs and its statistical correlation with viscoelastic properties. For quantitative analysis of the quality of collagen alignment, horizontal sections of human TMJ discs with Pricrosirius Red staining were imaged under circularly polarized microscopy. Mean angle and angular deviation of collagen fibers in each region were analyzed using a well-established automated image-processing for angular gradient. Instantaneous and relaxation moduli of each disc region were measured under stress-relaxation test both in tensile and compression. Then Spearman correlation analysis was performed between the angular deviation and the moduli. To understand the effect of glycosaminoglycans on the correlation, TMJ disc samples were treated by chondroitinase ABC (C-ABC). Our imaging processing analysis showed the region-variant direction of collagen alignment, consistently with previous findings. Interestingly, the quality of collagen alignment, not only the directions, was significantly different in between the regions. The angular deviation of fiber alignment in the anterior and intermediate regions were significantly smaller than the posterior region. Medial and lateral regions showed significantly bigger angular deviation than all the other regions. The regionally variant angular deviation values showed statistically significant correlation with the tensile instantaneous modulus and the relaxation modulus, partially dependent on C-ABC treatment. Our findings suggest the region-variant degree of collagen fiber alignment is likely attributed to the heterogeneous viscoelastic properties of TMJ disc that may have significant implications in development of regenerative therapy for TMJ disc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Dependence of short and intermediate-range order on preparation in experimental and modeled pure a-Si

    DOE PAGES

    Holmstrom, Eero; Haberl, Bianca; Pakarinen, Olli H.; ...

    2016-02-20

    Variability in the short-to-intermediate range order of pure amorphous silicon prepared by different experimental and computational techniques is probed by measuring mass density, atomic coordination, bond-angle deviation, and dihedral angle deviation. It is found that there is significant variability in order parameters at these length scales in this archetypal covalently bonded, monoatomic system. This diversity strongly reflects preparation technique and thermal history in both experimental and simulated systems. Experiment and simulation do not fully quantitatively agree, partly due to differences in the way parameters are accessed. However, qualitative agreement in the trends is identified. Relaxed forms of amorphous silicon closelymore » resemble continuous random networks generated by a hybrid method of bond-switching Monte Carlo and molecular dynamics simulation. As-prepared ion implanted amorphous silicon can be adequately modeled using a structure generated from amorphization via ion bombardement using energetic recoils. Preparation methods which narrowly avoid crystallization such as experimental pressure-induced amorphization or simulated melt-quenching result in inhomogeneous structures that contain regions with significant variations in atomic ordering. Ad hoc simulated structures containing small (1 nm) diamond cubic crystal inclusions were found to possess relatively high bond-angle deviations and low dihedral angle deviations, a trend that could not be reconciled with any experimental material.« less

  16. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams.

    PubMed

    Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G

    2013-12-01

    To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that its behavior is proton energy independent and dose rate independent in the investigated energy and dose rate range and it is suitable for accurate relative dosimetric measurements in large as well as in small field high energy clinical proton beams.

  17. Misperceptions in the Trajectories of Objects undergoing Curvilinear Motion

    PubMed Central

    Yilmaz, Ozgur; Tripathy, Srimant P.; Ogmen, Haluk

    2012-01-01

    Trajectory perception is crucial in scene understanding and action. A variety of trajectory misperceptions have been reported in the literature. In this study, we quantify earlier observations that reported distortions in the perceived shape of bilinear trajectories and in the perceived positions of their deviation. Our results show that bilinear trajectories with deviation angles smaller than 90 deg are perceived smoothed while those with deviation angles larger than 90 degrees are perceived sharpened. The sharpening effect is weaker in magnitude than the smoothing effect. We also found a correlation between the distortion of perceived trajectories and the perceived shift of their deviation point. Finally, using a dual-task paradigm, we found that reducing attentional resources allocated to the moving target causes an increase in the perceived shift of the deviation point of the trajectory. We interpret these results in the context of interactions between motion and position systems. PMID:22615775

  18. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    PubMed

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  19. Quantitative angle-insensitive flow measurement using relative standard deviation OCT

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-01

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo.

  20. On the relevance of "ideal" occlusion concepts for incisor inclination target definition.

    PubMed

    Knösel, Michael; Jung, Klaus

    2011-11-01

    The concept of "ideal" occlusion in harmony with craniofacial structures is often proposed as an ultimate goal of orthodontic treatment. The aim of this study was to assess the impact of slight variations in posterior occlusion and the history of straight-wire orthodontic treatment on the predictability of incisor inclination and third-order angles. Axial incisor inclinations, third-order angles, and craniofacial relationships were assessed on lateral headfilms and corresponding dental casts of 75 healthy white subjects, 16 to 26 years old, selected by the general inclusion criterion of a good interincisal relationship. Four groups were formed: group A (n = 17), Angle Class I occlusion subjects with no orthodontic treatment; group B (n = 20), Angle Class I occlusion subjects treated with standardized straight-wire orthodontics; group C (n = 20), up to a half-cusp distal occlusion after straight-wire treatment; and group D (n = 18), up to a half-cusp distal occlusion and no orthodontic treatment. Regression analysis was used to insert predictor angles into selected regression equations of the subjects with "ideal" occlusion, and the absolute differences between predicted and observed response angles were determined. Small differences in incisor inclination were found between subjects with "ideal" occlusion and those who slightly deviated from "ideal" with a mild occlusion of the Angle Class II category. Posterior occlusion was not relevant to the validity of the vast majority of predictor-response pairs. Straight-wire treatment produced incisor inclination that was slightly protruded compared with subjects who had good natural occlusion. The "ideal" posterior occlusion concepts as a general orthodontic treatment goal should be reconsidered. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  1. Crystal structure of tetra­aqua­(5,5′-dimethyl-2,2′-bipyridyl-κ2 N,N′)iron(II) sulfate

    PubMed Central

    Belamri, Yamine; Setifi, Fatima; Francuski, Bojana M.; Novaković, Sladjana B.; Zouaoui, Setifi

    2014-01-01

    In the title compound, [Fe(C12H12N2)(H2O)4]SO4, the central FeII ion is coordinated by two N atoms from the 5,5′-dimethyl-2,2′-bi­pyridine ligand and four water O atoms in a distorted octa­hedral geometry. The Fe—O coordination bond lengths vary from 2.080 (3) to 2.110 (3) Å, while the two Fe—N coordination bonds have practically identical lengths [2.175 (3) and 2.177 (3) Å]. The chelating N—Fe—N angle of 75.6 (1)° shows the largest deviation from an ideal octa­hedral geometry; the other coordination angles deviate from ideal values by 0.1 (1) to 9.1 (1)°. O—H⋯O hydrogen bonding between the four aqua ligands of the cationic complex and four O-atom acceptors of the anion leads to the formation of layers parallel to the ab plane. Neighbouring layers further inter­act by means of C—H⋯O and π–π inter­actions involving the laterally positioned bi­pyridine rings. The perpen­dicular distance between π–π inter­acting rings is 3.365 (2) Å, with a centroid–centroid distance of 3.702 (3) Å. PMID:25552988

  2. Stability analysis of automobile driver steering control

    NASA Technical Reports Server (NTRS)

    Allen, R. W.

    1981-01-01

    In steering an automobile, the driver must basically control the direction of the car's trajectory (heading angle) and the lateral deviation of the car relative to a delineated pathway. A previously published linear control model of driver steering behavior which is analyzed from a stability point of view is considered. A simple approximate expression for a stability parameter, phase margin, is derived in terms of various driver and vehicle control parameters, and boundaries for stability are discussed. A field test study is reviewed that includes the measurement of driver steering control parameters. Phase margins derived for a range of vehicle characteristics are found to be generally consistent with known adaptive properties of the human operator. The implications of these results are discussed in terms of driver adaptive behavior.

  3. SU-F-T-177: Impacts of Gantry Angle Dependent Scanning Beam Properties for Proton Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y; Clasie, B; Lu, H

    Purpose: In pencil beam scanning (PBS), the delivered spot MU, position and size are slightly different at different gantry angles. We investigated the level of delivery uncertainty at different gantry angles through a log file analysis. Methods: 34 PBS fields covering full 360 degrees gantry angle spread were collected retrospectively from 28 patients treated at our institution. All fields were delivered at zero gantry angle and the prescribed gantry angle, and measured at isocenter with the MatriXX 2D array detector at the prescribed gantry angle. The machine log files were analyzed to extract the delivered MU per spot and themore » beam position from the strip ionization chambers in the treatment nozzle. The beam size was separately measured as a function of gantry angle and beam energy. Using this information, the dose was calculated in a water phantom at both gantry angles and compared to the measurement using the 3D γ-index at 2mm/2%. Results: The spot-by-spot difference between the beam position in the log files from the delivery at the two gantry angles has a mean of 0.3 and 0.4 mm and a standard deviation of 0.6 and 0.7 mm for × and y directions, respectively. Similarly, the spot-by-spot difference between the MU in the log files from the delivery at the two gantry angles has a mean 0.01% and a standard deviation of 0.7%. These small deviations lead to an excellent agreement in dose calculations with an average γ pass rate for all fields being approximately 99.7%. When each calculation is compared to the measurement, a high correlation in γ was also found. Conclusion: Using machine logs files, we verified that PBS beam delivery at different gantry angles are sufficiently small and the planned spot position and MU. This study brings us one step closer to simplifying our patient-specific QA.« less

  4. Binocular function in patients with pseudophakic monovision.

    PubMed

    Ito, Misae; Shimizu, Kimiya; Niida, Takahiro; Amano, Rie; Ishikawa, Hitoshi

    2014-08-01

    To evaluate the relationship between ocular deviation and stereopsis and fusion in patients who had pseudophakic monovision surgery. Department of Ophthalmology, Kitasato University Hospital, Kanagawa, Japan. Retrospective comparative case series. Patients had surgical monovision correction with monofocal intraocular lens placement followed by routine postoperative examinations. The alternate prism cover test was used to measure motor alignment. Sensory tests for binocularity included sensory fusion determinations using the Worth 4-dot test, near stereopsis test, and fusion amplitude measured with a prism bar. Patients with monovision were categorized as having small-angle exophoria (≤10.0 prism diopters [Δ]) or moderate-angle exophoria (>10.0 Δ). This study comprised 60 patients with a mean age of 70.2 years ± 7.7 (SD). The difference in the mean stereopsis values between patients with small-angle exophoria and patients with moderate-angle exophoria was statistically significant (P<.001). In the moderate-angle exophoria group, 10 patients (62.5%) developed intermittent exotropia after surgery; however, no serious ocular deviation problems were observed. The fusion amplitudes in patients with pseudophakic monovision were approximately similar to normal values. Patients with moderate-angle exophoria were more likely to fail the Worth 4-dot test than those with small-angle exophoria. In patients with pseudophakic monovision having a near exophoria angle of more than 10.0 Δ, the possibility of changes in ocular deviation and stereopsis after surgery is a concern. Moreover, the application of monovision in patients with a previous moderate-angle exophoria should be carefully considered. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. A Measuring System for Well Logging Attitude and a Method of Sensor Calibration

    PubMed Central

    Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

    2014-01-01

    This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°. PMID:24859028

  6. Impact of Penetration Wind Turbines on Transient Stability in Sulbagsel Electrical Interconnection System

    NASA Astrophysics Data System (ADS)

    Nurtrimarini Karim, Andi; Mawar Said, Sri; Chaerah Gunadin, Indar; Darusman B, Mustadir

    2018-03-01

    This paper presents a rotor angle analysis when transient disturbance occurs when wind turbines enter the southern Sulawesi electrical interconnection system (Sulbagsel) both without and with the addition of a Power Stabilizer (PSS) control device. Time domain simulation (TDS) method is used to analyze the rotor angle deviation (δ) and rotor angle velocity (ω). A total of 44 buses, 47 lines, 6 transformers, 15 generators and 34 loads were modeled for analysis after the inclusion of large-scale wind turbines in the Sidrap and Jeneponto areas. The simulation and computation results show the addition of PSS devices to the system when transient disturbance occurs when the winds turbine entering the Sulbagsel electrical system is able to dampen and improve the rotor angle deviation (δ) and the rotor angle velocity (ω) towards better thus helping the system to continue operation at a new equilibrium point.

  7. A measuring system for well logging attitude and a method of sensor calibration.

    PubMed

    Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

    2014-05-23

    This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

  8. Study of the surface wave off-great-circle propagation based on dense seismic array: a case study in Northeast China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Chong, J.

    2016-12-01

    The traditional surface wave tomography is based on the ray theory, which assumes that surface wave propagates along the great-circle. The great-circle assumption is valid only when the size of the anomaly is larger than the width of the Fresnel zone and the lateral variation is relatively smooth. However, off-great-circle propagation may occur when the surface wave travels across tectonic boundaries with strong heterogeneity and sharp velocity change, e.g., continental margin, mid-ridge and sea trench, resulting in arrival angle anomaly and multi-pathing effect. The off-great-circle propagation may deviate the result of surface wave tomography based on great-circle approximation, so it is of great importance to study the off-great-circle propagation. In this study, we used the teleseismic waveforms from September 2009 to August 2011, recorded by the NECESSArray in Northeast China, to study the off-great-circle propagation of Rayleigh wave by the Beamforming method. Our results show that the off-great-circle effect increases with decreasing period. At the period of 60 s, the off-great-circle effect is relatively weak and the Rayleigh wave propagates approximately along the great-circle. While at the period of 20 s, the off-great-circle effect becomes strong, the arrival angle anomaly measured from some events can be as large as 20º, and obvious multi-pathing effect is also observed. Lateral variations of the arrival angle anomaly and phase velocity have also been found in the study region, which may be correlated with the lithosphere heterogeneity in Northeast China. Our results demonstrate the necessity to study the surface wave off-great-circle propagation. Acknowledgement: This study is financially supported by National Natural Science Foundation of China under Grant No. 41590854.

  9. Aerodynamic Design of Axial-flow Compressors. Volume 2

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Available experimental two-dimensional-cascade data for conventional compressor blade sections are correlated. The two-dimensional cascade and some of the principal aerodynamic factors involved in its operation are first briefly described. Then the data are analyzed by examining the variation of cascade performance at a reference incidence angle in the region of minimum loss. Variations of reference incidence angle, total-pressure loss, and deviation angle with cascade geometry, inlet Mach number, and Reynolds number are investigated. From the analysis and the correlations of the available data, rules and relations are evolved for the prediction of the magnitude of the reference total-pressure loss and the reference deviation and incidence angles for conventional blade profiles. These relations are developed in simplified forms readily applicable to compressor design procedures.

  10. Association between measures of patella height, morphologic features of the trochlea, and patellofemoral joint alignment: the MOST study.

    PubMed

    Stefanik, Joshua J; Zumwalt, Ann C; Segal, Neil A; Lynch, John A; Powers, Christopher M

    2013-08-01

    Patellofemoral joint (PFJ) malalignment (lateral patella displacement and tilt) has been proposed as a cause of patellofemoral pain. Patella height and/or the morphologic features of the femoral trochlea may predispose one to patella malalignment. The purposes of our study were to assess the associations among patella height, morphologic features of the trochlea, and measures of PFJ alignment and to determine which measures of patella height and morphologic features of the trochlea were the best predictors of PFJ alignment. Measures of patella height (Insall-Salvati ratio and modified Insall-Salvati ratio), morphologic features of the trochlea (sulcus angle, trochlear angle, lateral trochlear inclination, medial trochlear inclination), and PFJ alignment (bisect offset and patella tilt angle) were assessed in 566 knees from the Multicenter Osteoarthritis Study. Bisect offset was correlated with the Insall-Salvati ratio (r = 0.25) and lateral trochlear inclination (r = -0.38). Patella tilt angle correlated with the trochlear angle (-0.27) and lateral trochlear inclination (-0.32). Linear regression models including the Insall-Salvati ratio and lateral trochlear inclination explained 20% and 11% of the variance in bisect offset and patella tilt angle, respectively. Of the variables measured in the current study, the Insall-Salvati ratio and lateral trochlear inclination were the best predictors of lateral patella displacement and lateral tilt. This knowledge will aid clinicians in the identification of anatomic risk factors for PFJ malalignment and/or PFJ dysfunction.

  11. Low phosphate alters lateral root setpoint angle and gravitropism.

    PubMed

    Bai, Hanwen; Murali, Bhavna; Barber, Kevin; Wolverton, Chris

    2013-01-01

    Lateral roots, responsible for water and nutrient uptake, maintain nonvertical angles throughout development. Soil phosphate is one limiting nutrient for plant growth that is known to induce changes to root system architecture, such as increased lateral root formation. This study seeks to determine whether phosphate concentration affects lateral root orientation in addition to its previously described influences on root architecture. Images of intact Arabidopsis root systems were recorded for 24 h, and lateral root tip angles were measured for wild-type and mutant pgm-1 and pin3-1 roots on a full or low phosphate medium. Setpoint angles of unstimulated root systems were determined, as were gravitropic responses of lateral roots over time. The root system setpoint angles of wild-type and mutant pin3-1 roots showed a shift toward a more vertical orientation on low orthophosphate (Pi) medium. The gravitropic responses of both pgm-1 and pin3-1 roots on low Pi medium was elevated relative to control Pi medium. Mutations in two phosphate transporters with high levels of expression in the root showed a gravitropic response similar to wild-type roots grown on low Pi, supporting a role for Pi status in regulating lateral root gravitropism. Lateral root orientation and gravitropism are affected by Pi status and may provide an important additional parameter for describing root responses to low Pi. The data also support the conclusion that gravitropic setpoint angle reacts to nutrient status and is under dynamic regulation.

  12. Test-retest reliability of 3D ultrasound measurements of the thoracic spine.

    PubMed

    Fölsch, Christian; Schlögel, Stefanie; Lakemeier, Stefan; Wolf, Udo; Timmesfeld, Nina; Skwara, Adrian

    2012-05-01

    To explore the reliability of the Zebris CMS 20 ultrasound analysis system with pointer application for measuring end-range flexion, end-range extension, and neutral kyphosis angle of the thoracic spine. The study was performed within the School of Physiotherapy in cooperation with the Orthopedic Department at a University Hospital. The thoracic spines of 28 healthy subjects were measured. Measurements for neutral kyphosis angle, end-range flexion, and end-range extension were taken once at each time point. The bone landmarks were palpated by one examiner and marked with a pointer containing 2 transmitters using a frequency of 40 kHz. A third transmitter was fixed to the pelvis, and 3 microphones were used as receiver. The real angle was calculated by the software. Bland-Altman plots with 95% limits of agreement, intraclass correlations (ICC), standard deviations of mean measurements, and standard error of measurements were used for statistical analyses. The test-retest reliability in this study was measured within a 24-hour interval. Statistical parameters were used to judge reliability. The mean kyphosis angle was 44.8° with a standard deviation of 17.3° at the first measurement and a mean of 45.8° with a standard deviation of 16.2° the following day. The ICC was high at 0.95 for the neutral kyphosis angle, and the Bland-Altman 95% limits of agreement were within clinical acceptable margins. The ICC was 0.71 for end-range flexion and 0.34 for end-range extension, whereas the Bland-Altman 95% limits of agreement were wider than with the static measurement of kyphosis. Compared with static measurements, the analysis of motion with 3-dimensional ultrasound showed an increased standard deviation for test-retest measurements. The test-retest reliability of ultrasound measuring of the neutral kyphosis angle of the thoracic spine was demonstrated within 24 hours. Bland-Altman 95% limits of agreement and the standard deviation of differences did not appear to be clinically acceptable for measuring flexion and extension. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  13. An empirical model for transient crater growth in granular targets based on direct observations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoru; Barnouin-Jha, Olivier S.; Toriumi, Takashi; Sugita, Seiji; Matsui, Takafumi

    2009-09-01

    The present paper describes observations of crater growth up to the time of transient crater formation and presents a new empirical model for transient crater growth as a function of time. Polycarbonate projectiles were impacted vertically into soda-lime glass sphere targets using a single-stage light-gas gun. Using a new technique with a laser sheet illuminating the target [Barnouin-Jha, O.S., Yamamoto, S., Toriumi, T., Sugita, S., Matsui, T., 2007. Non-intrusive measurements of the crater growth. Icarus, 188, 506-521], we measured the temporal change in diameter of crater cavities (diameter growth). The rate of increase in diameter at early times follows a power law relation, but the data at later times (before the end of transient crater formation) deviates from the power law relation. In addition, the power law exponent at early times and the degree of deviation from a power law at later times depend on the target. In order to interpret these features, we proposed to modify Maxwell's Z-model under the assumption that the strength of the excavation flow field decreases exponentially with time. We also derived a diameter growth model as: d(t)∝[1-exp(-βt)]γ, where d(t) is the apparent diameter of the crater cavity at time t after impact, and β and γ are constants. We demonstrated that the diameter growth model could represent well the experimental data for various targets with different target material properties, such as porosity or angle of repose. We also investigated the diameter growth for a dry sand target, which has been used to formulate previous scaling relations. The obtained results showed that the dry sand target has larger degree of deviation from a power law, indicating that the target material properties of the dry sand target have a significant effect on diameter growth, especially at later times. This may suggest that the previously reported scaling relations should be reexamined in order to account for the late-stage behavior with the effect of target material properties.

  14. The Manumeter: A non-obtrusive wearable device for monitoring spontaneous use of the wrist and fingers

    PubMed Central

    Rowe, Justin B.; Friedman, Nizan; Bachman, Mark; Reinkensmeyer, David J.

    2014-01-01

    This paper describes the design and pilot testing of a novel device for unobtrusive monitoring of wrist and hand movement through a sensorized watch and a magnetic ring system called the manumeter. The device senses the magnetic field of the ring through two triaxial magnetometers and records the data to onboard memory which can be analyzed later by connecting the watch unit to a computer. Wrist and finger joint angles are estimated using a radial basis function network. We compared joint angle estimates collected using the manumeter to direct measurements taken using a passive exoskeleton and found that after a 60 minute trial, 95% of the radial/ulnar deviation, wrist flexion/extension and finger flexion/extension estimates were within 2.4, 5.8, and 4.7 degrees of their actual values respectively. The device measured angular distance traveled for these three joints within 10.4%, 4.5%, and 14.3 % of their actual values. The manumeter has potential to improve monitoring of real world use of the hand after stroke and in other applications. PMID:24187216

  15. Validity of the Microsoft Kinect for assessment of postural control.

    PubMed

    Clark, Ross A; Pua, Yong-Hao; Fortin, Karine; Ritchie, Callan; Webster, Kate E; Denehy, Linda; Bryant, Adam L

    2012-07-01

    Clinically feasible methods of assessing postural control such as timed standing balance and functional reach tests provide important information, however, they cannot accurately quantify specific postural control mechanisms. The Microsoft Kinect™ system provides real-time anatomical landmark position data in three dimensions (3D), and given that it is inexpensive, portable and simple to setup it may bridge this gap. This study assessed the concurrent validity of the Microsoft Kinect™ against a benchmark reference, a multiple-camera 3D motion analysis system, in 20 healthy subjects during three postural control tests: (i) forward reach, (ii) lateral reach, and (iii) single-leg eyes-closed standing balance. For the reach tests, the outcome measures consisted of distance reached and trunk flexion angle in the sagittal (forward reach) and coronal (lateral reach) planes. For the standing balance test the range and deviation of movement in the anatomical landmark positions for the sternum, pelvis, knee and ankle and the lateral and anterior trunk flexion angle were assessed. The Microsoft Kinect™ and 3D motion analysis systems had comparable inter-trial reliability (ICC difference=0.06±0.05; range, 0.00-0.16) and excellent concurrent validity, with Pearson's r-values >0.90 for the majority of measurements (r=0.96±0.04; range, 0.84-0.99). However, ordinary least products analyses demonstrated proportional biases for some outcome measures associated with the pelvis and sternum. These findings suggest that the Microsoft Kinect™ can validly assess kinematic strategies of postural control. Given the potential benefits it could therefore become a useful tool for assessing postural control in the clinical setting. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Deviations of the visual upright in three dimensions in disorders of the brainstem: a clinical exploration.

    PubMed

    Frisén, Lars

    2010-12-01

    Deviations of the subjective visual vertical in the roll or fronto-parallel plane occur commonly in disorders of the brainstem and have been extensively explored. In contrast, little is known about deviations in other directions. The present retrospective study focused on deviations in the pitch (sagittal) direction in 176 patients with a wide variety of disorders. The test task was to set a self-illuminated rod in the apparent upright position, in total darkness. Abnormal results (outside ± 4°) were recorded in 58% of the subjects. Negative (top backward) deviations were the most common, particularly with mass lesions in the pineal region, obstructive hydrocephalus, cerebellar lesions and crowding at the craniocervical junction. Positive and negative deviations were about equally common with focal intra-axial lesions. Negative deviations appeared related to dorsal locations of lesions and vice versa. Normal pressure hydrocephalus, Parkinson's disease and progressive supranuclear palsy were associated with smaller deviations, without a clear directional preponderance, and a larger individual variability. Most subjects lacked overt clinical corollaries. The most common ocular signs were aqueduct syndromes (n = 17) and ocular tilt reactions (n = 12), which were associated with deviations in 47 and 92% of instances, respectively. Subjective corollaries of deviation were never reported, not even by those subjects who showed a dramatic improvement upon resolution of the underlying condition. Deviations were also assessed in roll in a subgroup of 40 patients with focal lesions. Thirty subjects returned abnormal results: 13% in roll, 47% in pitch and 40% in pitch and roll. The direction of roll deviation appeared primarily related to laterality, with clockwise deviations with right-sided lesions and vice versa. All subjects with ocular tilt reactions had combined pitch and roll deviations, implying a common neural substrate. Correlation analyses, geometrical modelling and experimental self-observations indicated that deviations in pitch were attributable to cyclotorsional asymmetries between the eyes. The frequent co-existence of abnormal pitch and roll results implies that the true axis of deviation in focal brainstem disorders commonly falls outside traditional reference planes. The term 'visual upright in three dimensions' is suggested to identify unrestricted measurements, preserving the established term 'visual vertical' for measurements confined to the roll plane. Assessment of the visual upright in three dimensions provides a new, quantitative angle on brainstem disorders. The test appears useful for identifying a ubiquitous yet clinically silent feature of brainstem disease and also for monitoring the evolution of underlying conditions. More detailed explorations appear well motivated.

  17. Experimental investigation on underwater trajectory deviation of high-speed projectile with different nose shapes

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Huang, Wei; Gao, Yubo; Qi, Yafei; Hypervelocity Impact Research Center Team

    2015-06-01

    Laboratory-scaled oblique water entry experiments for the trajectory stability in the water column have been performed with four different nosed-projectiles at a range of velocities from 20m /s to 250 m /s . The slender projectiles are designed with flat, ogival, hemi-sperical, truncated-ogival noses to make comparisons on the trajectory deviation when they are launched at vertical and oblique impact angles (0°~25°). Two high-speed cameras that are positioned orthogonal to each other and normal to the column are employed to capture the entire process of projectiles' penetration. From the experimental results, the sequential images in two planes are presented to compare the trajectory deviation of different impact tests and the 3D trajectory models are extracted based on the location recorded by cameras. Considering the effect influenced by the impact velocities and noses of projectiles, it merited concluded that trajectory deviation is affected from most by impact angle, and least by impact velocities. Additionally, ogival projectiles tend to be more sensitive to oblique angle and experienced the largest attitude changing. National Natural Science Foundation of China (NO.: 11372088).

  18. Resolution in partially accomodative esotropia during occlusion treatment for amblyopia.

    PubMed

    Koc, F; Ozal, H; Yasar, H; Firat, E

    2006-03-01

    To evaluate alignment changes in partially accommodative esotropia during occlusion treatment for amblyopia. Changes at the deviation angles of 63 partially accommodative esotropia patients, who had occlusion treatment for amblyopia, were evaluated retrospectively. Mean deviation angle at the start of therapy without glasses was 45 PD (10-90 PD) and became 27 PD (5-70 PD) after at least 2 months with glasses. During 12 (2-36) months of occlusion period, mean manifest deviation angle with glasses decreased to 11 PD (0-50) (P < 0.001) and amblyopia resolved in 71.5% of the cases. After termination of amblyopia treatment 24 (38%) cases had surgery for the residual deviation but if we had planned surgery before amblyopia treatment, 81% of the patients would have had surgery. Should amblyopia be treated initially or should we operate first in patients with strabismus and amblyopia together? Our research suggests that we should not hurry to operate in high hypermetropic partially accommodative cases, which have amblyopia and a long-term history of strabismus. Initial amblyopia treatment in these cases allows time for resolution of the nonaccomodative component in strabismus and can significantly decrease the necessity for surgery.

  19. Contribution of Lateral Column Lengthening to Correction of Forefoot Abduction in Stage IIb Adult Acquired Flatfoot Deformity Reconstruction.

    PubMed

    Chan, Jeremy Y; Greenfield, Stephen T; Soukup, Dylan S; Do, Huong T; Deland, Jonathan T; Ellis, Scott J

    2015-12-01

    Correction of forefoot abduction in stage IIb adult acquired flatfoot likely depends on the amount of lateral column lengthening (LCL) performed, although this represents only one aspect of a successful reconstruction. The purpose of this study was to evaluate the correlation between common reconstructive variables and the observed change in forefoot abduction. Forty-one patients who underwent flatfoot reconstruction involving an Evans-type LCL were assessed retrospectively. Preoperative and postoperative anteroposterior (AP) radiographs of the foot at a minimum of 40 weeks (mean, 2 years) after surgery were reviewed to determine correction in forefoot abduction as measured by talonavicular coverage (TNC) angle, talonavicular uncoverage percent, talus-first metatarsal (T-1MT) angle, and lateral incongruency angle. Fourteen demographic and intraoperative variables were evaluated for association with change in forefoot abduction including age, gender, height, weight, body mass index, as well as the amount of LCL and medializing calcaneal osteotomy performed, LCL graft type, Cotton osteotomy, first tarsometatarsal fusion, flexor digitorum longus transfer, spring ligament repair, gastrocnemius recession and any one of the modified McBride/Akin/Silver procedures. Two variables significantly affected the change in lateral incongruency angle. These were weight (P = .04) and the amount of LCL performed (P < .001). No variables were associated with the change in TNC angle, talonavicular uncoverage percent, or T-1MT angle. Multivariate regression analysis revealed that LCL was the only significant predictor of the change in lateral incongruency angle. The final regression model for LCL showed a good fit (R2 = 0.70, P < .001). Each millimeter of LCL corresponded to a 6.8-degree change in lateral incongruency angle. Correction of forefoot abduction in flatfoot reconstruction was primarily determined by the LCL procedure and could be modeled linearly. We believe that the lateral incongruency angle can serve as a valuable preoperative measurement to help surgeons titrate the proper amount of correction performed intraoperatively. © The Author(s) 2015.

  20. The angulation of the septal structures impacts ventricular imbalance in atrioventricular septal defects with a common atrioventricular junction.

    PubMed

    Ahmad, Zaheer; Lim, Zek; Roman, Kevin; Haw, Marcus; Anderson, Robert H; Vettukattil, Joseph

    2016-02-01

    Multiplanar re-formatting of full-volume three-dimensional echocardiography data sets offers new insights into the morphology of atrioventricular septal defects. We hypothesised that distortion of the alignment between the atrial and ventricular septums results in imbalanced venous return to the ventricles, with consequent proportional ventricular hypoplasia. A single observer evaluated 31 patients, with a mean age of 52.09 months, standard deviation of 55, and with a range from 2 to 264 months, with atrioventricular septal defects, of whom 17 were boys. Ventricular imbalance, observed in nine patients, was determined by two-dimensional assessment, and confirmed at surgical inspection in selected cases when a univentricular strategy was undertaken. Offline analysis using multiplanar re-formatting was performed. A line was drawn though the length of the ventricular septum and a second line along the plane of the atrial septum, taking the angle between these two lines as the atrioventricular septal angle. We compared the angle between 22 patients with adequately sized ventricles, and those with ventricular imbalance undergoing univentricular repair. In the 22 patients undergoing biventricular repair, the septal angle was 0 in 14 patients; the other eight patients having angles ranging from 1 to 36, with a mean angle of 7.4°, and standard deviation of 11.1°.The mean angle in the nine patients with ventricle imbalance was 28.6°, with a standard deviation of 3.04°, and with a range from 26 to 35°. Of those undergoing univentricular repair, two patients died, with angles of 26 and 30°, respectively. The atrioventricular septal angle derived via multiplanar formatting gives important information regarding the degree of ventricular hypoplasia and imbalance. When this angle is above 25°, patients are likely to have ventricular imbalance requiring univentricular repair.

  1. Development of a portable quality control application using a tablet-type electronic device.

    PubMed

    Ono, Tomohiro; Miyabe, Yuki; Akimoto, Mami; Mukumoto, Nobutaka; Ishihara, Yoshitomo; Nakamura, Mitsuhiro; Mizowaki, Takashi

    2018-03-01

    Our aim was to develop a portable quality control (QC) application using a thermometer, a barometer, an angle gauge, and a range finder implemented in a tablet-type consumer electronic device (CED) and to assess the accuracies of the measurements made. The QC application was programmed using Java and OpenCV libraries. First, temperature and atmospheric pressure were measured over 30 days using the temperature and pressure sensors of the CED and compared with those measured by a double-tube thermometer and a digital barometer. Second, the angle gauge was developed using the accelerometer of the CED. The roll and pitch angles of the CED were measured from 0 to 90° at intervals of 10° in the clockwise (CW) and counterclockwise (CCW) directions. The values were compared with those measured by a digital angle gauge. Third, a range finder was developed using the tablet's built-in camera and image-processing capacities. Surrogate markers were detected by the camera and their positions converted to actual positions using a homographic transformation method. Fiducial markers were placed on a treatment couch and moved 100 mm in 10-mm steps in both the lateral and longitudinal directions. The values were compared with those measured by the digital output of the treatment couch. The differences between CED values and those of other devices were compared by calculating means ± standard deviations (SDs). The means ± SDs of differences in temperature and atmospheric pressure were -0.07 ± 0.25°C and 0.05 ± 0.10 hPa, respectively. The means ± SDs of the difference in angle was -0.17 ± 0.87° (0.15 ± 0.23° degrees excluding the 90° angle). The means ± SDs of distances were 0.01 ± 0.07 mm in both the lateral and longitudinal directions. Our portable QC application was accurate and may be used instead of standard measuring devices. Our portable CED is efficient and simple when used in the field of medical physics. © 2018 American Association of Physicists in Medicine.

  2. Are two different projections of the inlet view necessary for the percutaneous placement of iliosacral screws?

    PubMed

    Ozmeric, A; Yucens, M; Gultaç, E; Açar, H I; Aydogan, N H; Gül, D; Alemdaroglu, K B

    2015-05-01

    We hypothesised that the anterior and posterior walls of the body of the first sacral vertebra could be visualised with two different angles of inlet view, owing to the conical shape of the sacrum. Six dry male cadavers with complete pelvic rings and eight dry sacrums with K-wires were used to study the effect of canting (angling the C-arm) the fluoroscope towards the head in 5° increments from 10° to 55°. Fluoroscopic images were taken in each position. Anterior and posterior angles of inclination were measured between the upper sacrum and the vertical line on the lateral view. Three authors separately selected the clearest image for overlapping anterior cortices and the upper sacral canal in the cadaveric models. The dry bone and K-wire models were scored by the authors, being sure to check whether the K-wire was in or out. In the dry bone models the mean score of the relevant inlet position of the anterior or posterior inclination was 8.875 (standard deviation (sd) 0.35), compared with the inlet position of the opposite inclination of -5.75 (sd 4.59). We found that two different inlet views should be used separately to evaluate the borders of the body of the sacrum using anterior and posterior inclination angles of the sacrum, during placement of iliosacral screws. ©2015 The British Editorial Society of Bone & Joint Surgery.

  3. Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels

    USGS Publications Warehouse

    Laenen, Antonius; Curtis, R. E.

    1989-01-01

    Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)

  4. Single-stage surgery for symptomatic small-angle strabismus under topical anaesthesia.

    PubMed

    Zou, Leilei; Liu, Rui; Liu, Hong; Huang, Liwen; Liu, Yan; Wang, Aihou

    2014-04-01

    To report outcomes of single-stage surgery under topical anaesthesia for the treatment of small-angle strabismus. Case series. Thirteen patients, 7 males and 6 females, with a median age of 32 years (range, 20-59 years) were included. Patients with symptomatic small-angle strabismus with stable deviations of no more than 20 prism diopters (PD) in horizontal and 10 PD in vertical were consecutively recruited from the Eye and ENT Hospital of Fudan University between January 2010 and April 2012. Single-stage surgery was performed under topical anaesthesia. Outcome measures were PD, Amblyopia and Strabismus Questionnaire (ASQE) scores, and subjective reduction of symptoms. The median duration of symptoms was 40 months (range, 6-96 months). Nine patients had horizontal deviations, 3 had vertical deviations, and 1 had an exodeviation combined with a vertical deviation. All surgeries were completed without complications, and no patients experienced significant discomfort. All patients reported elimination of symptoms on postoperative day 1. Two patients required a second procedure at 1 week because of a return of symptoms. At 6-month follow-up, no patient reported recurrence of symptoms. The overall ASQE score improved from 70 preoperatively to 96 postoperatively (p = 0.001). These results suggest single-stage surgery under topical anaesthesia is an effective treatment for small-angle strabismus. A large, randomized, prospective study to confirm these findings is warranted. © 2013 Canadian Ophthalmological Society Published by Canadian Ophthalmological Society All rights reserved.

  5. Detection of passive movement of the arytenoid cartilage in unilateral vocal-fold paralysis by laryngoscopic observation: useful diagnostic findings.

    PubMed

    Okamoto, Isaku; Tokashiki, Ryoji; Hiramatsu, Hiroyuki; Motohashi, Ray; Suzuki, Mamoru

    2012-02-01

    In a previous study of patients with unilateral vocal-fold paralysis (UVFP), three-dimensional computed tomography (3DCT) revealed passive movement during phonation, with the arytenoid cartilage on the paralyzed side pushed to the unaffected side and deviated upwards. The present work compares the 3DCT findings with those obtained by 2-dimensional endoscopy to visualize the vertical passive movement of the arytenoid cartilage. The study population consisted of 23 patients with UVFP and two with laryngeal deviation but normal movement of the vocal folds. Two endoscopic findings represented cranial deviation during phonation: posterior deviation of the arytenoid hump and lateral deviation of the muscular process. These two findings were classified into four grades, ranging from 0 (normal) to 3 (severe). Cranial displacement detected by 3DCT was also classified into four grades. Significant correlations were found between the 3DCT-determined grade of cranial displacement of the arytenoid cartilage and the grade assigned based on the two endoscopic findings. Moreover, lateral deviation of the muscular process was more significantly correlated with 3DCT grade than with endoscopic grade. Thus, endoscopic findings may be useful in the diagnosis of vocal-fold paralysis, and passive lateral deviation of the muscular process as an indicator of UVFP.

  6. [Clinical and radiographic correlation after anterior cruciate ligament reconstruction].

    PubMed

    González Perales, Aldo Alán; Negrete Corona, Jorge; Chávez Hinojosa, Edgard

    2010-01-01

    The purpose of this work is to correlate the clinical, functional and radiographic results of the anterior cruciate ligament (ACL) reconstruction with the angulation and orientation of the femoral and tibial tunnels. The ACL is one of the most frequently injured articular structures of the knee. The reason for this being that it is the primary limiting structure of anterior tibial translation; its tear causes kinematic alterations and results in long-term degenerative and functional changes. Repair can restore the kinematics. 26 patients, 20-50 years old, post-ACL reconstruction with the semitendinous-gracilis technique. From November 2006 to July 2007. Clinical and functional assessments: Tegner and Lysholm. Radiographic assessment: anteroposterior view with knee extension and lateral view with 30 degrees flexion. Pearson correlations (r) were used in the analysis. 26 patients (100%), 20 males (76.92%), 6 females (23.08%). Mean of 2.4 in the Lysholm scale (fair to good); standard deviation 1.2. Bernard-Lysholm quadrant r = -0.772. Tegner quadrant r = 0.790. The Lysholm and Tegner scale is associated with the graft quadrant. The situation of the tibial implant in the saggital plane is associated with the Lysholm scale. The correlation of patients with an inadequate placement with respect to the quadrants was associated with good-to-excellent results and fair-to-good results. Two patients had a poor clinical outcome; the orientation of the AP angle and the quadrant were within acceptable parameters, with the exception of the lateral angle-shaft axis.

  7. Endpoint Accuracy in Manual Control of a Steerable Needle.

    PubMed

    van de Berg, Nick J; Dankelman, Jenny; van den Dobbelsteen, John J

    2017-02-01

    To study the ability of a human operator to manually correct for errors in the needle insertion path without partial withdrawal of the needle by means of an active, tip-articulated steerable needle. The needle is composed of a 1.32-mm outer-diameter cannula, with a flexure joint near the tip, and a retractable stylet. The bending stiffness of the needle resembles that of a 20-gauge hypodermic needle. The needle functionality was evaluated in manual insertions by steering to predefined targets and a lateral displacement of 20 mm from the straight insertion line. Steering tasks were conducted in 5 directions and 2 tissue simulants under image guidance from a camera. The repeatability in instrument actuations was assessed during 100 mm deep automated insertions with a linear motor. In addition to tip position, tip angles were tracked during the insertions. The targeting error (mean absolute error ± standard deviation) during manual steering to 5 different targets in stiff tissue was 0.5 mm ± 1.1. This variability in manual tip placement (1.1 mm) was less than the variability among automated insertions (1.4 mm) in the same tissue type. An increased tissue stiffness resulted in an increased lateral tip displacement. The tip angle was directly controlled by the user interface, and remained unaffected by the tissue stiffness. This study demonstrates the ability to manually steer needles to predefined target locations under image guidance. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  8. Detection of centers of tropical cyclones using Communication, Ocean, and Meteorological Satellite data

    NASA Astrophysics Data System (ADS)

    Lee, Juhyun; Im, Jungho; Park, Seohui; Yoo, Cheolhee

    2017-04-01

    Tropical cyclones are one of major natural disasters, which results in huge damages to human and society. Analyzing behaviors and characteristics of tropical cyclones is essential for mitigating the damages by tropical cyclones. In particular, it is important to keep track of the centers of tropical cyclones. Cyclone center and track information (called Best Track) provided by Joint Typhoon Warning Center (JTWC) are widely used for the reference data of tropical cyclone centers. However, JTWC uses multiple resources including numerical modeling, geostationary satellite data, and in situ measurements to determine the best track in a subjective way and makes it available to the public 6 months later after an event occurred. Thus, the best track data cannot be operationally used to identify the centers of tropical cyclones in real time. In this study, we proposed an automated approach for identifying the centers of tropical cyclones using only Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Imager (MI) sensor derived data. It contains 5 bands—VIS (0.67µm), SWIR (3.7µm), WV (6.7µm), IR1 (10.8µm), and IR2 (12.0µm). We used IR1 band images to extract brightness temperatures of cloud tops over Western North Pacific between 2011 and 2012. The Angle deviation between brightness temperature-based gradient direction in a moving window and the reference angle toward the center of the window was extracted. Then, a spatial analysis index called circular variance was adopted to identify the centers of tropical cyclones based on the angle deviation. Finally, the locations of the minimum circular variance indexes were identified as the centers of tropical cyclones. While the proposed method has comparable performance for detecting cyclone centers in case of organized cloud convections when compared with the best track data, it identified the cyclone centers distant ( 2 degrees) from the best track centers for unorganized convections.

  9. Decreased Lumbar Lordosis and Deficient Acetabular Coverage Are Risk Factors for Subchondral Insufficiency Fracture.

    PubMed

    Jo, Woo Lam; Lee, Woo Suk; Chae, Dong Sik; Yang, Ick Hwan; Lee, Kyoung Min; Koo, Kyung Hoi

    2016-10-01

    Subchondral insufficiency fracture (SIF) of the femoral head occurs in the elderly and recipients of organ transplantation. Osteoporosis and deficient lateral coverage of the acetabulum are known risk factors for SIF. There has been no study about relation between spinopelvic alignment and anterior acetabular coverage with SIF. We therefore asked whether a decrease of lumbar lordosis and a deficiency in the anterior acetabular coverage are risk factors. We investigated 37 patients with SIF. There were 33 women and 4 men, and their mean age was 71.5 years (59-85 years). These 37 patients were matched with 37 controls for gender, age, height, weight, body mass index and bone mineral density. We compared the lumbar lordosis, pelvic incidence, pelvic tilt, sacral slope, acetabular index, acetabular roof angle, acetabular head index, anterior center-edge angle and lateral center-edge angle. Lumbar lordosis, pelvic tilt, sacral slope, lateral center edge angle, anterior center edge angle, acetabular index and acetabular head index were significantly different between SIF group and control group. Lumbar lordosis (OR = 1.11), lateral center edge angle (OR = 1.30) and anterior center edge angle (OR = 1.27) had significant associations in multivariate analysis. Decreased lumbar lordosis and deficient anterior coverage of the acetabulum are risk factors for SIF as well as decreased lateral coverage of the acetabulum.

  10. Experimental and theoretical studies of the crystal structures of bis-isoxazole-bis-methylene dinitrate (BIDN) and bis-isoxazole tetramethylene tetranitrate (BITN) by x-ray crystallography and density functional theory

    NASA Astrophysics Data System (ADS)

    Taylor, Decarlos E.; Sausa, Rosario C.

    2018-06-01

    The determination of crystal structures plays an important role for model testing and validation, and understanding intra and intermolecular interactions that influence crystal packing. Here, we report the molecular structure of two recently synthesized energetic molecules, 3,3-bis-isoxazole-5,5‧-bis-methylene dinitrate (C8H6N4O8, BIDN) and bis-isoxazole tetramethylene tetranitrate (C10H8N6O14, BITN) determined by single crystal x-ray diffraction and solid state density functional theory (DFT). BIDN is composed of two planar alkyl nitrate groups (r.m.s deviation = 0.0004 (1) Å) bonded to two planar azole rings (r.m.s deviation = 0.001 (1) Å, whereas BITN is composed of four planar alkyl nitrate groups (average r.m.s deviation = 0.002 (1) Å) bonded to two planar azole rings (average r.m.s deviation = 0.002 (1) Å). The theoretical calculations predict very well the planarity of both the alkyl nitrate groups and rings for both compounds. Furthermore, they predict well the bond lengths and angles of both molecules with mean deviation values of 0.018 Å (BIDN) and 0.017 Å (BITN) and 0.481° (BIDN) and 0.747° (BITN). Overall, the DFT determined torsion angles agree well with those determined experimentally for both BIDN (average deviation = 1.139°) and BITN (average deviation = 0.604°). The theoretical cell constant values are in excellent agreement with those determined experimentally for both molecules, with the BIDN a cell value and β angle showing the largest deviation, 2.1% and -1.3%, respectively. Contacts between the atoms N and H dominate the intermolecular interactions of BIDN, whereas contacts involving the atoms O and H dominate the BITN intermolecular interactions. Electrostatic potential calculations at the B3LYP/6-31G* level reveal BIDN exhibits a lower sensitivity to impact compared to BITN.

  11. Optimized balance rehabilitation training strategy for the elderly through an evaluation of balance characteristics in response to dynamic motions

    PubMed Central

    Jung, HoHyun; Chun, Keyoung Jin; Hong, Jaesoo; Lim, Dohyung

    2015-01-01

    Balance is important in daily activities and essential for maintaining an independent lifestyle in the elderly. Recent studies have shown that balance rehabilitation training can improve the balance ability of the elderly, and diverse balance rehabilitation training equipment has been developed. However, there has been little research into optimized strategies for balance rehabilitation training. To provide an optimized strategy, we analyzed the balance characteristics of participants in response to the rotation of a base plate on multiple axes. Seven male adults with no musculoskeletal or nervous system-related diseases (age: 25.5±1.7 years; height: 173.9±6.4 cm; body mass: 71.3±6.5 kg; body mass index: 23.6±2.4 kg/m2) were selected to investigate the balance rehabilitation training using customized rehabilitation equipment. Rotation of the base plate of the equipment was controlled to induce dynamic rotation of participants in the anterior–posterior, right-diagonal, medial–lateral, and left-diagonal directions. We used a three-dimensional motion capture system employing infrared cameras and the Pedar Flexible Insoles System to characterize the major lower-extremity joint angles, center of body mass, and center of pressure. We found statistically significant differences between the changes in joint angles in the lower extremities in response to dynamic rotation of the participants (P<0.05). The maximum was greater with anterior–posterior and medial–lateral dynamic rotation than with that in other directions (P<0.05). However, there were no statistically significant differences in the frequency of center of body mass deviations from the base of support (P>0.05). These results indicate that optimizing rotation control of the base plate of balance rehabilitation training equipment to induce anterior–posterior and medial–lateral dynamic rotation preferentially can lead to effective balance training. Additional tests with varied speeds and ranges of angles of base plate rotation are expected to be useful as well as an analysis of the balance characteristics considering a balance index that reflects the muscle activity and cooperative characteristics. PMID:26508847

  12. Measurement of acoustic properties of the composite materials constituting the main rotor hub of the Agusta-Westland helicopter EH-101 (civil version)

    NASA Astrophysics Data System (ADS)

    Tenti, L.; Denis, R.; Lakestani, F.

    1991-10-01

    The acoustic properties of the EH-101 helicopter rotor hub are tested by characterizing the ultrasonic propagation phenomena in the main directions of the composite materials. The carbon fiber and epoxy resin that make up the rotor hub are measured to determine the attenuation coefficient, phase propagation at normal incidence, and phase propagation as a function of angle of incidence. The speeds are measured for external box and filler samples, and strap samples are discussed separately because of their anisotropic nature and structural importance. Deviations angles of 5 deg cause refraction angles of 10 deg in the deviation of the phase propagation; therefore planar defects with an angle of 10 deg relative to the fiber direction can be easily detected. The method presented is useful in characterizing and locating defects in the composite materials that make up the main rotor hub of helicopters.

  13. Vertical force and wrist deviation angle when using a walker to stand up and sit down.

    PubMed

    Leung, Cherng-Yee; Yeh, Po-Chan

    2011-08-01

    Research investigating walkers suggests that safety and assistance for the elderly with weak lower limbs were important. However, the relationship between the use of a walker and the upper limbs has received little investigation. Standing up and sitting down are important daily activities. Therefore, the aim of this study was to explore wrist deviation and vertical force among elderly individuals using a walker for assistance to stand up and sit down. In total, 64 elderly volunteers (M age = 80.22, SD = 9.36) were enrolled. Data were obtained from four load cells and a twin-axis wrist goniometer. Wrist deviation and vertical force were examined when participants used a walker with horizontal handles to assist in standing up and sitting down. Significant wrist angle deviation occurred with the use of a walker, with dorsiflexion of the right hand greater than that of the left. Males exerted significantly greater vertical force. In the sitting position, greater ulnar deviation was seen among experienced walker users, whereas during standing, experienced users exhibited greater dorsiflexion. The horizontal handles of most marketed walkers may cause user wrist deviations, suggesting researchers should pursue improvements in walker design.

  14. Stress waves in transversely isotropic media: The homogeneous problem

    NASA Technical Reports Server (NTRS)

    Marques, E. R. C.; Williams, J. H., Jr.

    1986-01-01

    The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.

  15. Comparison of localized retinal nerve fiber layer defects between a low-teen intraocular pressure group and a high-teen intraocular pressure group in normal-tension glaucoma patients.

    PubMed

    Kim, Dong Myung; Seo, Je Hyun; Kim, Seok Hwan; Hwang, Seung-Sik

    2007-05-01

    To compare the features of localized retinal nerve fiber layer (RNFL) defects between a low-teen intraocular pressure (IOP) group and a high-teen IOP group in normal-tension glaucoma (NTG) patients. Seventy-seven eyes of 77 NTG patients showing localized RNFL defects on RNFL photographs and corresponding visual filed defects at the initial visit to a glaucoma specialist were selected for this study. Patients with range of diurnal IOP within low-teen or high-teen in both eyes were included. All participants completed refraction, diurnal IOP measurement, central corneal thickness (CCT) measurement, stereoscopic disc photography, RNFL photography, and automated perimetry. On RNFL photograph, approximation of the defect to the macula (angle alpha) and width of the defects (angle beta) were measured to represent RNFL defects. The patients were divided into 2 groups according to the level of IOP. A low-teen group had highest IOP of 15 mm Hg (group B). Age at diagnosis, percentage of male patients, systemic disease, refraction, CCT, highest IOP, angle alpha, angle beta, and mean deviation and pattern standard deviation of visual field were compared between the 2 groups. Age at diagnosis of NTG, age distribution, percentage of male patients, systemic disease, spherical equivalent of refraction, CCT, mean deviation, and pattern standard deviation were not different between the 2 groups. Highest IOP was 13.8+/-1.2 mm Hg in group A and 19.2+/-1.4 mm Hg in group B (P<0.001). Angle alpha was significantly smaller in group A than in group B (37.0+/-14.0 vs. 56.5+/-21.2 degrees, P<0.001), whereas angle beta was not different between the 2 groups (39.9+/-17.9 vs. 37.5+/-15.9 degrees, P=0.54). There were no significant correlations between spherical equivalent and angle alpha (r=-0.03, P=0.82), between spherical equivalent and angle beta (r=-0.04, P=0.74), and between angle alpha and angle beta (r=-0.21, P=0.07). Localized RNFL defect was closer to the center of the macula in group A than in group B, whereas width of defects was not different between the 2 groups. These findings provide indirect evidence to suggest that more than one pathogenic mechanism may exist in the development of RNFL defects in NTG.

  16. Significant effect of the posterior tibial slope and medial/lateral ligament balance on knee flexion in total knee arthroplasty.

    PubMed

    Fujimoto, Eisaku; Sasashige, Yoshiaki; Masuda, Yasuji; Hisatome, Takashi; Eguchi, Akio; Masuda, Tetsuo; Sawa, Mikiya; Nagata, Yoshinori

    2013-12-01

    The intra-operative femorotibial joint gap and ligament balance, the predictors affecting these gaps and their balances, as well as the postoperative knee flexion, were examined. These factors were assessed radiographically after a posterior cruciate-retaining total knee arthroplasty (TKA). The posterior condylar offset and posterior tibial slope have been reported as the most important intra-operative factors affecting cruciate-retaining-type TKAs. The joint gap and balance have not been investigated in assessments of the posterior condylar offset and the posterior tibial slope. The femorotibial gap and medial/lateral ligament balance were measured with an offset-type tensor. The femorotibial gaps were measured at 0°, 45°, 90° and 135° of knee flexion, and various gap changes were calculated at 0°-90° and 0°-135°. Cruciate-retaining-type arthroplasties were performed in 98 knees with varus osteoarthritis. The 0°-90° femorotibial gap change was strongly affected by the posterior condylar offset value (postoperative posterior condylar offset subtracted by the preoperative posterior condylar offset). The 0°-135° femorotibial gap change was significantly correlated with the posterior tibial slope and the 135° medial/lateral ligament balance. The postoperative flexion angle was positively correlated with the preoperative flexion angle, γ angle and the posterior tibial slope. Multiple-regression analysis demonstrated that the preoperative flexion angle, γ angle, posterior tibial slope and 90° medial/lateral ligament balance were significant independent factors for the postoperative knee flexion angle. The flexion angle change (postoperative flexion angle subtracted by the preoperative flexion angle) was also strongly correlated with the preoperative flexion angle, posterior tibial slope and 90° medial/lateral ligament balance. The postoperative flexion angle is affected by multiple factors, especially in cruciate-retaining-type TKAs. However, it is important to pay attention not only to the posterior tibial slope, but also to the flexion medial/lateral ligament balance during surgery. A cruciate-retaining-type TKA has the potential to achieve both stability and a wide range of motion and to improve the patients' activities of daily living.

  17. [Biomechanical significance of the acetabular roof and its reaction to mechanical injury].

    PubMed

    Domazet, N; Starović, D; Nedeljković, R

    1999-01-01

    The introduction of morphometry into the quantitative analysis of the bone system and functional adaptation of acetabulum to mechanical damages and injuries enabled a relatively simple and acceptable examination of morphological acetabular changes in patients with damaged hip joints. Measurements of the depth and form of acetabulum can be done by radiological methods, computerized tomography and ultrasound (1-9). The aim of the study was to obtain data on the behaviour of acetabular roof, the so-called "eyebrow", by morphometric analyses during different mechanical injuries. Clinical studies of the effect of different loads on acetabular roof were carried out in 741 patients. Radiographic findings of 400 men and 341 women were analysed. The control group was composed of 148 patients with normal hip joints. Average age of the patients was 54.7 years and that of control subjects 52.0 years. Data processing was done for all examined patients. On the basis of our measurements the average size of female "eyebrow" ranged from 24.8 mm to 31.5 mm with standard deviation of 0.93 and in men from 29.4 mm to 40.3 mm with standard deviation of 1.54. The average size in the whole population was 32.1 mm with standard deviation of 15.61. Statistical analyses revealed high correlation coefficients between the age and "eyebrow" size in men (r = 0.124; p < 0.05); it was statically in inverse proportion (Graph 1). However, in female patients the correlation coefficient was statistically significant (r = 0.060; p > 0.05). The examination of the size of collodiaphysial angle and length of "eyebrow" revealed that "eyebrow" length was in inverse proportion to the size of collodiaphysial angle (r = 0.113; p < 0.05). The average "eyebrow" length in relation to the size of collodiaphysial angle ranged from 21.3 mm to 35.2 mm with standard deviation of 1.60. There was no statistically significant correlation between the "eyebrow" size and Wiberg's angle in male (r = 0.049; p > 0.05) and female (r = 0.005; p > 0.05) patients. The "eyebrow" length was proportionally dependent on the size of the shortened extremity in all examined subjects. This dependence was statistically significant both in female (r = 0.208; p < 0.05) and male (r = 0.193; p < 0.05) patients. The study revealed that fossa acetabuli was forward and downward laterally directed. The size, form and cross-section of acetabulum changed during different loads. Dimensions and morphological changes in acetabulum showed some but unimportant changes in comparison to that in the control group. These findings are graphically presented in Figure 5 and numerically in Tables 1 and 2. The study of spatial orientation among hip joints revealed that fossa acetabuli was forward and downward laterally directed; this was in accordance with results other authors (1, 7, 9, 15, 18). There was a statistically significant difference in relation to the "eyebrow" size between patients and normal subjects (t = 3.88; p < 0.05). The average difference of "eyebrow" size was 6.892 mm. A larger "eyebrow" was found in patients with normally loaded hip. There was also a significant difference in "eyebrow" size between patients and healthy female subjects (t = 4.605; p < 0.05). A larger "eyebrow" of 8.79 mm was found in female subjects with normally loaded hip. On the basis of our study it can be concluded that the findings related to changes in acetabular roof, the so-called "eyebrow", are important in diagnosis, follow-up and therapy of pathogenetic processes of these disorders.

  18. Utility of a Systematic Approach to Teaching Photographic Nasal Analysis to Otolaryngology Residents.

    PubMed

    Robitschek, Jon; Dresner, Harley; Hilger, Peter

    2017-12-01

    Photographic nasal analysis constitutes a critical step along the path toward accurate diagnosis and precise surgical planning in rhinoplasty. The learned process by which one assesses photographs, analyzes relevant anatomical landmarks, and generates a global view of the nasal aesthetic is less widely described. To discern the common pitfalls in performing photographic nasal analysis and to quantify the utility of a systematic approach model in teaching photographic nasal analysis to otolaryngology residents. This prospective observational study included 20 participants from a university-based otolaryngology residency program. The control and intervention groups underwent baseline graded assessment of 3 patients. The intervention group received instruction on a systematic approach model for nasal analysis, and both groups underwent postintervention testing at 10 weeks. Data were collected from October 1, 2015, through June 1, 2016. A 10-minute, 11-slide presentation provided instruction on a systematic approach to nasal analysis to the intervention group. Graded photographic nasal analysis using a binary 18-point system. The 20 otolaryngology residents (15 men and 5 women; age range, 24-34 years) were adept at mentioning dorsal deviation and dorsal profile with focused descriptions of tip angle and contour. Areas commonly omitted by residents included verification of the Frankfort plane, position of the lower lateral crura, radix position, and ratio of the ala to tip lobule. The intervention group demonstrated immediate improvement after instruction on the teaching model, with the mean (SD) postintervention test score doubling compared with their baseline performance (7.5 [2.7] vs 10.3 [2.5]; P < .001). At 10 weeks after the intervention, the mean comparative improvement in overall graded nasal analysis was 17% (95% CI, 10%-23%; P < .001). Otolaryngology residents demonstrated proficiency at incorporating nasal deviation, tip angle, and dorsal profile contour into their nasal analysis. They often omitted verification of the Frankfort plane, position of lower lateral crura, radix depth, and ala-to-tip lobule ratio. Findings with this novel 10-minute teaching model should be validated at other teaching institutions, and the instruction model should be further enhanced to teach more sophisticated analysis to residents as they proceed through training. NA.

  19. Does the optimal position of the acetabular fragment should be within the radiological normal range for all developmental dysplasia of the hip? A patient-specific finite element analysis.

    PubMed

    Wang, Xuyi; Peng, Jianping; Li, De; Zhang, Linlin; Wang, Hui; Jiang, Leisheng; Chen, Xiaodong

    2016-10-04

    The success of Bernese periacetabular osteotomy depends significantly on how extent the acetabular fragment can be corrected to its optimal position. This study was undertaken to investigate whether correcting the acetabular fragment into the so-called radiological "normal" range is the best choice for all developmental dysplasia of the hip with different severities of dysplasia from the biomechanical view? If not, is there any correlation between the biomechanically optimal position of the acetabular fragment and the severity of dysplasia? Four finite element models with different severities of dysplasia were developed. The virtual periacetabular osteotomy was performed with the acetabular fragment rotated anterolaterally to incremental center-edge angles; then, the contact area and pressure and von Mises stress in the cartilage were calculated at different correction angles. The optimal position of the acetabular fragment for patients 1, 2, and 3 was when the acetabular fragment rotated 17° laterally (with the lateral center-edge angle of 36° and anterior center-edge angle of 58°; both were slightly larger than the "normal" range), 25° laterally following further 5° anterior rotation (with the lateral center-edge angle of 31° and anterior center-edge angle of 51°; both were within the "normal" range), and 30° laterally following further 10° anterior rotation (with the lateral center-edge angle of 25° and anterior center-edge angle of 40°; both were less than the "normal" range), respectively. The optimal corrective position of the acetabular fragment is severity dependent rather than within the radiological "normal" range for developmental dysplasia of the hip. We prudently proposed that the optimal correction center-edge angle of mild, moderate, and severe developmental dysplasia of the hip is slightly larger than the "normal" range, within the "normal" range, and less than the lower limit of the "normal" range, respectively.

  20. Evaluation of posterior lateral femoral condylar hypoplasia using axial MRI images in patients with complete discoid meniscus.

    PubMed

    Xu, Zhihong; Chen, Dongyang; Shi, Dongquan; Dai, Jin; Yao, Yao; Jiang, Qing

    2016-03-01

    Hypoplasia of the lateral femoral condyle has been reported in discoid lateral meniscus patients, but associated imaging findings in the axial plane have not been characterized. In this study, we aimed to identify differences in the lateral femoral condyle between patients with discoid lateral meniscus and those with normal menisci using axial MRI images. Twenty-three patients (24 knees) with complete discoid lateral meniscus, 43 (45 knees) with incomplete discoid lateral meniscus, and 50 with normal menisci (50 knees) were enrolled and distributed into three groups. Two new angles, posterior lateral condylar angle (PLCA) and posterior medial condylar angle (PMCA), were measured on axial MRI images; the posterior condylar angle (PCA) was also measured. Differences between the three groups in the PLCA, PMCA, PCA, and PLCA/PMCA were analysed. The predictive value of PLCA and PLCA/PMCA for complete discoid lateral meniscus was assessed. In the complete discoid lateral meniscus group, PLCA and PLCA/PMCA were significantly smaller compared with the normal meniscus group and the incomplete discoid lateral meniscus group (P < 0.001). A significantly larger PCA was identified in the complete discoid lateral meniscus group compared with the incomplete discoid lateral meniscus group (P < 0.05) and normal meniscus group (P < 0.05). Both PLCA and PLCA/PMCA showed excellent predictive value for complete discoid lateral meniscus. Hypoplasia of the posterior lateral femoral condyle is typically seen in patients with complete discoid lateral meniscus. PLCA and PLCA/PMCA can be measured from axial MRI images and used as excellent predictive parameters for complete discoid lateral meniscus. Diagnostic study, Level III.

  1. Prevalence and clinical significance of chondromalacia isolated to the anterior margin of the lateral femoral condyle as a component of patellofemoral disease: observations at MR imaging.

    PubMed

    Chan, V O; Moran, D E; Mwangi, I; Eustace, S J

    2013-08-01

    To determine the prevalence of chondromalacia isolated to the anterior margin of the lateral femoral condyle as a component of patellofemoral disease in patients with anterior knee pain and to correlate it with patient demographics, patellar shape, and patellofemoral alignment. Retrospective study over a 1-year period reviewing the MR knee examinations of all patients who were referred for assessment of anterior knee pain. Only patients with isolated lateral patellofemoral disease were included. Age, gender, distribution of lateral patellofemoral chondromalacia, and grade of cartilaginous defects were documented for each patient. Correlation between the distribution of lateral patellofemoral chondromalacia and patient demographics, patellar shape, and indices of patellar alignment (femoral sulcus angle and modified Q angle) was then ascertained. There were 50 patients (22 males, 28 females) with anterior knee pain and isolated patellofemoral disease. The majority of the patients (78 %) had co-existent disease with grade 1 chondromalacia. No significant correlation was found between patients with chondromalacia isolated to the anterior margin of the lateral femoral condyle and age, gender, patellar shape, or modified Q angle (p > 0.05). However, patients with chondromalacia isolated to the anterior margin of the lateral femoral condyle had a shallower femoral sulcus angle (mean 141.8°) compared to the patients with lateral patellar facet disease (mean 133.8°) (p = 0.002). A small percentage of patients with anterior knee pain have chondromalacia isolated to the anterior margin of the lateral femoral condyle. This was associated with a shallower femoral sulcus angle.

  2. Postimplant left ventricular assist device fit analysis using three-dimensional reconstruction.

    PubMed

    Truong, Thang V; Stanfield, J Ryan; Chaffin, John S; Elkins, C Craig; Kanaly, Paul J; Horstmanshof, Douglas A; Long, James W; Snyder, Trevor A

    2013-01-01

    Left ventricular assist devices (LVADs) are blood pumps that augment the function of the failing heart to improve perfusion, resulting in improved survival. For LVADs to effectively unload the left ventricle, the inflow cannula (IC) should be unobstructed and ideally aligned with the heart's mitral valve (MV). We examined IC orientation deviation from a hypothesized conventional angle (45° right-posterior) and the approximate angle for direct IC-MV alignment in many patients. Three-dimensional anatomic models were created from computed tomography scans for 24 LVAD-implanted patients, and angles were measured between the IC and the apical z-axis in both the coronal and the sagittal planes. Common surgical IC angulation was found to be 22 ± 15° rightward and 21 ± 12° posterior from the apical z-axis; 38% (n = 9) of patients fell in this range. Direct IC-MV angulation was found to be 34 ± 8° rightward and 15 ± 7° posterior; only 8% (n = 2) of patients fell in this range. Rightward deviation toward ventricular septal wall and anterior deviation toward LV anterior freewall are associated with mortalities more so than leftward and posterior deviation. In conclusion, anatomic reconstruction may be a useful preoperative tool to obtain general population and patient-specific alignment for optimal LVAD implantation.

  3. A Simple Accurate Alternative to the Minimum-Deviation Method for the Determination of the Refractive Index of a Prism.

    ERIC Educational Resources Information Center

    Waldenstrom, S.; Naqvi, K. Razi

    1978-01-01

    Proposes an alternative to the classical minimum-deviation method for determining the refractive index of a prism. This new "fixed angle of incidence method" may find applications in research. (Author/GA)

  4. Adaptive Neural Mechanism for Listing’s Law Revealed in Patients with Skew Deviation Caused by Brainstem or Cerebellar Lesion

    PubMed Central

    Fesharaki, Maryam; Karagiannis, Peter; Tweed, Douglas; Sharpe, James A.; Wong, Agnes M. F.

    2016-01-01

    Purpose Skew deviation is a vertical strabismus caused by damage to the otolithic–ocular reflex pathway and is associated with abnormal ocular torsion. This study was conducted to determine whether patients with skew deviation show the normal pattern of three-dimensional eye control called Listing’s law, which specifies the eye’s torsional angle as a function of its horizontal and vertical position. Methods Ten patients with skew deviation caused by brain stem or cerebellar lesions and nine normal control subjects were studied. Patients with diplopia and neurologic symptoms less than 1 month in duration were designated as acute (n = 4) and those with longer duration were classified as chronic (n = 10). Serial recordings were made in the four patients with acute skew deviation. With the head immobile, subjects made saccades to a target that moved between straight ahead and eight eccentric positions, while wearing search coils. At each target position, fixation was maintained for 3 seconds before the next saccade. From the eye position data, the plane of best fit, referred to as Listing’s plane, was fitted. Violations of Listing’s law were quantified by computing the “thickness” of this plane, defined as the SD of the distances to the plane from the data points. Results Both the hypertropic and hypotropic eyes in patients with acute skew deviation violated Listing’s and Donders’ laws—that is, the eyes did not show one consistent angle of torsion in any given gaze direction, but rather an abnormally wide range of torsional angles. In contrast, each eye in patients with chronic skew deviation obeyed the laws. However, in chronic skew deviation, Listing’s planes in both eyes had abnormal orientations. Conclusions Patients with acute skew deviation violated Listing’s law, whereas those with chronic skew deviation obeyed it, indicating that despite brain lesions, neural adaptation can restore Listing’s law so that the neural linkage between horizontal, vertical, and torsional eye position remains intact. Violation of Listing’s and Donders’ laws during fixation arises primarily from torsional drifts, indicating that patients with acute skew deviation have unstable torsional gaze holding that is independent of their horizontal–vertical eye positions. PMID:18172094

  5. Asymmetry in the Outburst of SN 1987A Detected Using Light Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sinnott, B.; Welch, D. L.; Rest, A.; Sutherland, P. G.; Bergmann, M.

    2013-04-01

    We report direct evidence for asymmetry in the early phases of SN 1987A via optical spectroscopy of five fields of its light echo system. The light echoes allow the first few hundred days of the explosion to be reobserved, with different position angles providing different viewing angles to the supernova. Light echo spectroscopy therefore allows a direct spectroscopic comparison of light originating from different regions of the photosphere during the early phases of SN 1987A. Gemini multi-object spectroscopy of the light echo fields shows fine structure in the Hα line as a smooth function of position angle on the near-circular light echo rings. Hα profiles originating from the northern hemisphere of SN 1987A show an excess in redshifted emission and a blue knee, while southern hemisphere profiles show an excess of blueshifted Hα emission and a red knee. This fine structure is reminiscent of the "Bochum event" originally observed for SN 1987A, but in an exaggerated form. Maximum deviation from symmetry in the Hα line is observed at position angles 16° and 186°, consistent with the major axis of the expanding elongated ejecta. The asymmetry signature observed in the Hα line smoothly diminishes as a function of viewing angle away from the poles of the elongated ejecta. We propose an asymmetric two-sided distribution of 56Ni most dominant in the southern far quadrant of SN 1987A as the most probable explanation of the observed light echo spectra. This is evidence that the asymmetry of high-velocity 56Ni in the first few hundred days after explosion is correlated to the geometry of the ejecta some 25 years later.

  6. Minimum viewing angle for visually guided ground speed control in bumblebees.

    PubMed

    Baird, Emily; Kornfeldt, Torill; Dacke, Marie

    2010-05-01

    To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.

  7. Comparison between visual field defect in pigmentary glaucoma and primary open-angle glaucoma.

    PubMed

    Nilforushan, Naveed; Yadgari, Maryam; Jazayeri, Anisalsadat

    2016-10-01

    To compare visual field defect patterns between pigmentary glaucoma and primary open-angle glaucoma. Retrospective, comparative study. Patients with diagnosis of primary open-angle glaucoma (POAG) and pigmentary glaucoma (PG) in mild to moderate stages were enrolled in this study. Each of the 52 point locations in total and pattern deviation plot (excluding 2 points adjacent to blind spot) of 24-2 Humphrey visual field as well as six predetermined sectors were compared using SPSS software version 20. Comparisons between 2 groups were performed with the Student t test for continuous variables and the Chi-square test for categorical variables. Thirty-eight eyes of 24 patients with a mean age of 66.26 ± 11 years (range 48-81 years) in the POAG group and 36 eyes of 22 patients with a mean age of 50.52 ± 11 years (range 36-69 years) in the PG group were studied. (P = 0.00). More deviation was detected in points 1, 3, 4, and 32 in total deviation (P = 0.03, P = 0.015, P = 0.018, P = 0.023) and in points 3, 4, and 32 in pattern deviation (P = 0.015, P = 0.049, P = 0.030) in the POAG group, which are the temporal parts of the field. It seems that the temporal area of the visual field in primary open-angle glaucoma is more susceptible to damage in comparison with pigmentary glaucoma.

  8. [A new kinematics method of determing elbow rotation axis and evaluation of its feasibility].

    PubMed

    Han, W; Song, J; Wang, G Z; Ding, H; Li, G S; Gong, M Q; Jiang, X Y; Wang, M Y

    2016-04-18

    To study a new positioning method of elbow external fixation rotation axis, and to evaluate its feasibility. Four normal adult volunteers and six Sawbone elbow models were brought into this experiment. The kinematic data of five elbow flexion were collected respectively by optical positioning system. The rotation axes of the elbow joints were fitted by the least square method. The kinematic data and fitting results were visually displayed. According to the fitting results, the average moving planes and rotation axes were calculated. Thus, the rotation axes of new kinematic methods were obtained. By using standard clinical methods, the entrance and exit points of rotation axes of six Sawbone elbow models were located under X-ray. And The kirschner wires were placed as the representatives of rotation axes using traditional positioning methods. Then, the entrance point deviation, the exit point deviation and the angle deviation of two kinds of located rotation axes were compared. As to the four volunteers, the indicators represented circular degree and coplanarity of elbow flexion movement trajectory of each volunteer were both about 1 mm. All the distance deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 3 mm. All the angle deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 5°. As to the six Sawbone models, the average entrance point deviations, the average exit point deviations and the average angle deviations of two different rotation axes determined by two kinds of located methods were respectively 1.697 2 mm, 1.838 3 mm and 1.321 7°. All the deviations were very small. They were all in an acceptable range of clinical practice. The values that represent circular degree and coplanarity of volunteer's elbow single curvature movement trajectory are very small. The result shows that the elbow single curvature movement can be regarded as the approximate fixed axis movement. The new method can replace the traditional method in accuracy. It can make up the deficiency of the traditional fixed axis method.

  9. Knee Joint Kinematics and Kinetics During a Lateral False-Step Maneuver

    PubMed Central

    Golden, Grace M.; Pavol, Michael J.; Hoffman, Mark A.

    2009-01-01

    Abstract Context: Cutting maneuvers have been implicated as a mechanism of noncontact anterior cruciate ligament (ACL) injuries in collegiate female basketball players. Objective: To investigate knee kinematics and kinetics during running when the width of a single step, relative to the path of travel, was manipulated, a lateral false-step maneuver. Design: Crossover design. Setting: University biomechanics laboratory. Patients or Other Participants: Thirteen female collegiate basketball athletes (age  =  19.7 ± 1.1 years, height  =  172.3 ± 8.3 cm, mass  =  71.8 ± 8.7 kg). Intervention(s): Three conditions: normal straight-ahead running, lateral false step of width 20% of body height, and lateral false step of width 35% of body height. Main Outcome Measure(s): Peak angles and internal moments for knee flexion, extension, abduction, adduction, internal rotation, and external rotation. Results: Differences were noted among conditions in peak knee angles (flexion [P < .01], extension [P  =  .02], abduction [P < .01], and internal rotation [P < .01]) and peak internal knee moments (abduction [P < .01], adduction [P < .01], and internal rotation [P  =  .03]). The lateral false step of width 35% of body height was associated with larger peak flexion, abduction, and internal rotation angles and larger peak abduction, adduction, and internal rotation moments than normal running. Peak flexion and internal rotation angles were also larger for the lateral false step of width 20% of body height than for normal running, whereas peak extension angle was smaller. Peak internal rotation angle increased progressively with increasing step width. Conclusions: Performing a lateral false-step maneuver resulted in changes in knee kinematics and kinetics compared with normal running. The differences observed for lateral false steps were consistent with proposed mechanisms of ACL loading, suggesting that lateral false steps represent a hitherto neglected mechanism of noncontact ACL injury. PMID:19771289

  10. Evaluation of the coracoid and coracoacromial arch geometry on Thiel-embalmed cadavers using the three-dimensional MicroScribe digitizer.

    PubMed

    Alobaidy, Mohammad A; Soames, Roger W

    2016-01-01

    Understanding the geometry of the coracoid and coracoacromial arch will improve surgical intervention in shoulder surgery. Thirty pairs of scapulae from 20 female and 10 male deceased donors, average age of 82 years (range, 62-101 years), were scanned and measurements taken using the 3-dimensional (3D) MicroScribe digitizer (Immersion Corp, San Jose CA, USA) and Rhino software (McNeel North America, Seattle, WA, USA). The following mean angles were determined: coracoid slope, 44° ± 11°; coracoid deviation, 35° ± 6°; coracoid root to glenoid, 115° ± 14°; coracoid head to glenoid, 110° ± 11°; scapular spine angle, 35° ± 6°; and coracoacromial angle, 63° ± 9°. The following mean distances were also determined: coracoid height, 10 ± 3 mm; coracoacromial distance, 42 ± 7 mm; coracoacromial arch height, 20 ± 5 mm; and coracoid (anterior, 29 ± 6 mm; middle, 20 ± 4 mm; posterior tip, 18 ± 6 mm) to the glenoid fossa. The coracoid root-to-glenoid angle was significantly correlated with the coracoacromial angle. In addition, coracoid slope was significantly correlated with coracoid root-to-glenoid angle and also with coracoid deviation. Left shoulders had a significantly higher coracoid-to-glenoid angle (P < .029) than right shoulders. Women had a significantly higher coracoid root-to-glenoid angle than men (P < .042), and men had a significantly higher coracoid deviation (P < .011), anterior (P < .006) and posterior coracoid-to-glenoid distances (P < .03), and coracoacromial arch height (P < .07) than women. This is the first time that the 3D MicroScribe digitizer has been used to evaluate the geometry of the coracoacromial arch and coracoid process. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. Setup and evaluation of a sensor tilting system for dimensional micro- and nanometrology

    NASA Astrophysics Data System (ADS)

    Schuler, Alexander; Weckenmann, Albert; Hausotte, Tino

    2014-06-01

    Sensors in micro- and nanometrology show their limits if the measurement objects and surfaces feature high aspect ratios, high curvature and steep surface angles. Their measurable surface angle is limited and an excess leads to measurement deviation and not detectable surface points. We demonstrate a principle to adapt the sensor's working angle during the measurement keeping the sensor in its optimal working angle. After the simulation of the principle, a hardware prototype was realized. It is based on a rotary kinematic chain with two rotary degrees of freedom, which extends the measurable surface angle to ±90° and is combined with a nanopositioning and nanomeasuring machine. By applying a calibration procedure with a quasi-tactile 3D sensor based on electrical near-field interaction the systematic position deviation of the kinematic chain is reduced. The paper shows for the first time the completed setup and integration of the prototype, the performance results of the calibration, the measurements with the prototype and the tilting principle, and finishes with the interpretation and feedback of the practical results.

  12. Experimental investigation of unsteady flows at large incidence angles in a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; King, Aaron J.; Capece, Vincent R.; El-Aini, Yehia M.

    1996-01-01

    The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies up to 0.8 for out-of-phase oscillations at Mach numbers up to 0.8 and chordal incidence angles of 0 deg and 10 deg. For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.

  13. Static balance according to hip joint angle of unsupported leg during one-leg standing.

    PubMed

    Cha, Ju-Hyung; Kim, Jang-Joon; Ye, Jae-Gwan; Lee, Seul-Ji; Hong, Jeong-Mi; Choi, Hyun-Kyu; Choi, Ho-Suk; Shin, Won-Seob

    2017-05-01

    [Purpose] This study aimed to determine static balance according to hip joint angle of the unsupported leg during one-leg standing. [Subjects and Methods] Subjects included 45 healthy adult males and females in their 20s. During one-leg standing on the non-dominant leg, the position of the unsupported leg was classified according to hip joint angles of point angle was class. Static balance was then measured using a force plate with eyes open and closed. The total length, sway velocity, maximum deviation, and velocity on the mediolateral and anteroposterior axes of center of pressure were measured. [Results] In balance assessment with eyes open, there were significant differences between groups according to hip joint angle, except for maximum deviation on the anteroposterior axis. In balance assessment with eyes closed, there were significant differences between total length measurements at 0° and 30°, 60° and between 30° and 90°. There were significant differences between sway velocity measurements at 0° and 30° and between 30° and 90°. [Conclusion] Thus, there were differences in static balance according to hip joint angle. It is necessary to clearly identify the hip joint angle during one-leg standing testing.

  14. Robust dynamic inversion controller design and analysis (using the X-38 vehicle as a case study)

    NASA Astrophysics Data System (ADS)

    Ito, Daigoro

    A new way to approach robust Dynamic Inversion controller synthesis is addressed in this paper. A Linear Quadratic Gaussian outer-loop controller improves the robustness of a Dynamic Inversion inner-loop controller in the presence of uncertainties. Desired dynamics are given by the dynamic compensator, which shapes the loop. The selected dynamics are based on both performance and stability robustness requirements. These requirements are straightforwardly formulated as frequency-dependent singular value bounds during synthesis of the controller. Performance and robustness of the designed controller is tested using a worst case time domain quadratic index, which is a simple but effective way to measure robustness due to parameter variation. Using this approach, a lateral-directional controller for the X-38 vehicle is designed and its robustness to parameter variations and disturbances is analyzed. It is found that if full state measurements are available, the performance of the designed lateral-directional control system, measured by the chosen cost function, improves by approximately a factor of four. Also, it is found that the designed system is stable up to a parametric variation of 1.65 standard deviation with the set of uncertainty considered. The system robustness is determined to be highly sensitive to the dihedral derivative and the roll damping coefficients. The controller analysis is extended to the nonlinear system where both control input displacements and rates are bounded. In this case, the considered nonlinear system is stable up to 48.1° in bank angle and 1.59° in sideslip angle variations, indicating it is more sensitive to variations in sideslip angle than in bank angle. This nonlinear approach is further extended for the actuator failure mode analysis. The results suggest that the designed system maintains a high level of stability in the event of aileron failure. However, only 35% or less of the original stability range is maintained for the rudder failure case. Overall, this combination of controller synthesis and robustness criteria compares well with the mu-synthesis technique. It also is readily accessible to the practicing engineer, in terms of understanding and use.

  15. Abdominal Hollowing Reduces Lateral Trunk Displacement During Single-Leg Squats in Healthy Females But Does Not Affect Peak Hip Abduction Angle or Knee Abductio Angle/Moment.

    PubMed

    Linde, Lukas D; Archibald, Jessica; Lampert, Eve C; Srbely, John Z

    2017-07-17

    Females suffer 4-6 times more non-contact anterior cruciate ligament (ACL) injuries than males due to neuromuscular control deficits of the hip musculature leading to increases in hip adduction angle, knee abduction angle, and knee abduction moment during dynamic tasks such as single-leg squats. Lateral trunk displacement has been further related to ACL injury risk in females, leading to the incorporation of core strength/stability exercises in ACL preventative training programs. However, the direct mechanism relating lateral trunk displacement and lower limb ACL risk factors is not well established. To assess the relationship between lateral trunk displacement and lower limb measures of ACL injury risk by altering trunk control through abdominal activation techniques during single-leg squats in healthy females. Interventional Study Setting: Movement and Posture Laboratory Participants: 13 healthy females (21.3±0.88y, 1.68±0.07m, 58.27±5.46kg) Intervention: Trunk position and lower limb kinematics were recorded using an optoelectric motion capture system during single-leg squats under differing conditions of abdominal muscle activation (abdominal hollowing, abdominal bracing, control), confirmed via surface electromyography. Lateral trunk displacement, peak hip adduction angle, peak knee abduction angle/moment, and average muscle activity from bilateral internal oblique, external oblique, and erector spinae muscles. No differences were observed for peak lateral trunk displacement, peak hip adduction angle or peak knee abduction angle/moment. Abdominal hollowing and bracing elicited greater muscle activation than the control condition, and bracing was greater than hollowing in four of six muscles recorded. The lack of reduction in trunk, hip, and knee measures of ACL injury risk during abdominal hollowing and bracing suggests that these techniques alone may provide minimal benefit in ACL injury prevention training.

  16. Two-screen single-shot electron spectrometer for laser wakefield accelerated electron beams.

    PubMed

    Soloviev, A A; Starodubtsev, M V; Burdonov, K F; Kostyukov, I Yu; Nerush, E N; Shaykin, A A; Khazanov, E A

    2011-04-01

    The laser wakefield acceleration electron beams can essentially deviate from the axis of the system, which distinguishes them greatly from beams of conventional accelerators. In case of energy measurements by means of a permanent-magnet electron spectrometer, the deviation angle can affect accuracy, especially for high energies. A two-screen single-shot electron spectrometer that correctly allows for variations of the angle of entry is considered. The spectrometer design enables enhancing accuracy of measuring narrow electron beams significantly as compared to a one-screen spectrometer with analogous magnetic field, size, and angular acceptance. © 2011 American Institute of Physics

  17. Factors associated with recurrent fifth metatarsal stress fracture.

    PubMed

    Lee, Kyung-tai; Park, Young-uk; Jegal, Hyuk; Kim, Ki-chun; Young, Ki-won; Kim, Jin-su

    2013-12-01

    Many surgeons agree that fifth metatarsal stress fractures have a tendency toward delayed union, nonunion, and possibly refracture. Difficulty healing seems to be correlated with fracture classification. However, refracture sometimes occurs after low-grade fracture, even long after apparent resolution. The records of 168 consecutive cases of fifth metatarsal stress fracture (163 patients) treated by modified tension band wiring from March 2002 to June 2011 were evaluated retrospectively. Mean length of follow-up was 23.6 months (range, 10-112 months). Forty-nine cases classified as Torg III were bone grafted initially also. All enrolled patients were elite athletes. Eleven patients experienced nonunion and 18 refracture. The 11 nonunion cases were bone grafted. The 157 patients (excluding nonunion cases) were allocated to either a refracture group or a union group. Clinical features, such as age, weight, fracture classification, time to union, and reinjury history, were compared. Radiological parameters representing cavus deformity and fifth metatarsal head protrusion were compared to evaluate the influence of structural abnormalities. Mean group weights were significantly different (P = .041), but mean ages (P = .879), fracture grades (P = .216, P = .962), and time from surgery to rehabilitation (P = .539) were similar. No significant intergroup differences were found for talocalcaneal (TC) angle (P = .470), calcaneal pitch (CP) angle (P = .847), or talo-first metatarsal (T-MT1) angle (P = .407) on lateral radiographs; for fifth metatarsal lateral deviation (MT5-LD) angle (P = .623) on anteroposterior (AP) radiographs; or for MT5-LD angle (P = .065) on the 30-degree medial oblique radiographs. However, the mean fourth-fifth intermetatarsal (IMA4-5) angle on AP radiographs was significantly greater in the refracture group, and for Torg II cases, mean weight (P = .042), IMA4-5 angle on AP radiographs (P = .014), and MT5-LD angle (P = .043) on 30-degree medial oblique radiographs were significantly greater in the refracture group. For B2 cases (incomplete fracture and a plantar gap of 1 mm or larger), mean weight (P = .046), IMA4-5 angle on AP radiographs (P = .019), and MT5-LD angle (P = .045) on 30-degree medial oblique radiographs were significantly greater in the refracture group. All cases of refracture had a traumatic history after bone union. Refracture developed within 6 months of starting rehabilitation in 13 cases and within 3 months in 8 cases. The development of refracture after the surgical treatment of fifth metatarsal stress fractures was found to be associated with higher body mass index (BMI) and with radiological parameters (IMA4-5 on AP radiographs, MT5-LD on oblique radiographs) associated with protrusion of the fifth metatarsal head. The study indicates that patients with a protruding fifth metatarsal head and a high BMI should approach rehabilitation with care before considering a return to previous sporting activity levels. Level III, retrospective comparative series.

  18. Comparative Biomechanical Study on Contact Alterations After Lateral Meniscus Posterior Root Avulsion, Transosseous Reinsertion, and Total Meniscectomy.

    PubMed

    Perez-Blanca, Ana; Espejo-Baena, Alejandro; Amat Trujillo, Daniel; Prado Nóvoa, María; Espejo-Reina, Alejandro; Quintero López, Clara; Ezquerro Juanco, Francisco

    2016-04-01

    To compare the effects of lateral meniscus posterior root avulsion left in situ, its repair, and meniscectomy on contact pressure distribution in both tibiofemoral compartments at different flexion angles. Eight cadaveric knees were tested under compressive 1000 N load for 4 lateral meniscus conditions (intact, posterior root avulsion, transosseous root repair, and total meniscectomy) at flexion angles 0°, 30°, 60°, and 90°. Contact area and pressure distribution were registered using K-scan pressure sensors inserted between menisci and tibial plateau. In the lateral compartment, root detachment decreased contact area (P = .017, 0° and 30°; P = .012, 60° and 90°) and increased mean (P = .012, all angles) and maximum (P = .025, 0° and 30°; P = .017, 60°; P = .012, 90°) pressures relative to intact condition. Repair restored all measured parameters close to intact at 0°, but effectiveness decreased with flexion angle, yielding no significant effect at 90°. Meniscectomy produced higher decreases than root avulsion in contact area (P = .012, 0° and 90°; P = .05, 30° and 60°) and increases in mean (P = .017, 0° and 30°; P = .018, 90°) and maximum pressure (P = .012, 0°; P = .036, 30°). In the medial compartment, lesion changed the contact area at high flexion angles only, while meniscectomy induced greater changes at all angles. Lateral meniscus posterior root avulsion generates significant alterations in contact area and pressures at lateral knee compartment for flexion angles between full extension and 90°. Meniscectomy causes greater disorders than the avulsion left in situ. Transosseous repair with a single suture restores these alterations to conditions close to intact at 0° and 30° but not at 60° and 90°. Altered contact mechanics after lateral meniscus posterior root avulsion might have degenerative consequences. Transosseous repair with one suture should be revised to effectively restore contact mechanics at high flexion angles. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  19. Phonotactic flight of the parasitoid fly Emblemasoma auditrix (Diptera: Sarcophagidae).

    PubMed

    Tron, Nanina; Lakes-Harlan, Reinhard

    2017-01-01

    The parasitoid fly Emblemasoma auditrix locates its hosts using acoustic cues from sound producing males of the cicada Okanagana rimosa. Here, we experimentally analysed the flight path of the phonotaxis from a landmark to the target, a hidden loudspeaker in the field. During flight, the fly showed only small lateral deviations. The vertical flight direction angles were initially negative (directed downwards relative to starting position), grew positive (directed upwards) in the second half of the flight, and finally flattened (directed horizontally or slightly upwards), typically resulting in a landing above the loudspeaker. This phonotactic flight pattern was largely independent from sound pressure level or target distance, but depended on the elevation of the sound source. The flight velocity was partially influenced by sound pressure level and distance, but also by elevation. The more elevated the target, the lower was the speed. The accuracy of flight increased with elevation of the target as well as the landing precision. The minimal vertical angle difference eliciting differences in behaviour was 10°. By changing the elevation of the acoustic target after take-off, we showed that the fly is able to orientate acoustically while flying.

  20. Molecular dynamics analysis of a equilibrium nanoscale droplet on a solid surface with periodic roughness

    NASA Astrophysics Data System (ADS)

    Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka

    2016-11-01

    Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.

  1. High contrast laser beam collimation testing using two proximately placed holographic optical elements

    NASA Astrophysics Data System (ADS)

    Rajkumar; Dubey, Rajiv; Debnath, Sanjit K.; Chhachhia, D. P.

    2018-05-01

    Accuracy in laser beam collimation is very important in systems used for precision measurements. The present work reports a technique for collimation testing of laser beams using two proximately placed holographic optical elements (HOEs). The required HOEs are designed and fabricated such that upon illumination with the test beam, they release two laterally sheared wavefronts, at desired angles from the directly transmitted beam, that superimpose each other to generate straight interference fringes. Deviation from the collimation of the test beam results in orientation of these otherwise horizontal fringes. The novelty of this setup comes from the fact that HOEs are lightweight, as well as easy to fabricate as compared to conventional wedge plates used for collimation testing, and generate high contrast fringes compared to other interferometry, holography, Talbot and Moiré based techniques in a compact manner. The proposed technique is experimentally validated by measuring the orientation of fringes by an angle of 16.4° when a collimating lens of focal length 200 mm is defocused by 600 μm. The accuracy in the setting of this collimation position is obtained to be 10 μm.

  2. An optofluidic prism tuned by two laminar flows.

    PubMed

    Xiong, S; Liu, A Q; Chin, L K; Yang, Y

    2011-06-07

    This paper presents a tunable optofluidic prism based on the configuration of two laminar flow streams with different refractive indices in a triangular chamber. The chambers with 70° and 90° apex angles are designed based on simulation results, which provide the optimum working range and avoid recirculating flows in the chambers. In addition, a hydrodynamic model has been developed to predict the tuning of the prisms by the variation in the flow rates. Prisms with different refractive indices are realized using benzyl alcohol and deionized (DI) water as the inner liquids, respectively. The mixture of ethylene glycol and DI water with an effective refractive index matched to that of the microchannel is used as the outer liquid. The apex angle of the prism is tuned from 75° to 135° by adjusting the ratio of the two flow rates. Subsequently, the deviation angle of the output light beam is tuned from -13.5° to 22°. One of the new features of this optofluidic prism is its capability to transform from a symmetric to an asymmetric prism with the assistance of a third flow. Two optical behaviours have been performed using the optofluidic prism. First, parallel light beam scanning is achieved with a constant deviation angle of 10° and a tuning range of 60 μm using the asymmetric prism. The detected output light intensity is increased by 65.7%. Second, light dispersion is experimentally demonstrated using 488-nm and 633-nm laser beams. The two laser beams become distinguishable with a deviation angle difference of 2.5° when the apex angle of the prism reaches 116°.

  3. Use of botulinum toxin in small-angle heterotropia and decompensating heterophoria: a review of the literature.

    PubMed

    Ripley, L; Rowe, F J

    2007-01-01

    Botulinum toxin has been used extensively in strabismus management. However, less is published regarding its use in small-angled manifest deviations or decompensating heterophorias, where an alternative to surgery is required. The aim of this review is to look at the use and effectiveness of botulinum toxin in managing small-angled manifest deviations, both constant and intermittent, and decompensating heterophorias. These types of strabismus can prove difficult to manage, as the angle present is often too small for surgery to be advised, but it may still cause a cosmetic or symptom-producing problem. A search of the English speaking literature was undertaken using Medline facilities as well as a limited manual search of non-Medline journals and transactions. A brief overview is provided for mechanisms of action, complications and dose effects, and diagnostic and therapeutic uses of botulinum toxin. The main reported complications are those of ptosis, induced vertical deviation and subconjunctival haemorrhage. The higher the dose, the greater the risk of complications. In small-angle strabismus, botulinum toxin is reported as particularly useful in cases of acquired and acute-onset esotropia in aiding maintenance of binocular vision. It is useful for additional management of surgically under- or over-corrected esotropia, particularly for those with potential for binocular vision. Less effect is reported in primary exotropia versus primary esotropia. It is the management of choice for consecutive exotropia, particularly when patients have had previous multiple surgery and where there is a risk for postoperative diplopia. Botulinum toxin has a specific role in decompensated heterophoria, allowing the visual axes a chance to 'lock on' and subsequently maintain binocular vision. Successful outcomes are reported after 1-2 injections only but the results are best in cases of heterophoria with little near-distance angle disparity.

  4. SU-E-T-313: Dosimetric Deviation of Misaligned Beams for a 6 MV Photon Linear Accelerator Using Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S

    2015-06-15

    Purpose: To quantify the dosimetric variations of misaligned beams for a linear accelerator by using Monte Carlo (MC) simulations. Method and Materials: Misaligned beams of a Varian 21EX Clinac were simulated to estimate the dosimetric effects. All the linac head components for a 6 MV photon beam were implemented in BEAMnrc/EGSnrc system. For incident electron beam parameters, 6 MeV with 0.1 cm full-width-half-max Gaussian beam was used. A phase space file was obtained below the jaw per each misalignment condition of the incident electron beam: (1) The incident electron beams were tilted by 0.5, 1.0 and 1.5 degrees on themore » x-axis from the central axis. (2) The center of the incident electron beam was off-axially moved toward +x-axis by 0.1, 0.2, and 0.3 cm away from the central axis. Lateral profiles for each misaligned beam condition were acquired at dmax = 1.5 cm and 10 cm depth in a rectangular water phantom. Beam flatness and symmetry were calculated by using the lateral profile data. Results: The lateral profiles were found to be skewed opposite to the angle of the incident beam for the tilted beams. For the displaced beams, similar skewed lateral profiles were obtained with small shifts of penumbra on the +x-axis. The variations of beam flatness were 3.89–11.18% and 4.12–42.57% for the tilted beam and the translated beam, respectively. The beam symmetry was separately found to be 2.95 −9.93% and 2.55–38.06% separately. It was found that the percent increase of the flatness and the symmetry values are approximated 2 to 3% per 0.5 degree tilt or per 1 mm displacement. Conclusion: This study quantified the dosimetric effects of misaligned beams using MC simulations. The results would be useful to understand the magnitude of the dosimetric deviations for the misaligned beams.« less

  5. Wind-Tunnel Research Comparing Lateral Control Devices Particularly at High Angles of Attack XIII : Auxiliary Airfoils Used as External Ailerons

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Noyes, Richard W

    1936-01-01

    This is the thirteenth report on a series of systematic tests comparing lateral control devices with particular reference to their effectiveness at high angles of attack. The present wind tunnel tests were made to determine the most feasible locations for lateral control surfaces mounted externally to a rectangular Clark y wing.

  6. Relationship between Lateral Femoral Bowing and Varus Knee Deformity Based on Two-Dimensional Assessment of Side-to-Side Differences.

    PubMed

    Cho, Myung-Rae; Lee, Young Sik; Choi, Won-Kee

    2018-03-01

    The objective was to evaluate the relationship between side-to-side differences of lateral femoral bowing and varus knee deformity based on two-dimensional (2D) assessment in unilateral total knee arthroplasty (TKA). A total of 143 patients with varus knee osteoarthritis who underwent unilateral TKA were enrolled. We evaluated the side-to-side differences of the frontal lower limb alignment by assessing lateral femoral bowing, anatomical medial distal femoral angle, and anatomical medial proximal tibial angle (aMPTA). The average values of all anatomical indices were significantly different between the operated side and the non-operated side (p<0.05). The side-to-side difference in hip knee ankle (HKA) angle had a statistically significant correlation with that in lateral femoral bowing (intraclass correlation coefficient, 0.259; p=0.002) and that in aMPTA. Linear regression analysis showed 0.199° of side-to-side difference in lateral femoral bowing was associated with 1° of side-to-side difference in bilateral HKA angle. The side-to-side difference in lateral femoral bowing showed a tendency to increase in proportion to varus knee deformity based on 2D assessment in unilateral TKA patients.

  7. Development of computer tablet software for clinical quantification of lateral knee compartment translation during the pivot shift test.

    PubMed

    Muller, Bart; Hofbauer, Marcus; Rahnemai-Azar, Amir Ata; Wolf, Megan; Araki, Daisuke; Hoshino, Yuichi; Araujo, Paulo; Debski, Richard E; Irrgang, James J; Fu, Freddie H; Musahl, Volker

    2016-01-01

    The pivot shift test is a commonly used clinical examination by orthopedic surgeons to evaluate knee function following injury. However, the test can only be graded subjectively by the examiner. Therefore, the purpose of this study is to develop software for a computer tablet to quantify anterior translation of the lateral knee compartment during the pivot shift test. Based on the simple image analysis method, software for a computer tablet was developed with the following primary design constraint - the software should be easy to use in a clinical setting and it should not slow down an outpatient visit. Translation of the lateral compartment of the intact knee was 2.0 ± 0.2 mm and for the anterior cruciate ligament-deficient knee was 8.9 ± 0.9 mm (p < 0.001). Intra-tester (ICC range = 0.913 to 0.999) and inter-tester (ICC = 0.949) reliability were excellent for the repeatability assessments. Overall, the average percent error of measuring simulated translation of the lateral knee compartment with the tablet parallel to the monitor increased from 2.8% at 50 cm distance to 7.7% at 200 cm. Deviation from the parallel position of the tablet did not have a significant effect until a tablet angle of 45°. Average percent error during anterior translation of the lateral knee compartment of 6mm was 2.2% compared to 6.2% for 2 mm of translation. The software provides reliable, objective, and quantitative data on translation of the lateral knee compartment during the pivot shift test and meets the design constraints posed by the clinical setting.

  8. Wetting, meniscus structure, and capillary interactions of microspheres bound to a cylindrical liquid interface.

    PubMed

    Kim, Paul Y; Dinsmore, Anthony D; Hoagland, David A; Russell, Thomas P

    2018-03-14

    Wetting, meniscus structure, and capillary interactions for polystyrene microspheres deposited on constant curvature cylindrical liquid interfaces, constructed from nonvolatile ionic or oligomeric liquids, were studied by optical interferometry and optical microscopy. The liquid interface curvature resulted from the preferential wetting of finite width lines patterned onto planar silicon substrates. Key variables included sphere diameter, nominal (or average) contact angle, and deviatoric interfacial curvature. Menisci adopted the quadrupolar symmetry anticipated by theory, with interfacial deformation closely following predicted dependences on sphere diameter and nominal contact angle. Unexpectedly, the contact angle was not constant locally around the contact line, the nominal contact angle varied among seemingly identical spheres, and the maximum interface deviation did not follow the predicted dependence on deviatoric interfacial curvature. Instead, this deviation was up to an order-of-magnitude larger than predicted. Trajectories of neighboring microspheres visually manifested quadrupole-quadrupole interactions, eventually producing square sphere packings that foreshadow interfacial assembly as a potential route to hierarchical 2D particle structures.

  9. A new validation technique for estimations of body segment inertia tensors: Principal axes of inertia do matter.

    PubMed

    Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J

    2016-12-08

    The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Relationship between the alpha and beta angles in diagnosing CAM-type femoroacetabular impingement on frog-leg lateral radiographs.

    PubMed

    Khan, Moin; Ranawat, Anil; Williams, Dale; Gandhi, Rajiv; Choudur, Hema; Parasu, Naveen; Simunovic, Nicole; Ayeni, Olufemi R

    2015-09-01

    Alpha and beta angles are commonly used radiographic measures to assess the sphericity of the proximal femur and distance between the pathologic head-neck junction and the acetabular rim, respectively. The aim of this study was to explore the relationship between these two measurements on frog-leg lateral hip radiographs. Fifty frog-leg lateral hip radiographs were evaluated by two orthopaedic surgeons and two radiologists. Each reviewer measured the alpha and beta angles on two separate occasions to determine the relationship between positive alpha and beta angles and the inter- and intra-observer reliability of these measurements. There was no significant association between positive alpha and beta angles, [kappa range -0.043 (95 % CI -0.17 to 0.086) to 0.54 (95 % CI 0.33-0.75)]. Intra-observer reliability was high [alpha angle intra-class correlation coefficient (ICC) range 0.74 (95 % CI 0.58-0.84) to 0.99 (95 % CI 0.98-0.99) and beta angle ICC range 0.86 (95 % CI 0.76-0.92) to 0.97 (95 % CI 0.95-0.98)]. There is no statistical or functional relationship between readings of positive alpha and beta angles. The radiographic measurements resulted in high intra-observer and fair-to-moderate inter-observer reliability. Results of this study suggest that the presence of a CAM lesion on lateral radiographs as suggested by a positive alpha angle does not necessitate a decrease in clearance between the femoral head and acetabular rim as measured by the beta angle and thus may not be the best measure of functional impingement. Understanding the relationship between these two aspects of femoroacetabular impingement improves a surgeon's ability to anticipate potential operative management.

  11. Safe insertion of S-2 alar iliac screws: radiological comparison between 2 insertion points using computed tomography and 3D analysis software.

    PubMed

    Yamada, Kentaro; Abe, Yuichiro; Satoh, Shigenobu

    2018-05-01

    OBJECTIVE S-2 alar iliac (S2AI) screws are commonly used as anchors for lumbosacral fixation. A serious potential complication of screw insertion is major vascular injury due to anterior or caudal screw deviation. To avoid screw deviation, the pelvic inlet view on intraoperative fluoroscopy images is recommended. However, there has been no detailed investigation of optimal fluoroscopic incline with the pelvic inlet view. The purpose of this study was to investigate the safety margins and to optimize fluoroscopic settings to avoid screw deviation with 2 reported insertion techniques using 3D analysis software and CT. METHODS The study included 50 patients (25 men and 25 women) who underwent abdominal-pelvic CT. With the use of software, the ideal S2AI screws were set from 2 entry points: A) the midpoint between the S-1 dorsal foramen and the S-2 dorsal foramen where they meet the lateral sacral crest, and B) 1 mm inferior and 1 mm lateral to the S-1 dorsal foramen. Anteriorly or caudally deviated screws were defined as deviation of a half thread of the ideal screw by rotation anteriorly or caudally from the entry point. The angular safety margins were compared between the 2 entry points, and patients with small safety margins were investigated. Subsequently, fluoroscopic images were virtualized on ray sum-rendered images. Conditions that provided proper recognition of screw deviation were investigated via lateral and anteroposterior views with the beam tilted caudally. RESULTS The safety margins of S2AI screws were smaller in the anterior direction than in the caudal direction and by entry point A than by entry point B (A: 9.1° ± 1.6° and B: 9.7° ± 1.5° in the anterior direction; A: 10.9° ± 3.8° and B: 13.9° ± 4.1° in the caudal direction). In contrast, patients with a deep-seated L-5 vertebral body tended to have smaller safety margins in the caudal direction. All anteriorly deviated screws were recognized with a 60°-70° inlet view from the S-1 slope. The caudally deviated screws were all recognized on the lateral view, but 31% of screws at entry point A and 21% of screws at entry point B were not recognized on the pelvic inlet view. CONCLUSIONS S2AI screws should be carefully placed to avoid anterior deviation compared with caudal deviation in terms of the safety margin, except in patients with a deep-seated L-5. The difference in safety margins between entry points A and B was negligible. Intraoperative fluoroscopy is recommended with a pelvic inlet view tilted 60°-70° from the S-1 slope to avoid anterior screw deviation. The lateral view is recommended to confirm that the screw is not deviated caudally.

  12. The hump in the Cerenkov lateral distribution of gamma ray showers

    NASA Technical Reports Server (NTRS)

    Sinha, S.; Sao, M. V. S.

    1985-01-01

    The lateral distribution of atmospheric Cerenkov photons emitted by gamma ray showers of energy 100 GeV is calculated. The lateral distribution shows a characteristic hump at a distance of approx. 135 meter from the core. The hump is shown to be due to electrons of threshold energy 1 GeV, above which the mean scattering angle becomes smaller than the Cerenkov angle.

  13. Description Of Scoliotic Deformity Pattern By Harmonic Functions

    NASA Astrophysics Data System (ADS)

    Drerup, Burkhard; Hierholzer, Eberhard

    1989-04-01

    Frontal radiographs of scoliotic deformity of the spine reveal a characteristic pattern of lateral deviation, lateral tilt and axial rotation of vertebrae. In order to study interrelations between deformation parameters 478 radiographs of idiopathic scolioses, 23 of scolioses after Wilms-tumor treatment and 18 of scolioses following poliomyelitis were digitized. From these the curves of lateral deviation, tilt and rotation are calculated and fitted by Fourier series. By restriction to the first harmonic, analysis reduces to the analysis of a single phase and amplitude for each curve. Justification of this simplification will be discussed. Results provide a general geometric description of scoliotic deformity.

  14. Symmetric rearrangement of groundwater-fed streams.

    PubMed

    Yi, Robert; Cohen, Yossi; Devauchelle, Olivier; Gibbins, Goodwin; Seybold, Hansjörg; Rothman, Daniel H

    2017-11-01

    Streams shape landscapes through headward growth and lateral migration. When these streams are primarily fed by groundwater, recent work suggests that their tips advance to maximize the symmetry of the local Laplacian field associated with groundwater flow. We explore the extent to which such forcing is responsible for the lateral migration of streams by studying two features of groundwater-fed streams in Bristol, Florida: their confluence angle near junctions and their curvature. First, we find that, while streams asymptotically form a 72° angle near their tips, they simultaneously exhibit a wide 120° confluence angle within approximately 10 m of their junctions. We show that this wide angle maximizes the symmetry of the groundwater field near the junction. Second, we argue that streams migrate laterally within valleys and present a new spectral analysis method to relate planform curvature to the surrounding groundwater field. Our results suggest that streams migrate laterally in response to fluxes from the surrounding groundwater table, providing evidence of a new mechanism that complements Laplacian growth at their tips.

  15. Comparison of goniometric measurements of the stifle joint in seven breeds of normal dogs.

    PubMed

    Sabanci, Seyyid S; Ocal, Mehmet K

    2016-05-18

    To compare the goniometric measurements of the stifle joint in seven dog breeds, and to determine the relationship among goniometric measurements, age, body weight, tibial plateau angle, crus and thigh circumferences, and widths of quadriceps, hamstring, and gastrocnemius muscles in healthy dogs. We used a total of 126 dogs from seven different breeds, and recorded the angle of the stifle joint at standing, extension, and flexion together with the range of motion (ROM). The circumferences of the thigh and crus were also measured. Mediolateral radiographic projections of the tibia and the femur were obtained from the dogs, and the tibial plateau angles, as well as the widths of quadriceps, hamstring, and gastrocnemius muscles, were measured from these images. Neither the sex of the dog nor the differences in the side measured affected the goniometric measurements of the stifle joint. The standing, extension, flexion, and ROM angles were different among the breeds. The standard deviations of the standing and extension angles were small relative to their means, but the standard deviations of the flexion angle were large relative to their means in all breeds. Body weight and muscular measurements were the most influential factors on the stifle flexion angle and ROM. Breed differences, body weights, and muscle mass should be taken into consideration during assessment of the stifle function using goniometric measurements.

  16. Laser-fiber coupling by means of a silicon micro-optical bench and a self-aligned soldering process

    NASA Astrophysics Data System (ADS)

    Schmidt, Jan P.; Cordes, A.; Mueller, Joerg; Burkhardt, Hans

    1995-02-01

    The alignment of laser diodes to monomode fibers has to meet extremely close tolerances for a low coupling loss. Typically < 0.5 micrometers in lateral and vertical direction and less than two degrees in angle deviation are allowed for a coupling loss below 2 dB. Presently such close tolerances can only be met by gluing or soldering both components on separate base plates and combining them via piezoactivated alignment monitoring the output of the circuit and then gluing them using UV-hardening epoxies. Such a procedure is not very economical and not useful for mass applications. This paper presents the principle and realization of a silicon micro-optical bench for laser-fiber-coupling, which avoids the above mentioned disadvantages. The micro-optical bench is realized using well controlled plasma etching processes to transfer the guiding patterns for the laser and the fiber into the silicon substrate, keeping geometry tolerances below +/- 0.5 micrometers in lateral and vertical direction. Mounting the laser diode by means of a self-aligned soldering process, an additional contribution to the precise alignment of the laser is further improved.

  17. Identification of 'Point A' as the prevalent source of error in cephalometric analysis of lateral radiographs.

    PubMed

    Grogger, P; Sacher, C; Weber, S; Millesi, G; Seemann, R

    2018-04-10

    Deviations in measuring dentofacial components in a lateral X-ray represent a major hurdle in the subsequent treatment of dysgnathic patients. In a retrospective study, we investigated the most prevalent source of error in the following commonly used cephalometric measurements: the angles Sella-Nasion-Point A (SNA), Sella-Nasion-Point B (SNB) and Point A-Nasion-Point B (ANB); the Wits appraisal; the anteroposterior dysplasia indicator (APDI); and the overbite depth indicator (ODI). Preoperative lateral radiographic images of patients with dentofacial deformities were collected and the landmarks digitally traced by three independent raters. Cephalometric analysis was automatically performed based on 1116 tracings. Error analysis identified the x-coordinate of Point A as the prevalent source of error in all investigated measurements, except SNB, in which it is not incorporated. In SNB, the y-coordinate of Nasion predominated error variance. SNB showed lowest inter-rater variation. In addition, our observations confirmed previous studies showing that landmark identification variance follows characteristic error envelopes in the highest number of tracings analysed up to now. Variance orthogonal to defining planes was of relevance, while variance parallel to planes was not. Taking these findings into account, orthognathic surgeons as well as orthodontists would be able to perform cephalometry more accurately and accomplish better therapeutic results. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model.

    PubMed

    Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Kim, Sung Ju; Lee, Kyoung Min; Farber, Daniel C; Chung, Chin Youb; Choi, In Ho

    2015-01-01

    Radiographic examination is a widely used evaluation method in the orthopedic clinic. However, conventional radiography alone does not reflect the dynamic changes between foot and ankle segments during gait. Multiple 3-dimensional multisegment foot models (3D MFMs) have been introduced to evaluate intersegmental motion of the foot. In this study, we evaluated the correlation between static radiographic indices and intersegmental foot motion indices. One hundred twenty-five females were tested. Static radiographs of full-leg and anteroposterior (AP) and lateral foot views were performed. For hindfoot evaluation, we measured the AP tibiotalar angle (TiTA), talar tilt (TT), calcaneal pitch, lateral tibiocalcaneal angle, and lateral talcocalcaneal angle. For the midfoot segment, naviculocuboid overlap and talonavicular coverage angle were calculated. AP and lateral talo-first metatarsal angles and metatarsal stacking angle (MSA) were measured to assess the forefoot. Hallux valgus angle (HVA) and hallux interphalangeal angle were measured. In gait analysis by 3D MFM, intersegmental angle (ISA) measurements of each segment (hallux, forefoot, hindfoot, arch) were recorded. ISAs at midstance phase were most highly correlated with radiography. Significant correlations were observed between ISA measurements using MFM and static radiographic measurements in the same segment. In the hindfoot, coronal plane ISA was correlated with AP TiTA (P < .001) and TT (P = .018). In the hallux, HVA was strongly correlated with transverse ISA of the hallux (P < .001). The segmental foot motion indices at midstance phase during gait measured by 3D MFM gait analysis were correlated with the conventional radiographic indices. The observed correlation between MFM measurements at midstance phase during gait and static radiographic measurements supports the fundamental basis for the use of MFM in analysis of dynamic motion of foot segment during gait. © The Author(s) 2014.

  19. Hypersonic lateral and directional stability characteristics of aeroassist flight experiment configuration in air and CF4

    NASA Technical Reports Server (NTRS)

    Micol, John R.; Wells, William L.

    1993-01-01

    Hypersonic lateral and directional stability characteristics measured on a 60 deg half-angle elliptical cone, which was raked at an angle of 73 deg from the cone centerline and with an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane), are presented for angles of attack from -10 to 10 deg. The high normal-shock density ratio of a real gas was simulated by tests at a Mach number of 6 in air and CF4 (density ratio equal to 5.25 and 12.0, respectively). Tests were conducted in air at Mach 6 and 10 and in CF4 at Mach 6 to examine the effects of Mach number, Reynolds number, and normal-shock density ratio. Changes in Mach number from 6 to 10 in air or in Reynolds number by a factor of 4 at Mach 6 had a negligible effect on lateral and directional stability characteristics. Variations in normal-shock density ratio had a measurable effect on lateral and directional aerodynamic coefficients, but no significant effect on lateral and directional stability characteristics. Tests in air and CF4 indicated that the configuration was laterally and directionally stable through the test range of angle of attack.

  20. [Spatial orientation of the facies patellaris femoris].

    PubMed

    Hassenpflug, J; Hiss, E; Blauth, W

    1987-01-01

    The present article reports on the geometrical conditions of the physiological movement of the patella. The geometrical shape of 18 femoral condyles and patella sliding areas was investigated in order to describe basic data for the design of endoprostheses. Surface and direction of the facies patellaris femoris were determined by means of radiographic, mechanical and optical measurements. The curvature of the deepest patella sliding groove proves a constant correlation with the dorsal condylar curvature. In the frontal plane the lowest points of the sliding area run with a dispersion of +/- 4 degrees to the vertical line related to the transverse tangent on the dorsal condylar surface. Considering deviations of leg alignment the measures come close to an angle of about 0 degrees. So the direction of the patella sliding groove differs from the normal valgus position of the distal femur. Therefore in artificial knee replacement a lateral tilt of the patella sliding groove should not be propagated as 'physiological'.

  1. Experimental study of gravitation effects in the flow of a particle-laden thin film on an inclined plane

    NASA Astrophysics Data System (ADS)

    Ward, Thomas; Wey, Chi; Glidden, Robert; Hosoi, A. E.; Bertozzi, A. L.

    2009-08-01

    The flow of viscous, particle-laden wetting thin films on an inclined plane is studied experimentally as the particle concentration is increased to the maximum packing limit. The slurry is a non-neutrally buoyant mixture of silicone oil and either solid glass beads or glass bubbles. At low concentrations (ϕ <0.45), the elapsed time versus average front position scales with the exponent predicted by Huppert [Nature (London) 300, 427 (1982)]. At higher concentrations, the average front position still scales with the exponent predicted by Huppert on some time interval, but there are observable deviations due to internal motion of the particles. At the larger concentration values and at later times, the departure from Huppert is seen to strongly depend on total slurry volume VT, inclination angle α, density difference, and particle size range.

  2. Estimation of coupling efficiency of optical fiber by far-field method

    NASA Astrophysics Data System (ADS)

    Kataoka, Keiji

    2010-09-01

    Coupling efficiency to a single-mode optical fiber can be estimated with the field amplitudes at far-field of an incident beam and optical fiber mode. We call it the calculation by far-field method (FFM) in this paper. The coupling efficiency by FFM is formulated including effects of optical aberrations, vignetting of the incident beam, and misalignments of the optical fiber such as defocus, lateral displacements, and angle deviation in arrangement of the fiber. As the results, it is shown the coupling efficiency is proportional to the central intensity of the focused spot, i.e., Strehl intensity of a virtual beam determined by the incident beam and mode of the optical fiber. Using the FFM, a typical optics in which a laser beam is coupled to an optical fiber with a lens of finite numerical aperture (NA) is analyzed for several cases of amplitude distributions of the incident light.

  3. A tactual pilot aid for the approach-and-landing task: Inflight studies

    NASA Technical Reports Server (NTRS)

    Gilson, R. D.; Fenton, R. E.

    1973-01-01

    A pilot aid -- a kinesthetic-tactual compensatory display -- for assisting novice pilots in various inflight situations has undergone preliminary inflight testing. The efficacy of this display, as compared with two types of visual displays, was evaluated in both a highly structured approach-and-landing task and a less structured test involving tight turns about a point. In both situations, the displayed quantity was the deviation (alpha sub 0 - alpha) in angle at attack from a desired value alpha sub 0. In the former, the performance with the tactual display was comparable with that obtained using a visual display of (alpha sub 0 - alpha), while in the later, substantial improvements (reduced tracking error (55%), decreased maximum altitude variations (67%), and decreased speed variations (43%)), were obtained using the tactual display. It appears that such a display offers considerable potential for inflight use.

  4. [Visualization of Anterolateral Ligament of the Knee Using 3D Reconstructed Variable Refocus Flip Angle-Turbo Spin Echo T2 Weighted Image].

    PubMed

    Yokosawa, Kenta; Sasaki, Kana; Muramatsu, Koichi; Ono, Tomoya; Izawa, Hiroyuki; Hachiya, Yudo

    2016-05-01

    Anterolateral ligament (ALL) is one of the lateral structures in the knee that contributes to the internal rotational stability of tibia. ALL has been referred to in some recent reports to re-emphasize its importance. We visualized the ALL on 3D-MRI in 32 knees of 27 healthy volunteers (23 male knees, 4 female knees; mean age: 37 years). 3D-MRIs were performed using 1.5-T scanner [T(2) weighted image (WI), SPACE: Sampling Perfection with Application optimized Contrast using different flip angle Evolutions] in the knee extended positions. The visualization rate of the ALL, the mean angle to the lateral collateral ligament (LCL), and the width and the thickness of the ALL at the joint level were investigated. The visualization rate was 100%. The mean angle to the LCL was 10.6 degrees. The mean width and the mean thickness of the ALL were 6.4 mm and 1.0 mm, respectively. The ALL is a very thin ligament with a somewhat oblique course between the lateral femoral epicondyle and the mid-third area of lateral tibial condyle. Therefore, the slice thickness and the slice angle can easily affect the ALL visualization. 3D-MRI enables acquiring thin-slice imaging data over a relatively short time, and arbitrary sections aligned with the course of the ALL can later be selected.

  5. Scoliosis convexity and organ anatomy are related.

    PubMed

    Schlösser, Tom P C; Semple, Tom; Carr, Siobhán B; Padley, Simon; Loebinger, Michael R; Hogg, Claire; Castelein, René M

    2017-06-01

    Primary ciliary dyskinesia (PCD) is a respiratory syndrome in which 'random' organ orientation can occur; with approximately 46% of patients developing situs inversus totalis at organogenesis. The aim of this study was to explore the relationship between organ anatomy and curve convexity by studying the prevalence and convexity of idiopathic scoliosis in PCD patients with and without situs inversus. Chest radiographs of PCD patients were systematically screened for existence of significant lateral spinal deviation using the Cobb angle. Positive values represented right-sided convexity. Curve convexity and Cobb angles were compared between PCD patients with situs inversus and normal anatomy. A total of 198 PCD patients were screened. The prevalence of scoliosis (Cobb >10°) and significant spinal asymmetry (Cobb 5-10°) was 8 and 23%, respectively. Curve convexity and Cobb angle were significantly different within both groups between situs inversus patients and patients with normal anatomy (P ≤ 0.009). Moreover, curve convexity correlated significantly with organ orientation (P < 0.001; ϕ = 0.882): In 16 PCD patients with scoliosis (8 situs inversus and 8 normal anatomy), except for one case, matching of curve convexity and orientation of organ anatomy was observed: convexity of the curve was opposite to organ orientation. This study supports our hypothesis on the correlation between organ anatomy and curve convexity in scoliosis: the convexity of the thoracic curve is predominantly to the right in PCD patients that were 'randomized' to normal organ anatomy and to the left in patients with situs inversus totalis.

  6. Motion-robust intensity-modulated proton therapy for distal esophageal cancer.

    PubMed

    Yu, Jen; Zhang, Xiaodong; Liao, Li; Li, Heng; Zhu, Ronald; Park, Peter C; Sahoo, Narayan; Gillin, Michael; Li, Yupeng; Chang, Joe Y; Komaki, Ritsuko; Lin, Steven H

    2016-03-01

    To develop methods for evaluation and mitigation of dosimetric impact due to respiratory and diaphragmatic motion during free breathing in treatment of distal esophageal cancers using intensity-modulated proton therapy (IMPT). This was a retrospective study on 11 patients with distal esophageal cancer. For each patient, four-dimensional computed tomography (4D CT) data were acquired, and a nominal dose was calculated on the average phase of the 4D CT. The changes of water equivalent thickness (ΔWET) to cover the treatment volume from the peak of inspiration to the valley of expiration were calculated for a full range of beam angle rotation. Two IMPT plans were calculated: one at beam angles corresponding to small ΔWET and one at beam angles corresponding to large ΔWET. Four patients were selected for the calculation of 4D-robustness-optimized IMPT plans due to large motion-induced dose errors generated in conventional IMPT. To quantitatively evaluate motion-induced dose deviation, the authors calculated the lowest dose received by 95% (D95) of the internal clinical target volume for the nominal dose, the D95 calculated on the maximum inhale and exhale phases of 4D CT DCT0 andDCT50 , the 4D composite dose, and the 4D dynamic dose for a single fraction. The dose deviation increased with the average ΔWET of the implemented beams, ΔWETave. When ΔWETave was less than 5 mm, the dose error was less than 1 cobalt gray equivalent based on DCT0 and DCT50 . The dose deviation determined on the basis of DCT0 and DCT50 was proportionally larger than that determined on the basis of the 4D composite dose. The 4D-robustness-optimized IMPT plans notably reduced the overall dose deviation of multiple fractions and the dose deviation caused by the interplay effect in a single fraction. In IMPT for distal esophageal cancer, ΔWET analysis can be used to select the beam angles that are least affected by respiratory and diaphragmatic motion. To further reduce dose deviation, the 4D-robustness optimization can be implemented for IMPT planning. Calculation of DCT0 and DCT50 is a conservative method to estimate the motion-induced dose errors.

  7. Measuring and evaluating morphological asymmetry in fish: distinct lateral dimorphism in the jaws of scale-eating cichlids.

    PubMed

    Hata, Hiroki; Yasugi, Masaki; Takeuchi, Yuichi; Takahashi, Satoshi; Hori, Michio

    2013-11-01

    The left-right asymmetry of scale-eating Tanganyikan cichlids is described as a unilateral topographical shift of the quadratomandibular joints. This morphological laterality has a genetic basis and has therefore been used as a model for studying negative frequency-dependent selection and the resulting oscillation in frequencies of two genotypes, lefty and righty, in a population. This study aims were to confirm this laterality in Perissodus microlepis Boulenger and P. straeleni (Poll) and evaluate an appropriate method for measuring and testing the asymmetry. Left-right differences in the height of the mandible posterior ends (HMPE) and the angle between the neurocranium and vertebrae of P. microlepis and P. straeleni were measured on skeletal specimens. Snout-bending angle was also measured using a dorsal image of the same individuals following a previous method. To define which distribution model, fluctuating asymmetry (FA), directional asymmetry (DA), or antisymmetry (AS), best fit to the lateral asymmetry of the traits, we provided an R package, IASD. As a result, HMPE and neurocranium-vertebrae angle of both species were best fitted to AS, suggesting that P. microlepis and P. straeleni showed a distinct dimorphism in these traits, although snout-bending angle of P. microlepis was best fitted to FA. Measurement error was low for HMPE comparing the snout-bending angle in P. microlepis, indicating that measuring HMPE is a more accurate method. The scale-eating tribe Perissodini showed distinct antisymmetry in the jaw skeleton and neurocranium-vertebrae angle, and this laterality remains a valid marker for further evolutionary studies.

  8. Measuring and evaluating morphological asymmetry in fish: distinct lateral dimorphism in the jaws of scale-eating cichlids

    PubMed Central

    Hata, Hiroki; Yasugi, Masaki; Takeuchi, Yuichi; Takahashi, Satoshi; Hori, Michio

    2013-01-01

    The left–right asymmetry of scale-eating Tanganyikan cichlids is described as a unilateral topographical shift of the quadratomandibular joints. This morphological laterality has a genetic basis and has therefore been used as a model for studying negative frequency-dependent selection and the resulting oscillation in frequencies of two genotypes, lefty and righty, in a population. This study aims were to confirm this laterality in Perissodus microlepis Boulenger and P. straeleni (Poll) and evaluate an appropriate method for measuring and testing the asymmetry. Left–right differences in the height of the mandible posterior ends (HMPE) and the angle between the neurocranium and vertebrae of P. microlepis and P. straeleni were measured on skeletal specimens. Snout-bending angle was also measured using a dorsal image of the same individuals following a previous method. To define which distribution model, fluctuating asymmetry (FA), directional asymmetry (DA), or antisymmetry (AS), best fit to the lateral asymmetry of the traits, we provided an R package, IASD. As a result, HMPE and neurocranium–vertebrae angle of both species were best fitted to AS, suggesting that P. microlepis and P. straeleni showed a distinct dimorphism in these traits, although snout-bending angle of P. microlepis was best fitted to FA. Measurement error was low for HMPE comparing the snout-bending angle in P. microlepis, indicating that measuring HMPE is a more accurate method. The scale-eating tribe Perissodini showed distinct antisymmetry in the jaw skeleton and neurocranium–vertebrae angle, and this laterality remains a valid marker for further evolutionary studies. PMID:24363893

  9. Parametric Investigation on the Use of Lateral and Logitudinal Rotor Trim Flapping for Tiltrotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos

    2017-01-01

    This paper presents an acoustics parametric study of the effect of varying lateral and longitudinal rotor trim flapping angles (tip-path-plane tilt) on noise radiated by an isolated 26-ft diameter proprotor, similar to that of the AW609 tiltrotor, in edgewise flight. Three tip-path-plane angle of attack operating conditions of -9, 0 and 6 deg, at 80 knots, were investigated. Results showed that: 1) minimum noise was attained for the tip-path-plane angle of attack value of -9 deg, and 2) changing the cyclic trim state (i.e., controls) altered the airloads and produced noticeable changes to the low-frequency (LF) and blade-vortex interaction (BVI) radiated-noise magnitude and directionality. In particular, by trimming the rotor to a positive (inboard) lateral flapping angle of 4 deg, further reductions up to 3 dB in the low-frequency noise sound pressure level were attained without significantly impacting the BVI noise for longitudinal tip-path-plane angles of -9 and 6 deg.

  10. Normal correspondence of tectal maps for saccadic eye movements in strabismus

    PubMed Central

    Economides, John R.; Adams, Daniel L.

    2016-01-01

    The superior colliculus is a major brain stem structure for the production of saccadic eye movements. Electrical stimulation at any given point in the motor map generates saccades of defined amplitude and direction. It is unknown how this saccade map is affected by strabismus. Three macaques were raised with exotropia, an outwards ocular deviation, by detaching the medial rectus tendon in each eye at age 1 mo. The animals were able to make saccades to targets with either eye and appeared to alternate fixation freely. To probe the organization of the superior colliculus, microstimulation was applied at multiple sites, with the animals either free-viewing or fixating a target. On average, microstimulation drove nearly conjugate saccades, similar in both amplitude and direction but separated by the ocular deviation. Two monkeys showed a pattern deviation, characterized by a systematic change in the relative position of the two eyes with certain changes in gaze angle. These animals' saccades were slightly different for the right eye and left eye in their amplitude or direction. The differences were consistent with the animals' underlying pattern deviation, measured during static fixation and smooth pursuit. The tectal map for saccade generation appears to be normal in strabismus, but saccades may be affected by changes in the strabismic deviation that occur with different gaze angles. PMID:27605534

  11. [Correlation analysis on the disorders of patella-femoral joint and torsional deformity of tibia].

    PubMed

    Sun, Zhen-Jie; Yuan, Yi; Liu, Rui-Bo

    2015-03-01

    To reveal the possible mechanism involved in patella-femoral degenerative arthritis (PFDA) in- duced by torsion-deformity of tibia via analyzing the relationship between torsion-deformity of the tibia in patients with PFDA and the disorder of patella-femoral joint under the static and dynamic conditions. From October 2009 to October 2010, 50 patients (86 knees, 24 knees of male patients and 62 knees of female patients) with PFDA were classified as disease group and 16 people (23 knees, 7 knees of males and 16 knees of females) in the control group. The follow indexes were measured: the torsion-angle of tibia on CT scanning imagings, the patella-femoral congruence angle and lateral patella-femoral angle under static and dynamic conditions when the knee bent at 30 degrees of flexion. Based on the measurement results, the relationship between the torsion-deformity of tibias and the disorders of patella-femoral joints in patients with PFDA were analyzed. Finally,the patients were divided into three groups including large torsion-angle group, small torsion-angle group and normal group according to the size of torsion-angle, in order to analyze the relationship between torsion-deformity and disorders of patella-femoral joint, especially under the dynamic conditions. Compared with patients without PFDA, the ones with PFDA had bigger torsion-angle (30.30 ± 7.11)° of tibia, larger patella-femoral congruence angle (13.20 ± 3.94)° and smaller lateral patella-femoral angle (12.30 ± 3.04)°. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had statistical differences respectively in both too-big torsion-angle group and too-small torsion-angle group. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had no statistical differences in normal torsion-angle group. Torsion-deformity of tibia is the main reason for disorder of patella-femoral joint in the patients with PFDA. Torsion-deformity of tibia is always accompanied by instability of patella-femoral joint,especially under the dynamic condition, thus causing PFDA. It can not only provide arrangement information and degenerative condition of patella-femoral joint,but also provide guidance through the analysis on the relationship for better clinical prevention and early treatment of degenerative bone and joint disease.

  12. SU-F-J-51: A Cone-Based Scintillator Detector for IGRT QA for Scattered and Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oesten, H; Clasie, B; Jee, K

    Purpose: IGRT commissioning and QA are critical components for precise delivery of proton treatment beams to patients. In order to ensure high quality IGRT, a new cone-based scintillator detector was evaluated for our QA activities for double-scattered and scanning proton modalities. This allows a routine evaluation of the gantry-angle dependent position offset between the radiation and imaging. Methods: The cone-based scintillator detector (XRV-124, Logos Systems, Int’l CA, USA) features a unique configuration of measuring stereotactic paths of proton and x-ray beams in a single setup with arbitrary gantry angles. For the beams-eye-view (BEV) analysis of x-ray crosshair images, a cylindricalmore » representation of the cone image was newly developed. The calibration accuracy was evaluated using different CT resolutions for a range of 55 – 95mm in patient’s cranial direction and ±9mm in the lateral direction. Energy-dependent spot sizes (σ) of pencil beams were characterized and compared to measurements by the MatriXX detector (IBA, Germany). Iso-centric deviations between radiation and x-ray imaging were characterized as a function of gantry angle. Results: The position calibration of the detector was successfully verified with a reproducible positioning by x-ray imaging. The measurements were reproducible within clinical tolerances (±1mm). The spot size vs. energy at zero gantry angle measured with the scintillating cone detector agreed with the MatriXX detector measurements within 17%. Conclusion: The new approach to investigate the accuracy of IGRT and pencil beam properties could successfully be implemented into the QA program. The system will improve efficiency in our QA activities for proton treatments.« less

  13. Effects of Exercise on Spinal Deformities and Quality of Life in Patients with Adolescent Idiopathic Scoliosis

    PubMed Central

    Anwer, Shahnawaz; Alghadir, Ahmad; Abu Shaphe, Md.; Anwar, Dilshad

    2015-01-01

    Objectives. This systematic review was conducted to examine the effects of exercise on spinal deformities and quality of life in patients with adolescent idiopathic scoliosis (AIS). Data Sources. Electronic databases, including PubMed, CINAHL, Embase, Scopus, Cochrane Register of Controlled Trials, PEDro, and Web of Science, were searched for research articles published from the earliest available dates up to May 31, 2015, using the key words “exercise,” “postural correction,” “posture,” “postural curve,” “Cobb's angle,” “quality of life,” and “spinal deformities,” combined with the Medical Subject Heading “scoliosis.” Study Selection. This systematic review was restricted to randomized and nonrandomized controlled trials on AIS published in English language. The quality of selected studies was assessed by the PEDro scale, the Cochrane Collaboration's tool, and the Grading of Recommendations Assessment, Development, and Evaluation System (GRADE). Data Extraction. Descriptive data were collected from each study. The outcome measures of interest were Cobb angle, trunk rotation, thoracic kyphosis, lumbar kyphosis, vertebral rotation, and quality of life. Data Synthesis. A total of 30 studies were assessed for eligibility. Six of the 9 selected studies reached high methodological quality on the PEDro scale. Meta-analysis revealed moderate-quality evidence that exercise interventions reduce the Cobb angle, angle of trunk rotation, thoracic kyphosis, and lumbar lordosis and low-quality evidence that exercise interventions reduce average lateral deviation. Meta-analysis revealed moderate-quality evidence that exercise interventions improve the quality of life. Conclusions. A supervised exercise program was superior to controls in reducing spinal deformities and improving the quality of life in patients with AIS. PMID:26583083

  14. [Feasibility of prismatic correction of microesotropia using the measuring and correcting methodology by H.-J. Haase].

    PubMed

    Kromeier, M; Kommerell, G

    2006-01-01

    The "Measuring and Correcting Methodology after H.-J. Haase" is based on the assumption that a minute deviation from the orthovergence position (fixation disparity) indicates a difficulty to overcome a larger "vergence angle of rest". Objective recordings have, however, revealed that the subjective tests applied in the "Measuring and Correcting Methodology after H.-J. Haase" can mislead to the assumption of a fixation disparity, although both eyes are aligned exactly to the fixation point. How do patients with an inconspicuously small, yet objectively verified strabismus react to the "Measuring and Correcting Methodology by H.-J. Haase"? Eight patients with a microesotropia between 0.5 and 3 degrees were subjected to the "Measuring and Correcting Methodology after H.-J. Haase. In all 8 patients, the prisms determined with the Cross-, Pointer- and Rectangle Tests increased the angle of squint, without reaching a full correction: the original angle prevailed. In the Stereobalance Test, prisms did not reduce the 100 % preponderance of the non-squinting eye. The stereoscopic threshold was between 36 and 1170 arcsec in 7 out of the 8 subjects, and above 4000 arcsec in 1 subject. (1) In all 8 patients, prisms determined with the "Measuring and Correcting Methodology by H.-J. Haase" increased the angle of strabismus, without reaching bifoveal vision. This uniform result suggests that primary microesotropia cannot be corrected with the "Measuring and Correcting Methodology after H.-J. Haase" (2) A lacking contribution of the strabismic eye to the recognition of a lateral offset between stereo objects, as determined with the Stereobalance Test, does not imply a lack of binocular stereopsis.

  15. Borehole deviation and correction factor data for selected wells in the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.

    2016-11-29

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, has maintained a water-level monitoring program at the Idaho National Laboratory (INL) since 1949. The purpose of the program is to systematically measure and report water-level data to assess the eastern Snake River Plain aquifer and long term changes in groundwater recharge, discharge, movement, and storage. Water-level data are commonly used to generate potentiometric maps and used to infer increases and (or) decreases in the regional groundwater system. Well deviation is one component of water-level data that is often overlooked and is the result of the well construction and the well not being plumb. Depending on measured slant angle, where well deviation generally increases linearly with increasing slant angle, well deviation can suggest artificial anomalies in the water table. To remove the effects of well deviation, the USGS INL Project Office applies a correction factor to water-level data when a well deviation survey indicates a change in the reference elevation of greater than or equal to 0.2 ft.Borehole well deviation survey data were considered for 177 wells completed within the eastern Snake River Plain aquifer, but not all wells had deviation survey data available. As of 2016, USGS INL Project Office database includes: 57 wells with gyroscopic survey data; 100 wells with magnetic deviation survey data; 11 wells with erroneous gyroscopic data that were excluded; and, 68 wells with no deviation survey data available. Of the 57 wells with gyroscopic deviation surveys, correction factors for 16 wells ranged from 0.20 to 6.07 ft and inclination angles (SANG) ranged from 1.6 to 16.0 degrees. Of the 100 wells with magnetic deviation surveys, a correction factor for 21 wells ranged from 0.20 to 5.78 ft and SANG ranged from 1.0 to 13.8 degrees, not including the wells that did not meet the correction factor criteria of greater than or equal to 0.20 ft.Forty-seven wells had gyroscopic and magnetic deviation survey data for the same well. Datasets for both survey types were compared for the same well to determine whether magnetic survey data were consistent with gyroscopic survey data. Of those 47 wells, 96 percent showed similar correction factor estimates (≤ 0.20 ft) for both magnetic and gyroscopic well deviation surveys. A linear comparison of correction factor estimates for both magnetic and gyroscopic deviation well surveys for all 47 wells indicate good linear correlation, represented by an r-squared of 0.88. The correction factor difference between the gyroscopic and magnetic surveys for 45 of 47 wells ranged from 0.00 to 0.18 ft, not including USGS 57 and USGS 125. Wells USGS 57 and USGS 125 show a correction factor difference of 2.16 and 0.36 ft, respectively; however, review of the data files suggest erroneous SANG data for both magnetic deviation well surveys. The difference in magnetic and gyroscopic well deviation SANG measurements, for all wells, ranged from 0.0 to 0.9 degrees. These data indicate good agreement between SANG data measured using the magnetic deviation survey methods and SANG data measured using gyroscopic deviation survey methods, even for surveys collected years apart.

  16. Systematic review of outcomes following fixed angle intramedullary fixation of distal radius fractures.

    PubMed

    Hardman, John; Al-Hadithy, Nawfal; Hester, Thomas; Anakwe, Raymond

    2015-12-01

    There remains little consensus regarding the optimal management of distal radius fractures. Fixed angle volar devices have gained recent popularity, but have also been associated with soft tissue complications. Intramedullary (IM) devices offer fixed angle stabilisation with minimally invasive surgical technique and low, IM profile. No formal review of outcomes could be identified. We conducted a systematic review of clinical studies regarding the use of fixed angle IM devices in acute extra-articular or simple intra-articular distal radius fractures. Preferred Reporting Items for Systematic Reviews (PRISMA) guidance was followed. Numerical data regarding functional scores, ranges of movement, radiological outcomes and complications were pooled to produce aggregate means and standard deviation. A total of 310 titles and abstracts were identified. Fourteen papers remained for analysis. Total patient number was 357, mean age 63.72 years and mean follow-up 12.77 months. Mean functional scores were all rated as 'excellent'. Aggregate means: flexion 53.62°, extension 56.38°, pronation 69.10°, supination 70.29°, ulnar deviation 28.35°, radial deviation 18.12°, radial height 8.98 mm, radial inclination 16.51°, volar tilt 5.35°, ulnar variance 0.66 mm and grip strength 90.37 %. Overall complication rate was 19.6 %. Tendon rupture was unreported. Tendon irritation was 0.88 %. Radial nerve paraesthesia was 11.44 %. Fixed angle IM devices facilitate excellent functional outcomes, with radiological and clinical parameters at least equivalent to volar plate devices. Low rates of tendon irritation and absence of tendon rupture are advantageous. Significant limitations include a lack of application for complex articular injuries and the propensity to cause a transient neuritis of the superficial branch of the radial nerve.

  17. Posture Alignment of Adolescent Idiopathic Scoliosis: Photogrammetry in Scoliosis School Screening.

    PubMed

    Penha, Patrícia Jundi; Penha, Nárima Lívia Jundi; De Carvalho, Bárbarah Kelly Gonçalves; Andrade, Rodrigo Mantelatto; Schmitt, Ana Carolina Basso; João, Sílvia Maria Amado

    The objective of this study was to describe the posture patterns of adolescents diagnosed with adolescent idiopathic scoliosis (AIS) in a scoliosis school screening (SSS). Two-dimensional photogrammetry was used to assess the posture of 37 adolescents diagnosed with scoliosis (scoliosis group, SG) (Cobb angle ≥10°) and 76 adolescents with a false positive diagnosis (false positive group, FPG) (Cobb angle <10°, angle of trunk rotation ≥7°). In total, 2562 10- to 14-year-old adolescents were enrolled in the SSS, which was performed in public schools in the cities of Amparo, Pedreira, and Mogi Mirim in the state of São Paulo, Brazil. Their posture was analyzed using Postural Analysis Software. Continuous variables were tested using Student t test, and categorical variables were tested using a χ2 test. The SG, FPG, simple curve group, and double curve group were all compared. Bivariate analysis was used to identify associations between postural deviations and scoliosis. The adopted significance level was α = .05. The SG (2.7 ± 1.9°) had greater shoulder obliquity than the FPG (1.9 ± 1.4°) (P = .010), and this deviation was associated with scoliosis (odds ratio [95% CI] P = 1.4 [1.1-1.8] 0.011). The SG had asymmetry between the right- and left-side lower limb frontal angle, shoulder sagittal alignment, and knee angle. The double curve group (3 ± 1.7°) presented a greater value of the vertical alignment of the torso than the simple curve group did (1.9 ± 1°; P = .032). Adolescents diagnosed with AIS in an SSS had greater shoulder obliquity and asymmetry between the right and left sides. Shoulder obliquity was the only postural deviation associated with AIS. Copyright © 2017. Published by Elsevier Inc.

  18. FIBER OPTICS. ACOUSTOOPTICS: Amplitude and phase nonreciprocities of acoustooptic modulators for counterpropagating light waves under the Bragg diffraction conditions

    NASA Astrophysics Data System (ADS)

    Veselovskaya, T. V.; Klochan, E. L.; Lariontsev, E. G.; Parfenov, S. V.; Shelaev, A. N.

    1990-07-01

    Theoretical and experimental investigations demonstrated that in real acoustooptic modulators the diffraction of light by a standing ultrasonic wave may give rise to both phase and amplitude nonreciprocities of counterpropagating light waves. Analytic expressions are derived for the dependences of these nonreciprocities on the parameters of the traveling component of an ultrasonic wave in a modulator. It is shown that when the angle of incidence of light on a modulator deviates from the Bragg angle, the phase nonreciprocity may be suppressed, but the amplitude nonreciprocity becomes maximal and its sign is governed by the law of deviation of the angle of incidence from the Bragg angle. A diffraction acoustooptic feedback makes it possible not only to achieve mode locking with an acoustooptic modulator utilizing a traveling ultrasonic wave, but also to control the magnitude and sign of amplitude-frequency nonreciprocities. It is reported that an acoustooptic feedback can be used to generate self-pumping waves in a solid-state mode-locked ring laser and thus stabilize bidirectional lasing in a wide range of the frequency offset between the counterpropagating waves.

  19. Oscillating cascade aerodynamics at large mean incidence

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; King, Aaron J.; El-Aini, Yehia M.; Capece, Vincent R.

    1996-01-01

    The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies of up to 1.2 for out-of-phase oscillations at a Mach number of 0.5 and chordal incidence angles of 0 deg and 10 deg; the Reynolds number was 0.9 x l0(exp 6). For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.

  20. The lateral/directional stability characteristics of a four-propeller tilt-wing V/STOL model in low-speed steep descent. M.S. Thesis - Princeton Univ., N.J.

    NASA Technical Reports Server (NTRS)

    Dicarlo, D. J.

    1971-01-01

    Lateral-directional dynamic stability derivatives are presented for a O.1-scale model of the XC-142A tilt-wing transport. The tests involved various descending flight conditions achieved at constant speed and wing incidence by varying the vehicle angle of attack. The propeller blade angle and the speed were also changed in the steepest descent case. The experimental data were analyzed assuming that the dynamic motions of the vehicle may be described by linearized equations, with the lateral-directional characteristics of the full-scale aircraft also presented and discussed. Results from this experimental investigation indicated that the full-scale aircraft would have a stable lateral-directional motion in level flight, with the dynamic motion becoming less stable as the descent angle was increased.

  1. Proximal Intermetatarsal Divergence in Distal Chevron Osteotomy for Hallux Valgus: An Overlooked Finding.

    PubMed

    Akpinar, Evren; Buyuk, Abdul Fettah; Cetinkaya, Engin; Gursu, Sarper; Ucpunar, Hanifi; Albayrak, Akif

    2016-01-01

    The goal of distal chevron osteotomy for hallux valgus is to restore proper first-toe joint alignment by performing lateral translation of the distal first metatarsal fragment (the metatarsal head). We hypothesized that in some patients this procedure might also result in involuntary medial translation of the proximal first metatarsal fragment, which we called proximal intermetatarsal divergence. The aim of the present study was to compare the pre- and postoperative radiographs of patients with hallux valgus to determine whether we could identify proximal intermetatarsal divergence. We retrospectively compared the pre- and postoperative radiographs of 29 feet in 28 patients treated with distal chevron osteotomy. Two different methods were used to measure the intermetatarsal angles: the anatomic intermetatarsal angle (aIMA) and the mechanical intermetatarsal angle (mIMA). The maximum intermetatarsal distance (MID) was also measured. We defined proximal intermetatarsal divergence as a postoperative increase in the aIMA or MID, coupled with a decrease in the mIMA. For data analysis, we divided the patients into low-angle (mild deformity) and high-angle (severe deformity) groups, according to their preoperative mIMA. The mean ± standard deviation patient age was 41 ± 14 years. In the low-angle group, the mean mIMA decreased (from 10.91° to 7.00°), the mean aIMA increased (from 11.80° to 13.55°), and the mean MID increased (from 17.97 mm to 20.60 mm; p = .001, for all). In the high-angle group, the mean mIMA decreased (from 14.30° to 6.90°; p = .001), the mean aIMA decreased (from 14.77° to 13.54°; p = .06), and the mean MID decreased (from 20.74 mm to 20.37 mm; p = .64). The results of our study suggest that proximal intermetatarsal divergence might occur after distal chevron osteotomy for hallux valgus, primarily in patients with a low preoperative mIMA. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Optimization study for high speed radial turbine with special reference to design variables

    NASA Technical Reports Server (NTRS)

    Khalil, I.; Tabakoff, W.

    1977-01-01

    Numerical results of a theoretical investigation are presented to provide information about the effect of variation of the different design and operating parameters on radial inflow turbine performance. The effects of variations in the mass flow rate, rotor tip Mach number, inlet flow angles, number of rotor blades and hub to shroud radius ratio, on the internal fluid dynamics of turbine rotors, was investigated. A procedure to estimate the flow deviation angles at the turbine exit is also presented and used to examine the influence of the operating conditions and the rotor geometrical configuration on these deviations. The significance of the results obtained is discussed with respect to improved turbine performance.

  3. Design and Manufacture of Conical Shell Structures Using Prepreg Laminates

    NASA Astrophysics Data System (ADS)

    Khakimova, Regina; Burau, Florian; Degenhardt, Richard; Siebert, Mark; Castro, Saullo G. P.

    2016-06-01

    The design and manufacture of unstiffened composite conical structures is very challenging, as the variation of the fiber orientations, lay-up and the geometry of the ply pieces have a significant influence on the thickness imperfections and ply angle deviations imprinted to the final part. This paper deals with the manufacture of laminated composite cones through the prepeg/autoclave process. The cones are designed to undergo repetitive buckling tests without accumulating permanent damage. The aim is to define a process that allows the control of fiber angle deviations and the removal of thickness imperfections generated from gaps and overlaps between ply pieces. Ultrasonic scan measurements are used to proof the effectiveness of the proposed method.

  4. Lateral sesamoid position in hallux valgus: correlation with the conventional radiological assessment.

    PubMed

    Agrawal, Yuvraj; Desai, Aravind; Mehta, Jaysheel

    2011-12-01

    We aimed to quantify the severity of the hallux valgus based on the lateral sesamoid position and to establish a correlation of our simple assessment method with the conventional radiological assessments. We reviewed one hundred and twenty two dorso-plantar weight bearing radiographs of feet. The intermetatarsal and hallux valgus angles were measured by the conventional methods; and the position of lateral sesamoid in relation to first metatarsal neck was assessed by our new and simple method. Significant correlation was noted between intermetatarsal angle and lateral sesamoid position (Rho 0.74, p < 0.0001); lateral sesamoid position and hallux valgus angle (Rho 0.56, p < 0.0001). Similar trends were noted in different grades of severity of hallux valgus in all the three methods of assessment. Our method of assessing hallux valgus deformity based on the lateral sesamoid position is simple, less time consuming and has statistically significant correlation with that of the established conventional radiological measurements. Copyright © 2011 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  5. Outcome of In Situ Septoplasty and Extracorporeal Subtotal Septal Reconstruction in Crooked Noses: A Randomized Self-Controlled Study.

    PubMed

    Gode, Sercan; Benzer, Murat; Uslu, Mustafa; Kaya, Isa; Midilli, Rasit; Karci, Bulent

    2018-02-01

    Severe dorsal deviations in crooked noses are treated by either in situ septoplasty with asymmetric spreader grafts (ISS) or extracorporeal subtotal septal reconstruction (ECS). To our knowledge, except one retrospective study, there is no other that compares the objective and subjective results of these two treatment modalities. The aim of this study was to compare the aesthetic and functional outcomes of ECS and ISS in crooked noses. This study was carried out on 40 patients (ISS in 20 patients and ECS in 20 patients) who underwent external rhinoplasty surgery due to crooked noses between May 2014 and January 2016. While performing rhinoplasty on the patients, the decision of whether to use the ECS or ISS technique was randomized in a sequential fashion. Surgical outcomes were assessed and compared using the anthropometric measurement of photographs with Rhinobase software. Subjective assessments of nasal obstruction and aesthetic satisfaction were evaluated with a visual analog scale. There was a significant difference between rhinion deviation angle, supratip deviation angle (SDA) and tip deviation angle pre- and postoperatively in the ECS group, whereas in the ISS group, except SDA, all other postoperative angles were significantly improved from preoperative values (p = 0.218). The nasal tip projection in the ECS and ISS groups was 29.48, 31.5 preoperatively and 29.78, 31.26 postoperatively. The mean postoperative nasal tip projection value (p > 0.005) did not change significantly compared to the preoperative value in both groups. The mean postoperative value of nasolabial (p = 0.226) angle did not change significantly compared to the mean preoperative one in the ECS group. However, in the ISS group, the mean postoperative value of nasolabial (p = 0.001) angle significantly improved compared to the mean preoperative value. There was significant improvement in both groups, while improvements in both functional and aesthetic outcomes were much higher in the extracorporeal group. None of the patients had postoperative nasal obstruction that required revision surgery. One patient underwent revision rhinoplasty due to an irregularity on the nasal dorsum in the ECS group. This is the first study that compares subjective and objective aesthetic and functional outcomes of crooked nose surgery according to two common septoplasty techniques in a randomized self-controlled fashion. This study was effective in both objectively and subjectively comparing the functional and aesthetic aspect of the patients submitted to two common different techniques of treatment of nasal deviations in crooked nose patients. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  6. Shaft-Condylar Angle for surgical correction in neglected and displaced lateral humeral condyle fracture in children.

    PubMed

    Mulpruek, Pornchai; Angsanuntsukh, Chanika; Woratanarat, Patarawan; Sa-Ngasoongsong, Paphon; Tawonsawatruk, Tulyapruek; Chanplakorn, Pongsthorn

    2015-09-01

    To assess the outcome after using the Shaft-Condylar angle (SCA) as intraoperative reference for sagittal plane correction in displaced lateral humeral condyle fractures in children presented 3-weeks after injury. Ten children, with delayed presentation of a displaced lateral humeral condyle fracture and undergoing surgery during 1999-2011, were reviewed. The goal was to obtain a smooth articular surface with an intraoperative SCA of nearly 40° and nearest-anatomical carrying angle. They were allocated into two groups according to the postoperative SCA [Good-reduction group (SCA=30-50°), and Bad-reduction group (SCA<30°, >50°)] and the final outcomes were then compared. All fractures united without avascular necrosis. The Good-reduction group (n=7) showed a significant improvement in final range of motion and functional outcome compared to the Bad-reduction group (n=3) (p=0.02). However, there was no significant difference in pain, carrying angle and overall outcome between both groups. SCA is a possible intraoperative reference for sagittal alignment correction in late presented displaced lateral humeral condyle fractures.

  7. A LQR-Based Controller with Estimation of Road Bank for Improving Vehicle Lateral and Rollover Stability via Active Suspension

    PubMed Central

    Sanz, Susana

    2017-01-01

    In this article, a Linear Quadratic Regulator (LQR) lateral stability and rollover controller has been developed including as the main novelty taking into account the road bank angle and using exclusively active suspension for both lateral stability and rollover control. The main problem regarding the road bank is that it cannot be measured by means of on-board sensors. The solution proposed in this article is performing an estimation of this variable using a Kalman filter. In this way, it is possible to distinguish between the road disturbance component and the vehicle’s roll angle. The controller’s effectiveness has been tested by means of simulations carried out in TruckSim, using an experimentally-validated vehicle model. Lateral load transfer, roll angle, yaw rate and sideslip angle have been analyzed in order to quantify the improvements achieved on the behavior of the vehicle. For that purpose, these variables have been compared with the results obtained from both a vehicle that uses passive suspension and a vehicle using a fuzzy logic controller. PMID:29027910

  8. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    PubMed Central

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811

  9. The human heart: application of the golden ratio and angle.

    PubMed

    Henein, Michael Y; Zhao, Ying; Nicoll, Rachel; Sun, Lin; Khir, Ashraf W; Franklin, Karl; Lindqvist, Per

    2011-08-04

    The golden ratio, or golden mean, of 1.618 is a proportion known since antiquity to be the most aesthetically pleasing and has been used repeatedly in art and architecture. Both the golden ratio and the allied golden angle of 137.5° have been found within the proportions and angles of the human body and plants. In the human heart we found many applications of the golden ratio and angle, in addition to those previously described. In healthy hearts, vertical and transverse dimensions accord with the golden ratio, irrespective of different absolute dimensions due to ethnicity. In mild heart failure, the ratio of 1.618 was maintained but in end-stage heart failure the ratio significantly reduced. Similarly, in healthy ventricles mitral annulus dimensions accorded with the golden ratio, while in dilated cardiomyopathy and mitral regurgitation patients the ratio had significantly reduced. In healthy patients, both the angles between the mid-luminal axes of the pulmonary trunk and the ascending aorta continuation and between the outflow tract axis and continuation of the inflow tract axis of the right ventricle approximate to the golden angle, although in severe pulmonary hypertension, the angle is significantly increased. Hence the overall cardiac and ventricular dimensions in a normal heart are consistent with the golden ratio and angle, representing optimum pump structure and function efficiency, whereas there is significant deviation in the disease state. These findings could have anatomical, functional and prognostic value as markers of early deviation from normality. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Wind tunnel research comparing lateral control devices, particularly at high angles of attack X : various control devices on a wing with a fixed auxiliary airfoil

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Noyes, Richard W

    1933-01-01

    Results are given of a series of systemic tests comparing lateral control devices with particular reference to their effectiveness at high angles of attack. These tests were made with two sizes of ordinary ailerons and different sizes of spoilers on a Clark Y wing model having a narrow auxiliary airfoil fixed ahead and above the leading edge, the chords of the main and auxiliary airfoils being parallel. In addition, the auxiliary airfoil itself was given angular deflection. The purpose was to provide rolling moments for lateral control. The tests were made in a 7 by 10 foot wind tunnel. They included both force and rotation tests to show the effect of the devices on the lift and drag characteristics of the wing and on the lateral stability characteristics, as well as lateral control. They showed that none of the aileron arrangements tried would give rolling control of an assumed satisfactory value at all angles of attack up to the stall. However, they would give satisfactory values, but at the expense of abnormally high deflections and very heavy hinge moments. The most effective combination of ailerons and spoilers gave satisfactory values of rolling moment at angles of attack below the stall, and the values did not fall off as rapidly above the stall as with ailerons alone. With an arrangement of this type having the proper relative proportions and linkage, it should be possible to obtain reasonably satisfactory yawing moments and control forces. Deflecting one-half of the auxiliary airfoil downward for the purpose of control gave strong favorable yawing moments at all angles of attack, but gave very small rolling moments at the low angles of attack.

  11. Reliability and comparison of trunk and pelvis angles, arm distance and center of pressure in the seated functional reach test with and without foot support in children.

    PubMed

    Radtka, Sandra; Zayac, Jacqueline; Goldberg, Krystyna; Long, Michael; Ixanov, Rustem

    2017-03-01

    This study determined test-retest reliability of trunk and pelvis joint angles, arm distance and center of pressure (COP) excursion for the seated functional reach test (FRT) and compared these variables during the seated FRT with and without foot support. Fifteen typically developing children (age 9.3±4.1years) participated. Trunk and pelvis joint angles, arm distance, and COP excursion were collected on two days using three-dimensional motion analysis and a force plate while subjects reached maximally with and without foot support in the anterior, anterior/lateral, lateral, posterior/lateral directions. Age, weight, height, trunk and arm lengths were correlated (p<0.01) with maximum arm distance reached. Maximum arm distance, trunk and pelvis joint angles, and COP with and without foot support were not significant (p<0.05) for the two test periods. Excellent reliability (ICCs>0.75) was found for maximum arm distance reached in all four directions in the seated FRT with and without foot support. Most trunk and pelvis joint angles and COP excursions during maximum reach in all four directions showed excellent to fair reliability (ICCs>0.40-0.75). Reaching with foot support in all directions was significantly greater (p<0.05) than without foot support; however, most COP excursions and trunk and pelvic angles were not significantly different. Findings support the addition of anterior/lateral and posterior/lateral reaching directions in the seated FRT. Trunk and pelvis movement analysis is important to examine in the seated FRT to determine the specific movement strategies needed for maximum reaching without loss of balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The FIREBall-2 UV sample grating efficiency at 200-208nm

    NASA Astrophysics Data System (ADS)

    Quiret, S.; Milliard, B.; Grange, R.; Lemaitre, G. R.; Caillat, A.; Belhadi, M.; Cotel, A.

    2014-07-01

    The FIREBall-2 (Faint Intergalactic Redshifted Emission Balloon-2) is a balloon-borne ultraviolet spectro-imaging mission optimized for the study of faint diffuse emission around galaxies. A key optical component of the new spectrograph design is the high throughput cost-effective holographic 2400 ℓ =mm, 110x130mm aspherized reflective grating used in the range 200 - 208nm, near 28°deviation angle. In order to anticipate the efficiency in flight conditions, we have developed a PCGrate model for the FIREBall grating calibrated on linearly polarized measurements at 12° deviation angle in the range 240-350nm of a 50x50mm replica of the same master selected for the flight grating. This model predicts an efficiency within [64:7; 64:9]+/-0:7% (S polarization) and [38:3; 45]+/-2:2% (P-polarization) for the baseline aluminum coated grating with an Al2O3 natural oxidation layer and within [63:5; 65] +/-1% (S-polarization) and [51:3; 54:8] +/-2:8% (P-polarization) for an aluminum plus a 70nm MgF2 coating, in the range 200 - 208nm and for a 28°deviation angle. The model also shows there is room for significant improvements at shorter wavelengths, of interest for future deep UV spectroscopic missions.

  13. Emergency Multiengine Aircraft System for Lateral Control Using Differential Thrust Control of Wing Engines

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)

    2000-01-01

    Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.

  14. Optical Tracker For Longwall Coal Shearer

    NASA Technical Reports Server (NTRS)

    Poulsen, Peter D.; Stein, Richard J.; Pease, Robert E.

    1989-01-01

    Photographic record yields information for correction of vehicle path. Tracking system records lateral movements of longwall coal-shearing vehicle. System detects lateral and vertical deviations of path of vehicle moving along coal face, shearing coal as it goes. Rides on rails in mine tunnel, advancing on toothed track in one of rails. As vehicle moves, retroreflective mirror rides up and down on teeth, providing series of pulsed reflections to film recorder. Recorded positions of pulses, having horizontal and vertical orientations, indicate vertical and horizontal deviations, respectively, of vehicle.

  15. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Cameron, R. H.; Schüssler, M., E-mail: jiejiang@nao.cas.cn

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input basedmore » upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.« less

  16. A Longitudinal Assessment of Sleep Timing, Circadian Phase, and Phase Angle of Entrainment across Human Adolescence

    PubMed Central

    Crowley, Stephanie J.; Van Reen, Eliza; LeBourgeois, Monique K.; Acebo, Christine; Tarokh, Leila; Seifer, Ronald; Barker, David H.; Carskadon, Mary A.

    2014-01-01

    The aim of this descriptive analysis was to examine sleep timing, circadian phase, and phase angle of entrainment across adolescence in a longitudinal study design. Ninety-four adolescents participated; 38 (21 boys) were 9–10 years (“younger cohort”) and 56 (30 boys) were 15–16 years (“older cohort”) at the baseline assessment. Participants completed a baseline and then follow-up assessments approximately every six months for 2.5 years. At each assessment, participants wore a wrist actigraph for at least one week at home to measure self-selected sleep timing before salivary dim light melatonin onset (DLMO) phase – a marker of the circadian timing system – was measured in the laboratory. Weekday and weekend sleep onset and offset and weekend-weekday differences were derived from actigraphy. Phase angles were the time durations from DLMO to weekday sleep onset and offset times. Each cohort showed later sleep onset (weekend and weekday), later weekend sleep offset, and later DLMO with age. Weekday sleep offset shifted earlier with age in the younger cohort and later in the older cohort after age 17. Weekend-weekday sleep offset differences increased with age in the younger cohort and decreased in the older cohort after age 17. DLMO to sleep offset phase angle narrowed with age in the younger cohort and became broader in the older cohort. The older cohort had a wider sleep onset phase angle compared to the younger cohort; however, an age-related phase angle increase was seen in the younger cohort only. Individual differences were seen in these developmental trajectories. This descriptive study indicated that circadian phase and self-selected sleep delayed across adolescence, though school-day sleep offset advanced until no longer in high school, whereupon offset was later. Phase angle changes are described as an interaction of developmental changes in sleep regulation interacting with psychosocial factors (e.g., bedtime autonomy). PMID:25380248

  17. Femoral articular geometry and patellofemoral stability.

    PubMed

    Iranpour, Farhad; Merican, Azhar M; Teo, Seow Hui; Cobb, Justin P; Amis, Andrew A

    2017-06-01

    Patellofemoral instability is a major cause of anterior knee pain. The aim of this study was to examine how the medial and lateral stability of the patellofemoral joint in the normal knee changes with knee flexion and measure its relationship to differences in femoral trochlear geometry. Twelve fresh-frozen cadaveric knees were used. Five components of the quadriceps and the iliotibial band were loaded physiologically with 175N and 30N, respectively. The force required to displace the patella 10mm laterally and medially at 0°, 20°, 30°, 60° and 90° knee flexion was measured. Patellofemoral contact points at these knee flexion angles were marked. The trochlea cartilage geometry at these flexion angles was visualized by Computed Tomography imaging of the femora in air with no overlying tissue. The sulcus, medial and lateral facet angles were measured. The facet angles were measured relative to the posterior condylar datum. The lateral facet slope decreased progressively with flexion from 23°±3° (mean±S.D.) at 0° to 17±5° at 90°. While the medial facet angle increased progressively from 8°±8° to 36°±9° between 0° and 90°. Patellar lateral stability varied from 96±22N at 0°, to 77±23N at 20°, then to 101±27N at 90° knee flexion. Medial stability varied from 74±20N at 0° to 170±21N at 90°. There were significant correlations between the sulcus angle and the medial facet angle with medial stability (r=0.78, p<0.0001). These results provide objective evidence relating the changes of femoral profile geometry with knee flexion to patellofemoral stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize.

    PubMed

    Bai, Fang; Reinheimer, Renata; Durantini, Diego; Kellogg, Elizabeth A; Schmidt, Robert J

    2012-07-24

    In grass inflorescences, a structure called the "pulvinus" is found between the inflorescence main stem and lateral branches. The size of the pulvinus affects the angle of the lateral branches that emerge from the main axis and therefore has a large impact on inflorescence architecture. Through EMS mutagenesis we have identified three complementation groups of recessive mutants in maize having defects in pulvinus formation. All mutants showed extremely acute tassel branch angles accompanied by a significant reduction in the size of the pulvinus compared with normal plants. Two of the complementation groups correspond to mutations in the previously identified genes, RAMOSA2 (RA2) and LIGULELESS1 (LG1). Mutants corresponding to a third group were cloned using mapped-based approaches and found to encode a new member of the plant-specific TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR) family of DNA-binding proteins, BRANCH ANGLE DEFECTIVE 1 (BAD1). BAD1 is expressed in the developing pulvinus as well as in other developing tissues, including the tassels and juvenile leaves. Both molecular and genetics studies show that RA2 is upstream of BAD1, whereas LG1 may function in a separate pathway. Our findings demonstrate that BAD1 is a TCP class II gene that functions to promote cell proliferation in a lateral organ, the pulvinus, and influences inflorescence architecture by impacting the angle of lateral branch emergence.

  19. Distractor Evoked Deviations of Saccade Trajectory Are Modulated by Fixation Activity in the Superior Colliculus: Computational and Behavioral Evidence

    PubMed Central

    Wang, Zhiguo; Theeuwes, Jan

    2014-01-01

    Previous studies have shown that saccades may deviate towards or away from task irrelevant visual distractors. This observation has been attributed to active suppression (inhibition) of the distractor location unfolding over time: early in time inhibition at the distractor location is incomplete causing deviation towards the distractor, while later in time when inhibition is complete the eyes deviate away from the distractor. In a recent computational study, Wang, Kruijne and Theeuwes proposed an alternative theory that the lateral interactions in the superior colliculus (SC), which are characterized by short-distance excitation and long-distance inhibition, are sufficient for generating both deviations towards and away from distractors. In the present study, we performed a meta-analysis of the literature, ran model simulations and conducted two behavioral experiments to further explore this unconventional theory. Confirming predictions generated by the model simulations, the behavioral experiments show that a) saccades deviate towards close distractors and away from remote distractors, and b) the amount of deviation depends on the strength of fixation activity in the SC, which can be manipulated by turning off the fixation stimulus before or after target onset (Experiment 1), or by varying the eccentricity of the target and distractor (Experiment 2). PMID:25551552

  20. Retrograde lag screw placement in anterior acetabular column with regard to the anterior pelvic plane and midsagittal plane -- virtual mapping of 260 three-dimensional hemipelvises for quantitative anatomic analysis.

    PubMed

    Ochs, Bjoern Gunnar; Stuby, Fabian Maria; Ateschrang, Atesch; Stoeckle, Ulrich; Gonser, Christoph Emanuel

    2014-10-01

    Percutaneous screw placement can be used for minimally invasive treatment of none or minimally displaced fractures of the anterior column. The complex pelvic geometry can pose a major challenge even for experienced surgeons. The present study examined the preformed bone stock of the anterior column in 260 hemipelvises (130 male and 130 female). Screws were virtually implanted using iPlan(®) CMF (BrainLAB AG, Feldkirchen, Germany); the maximal implant length and the maximal implant diameter were assessed. The study showed, that 6.5mm can generally be used in men; in women however individual planning is essential in regard to the maximal implant diameter since we found that in 15.4% of women, screws with a diameter less than 6.5mm were necessary. The virtual analysis of the preformed bone stock corridor of the anterior column showed two constrictions of crucial clinical importance. These can be found after 18% and 55% (men) respectively 16% and 55% (women) measured from the entry point along the axis of the implant. The entry point of the retrograde anterior column screw in our collective was located lateral of tuberculum pubicum at the level of the superior-medial margin of foramen obturatum. In female patients, the entry point was located significantly more lateral of symphysis and closer to the cranial margin of ramus superior ossis pubis. The mean angle between the screw trajectory and the anterior pelvic plane in sagittal section was 31.6 ± 5.5°, the mean angle between the screw trajectory and the midsagittal plane in axial section was 55.9 ± 4.6° and the mean angle between the screw trajectory and the midsagittal plane in coronal section was 42.1 ± 3.9° with no significant deviation between both sexes. The individual angles formed by the screw trajectory and the anterior pelvic and midsagittal plane are independent from anthropometric parameters sex, age, body length and weight. Therefore, they can be used for orientation in lag screw placement keeping in mind that the entry point differs in both sexes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effect of Wrist Posture on Carpal Tunnel Pressure while Typing

    PubMed Central

    Rempel, David M.; Keir, Peter J.; Bach, Joel M.

    2009-01-01

    Long weekly hours of keyboard use may lead to or aggravate carpal tunnel syndrome. The effects of typing on fluid pressure in the carpal tunnel, a possible mediator of carpal tunnel syndrome, are unknown. Twenty healthy subjects participated in a laboratory study to investigate the effects of typing at different wrist postures on carpal tunnel pressure of the right hand. Changes in wrist flexion/extension angle (p = 0.01) and radial/ulnar deviation angle (p = 0.03) independently altered carpal tunnel pressure; wrist deviations in extension or radial deviation were associated with an increase in pressure. The activity of typing independently elevated carpal tunnel pressure (p= 0.001) relative to the static hand held in the same posture. This information can guide the design and use of keyboards and workstations in order to minimize carpal tunnel pressure while typing. The findings may also be useful to clinicians and ergonomists in the management of patients with carpal tunnel syndrome who use a keyboard. PMID:18383144

  2. Differences between dentitions with palatally and labially located maxillary canines observed in incisor width, dental morphology and space conditions.

    PubMed

    Artmann, L; Larsen, H J; Sørensen, H B; Christensen, I J; Kjaer, I

    2010-06-01

    To analyze the interrelationship between incisor width, deviations in the dentition and available space in the dental arch in palatally and labially located maxillary ectopic canine cases. Size: On dental casts from 69 patients (mean age 13 years 6 months) the mesiodistal widths of each premolar, canine and incisor were measured and compared with normal standards. Dental deviations: Based on panoramic radiographs from the same patients the dentitions were grouped accordingly: Group I: normal morphology; Group IIa: deviations in the dentition within the maxillary incisors only; Group IIb: deviations in the dentition in general. Descriptive statistics for the tooth sizes and dental deviations were presented by the mean and 95% confidence limits for the mean and the p-value for the T-statistic. Space: Space was expresses by subtracting the total tooth sizes of incisors, canines and premolars from the length of the arch segments. Size of lateral maxillary incisor: The widths of the lateral incisors were significantly different in groups I, IIa and IIb (p=0.016) and in cases with labially located ectopic canines on average 0.65 (95% CI:0.25-1.05, p=0.0019) broader than lateral incisors in cases with palatally located ectopic canines. Space: Least available space was observed in cases with labially located canines. The linear model did show a difference between palatally and labially located ectopic canines (p=0.03). Space related to deviations in the dentition: When space in the dental arch was related to dental deviations (groups I, IIa and IIb), the cases in group IIb with palatally located canines had significantly more space compared with I and IIa. Two subgroups of palatally located ectopic maxillary canine cases based on registration of space, incisor width and deviations in the morphology of the dentition were identified.

  3. F-18 High Alpha Research Vehicle (HARV) parameter identification flight test maneuvers for optimal input design validation and lateral control effectiveness

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1995-01-01

    Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for open loop parameter identification purposes, specifically for optimal input design validation at 5 degrees angle of attack, identification of individual strake effectiveness at 40 and 50 degrees angle of attack, and study of lateral dynamics and lateral control effectiveness at 40 and 50 degrees angle of attack. Each maneuver is to be realized by applying square wave inputs to specific control effectors using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time/amplitude points define each input are included, along with plots of the input time histories.

  4. The influence of intraoperative soft tissue balance on patellar pressure in posterior-stabilized total knee arthroplasty.

    PubMed

    Matsumoto, Tomoyuki; Shibanuma, Nao; Takayama, Koji; Sasaki, Hiroshi; Ishida, Kazunari; Matsushita, Takehiko; Kuroda, Ryosuke; Kurosaka, Masahiro

    2016-06-01

    Appropriate soft tissue balance is essential for the success of total knee arthroplasty (TKA), and assessment with an offset-type tensor provides useful information about the femorotibial (FT) joint. The purpose of the study was to investigate the relationship between intraoperative soft tissue balance and patellar pressure at both medial and lateral sides. Thirty varus-type osteoarthritis patients who received mobile-bearing posterior-stabilized TKAs were enrolled in the study. Using the tensor, soft tissue balance, including joint component gap and varus ligament balance, was recorded at 0°, 10°, 30°, 60°, 90°, 120°, and 135° with patellofemoral (PF) joint reduction and femoral component placement. Following final prostheses implanted with appropriate insert, the medial and lateral patellar pressures were measured at each flexion angle. A simple regression analysis was performed between each patellar pressure, parameter of soft tissue balance, and postoperative flexion angle. Both lateral and medial patellar pressures increased with flexion. The lateral patellar pressure was significantly higher than the medial patellar pressure at 60°, 90°, and 135° of flexion (p<0.05). The lateral patellar pressure inversely correlated with the varus ligament balance at 60° and 90° of flexion (p<0.05). The lateral patellar pressure at 120° and 135° of flexion inversely correlated with the postoperative flexion angle (p<0.05). Soft tissue balance influenced patellar pressure. In particular, a reduced lateral patellar pressure was found at the lateral laxity at flexion, leading to high postoperative flexion angle. III. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nonlinear Elastic Effects on the Energy Flux Deviation of Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1992-01-01

    In isotropic materials, the direction of the energy flux (energy per unit time per unit area) of an ultrasonic plane wave is always along the same direction as the normal to the wave front. In anisotropic materials, however, this is true only along symmetry directions. Along other directions, the energy flux of the wave deviates from the intended direction of propagation. This phenomenon is known as energy flux deviation and is illustrated. The direction of the energy flux is dependent on the elastic coefficients of the material. This effect has been demonstrated in many anisotropic crystalline materials. In transparent quartz crystals, Schlieren photographs have been obtained which allow visualization of the ultrasonic waves and the energy flux deviation. The energy flux deviation in graphite/epoxy (gr/ep) composite materials can be quite large because of their high anisotropy. The flux deviation angle has been calculated for unidirectional gr/ep composites as a function of both fiber orientation and fiber volume content. Experimental measurements have also been made in unidirectional composites. It has been further demonstrated that changes in composite materials which alter the elastic properties such as moisture absorption by the matrix or fiber degradation, can be detected nondestructively by measurements of the energy flux shift. In this research, the effects of nonlinear elasticity on energy flux deviation in unidirectional gr/ep composites were studied. Because of elastic nonlinearity, the angle of the energy flux deviation was shown to be a function of applied stress. This shift in flux deviation was modeled using acoustoelastic theory and the previously measured second and third order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress were considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3) while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1).

  6. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems.

    PubMed

    Lynch, Jonathan P

    2013-07-01

    A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.

  7. DSS 15, 45, and 65 34-meter high efficiency antenna radio frequency performance enhancement by tilt added to the subreflector during elevation angle changes

    NASA Technical Reports Server (NTRS)

    Katow, M. S.

    1990-01-01

    The focusing adjustments of the subreflectors of an az-el Cassegrainian antenna that uses only linear motions have always ended in lateral offsets of the phase centers at the subreflector's focus points at focused positions, which have resulted in small gain losses. How lateral offsets at the two focus points were eliminated by tilting the subreflector, resulting in higher radio frequency (RF) efficiencies at all elevation angles rotated from the rigging angles are described.

  8. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    PubMed

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  9. Multi-angle lensless digital holography for depth resolved imaging on a chip.

    PubMed

    Su, Ting-Wei; Isikman, Serhan O; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-04-26

    A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over approximately 60 mm(2) field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems.

  10. A novel dental implant guided surgery based on integration of surgical template and augmented reality.

    PubMed

    Lin, Yen-Kun; Yau, Hong-Tzong; Wang, I-Chung; Zheng, Cheng; Chung, Kwok-Hung

    2015-06-01

    Stereoscopic visualization concept combined with head-mounted displays may increase the accuracy of computer-aided implant surgery. The aim of this study was to develop an augmented reality-based dental implant placement system and evaluate the accuracy of the virtually planned versus the actual prepared implant site created in vitro. Four fully edentulous mandibular and four partially edentulous maxillary duplicated casts were used. Six implants were planned in the mandibular and four in the maxillary casts. A total of 40 osteotomy sites were prepared in the casts using stereolithographic template integrated with augmented reality-based surgical simulation. During the surgery, the dentist could be guided accurately through a head-mounted display by superimposing the virtual auxiliary line and the drill stop. The deviation between planned and prepared positions of the implants was measured via postoperative computer tomography generated scan images. Mean and standard deviation of the discrepancy between planned and prepared sites at the entry point, apex, angle, depth, and lateral locations were 0.50 ± 0.33 mm, 0.96 ± 0.36 mm, 2.70 ± 1.55°, 0.33 ± 0.27 mm, and 0.86 ± 0.34 mm, respectively, for the fully edentulous mandible, and 0.46 ± 0.20 mm, 1.23 ± 0.42 mm, 3.33 ± 1.42°, 0.48 ± 0.37 mm, and 1.1 ± 0.39 mm, respectively, for the partially edentulous maxilla. There was a statistically significant difference in the apical deviation between maxilla and mandible in this surgical simulation (p < .05). Deviation of implant placement from planned position was significantly reduced by integrating surgical template and augmented reality technology. © 2013 Wiley Periodicals, Inc.

  11. Investigation of the Low-Subsonic Stability and Control Characteristics of a Free-Flying Model of a Thick 70 deg Delta Reentry Configuration

    NASA Technical Reports Server (NTRS)

    Paulson, John W.; Shanks, Robert E.

    1961-01-01

    An investigation of the low-subsonic flight characteristics of a thick 70 deg delta reentry configuration having a diamond cross section has been made in the Langley full-scale tunnel over an angle-of-attack range from 20 to 45 deg. Flight tests were also made at angles of attack near maximum lift (alpha = 40 deg) with a radio-controlled model dropped from a helicopter. Static and dynamic force tests were made over an angle-of-attack range from 0 to 90 deg. The longitudinal stability and control characteristics were considered satisfactory when the model had positive static longitudinal stability. It was possible to fly the model with a small amount of static instability, but the longitudinal characteristics were considered unsatisfactory in this condition. At angles of attack above the stall the model developed a large, constant-amplitude pitching oscillation. The lateral stability characteristics were considered to be only fair at angles of attack from about 20 to 35 deg because of a lightly damped Dutch roll oscillation. At higher angles of attack the oscillation was well damped and the lateral stability was generally satisfactory. The Dutch roll damping at the lower angles of attack was increased to satisfactory values by means of a simple rate-type roll damper. The lateral control characteristics were generally satisfactory throughout the angle- of-attack range, but there was some deterioration in aileron effectiveness in the high angle-of-attack range due mainly to a large increase in damping in roll.

  12. Tribology and wear of metal-on-metal hip prostheses: influence of cup angle and head position.

    PubMed

    Williams, Sophie; Leslie, Ian; Isaac, Graham; Jin, Zhongmin; Ingham, Eileen; Fisher, John

    2008-08-01

    Clinical studies have indicated that the angular position of the acetabular cup may influence wear in metal-on-metal total hip bearings. A high cup angle in comparison to the anatomical position may lead to the head being constrained by the superior lateral surface and rim of the cup, thus potentially changing the location of the contact zone between the head and the cup. The aim of this study was to test the hypothesis that both a steep cup angle and a lateralized position of the head can increase head contact on the superior rim of the cup, with the consequence of increased wear. Hip-joint simulator studies of metal-on-metal bearings were undertaken with cup angles of 45 degrees and 55 degrees . The femoral head was either aligned to the center of the cup or placed in a position of microlateralization. Wear was measured gravimetrically over 5 million cycles. A steep cup angle of 55 degrees showed significantly higher long-term steady-state wear than a standard cup angle of 45 degrees (p < 0.01). The difference was fivefold. Microlateralization of the head resulted in a fivefold increase in steady-state wear compared with a centralized head. The combination of a steep cup angle and a microlateralized head increased the steady-state wear rate by tenfold compared with a standard cup angle with a centralized head. These studies support the hypothesis that both an increased cup angle and a lateral head position increase wear in metal-on-metal hip prostheses.

  13. Beam angle selection incorporation of anatomical heterogeneities for pencil beam scanning charged-particle therapy

    NASA Astrophysics Data System (ADS)

    Toramatsu, Chie; Inaniwa, Taku

    2016-12-01

    In charged particle therapy with pencil beam scanning (PBS), localization of the dose in the Bragg peak makes dose distributions sensitive to lateral tissue heterogeneities. The sensitivity of a PBS plan to lateral tissue heterogeneities can be reduced by selecting appropriate beam angles. The purpose of this study is to develop a fast and accurate method of beam angle selection for PBS. The lateral tissue heterogeneity surrounding the path of the pencil beams at a given angle was quantified with the heterogeneity number representing the variation of the Bragg peak depth across the cross section of the beams using the stopping power ratio of body tissues with respect to water. To shorten the computation time, one-dimensional dose optimization was conducted along the central axis of the pencil beams as they were directed by the scanning magnets. The heterogeneity numbers were derived for all possible beam angles for treatment. The angles leading to the minimum mean heterogeneity number were selected as the optimal beam angle. Three clinical cases of head and neck cancer were used to evaluate the developed method. Dose distributions and their robustness to setup and range errors were evaluated for all tested angles, and their relation to the heterogeneity numbers was investigated. The mean heterogeneity number varied from 1.2 mm-10.6 mm in the evaluated cases. By selecting a field with a low mean heterogeneity number, target dose coverage and robustness against setup and range errors were improved. The developed method is simple, fast, accurate and applicable for beam angle selection in charged particle therapy with PBS.

  14. 14 CFR Appendix C to Part 91 - Operations in the North Atlantic (NAT) Minimum Navigation Performance Specifications (MNPS) Airspace

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... defined in section 1 of this appendix is as follows: (a) The standard deviation of lateral track errors shall be less than 6.3 NM (11.7 Km). Standard deviation is a statistical measure of data about a mean... standard deviation about the mean encompasses approximately 68 percent of the data and plus or minus 2...

  15. Lateral distribution of the radio signal in extensive air showers measured with LOPES

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Asch, T.; Badea, A. F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2010-01-01

    The antenna array LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from extensive air showers. The coincident measurements allow us to reconstruct the electric field strength at observation level in dependence of general EAS parameters. In the present work, the lateral distribution of the radio signal in air showers is studied in detail. It is found that the lateral distributions of the electric field strengths in individual EAS can be described by an exponential function. For about 20% of the events a flattening towards the shower axis is observed, preferentially for showers with large inclination angle. The estimated scale parameters R0, describing the slope of the lateral profiles range between 100 and 200 m. No evidence for a direct correlation of R0 with shower parameters like azimuth angle, geomagnetic angle, or primary energy can be found. This indicates that the lateral profile is an intrinsic property of the radio emission during the shower development which makes the radio detection technique suitable for large scale applications.

  16. Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.

    PubMed

    Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé

    2015-12-01

    Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented.

  17. Importance of the levator labii alaeque nasi muscle in dorsal septal deviations.

    PubMed

    Tellioğlu, Ali Teoman; Özakpinar, Hülda Rifat; Cakir, Bariş; Tekdemir, Ibrahim

    2011-03-01

    Deviated cartilages structures of the nose can be affected by nasal muscles, and deviation becomes conspicuous when the patient smiles. This condition depends on activity of nasal muscles, particularly the levator labii alaeque nasi muscle. A total of 124 septorhinoplasty operations were performed to correct dorsal concave septal deviation between 2005 and 2009 years. The 70 women and 54 men included in the study had an average age of 28 years. The average follow-up period was 12 months. Open septorhinoplasty was preferred in all cases. The medial part of the levator labii alaeque nasi muscle was extensively dissected from the lateral crus and surrounding tissues. The lateral crura of the alar cartilages were separated from the upper lateral cartilages in the scroll area. The dorsal septal deviation was corrected by combination of bilateral spreader grafts, which reinforced cartilage with horizontal control sutures. Early postoperative period was uneventful. Nasal obstruction was reduced after surgery, and significant subjective postoperative improvements were observed in all patients. Comparison of preoperative and postoperative photographs demonstrated improved dorsal nasal contour. Revision operation was performed in 3 cases. The corrected septal cartilage was in a good position in all revised cases; therefore, septal surgery was not performed in the revision operations. In conclusion, surgical disruption of the anatomic relationship between the muscle with the dorsal septal cartilage and reinforcement of the dorsal septal cartilage with spreader grafts and horizontal control sutures can decrease risk of recurrence.

  18. Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty.

    PubMed

    Park, Sang Eun; Lee, Chun Taek

    2007-10-01

    This study was aimed to compare robotic-assisted implantation of a total knee arthroplasty with conventional manual implantation. We controlled, randomized, and reviewed 72 patients for total knee arthroplasty assigned to undergo either conventional manual implantation (excluding navigation-assisted implantation cases) of a Zimmer LPS prosthesis (Zimmer, Warsaw, Ind) (30 patients: group 1) or robotic-assisted implantation of such a prosthesis (32 patients: group 2). The femoral flexion angle (gamma angle) and tibial angle (delta angle) in the lateral x-ray of group 1 were 4.19 +/- 3.28 degrees and 89.7 +/- 1.7 degrees, and those of group 2 were 0.17 +/- 0.65 degrees and 85.5 +/- 0.92 degrees. The major complications were from improper small skin incision during a constraint attempt of minimally invasive surgery and during bulk fixation frame pins insertion. Robotic-assisted technology had definite advantages in terms of preoperative planning, accuracy of the intraoperative procedure, and postoperative follow-up, especially in the femoral flexion angle (gamma angle) and tibial flexion angle (delta angle) in the lateral x-ray, and in the femoral flexion angle (alpha angle) in the anteroposterior x-ray. But a disadvantage was the high complication rate in early stage.

  19. Quantitative evaluation of dual-flip-angle T1 mapping on DCE-MRI kinetic parameter estimation in head and neck

    PubMed Central

    Chow, Steven Kwok Keung; Yeung, David Ka Wai; Ahuja, Anil T; King, Ann D

    2012-01-01

    Purpose To quantitatively evaluate the kinetic parameter estimation for head and neck (HN) dynamic contrast-enhanced (DCE) MRI with dual-flip-angle (DFA) T1 mapping. Materials and methods Clinical DCE-MRI datasets of 23 patients with HN tumors were included in this study. T1 maps were generated based on multiple-flip-angle (MFA) method and different DFA combinations. Tofts model parameter maps of kep, Ktrans and vp based on MFA and DFAs were calculated and compared. Fitted parameter by MFA and DFAs were quantitatively evaluated in primary tumor, salivary gland and muscle. Results T1 mapping deviations by DFAs produced remarkable kinetic parameter estimation deviations in head and neck tissues. In particular, the DFA of [2º, 7º] overestimated, while [7º, 12º] and [7º, 15º] underestimated Ktrans and vp, significantly (P<0.01). [2º, 15º] achieved the smallest but still statistically significant overestimation for Ktrans and vp in primary tumors, 32.1% and 16.2% respectively. kep fitting results by DFAs were relatively close to the MFA reference compared to Ktrans and vp. Conclusions T1 deviations induced by DFA could result in significant errors in kinetic parameter estimation, particularly Ktrans and vp, through Tofts model fitting. MFA method should be more reliable and robust for accurate quantitative pharmacokinetic analysis in head and neck. PMID:23289084

  20. Differences in wrist mechanics during the golf swing based on golf handicap.

    PubMed

    Fedorcik, Gregory G; Queen, Robin M; Abbey, Alicia N; Moorman, Claude T; Ruch, David S

    2012-05-01

    Variation in swing mechanics between golfers of different skill levels has been previously reported. To investigate if differences in three-dimensional wrist kinematics and the angle of golf club descent between low and high handicap golfers. A descriptive laboratory study was performed with twenty-eight male golfers divided into two groups, low handicap golfers (handicap = 0-5, n = 15) and high handicap golfers (handicap ≥ 10, n = 13). Bilateral peak three-dimensional wrist mechanics, bilateral wrist mechanics at ball contact (BC), peak angle of descent from the end of the backswing to ball contact, and the angle of descent when the forearm was parallel to the ground (DEC-PAR) were determined using an 8 camera motion capture system. Independent t-tests were completed for each study variable (α = 0.05). Pearson correlation coefficients were determined between golf handicap and each of the study variables. The peak lead arm radial deviation (5.7 degrees, p = 0.008), lead arm radial deviation at ball contact (7.1 degrees, p = 0.001), and DEC-PAR (15.8 degrees, p = 0.002) were significantly greater in the high handicap group. In comparison with golfers with a low handicap, golfers with a high handicap have increased radial deviation during the golf swing and at ball contact. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Functional Implications of Ubiquitous Semicircular Canal Non-Orthogonality in Mammals

    PubMed Central

    Berlin, Jeri C.; Kirk, E. Christopher; Rowe, Timothy B.

    2013-01-01

    The ‘canonical model’ of semicircular canal orientation in mammals assumes that 1) the three ipsilateral canals of an inner ear exist in orthogonal planes (i.e., orthogonality), 2) corresponding left and right canal pairs have equivalent angles (i.e., angle symmetry), and 3) contralateral synergistic canals occupy parallel planes (i.e., coplanarity). However, descriptions of vestibular anatomy that quantify semicircular canal orientation in single species often diverge substantially from this model. Data for primates further suggest that semicircular canal orthogonality varies predictably with the angular head velocities encountered in locomotion. These observations raise the possibility that orthogonality, symmetry, and coplanarity are misleading descriptors of semicircular canal orientation in mammals, and that deviations from these norms could have significant functional consequences. Here we critically assess the canonical model of semicircular canal orientation using high-resolution X-ray computed tomography scans of 39 mammal species. We find that substantial deviations from orthogonality, angle symmetry, and coplanarity are the rule for the mammals in our comparative sample. Furthermore, the degree to which the semicircular canals of a given species deviate from orthogonality is negatively correlated with estimated vestibular sensitivity. We conclude that the available comparative morphometric data do not support the canonical model and that its overemphasis as a heuristic generalization obscures a large amount of functionally relevant variation in semicircular canal orientation between species. PMID:24260256

  2. Surgical Outcome of Intermittent Exotropia With Improvement in Control Grade Subsequent to Part-time Preoperative Occlusion Therapy.

    PubMed

    Bang, Seung Pil; Lee, Dong Cheol; Lee, Se Youp

    2018-01-01

    To evaluate the effect of improvement in the control grade of intermittent exotropia using part-time occlusion therapy on the final postoperative outcome. Control of intermittent exotropia was graded as good, fair, or poor in 89 consecutive patients with intermittent exotropia during their first visit. The patients were reevaluated after part-time preoperative occlusion therapy and divided into two groups (improvement and no improvement) according to whether they showed improvement in control grade. The surgical success rate was compared retrospectively between the two groups. The mean angle of deviation on the first visit was 27.61 ± 5.40 prism diopters (PD) at distance and 29.82 ± 5.28 PD at near. There were significant improvements in the angles of deviation for distance (26.17 ± 5.09 PD) and near (27.26 ± 5.56 PD) after part-time occlusion (both P < .001). The 49 patients who had a significantly improved control grade had a significantly better surgical success rate (77.6%) than the 40 patients who did not (50%; P = .007). Part-time occlusion therapy improves the control grade of intermittent exotropia, leading to a better likelihood of successful surgery and a reduction of the angles of deviation for distance and near. [J Pediatr Ophthalmol Strabismus. 2018;55(1):59-64.]. Copyright 2017, SLACK Incorporated.

  3. Restoration of the joint geometry and outcome after stemless TESS shoulder arthroplasty

    PubMed Central

    von Engelhardt, Lars V; Manzke, Michael; Breil-Wirth, Andreas; Filler, Timm J; Jerosch, Joerg

    2017-01-01

    AIM To evaluate the joint geometry and the clinical outcome of stemless, anatomical shoulder arthroplasty with the TESS system. METHODS Twenty-one shoulders with a mean follow-up 18 of months were included. On scaled digital radiographs the premorbid center of rotation (CoR) was assessed and compared to the CoR of the prosthesis by using the MediCAD® software. Additionally, the pre- and post-operative geometry of the CoR was assessed in relation to the glenoid, the acromion as well as to the proximal humerus. Radiological changes, such as radiolucencies, were also assessed. Clinical outcome was assessed with the Constant and DASH score. RESULTS Both, the Constant and DASH scores improved significantly from 11% to 75% and from 70 to 30 points, P < 0.01 respectively. There were no significant differences regarding age, etiology, cemented or metal-backed glenoids, etc. (P > 0.05). The pre- and postoperative humeral offset, the lateral glenohumeral offset, the height of the CoR, the acromiohumeral distance as well as neck-shaft angle showed no significant changes (P > 0.05). The mean deviation of the CoR of the prosthesis from the anatomic center was 1.0 ± 2.8 mm. Three cases showed a medial deviation of more than 3 mm. These deviations of 5.1, 5.7 and 7.6 mm and were caused by an inaccurate humeral neck cut. These 3 patients showed a relatively poor outcome scoring. CONCLUSION TESS arthroplasty allows an anatomical joint reconstruction with a very good outcome. Outliers described in this study sensitize the surgeon for an accurate humeral neck cut. PMID:29094010

  4. Wind-tunnel research comparing lateral control devices, particularly at high angles of attack II : slotted ailerons and frise ailerons

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Noyes, Richard W

    1933-01-01

    Three model wings, two with typical slotted ailerons and one with typical frise ailerons, have been tested as part of a general investigation on lateral control devices with particular reference to their effectiveness at high angles of attack, in the 7 by 10 foot wind tunnel of the National Advisory Committee for Aeronautics. Force tests, free-autorotation tests, and forced-rotation tests were made which show the effect of the various ailerons on the general performance of the wing, on the lateral controllability, and on the lateral stability, in general, rolling control at 20 degree angle of attack to plain ailerons of the same size. The adverse yawing moments obtained with the slotted and frise ailerons were, in most cases, slightly smaller than those obtained with plain ailerons of the same size and deflection. However, this improvement was small as compared to the improvement obtainable by the use of suitable differential movements with any of the ailerons, including the plain.

  5. Examination of the Lateral Attenuation of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Hobbs, Christopher M.; Bradley, Kevin A.; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Measurements of the lateral attenuation of noise from aircraft operations at Denver International Airport were made at distances up to 2000 feet and elevation angles up to 27 degrees. Attenuation Calculated from modem ground impedance theory agrees well with average measured attenuation. The large variability between measured and predicted levels observed at small elevation angles is demonstrated to be due to refraction by wind and temperature gradients.

  6. Corrigendum to: "Influence of magnetic-field-caused modifications of trajectories of plasma electrons on spectral line shapes: Applications to magnetic fusion and white dwarfs" [J. Quant. Spectrosc. Radiat. Transf. 171 (2016) 15

    NASA Astrophysics Data System (ADS)

    Oks, E.

    2016-05-01

    It should have been noted that the theoretical spectra in Figs. 5 and 6, as well the numerical results for theoretical ratio of intensities of the central and lateral peaks (presented in the paragraph after Fig. 5), were calculated for the observation at the angle of 55° with respect to the magnetic field in tokamak T-10 (at this angle, the central and lateral peaks would have equal intensities while disregarding the effect of the spiraling trajectories of the electrons). At smaller angles of the observation, the effect of the spiraling trajectories of the electrons would be even more significant than presented in Figs. 5 and 6, and in the numerical data after Fig. 5. For example, for the observation at the angle of 45°, the allowance for the spiraling trajectories of the perturbing electrons increases the ratio of the intensity of the central peak to the intensity of any of the two lateral peaks by 100% (while at the angle of 55° the corresponding increase was 58%).

  7. Contact angle distribution of particles at fluid interfaces.

    PubMed

    Snoeyink, Craig; Barman, Sourav; Christopher, Gordon F

    2015-01-27

    Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.

  8. Lateral-directional stability characteristics of a wing-fuselage configuration at angles of attack up to 44 deg

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.; Huffman, J. K.

    1974-01-01

    An investigation has been conducted to determine the effects of configuration variables on the lateral-directional stability characteristics of a wing-fuselage configuration. The variables under study included variations in the location of a single center-line vertical tail and twin vertical tails, wing height, fuselage strakes, and horizontal tails. The study was conducted in the Langley high-speed 7-by 10-foot tunnel at a Mach number of 0.30, at angles of attack up to 44 deg and at sideslip angles of 0 deg and plus or minus 5 deg.

  9. Advanced symbology for general aviation approach to landing displays

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.

    1983-01-01

    A set of flight tests designed to evaluate the relative utility of candidate displays with advanced symbology for general aviation terminal area instrument flight rules operations are discussed. The symbology was previously evaluated as part of the NASA Langley Research Center's Terminal Configured Vehicle Program for use in commercial airlines. The advanced symbology included vehicle track angle, flight path angle and a perspective representation of the runway. These symbols were selectively drawn on a cathode ray tube (CRT) display along with the roll attitude, pitch attitude, localizer deviation and glideslope deviation. In addition to the CRT display, the instrument panel contained standard turn and bank, altimeter, rate of climb, airspeed, heading, and engine instruments. The symbology was evaluated using tracking performance and pilot subjective ratings for an instrument landing system capture and tracking task.

  10. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  11. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE PAGES

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    2017-05-16

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  12. Conventional versus computer-assisted technique for total knee arthroplasty: a minimum of 5-year follow-up of 200 patients in a prospective randomized comparative trial.

    PubMed

    Cip, Johannes; Widemschek, Mark; Luegmair, Matthias; Sheinkop, Mitchell B; Benesch, Thomas; Martin, Arno

    2014-09-01

    In the literature, studies of computer-assisted total knee arthroplasty (TKA) after mid-term period are not conclusive and long-term data are rare. In a prospective, randomized, comparative study 100 conventional TKAs (group REG) were compared with 100 computer-assisted TKAs (group NAV). Minimum follow-up was 5years. No difference in implant failure was found with 1.1% in group NAV versus 4.6% in group REG (P=0.368). Group NAV showed a significantly less mean deviation of mechanical limb axis (P=0.015), more TKAs (90% versus 81% in group REG) were within 3° varus/valgus and a higher tibial slope and lateral distal femoral angle (LDFA) accuracy was found (P≤0.034). Clinical investigational parameters showed no differences (P≥0.058). Insall and HSS score total were also higher in group NAV (P≤0.016). Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Influence of the apex angle of a hollow prism made from an ordinary commercial glass plate as a simple refractometer to the accuracy of the refractive index measurement of the edible oil

    NASA Astrophysics Data System (ADS)

    Idris, N.; Maswati; Yusibani, E.

    2018-05-01

    The influence of the apex angle of a hollow prism used as a simple refractometer to the accuracy of a refractive index measurement of the edible oil samples was studied. The hollow prism was made from an ordinary commercial glass plate with a thickness of 2 mm. The apex angle of the constructed hollow prism was varied. The edible oil sample used in this study was palm oil, namely the packaged, branded oil sample and the bulk oil sample. For measuring the refractive index, the oil sample was filled in the constructed hollow prism, and then a helium-neon laser beam was passed through the oil sample at a certain angle of incidence. The angle of minimum deviation of the transmitted laser He-Ne beam was measured and then was used for calculating the refractive index of the oil sample. The refractive index measurement was made using the hollow prism with different apex angles, ranging from 300 to 600. The measurement accuracy was estimated by comparing the refractive index measured using the hollow prisms to that of obtained using a standard Abbe refractometer. It was found that the refractive index of the edible oil can be measured accurately by using the hollow prism. It was also found that the accuracy of the refractive index measurement significantly changes with the apex angle of the hollow prism. The refractive index values measured using this simple refractometer deviate up to 3,49% from the refractive index value measured using the standard Abbe refractometer, especially when the apex angle of the prism is 30°. The measurement results with high accuracies obtained when using the hollow prisms with apex angles of 450 and 600. The optimum apex angle for the present constructed hollow prism is 450. The refractive index obtained using the hollow prism with the apex angle of 450 is 1,4623 and 1,4438 for the bulk oil and the packed, branded oil samples, respectively. This result suggests that the apex angle of the prism used affects largely the accuracy of the refractive index measurement.

  14. Effects of a continuous lateral turning device on pressure relief.

    PubMed

    Do, Nam Ho; Kim, Deog Young; Kim, Jung-Hoon; Choi, Jong Hyun; Joo, So Young; Kang, Na Kyung; Baek, Yoon Su

    2016-01-01

    [Purpose] The purpose of this study was to examine the pressure-relieving effects of a continuous lateral turning device on common pressure ulcer sites. [Subjects] Twenty-four healthy adults participated. [Methods] The design of our continuous lateral turning device was motivated by the need for an adequate pressure-relieving device for immobile and/or elderly people. The procedure of manual repositioning is embodied in our continuous lateral turning device. The interface pressure and time were measured, and comfort grade was evaluated during sessions of continuous lateral turning at 0°, 15°, 30°, and 45°. We quantified the pressure-relieving effect using peak pressure, mean pressure, and pressure time integration. [Results] Participants demonstrated pressure time integration values below the pressure-time threshold at 15°, 30°, and 45° at all the common pressure ulcer sites. Moreover, the most effective angles for pressure relief at the common pressure ulcer sites were 30° at the occiput, 15° at the left scapula, 45° at the right scapula, 45° at the sacrum, 15° at the right heel, and 30° at the left heel. However, angles greater than 30° induced discomfort. [Conclusion] Continuous lateral turning with our specially designed device effectively relieved the pressure of targeted sites. Moreover, the suggested angles of continuous lateral turning can be used to relieve pressure at targeted sites.

  15. Mechanical strength assessment of a drilled hole in the contralateral cortex at the end of the open wedge for high tibial osteotomy.

    PubMed

    Diffo Kaze, Arnaud; Maas, Stefan; Hoffmann, Alexander; Pape, Dietrich

    2017-12-01

    This study aimed to investigate, by means of finite element analysis, the effect of a drill hole at the end of a horizontal osteotomy to reduce the risk of lateral cortex fracture while performing an opening wedge high tibial osteotomy (OWHTO). The question was whether drilling a hole relieves stress and increases the maximum correction angle without fracture of the lateral cortex depending on the ductility of the cortical bone. Two different types of osteotomy cuts were considered; one with a drill hole (diameter 5 mm) and the other without the hole. The drill holes were located about 20 mm distally to the tibial plateau and 6 mm medially to the lateral cortex, such that the minimal thickness of the contralateral cortical bone was 5 mm. Based on finite element calculations, two approaches were used to compare the two types of osteotomy cuts considered: (1) Assessing the static strength using local stresses following the idea of the FKM-guideline, subsequently referred to as the "FKM approach" and (2) limiting the total strain during the opening of the osteotomy wedge, subsequently referred to as "strain approach". A critical opening angle leading to crack initiation in the opposite lateral cortex was determined for each approach and was defined as comparative parameter. The relation to bone aging was investigated by considering the material parameters of cortical bones from young and old subjects. The maximum equivalent (von-Mises) stress was smaller for the cases with a drill hole at the end of the osteotomy cut. The critical angle was approximately 1.5 times higher for the specimens with a drill hole compared to those without. This corresponds to an average increase of 50%. The calculated critical angle for all approaches is below 5°. The critical angle depends on the used approach, on patient's age and assumed ductility of the cortical bone. Drilling a hole at the end of the osteotomy reduces the stresses in the lateral cortex and increases the critical opening angle prior to cracking of the opposite cortex in specimen with small correction angles. But the difference from having a drill hole or not is not so significant, especially for older patients. The ductility of the cortical bone is the decisive parameter for the critical opening angle.

  16. Interpreting contact angle results under air, water and oil for the same surfaces

    NASA Astrophysics Data System (ADS)

    Ozkan, Orkun; Yildirim Erbil, H.

    2017-06-01

    Under-water and under-oil superhydropobicity and superhydrophilicity have gained significant attention over the last few years. In this study, contact angles on five flat surfaces (polypropylene, poly(methyl methacrylate), polycarbonate, TEFLON-FEP and glass slide) were measured in water drop-in-air, air bubble-under-water, oil drop-in-air, air bubble-under-oil, oil drop-under-water and water drop-under-oil conditions. Heptane, octane, nonane, decane, dodecane, and hexadecane hydrocarbons were used as oils. Immiscible water/oil pairs were previously mutually saturated to provide thermodynamical equilibrium conditions and their surface and interfacial tensions were determined experimentally. These pairs were used in the two-liquid contact angle measurements. Surface free energies of the solid surfaces in air were determined independently by using the van Oss-Good method, using the contact angle results of pure water, ethylene glycol, formamide, methylene iodide and α-bromonaphalene. In addition, Zisman’s ‘critical surface tension’ values were also determined for comparison. In theory, the summation of contact angle results in a complementary case would give a total of 180° for ideal surfaces. However, it was determined that there are large deviations from this rule in practical cases and these deviations depend on surface free energies of solids. Three complementary cases of (water-in-air with air bubble-under-water); (oil-in-air with air bubble-under-oil); and (oil-under-water with water-under-oil) were investigated in particular to determine the deviations from ideality. A novel approach, named ‘complementary hysteresis’ [γ WA(cosθ 1  -  cosθ 2) and γ OW(cosθ 6  -  cosθ 5)] was developed where γ WA and γ OW represent the interfacial tensions of water/air and oil/water, and θ 1, θ 2, θ 5, and θ 6 were the contact angles of water/air, air bubble/water, oil/water and water/oil respectively. It was experimentally determined that complementary hysteresis varies almost linearly with the surface free energy of the flat solid samples. This is the first report showing the relation of the surface free energy of a solid which is determined under-air with the contact angles obtained on the same solid in different three-phase systems.

  17. Undrained behavior and shear strength of clean sand containing low-plastic fines

    NASA Astrophysics Data System (ADS)

    To-Anh Phan, Vu; Hsiao, Darn-Horng

    2018-04-01

    This study presents experimental tests to understand the undrained behavior of sand containing various fines contents. The specimens were prepared by the wet tamping method. The consolidated undrained triaxial shear tests were carried out by sands mixed with amounts of fines in ranging from 0 to 60%. The results showed that the deviator stress quickly reaches the peak value with an axial strain in a range of 0.5 to 2%, and then, the value drops significantly with further increases in the axial strain, the pore water pressure of all the sand-fines mixtures rapidly increases as the axial strain reaches a value in a range from 1 to 2% and then slowly increases and reaches a stable state when strain is greater than 8%. Peak deviator stress gradually decreases with an increasing fines content from 0 to 40%, thereafter, the peak deviator significantly increases with further increases in the fines content up to 60%, irrespective of confining pressure values using in these tests. Finally, the effective internal friction angles are remarkably greater than the total friction angles for various sand-fines mixtures.

  18. Influence of Radiographic Positioning on Canine Sacroiliac and Lumbosacral Angle Measurements.

    PubMed

    Jones, Susan; Savage, Mason; Naughton, Brian; Singh, Susheela; Robertson, Ian; Roe, Simon C; Marcellin-Little, Denis J; Mathews, Kyle G

    2018-01-01

     To evaluate the influence of radiographic malpositioning on canine sacroiliac and lumbosacral inclination angles.  Using canine cadavers, lateral pelvic radiographs were acquired with the radiographic beam in a neutral position and then rotated 5, 10 and 15° to mimic rotational malpositioning. The focal point of the beam was then focused over the abdomen and again over mid-diaphysis of the femur to mimic an abdominal or femoral radiographic study.  Five degrees of rotational malpositioning did not influence measurements of sacroiliac or lumbosacral inclination, but malpositioning by more than 5° led to a significant decrease in both sacroiliac and lumbosacral angles. Moving the focal point to the femur significantly decreased the measured lumbosacral angle. Abdominally centred radiographs had no effect on lumbosacral and sacroiliac angle measurements.  When evaluating canine lumbosacral and sacroiliac angles radiographically, pelvic rotation of more than 5° should be avoided as should the use of lateral radiographs centred over the femur. Schattauer GmbH Stuttgart.

  19. Characterization of MOSFET Dosimeter Angular Response Using a Spherical Phantom for Fluoroscopic Dosimetry.

    PubMed

    Wang, Chu; Hill, Kevin; Yoshizumi, Terry

    2016-01-01

    Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) dosimeters, placed in anthropomorphic phantoms, are a standard method for organ dosimetry in medical x-ray imaging applications. However, many x-ray applications, particularly fluoroscopy procedures, use variable projection angles. During dosimetry, the MOSFET detector active area may not always be perpendicular to the x-ray beam. The goal of this study was to characterize the dosimeter's angular response in the fluoroscopic irradiation involved in pediatric cardiac catheterization procedures, during which a considerable amount of fluoroscopic x-ray irradiation is often applied from various projection angles. A biological x-ray irradiator was used to simulate the beam quality of a biplane fluoroscopy imaging system. A custom-designed acrylic spherical scatter phantom was fabricated to measure dosimeter response (in mV) in two rotational axes, axial (ψ) and normal-to-axial (θ), in 30° increments, as well as four common oblique angles used in cardiac catheterization: a) 90° Left Anterior Oblique (LAO); b) 70° LAO/ 20° Cranial; c) 20° LAO/ 15° Cranial; and d) 30° Right Anterior Oblique (RAO). All results were normalized to the angle where the dosimeter epoxy is perpendicular to the beam or the Posterior-Anterior projection angle in the clinical setup. The relative response in the axial rotation was isotropic (within ± 10% deviation); that in the normal-to-axial rotation was isotropic in all angles except the ψ = 270° angle, where the relative response was 83 ± 9%. No significant deviation in detector response was observed in the four common oblique angles, with their relative responses being: a) 102 ± 3%; b) 90 ± 3%; c) 92 ± 3%; and d) 95 ± 3%, respectively. These angular correction factors will be used in future dosimetry studies for fluoroscopy. The spherical phantom may be useful for other applications, as it allows the measurement of dosimeter response in virtually all angles in the 3-dimensional spherical coordinates.

  20. Anatomical reconstruction of the lateral ligaments of the ankle with a gracilis autograft: a new technique using an interference fit anchoring system.

    PubMed

    Takao, Masato; Oae, Kazunori; Uchio, Yuji; Ochi, Mitsuo; Yamamoto, Haruyasu

    2005-06-01

    Few anatomical and minor invasive procedures have been reported for surgical reconstruction of the lateral ligaments to treat lateral instability of the ankle. Furthermore, there are no standards according to which ligaments should be reconstructed. A new technique for anatomically reconstructing the lateral ligaments of the ankle using an interference fit anchoring system and determining which ligaments need to be reconstructed according to the results of standard stress radiography of the talocrural and subtalar joints will be effective for treating lateral instability of the ankle. Case series; level of evidence, 4. Twenty-one patients with lateral instability of the ankle underwent surgery using the proposed interference fit anchoring system. Standard stress radiographs of the subtalar joint were performed, and if the talocalcaneal angle was less than 10 degrees , only the anterior talofibular ligament was reconstructed; if there was a 10 degrees or greater opening of the talocalcaneal angle, both the anterior talofibular ligament and the calcaneofibular ligament were reconstructed. In the 17 patients who received only the anterior talofibular ligament reconstruction, the mean talar tilt angle on standard stress radiography of the talocrural joint was 14.5 degrees +/- 1.7 degrees before surgery and 2.6 degrees +/- 0.8 degrees 2 years after surgery (P < .0001). For the 4 patients who had both the anterior talofibular ligament and calcaneofibular ligament reconstructed, the mean talar tilt angle was 16.5 degrees +/- 1.5 degrees before surgery and 3.0 degrees +/- 0.5 degrees 2 years after surgery (P = .0015). The overall mean talocalcaneal angle on standard stress radiography of the subtalar joint was 11.3 degrees +/- 1.4 degrees before surgery and 3.5 degrees +/- 0.8 degrees 2 years after surgery (P = .0060). The proposed system has several advantages, including anatomical reconstruction with normal stability and range of motion restored, the need for only a small incision during the reconstruction, and sufficient strength at the tendon graft-bone tunnel junction, in comparison with the tension strength of the lateral ligaments of the ankle.

  1. Locomotion pattern and trunk musculoskeletal architecture among Urodela.

    PubMed

    Omura, Ayano; Ejima, Ken-Ichiro; Honda, Kazuya; Anzai, Wataru; Taguchi, Yuki; Koyabu, Daisuke; Endo, Hideki

    2015-04-01

    We comparatively examined the trunk musculature and prezygapophyseal angle of mid-trunk vertebra in eight urodele species with different locomotive modes (aquatic Siren intermedia , Amphiuma tridactylum , Necturus maculosus and Andrias japonicus ; semi-aquatic Cynops pyrrhogaster, Cynops ensicauda ; and terrestrial Hynobius nigrescens , Hynobius lichenatus and Ambystoma tigrinum ). We found that the more terrestrial species were characterized by larger dorsal and abdominal muscle weight ratios compared with those of the more aquatic species, whereas muscle ratios of the lateral hypaxial musculature were larger in the more aquatic species. The lateral hypaxial muscles were thicker in the more aquatic species, whereas the M. rectus abdominis was more differentiated in the more terrestrial species. Our results suggest that larger lateral hypaxial muscles function for lateral bending during underwater locomotion in aquatic species. Larger dorsalis and abdominal muscles facilitate resistance against sagittal extension of the trunk, stabilization and support of the ventral contour line against gravity in terrestrial species. The more aquatic species possessed a more horizontal prezygapophyseal angle for more flexible lateral locomotion. In contrast, the more terrestrial species have an increasingly vertical prezygapophyseal angle to provide stronger column support against gravity. Thus, we conclude trunk structure in urodeles differs clearly according to their locomotive modes.

  2. Optimized point dose measurement for monitor unit verification in intensity modulated radiation therapy using 6 MV photons by three different methodologies with different detector-phantom combinations: A comparative study

    PubMed Central

    Sarkar, Biplab; Ghosh, Bhaswar; Sriramprasath; Mahendramohan, Sukumaran; Basu, Ayan; Goswami, Jyotirup; Ray, Amitabh

    2010-01-01

    The study was aimed to compare accuracy of monitor unit verification in intensity modulated radiation therapy (IMRT) using 6 MV photons by three different methodologies with different detector phantom combinations. Sixty patients were randomly chosen. Zero degree couch and gantry angle plans were generated in a plastic universal IMRT verification phantom and 30×30×30 cc water phantom and measured using 0.125 cc and 0.6 cc chambers, respectively. Actual gantry and couch angle plans were also measured in water phantom using 0.6 cc chamber. A suitable point of measurement was chosen from the beam profile for each field. When the zero-degree gantry, couch angle plans and actual gantry, couch angle plans were measured by 0.6 cc chamber in water phantom, the percentage mean difference (MD) was 1.35%, 2.94 % and Standard Deviation (SD) was 2.99%, 5.22%, respectively. The plastic phantom measurements with 0.125 cc chamber Semiflex ionisation chamber (SIC) showed an MD=4.21% and SD=2.73 %, but when corrected for chamber-medium response, they showed an improvement, with MD=3.38 % and SD=2.59 %. It was found that measurements with water phantom and 0.6cc chamber at gantry angle zero degree showed better conformity than other measurements of medium-detector combinations. Correction in plastic phantom measurement improved the result only marginally, and actual gantry angle measurement in a flat- water phantom showed higher deviation. PMID:20927221

  3. Control Strategies for Guided Collective Motion

    DTIC Science & Technology

    2015-02-27

    Rorres and H. Anton , “ Elementary linear algebra applications version,” 9th Edition, Wiley India Pvt. Ltd., 2011. [20] S.H. Strogatz, “From Kuramoto to... linear cyclic pursuit in which an agent pursues its leader with an angle of deviation. The sufficient conditions for the stability of such systems are...Generalized Hierarchical Cyclic Pursuit 6. D. Mukherjee and D. Ghose: Deviated Linear Cyclic Pursuit 7. D. Mukherjee and D. Ghose; On Synchronous and

  4. Quantitative impact of small angle forward scatter on whole blood oximetry using a Beer-Lambert absorbance model.

    PubMed

    LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean

    2011-04-21

    It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.

  5. A new computerized diagnostic algorithm for quantitative evaluation of binocular misalignment in patients with strabismus

    NASA Astrophysics Data System (ADS)

    Nam, Kyoung Won; Kim, In Young; Kang, Ho Chul; Yang, Hee Kyung; Yoon, Chang Ki; Hwang, Jeong Min; Kim, Young Jae; Kim, Tae Yun; Kim, Kwang Gi

    2012-10-01

    Accurate measurement of binocular misalignment between both eyes is important for proper preoperative management, surgical planning, and postoperative evaluation of patients with strabismus. In this study, we proposed a new computerized diagnostic algorithm that can calculate the angle of binocular eye misalignment photographically by using a dedicated three-dimensional eye model mimicking the structure of the natural human eye. To evaluate the performance of the proposed algorithm, eight healthy volunteers and eight individuals with strabismus were recruited in this study, the horizontal deviation angle, vertical deviation angle, and angle of eye misalignment were calculated and the angular differences between the healthy and the strabismus groups were evaluated using the nonparametric Mann-Whitney test and the Pearson correlation test. The experimental results demonstrated a statistically significant difference between the healthy and strabismus groups (p = 0.015 < 0.05), but no statistically significant difference between the proposed method and the Krimsky test (p = 0.912 > 0.05). The measurements of the two methods were highly correlated (r = 0.969, p < 0.05). From the experimental results, we believe that the proposed diagnostic method has the potential to be a diagnostic tool that measures the physical disorder of the human eye to diagnose non-invasively the severity of strabismus.

  6. The Structure of the Proton

    DOE R&D Accomplishments Database

    Chambers, E. E.; Hofstadter, R.

    1956-04-01

    The structure and size of the proton have been studied by means of the methods of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, 550 Mev. The range of laboratory angles examined has been 30 degrees to 135 degrees. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at 0.77 {plus or minus} 0.10 x 10{sup -13} cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70 x 10{sup -13} cm or an exponential with rms radius 0.80 x 10 {sup -13} cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.

  7. Evidence for intermuscle difference in slack angle in human triceps surae.

    PubMed

    Hirata, Kosuke; Kanehisa, Hiroaki; Miyamoto-Mikami, Eri; Miyamoto, Naokazu

    2015-04-13

    This study examined whether the slack angle (i.e., the joint angle corresponding to the slack length) varies among the synergists of the human triceps surae in vivo. By using ultrasound shear wave elastography, shear modulus of each muscle of the triceps surae was measured during passive stretching from 50° of plantar flexion in the knee extended position at an angular velocity of 1°/s in 9 healthy adult subjects. The slack angle of each muscle was determined from the ankle joint angle-shear modulus relationship as the first increase in shear modulus. The slack angle was significantly greater in the medial gastrocnemius (20.7±6.7° plantarflexed position) than in the lateral gastrocnemius (14.9±6.7° plantarflexed position) and soleus (2.0±4.8° dorsiflexed position) and greater in the lateral gastrocnemius than in the soleus. This study provided evidence that the slack angle differs among the triceps surae; the medial gastrocnemius produced passive force at the most plantarflexed position while the slack angle of the soleus was the most dorsiflexed position. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Q-vector measurements: physical examination versus magnetic resonance imaging measurements and their relationship with tibial tubercle-trochlear groove distance.

    PubMed

    Graf, Kristin H; Tompkins, Marc A; Agel, Julie; Arendt, Elizabeth A

    2018-03-01

    An increased lateral quadriceps vector has been associated with lateral patellar dislocation. Surgical correction of this increased vector through tibial tubercle medialization is often recommended when the quadriceps vector is "excessive". This can be evaluated by physical examination measurements of Q-angle and/or tubercle sulcus angle (TSA), as well as the magnetic resonance imaging (MRI) measurement of tibial tubercle-trochlear groove (TT-TG) distance. This study examined the relationship between three objective measurements of lateral quadriceps vector (TT-TG, Q-angle, TSA). A secondary goal was to relate lateral patellar tilt to these measurements. Consecutive patients undergoing patellofemoral stabilization surgery from 9/2010 to 6/2011 were included. The Q-angle and TSA were measured on intra-operative physical examination. The TT-TG and patellar tilt were measured on MRI. TSA, Q-angle, and patellar tilt were compared to TT-TG using Pearson correlation coefficient. The study cohort included 49 patients, ages 12-37 (mean 23.2); 62% female. The Pearson correlation coefficients showed (+) significance (p < 0.01) between the TT-TG and both TSA and Q-angle. Tilt and TT-TG were (+) non-significantly correlated. Despite positive correlations of each measurement with TT-TG, there is not uniform intra-patient correlation. In other words, if TT-TG is elevated for a patient, it does not guarantee that all other measurements, including tilt, are elevated in that individual patient. The TT-TG distance has significant positive correlation with the measurements of TSA and Q-angle in patients undergoing surgery for patellofemoral instability. The clinical relevance is that the variability within individual patients demonstrates the need for considering both TSA and TT-TG before and during surgical intervention to avoid overcorrection with a medial tibial tubercle osteotomy. Diagnostic study, Level III.

  9. Numerical research of parameters of interaction of the gas flow with rotary valve of the gas pipeline

    NASA Astrophysics Data System (ADS)

    Boldyrev, A. V.; Karelin, D. L.; Muljukin, V. L.

    2016-11-01

    Conducted numerical research of static characteristics of the rotary gate valve at different angles of its deviation. for this purpose were set different values of pressure differential on the valve depending on which, was determined the mass flow and torque on valve axes. The mathematical model is provided by continuity equations, average on Reynolds, Navier-Stokes and energy, the equation of the perfect gas, the equations of two-layer k-e of model of turbulence. When calculating the current near walls are used Wolfstein's model and the hybrid wall functions of Reichardt for the speed and temperature. The task is solved in three-dimensional statement with use of conditions of symmetry. The structure of the current is analyzed: zones of acceleration and flow separation, whirlwinds, etc. Noted growth of hydraulic resistance of the valve with reduction of slope angle of the valve and with the increase in mass flow. Established increase of torque with reduction of the deviation angle of the valve and with increase in the mass expense.

  10. Variability of single-leg versus double-leg stance radiographs in the varus knee.

    PubMed

    Chen, Andrew; Rich, Valerie; Bain, Elizabeth; Sterett, William I

    2009-07-01

    We evaluated measured radiographic parameter variability between single-leg stance (SLS) and double-leg stance (DLS) radiographs in patients with varus knee malalignment, indicated for high tibial osteotomy. Fifty-three consecutive knees (mean, 49 years; range, 18-79 years) were evaluated for varus thrust. SLS and DLS radiographs were obtained. A single blinded observer measured mechanical axis angles and weight-bearing line (WBL) deviation using a goniometer. Mechanical axis angles averaged 9.1 degrees (DLS) and 11.3 degrees (SLS). SLS radiographs averaged 9% greater WBL medialization than did DLS. Medial opening averaged 16.4 mm (DLS) and 18.8 mm (SLS). DLS and SLS radiographs showed no significant differences in patients without varus thrust. Patients with varus thrust demonstrated differences in mechanical axis angles (DLS, 9.4 degrees; SLS, 12.2 degrees), WBL deviation (12.1% less), medialization (DLS), and medial opening necessary for correction (DLS, 16.6 mm; SLS, 20.3 mm). In varus thrust, SLS radiographs more closely replicate dynamic knee malalignment, possibly providing more accurate measurements of angular deformity.

  11. Wagon instability in long trains

    NASA Astrophysics Data System (ADS)

    Cole, Colin; McClanachan, Mitchell; Spiryagin, Maksym; Sun, Yan Quan

    2012-01-01

    Lateral force components and impacts from couplers can adversely affect wagon stability. These issues are significant in longer and heavier trains increasing the risk of wagon rollover, wheel climb, wagon body pitch, bogie pitch and wagon lift-off. Modelling of coupler angles has been added to normal longitudinal train simulation to allow comprehensive study of lateral components of coupler forces. Lateral coupler forces are then combined with centripetal inertia calculations to determine quasi-static lateral forces, quasi-static vertical forces and quasi-static bogie lateral to vertical ratio, allowing the study of stringlining, buckling and wagon rollover risks. The approach taken allows for different rolling stock lengths, overhang and coupling lengths, and allows the study of angles occurring in transitions. Wagon body and bogie pitch are also studied with enhancements added to previous modelling to allow the study of wagon lift-off.

  12. Surgical anatomy of the radial nerve at the elbow.

    PubMed

    Artico, M; Telera, S; Tiengo, C; Stecco, C; Macchi, V; Porzionato, A; Vigato, E; Parenti, A; De Caro, R

    2009-02-01

    An anatomical study of the brachial portion of the radial nerve with surgical implications is proposed. Thirty specimens of arm from 20 fresh cadavers (11 male, 9 female) were used to examine the topographical relations of the radial nerve with reference to the following anatomical landmarks: acromion angle, medial and lateral epicondyles, point of division between the lateral and long heads of the triceps brachii, lateral intermuscular septum, site of division of the radial nerve into its superficial and posterior interosseous branches and entry and exit point of the posterior interosseous branch into the supinator muscle. The mean distances between the acromion angle and the medial and lateral levels of crossing the posterior aspect of the humerus were 109 (+/-11) and 157 (+/-11) mm, respectively. The mean length and calibre of the nerve in the groove were 59 (+/-4) and 6 (+/-1) mm, respectively. The division of the lateral and long heads of the triceps was found at a mean distance of 126 (+/-13) mm from the acromion angle. The mean distances between the lateral point of crossing the posterior aspect of the humerus and the medial and lateral epicondyles were 125 (+/-13) and 121 (+/-13) mm, respectively. The mean distance between the lateral point of crossing the posterior aspect of the humerus and the entry point in the lateral intermuscular septum (LIS) was 29 (+/-6) mm. The mean distances between the entry point of the nerve in the LIS and the medial and lateral epicondyles were 133 (+/-14) and 110 (+/-23) mm, respectively. Our study provides reliable and objective data of surgical anatomy of the radial nerve which should be always kept in mind by surgeons approaching to the surgery of the arm, in order to avoid iatrogenic injuries.

  13. Note: Comparison experimental results of the laser heterodyne interferometer for angle measurement based on the Faraday effect.

    PubMed

    Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping

    2018-04-01

    A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.

  14. Note: Comparison experimental results of the laser heterodyne interferometer for angle measurement based on the Faraday effect

    NASA Astrophysics Data System (ADS)

    Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping

    2018-04-01

    A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.

  15. The Impact of Middle Turbinate Concha Bullosa on the Severity of Inferior Turbinate Hypertrophy in Patients with a Deviated Nasal Septum.

    PubMed

    Tomblinson, C M; Cheng, M-R; Lal, D; Hoxworth, J M

    2016-07-01

    Inferior turbinate hypertrophy and concha bullosa often occur opposite the direction of nasal septal deviation. The objective of this retrospective study was to determine whether a concha bullosa impacts inferior turbinate hypertrophy in patients who have nasal septal deviation. The electronic medical record was used to identify sinus CT scans exhibiting nasal septal deviation for 100 adult subjects without and 100 subjects with unilateral middle turbinate concha bullosa. Exclusion criteria included previous sinonasal surgery, tumor, sinusitis, septal perforation, and craniofacial trauma. Nasal septal deviation was characterized in the coronal plane by distance from the midline (severity) and height from the nasal floor. Measurement differences between sides for inferior turbinate width (overall and bone), medial mucosa, and distance to the lateral nasal wall were calculated as inferior turbinate hypertrophy indicators. The cohorts with and without concha bullosa were similarly matched for age, sex, and nasal septal deviation severity, though nasal septal deviation height was greater in the cohort with concha bullosa than in the cohort without concha bullosa (19.1 ± 4.3 mm versus 13.5 ± 4.1 mm, P < .001). Compensatory inferior turbinate hypertrophy was significantly greater in the cohort without concha bullosa than in the cohort with it as measured by side-to-side differences in turbinate overall width, bone width, and distance to the lateral nasal wall (P < .01), but not the medial mucosa. Multiple linear regression analyses found nasal septal deviation severity and height to be significant predictors of inferior turbinate hypertrophy with positive and negative relationships, respectively (P < .001). Inferior turbinate hypertrophy is directly proportional to nasal septal deviation severity and inversely proportional to nasal septal deviation height. The effect of a concha bullosa on inferior turbinate hypertrophy is primarily mediated through influence on septal morphology, because the nasal septal deviation apex tends to be positioned more superior from the nasal floor in these patients. © 2016 by American Journal of Neuroradiology.

  16. Cannabis effects on driving lateral control with and without alcohol.

    PubMed

    Hartman, Rebecca L; Brown, Timothy L; Milavetz, Gary; Spurgin, Andrew; Pierce, Russell S; Gorelick, David A; Gaffney, Gary; Huestis, Marilyn A

    2015-09-01

    Effects of cannabis, the most commonly encountered non-alcohol drug in driving under the influence cases, are heavily debated. We aim to determine how blood Δ(9)-tetrahydrocannabinol (THC) concentrations relate to driving impairment, with and without alcohol. Current occasional (≥1×/last 3 months, ≤3days/week) cannabis smokers drank placebo or low-dose alcohol, and inhaled 500mg placebo, low (2.9%)-THC, or high (6.7%)-THC vaporized cannabis over 10min ad libitum in separate sessions (within-subject design, 6 conditions). Participants drove (National Advanced Driving Simulator, University of Iowa) simulated drives (∼0.8h duration). Blood, oral fluid (OF), and breath alcohol samples were collected before (0.17h, 0.42h) and after (1.4h, 2.3h) driving that occurred 0.5-1.3h after inhalation. We evaluated standard deviations of lateral position (lane weave, SDLP) and steering angle, lane departures/min, and maximum lateral acceleration. In N=18 completers (13 men, ages 21-37years), cannabis and alcohol increased SDLP. Blood THC concentrations of 8.2 and 13.1μg/L during driving increased SDLP similar to 0.05 and 0.08g/210L breath alcohol concentrations, the most common legal alcohol limits. Cannabis-alcohol SDLP effects were additive rather than synergistic, with 5μg/L THC+0.05g/210L alcohol showing similar SDLP to 0.08g/210L alcohol alone. Only alcohol increased lateral acceleration and the less-sensitive lane departures/min parameters. OF effectively documented cannabis exposure, although with greater THC concentration variability than paired blood samples. SDLP was a sensitive cannabis-related lateral control impairment measure. During drive blood THC ≥8.2μg/L increased SDLP similar to notably-impairing alcohol concentrations. Despite OF's screening value, OF variability poses challenges in concentration-based effects interpretation. Published by Elsevier Ireland Ltd.

  17. Investigation of High-alpha Lateral-directional Control Power Requirements for High-performance Aircraft

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Ross, Holly M.; Ashley, Patrick A.

    1993-01-01

    Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high-angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high-angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes ground-based piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.

  18. Investigation of high-alpha lateral-directional control power requirements for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Ross, Holly M.; Ashley, Patrick A.

    1993-01-01

    Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes groundbased piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.

  19. Lateral noise attenuation of the advanced propeller of the propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, F. W.; Reddy, N. N.; Bartel, H. W.

    1989-01-01

    Lateral noise attenuation characteristics of the advanced propeller are determined using the flight test results of the testbed aircraft, Propfan Test Assessment (PTA), with a single, large-scale propfan. The acoustic data were obtained with an array of ground-mounted microphones positioned at distances up to 2.47 km (8100 feet) to the side of the flight path. The aircraft was flown at a Mach number of 0.31 for a variety of operating conditions. The lateral noise attenuation in a frequency range containing the blade passage frequency of the propeller was found to have positive magnitudes on the propfan side and negative magnitudes on the opposite side. The measured attenuation exhibits a strong dependence upon the elevation angle. The results also display a clear dependence upon the angle at which the propeller and nacelle are mounted on the wing (inflow angle).

  20. Postoperative Knee Flexion Angle Is Affected by Lateral Laxity in Cruciate-Retaining Total Knee Arthroplasty.

    PubMed

    Nakano, Naoki; Matsumoto, Tomoyuki; Muratsu, Hirotsugu; Takayama, Koji; Kuroda, Ryosuke; Kurosaka, Masahiro

    2016-02-01

    Although many studies have reported that postoperative knee flexion is influenced by preoperative conditions, the factors which affect postoperative knee flexion have not been fully elucidated. We tried to investigate the influence of intraoperative soft tissue balance on postoperative knee flexion angle after cruciate-retaining (CR) total knee arthroplasty (TKA) using a navigation and an offset-type tensor. We retrospectively analyzed 55 patients with osteoarthritis who underwent TKA using e.motion-CR (B. Braun Aesculap, Germany) whose knee flexion angle could be measured at 2 years after operation. The exclusion criteria included valgus deformity, severe bony defect, infection, and bilateral TKA. Intraoperative varus ligament balance and joint component gap were measured with the navigation (Orthopilot 4.2; B. Braun Aesculap) while applying 40-lb joint distraction force at 0° to 120° of knee flexion using an offset-type tensor. Correlations between the soft tissue parameters and postoperative knee flexion angle were analyzed using simple linear regression models. Varus ligament balance at 90° of flexion (R = 0.56; P < .001) and lateral compartment gap at 90° of flexion (R = 0.51; P < .001) were positively correlated with postoperative knee flexion angle. In addition, as with past studies, joint component gap at 90° of flexion (R = 0.30; P < .05) and preoperative knee flexion angle (R = 0.63; P < .001) were correlated with postoperative knee flexion angle. Lateral laxity as well as joint component gap at 90° of flexion is one of the most important factors affecting postoperative knee flexion angle in CR-TKA. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Assessment of the Relationship between the Shape of the Lateral Meniscus and the Risk of Extrusion Based on MRI Examination of the Knee Joint.

    PubMed

    Szarmach, Arkadiusz; Luczkiewicz, Piotr; Skotarczak, Monika; Kaszubowski, Mariusz; Winklewski, Pawel J; Dzierzanowski, Jaroslaw; Piskunowicz, Maciej; Szurowska, Edyta; Baczkowski, Bogusław

    2016-01-01

    Meniscus extrusion is a serious and relatively frequent clinical problem. For this reason the role of different risk factors for this pathology is still the subject of debate. The goal of this study was to verify the results of previous theoretical work, based on the mathematical models, regarding a relationship between the cross-section shape of the meniscus and the risk of its extrusion. Knee MRI examination was performed in 77 subjects (43 men and 34 women), mean age 34.99 years (range: 18-49 years), complaining of knee pain. Patients with osteoarthritic changes (grade 3 and 4 to Kellgren classification), varus or valgus deformity and past injuries of the knee were excluded from the study. A 3-Tesla MR device was used to study the relationship between the shape of the lateral meniscus (using slope angle, meniscus-cartilage height and meniscus-bone angle) and the risk of extrusion. Analysis revealed that with values of slope angle and meniscus-bone angle increasing by one degree, the risk of meniscus extrusion raises by 1.157 and 1.078 respectively. Also, an increase in meniscus-cartilage height by 1 mm significantly elevates the risk of extrusion. At the same time it was demonstrated that for meniscus-bone angle values over 42 degrees and slope angle over 37 degrees the risk of extrusion increases significantly. This was the first study to demonstrate a tight correlation between slope angle, meniscus-bone angle and meniscus-cartilage height values in the assessment of the risk of lateral meniscus extrusion. Insertion of the above parameters to the radiological assessment of the knee joint allows identification of patients characterized by an elevated risk of development of this pathology.

  2. Surgery for esotropia under topical anesthesia.

    PubMed

    Tejedor, Jaime; Ogallar, Consuelo; Rodríguez, José M

    2010-10-01

    To compare a surgically adjusted dose of strabismus surgery using topical anesthesia in cooperative patients with dosage guidelines adapted to the surgeon's personal technique using sub-Tenon's anesthesia. Randomized, controlled, single-site clinical trial. Sixty patients with nonparalytic, nonrestrictive esotropia who were cooperative for surgery under topical anesthesia. Twenty-eight patients were assigned to topical anesthesia, and 32 patients were assigned to sub-Tenon's anesthesia. Visual acuity, refraction, and deviation angle were determined in all patients preoperatively and postoperatively, and stereoacuity was measured postoperatively. Deviation angle was measured by simultaneous and alternate prism and cover test, and stereoacuity was measured using Randot circles (Stereo Optical Co., Chicago, IL). The amount of surgery under topical anesthesia was adjusted intraoperatively. The amount of surgery used in the 2 treatment groups (measured in millimeters and millimeter/degree of deviation angle) and 6-month motor and stereoacuity outcomes. Patients in the topical group required 3.2 mm less surgery on average than those in the sub-Tenon's group (5.9 and 9.1 mm, respectively; 0.4 and 0.6 mm of recession/degree, respectively) (P<0.01). Motor success (84% and 75%, respectively, P=0.38) and stereoacuity (339.6 and 323.9 arc seconds, respectively, P=0.87) at 6 months were similar in the 2 groups. Topical anesthesia requires a smaller amount of surgery and number of operated muscles to correct esotropia compared with classic surgery guidelines adapted to the surgeon's personal technique. Copyright © 2010 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  3. IMRT for Image-Guided Single Vocal Cord Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl; Astreinidou, Eleftheria; Boer, Hans C.J. de

    2012-02-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRTmore » plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.« less

  4. The Impact of Mechanical and Restricted Kinematic Alignment on Knee Anatomy in Total Knee Arthroplasty.

    PubMed

    Almaawi, Abdulaziz M; Hutt, Jonathan R B; Masse, Vincent; Lavigne, Martin; Vendittoli, Pascal-Andre

    2017-07-01

    Total knee arthroplasty (TKA), aiming at neutral mechanical alignment (MA), inevitably modifies the patient's native knee anatomy. Another option is kinematic alignment (KA), which aims to restore the original anatomy of the knee. The aim of this study was to evaluate the variations in lower limb anatomy of a patient population scheduled for TKA, and to assess the use of a restricted KA TKA protocol and compare the resulting anatomic modifications with the standard MA technique. A total of 4884 knee computed tomography scans were analyzed from a database of patients undergoing TKA with patient-specific instrumentation. The lateral distal femoral angle (LDFA), medial proximal tibial angle (MPTA), and hip-knee-ankle angle (HKA) were measured. Bone resections were compared using a standard MA and a restricted KA aiming for independent tibial and femoral cuts of maximum ±5° deviation from the coronal mechanical axis and a resulting overall coronal HKA within ±3° of neutral. The mean preoperative MPTA was 2.9° varus, LDFA was 2.7° valgus, and overall HKA was 0.1° varus. Using our protocol, 2475 knees (51%) could have undergone KA without adjustment. To include 4062 cases (83%), mean corrections of 0.5° for MPTA and 0.3° for LDFA were needed, significantly less than with MA (3.3° for MPTA and 3.2° for LDFA; P < .001). The range of knee anatomy in patients scheduled for TKA is wide. MA leads to greater modifications of knee joint anatomy. To avoid reproducing extreme anatomy, the proposed restricted KA protocol provides an interesting hybrid option between MA and true KA. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Spinal posture and pelvic position in three hundred forty-five elementary school children: a rasterstereographic pilot study.

    PubMed

    Furian, Thimm Christoph; Rapp, Walter; Eckert, Stefanie; Wild, Michael; Betsch, Marcel

    2013-02-22

    Children's posture has been of growing concern due to observations that it seems to be impaired compared to previous generations. So far there is no reference data for spinal posture and pelvic position in healthy children available. Purpose of this pilot study was to determine rasterstereographic posture values in children during their second growth phase. Three hundred and forty-five pupils were measured with a rasterstereographic device in a neutral standing position with hanging arms. To further analyse for changes in spinal posture during growth, the children were divided into 12-month age clusters. A mean kyphotic angle of 47.1°±7.5 and a mean lordotic angle of 42.1°±9.9 were measured. Trunk imbalance in girls (5.85 mm±0.74) and boys (7.48 mm± 0.83) varied only little between the age groups, with boys showing slightly higher values than girls. The trunk inclination did not show any significant differences between the age groups in boys or girls. Girls' inclination was 2.53°±1.96 with a tendency to decreasing angles by age, therefore slightly smaller compared to boys (2.98°±2.18). Lateral deviation (4.8 mm) and pelvic position (tilt: 2.75 mm; torsion: 1.53°; inclination: 19.8°±19.8) were comparable for all age groups and genders. This study provides the first systematic rasterstereographic analysis of spinal posture in children between 6 and 11 years. With the method of rasterstereography a reliable three-dimensional analysis of spinal posture and pelvic position is possible. Spinal posture and pelvic position does not change significantly with increasing age in this collective of children during the second growth phase.

  6. Triple innominate osteotomy for Legg-Calvé-Perthes disease in children: does the lateral coverage change with time?

    PubMed

    Hosalkar, Harish; Munhoz da Cunha, Ana Laura; Baldwin, Keith; Ziebarth, Kai; Wenger, Dennis R

    2012-09-01

    Triple innominate osteotomy (TIO) is one of the modalities of surgical containment in Legg-Calvé-Perthes disease (LCPD). However, overcoverage with TIO can lead to pincer impingement. We therefore asked (1) whether TIO contained the femoral head in Catterall Stages III and IV of LCPD; (2) whether the center-edge (CE) angle, acetabular roof arc angle (ARA), and Sharp's angle changed during the growing years; and (3) what percentage of patients had radiographic evidence of pincer impingement beyond a minimum followup of 3 years. We identified 19 children who had 20 TIOs performed for Catterall Stages III and IV LCPD. Two blinded observers assessed sequential radiographs. Each observer made two sets of readings more than 2 weeks apart. Femoral head extrusion index, CE angle of Wiberg, ARA, and Sharp's angle were measured. Minimum followup was 3 years to document continued acetabular growth (mean, 3.8 years; range, 3-7 years). All patients exhibited femoral head containment at last followup. Eleven of 20 hips demonstrated no radiographic evidence of pincer morphology beyond a minimum followup of 3 years (mean, 3.8 years). Patients with CE angle corrected to 44° or less and an ARA of greater than -6° after TIO did not demonstrate a pincer morphology at last followup. TIO resulted in femoral head containment in all cases. Lateral acetabular coverage changed during the growing years in all patients. Surgical correction beyond 44° of CE angle and -6° of ARA should be avoided to prevent pincer morphology later.

  7. SU-G-TeP2-04: Comprehensive Machine Isocenter Evaluation with Separation of Gantry, Collimator, and Table Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, S; Clements, C; Hyer, D

    2016-06-15

    Purpose: To develop and demonstrate application of a method that characterizes deviation of linac x-ray beams from the centroid of the volumetric radiation isocenter as a function of gantry, collimator, and table variables. Methods: A set of Winston-Lutz ball-bearing images was used to determine the gantry radiation isocenter as the midrange of deviation values resulting from gantry and collimator rotation. Also determined were displacement of table axis from gantry isocenter and recommended table axis adjustment. The method, previously reported, has been extended to include the effect of collimator walkout by obtaining measurements with 0 and 180 degree collimator rotation formore » each gantry angle. Twelve images were used to characterize the volumetric isocenter for the full range of available gantry, collimator, and table rotations. Results: Three Varian True Beam, two Elekta Infinity and four Versa HD linacs at five institutions were tested using identical methodology. Varian linacs exhibited substantially less deviation due to head sag than Elekta linacs (0.4 mm vs. 1.2 mm on average). One linac from each manufacturer had additional isocenter deviation of 0.3 to 0.4 mm due to jaw instability with gantry and collimator rotation. For all linacs, the achievable isocenter tolerance was dependent on adjustment of collimator position offset, transverse position steering, and alignment of the table axis with gantry isocenter, facilitated by these test results. The pattern and magnitude of table axis wobble vs. table angle was reproducible and unique to each machine. Conclusion: This new method provides a comprehensive set of isocenter deviation values including all variables. It effectively facilitates minimization of deviation between beam center and target (ball-bearing) position. This method was used to quantify the effect of jaw instability on isocenter deviation and to identify the offending jaw. The test is suitable for incorporation into a routine machine QA program. Software development was performed by Radiological Imaging Technology, Inc.« less

  8. Cone-Beam Computed Tomography Assessment of Lower Facial Asymmetry in Unilateral Cleft Lip and Palate and Non-Cleft Patients with Class III Skeletal Relationship.

    PubMed

    Lin, Yifan; Chen, Gui; Fu, Zhen; Ma, Lian; Li, Weiran

    2015-01-01

    To evaluate, using cone-beam computed tomography (CBCT), both the condylar-fossa relationships and the mandibular and condylar asymmetries between unilateral cleft lip and palate (UCLP) patients and non-cleft patients with class III skeletal relationship, and to investigate the factors of asymmetry contributing to chin deviation. The UCLP and non-cleft groups consisted of 30 and 40 subjects, respectively, in mixed dentition with class III skeletal relationships. Condylar-fossa relationships and the dimensional and positional asymmetries of the condyles and mandibles were examined using CBCT. Intra-group differences were compared between two sides in both groups using a paired t-test. Furthermore, correlations between each measurement and chin deviation were assessed. It was observed that 90% of UCLP and 67.5% of non-cleft subjects had both condyles centered, and no significant asymmetry was found. The axial angle and the condylar center distances to the midsagittal plane were significantly greater on the cleft side than on the non-cleft side (P=0.001 and P=0.028, respectively) and were positively correlated with chin deviation in the UCLP group. Except for a larger gonial angle on the cleft side, the two groups presented with consistent asymmetries showing shorter mandibular bodies and total mandibular lengths on the cleft (deviated) side. The average chin deviation was 1.63 mm to the cleft side, and the average absolute chin deviation was significantly greater in the UCLP group than in the non-cleft group (P=0.037). Compared with non-cleft subjects with similar class III skeletal relationships, the subjects with UCLP showed more severe lower facial asymmetry. The subjects with UCLP presented with more asymmetrical positions and rotations of the condyles on axial slices, which were positively correlated with chin deviation.

  9. Gait deviations in Duchenne muscular dystrophy-Part 2. Statistical non-parametric mapping to analyze gait deviations in children with Duchenne muscular dystrophy.

    PubMed

    Goudriaan, Marije; Van den Hauwe, Marleen; Simon-Martinez, Cristina; Huenaerts, Catherine; Molenaers, Guy; Goemans, Nathalie; Desloovere, Kaat

    2018-04-30

    Prolonged ambulation is considered important in children with Duchenne muscular dystrophy (DMD). However, previous studies analyzing DMD gait were sensitive to false positive outcomes, caused by uncorrected multiple comparisons, regional focus bias, and inter-component covariance bias. Also, while muscle weakness is often suggested to be the main cause for the altered gait pattern in DMD, this was never verified. Our research question was twofold: 1) are we able to confirm the sagittal kinematic and kinetic gait alterations described in a previous review with statistical non-parametric mapping (SnPM)? And 2) are these gait deviations related to lower limb weakness? We compared gait kinematics and kinetics of 15 children with DMD and 15 typical developing (TD) children (5-17 years), with a two sample Hotelling's T 2 test and post-hoc two-tailed, two-sample t-test. We used canonical correlation analyses to study the relationship between weakness and altered gait parameters. For all analyses, α-level was corrected for multiple comparisons, resulting in α = 0.005. We only found one of the previously reported kinematic deviations: the children with DMD had an increased knee flexion angle during swing (p = 0.0006). Observed gait deviations that were not reported in the review were an increased hip flexion angle during stance (p = 0.0009) and swing (p = 0.0001), altered combined knee and ankle torques (p = 0.0002), and decreased power absorption during stance (p = 0.0001). No relationships between weakness and these gait deviations were found. We were not able to replicate the gait deviations in DMD previously reported in literature, thus DMD gait remains undefined. Further, weakness does not seem to be linearly related to altered gait features. The progressive nature of the disease requires larger study populations and longitudinal analyses to gain more insight into DMD gait and its underlying causes. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Interferometric rotation sensor

    NASA Technical Reports Server (NTRS)

    Walsh, T. M. (Inventor)

    1973-01-01

    An interferometric rotation sensor and control system is provided which includes a compound prism interferometer and an associated direction control system. Light entering the interferometer is split into two paths with the light in the respective paths being reflected an unequal number of times, and then being recombined at an exit aperture in phase differing relationships. Incoming light is deviated from the optical axis of the device by an angle, alpha. The angle causes a similar displacement of the two component images at the exit aperture which results in a fringe pattern. Fringe numbers are directly related to angle alpha. Various control systems of the interferometer are given.

  11. Intra-fraction motion of larynx radiotherapy

    NASA Astrophysics Data System (ADS)

    Durmus, Ismail Faruk; Tas, Bora

    2018-02-01

    In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.

  12. Left-Deviating Prism Adaptation in Left Neglect Patient: Reflexions on a Negative Result

    PubMed Central

    Luauté, Jacques; Jacquin-Courtois, Sophie; O'Shea, Jacinta; Christophe, Laure; Rode, Gilles; Boisson, Dominique; Rossetti, Yves

    2012-01-01

    Adaptation to right-deviating prisms is a promising intervention for the rehabilitation of patients with left spatial neglect. In order to test the lateral specificity of prism adaptation on left neglect, the present study evaluated the effect of left-deviating prism on straight-ahead pointing movements and on several classical neuropsychological tests in a group of five right brain-damaged patients with left spatial neglect. A group of healthy subjects was also included for comparison purposes. After a single session of exposing simple manual pointing to left-deviating prisms, contrary to healthy controls, none of the patients showed a reliable change of the straight-ahead pointing movement in the dark. No significant modification of attentional paper-and-pencil tasks was either observed immediately or 2 hours after prism adaptation. These results suggest that the therapeutic effect of prism adaptation on left spatial neglect relies on a specific lateralized mechanism. Evidence for a directional effect for prism adaptation both in terms of the side of the visuomanual adaptation and therefore possibly in terms of the side of brain affected by the stimulation is discussed. PMID:23050168

  13. Does increased femoral antetorsion predispose to cartilage lesions of the patellofemoral joint?

    PubMed

    Oppermann, Johannes; Bredow, Jan; Wissusek, Boris; Spies, Christian Karl; Boese, Christoph Kolja; Chang, Shi-Min; Eysel, Peer; Dargel, Jens

    2017-09-01

    The purpose of this study was to investigate whether there was a relationship between femoral neck antetorsion and the presence and pattern of osteoarthritis of the patellofemoral joint. It was hypothesized that an increased femoral neck antetorsion (1) correlates with osteoarthritic changes of the lateral facet of the patellofemoral joint and (2) correlates with an increased lateral trochlear height and a decreased sulcus angle. Seventy-eight formalin-embedded cadaveric lower extremities from thirty-nine subjects with a median age of 74 years (range 60-88) were used. Surrounding soft tissues of the lower limb were removed. The femoral neck antetorsion was measured and referenced to the transepicondylar axis and the posterior condylar line. The height of the medial and lateral facet of the trochlea and the sulcus angle was measured. The location and the degree of patellofemoral cartilage degeneration were recorded. A Pearson's correlation analysis was performed to correlate the femoral neck antetorsion with the measured knee parameters. No significant correlation could be found between the femoral antetorsion and cartilage degeneration of the lateral patellofemoral joint (n.s.), the height of the lateral trochlea (n.s.) and the sulcus angle (n.s.). This study could not document that the femoral neck antetorsion and subsequent internal rotation of the distal femur correlated with the degree of degeneration of the lateral facet of the patellofemoral joint. Clinically, femoral internal rotation may play a minor role in the development of lateral patellofemoral joint degeneration.

  14. Lateral Meniscal Allograft Transplant via a Medial Approach Leads to Less Extrusion.

    PubMed

    Choi, Nam-Hong; Choi, Jeong-Ki; Yang, Bong-Seok; Lee, Doe-Hyun; Victoroff, Brian N

    2017-10-01

    Accurate positioning of the bony bridge is crucial to prevent extrusion of meniscal allografts after transplant. However, oblique or lateralized placement of the bony bridge of the lateral meniscal allograft may occur due to technical error or a limited visual field. The patellar tendon may be an obstacle to approaching the anterior horn of the lateral meniscus, resulting in a laterally placed allograft. Therefore, lateral meniscal transplant through a medial arthrotomy would be an alternative approach. However, no report exists regarding allograft extrusion when comparing medial and lateral arthrotomy techniques in lateral meniscal transplants. Extrusion of the midbody of the allograft is less severe and the rotation of the bony bridge is less oblique in lateral meniscal allograft transplants through the medial parapatellar approach than those through the lateral approach. Cohort study; Level of evidence, 3. A bony bridge was used to perform 55 lateral meniscal transplants through either a medial or a lateral arthrotomy. Thirty-two allografts were transplanted through a medial arthrotomy and 23 were transplanted through a lateral arthrotomy, not randomly. Because correct positioning of the bony trough through the medial arthrotomy was easier than that through the lateral arthrotomy, the method of the arthrotomy was changed for the latter. The procedure for both groups was identical except for the arthrotomy technique, and rehabilitation was identical for both groups. Follow-up magnetic resonance imaging was conducted for all patients to measure the postoperative extrusion and obliquity of the bony bridge of the allograft. On the coronal view, extrusion was measured as the distance between the outer edge of the articular cartilage of the lateral tibial plateau and the outer edge of the meniscal allograft. On the axial view, a line (line B) was drawn along the longitudinal axis of the bony bridge. The posterior tibial condylar tangential line was drawn between the medial and lateral posterior tibial condylar cortices. A line (line T) was drawn perpendicular to the posterior tibial condylar tangential line. The angle (trough angle) between lines B and T was measured. Postoperative extrusion and the trough angle were compared between the medial and lateral arthrotomy groups. The median extrusion of the midbody of the allograft was 2.2 mm (interquartile range [IQR], 2.4 mm; range, 0-4.6 mm) in the medial arthrotomy group and 3.1 mm (IQR, 1.5 mm; range, 0-5.3 mm) in the lateral arthrotomy group ( P = .001). Seven (21.9%) patients demonstrated extrusion in the medial arthrotomy group, and 15 (65.2%) patients had extrusion in the lateral group ( P = .002). The median trough angle was 0.9° (IQR, 9.3°; range, -8.8-15.8°) in the medial arthrotomy group and 11.6° (IQR, 2.8°; range, 3-19.8°) in the lateral arthrotomy group ( P < .001). Based on this experience, lateral meniscal allograft transplant through a medial arthrotomy is preferred to decrease postoperative extrusion of the allograft.

  15. Analysis of the car body stability performance after coupler jack-knifing during braking

    NASA Astrophysics Data System (ADS)

    Guo, Lirong; Wang, Kaiyun; Chen, Zaigang; Shi, Zhiyong; Lv, Kaikai; Ji, Tiancheng

    2018-06-01

    This paper aims to improve car body stability performance by optimising locomotive parameters when coupler jack-knifing occurs during braking. In order to prevent car body instability behaviour caused by coupler jack-knifing, a multi-locomotive simulation model and a series of field braking tests are developed to analyse the influence of the secondary suspension and the secondary lateral stopper on the car body stability performance during braking. According to simulation and test results, increasing secondary lateral stiffness contributes to limit car body yaw angle during braking. However, it seriously affects the dynamic performance of the locomotive. For the secondary lateral stopper, its lateral stiffness and free clearance have a significant influence on improving the car body stability capacity, and have less effect on the dynamic performance of the locomotive. An optimised measure was proposed and adopted on the test locomotive. For the optimised locomotive, the lateral stiffness of secondary lateral stopper is increased to 7875 kN/m, while its free clearance is decreased to 10 mm. The optimised locomotive has excellent dynamic and safety performance. Comparing with the original locomotive, the maximum car body yaw angle and coupler rotation angle of the optimised locomotive were reduced by 59.25% and 53.19%, respectively, according to the practical application. The maximum derailment coefficient was 0.32, and the maximum wheelset lateral force was 39.5 kN. Hence, reasonable parameters of secondary lateral stopper can improve the car body stability capacity and the running safety of the heavy haul locomotive.

  16. Comparison of clinical, radiographic, computed tomographic, and magnetic resonance imaging methods for early prediction of canine hip laxity and dysplasia.

    PubMed

    Ginja, Mário M D; Ferreira, António J; Jesus, Sandra S; Melo-Pinto, Pedro; Bulas-Cruz, José; Orden, Maria A; San-Roman, Fidel; Llorens-Pena, Maria P; Gonzalo-Orden, José M

    2009-01-01

    The purpose of the study was to use two palpation methods (Bardens and Ortolani), a radiographic distraction view, three computed tomography (CT) measurements (dorsolateral subluxation score, the lateral center-edge angle, and acetabular ventroversion angle) and two magnetic resonance (MR) imaging hip studies (synovial fluid and acetabular depth indices) in the early monitoring of hip morphology and laxity in 7-9 week old puppies; and in a follow-up study to compare their accuracy in predicting later hip laxity and dysplasia. The MR imaging study was performed with the dog in dorsal recumbency and the CT study with the animal in a weight-bearing position. There was no association between clinical laxity with later hip laxity or dysplasia. The dorsolateral subluxation score and the lateral center-edge angle were characterized by a weak negative correlation with later radiographic passive hip laxity (-0.26 < r < -0.38, P < 0.05) but its association with hip dysplasia was not significant. There was an association between early radiographic passive hip laxity and synovial fluid index with later passive hip laxity (0.41 < r < 0.55, P < 0.05) and this was significantly different in dysplastic vs. nondysplastic hips (P < 0.05). There was no association between the remaining variables and later hip laxity or dysplasia. The overlapping ranges of early passive hip laxity and synovial fluid index for hip dysplasia grades and the moderate correlations with the later passive hip laxity make the results of these variables unreliable for use in predicting hip laxity and dysplasia susceptibility.

  17. iPhone-Assisted Augmented Reality Localization of Basal Ganglia Hypertensive Hematoma.

    PubMed

    Hou, YuanZheng; Ma, LiChao; Zhu, RuYuan; Chen, XiaoLei

    2016-10-01

    A low-cost, time-efficient technique that could localize hypertensive hematomas in the basal ganglia would be beneficial for minimally invasive hematoma evacuation surgery. We used an iPhone to achieve this goal and evaluated its accuracy and feasibility. We located basal ganglia hematomas in 26 patients and depicted the boundaries of the hematomas on the skin. To verify the accuracy of the drawn boundaries, computed tomography (CT) markers surrounding the depicted boundaries were attached to 10 patients. The deviation between the CT markers and the actual hematoma boundaries was then measured. In the other 16 patients, minimally invasive endoscopic hematoma evacuation surgery was performed according to the depicted hematoma boundary. The deflection angle of the actual trajectory and deviation in the hematoma center were measured according to the preoperative and postoperative CT data. There were 40 CT markers placed on 10 patients. The mean deviation of these markers was 3.1 mm ± 2.4. In the 16 patients who received surgery, the deflection angle of the actual trajectory was 4.3° ± 2.1. The deviation in the hematoma center was 5.2 mm ± 2.6. This new method can locate basal ganglia hematomas with a sufficient level of accuracy and is helpful for minimally invasive endoscopic hematoma evacuation surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Are differences in leg length predictive of lateral patello-femoral pain?

    PubMed

    Carlson, Mary; Wilkerson, Jerry

    2007-03-01

    Lateral patello-femoral pain can shorten an athletic career and generally decrease an individual's physical activity and functional level, such as preventing stair climbing and reducing the ability to rise from a chair. Leg length inequality is associated with patello-femoral pain. A leg length test that best distinguishes the difference between people who have lateral patello-femoral pain and those who do not would have clinical utility. The purpose of the present study was, first, to determine if unilateral, lateral patello-femoral pain was associated with the longer leg when inequality of leg lengths existed and, second, to determine if leg length direct measurement, indirect measurement or quadriceps angle (Q angle) could correctly classify participants according to the presence or absence of patello-femoral pain. The study used an ex post facto, two-group quasi-experimental design. A volunteer sample of 52 participants (14 males, 38 females), ranged in age from 18 to 52 years. Three methods were used to measure leg lengths: palpation meter (PALM) on anterior superior iliac spines (ASIS) while participants maintained centred weight-bearing position on a high resolution pressure mat; tape measurement from ASIS to medial malleolus (supine); tape measurement from ASIS to lateral malleolus (supine). Additionally, Q angle was measured in supine position. Patellar grind test, medial retinacular and lateral patellar palpation screened for patello-femoral pain. Logistic regression analysis determined correctness of membership in painful and non-painful patello-femoral groups. The PALM method of indirect measurement of leg length differences overall correctly classified approximately 83 % of the participants. Tape measure to medial and lateral malleoli as well as Q angle did not yield significant results. The results suggested that the PALM method of measuring leg length differences may have clinical utility in differentiating between patients who are likely to sustain patello-femoral pain syndrome and those who will not.

  19. Helicopter rotor wake geometry and its influence in forward flight. Volume 2: Wake geometry charts

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    Isometric and projection view plots, inflow ratio nomographs, undistorted axial displacement nomographs, undistorted longitudinal and lateral coordinates, generalized axial distortion nomographs, blade/vortex passage charts, blade/vortex intersection angle nomographs, and fore and aft wake boundary charts are discussed. Example condition, in flow ratio, undistorted axial location, longitudinal and lateral coordinates, axial coordinates distortions, blade/tip vortex intersections, angle of intersection, and fore and aft wake boundaries are also discussed.

  20. X-29A Lateral-Directional Stability and Control Derivatives Extracted From High-Angle-of-Attack Flight Data

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles Wang

    1996-01-01

    The lateral-directional stability and control derivatives of the X-29A number 2 are extracted from flight data over an angle-of-attack range of 4 degrees to 53 degrees using a parameter identification algorithm. The algorithm uses the linearized aircraft equations of motion and a maximum likelihood estimator in the presence of state and measurement noise. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft at angles of attack above 15 degrees. The results supported the flight-envelope-expansion phase of the X-29A number 2 by helping to update the aerodynamic mathematical model, to improve the real-time simulator, and to revise flight control system laws. Effects of the aircraft high gain flight control system on maneuver quality and the estimated derivatives are also discussed. The derivatives are plotted as functions of angle of attack and compared with the predicted aerodynamic database. Agreement between predicted and flight values is quite good for some derivatives such as the lateral force due to sideslip, the lateral force due to rudder deflection, and the rolling moment due to roll rate. The results also show significant differences in several important derivatives such as the rolling moment due to sideslip, the yawing moment due to sideslip, the yawing moment due to aileron deflection, and the yawing moment due to rudder deflection.

  1. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling

    NASA Astrophysics Data System (ADS)

    Kapania, Nitin R.; Gerdes, J. Christian

    2015-12-01

    This paper presents a feedback-feedforward steering controller that simultaneously maintains vehicle stability at the limits of handling while minimising lateral path tracking deviation. The design begins by considering the performance of a baseline controller with a lookahead feedback scheme and a feedforward algorithm based on a nonlinear vehicle handling diagram. While this initial design exhibits desirable stability properties at the limits of handling, the steady-state path deviation increases significantly at highway speeds. Results from both linear and nonlinear analyses indicate that lateral path tracking deviations are minimised when vehicle sideslip is held tangent to the desired path at all times. Analytical results show that directly incorporating this sideslip tangency condition into the steering feedback dramatically improves lateral path tracking, but at the expense of poor closed-loop stability margins. However, incorporating the desired sideslip behaviour into the feedforward loop creates a robust steering controller capable of accurate path tracking and oversteer correction at the physical limits of tyre friction. Experimental data collected from an Audi TTS test vehicle driving at the handling limits on a full length race circuit demonstrates the improved performance of the final controller design.

  2. Cancellation control law for lateral-directional dynamics of a supermaneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Snell, Antony

    1993-01-01

    Cancellation control laws are designed which reduce the high levels of lateral acceleration encountered during aggressive rolling maneuvers executed at high angle of attack. Two independent problem are examined. One is to reduce lateral acceleration at the mass center, while the other focuses on lateral acceleration at the pilot's station, located 7.0 m forward of the mass center. Both of these problems are challenging and somewhat different in their limitations. In each case the design is based on a linearization of the lateral-directional dynamics about a high angle of attack condition. The controllers incorporate dynamic inversion inner loops to provide control of stability-axis roll- and yaw-rates and then employ cancellation filters in both feed-forward and feed-back signal paths. The relative simplicity of the control laws should allow nonlinear generalizations to be devised. Although it is shown that lateral acceleration can be reduced substantially by such control laws, this is at the cost of slowed roll response, poor dutch-roll damping or a combination of the two.

  3. Lateral aerodynamic parameters extracted from flight data for the F-8C airplane in maneuvering flight

    NASA Technical Reports Server (NTRS)

    Suit, W. T.

    1977-01-01

    Flight test data are used to extract the lateral aerodynamic parameters of the F-8C airplane at moderate to high angles of attack. The data were obtained during perturbations of the airplane from steady turns with trim normal accelerations from 1.5g to 3.0g. The angle-of-attack variation from trim was negligible. The aerodynamic coefficients extracted from flight data were compared with several other sets of coefficients, and the extracted coefficients resulted in characteristics for the Dutch roll mode (at the highest angles of attack) similar to those of a set of coefficients that have been the basis of several simulations of the F-8C.

  4. Characterization and clinical evaluation of a novel 2D detector array for conventional and flattening filter free (FFF) IMRT pre-treatment verification.

    PubMed

    Sekar, Yuvaraj; Thoelking, Johannes; Eckl, Miriam; Kalichava, Irakli; Sihono, Dwi Seno Kuncoro; Lohr, Frank; Wenz, Frederik; Wertz, Hansjoerg

    2018-04-01

    The novel MatriXX FFF (IBA Dosimetry, Germany) detector is a new 2D ionization chamber detector array designed for patient specific IMRT-plan verification including flattening-filter-free (FFF) beams. This study provides a detailed analysis of the characterization and clinical evaluation of the new detector array. The verification of the MatriXX FFF was subdivided into (i) physical dosimetric tests including dose linearity, dose rate dependency and output factor measurements and (ii) patient specific IMRT pre-treatment plan verifications. The MatriXX FFF measurements were compared to the calculated dose distribution of a commissioned treatment planning system by gamma index and dose difference evaluations for 18 IMRT-sequences. All IMRT-sequences were measured with original gantry angles and with collapsing all beams to 0° gantry angle to exclude the influence of the detector's angle dependency. The MatriXX FFF was found to be linear and dose rate independent for all investigated modalities (deviations ≤0.6%). Furthermore, the output measurements of the MatriXX FFF were in very good agreement to reference measurements (deviations ≤1.8%). For the clinical evaluation an average pixel passing rate for γ (3%,3mm) of (98.5±1.5)% was achieved when applying a gantry angle correction. Also, with collapsing all beams to 0° gantry angle an excellent agreement to the calculated dose distribution was observed (γ (3%,3mm) =(99.1±1.1)%). The MatriXX FFF fulfills all physical requirements in terms of dosimetric accuracy. Furthermore, the evaluation of the IMRT-plan measurements showed that the detector particularly together with the gantry angle correction is a reliable device for IMRT-plan verification including FFF. Copyright © 2017. Published by Elsevier GmbH.

  5. Evaluation of High-Angle-of-Attack Handling Qualities for the X-31A Using Standard Evaluation Maneuvers

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick C.; Bosworth, John T.

    1996-01-01

    The X-31A aircraft gross-acquisition and fine-tracking handling qualities have been evaluated using standard evaluation maneuvers developed by Wright Laboratory, Wright-Patterson Air Force Base. The emphasis of the testing is in the angle-of-attack range between 30 deg and 70 deg. Longitudinal gross-acquisition handling qualities results show borderline Level 1/Level 2 performance. Lateral gross-acquisition testing results in Level 1/Level 2 ratings below 45 deg angle of attack, degrading into Level 3 as angle of attack increases. The fine-tracking performance in both longitudinal and lateral axes also receives Level 1 ratings near 30 deg angle of attack, with the ratings tending towards Level 3 at angles of attack greater than 50 deg. These ratings do not match the expectations from the extensive close-in combat testing where the X-31A aircraft demonstrated fair to good handling qualities maneuvering for high angles of attack. This paper presents the results of the high-angle-of-attack handling qualities flight testing of the X-31A aircraft. Discussion of the preparation for the maneuvers, the pilot ratings, and selected pilot comments are included. Evaluation of the results is made in conjunction with existing Neal-Smith, bandwidth, Smith-Geddes, and military specifications.

  6. Evaluation of High-Angle-of-Attack Handling Qualities for the X-31A Using Standard Evaluation Maneuvers

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick C.; Bosworth, John T.

    1997-01-01

    The X-31A aircraft gross-acquisition and fine-tracking handling qualities have been evaluated using standard evaluation maneuvers developed by Wright Laboratory, Wright Patterson Air Force Base. The emphasis of the testing is in the angle-of-attack range between 30 deg. and 70 deg. Longitudinal gross-acquisition handling qualities results show borderline Level l/Level 2 performance. Lateral gross-acquisition testing results in Level l/Level 2 ratings below 45 deg. angle of attack, degrading into Level 3 as angle of attack increases. The fine tracking performance in both longitudinal and lateral axes also receives Level 1 ratings near 30 deg. angle of attack, with the ratings tending towards Level 3 at angles of attack greater than 50 deg. These ratings do not match the expectations from the extensive close-in combat testing where the X-31A aircraft demonstrated fair to good handling qualities maneuvering for high angles of attack. This paper presents the results of the high-angle-of-attack handling qualities flight testing of the X-31A aircraft. Discussion of the preparation for the maneuvers, the pilot ratings, and selected pilot comments are included. Evaluation of the results is made in conjunction with existing Neal Smith, bandwidth, Smith-Geddes, and military specifications.

  7. Treatment of recurrent patellar dislocation via knee arthroscopy combined with C-arm fluoroscopy and reconstruction of the medial patellofemoral ligament.

    PubMed

    Li, Li; Wang, Hongbo; He, Yun; Si, Yu; Zhou, Hongyu; Wang, Xin

    2018-06-01

    Recurrent patellar dislocations were treated via knee arthroscopy combined with C-arm fluoroscopy, and reconstruction of the medial patellofemoral ligaments. Between October 2013 and March 2017, 52 cases of recurrent patellar dislocation [27 males and 25 females; age, 16-47 years (mean, 21.90 years)] were treated. Arthroscopic exploration was performed and patellofemoral joint cartilage injuries were repaired. It was subsequently determined whether it was necessary to release the lateral patellofemoral support belt. Pre-operative measurements were used to decide whether tibial tubercle osteotomy was required. Medial patellofemoral ligaments were reconstructed using autologous semitendinosus tendons. Smith and Nephew model 3.5 line anchors were used to double-anchor the medial patellofemoral margin. On the femoral side, the medial patellofemoral ligament was fixed using 7-cm, absorbable, interfacial compression screws. All cases were followed for 1-40 months (average, 21 months). The Q angle, tibial tuberosity trochlear groove distance, Insall-Salvati index, patellofemoral angle, lateral patellofemoral angle and lateral shift were evaluated on X-Ray images using the picture archiving and communication system. Subjective International Knee Documentation Committee (IKDC) knee joint functional scores and Lysholm scores were recorded. Post-operative fear was absent, and no patellar re-dislocation or re-fracture was noted during follow-up. At the end of follow-up, the patellofemoral angle (0.22±4.23°), lateral patellofemoral angle (3.44±1.30°), and lateral shift (0.36+0.14°) differed significantly from the pre-operative values (all, P<0.05). Furthermore, IKDC and Lysholm scores (87.84+3.74 and 87.48+3.35, respectively) differed significantly from the pre-operative values (both, P<0.05). These findings suggest that, in the short term, recurrent patellar dislocation treatment via knee arthroscopy combined with C-arm fluoroscopy and reconstruction of the medial patellofemoral ligament was effective.

  8. Comparison of Posterior Approach With Intramedullary Nailing Versus Lateral Transfibular Approach With Fixed-Angle Plating for Tibiotalocalcaneal Arthrodesis.

    PubMed

    Mulligan, Ryan P; Adams, Samuel B; Easley, Mark E; DeOrio, James K; Nunley, James A

    2017-12-01

    A variety of operative approaches and fixation techniques have been described for tibiotalocalcaneal (TTC) arthrodesis. The intramedullary (IM) nail and lateral, fixed-angle plating are commonly used because of ease of use and favorable biomechanical properties. A lateral, transfibular (LTF) approach allows for direct access to the tibiotalar and subtalar joints, but the posterior, Achilles tendon-splitting (PATS) approach offers a robust soft tissue envelope. The purpose of this study was to compare the results of TTC arthrodesis with either a PATS approach with IM nailing or LTF approach with fixed-angle plating. A retrospective review was performed on all patients who underwent simultaneous TTC arthrodesis with minimum 1 year clinical and radiographic follow up. Patients were excluded if they underwent TTC arthrodesis through an approach other than PATS or LTF, and received fixation without an IM nail or fixed-angle plate. Primary outcomes examined were union rate, revisions, and complications. Thirty-eight patients underwent TTC arthrodesis with a PATS approach and IM nailing, and 28 with a LTF approach and lateral plating. The overall union rate was 71%; 76% (29 of 38 patients) for the PATS/IM nail group, and 64% (18 of 28) for LTF/plating group ( P = .41). Symptomatic nonunion requiring revision arthrodesis occurred in 16% (6 of 38) of the PATS/IM nail group versus 7% (2 of 28) in the LTF/lateral plating group ( P = .45). There were no significant differences in individual tibiotalar or subtalar union rates, superficial wound problems, infection, symptomatic hardware, stress fractures, or nerve irritations. Union, revision, and complication rates were similar for TTC arthrodesis performed with a PATS approach and IM nail compared with an LTF approach and fixed-angle plate in a complex patient population. Both techniques were adequate, especially when prior incisions, preexisting hardware, or deformity preclude options. Level III, retrospective comparative study.

  9. Efficacy of a Pelvic Lateral Positioner With a Mechanical Cup Navigator Based on the Anatomical Pelvic Plane in Total Hip Arthroplasty.

    PubMed

    Iwakiri, Kentaro; Kobayashi, Akio; Ohta, Yoichi; Minoda, Yukihide; Takaoka, Kunio; Nakamura, Hiroaki

    2017-12-01

    The acetabular component orientation in total hip arthroplasty (THA) is of critical importance to the good clinical results. However, traditional widely used cup alignment guides for cup placement are reported to be relatively unreliable. The present study aims at comparing a novel cup alignment guide, which can be attached to our anatomical pelvic plane (APP) pelvic lateral positioner for reducing discrepancies in sagittal pelvic tilt and indicate a targeted cup angle based on the APP, with a conventional cup alignment guide. The subjects were 136 hips of 136 patients who underwent unilateral THA using the APP positioner. The procedure was performed with the conventional cup alignment guide (conventional group; 60 hips) and with the novel cup navigator (mechanical navigator group; 76 hips). Postoperative cup angles and discrepancies of postoperative cup angles (inclination and anteversion angles) from the targeted angles were compared between the 2 groups to evaluate the usefulness of these navigators. The mean cup angles in the conventional group were 39.0° ± 5.3° for the inclination angle and 21.7° ± 6.4° for the anteversion angle, whereas those in the mechanical navigator group were 40.6° ± 3.2° and 18.3° ± 4.6°, respectively (P = .018, P < .0001). The discrepancies from the targeted angles were 3.5° ± 3.1° for the inclination angle and 4.6° ± 3.4° for the anteversion angle in the conventional group and 2.3° ± 2.3° and 3.2° ± 2.7°, respectively, in the mechanical navigator group (P = .020, P = .012). The mechanical cup navigator easily attachable to the APP positioner is a tool that can improve the accuracy of cup placement in a simple, economical, and noninvasive manner in THA via the lateral position. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effects of vibration on occupant driving performance under simulated driving conditions.

    PubMed

    Azizan, Amzar; Fard, M; Azari, Michael F; Jazar, Reza

    2017-04-01

    Although much research has been devoted to the characterization of the effects of whole-body vibration on seated occupants' comfort, drowsiness induced by vibration has received less attention to date. There are also little validated measurement methods available to quantify whole body vibration-induced drowsiness. Here, the effects of vibration on drowsiness were investigated. Twenty male volunteers were recruited for this experiment. Drowsiness was measured in a driving simulator, before and after 30-min exposure to vibration. Gaussian random vibration, with 1-15 Hz frequency bandwidth was used for excitation. During the driving session, volunteers were required to obey the speed limit of 100 kph and maintain a steady position on the left-hand lane. A deviation in lane position, steering angle variability, and speed deviation were recorded and analysed. Alternatively, volunteers rated their subjective drowsiness by Karolinska Sleepiness Scale (KSS) scores every 5-min. Following 30-min of exposure to vibration, a significant increase of lane deviation, steering angle variability, and KSS scores were observed in all volunteers suggesting the adverse effects of vibration on human alertness level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    PubMed

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  12. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    PubMed Central

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  13. Impact of combustion products from Space Shuttle launches on ambient air quality

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bowers, J. F.; Cramer, H. E.

    1974-01-01

    The present work describes some multilayer diffusion models and a computer program for these models developed to predict the impact of ground clouds formed during Space Shuttle launches on ambient air quality. The diffusion models are based on the Gaussian plume equation for an instantaneous volume source. Cloud growth is estimated on the basis of measurable meteorological parameters: standard deviation of the wind azimuth angle, standard deviation of wind elevation angle, vertical wind-speed shear, vertical wind-direction shear, and depth of the surface mixing layer. Calculations using these models indicate that Space Shuttle launches under a variety of meteorological regimes at Kennedy Space Center and Vandenberg AFB are unlikely to endanger the exposure standards for HCl; similar results have been obtained for CO and Al2O3. However, the possibility that precipitation scavenging of the ground cloud might result in an acidic rain that could damage vegetation has not been investigated.

  14. Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method.

    PubMed

    Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di

    2013-01-15

    The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.

  15. Timing performance of a self-cancelling turn-signal mechanism in motorcycles based on the ATMega328P microcontroller

    NASA Astrophysics Data System (ADS)

    Nurbuwat, Adzin Kondo; Eryandi, Kholid Yusuf; Estriyanto, Yuyun; Widiastuti, Indah; Pambudi, Nugroho Agung

    2018-02-01

    The objective of this study is to measure the time performance of a self-cancelling turn signal mechanism based on the In this study the performance of self-cancelling turn signal based on ATMega328P microcontroller is measured at low speed and high speed treatment on motorcycles commonly used in Indonesia. Time performance measurements were made by comparing the self-cancelling turn signal based on ATMega328P microcontroller with standard motor turn time. Measurements of time at low speed treatment were performed at a speed range of 15 km / h, 20 km / h, 25 km / h on the U-turn test trajectory. The angle of the turning angle of the potentiometer is determined at 3°. The limit of steering wheel turning angle at the potentiometer is set at 3°. For high-speed treatment is 30 km / h, 40 km / h, 50km / h, and 60 km / h, on the L-turn test track with a tilt angle (roll angle) read by the L3G4200D gyroscope sensor. Each speed test is repeated 3 replications. Standard time is a reference for self-cancelling turn signal performance. The standard time obtained is 15.68 s, 11.96 s, 9.34 s at low speed and 4.63 s, 4.06 s, 3.61 s, 3.13 s at high speed. The time test of self-cancelling turn signal shows 16.10 s, 12.42 s, 10.24 s at the low speed and 5.18, 4.51, 3.73, 3.21 at the high speed. At a speed of 15 km / h occurs the instability of motion turns motorcycle so that testing is more difficult. Small time deviations indicate the tool works well. The largest time deviation value is 0.9 seconds at low speed and 0.55 seconds at high speed. The conclusion at low velocity of the highest deviation value occurred at the speed of 25 km / h test due to the movement of slope with inclination has started to happen which resulted in slow reading of steering movement. At higher speeds the time slows down due to rapid sensor readings on the tilt when turning fast at ever higher speeds. The timing performance of self-cancelling turn signal decreases as the motorcycle turning characteristics move from the turn using the steering angle to using a tilt angle based on speed, or vice versa.

  16. Specific exercises reduce brace prescription in adolescent idiopathic scoliosis: a prospective controlled cohort study with worst-case analysis.

    PubMed

    Negrini, Stefano; Zaina, Fabio; Romano, Michele; Negrini, Alessandra; Parzini, Silvana

    2008-06-01

    To compare the effect of Scientific Exercises Approach to Scoliosis (SEAS) exercises with "usual care" rehabilitation programmes in terms of the avoidance of brace prescription and prevention of curve progression in adolescent idiopathic scoliosis. Prospective controlled cohort observational study. Seventy-four consecutive outpatients with adolescent idiopathic scoliosis, mean 15 degrees (standard deviation 6) Cobb angle, 12.4 (standard deviation 2.2) years old, at risk of bracing who had not been treated previously. Thirty-five patients were included in the SEAS exercises group and 39 in the usual physiotherapy group. The primary outcome included the number of braced patients, Cobb angle and the angle of trunk rotation. There were 6.1% braced patients in the SEAS exercises group vs 25.0% in the usual physiotherapy group. Failures of treatment in the worst-case analysis were 11.5% and 30.8%, respectively. In both cases the differences were statistically significant. Cobb angle improved in the SEAS exercises group, but worsened in the usual physiotherapy group. In the SEAS exercises group, 23.5% of patients improved and 11.8% worsened, while in the usual physiotherapy group 11.1% improved and 13.9% worsened. These data confirm the effectiveness of exercises in patients with scoliosis who are at high risk of progression. Compared with non-adapted exercises, a specific and personalized treatment (SEAS) appears to be more effective.

  17. [X-ray characteristics of sacroiliac joint disorders and its clinical significance].

    PubMed

    Shi, Ning-Ning; Shen, Guo-Quan; He, Shui-Yong; Guo, Ru-bao

    2013-02-01

    To study the X-ray characteristics of sacroiliac joint disorders and its clinical significance,so as to provide clinical diagnosis basis for Tuina treatment of sacroiliac joint disorder. From July 2009 to March 2011,104 patients with sacroiliac joint disorder were reviewed,including 64 males and 40 females,ranging in age from 18 to 81 years, with an average of (45.39 +/- 1.30) years. The duration of the disease ranged from 1 to 144 months,with an average of (12.64 +/- 2.19) months. One hundred and four pelvic plain films and 97 lumbar spine lateral films of the patients with sacroiliac joint disorder were taken. On the lateral X-ray of lumbar,the sacral horizontal angles (lumbosacral angle) were measured; and on the X-ray of pelvis,the vertical distance of two side iliac crest (iliac crest difference), the distance from lateral border to medial margin of two hips (hip width),the clip angle between sacral spin connection and vertical axis were measured,and then the data were analyzed. The mean difference of iliac crest was (10.34+/-0.73) mm; the mean width difference of hip'was (6.73+/-1.01) mm; and the mean difference of the iliac crest was larger than that of mean difference of hip (P<0.01). The occurrence rate of inequal width of hip was higher(P<0.01). The mean abnormal lumbosacral angle was (7.29 +/- 1.86) degrees,and the mean angle of sacral crest tilting to left or right was (3.18 +/- 0.47) degrees; the mean abnormal lumbosacral angle was larger than that of angle of sacral crest tilting to left or right (P<0.01), and the occurrence rate of sacral crest tilting to left or right was higher

  18. Relationship of individual scapular anatomy and degenerative rotator cuff tears.

    PubMed

    Moor, Beat K; Wieser, Karl; Slankamenac, Ksenija; Gerber, Christian; Bouaicha, Samy

    2014-04-01

    The etiology of rotator cuff disease is age related, as documented by prevalence data. Despite conflicting results, growing evidence suggests that distinct scapular morphologies may accelerate the underlying degenerative process. The purpose of the present study was to evaluate the predictive power of 5 commonly used radiologic parameters of scapular morphology to discriminate between patients with intact rotator cuff tendons and those with torn rotator cuff tendons. A pre hoc power analysis was performed to determine the sample size. Two independent readers measured the acromion index, lateral acromion angle, and critical shoulder angle on standardized anteroposterior radiographs. In addition, the acromial morphology according to Bigliani and the acromial slope were determined on true outlet views. Measurements were performed in 51 consecutive patients with documented degenerative rotator cuff tears and in an age- and sex-matched control group of 51 patients with intact rotator cuff tendons. Receiver operating characteristic analyses were performed to determine cutoff values and to assess the sensitivity and specificity of each parameter. Patients with degenerative rotator cuff tears demonstrated significantly higher acromion indices, smaller lateral acromion angles, and larger critical shoulder angles than patients with intact rotator cuffs. However, no difference was found between the acromial morphology according to Bigliani and the acromial slope. With an area under the receiver operating characteristic curve of 0.855 and an odds ratio of 10.8, the critical shoulder angle represented the strongest predictor for the presence of a rotator cuff tear. The acromion index, lateral acromion angle, and critical shoulder angle accurately predict the presence of degenerative rotator cuff tears. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  19. Correlation of Cell Surface Biomarker Expression Levels with Adhesion Contact Angle Measured by Lateral Microscopy.

    PubMed

    Walz, Jenna A; Mace, Charles R

    2018-06-05

    Immunophenotyping is typically achieved using flow cytometry, but any influence a biomarker may have on adhesion or surface recognition cannot be determined concurrently. In this manuscript, we demonstrate the utility of lateral microscopy for correlating cell surface biomarker expression levels with quantitative descriptions of cell morphology. With our imaging system, we observed single cells from two T cell lines and two B cell lines adhere to antibody-coated substrates and quantified this adhesion using contact angle measurements. We found that SUP-T1 and CEM CD4+ cells, both of which express similar levels of CD4, experienced average changes in contact angle that were not statistically different from one another on surfaces coated in anti-CD4. However, MAVER-1 and BJAB K20 cells, both of which express different levels of CD20, underwent average changes in contact angle that were significantly different from one another on surfaces coated in anti-CD20. Our results indicate that changes in cell contact angles on antibody-coated substrates reflect the expression levels of corresponding antigens on the surfaces of cells as determined by flow cytometry. Our lateral microscopy approach offers a more reproducible and quantitative alternative to evaluate adhesion compared to commonly used wash assays and can be extended to many additional immunophenotyping applications to identify cells of interest within heterogeneous populations.

  20. Spine lateral flexion strength development differences between exercises with pelvic stabilization and without pelvic stabilization

    NASA Astrophysics Data System (ADS)

    Straton, Alexandru; Gidu, Diana Victoria; Micu, Alexandru

    2015-02-01

    Poor lateral flexor muscle strength can be an important source of lumbar/thoracic back pain in women. The purpose of this study was to evaluate pelvic stabilization (PS) and no pelvic stabilization (NoPS) lateral flexion strength exercise training on the development of isolated right and left lateral flexion strength. Isometric torque of the isolated right and left lateral flexion muscles was measured at two positions (0° and 30° opposed angle range of motion) on 42 healthy women before and after 8 weeks of PS and NoPS lateral flexion strength exercise training. Subjects were assigned in three groups, the first (n=14) trained 3 times/week with PS lateral flexion strength exercise, the second (n=14) trained 3 times/week with NoPS lateral flexion strength exercise and the third (control, n=14) did not train. Post training isometric strength values describing PS and NoPS lateral flexion strength improved in greater extent for the PS lateral flexion strength exercise group and in lesser extent for the NoPS lateral flexion strength exercise group, in both angles (p<0.05) relative to controls. These data indicate that the most effective way of training the spine lateral flexion muscles is PS lateral flexion strength exercises; NoPS lateral flexion strength exercises can be an effective way of training for the spine lateral flexion muscles, if there is no access to PS lateral flexion strength training machines.

  1. Biomechanical study of anterior spinal instrumentation configurations

    PubMed Central

    Cloutier, Luc P.; Grimard, Guy

    2007-01-01

    The biomechanical impact of the surgical instrumentation configuration for spine surgery is hard to evaluate by the surgeons in pre-operative situation. This study was performed to evaluate different configurations of the anterior instrumentation of the spine, with simulated post-operative conditions, to recommend configurations to the surgeons. Four biomechanical parameters of the anterior instrumentation with simulated post-operative conditions have been studied. They were the screw diameter (5.5–7.5 mm) and its angle (0°–22.5°), the bone grip of the screw (mono–bi cortical) and the amount of instrumented levels (5–8). Eight configurations were tested using an experimental plan with instrumented synthetic spinal models. A follower load was applied and the models were loaded in flexion, torsion and lateral bending. At 5 Nm, average final stiffness was greater in flexion (0.92 Nm/°) than in lateral bending (0.56 Nm/°) and than in torsion (0.26 Nm/°). The screw angle was the parameter influencing the most the final stiffness and the coupling behaviors. It has a significant effect (p ≤ 0.05) on increasing the final stiffness for a 22.5° screw angle in flexion and for a coronal screw angle (0°) in lateral bending. The bi-cortical bone grip of the screw significantly increased the initial stiffness in flexion and lateral bending. Mathematical models representing the behavior of an instrumented spinal model have been used to identify optimal instrumentation configurations. A variation of the angle of the screw from 22.5° to 0° gave a global final stiffness diminution of 13% and a global coupling diminution of 40%. The screw angle was the most important parameter affecting the stiffness and the coupling of the instrumented spine with simulated post-operative conditions. Information about the effect of four different biomechanical parameters will be helpful in preoperative situations to guide surgeons in their clinical choices. PMID:17205240

  2. Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging

    PubMed Central

    2014-01-01

    Objective This work aimed to assess tibial rotations, meniscal movements, and morphological changes during knee flexion and extension using kinematic magnetic resonance imaging (MRI). Methods Thirty volunteers with healthy knees were examined using kinematic MRI. The knees were imaged in the transverse plane with flexion and extension angles from 0° to 40° and 40° to 0°, respectively. The tibial interior and exterior rotation angles were measured, and the meniscal movement range, height change, and side movements were detected. Results The tibia rotated internally (11.55° ± 3.20°) during knee flexion and rotated externally (11.40° ± 3.0°) during knee extension. No significant differences were observed between the internal and external tibial rotation angles (P > 0.05), between males and females (P > 0.05), or between the left and right knee joints (P > 0.05). The tibial rotation angle with a flexion angle of 0° to 24° differed significantly from that with a flexion angle of 24° to 40° (P < 0.01). With knee flexion, the medial and lateral menisci moved backward and the height of the meniscus increased. The movement range was greater in the anterior horn than in the posterior horn and greater in the lateral meniscus than in the medial meniscus (P < 0.01). During backward movements of the menisci, the distance between the anterior and posterior horns decreased, with the decrease more apparent in the lateral meniscus (P < 0.01). The side movements of the medial and lateral menisci were not obvious, and a smaller movement range was found than that of the forward and backward movements. Conclusion Knee flexion and extension facilitated internal and external tibial rotations, which may be related to the ligament and joint capsule structure and femoral condyle geometry. PMID:25142267

  3. Shoulder balance in Lenke type 2 adolescent idiopathic scoliosis: Should we fuse to the second thoracic vertebra?

    PubMed

    Yang, Huiliang; Im, Gi Hye; Hu, Bowen; Wang, Lei; Zhou, Chunguang; Liu, Limin; Song, Yueming

    2017-12-01

    There are many different systems recommending upper instrumented vertebra (UIV) for Lenke type 2 adolescent idiopathic scoliosis (AIS), several of which suggest that all Lenke type 2 AIS patients should be fused to the second thoracic vertebra (T2). However, all previously proposed UIV selecting systems do not accurately predict postoperative shoulder balance. We investigated whether fusing to T2 could prevent postoperative shoulder imbalance and identified circumstances under which to fuse up to T2. We retrospectively collected all patients with typical Lenke type 2 AIS who received surgery by one spine surgeon in our hospital from 2010 to 2014. Lateral shoulder balance was assessed utilizing radiographic shoulder height difference (RSH), coracoid height difference (CHD), clavicle-rib intersection difference (CRID), and clavicle angle (CA). Medial shoulder balance was assessed by T1 tilt angle and first rib angle (FRA). Lateral shoulders were considered to be level if the absolute value of RSH was less than 10 millimeters. All patients were divided into two groups as follows: 1) T2 group: UIV of T2 (n=49); and 2) below-T2 group: UIV of T3 (n=24) or T4 (n=6). Patients were assessed before surgery and at final follow-up with a minimum follow-up duration of 24 months. Seventy-nine typical Lenke type 2 AIS patients were identified. Preoperative CHD and CA were significantly associated with postoperative lateral shoulder imbalance (both p=0.045), whereas the UIV level was not significantly associated with it. Both fusing to T2 and to below T2 could improve RSH (p<0.001 and p=0.001, respectively). Fusing to T2 slightly worsened CHD, CRID, and CA at last follow-up (all p<0.001), while fusing to below T2 improved these lateral shoulder balance parameters (p=0.042, p<0.001, and p=0.007, respectively). For medial shoulder balance, fusing to below T2 worsened T1 tilt angle and FRA at last follow-up (p=0.025 and p<0.001, respectively), while fusing to T2 effectively kept these medial shoulder parameters in balance. In addition, for patients with an elevated left border of T1, the T2 group had worse preoperative T1 tilt angle but gained better postoperative T1 tilt angle than the below-T2 group (p<0.001 and p=0.040, respectively). Preoperative lateral shoulder balance, more so than the UIV level, can strongly influence postoperative lateral shoulder balance. Fusing to T2 can only effectively improve medial shoulder balance, not lateral shoulder balance (CHD, CRID, and CA). Moreover, a positive T1 tilt angle is an indicator for fusing to T2 to improve medial shoulder balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Leading-edge flow reattachment and the lateral static stability of low-aspect-ratio rectangular wings

    NASA Astrophysics Data System (ADS)

    Linehan, Thomas; Mohseni, Kamran

    2017-11-01

    The relationship between lateral static stability derivative, Clβ,lift coefficient, CL, and angle of attack was investigated for rectangular wings of aspect ratio A R =0.75 ,1 ,1.5 , and 3 using Stereo-Digital Particle Image Velocimetry (S-DPIV) and direct force and moment measurements. When the product Cl βA R is plotted with respect to CL, the lateral stability curves of each wing collapse to a single line for CL<0.7 . For CL>0.7 , the linearity and scaling of Clβwith respect to CL is lost. S-DPIV is used to elucidate the flow physics in this nonlinear regime. At α =10∘ , the leading-edge separation region emerges on the leeward portion of the sideslipped wing by means of vortex shedding. For the A R ≤1.5 wings at α >15∘ , the tip vortex downwash is sufficient to restrict the shedding of leading-edge vorticity thereby sustaining the lift of the leading-edge separation region at high angles of attack. Concurrently, the windward tip vortex grows in size and strength with increasing angle of attack, displacing the leading-edge separation region further toward the leeward wing. This reorganization of lift-generating vorticity results in the initial nonlinearities between Cl β and CL at angles of attack for which CL is still increasing. At angles of attack near that of maximum lift for the A R ≤1 wings, the windward tip vortex lifts off the wing, decreasing the lateral static stability of the wing prior to lift stall. For the A R =3 wing at α >10∘ , nonlinear trends in Cl β versus CL occur due to the spanwise evolution of stalled flow.

  5. One leg lateral jumps - a new test for team players evaluation.

    PubMed

    Taboga, P; Sepulcri, L; Lazzer, S; De Conti, D; Di Prampero, P E

    2013-10-01

    We assessed the subject's capacity to accelerate himself laterally in monopodalic support, a crucial ability in several team sports, on 22 athletes, during series of 10 subsequent jumps, between two force platforms at predetermined distance. Vertical and horizontal accelerations of the Centre of Mass (CM), contact and flight times were measured by means of force platforms and the Optojump-System®. Individual mean horizontal and vertical powers and their sum (total power) ranged between 7 and 14.5 W/kg. "Push angle", i.e., the angle with the horizontal along which the vectorial sum of all forces is aligned, was calculated from the ratio between vertical and horizontal accelerations: it varied between 38.7 and 49.4 deg and was taken to express the subject technical ability. The horizontal acceleration of CM, indirectly estimated as a function of subject's mass, contact and flight times, was essentially equal to that obtained from force platforms data. Since the vertical displacement can be easily obtained from flight and contact times, this allowed us to assess the Push angle from Optojump data only. The power developed during a standard vertical jump was rather highly correlated with that developed during the lateral jumps for right (R=0.80, N.=12) and left limb (R=0.72, N.=12), but not with the push angle for right (R=0.31, N.=12) and left limb (R=-0.43, N.=12). Hence standard tests cannot be utilised to assess technical ability. Lateral jumps test allows the coach to evaluate separately maximal muscular power and technical ability of the athlete, thus appropriately directing the training program: the optimum, for a team-sport player being high power and low push-angle, that is: being "powerful" and "efficient".

  6. The effect of winglets on the static aerodynamic stability characteristics of a representative second generation jet transport model

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.; Flechner, S. G.

    1976-01-01

    A baseline wing and a version of the same wing fitted with winglets were tested. The longitudinal aerodynamic characteristics were determined through an angle-of-attack range from -1 deg to 10 deg at an angle of sideslip of 0 deg for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic characteristics were determined through the same angle-of-attack range at fixed sideslip angles of 2.5 deg and 5 deg. Both configurations were investigated at Reynolds numbers of 13,000,000, per meter (4,000,000 per foot) and approximately 20,000,000 per meter (6,000,000 per foot). The winglet configuration showed slight increases over the baseline wing in static longitudinal and lateral aerodynamic stability throughout the test Mach number range for a model design lift coefficient of 0.53. Reynolds number variation had very little effect on stability.

  7. Bunionette deformity.

    PubMed

    Cohen, Bruce E; Nicholson, Christopher W

    2007-05-01

    The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.

  8. Wind-tunnel research comparing lateral control devices, particularly at high angles of attack XII : upper-surface ailerons on wings with split flaps

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Wenzinger, Carl J

    1935-01-01

    This report covers the twelfth of a series of tests conducted to compare different lateral control devices with particular reference to their effectiveness at high angles of attack. The present wind tunnel tests were made with two sizes of upper-surface ailerons on rectangular Clark Y wing models equipped with full span split flaps. The tests showed the effect of the upper-surface ailerons and of the split flaps on the general performance characteristics of the wings, and on the lateral controllability and stability characteristics. The results are compared with those for plain wings with ordinary ailerons of similar sizes.

  9. The impact of prism adaptation test on surgical outcomes in patients with primary exotropia.

    PubMed

    Kiyak Yilmaz, Ayse; Kose, Suheyla; Guven Yilmaz, Suzan; Uretmen, Onder

    2015-05-01

    We aimed to determine the impact of the preoperative prism adaptation test (PAT) on surgical outcomes in patients with primary exotropia. Thirty-eight consecutive patients with primary exotropia were enrolled. Pre-operative PAT was performed in 18 randomly selected patients (Group 1). Surgery was based on the angle of deviation at distance measured after PAT. The remaining 20 patients in whom PAT was not performed comprised Group 2. Surgery was based on the angle of deviation at distance in these patients. Surgical success was defined as ocular alignment within eight prism dioptres (PD) of orthophoria. Satisfactory motor alignment (± 8 PD) was achieved in 16 Group 1 patients (88.9 per cent) and 16 Group 2 patients (80 per cent) one year after surgery (p = 0.6; chi-square test). There were no statistically significant differences in demographic parameters, pre-operative and post-operative angle of deviation between the two groups (p > 0.05; Mann-Whitney U and chi-square tests). Nine patients in Group 1 (50 per cent) and two patients in Group 2 (10 per cent) had increased binocular vision one year post-operatively. A statistically significant difference was determined in terms of change in binocular single vision between the two groups (p = 0.01; chi-square test). Although the prism adaptation test did not lead to a significant increment in motor success, it may be helpful in achieving a more favourable functional surgical outcome in patients with primary exotropia. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  10. 14 CFR 23.147 - Directional and lateral control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Directional and lateral control. 23.147... Controllability and Maneuverability § 23.147 Directional and lateral control. (a) For each multiengine airplane... regain full control of the airplane without exceeding a bank angle of 45 degrees, reaching a dangerous...

  11. 14 CFR 23.147 - Directional and lateral control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Directional and lateral control. 23.147... Controllability and Maneuverability § 23.147 Directional and lateral control. (a) For each multiengine airplane... regain full control of the airplane without exceeding a bank angle of 45 degrees, reaching a dangerous...

  12. 14 CFR 23.147 - Directional and lateral control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Directional and lateral control. 23.147... Controllability and Maneuverability § 23.147 Directional and lateral control. (a) For each multiengine airplane... regain full control of the airplane without exceeding a bank angle of 45 degrees, reaching a dangerous...

  13. 14 CFR 23.147 - Directional and lateral control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Directional and lateral control. 23.147... Controllability and Maneuverability § 23.147 Directional and lateral control. (a) For each multiengine airplane... regain full control of the airplane without exceeding a bank angle of 45 degrees, reaching a dangerous...

  14. Limited Plasticity of Prismatic Visuomotor Adaptation

    PubMed Central

    Wischhusen, Sven; Fahle, Manfred

    2017-01-01

    Movements toward an object displaced optically through prisms adapt quickly, a striking example for the plasticity of neuronal visuomotor programs. We investigated the degree and time course of this system’s plasticity. Participants performed goal-directed throwing or pointing movements with terminal feedback before, during, and after wearing prism goggles shifting the visual world laterally either to the right or to the left. Prism adaptation was incomplete even after 240 throwing movements, still deviating significantly laterally by on average of 0.8° (CI = 0.20°) at the end of the adaptation period. The remaining lateral deviation was significant for pointing movements only with left shifting prisms. In both tasks, removal of the prisms led to an aftereffect which disappeared in the course of further training. This incomplete prism adaptation may be caused by movement variability combined with an adaptive neuronal control system exhibiting a finite capacity for evaluating movement errors. PMID:28473909

  15. On the mean profiles of radio pulsars - II. Reconstruction of complex pulsar light curves and other new propagation effects

    NASA Astrophysics Data System (ADS)

    Hakobyan, H. L.; Beskin, V. S.; Philippov, A. A.

    2017-08-01

    Our previous paper outlined the general aspects of the theory of radio light curve and polarization formation for pulsars. We predicted the one-to-one correspondence between the tilt of the linear polarization position angle of the the circular polarization. However, some of the radio pulsars indicate a clear deviation from that correlation. In this paper, we apply the theory of the radio wave propagation in the pulsar magnetosphere for the analysis of individual effects leading to these deviations. We show that within our theory the circular polarization of a given mode can switch its sign, without the need to introduce a new radiation mode or other effects. Moreover, we show that the generation of different emission modes on different altitudes can explain pulsars, that presumably have the X-O-X light-curve pattern, different from what we predict. General properties of radio emission within our propagation theory are also discussed. In particular, we calculate the intensity patterns for different radiation altitudes and present light curves for different observer viewing angles. In this context we also study the light curves and polarization profiles for pulsars with interpulses. Further, we explain the characteristic width of the position angle curves by introducing the concept of a wide emitting region. Another important feature of radio polarization profiles is the shift of the position angle from the centre, which in some cases demonstrates a weak dependence on the observation frequency. Here we demonstrate that propagation effects do not necessarily imply a significant frequency-dependent change of the position angle curve.

  16. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)

    2003-01-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  17. Midline shift and lateral guidance angle in adults with unilateral posterior crossbite.

    PubMed

    Rilo, Benito; da Silva, José Luis; Mora, María Jesús; Cadarso-Suárez, Carmen; Santana, Urbano

    2008-06-01

    Unilateral posterior crossbite is a malocclusion that, if not corrected during infancy, typically causes permanent asymmetry. Our aims in this study were to evaluate various occlusal parameters in a group of adults with uncorrected unilateral posterior crossbite and to compare findings with those obtained in a group of normal subjects. Midline shift at maximum intercuspation, midline shift at maximum aperture, and lateral guidance angle in the frontal plane were assessed in 25 adults (ages, 17-26 years; mean, 19.6 years) with crossbites. Midline shift at maximum intercuspation was zero (ie, centric midline) in 36% of the crossbite subjects; the remaining subjects had a shift toward the crossbite side. Midline shift at maximum aperture had no association with crossbite side. Lateral guidance angle was lower on the crossbite side than on the noncrossbite side. No parameter studied showed significant differences with respect to the normal subjects. Adults with unilateral posterior crossbite have adaptations that compensate for the crossbite and maintain normal function.

  18. Three-dimensional derailment analysis of a crashed city tram

    NASA Astrophysics Data System (ADS)

    Zhou, Hechao; Wang, Wenbin; Hecht, Markus

    2013-08-01

    City tram collisions are simulated using multi-body dynamics. The aim of this paper is to investigate the collision-induced derailment. Simulation results demonstrate that the corner obstacle collision scenario defined in EN 15227 is mainly focused on the energy absorption process. Due to the large impact angle (45°), it is unlikely for a city tram to comply with this scenario without derailment. In order to avoid derailment, the maximum impact angle between city tram and oblique obstacle should be reduced to 25°. Moreover, some influence factors are analysed, such as mass of loaded passengers, friction coefficient, impact angle, etc. Derailment phenomenon is shown to be significantly dependent on these parameters. Two measures are proposed to prevent the collided city tram from derailment. One is using secondary lateral dampers to absorb collision energy. Another is increasing the lateral stiffness of secondary springs as well as the lateral clearance, so that more collision energy can be stored in the suspension. With these measures, the safety against derailment can be improved.

  19. Navier-Stokes calculations for 3D gaseous fuel injection with data comparisons

    NASA Technical Reports Server (NTRS)

    Fuller, E. J.; Walters, R. W.

    1991-01-01

    Results from a computational study and experiments designed to further expand the knowledge of gaseous injection into supersonic cross-flows are presented. Experiments performed at Mach 6 included several cases of gaseous helium injection with low transverse angles and injection with low transverse angles coupled with a low yaw angle. Both experimental and computational data confirm that injector yaw has an adverse effect on the helium core decay rate. An array of injectors is found to give higher penetration into the freestream without loss of core injectant decay as compared to a single injector. Lateral diffusion plays a major role in lateral plume spreading, eddy viscosity, injectant plume, and injectant-freestream mixing. Grid refinement makes it possible to capture the gradients in the streamwise direction accurately and to vastly improve the data comparisons. Computational results for a refined grid are found to compare favorably with experimental data on injectant overall and core penetration provided laminar lateral diffusion was taken into account using the modified Baldwin-Lomax turbulence model.

  20. Cravity modulation of the moss Tortula modica branching

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, Yaroslava; Kit, Nadja

    Among various abiotic factors the sensor system of plants constantly perceives light and gravitation impulses and reacts on their action by photo- and gravitropisms. Tropisms play fundamental part in ontogenesis and determination of plant forms. Essentially important question is how light initiating phototropic bending modulates gravitropism. In contrast to flower plants, red light is phototropically active for mosses, and phytochromic system controls initiation of apical growth, branching and photomorphogenesis of mosses. The aim of this investigation was to analyse cell branching of protonemata Tortula modica Zander depending on the direction of light and gravitation vector. The influence of light and gravitation on the form of protonemal turf T. modica, branching and the angle of lateral branches relative to axis of mother cell growth has been investigated. As moss protonemata is not branched in the darkness, light is necessary for branching activation. Minimally low intensity of the red light (0.2 mmol (.) m (-2) ({) .}sec (-1) ) induced branching without visual display of phototropic growth. It has been established that unidirectional action of light and gravitation intensifies branching, and, on the contrary, perpendicularly oriented vectors of factors weaken branches formation. Besides, parallel oriented vectors initiated branching from both cell sides, but oppositely directed vectors initiated branching only from one side. Clinostate rotation the change of the vector gravity and causes uniform cell branching, hence, light and gravitation mutually influence the branching system form of the protonemata cell. It has been shown that the angle of lateral branches in darkness does not depend on the direction of light and gravitation action. After lighting the local growth of the cell wall took place mainly under the angle 90 (o) to the axes of mother cell growth. Then the angle gradually decreased and in 3-4 cell divisions the lateral branch grew under the angle 45-50 (o) to orthotropic stolon axes, and later it decreased negatively gravitropically. The bending of lateral branches of gravitropic protonemata is carried out in two stages: the light induction makes cells metabolically active, but not sensitive to gravitation, while the wall of daughter cell grows perpendicularly to the axes of mother cell and only after that the branches growth direction acquires dependent on gravitation fixed space orientation. Protonemata on light was branched under the angle 45-50 (o) to the axes of the main stolon, that caused similar phenotype of protonemata turf in many moss species. The growth of lateral branches and the set-point angle from the point of view of growth as physical process, is, perhaps, balanced by the action of gravitation and light, and is controlled endogenously by autotropic growth.

  1. 43 CFR 3262.14 - May BLM require me to take samples or perform tests and surveys?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., or gases; (3) Presence of geothermal resources, water, or reservoir energy; (4) Quality and quantity of geothermal resources; (5) Well bore angle and direction of deviation; (6) Formation, casing, or...

  2. 43 CFR 3262.14 - May BLM require me to take samples or perform tests and surveys?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., or gases; (3) Presence of geothermal resources, water, or reservoir energy; (4) Quality and quantity of geothermal resources; (5) Well bore angle and direction of deviation; (6) Formation, casing, or...

  3. Analog track angle error displays improve simulated GPS approach performance

    DOT National Transportation Integrated Search

    1996-01-01

    Pilots flying non-precision instrument approaches traditionally rely on a course deviation indicator (CDI) analog display of cross track error (XTE) information. THe new generation of GPS based area navigation (RNAV) receivers can also compute accura...

  4. Solar cell angle of incidence corrections

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees from normal which prevented any firm conclusions about extreme angle effects although a trend in the right direction was seen. Measurement errors were estimated and found to be consistent with the conclusions that were drawn. A controlled experiment using coverglasses and cells from the same lots and extending to larger incidence angles would probably lead to further insight into the subject area.

  5. Temporomandibular Disorders: The Habitual Chewing Side Syndrome

    PubMed Central

    Santana-Mora, Urbano; López-Cedrún, José; Mora, María J.; Otero, Xosé L.; Santana-Penín, Urbano

    2013-01-01

    Background Temporomandibular disorders are the most common cause of chronic orofacial pain, but, except where they occur subsequent to trauma, their cause remains unknown. This cross-sectional study assessed chewing function (habitual chewing side) and the differences of the chewing side and condylar path and lateral anterior guidance angles in participants with chronic unilateral temporomandibular disorder. This is the preliminary report of a randomized trial that aimed to test the effect of a new occlusal adjustment therapy. Methods The masticatory function of 21 randomly selected completely dentate participants with chronic temporomandibular disorders (all but one with unilateral symptoms) was assessed by observing them eat almonds, inspecting the lateral horizontal movement of the jaw, with kinesiography, and by means of interview. The condylar path in the sagittal plane and the lateral anterior guidance angles with respect to the Frankfort horizontal plane in the frontal plane were measured on both sides in each individual. Results Sixteen of 20 participants with unilateral symptoms chewed on the affected side; the concordance (Fisher’s exact test, P = .003) and the concordance-symmetry level (Kappa coefficient κ = 0.689; 95% confidence interval [CI], 0.38 to 0.99; P = .002) were significant. The mean condylar path angle was steeper (53.47(10.88) degrees versus 46.16(7.25) degrees; P = .001), and the mean lateral anterior guidance angle was flatter (41.63(13.35) degrees versus 48.32(9.53) degrees P = .036) on the symptomatic side. Discussion The results of this study support the use of a new term based on etiology, “habitual chewing side syndrome”, instead of the nonspecific symptom-based “temporomandibular joint disorders”; this denomination is characterized in adults by a steeper condylar path, flatter lateral anterior guidance, and habitual chewing on the symptomatic side. PMID:23593156

  6. Intravertebral deformation in idiopathic scoliosis: a transverse plane computer tomographic study.

    PubMed

    Kotwicki, Tomasz; Napiontek, Marek

    2008-03-01

    The scoliotic vertebrae are submitted to (1) the displacement in the 3-dimensional space and (2) the bone remodeling, which results in a 3-dimensional intrinsic vertebral deformation. Both phenomena are most expressed inside the apical zone of the curve and can be measured in a computer tomographic (CT) scan. A comparative study of CT thoracic scans in scoliotic and normal children was performed to provide a better description of the altered anatomy with respect to patomechanism of scoliosis. Twenty-three scoliotic girls, aged 14.3 +/- 2.1 years, a case of a right thoracic curve with a Cobb angle of 60.6 +/- 19.3 degrees, and 24 controls, free of spinal deformity, sex- and age-matched, underwent CT examination of the thorax at the level of Th8 to Th9 vertebra. The rotation angle of the apical vertebra and the sagittal to coronal rib cage diameters ratio were measured. The intravertebral deformation was assessed by measuring the angles between the axis of the whole vertebra and the axes of the spinous or transverse processes. The ratio of sagittal to coronal chest diameter was reduced in scoliosis patients (P < 0.001) and correlated with the Cobb angle. The angle between the axis of vertebra and the spinous process increased (P = 0.008), and its value was positively correlated with the rotation angle of the vertebra (r = 0.78, P < 0.05); however, the rotation was oriented clockwise, whereas the spinous process deviation was counterclockwise. The angle between the spinous and the transverse process revealed greater values on the concave side (P < 0.001), whereas the transverse processes were not deviated from the axis of vertebra (P = 0.469). A constant pattern, previously not described, of the alteration of morphology of the apical vertebra due to the intravertebral bone remodeling was identified. The intravertebral deformation accompanied the displacement of the vertebra with a linear correlation; however, the 2 phenomena were developing in the opposite directions. Level III, cross-sectional study.

  7. Minimally invasive (MIS) Tönnis osteotomy- A technical annotation and review of short term results.

    PubMed

    Balakumar, Balasubramanian; Racy, Malek; Madan, Sanjeev

    2018-03-01

    We detail a modified single incision approach to perform the Tonnis triple pelvic osteotomy by a minimally invasive approach. 12 children underwent minimally invasive Tonnis Osteotomy. There were five boys and seven girls in this study group. Average age was 11 years (9-15 years) at the time of surgery. Mean follow-up was 20.5 months (13-39 months). The average preoperative Antero-Posterior (AP) Centre Edge (CE) angle was -8.8° (-38.6°-18°), the average post-operative AP CE angle was 29.7° (25.1°-43.7°). The average preoperative lateral CE angle was -4.7° (-16°-0°), the average postoperative Lateral CE angle was 28.5° (21.3°-37.4°). The Sharp's angle before and after surgery were 55.7° (51.3°-66°) and 32.4° (16.1°-40.1°) respectively. The mean Tönnis angle before and after the osteotomy were 28.86° (19.7°-43.4°) and 6.3° (0.5°-9.4°) respectively. There was one major complication with sciatic nerve palsy which is in the recovery phase on followup and six minor complications including two cases of transient lateral femoral cutaneous nerve injury, two cases of ischial non-union, over granulation of the wound in one case, and metalwork irritation in one case. We have described a minimally invasive Tonnis osteotomy as a viable option based on our results. This technique is recommended for those who are conversant with the traditional pelvicosteotomies.

  8. Retrieval of Aerosol Optical Properties from Ground-Based Remote Sensing Measurements: Aerosol Asymmetry Factor and Single Scattering Albedo

    NASA Astrophysics Data System (ADS)

    Qie, L.; Li, Z.; Li, L.; Li, K.; Li, D.; Xu, H.

    2018-04-01

    The Devaux-Vermeulen-Li method (DVL method) is a simple approach to retrieve aerosol optical parameters from the Sun-sky radiance measurements. This study inherited the previous works of retrieving aerosol single scattering albedo (SSA) and scattering phase function, the DVL method was modified to derive aerosol asymmetric factor (g). To assess the algorithm performance at various atmospheric aerosol conditions, retrievals from AERONET observations were implemented, and the results are compared with AERONET official products. The comparison shows that both the DVL SSA and g were well correlated with those of AERONET. The RMSD and the absolute value of MBD deviations between the SSAs are 0.025 and 0.015 respectively, well below the AERONET declared SSA uncertainty of 0.03 for all wavelengths. For asymmetry factor g, the RMSD deviations are smaller than 0.02 and the absolute values of MBDs smaller than 0.01 at 675, 870 and 1020 nm bands. Then, considering several factors probably affecting retrieval quality (i.e. the aerosol optical depth (AOD), the solar zenith angle, and the sky residual error, sphericity proportion and Ångström exponent), the deviations for SSA and g of these two algorithms were calculated at varying value intervals. Both the SSA and g deviations were found decrease with the AOD and the solar zenith angle, and increase with sky residual error. However, the deviations do not show clear sensitivity to the sphericity proportion and Ångström exponent. This indicated that the DVL algorithm is available for both large, non-spherical particles and spherical particles. The DVL results are suitable for the evaluation of aerosol direct radiative effects of different aerosol types.

  9. Excursions out-of-lane versus standard deviation of lateral position as outcome measure of the on-the-road driving test.

    PubMed

    Verster, Joris C; Roth, Thomas

    2014-07-01

    The traditional outcome measure of the Dutch on-the-road driving test is the standard deviation of lateral position (SDLP), the weaving of the car. This paper explores whether excursions out-of-lane are a suitable additional outcome measure to index driving impairment. A literature search was conducted to search for driving tests that used both SDLP and excursions out-of-lane as outcome measures. The analyses were limited to studies examining hypnotic drugs because several of these drugs have been shown to produce next-morning sedation. Standard deviation of lateral position was more sensitive in demonstrating driving impairment. In fact, solely relying on excursions out-of-lane as outcome measure incorrectly classifies approximately half of impaired drives as unimpaired. The frequency of excursions out-of-lane is determined by the mean lateral position within the right traffic lane. Defining driving impairment as having a ΔSDLP > 2.4 cm, half of the impaired driving tests (51.2%, 43/84) failed to produce excursions out-of-lane. Alternatively, 20.9% of driving tests with ΔSDLP < 2.4 cm (27/129) had at least one excursion out-of-lane. Excursions out-of-lane are neither a suitable measure to demonstrate driving impairment nor is this measure sufficiently sensitive to differentiate adequately between differences in magnitude of driving impairment. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Low-Angle-Incidence Microchannel Epitaxy of a-Plane GaN Grown by Ammonia-Based Metal-Organic Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-04-01

    Low-angle-incidence microchannel epitaxy (LAIMCE) of a-plane GaN was performed using ammonia-based metal-organic molecular beam epitaxy to obtain wide and thin lateral overgrowth over a SiO2 mask. Trimethylgallium (TMG) was supplied perpendicular to the openings cut in the mask with a low incident angle of 5° relative to the substrate plane. The [NH3]/[TMG] ratio (R) dependence of GaN LAIMCE was optimized by varying R from 5 to 30. A wide lateral overgrowth of 3.7 µm with a dislocation density below the transmission electron microscope detection limit was obtained at R=15 for a thickness of 520 nm.

  11. Radiographic comparison of surgical hip dislocation and hip arthroscopy for treatment of cam deformity in femoroacetabular impingement.

    PubMed

    Bedi, Asheesh; Zaltz, Ira; De La Torre, Katrina; Kelly, Bryan T

    2011-07-01

    Whether open or arthroscopic techniques are employed, the goal of femoroacetabular impingement (FAI) surgery is to achieve impingement-free range of motion. While arthroscopic approaches have improved and gained popularity, an objective evaluation of the surgical correction achieved with this approach compared with open surgery remains to be defined in the literature. This study was undertaken to compare the efficacy of arthroscopic osteoplasty and open surgical dislocation in treating FAI dysmorphology in a consecutive series of patients. Cohort study; Level of evidence, 3. Surgical treatment was performed in 60 male patients under 40 years of age for symptomatic FAI refractory to nonoperative management. Patients were matched (not randomized) to treatment groups: 30 patients (15 left and 15 right hips) underwent arthroscopic cam and/or rim osteoplasty with labral debridement and/or refixation by an arthroscopic surgeon; and 30 (14 left and 16 right hips) underwent open surgical dislocation, cam and/or rim osteoplasty, and labral debridement or refixation by a hip preservation surgeon. Anteroposterior (AP) pelvis and extended-neck (Dunn) lateral radiographs were obtained and the depth of resection and arc of resection were measured by assessment of anterior femoral head-neck offset, AP and lateral α angle, and β angle on preoperative and postoperative radiographs. In the arthroscopic group, the extended-neck lateral α angle was reduced by a mean of 17.2° (28.3%, P < .05), AP α angle was reduced by a mean of 12.6° (16.8%), anterior head-neck offset improved 5.0 mm (111%, P < .05), and β angle increased by a mean of 23.1°. In the open dislocation group, the extended-neck lateral α angle was reduced by a mean of 21.2° (30.7%, P < .05), AP α angle was reduced by a mean of 20.1° (25.7%), anterior head-neck offset improved 6.56 mm (108%, P < .05), and β angle increased by a mean of 18.35°. Arthroscopic osteoplasty can restore head-neck offset and achieve similar depth, arc, and proximal-distal resection with comparable efficacy to open surgical dislocation for anterior and anterosuperior cam and focal rim impingement deformity. The open technique, however, may allow greater correction of posterosuperior loss of femoral offset and may be favorable for FAI patterns that demonstrate considerable proximal femoral deformity on AP radiographs.

  12. Gender Differences in Numeracy in Indonesia: Evidence from a Longitudinal Dataset

    ERIC Educational Resources Information Center

    Suryadarma, Daniel

    2015-01-01

    This paper uses a rich longitudinal dataset to measure the evolution of the gender differences in numeracy among school-age children in Indonesia. Girls outperformed boys by 0.08 standard deviations when the sample was around 11 years old. Seven years later, the gap has widened to 0.19 standard deviations, equivalent to around 18 months of…

  13. Correlation between central corneal thickness and visual field defects, cup to disc ratio and retinal nerve fiber layer thickness in primary open angle glaucoma patients.

    PubMed

    Sarfraz, Muhammad Haroon; Mehboob, Mohammad Asim; Haq, Rana Intisar Ul

    2017-01-01

    To evaluate the correlation between Central Corneal Thickness (CCT) and Visual Field (VF) defect parameters like Mean Deviation (MD) and Pattern Standard Deviation (PSD), Cup-to-Disc Ratio (CDR) and Retinal Nerve Fibre Layer Thickness (RNFL-T) in Primary Open-Angle Glaucoma (POAG) patients. This cross sectional study was conducted at Armed Forces Institute of Ophthalmology (AFIO), Rawalpindi from September 2015 to September 2016. Sixty eyes of 30 patients with diagnosed POAG were analysed. Correlation of CCT with other variables was studied. Mean age of study population was 43.13±7.54 years. Out of 30 patients, 19 (63.33%) were males and 11 (36.67%) were females. Mean CCT, MD, PSD, CDR and RNFL-T of study population was 528.57±25.47µm, -9.11±3.07, 6.93±2.73, 0.63±0.13 and 77.79±10.44µm respectively. There was significant correlation of CCT with MD, PSD and CDR (r=-0.52, p<0.001; r=-0.59, p<0.001;r=-0.41, p=0.001 respectively). The correlation of CCT with RNFL-T was not statistically significant (r=-0.14, p=0.284). Central corneal thickness had significant correlation with visual field parameters like mean deviation and pattern standard deviation, as well as with cup-to-disc ratio. However, central corneal thickness had no significant relationship with retinal nerve fibre layer thickness.

  14. Vertical force and wrist deviation angle in a sample of elderly people using walkers.

    PubMed

    Leung, Cherng-Yee; Yeh, Po-Chan

    2013-02-01

    Walkers are frequently used by elderly people with weak lower limbs and limited balance, but the ergonomic relationship between the use of a walker and stress on the upper limbs is relatively unstudied. The current study assessed wrist deviation and vertical force among elderly individuals using a walker for assistance in walking. 60 elderly volunteers (M age = 81.0 yr., SD = 8.8) participated, 30 of whom frequently used a walker, and 30 who had no such prior experience. Data were obtained from four load cells and a twin-axis wrist goniometer during assisted ambulation using the walker. No significant group difference was found in gait cycle. Significant wrist deviation occurred, with ulnar deviation/dorsiflexion of the right hand, which was greater than that of the left. Non-experienced participants had larger dorsiflexion than experienced participants. Experienced participants produced larger vertical force than non-experienced participants. The greaterthe wrist deviation, the greater was the vertical force. The horizontal handles of most marketed walkers cause wrist deviations. This is a concern for users, clinicians, and related industries. Improvements in walker design should be considered.

  15. The Scaling Law of The Near-Field Coseismic Ionospheric Disturbances

    NASA Astrophysics Data System (ADS)

    Cahyadi, M.; Heki, K.

    2013-12-01

    Coseismic ionospheric disturbances (CIDs) appear shortly after relatively large earthquakes as a result of ionospheric irregularity associated with passing atmospheric waves excited by the earthquakes. CIDs appearing approximately 10 minutes after earthquakes are caused by acoustic waves generated by coseismic vertical movements of the crust or the sea surface, and they propagate as fast as ~1 km/second over the distance of hundreds of kilometres. Here we collected past examples of CID detected in Total Electron Content (TEC) by GPS observations for 21 earthquakes 1994-2012 distributed worldwide. Their moment magnitudes (Mw) range from 6.6 to 9.2, and include two normal fault earthquakes that occurred in the outer rise region of the trenches (2007 January central Kuril earthquake, and 2012 December Tohoku-oki earthquake), and two strike-slip earthquakes (the main shock and the largest aftershock of the 2012 North Sumatra earthquakes). The rest are all reverse-fault earthquakes. We tried to select the pair of GPS satellite and station showing the largest CID amplitudes. Due to the directivity, the ionospheric piercing point (IPP) of line-of-sight (LOS) should be on the southern/northern side for earthquakes in the northern/southern hemisphere. We also selected GPS stations lying on the same side of IPP and located farther than IPP, to enable shallow-angle LOS penetration with the CID wavefront. We also selected CIDs with (1) appearance time not later than 15 minutes after earthquakes, and (2) sharp peaks. The first ensures that IPPs are close to the epicentres and geometric decays are insignificant. The second condition is the manifestation of the shallow angle penetration of LOS. The peak amplitudes were derived by (1) finding the peak TEC value, (2) going back in time from the peak by 90 seconds, and (3) calculating the TEC difference at the two epochs. We also obtained background vertical TEC from Global Ionospheric Maps (GIM), and expressed the CID amplitudes as percents relative to the background TEC. When we plot relative CID amplitudes as a function of seismic moment in the double logarithmic plot, data are distributed roughly around a line, suggesting that they obey a certain scaling law. The slope of the line shows that the CID amplitudes increase by two orders of magnitude as Mw increases by three. We speculate that this reflects the scaling law governing the maximum uplift in relatively large shallow-angle reverse faultings. This scaling law and its empirical factor-two uncertainty in CID amplitude imply that we can determine Mw with an uncertainty of ×0.45 by measuring CID amplitudes. This is useful for early warning in a region where tsunamis arrive at the coast later than acoustic waves arrive at the ionospheric F layer, and this is the case for the Pacific coast of NE Japan. There are two earthquakes deviating negatively beyond the factor 2 uncertainty. They are the 2012 North Sumatra earthquake (Mw8.6), the largest strike-slip earthquakes ever recorded, and its largest aftershock (Mw8.1). This negative deviation would possibly reflect the smaller vertical crustal movements in strike-slip earthquakes than dip-slip events.

  16. Can pelvic tilt be predicated by the sacrofemoral-pubic angel in patients with thoracolumbar kyphosis secondary to ankylosing spondylitis?

    PubMed

    Hu, Jun; Ji, Ming-liang; Qian, Bang-ping; Qiu, Yong; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang; Jiang, Jun

    2014-11-01

    A retrospective radiographical study. To construct a predictive model for pelvic tilt (PT) based on the sacrofemoral-pubic (SFP) angle in patients with thoracolumbar kyphosis secondary to ankylosing spondylitis (or AS). PT is a key pelvic parameter in the regulation of spine sagittal alignment that can be used to plan the appropriate osteotomy angle in patients with AS with thoracolumbar kyphosis. However, it could be difficult to measure PT in patients with femoral heads poorly visualized on lateral radiographs. Previous studies showed that the SFP angle could be used to evaluate PT in adult patients with scoliosis. However, this method has not been validated in patients with AS. A total of 115 patients with AS with thoracolumbar kyphosis were included. Full-length anteroposterior and lateral spine radiographs were all available, with spinal and pelvic anatomical landmarks clearly identified. PT, SFP angle, and global kyphosis were measured. The patients were randomly divided into group A (n=65) and group B (n=50). In group A, the predictive model for PT was constructed by the results of the linear regression analysis. In group B, the predictive ability and accuracy of the predictive model were investigated. In group A, the Pearson correlation analysis revealed a strong correlation between the SFP angle and PT (r=0.852; P<0.001). The predictive model for PT was constructed as PT=72.3-0.82×(SFP angle). In group B, PT was predicted by the model with a mean error of 4.6° (SD=4.5°) with a predictive value of 78%. PT can be accurately predicted by the SFP angle using the current model: PT=72.3-0.82×(SFP angle), when the femur heads are poorly visualized on lateral radiographs in patients with AS with thoracolumbar kyphosis. 4.

  17. On the Lateral Static Stability of Low-Aspect-Ratio Rectangular Wings

    NASA Astrophysics Data System (ADS)

    Linehan, Thomas; Mohseni, Kamran

    2017-11-01

    Low-aspect-ratio rectangular wings experience a reduction in lateral static stability at angles of attack distinct from that of lift stall. Stereoscopic digital particle image velocimetry is used to elucidate the flow physics behind this trend. Rectangular wings of AR = 0.75, 1, 1.5, 3 were tested at side-slip angles β = -10° and 0° with angle of attack varied in the range α =10° -40° . In side-slip, the leading-edge separation region emerges on the leeward wing where leading-edge flow reattachment is highly intermittent due to vortex shedding. The tip vortex downwash of the AR < 1.5 wings is sufficient to restrict the shedding of leading-edge vorticity, enabling sustained lift from the leading-edge separation region to high angles of attack. The windward tip vortex grows in size with increasing angle of attack, occupying an increasingly larger percentage of the windward wing. At high angles of attack pre-lift stall, the windward tip vortex lifts off the wing, resulting in separated flow underneath it. The downwash of the AR = 3 wing is insufficient to reattach the leading-edge flow at high incidence. The flow stalls on the leeward wing with stalled flow expanding upstream toward the windward wing with increasing angle of attack.

  18. Evaluation of Hallux Valgus Correction With Versus Without Akin Proximal Phalanx Osteotomy.

    PubMed

    Shibuya, Naohiro; Thorud, Jakob C; Martin, Lanster R; Plemmons, Britton S; Jupiter, Daniel C

    2016-01-01

    Although the efficacy of Akin proximal phalanx closing wedge osteotomy as a sole procedure for correction of hallux valgus deformity is questionable, when used in combination with other osseous corrective procedures, the procedure has been believed to be efficacious. However, a limited number of comparative studies have confirmed the value of this additional procedure. We identified patients who had undergone osseous hallux valgus correction with first metatarsal osteotomy or first tarsometatarsal joint arthrodesis with (n = 73) and without (n = 81) Akin osteotomy and evaluated their radiographic measurements at 3 points (preoperatively, within 3 months after surgery, and ≥6 months after surgery). We found that those people who had undergone the Akin procedure tended to have a larger hallux abduction angle and a more laterally deviated tibial sesamoid position preoperatively. Although the radiographic correction of the deformity was promising immediately after corrective surgery with the Akin osteotomy, maintenance of the correction was questionable in our cohort. The value of additional Akin osteotomy for correction of hallux valgus deformity is uncertain. Published by Elsevier Inc.

  19. A scoping review on smart mobile devices and physical strain.

    PubMed

    Tegtmeier, Patricia

    2018-01-01

    Smart mobile devices gain increasing importance at work. Integrating these smart mobile devices into the workplace creates new opportunities and challenges for occupational health and safety. Therefore the aim of the following scoping review was to identify ergonomic challenges with the use of smart mobile devices at work with respect to physical problems. A review of 36 papers based on literature including January 2016 was conducted. Biomechanical measures in the reviewed studies demonstrated i.e., head flexion angles exceeding 20° in 20 out of 26 different conditions described. Furthermore, laterally deviated wrists were frequently noted and thumb and finger flexor muscle activities generally greater than 5% MVC were reported. The reviewed literature indicated an elevated biomechanical risk, especially for the neck, the wrists and thumb. This was due to poor posture, ongoing and intermitted muscle tension, and/or repetitive movements. Papers addressing specific risks for smartphone and tablet use in different work environments are scarce. As the technology, as well as the use of smart mobile devices is rapidly changing, further research, especially for prolonged periods in the workplace is needed.

  20. Measurement And Shape Analysis Including Vertebral Rotation Of Scoliotic Spines From Single Plane Radiographs

    NASA Astrophysics Data System (ADS)

    Drerup, B.; Hierholzer, E.

    1986-07-01

    Radiological assessment and follow-up control of scoliosis, i.e. of a lateral and rotational deviation of the spine, is performed mainly by single plane radiographs. Additional information may be gained from these radiographs by introducing a parametrized vertebral model. By analyzing the radiographic contours according to this model, axial rotation can be determined for any position and orientation of the vertebra. In addition to rotation several other data are determined for each vertebra, such as the tilting angle and the two-dimensional coordinates of the centre. By handling the data as a function of the vertebral location in spine, characteristic curves are generated. In order to find simple shape parameters for these characteristics, a smooth curve has to be fitted to the data points by a least squares approximation. This problem may be solved by a Fourier decomposition of the spinal curves. It appears, that the Fourier coefficients (amplitudes and phases) and some derived shape parameters lend themselves to a medical interpretation, which is consistent with the existing classification of the scoliotic spine.

  1. A real-time algorithm for integrating differential satellite and inertial navigation information during helicopter approach. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoang, TY

    1994-01-01

    A real-time, high-rate precision navigation Kalman filter algorithm is developed and analyzed. This Navigation algorithm blends various navigation data collected during terminal area approach of an instrumented helicopter. Navigation data collected include helicopter position and velocity from a global position system in differential mode (DGPS) as well as helicopter velocity and attitude from an inertial navigation system (INS). The goal of the Navigation algorithm is to increase the DGPS accuracy while producing navigational data at the 64 Hertz INS update rate. It is important to note that while the data was post flight processed, the Navigation algorithm was designed for real-time analysis. The design of the Navigation algorithm resulted in a nine-state Kalman filter. The Kalman filter's state matrix contains position, velocity, and velocity bias components. The filter updates positional readings with DGPS position, INS velocity, and velocity bias information. In addition, the filter incorporates a sporadic data rejection scheme. This relatively simple model met and exceeded the ten meter absolute positional requirement. The Navigation algorithm results were compared with truth data derived from a laser tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9 degrees. Two flight segments extracted during each terminal approach were used to evaluate the Navigation algorithm. The first segment recorded small dynamic maneuver in the lateral plane while motion in the vertical plane was recorded by the second segment. The longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope approaches are as follows (mean plus or minus two standard deviations in meters): longitudinal (-0.03 plus or minus 1.41), lateral (-1.29 plus or minus 2.36), and vertical (-0.76 plus or minus 2.05).

  2. Effects of fuselage forebody geometry on low-speed lateral-directional characteristics of twin-tail fighter model at high angles of attack

    NASA Technical Reports Server (NTRS)

    Carr, P. C.; Gilbert, W. P.

    1979-01-01

    Low-speed, static wind-tunnel tests were conducted to explore the effects of fighter fuselage forebody geometry on lateral-directional characteristics at high angles of attack and to provide data for general design procedures. Effects of eight different forebody configurations and several add-on devices (e.g., nose strakes, boundary-layer trip wires, and nose booms) were investigated. Tests showed that forebody design features such as fineness ratio, cross-sectional shape, and add-on devices can have a significant influence on both lateral-directional and longitudinal aerodynamic stability. Several of the forebodies produced both lateral-directional symmetry and strong favorable changes in lateral-directional stability. However, the same results also indicated that such forebody designs can produce significant reductions in longitudinal stability near maximum lift and can significantly change the influence of other configuration variables. The addition of devices to highly tailored forebody designs also can significantly degrade the stability improvements provided by the clean forebody.

  3. Effects of central nervous system drugs on driving: speed variability versus standard deviation of lateral position as outcome measure of the on-the-road driving test.

    PubMed

    Verster, Joris C; Roth, Thomas

    2014-01-01

    The on-the-road driving test in normal traffic is used to examine the impact of drugs on driving performance. This paper compares the sensitivity of standard deviation of lateral position (SDLP) and SD speed in detecting driving impairment. A literature search was conducted to identify studies applying the on-the-road driving test, examining the effects of anxiolytics, antidepressants, antihistamines, and hypnotics. The proportion of comparisons (treatment versus placebo) where a significant impairment was detected with SDLP and SD speed was compared. About 40% of 53 relevant papers did not report data on SD speed and/or SDLP. After placebo administration, the correlation between SDLP and SD speed was significant but did not explain much variance (r = 0.253, p = 0.0001). A significant correlation was found between ΔSDLP and ΔSD speed (treatment-placebo), explaining 48% of variance. When using SDLP as outcome measure, 67 significant treatment-placebo comparisons were found. Only 17 (25.4%) were significant when SD speed was used as outcome measure. Alternatively, for five treatment-placebo comparisons, a significant difference was found for SD speed but not for SDLP. Standard deviation of lateral position is a more sensitive outcome measure to detect driving impairment than speed variability.

  4. Altered tibiofemoral contact mechanics due to lateral meniscus posterior horn root avulsions and radial tears can be restored with in situ pull-out suture repairs.

    PubMed

    LaPrade, Christopher M; Jansson, Kyle S; Dornan, Grant; Smith, Sean D; Wijdicks, Coen A; LaPrade, Robert F

    2014-03-19

    An avulsion of the posterior root attachment of the lateral meniscus or a radial tear close to the root attachment can lead to degenerative knee arthritis. Although the biomechanical effects of comparable injuries involving the medial meniscus have been studied, we are aware of no such study involving the lateral meniscus. We hypothesized that in situ pull-out suture repair of lateral meniscus root avulsions and of complete radial tears 3 and 6 mm from the root attachment would increase the contact area and decrease mean and peak tibiofemoral contact pressures, at all knee flexion angles, relative to the corresponding avulsion or tear condition. Eight human cadaveric knees underwent biomechanical testing. Eight lateral meniscus conditions (intact, footprint tear, root avulsion, root avulsion repair, radial tears at 3 and 6 mm from the posterior root, and repairs of the 3 and 6-mm tears) were tested at five different flexion angles (0°, 30°, 45°, 60°, and 90°) under a compressive 1000-N load. Avulsion of the posterior root of the lateral meniscus or an adjacent radial tear resulted in significantly decreased contact area and increased mean and peak contact pressures in the lateral compartment, relative to the intact condition, in all cases except the root avulsion condition at 0° of flexion. In situ pull-out suture repair of the root avulsion or radial tear significantly reduced mean contact pressures, relative to the corresponding avulsion or tear condition, when the results for each condition were pooled across all flexion angles. Posterior horn root avulsions and radial tears adjacent to the root attachment of the lateral meniscus significantly increased contact pressures in the lateral compartment. In situ pull-out suture repairs of these tears significantly improved lateral compartment joint contact pressures. In situ repair may be an effective treatment to improve tibiofemoral contact profiles after an avulsion of the posterior root of the lateral meniscus or a complete radial tear adjacent to the root. In situ repairs should be further investigated clinically as an alternative to partial lateral meniscectomy.

  5. Knee Deformities in Children With Down Syndrome: A Focus on Knee Malalignment.

    PubMed

    Duque Orozco, Maria Del Pilar; Abousamra, Oussama; Chen, Brian Po-Jung; Rogers, Kenneth J; Sees, Julieanne P; Miller, Freeman

    Patellofemoral instability (PFI) has been the most reported knee abnormality in people with Down syndrome. Other reported knee abnormalities have been associated with PFI and different management approaches have been described with variable outcomes. The aim of this study was to describe the anatomic variations of the knee in children with Down syndrome. A comparison between knees with and without PFI was performed and our experience in treating knee abnormalities in Down syndrome was also reported. Records of all children with Down syndrome were reviewed. Two groups were identified (knees with and without PFI). Radiographic measurements included the mechanical and anatomic lateral distal femoral angles, medial proximal tibial angle, angle of depression of medial tibial plateau, lateral tibial translation, and distal femoral physis-joint angle. On the lateral view, Insall-Salvati and Blackburne-Peel ratios were measured. The sulcus angle was measured on the tangential view. Measurements were compared between the 2 groups (with and without PFI).Knees with PFI were divided into 3 subgroups based on their treatment (group A: surgical valgus correction, group B: surgical soft tissue procedures for PFI, and group C: conservative treatment). Preoperative radiographs were used for the surgical group and last available radiographs were used for the conservative group. Clinical and radiographic data were compared between the groups. For groups A and B, clinical and radiographic data were also compared between preoperative and last visits. Of the 581 children with Down syndrome, 5% (31 children: 22 females, 9 males) had PFI in 56 knees. Mean age at diagnosis was 11.5±3.5 years. Of the remaining 550 children, 75 children had radiographs for 130 knees. Knees with PFI had significantly more valgus and a larger distal femoral physis-joint angle. Depression of the medial tibial plateau and lateral tibial translation were noted in knees with PFI. Insall-Salvati ratio was higher and the sulcus angle was larger in the PFI group.Of the 56 knees with PFI; 10 knees were in group A, 11 knees in group B, 33 knees in group C, and the remaining 2 knees had combined procedures. Preoperative mechanical and anatomic lateral distal femoral angles were smaller in group A than in group B or C. Grades of PFI improved in group B after surgery. This improvement was not noted in group A. In children with Down syndrome, different variations of the knee anatomy can be found. Although PFI might be the most evident knee abnormality, other underlying deformities are common. Treatment of the PFI should be planned through a comprehensive anatomic approach that addresses all aspects of knee deformity. Level IV-prognostic and therapeutic study.

  6. Association between trochlear morphology and chondromalacia patella: an MRI study.

    PubMed

    Duran, Semra; Cavusoglu, Mehtap; Kocadal, Onur; Sakman, Bulent

    This study aimed to compare trochlear morphology seen in magnetic resonance imaging between patients with chondromalacia patella and age-matched control patients without cartilage lesion. Trochlear morphology was evaluated using the lateral trochlear inclination, medial trochlear inclination, sulcus angle and trochlear angle on the axial magnetic resonance images. Consequently, an association between abnormal trochlear morphology and chondromalacia patella was identified in women. In particular, women with flattened lateral trochlea are at an increased risk of patellar cartilage structural damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Planar waveguide nanolaser configured by dye-doped hybrid nanofilm on substrate

    NASA Astrophysics Data System (ADS)

    Tikhonov, E. A.; Yashchuk, V. P.; Telbiz, G. M.

    2018-04-01

    Dye-doped hybrid silicate/titanium nanofilms on the glass substrate structures of asymmetrical waveguides were studied by way of laser systems. The threshold, spatial and spectral features of the laser oscillation of genuine and hollow waveguides were determined. The pattern of stimulated radiation included two concurrent processes: single-mode waveguide lasing and lateral small divergence emission. Comparison of the open angle of the lateral beams and grazing angles of the waveguide lasing mode provides an insight into the effect of leaky mode emission followed by Lummer-Gehrcke interference.

  8. Unique features of laterally aligned GeSi nanowires self-assembled on the vicinal Si (001) surface misoriented toward the [100] direction

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Vastola, Guglielmo; Zhang, Yong-Wei; Ren, Qijun; Fan, Yongliang; Zhong, Zhenyang

    2015-03-01

    We demonstrate laterally aligned and catalyst-free GeSi nanowires (NWs) via self-assembly of Ge on miscut Si (001) substrates toward the [100] direction by an angle θ (θ < 11°). The NWs are bordered by (001) and (105) facets, which are thermodynamically stable. By tuning the miscut angle θ, the NW height can be easily modulated with a nearly constant width. The thickness of the wetting layer beneath the NWs also shows a peculiar behavior with a minimum at around 6°. An analytical model, considering the variation of both the surface energy and the strain energy of the epilayer on vicinal surfaces with the miscut angle and layer thickness, shows good overall agreement with the experimental results. It discloses that both the surface energy and stain energy of the epilayer on vicinal surfaces can be considerably affected in the same trend by the surface steps. Our results not only shed new light on the growth mechanism during heteroepitaxial growth, but also pave a prominent way to fabricate and meanwhile modulate laterally aligned and dislocation-free NWs.We demonstrate laterally aligned and catalyst-free GeSi nanowires (NWs) via self-assembly of Ge on miscut Si (001) substrates toward the [100] direction by an angle θ (θ < 11°). The NWs are bordered by (001) and (105) facets, which are thermodynamically stable. By tuning the miscut angle θ, the NW height can be easily modulated with a nearly constant width. The thickness of the wetting layer beneath the NWs also shows a peculiar behavior with a minimum at around 6°. An analytical model, considering the variation of both the surface energy and the strain energy of the epilayer on vicinal surfaces with the miscut angle and layer thickness, shows good overall agreement with the experimental results. It discloses that both the surface energy and stain energy of the epilayer on vicinal surfaces can be considerably affected in the same trend by the surface steps. Our results not only shed new light on the growth mechanism during heteroepitaxial growth, but also pave a prominent way to fabricate and meanwhile modulate laterally aligned and dislocation-free NWs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07433e

  9. Association between patellar cartilage defects and patellofemoral geometry: a matched-pair MRI comparison of patients with and without isolated patellar cartilage defects.

    PubMed

    Mehl, Julian; Feucht, Matthias J; Bode, Gerrit; Dovi-Akue, David; Südkamp, Norbert P; Niemeyer, Philipp

    2016-03-01

    To compare the geometry of the patellofemoral joint on magnetic resonance images (MRI) between patients with isolated cartilage defects of the patella and a gender- and age-matched control group of patients without patellar cartilage defects. A total of 43 patients (17 female, 26 male) with arthroscopically verified grade III and IV patellar cartilage defects (defect group) were compared with a matched-pair control group of patients with isolated traumatic rupture of the anterior cruciate ligament without cartilage defects of the patellofemoral joint. Preoperative MRI images were analysed retrospectively with regard to patellar geometry (width, thickness, facet angle), trochlear geometry (dysplasia according to Dejour, sulcus angle, sulcus depth, lateral condyle index, trochlea facet asymmetry, lateral trochlea inclination) and patellofemoral alignment (tibial tuberosity-trochlear groove distance, patella height, lateral patella displacement, lateral patellofemoral angle, patella tilt, congruence angle). In addition to the comparison of group values, the measured values were compared to normal values reported in the literature, and the frequency of patients with pathologic findings was compared between both groups. The defect group demonstrated a significantly higher proximal chondral sulcus angle (p < 0.001), a significantly higher distal osseal sulcus angle (p = 0.004), a significantly lower distal sulcus depth (p = 0.047), a significantly lower lateral condyle index (p = 0.045), a significantly lower Caton-Deschamps index (p = 0.020) and a significantly higher Insall-Salvati index (p = 0.010). A major trochlear dysplasia (grade B-D) was significantly more common in the defect group (54 vs. 19%; p < 0.001). Eighty-eight per cent of patients in the defect group demonstrated at least one pathologic finding, compared to 63% in the control group (p = 0.006). Two or more pathologic findings were observed in 42% of the defect group and in 19% of the control group (p = 0.019). There was no significant correlation between the localization of the chondral defects and the results of the measured parameters. Cartilage defects of the patella are associated with the geometry of the patellofemoral joint. In particular, a flat and shallow trochlea, trochlea dysplasia and patella alta seem to contribute to the development of patellar cartilage defects, which must be taken into consideration when planning to do surgical cartilage repair at the patella. III.

  10. Lateral stability and control tests of the XP-77 airplane in the NACA full-scale tunnel, 16 June 1944

    NASA Technical Reports Server (NTRS)

    Czarnecki, K. R.; Donlan, C. J.

    1976-01-01

    Tests were made in the NACA full-scale tunnel to determine the lateral stability and control characteristics of the XP-77 airplane. Measurements were made of the forces and moments on the airplane at various angles of attack and angles of yaw. The measurements were made with the propeller removed and with the propeller installed and operating at various thrust coefficients, and with the landing flaps retracted and deflected. The effects of aileron, elevator, and rudder deflection on control surface effectiveness and hinge moments were determined. The tests were planned to obtain the data required to evaluate as completely as possible the Army Air Force requirements on lateral stability and control for pursuit-type airplanes.

  11. Visual space under free viewing conditions.

    PubMed

    Doumen, Michelle J A; Kappers, Astrid M L; Koenderink, Jan J

    2005-10-01

    Most research on visual space has been done under restricted viewing conditions and in reduced environments. In our experiments, observers performed an exocentric pointing task, a collinearity task, and a parallelity task in a entirely visible room. We varied the relative distances between the objects and the observer and the separation angle between the two objects. We were able to compare our data directly with data from experiments in an environment with less monocular depth information present. We expected that in a richer environment and under less restrictive viewing conditions, the settings would deviate less from the veridical settings. However, large systematic deviations from veridical settings were found for all three tasks. The structure of these deviations was task dependent, and the structure and the deviations themselves were comparable to those obtained under more restricted circumstances. Thus, the additional information was not used effectively by the observers.

  12. Cognitive function in childhood and lifetime cognitive change in relation to mental wellbeing in four cohorts of older people.

    PubMed

    Gale, Catharine R; Cooper, Rachel; Craig, Leone; Elliott, Jane; Kuh, Diana; Richards, Marcus; Starr, John M; Whalley, Lawrence J; Deary, Ian J

    2012-01-01

    Poorer cognitive ability in youth is a risk factor for later mental health problems but it is largely unknown whether cognitive ability, in youth or in later life, is predictive of mental wellbeing. The purpose of this study was to investigate whether cognitive ability at age 11 years, cognitive ability in later life, or lifetime cognitive change are associated with mental wellbeing in older people. We used data on 8191 men and women aged 50 to 87 years from four cohorts in the HALCyon collaborative research programme into healthy ageing: the Aberdeen Birth Cohort 1936, the Lothian Birth Cohort 1921, the National Child Development Survey, and the MRC National Survey for Health and Development. We used linear regression to examine associations between cognitive ability at age 11, cognitive ability in later life, and lifetime change in cognitive ability and mean score on the Warwick Edinburgh Mental Wellbeing Scale and meta-analysis to obtain an overall estimate of the effect of each. People whose cognitive ability at age 11 was a standard deviation above the mean scored 0.53 points higher on the mental wellbeing scale (95% confidence interval 0.36, 0.71). The equivalent value for cognitive ability in later life was 0.89 points (0.72, 1.07). A standard deviation improvement in cognitive ability in later life relative to childhood ability was associated with 0.66 points (0.39, 0.93) advantage in wellbeing score. These effect sizes equate to around 0.1 of a standard deviation in mental wellbeing score. Adjustment for potential confounding and mediating variables, primarily the personality trait neuroticism, substantially attenuated these associations. Associations between cognitive ability in childhood or lifetime cognitive change and mental wellbeing in older people are slight and may be confounded by personality trait differences.

  13. [Austin's horizontal V-shaped sliding osteotomy of the metatarsal head [Chevron-osteotomy) in the treatment of hallux valgus].

    PubMed

    Steinböck, G

    1996-08-01

    From 1983 to 1995, 1587 patients suffering from hallux abductovalgus were treated with the Austin bunionectomy. The operation consists of a medial exostosis removal, a V-shaped laterally directed displacement osteotomy of the metatarsal head, lateral release and medial reefing of the capsulo-ligamentous structures. Lateral transposition is facilitated by performing a sufficient lateral release consisting of dissection of the lateral metatarsophalangeal ligament and separation of the adductor tendon from the base of the phalanx and the lateral sesamoid. In the case of intermetatarsal angles greater than 15 degrees, the metatarsal-sesamoid ligament is also severed just above the lateral sesamoid. The periosteum is stripped in a limited fashion dorsally and toward the plantar, leaving its insertion at the metatarsal head intact. After this procedure, reposition of the metatarsal head onto the sesamoids is usually possible and is maintained by reconstruction of the medial metatarsal-sesamoid ligament. In the author's own research material, metatarsophalangeal angles larger than 50 degrees and intermetatarsal angles of over 20 degrees could be corrected. Pronation of the toe is usually corrected by tenotomy of the abductor tendon near the base of the phalanx. Avascular necrosis is extremely rare with a careful operative technique. In our extensive research material, four cases of AVN were recognized. Provided there is free motion of the joint (60-0-20), mild radiological signs of osteoarthritis are no contraindication for the operation. Even in the aged, good results can be achieved provided there are no trophic problems. The Austin bunionectomy has proved to be a versatile method for treating bunion problems. The possibility of transposing the metatarsal head laterally, toward the plantar, proximally and distally by altering the direction of the osteotomy, as well as tilting it medially or laterally, has made this osteotomy an invaluable tool for addressing various problems in bunion surgery.

  14. Lower Lateral Cartilage Cephalic Malposition: An Over-Diagnosed Entity.

    PubMed

    Hafezi, Farhad; Naghibzadeh, Bijan; Kazemi Ashtiani, Abbas

    2018-06-01

    Lower lateral cartilage malposition is represented by anterior convexity of the lower lateral cartilage (LLC) dome with posterior pinch, as defined by Sheen and Constantian. This anatomic variation consists of cephalic, or upward and inward, rotation of lateral crura, particularly in bulbous tip patients. In most cases, "bulbous pinch" LLC is positioned toward the medial canthus, not laterally, so it is referred to as cephalic displacement. Accordingly, it is recommended to caudally displace cartilage in the majority of rhinoplasty cases in which variation is seen. The purpose of this paper is to measure the exact angle of lateral crura with fixed reference points on the face. We drew and marked LLC contours and vertical/horizontal lines in 40 consecutive rhinoplasty cases. We then divided them into two groups: (1) bulbous pinch and (2) flat LLCs. The right- and left-sided LLC angles to midline and horizontal lines were measured and compared to assess whether there was any significant difference between the two subgroups. There was no significant difference between the angles of LLC rotation in the bulbous and flat LLCs groups, measured both vertically and horizontally. Based on our findings, although cephalic malposition of LLCs may be present in some patients but in the majority of cases the etiology of nasal lateral wall pinching is not cephalic displacement of lateral crura but most probably is due, rather, to severe convexity of the posterior and lateral crura. According to our findings, cephalic malposition is an uncommon anatomic variation of LLCs that has been reported at high frequency (60-70% of their rhinoplasty cases). This finding may help to correct this deformity into a normal anatomic configuration. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  15. Laryngeal electromyography: electrode guidance based on 3-dimensional magnetic resonance tomography images of the larynx.

    PubMed

    Storck, Claudio; Gehrer, Raphael; Hofer, Michael; Neumayer, Bernhard; Stollberger, Rudolf; Schumacher, Ralf; Gugatschka, Markus; Friedrich, Gerhard; Wolfensberger, Markus

    2012-01-01

    Laryngeal electromyography (LEMG) is an important tool for the assessment of laryngeal nerve and muscle functioning. The purpose of the study was to determine electrode insertion angle and insertion depth for the various laryngeal muscles. Twenty-three cadaver larynges were examined with magnetic resonance tomography (MRT) and Materialize Interactive Medical Image Control System (Leuven, Belgium) 3-dimensional (3D) imaging software. Geometrical analysis was used to calculate the electrode insertion angles. All laryngeal muscles could be identified and 3D visualized on MRT scans. Although the insertion angles were the same in male and female larynges, the insertion depth was significantly larger in male than in female larynges (P<0.05). Of particular clinical importance is the fact that the electrode has to be directed lateral and upward for the thyroarytenoid muscle but lateral and downward for the lateral cricoarytenoid muscle (insertion point=midline lower border of the thyroid). This is the first study that analyzes electrode insertion angles and insertion depths for each laryngeal muscle using 3D imaging. We hope that the information gained from this study will help clinicians performing LEMG to localize the individual laryngeal muscles. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  16. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Gilroy, S.

    2003-01-01

    Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle/tracking response as the curve of the surface changed. We propose that the interaction of touch and gravity sensing/response systems combine to strictly control the tropic growth of the root. Such signal integration is likely a critical part of growth control in the stimulus-rich environment of the soil. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  17. Wavelength dependence of position angle in polarization standards

    NASA Astrophysics Data System (ADS)

    Dolan, J. F.; Tapia, S.

    1986-08-01

    Eleven of the 15 stars on Serkowski's (1974) list of "Standard Stars with Large Interstellar Polarization" were investigated to determine whether the orientation of the plane of their linear polarization showed any dependence on wavelength. Nine of the eleven stars exhibited a statistically significant wavelength dependence of position angle when measured with an accuracy of ≡0°.1 standard deviation. For the majority of these stars, the effect is caused primarily by intrinsic polarization. The calibration of polarimeter position angles in a celestial coordinate frame must evidently be done at the 0°.1 level of accuracy by using only carefully selected standard stars or by using other astronomical or laboratory methods.

  18. Wavelength dependence of position angle in polarization standards. [of stellar systems

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Tapia, S.

    1986-01-01

    Eleven of the 15 stars on Serkowski's (1974) list of 'Standard Stars with Large Interstellar Polarization' were investigated to determine whether the orientation of the plane of their linear polarization showed any dependence on wavelength. Nine of the eleven stars exhibited a statistically significant wavelength dependence of position angle when measured with an accuracy of about 0.1 deg standard deviation. For the majority of these stars, the effect is caused primarily by intrinsic polarization. The calibration of polarimeter position angles in a celestial coordinate frame must evidently be done at the 0.1 deg level of accuracy by using only carefully selected standard stars or by using other astronomical or laboratory methods.

  19. Validation of nuclear magnetic resonance structures of proteins and nucleic acids: hydrogen geometry and nomenclature.

    PubMed

    Doreleijers, J F; Vriend, G; Raves, M L; Kaptein, R

    1999-11-15

    A statistical analysis is reported of 1,200 of the 1,404 nuclear magnetic resonance (NMR)-derived protein and nucleic acid structures deposited in the Protein Data Bank (PDB) before 1999. Excluded from this analysis were the entries not yet fully validated by the PDB and the more than 100 entries that contained < 95% of the expected hydrogens. The aim was to assess the geometry of the hydrogens in the remaining structures and to provide a check on their nomenclature. Deviations in bond lengths, bond angles, improper dihedral angles, and planarity with respect to estimated values were checked. More than 100 entries showed anomalous protonation states for some of their amino acids. Approximately 250,000 (1.7%) atom names differed from the consensus PDB nomenclature. Most of the inconsistencies are due to swapped prochiral labeling. Large deviations from the expected geometry exist for a considerable number of entries, many of which are average structures. The most common causes for these deviations seem to be poor minimization of average structures and an improper balance between force-field constraints for experimental and holonomic data. Some specific geometric outliers are related to the refinement programs used. A number of recommendations for biomolecular databases, modeling programs, and authors submitting biomolecular structures are given.

  20. Development of a software-hardware complex for studying the process of grinding by a pendulum deformer

    NASA Astrophysics Data System (ADS)

    Borisov, A. P.

    2018-01-01

    The article is devoted to the development of a software and hardware complex for investigating the grinding process on a pendulum deformer. The hardware part of this complex is the Raspberry Pi model 2B platform, to which a contactless angle sensor is connected, which allows to obtain data on the angle of deviation of the pendulum surface, usb-cameras, which allow to obtain grain images before and after grinding, and stepping motors allowing lifting of the pendulum surface and adjust the clearance between the pendulum and the supporting surfaces. The program part of the complex is written in C # and allows receiving data from the sensor and usb-cameras, processing the received data, and also controlling the synchronous-step motors in manual and automatic mode. The conducted studies show that the rational mode is the deviation of the pendulum surface by an angle of 400, and the location of the grain in the central zone of the support surface, regardless of the orientation of the grain in space. Also, due to the non-contact angle sensor, energy consumption for grinding, speed and acceleration of the pendulum surface, as well as vitreousness of grain and the energy consumption are calculated. With the help of photographs obtained from usb cameras, the work of a pendulum deformer based on the Rebinder formula and calculation of the grain area before and after grinding is determined.

  1. The Accuracy of Computer Image-Guided Template for Mandibular Angle Ostectomy.

    PubMed

    Ye, Niansong; Long, Hu; Zhu, Songsong; Yang, Yunqiang; Lai, Wenli; Hu, Jing

    2015-02-01

    Mandibular angle ostectomy (MAO) is commonly used to correct prominent mandibular angles through an intraoral approach. However, limited vision in the operative site may lead to difficulties or complications during surgery. Therefore, it is necessary to develop an effective method for helping surgeons to perform MAO more precisely and safely. In this study, we report a novel method of a computer image-guided surgical template for navigation of MAO, and evaluate its accuracy and clinical outcomes. Nine patients with a prominent mandibular angle were enrolled in this study. A pair of stereolithographic templates was fabricated by computer-aided image design and 3D printing. In all cases, bilateral MAO was performed under the guide of these templates. Post-operative effects were evaluated by 3D curve functions and maximal shell-to-shell deviations. All patients were satisfied with their cosmetic outcomes. The mean and SD of ICC between R-Sim and R-Post were 0.958 ± 0.011; between L-Sim and L-Post, 0.965 ± 0.014; and between R-Post and L-Post, 0.964 ± 0.013. The maximal shell-to-shell deviations between the simulated mandibular contour and post-operative mandibular contour on the right and left sides were 2.02 ± 0.32 and 1.97 ± 0.41 mm, respectively. The results of this study suggest that this new technique could assist surgeons in making better pre-surgical plans and ensure more accurate and safer manipulation for completion of this procedure.

  2. Stability analyses of the mass abrasive projectile high-speed penetrating into a concrete target Part III: Terminal ballistic trajectory analyses

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.

    2015-08-01

    During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.

  3. Fat fraction bias correction using T1 estimates and flip angle mapping.

    PubMed

    Yang, Issac Y; Cui, Yifan; Wiens, Curtis N; Wade, Trevor P; Friesen-Waldner, Lanette J; McKenzie, Charles A

    2014-01-01

    To develop a new method of reducing T1 bias in proton density fat fraction (PDFF) measured with iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL). PDFF maps reconstructed from high flip angle IDEAL measurements were simulated and acquired from phantoms and volunteer L4 vertebrae. T1 bias was corrected using a priori T1 values for water and fat, both with and without flip angle correction. Signal-to-noise ratio (SNR) maps were used to measure precision of the reconstructed PDFF maps. PDFF measurements acquired using small flip angles were then compared to both sets of corrected large flip angle measurements for accuracy and precision. Simulations show similar results in PDFF error between small flip angle measurements and corrected large flip angle measurements as long as T1 estimates were within one standard deviation from the true value. Compared to low flip angle measurements, phantom and in vivo measurements demonstrate better precision and accuracy in PDFF measurements if images were acquired at a high flip angle, with T1 bias corrected using T1 estimates and flip angle mapping. T1 bias correction of large flip angle acquisitions using estimated T1 values with flip angle mapping yields fat fraction measurements of similar accuracy and superior precision compared to low flip angle acquisitions. Copyright © 2013 Wiley Periodicals, Inc.

  4. Wheel climb derailment criteria for evaluation of rail vehicle safety

    DOT National Transportation Integrated Search

    1984-01-01

    Criteria for evaluating safety of rail vehicles with respect to wheel climb derailment are reviewed. The relationship between flanging wheel lateral to veritical force ratio at impending derailment and angle of attack, lateral velocity and longitudin...

  5. Evaluating the Impact of Various Parameters on the Gamma Index Values of 2D Diode Array in IMRT Verification

    PubMed Central

    Jabbari, Keyvan; Pashaei, Fakhereh; Ay, Mohammad R.; Amouheidari, Alireza; Tavakoli, Mohammad B.

    2018-01-01

    Background: MapCHECK2 is a two-dimensional diode arrays planar dosimetry verification system. Dosimetric results are evaluated with gamma index. This study aims to provide comprehensive information on the impact of various factors on the gamma index values of MapCHECK2, which is mostly used for IMRT dose verification. Methods: Seven fields were planned for 6 and 18 MV photons. The azimuthal angle is defined as any rotation of collimators or the MapCHECK2 around the central axis, which was varied from 5 to −5°. The gantry angle was changed from −8 to 8°. Isodose sampling resolution was studied in the range of 0.5 to 4 mm. The effects of additional buildup on gamma index in three cases were also assessed. Gamma test acceptance criteria were 3%/3 mm. Results: The change of azimuthal angle in 5° interval reduced gamma index value by about 9%. The results of putting buildups of various thicknesses on the MapCHECK2 surface showed that gamma index was generally improved in thicker buildup, especially for 18 MV. Changing the sampling resolution from 4 to 2 mm resulted in an increase in gamma index by about 3.7%. The deviation of the gantry in 8° intervals in either directions changed the gamma index only by about 1.6% for 6 MV and 2.1% for 18 MV. Conclusion: Among the studied parameters, the azimuthal angle is one of the most effective factors on gamma index value. The gantry angle deviation and sampling resolution are less effective on gamma index value reduction. PMID:29535922

  6. Novel computer vision analysis of nasal shape in children with unilateral cleft lip.

    PubMed

    Mercan, Ezgi; Morrison, Clinton S; Stuhaug, Erik; Shapiro, Linda G; Tse, Raymond W

    2018-01-01

    Optimization of treatment of the unilateral cleft lip nasal deformity (uCLND) is hampered by lack of objective means to assess initial severity and changes produced by treatment and growth. The purpose of this study was to develop automated 3D image analysis specific to the uCLND; assess the correlation of these measures to esthetic appraisal; measure changes that occur with treatment and differences amongst cleft types. Dorsum Deviation, Tip-Alar Volume Ratio, Alar-Cheek Definition, and Columellar Angle were assessed using computer-vision techniques. Subjects included infants before and after primary cleft lip repair (N = 50) and children aged 8-10 years with previous cleft lip (N = 50). Two expert surgeons ranked subjects according to esthetic nose appearance. Computer-based measurements strongly correlated with rankings of infants pre-repair (r = 0.8, 0.75, 0.41 and 0.54 for Dorsum Deviation, Tip-Alar Volume Ratio, Alar-Cheek Definition, and Columellar Angle, p < 0.01) while all measurements except Alar-Cheek Definition correlated moderately with rankings of older children post-repair (r ∼ 0.35, p < 0.01). Measurements were worse with greater severity of cleft type but improved following initial repair. Abnormal Dorsum Deviation and Columellar Angle persisted after surgery and were more severe with greater cleft type. Four fully-automated measures were developed that are clinically relevant, agree with expert evaluations and can be followed through initial surgery and in older children. Computer vision analysis techniques can quantify the nasal deformity at different stages, offering efficient and standardized tools for large studies and data-driven conclusions. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Fracture patterns after bilateral sagittal split osteotomy of the mandibular ramus according to the Obwegeser/Dal Pont and Hunsuck/Epker modifications.

    PubMed

    Möhlhenrich, Stephan Christian; Kniha, Kristian; Peters, Florian; Ayoub, Nassim; Goloborodko, Evgeny; Hölzle, Frank; Fritz, Ulrike; Modabber, Ali

    2017-05-01

    The aim of this study was to compare the fracture patterns after sagittal split osteotomy according to Obwegeser/Dal Pont (ODP) and Hunsuck/Epker (HE), as well as to investigate the relationship between lateral bone cut ending or angle and the incidence of unfavorable/bad splits. Postoperative cone-beam computed tomograms of 124 splits according to ODP and 60 according to HE were analyzed. ODP led to 75.8% and HE led to 60% lingual fractures with mandibular foramen contact. Horizontal fractures were found in 9.7% and 6.7%, respectively, and unfavorable/bad splits were found in 11.3% and 10%, respectively. The lateral osteotomy angle was 106.22° (SD 12.03)° for bad splits and 106.6° (SD 13.12)° for favorable splits. Correlations were found between favorable fracture patterns and split modifications and between buccal ending of the lateral bone cut and bad splits (p < 0.001). No relationship was observed between split modifications (p = 0.792) or the osteotomy angle (p = 0.937) and the incidence of unfavorable/bad splits. Split modifications had no influence on the incidence of unfavorable/bad splits, but the buccal ending of the lateral bone cut did have an influence. More lingual fractures with mandibular foramen contact are expected with the ODP modification. The osteotomy angle did not differ between favorable and bad splits. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. A three-dimensional code for muon propagation through the rock: MUSIC

    NASA Astrophysics Data System (ADS)

    Antonioli, P.; Ghetti, C.; Korolkova, E. V.; Kudryavtsev, V. A.; Sartorelli, G.

    1997-10-01

    We present a new three-dimensional Monte-Carlo code MUSIC (MUon SImulation Code) for muon propagation through the rock. All processes of muon interaction with matter with high energy loss (including the knock-on electron production) are treated as stochastic processes. The angular deviation and lateral displacement of muons due to multiple scattering, as well as bremsstrahlung, pair production and inelastic scattering are taken into account. The code has been applied to obtain the energy distribution and angular and lateral deviations of single muons at different depths underground. The muon multiplicity distributions obtained with MUSIC and CORSIKA (Extensive Air Shower simulation code) are also presented. We discuss the systematic uncertainties of the results due to different muon bremsstrahlung cross-sections.

  9. Mandibular deviations in TMD and non-TMD groups related to eye dominance and head posture.

    PubMed

    Pradham, N S; White, G E; Mehta, N; Forgione, A

    2001-01-01

    This study was designed to determine whether eye-dominance affects head posture (rotation) and in turn, whether head posture is associated with mandibular frenum midline deviation, in both TMJ and control subjects. Eye dominance was determined using three tests: Porta, Hole, Point tests. Natural head posture was evaluated using the Arthrodial protractor. Mandibular frenum deviation was recorded as left, right or no deviation. Fifty female subjects were included in the study, 25 TMJ patients attending the Gelb Craniomandibular Pain Center and 25 non-TMJ control subjects. The findings indicate that eye dominance and direction of head rotation are strongly associated in both TMJ and control subjects. Further, in TMJ subjects mandibular deviation occurred in greater frequency than in controls and tends to occur in the contra lateral direction of head rotation.

  10. Maintenance of lateral stability during standing and walking in the cat.

    PubMed

    Karayannidou, A; Zelenin, P V; Orlovsky, G N; Sirota, M G; Beloozerova, I N; Deliagina, T G

    2009-01-01

    During free behaviors animals often experience lateral forces, such as collisions with obstacles or interactions with other animals. We studied postural reactions to lateral pulses of force (pushes) in the cat during standing and walking. During standing, a push applied to the hip region caused a lateral deviation of the caudal trunk, followed by a return to the initial position. The corrective hindlimb electromyographic (EMG) pattern included an initial wave of excitation in most extensors of the hindlimb contralateral to push and inhibition of those in the ipsilateral limb. In cats walking on a treadmill with only hindlimbs, application of force also caused lateral deviation of the caudal trunk, with subsequent return to the initial position. The type of corrective movement depended on the pulse timing relative to the step cycle. If the force was applied at the end of the stance phase of one of the limbs or during its swing phase, a lateral component appeared in the swing trajectory of this limb. The corrective step was directed either inward (when the corrective limb was ipsilateral to force application) or outward (when it was contralateral). The EMG pattern in the corrective limb was characterized by considerable modification of the hip abductor and adductor activity in the perturbed step. Thus the basic mechanisms for balance control in these two forms of behavior are different. They perform a redistribution of muscle activity between symmetrical limbs (in standing) and a reconfiguration of the base of support during a corrective lateral step (in walking).

  11. Influence of mandibular morphology on the hyoid bone in atypical deglutition: a correlational study.

    PubMed

    Machado, Almiro J; Crespo, Agrício N

    2011-11-01

    evaluate the possible correlation with the radiographic position of the hyoid bone and mandibular angle in lateral radiographs of children with atypical deglutition. This was an observational study using cephalometric analysis of lateral teleradiographs for the distances of H-MP (hyoid to mandibular plane). Spearman's correlation analysis was performed with MA (mandibular angle) in two groups: the experimental group with atypical deglutition and the control group normal deglutition. Both groups included subjects in mixed dentition stage. there was a significant moderate negative correlation between MA (mandibular angle) and hyoid bone (H-MP) in the normal group (R = -0.406, p = 0.021). However, there was no significant correlation between the MA and H-MP (R = 0.029, p = 0.83) in the group with atypical deglutition. there is a moderate negative correlation between the position of the hyoid bone and mandibular angle in the group of normal swallowing and there is no correlation between variables H-MP and MA in the group of atypical swallowing.

  12. Augmentation of maneuver performance by spanwise blowing

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Campbell, J. F.

    1977-01-01

    A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.

  13. Aerodynamic characteristics at Mach 6 of a hypersonic research airplane concept having a 70 deg swept delta wing

    NASA Technical Reports Server (NTRS)

    Clark, L. E.; Richie, C. B.

    1977-01-01

    The hypersonic aerodynamic characteristics of an air-launched, delta-wing research aircraft concept were investigated at Mach 6. The effect of various components such as nose shape, wing camber, wing location, center vertical tail, wing tip fins, forward delta wing, engine nacelle, and speed brakes was also studied. Tests were conducted with a 0.021 scale model at a Reynolds number, based on model length, of 10.5 million and over an angel of attack range from -4 deg to 20 deg. Results show that most configurations with a center vertical tail have static longitudinal stability at trim, static directional stability at angles of attack up to 12 deg, and static lateral stability throughout the angle of attack range. Configurations with wing tip fins generally have static longitudinal stability at trim, have lateral stability at angles of attack above 8 deg, and are directionally unstable over the angle of attack range.

  14. High angle-of-attack aerodynamics of a strake-canard-wing V/STOL fighter configuration

    NASA Technical Reports Server (NTRS)

    Durston, D. A.; Schreiner, J. A.

    1983-01-01

    High angle-of-attack aerodynamic data are analyzed for a strake-canard-wing V/STOL fighter configuration. The configuration represents a twin-engine supersonic V/STOL fighter aircraft which uses four longitudinal thrust-augmenting ejectors to provide vertical lift. The data were obtained in tests of a 9.39 percent scale model of the configuration in the NASA Ames 12-Foot Pressure Wind Tunnel, at a Mach number of 0.2. Trimmed aerodynamic characteristics, longitudinal control power, longitudinal and lateral/directional stability, and effects of alternate strake and canard configurations are analyzed. The configuration could not be trimmed (power-off) above 12 deg angle of attack because of the limited pitch control power and the high degree of longitudinal instability (28 percent) at this Mach number. Aerodynamic center location was found to be controllable by varying strake size and canard location without significantly affecting lift and drag. These configuration variations had relatively little effect on the lateral/directional stability up to 10 deg angle of attack.

  15. Sharing control with haptics: seamless driver support from manual to automatic control.

    PubMed

    Mulder, Mark; Abbink, David A; Boer, Erwin R

    2012-10-01

    Haptic shared control was investigated as a human-machine interface that can intuitively share control between drivers and an automatic controller for curve negotiation. As long as automation systems are not fully reliable, a role remains for the driver to be vigilant to the system and the environment to catch any automation errors. The conventional binary switches between supervisory and manual control has many known issues, and haptic shared control is a promising alternative. A total of 42 respondents of varying age and driving experience participated in a driving experiment in a fixed-base simulator, in which curve negotiation behavior during shared control was compared to during manual control, as well as to three haptic tunings of an automatic controller without driver intervention. Under the experimental conditions studied, the main beneficial effect of haptic shared control compared to manual control was that less control activity (16% in steering wheel reversal rate, 15% in standard deviation of steering wheel angle) was needed for realizing an improved safety performance (e.g., 11% in peak lateral error). Full automation removed the need for any human control activity and improved safety performance (e.g., 35% in peak lateral error) but put the human in a supervisory position. Haptic shared control kept the driver in the loop, with enhanced performance at reduced control activity, mitigating the known issues that plague full automation. Haptic support for vehicular control ultimately seeks to intuitively combine human intelligence and creativity with the benefits of automation systems.

  16. A cephalometric method to diagnosis the craniovertebral junction abnormalities in osteogenesis imperfecta patients.

    PubMed

    Ríos-Rodenas, Mercedes; de Nova, Joaquín; Gutiérrez-Díez, María-Pilar; Feijóo, Gonzalo; Mourelle, Maria-Rosa; Garcilazo, Mario; Ortega-Aranegui, Ricardo

    2015-02-01

    Osteogenesis imperfecta (OI) is a hereditary bone fragility disorder that in most patients is caused by mutations affecting collagen type I. Their typical oral and craneofacial characteristics (Dentinogenesis imperfecta type I and class III malocclusion), involve the dentist in the multidisciplinary team that treat these patients. It is usual to perform lateral skull radiographs for the orthodontic diagnosis. In addition, this radiograph is useful to analyse the junctional area between skull base and spine, that could be damaged in OI. Pathology in the craneovertebral junction (CVJ) is a serious complication of OI with a prevalence ranging from rare to 37%. To diagnosis early skull base anomalies in these patients, previously the neurological symptoms have been appear, we make a simple cephalometric analysis of the CVJ. This method has four measurements and one angle. Once we calculate the values of the OI patient, we compare the result with the mean and the standard deviations of an age-appropriate average in healthy controls. If the patient has a result more than 2,5 SDs above the age-appropriate average in healthy controls, we should to refer the patient to his/her pediatrician or neurologist. These doctors have to consider acquiring another diagnostic images to be used to determine cranial base measurements with more reliability. Thereby, dentists who treat these patients, must be aware of the normal radiological anatomy of the cervical spine on the lateral cephalogram. Key words:Osteogenesis imperfecta, craniovertebral junction, cephalometric.

  17. A cephalometric method to diagnosis the craniovertebral junction abnormalities in osteogenesis imperfecta patients

    PubMed Central

    Ríos-Rodenas, Mercedes; Gutiérrez-Díez, María-Pilar; Feijóo, Gonzalo; Mourelle, Maria-Rosa; Garcilazo, Mario; Ortega-Aranegui, Ricardo

    2015-01-01

    Osteogenesis imperfecta (OI) is a hereditary bone fragility disorder that in most patients is caused by mutations affecting collagen type I. Their typical oral and craneofacial characteristics (Dentinogenesis imperfecta type I and class III malocclusion), involve the dentist in the multidisciplinary team that treat these patients. It is usual to perform lateral skull radiographs for the orthodontic diagnosis. In addition, this radiograph is useful to analyse the junctional area between skull base and spine, that could be damaged in OI. Pathology in the craneovertebral junction (CVJ) is a serious complication of OI with a prevalence ranging from rare to 37%. To diagnosis early skull base anomalies in these patients, previously the neurological symptoms have been appear, we make a simple cephalometric analysis of the CVJ. This method has four measurements and one angle. Once we calculate the values of the OI patient, we compare the result with the mean and the standard deviations of an age-appropriate average in healthy controls. If the patient has a result more than 2,5 SDs above the age-appropriate average in healthy controls, we should to refer the patient to his/her pediatrician or neurologist. These doctors have to consider acquiring another diagnostic images to be used to determine cranial base measurements with more reliability. Thereby, dentists who treat these patients, must be aware of the normal radiological anatomy of the cervical spine on the lateral cephalogram. Key words:Osteogenesis imperfecta, craniovertebral junction, cephalometric. PMID:25810828

  18. Investigations of interpolation errors of angle encoders for high precision angle metrology

    NASA Astrophysics Data System (ADS)

    Yandayan, Tanfer; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Asli Akgoz, S.; Aksulu, Murat; Grubert, Bernd; Watanabe, Tsukasa

    2018-06-01

    Interpolation errors at small angular scales are caused by the subdivision of the angular interval between adjacent grating lines into smaller intervals when radial gratings are used in angle encoders. They are often a major error source in precision angle metrology and better approaches for determining them at low levels of uncertainty are needed. Extensive investigations of interpolation errors of different angle encoders with various interpolators and interpolation schemes were carried out by adapting the shearing method to the calibration of autocollimators with angle encoders. The results of the laboratories with advanced angle metrology capabilities are presented which were acquired by the use of four different high precision angle encoders/interpolators/rotary tables. State of the art uncertainties down to 1 milliarcsec (5 nrad) were achieved for the determination of the interpolation errors using the shearing method which provides simultaneous access to the angle deviations of the autocollimator and of the angle encoder. Compared to the calibration and measurement capabilities (CMC) of the participants for autocollimators, the use of the shearing technique represents a substantial improvement in the uncertainty by a factor of up to 5 in addition to the precise determination of interpolation errors or their residuals (when compensated). A discussion of the results is carried out in conjunction with the equipment used.

  19. 21 CFR 886.1870 - Stereoscope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-dimensional appearance of solidity and relief. It is intended to measure the angle of strabismus (eye muscle deviation), evaluate binocular vision (usage of both eyes to see), and guide a patient's corrective exercises of eye muscles. (b) Classification. Class I (general controls). The AC-powered device and the...

  20. 21 CFR 886.1870 - Stereoscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-dimensional appearance of solidity and relief. It is intended to measure the angle of strabismus (eye muscle deviation), evaluate binocular vision (usage of both eyes to see), and guide a patient's corrective exercises of eye muscles. (b) Classification. Class I (general controls). The AC-powered device and the...

  1. Is there an optimal upper instrumented vertebra (UIV) tilt angle to prevent post-operative shoulder imbalance and neck tilt in Lenke 1 and 2 adolescent idiopathic scoliosis (AIS) patients?

    PubMed

    Kwan, M K; Chan, C Y W

    2016-10-01

    To investigate whether an optimal upper instrumented vertebra (UIV) tilt angle would prevent 'lateral' shoulder imbalance or neck tilt (with 'medial' shoulder imbalance) post-operatively. The mean follow-up for 60 AIS (Lenke 1 and Lenke 2) patients was 49.3 ± 8.4 months. Optimal UIV tilt angle was calculated from the cervical supine side bending radiographs. Lateral shoulder imbalance was graded using the clinical shoulder grading. The clinical neck tilt grading was as follows: Grade 0: no neck tilt, Grade 1: actively correctable neck tilt, Grade 2: neck tilt that cannot be corrected by active contraction and Grade 3: severe neck tilt with trapezial asymmetry >1 cm. T1 tilt, clavicle angle and cervical axis were measured. UIVDiff (difference between post-operative UIV tilt and pre-operative Optimal UIV tilt) and the reserve motion of the UIV were correlated with the outcome measures. Patients were assessed at 6 weeks and at final follow-up with a minimum follow-up duration of 24 months. Among patients with grade 0 neck tilt, 88.2 % of patients had the UIV tilt angle within the reserve motion range. This percentage dropped to 75.0 % in patients with grade 1 neck tilt whereas in patients with grade 2 and grade 3 neck tilt, the percentage dropped further to 22.2 and 20.0 % (p = 0.000). The occurrence of grade 2 and 3 neck tilt when UIVDiff was <5°, 5-10° and >10° was 9.5, 50.0 and 100.0 %, respectively (p = 0.005). UIVDiff and T1 tilt had a positive and strong correlation (r 2  = 0.618). However, UIVDiff had poor correlation with clavicle angle and the lateral shoulder imbalance. An optimal UIV tilt might prevent neck tilt with 'medial' shoulder imbalance due to trapezial prominence and but not 'lateral' shoulder imbalance.

  2. [Study on the characteristics of radiance calibration using nonuniformity extended source].

    PubMed

    Wang, Jian-Wei; Huang, Min; Xiangli, Bin; Tu, Xiao-Long

    2013-07-01

    Integrating sphere and diffuser are always used as extended source, and they have different effects on radiance calibration of imaging spectrometer with parameter difference. In the present paper, a mathematical model based on the theory of radiative transfer and calibration principle is founded to calculate the irradiance and calibration coefficients on CCD, taking relatively poor uniformity lights-board calibration system for example. The effects of the nonuniformity on the calibration was analyzed, which makes up the correlation of calibration coefficient matrix under ideal and unideal situation. The results show that the nonuniformity makes the viewing angle and the position of the point of intersection of the optical axis and the diffuse reflection plate have relatively large effects on calibration, while the observing distance's effect is small; under different viewing angles, a deviation value can be found that makes the calibration results closest to the desired results. So, the calibration error can be reduced by choosing appropriate deviation value.

  3. High precision dual-axis tracking solar wireless charging system based on the four quadrant photoelectric sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhilong; Wang, Biao; Tong, Weichao

    2015-08-01

    This paper designs a solar automatic tracking wireless charging system based on the four quadrant photoelectric sensor. The system track the sun's rays automatically in real time to received the maximum energy and wireless charging to the load through electromagnetic coupling. Four quadrant photoelectric sensor responsive to the solar spectrum, the system could get the current azimuth and elevation angle of the light by calculating the solar energy incident on the sensor profile. System driver the solar panels by the biaxial movement mechanism to rotate and tilt movement until the battery plate and light perpendicular to each other. Maximize the use of solar energy, and does not require external power supply to achieve energy self-sufficiency. Solar energy can be collected for portable devices and load wireless charging by close electromagnetic field coupling. Experimental data show that: Four quadrant photoelectric sensor more sensitive to light angle measurement. when track positioning solar light, Azimuth deviation is less than 0.8°, Elevation angle deviation is less than 0.6°. Use efficiency of a conventional solar cell is only 10% -20%.The system uses a Four quadrant dual-axis tracking to raise the utilization rate of 25% -35%.Wireless charging electromagnetic coupling efficiency reached 60%.

  4. Differences between opening versus closing high tibial osteotomy on clinical outcomes and gait analysis.

    PubMed

    Deie, Masataka; Hoso, Takayuki; Shimada, Noboru; Iwaki, Daisuke; Nakamae, Atsuo; Adachi, Nobuo; Ochi, Mitsuo

    2014-12-01

    High tibial osteotomy (HTO) for medial knee osteoarthritis (OA) is mainly performed via two procedures: closing wedge HTO (CW) and opening wedge HTO (OW). In this study, differences between these procedures were assessed by serial clinical evaluation and gait analysis before and after surgery. Twenty-one patients underwent HTO for medial knee OA in 2011 and 2012, with 12 patients undergoing CW and nine undergoing OW. The severity of OA was classified according to the Kellgren-Lawrence classification. The Japanese Orthopedic Association score for assessment of knee OA (JOA score), the Numeric Rating Scale (NRS), and the femoral tibial angle (FTA) on X-ray were evaluated. For gait analysis, gait speed, varus moment, varus angle and lateral thrust were calculated. The JOA score and NRS were improved significantly one year postoperatively in both groups. The FTA was maintained in both groups at one year. Varus angle and varus moment were significantly improved in both groups at each postoperative follow-up, when compared preoperatively. Lateral thrust was significantly improved at three months postoperatively in both groups. However, the significant improvement in lateral thrust had disappeared in the CW group six months postoperatively, whereas it was maintained for at least one year in the OW group. This study found that clinical outcomes were well maintained after HTO. OW reduced knee varus moment and lateral thrust, whereas CW had little effect on reducing lateral thrust. Level IV. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A novel Sagnac imaging polarization spectrometer

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Ai, Jingjing; Wang, Xia; Zhang, Chunmin

    2017-06-01

    A novel Sagnac imaging polarization spectrometer based on a modified Sagnac interferometer (MSI) with a moving wedge prism is proposed in this paper, and it is a framing instrument with the advantages of miniaturization, variable optical path difference (OPD) and large field of view. The construction and split-beam principle of the system are described detailedly, and the exact expressions of the OPD and lateral displacement changing with different parameters are obtained. The variations of the OPD and lateral displacement as a function of the wedge angle and moving displacement are simulated, and the influences of the wedge angle on the OPD and lateral displacement are very small, while most effects come from the moving displacement. In order to obtain a larger OPD and lateral displacement, the wedge angle is controlled in a range of [ 45 ° , 50 ° ] . In addition, the influences of the dispersion effect of the glass plate on the OPD and lateral displacement are analyzed and discussed, and the suitable material choice for the MSI can reduce the influence of the dispersion effect on the OPD, which also allows the system construction spanning the spectral range of [480 nm, 960 nm]. In comparison with the conventional Sagnac interferometer with a large optical path difference (LOPDSI), the spectral resolution of the MSI can be made much higher if choosing suitable parameters. This study provides a theoretical and practical guidance for the design and engineering of the Sagnac imaging polarization spectrometer.

  6. Differences between Non-arteritic Anterior Ischemic Optic Neuropathy and Open Angle Glaucoma with Altitudinal Visual Field Defect.

    PubMed

    Han, Sangyoun; Jung, Jong Jin; Kim, Ungsoo Samuel

    2015-12-01

    To investigate the differences in retinal nerve fiber layer (RNFL) change and optic nerve head parameters between non-arteritic anterior ischemic optic neuropathy (NAION) and open angle glaucoma (OAG) with altitudinal visual field defect. Seventeen NAION patients and 26 OAG patients were enrolled prospectively. The standard visual field indices (mean deviation, pattern standard deviation) were obtained from the Humphrey visual field test and differences between the two groups were analyzed. Cirrus HD-OCT parameters were used, including optic disc head analysis, average RNFL thickness, and RNFL thickness of each quadrant. The mean deviation and pattern standard deviation were not significantly different between the groups. In the affected eye, although the disc area was similar between the two groups (2.00 ± 0.32 and 1.99 ± 0.33 mm(2), p = 0.586), the rim area of the OAG group was smaller than that of the NAION group (1.26 ± 0.56 and 0.61 ± 0.15 mm(2), respectively, p < 0.001). RNFL asymmetry was not different between the two groups (p = 0.265), but the inferior RNFL thickness of both the affected and unaffected eyes were less in the OAG group than in the NAION group. In the analysis of optic disc morphology, both affected and unaffected eyes showed significant differences between two groups. To differentiate NAION from OAG in eyes with altitudinal visual field defects, optic disc head analysis of not only the affected eye, but also the unaffected eye, by using spectral domain optical coherence tomography may be helpful.

  7. New Integrated Testing System for the Validation of Vehicle-Snow Interaction Models

    DTIC Science & Technology

    2010-08-06

    are individual wheel speeds, accelerator pedal position, vehicle speed, yaw rate, lateral acceleration, steering wheel angle and brake ...forces and moments at each wheel center, vehicle body slip angle , speed, acceleration, yaw rate, roll, and pitch. The profilometer has a 3-D scanning...Stability Program. The test vehicle provides measurements that include three forces and moments at each wheel center, vehicle body slip angle , speed

  8. Comparison of Lumbosacral Alignment in Geriatric and Non-Geriatric patients suffering low back pain.

    PubMed

    Kocyigit, Burhan Fatih; Berk, Ejder

    2018-01-01

    Lumbosacral alignment is a crucial factor for an appropriate spinal function. Changes in spinal alignment lead to diminished body biomechanics. Additionally, lumbosacral alignment may affect quality of life, sagittal balance and fall risk in elderly. In this study, we aimed to compare lumbosacral alignment in geriatric and non-geriatric patients suffering from low back pain. A total of 202 (120 male and 82 female) patients who visited to physical medicine and rehabilitation clinic with low back pain between January 2017 and August 2017 were enrolled in this study. Standing lateral lumbar radiographs were obtained from the electronic hospital database. Lumbar lordosis angle, sacral tilt, lumbosacral angle and lumbosacral disc angle were calculated on lateral standing lumbar radiographs. The mean age of the non-geriatric group was 43.02 ± 13.20 years, the geriatric group was 71.61 ± 6.42 years. In geriatric patients, lumbar lordosis angle, sacral tilt and lumbosacral disc angle were significantly smaller (p = 0.042, p = 0.017 and p = 0.017). No significant differences were observed in lumbosacral angle between the groups (p = 0.508). Our study indicates the specific changes in lumbosacral alignment with aging. Identifying these changes in lumbosacral alignment in the geriatric population will enable to create proper rehabilitation strategies.

  9. Standard operation procedures for conducting the on-the-road driving test, and measurement of the standard deviation of lateral position (SDLP)

    PubMed Central

    Verster, Joris C; Roth, Thomas

    2011-01-01

    This review discusses the methodology of the standardized on-the-road driving test and standard operation procedures to conduct the test and analyze the data. The on-the-road driving test has proven to be a sensitive and reliable method to examine driving ability after administration of central nervous system (CNS) drugs. The test is performed on a public highway in normal traffic. Subjects are instructed to drive with a steady lateral position and constant speed. Its primary parameter, the standard deviation of lateral position (SDLP), ie, an index of ‘weaving’, is a stable measure of driving performance with high test–retest reliability. SDLP differences from placebo are dose-dependent, and do not depend on the subject’s baseline driving skills (placebo SDLP). It is important that standard operation procedures are applied to conduct the test and analyze the data in order to allow comparisons between studies from different sites. PMID:21625472

  10. Standard operation procedures for conducting the on-the-road driving test, and measurement of the standard deviation of lateral position (SDLP).

    PubMed

    Verster, Joris C; Roth, Thomas

    2011-01-01

    This review discusses the methodology of the standardized on-the-road driving test and standard operation procedures to conduct the test and analyze the data. The on-the-road driving test has proven to be a sensitive and reliable method to examine driving ability after administration of central nervous system (CNS) drugs. The test is performed on a public highway in normal traffic. Subjects are instructed to drive with a steady lateral position and constant speed. Its primary parameter, the standard deviation of lateral position (SDLP), ie, an index of 'weaving', is a stable measure of driving performance with high test-retest reliability. SDLP differences from placebo are dose-dependent, and do not depend on the subject's baseline driving skills (placebo SDLP). It is important that standard operation procedures are applied to conduct the test and analyze the data in order to allow comparisons between studies from different sites.

  11. Distal chevron osteotomy with lateral soft tissue release for moderate to severe hallux valgus decided using intraoperative varus stress radiographs.

    PubMed

    Kim, Hyong-Nyun; Park, Yoo-Jung; Kim, Gab-Lae; Park, Yong-Wook

    2013-01-01

    The purpose of the present study was to investigate the outcomes of distal chevron osteotomy with lateral soft tissue release for moderate to severe hallux valgus. The patients were selected using criteria that included the degree of lateral soft tissue contracture and metatarsocuneiform joint flexibility. The contracture and flexibility were determined from intraoperative varus stress radiographs. From April 2007 to May 2009, 56 feet in 51 consecutive patients with moderate to severe hallux valgus had undergone distal chevron osteotomy with lateral soft tissue release. This was done when the lateral soft tissue contracture was not so severe that passive correction of the hallux valgus deformity was not possible and when the metatarsocuneiform joint was flexible enough to permit additional correction of the first intermetatarsal angle after lateral soft tissue release. The mean patient age was 45.2 (range 23 to 54) years, and the duration of follow-up was 27.5 (range 24 to 46) months. The mean hallux abductus angle decreased from 33.5° ± 3.1° to 11.6° ± 3.3°, and the first intermetatarsal angle decreased from 16.4° ± 2.7° to 9.7° ± 2.1°. The mean American Orthopaedic Foot and Ankle Society hallux-interphalangeal scores increased from 66.6° ± 10.7° to 92.6° ± 9.4° points, and 46 of the 51 patients (90%) were either very satisfied or satisfied with the outcome. No recurrence of deformity or osteonecrosis of the metatarsal head occurred. When lateral soft tissue contracture is not severe and when the metatarsocuneiform joint is flexible enough, distal chevron osteotomy with lateral soft tissue release can be a useful and effective choice for moderate to severe hallux valgus deformity. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Considerations on the mechanisms of alternating skew deviation in patients with cerebellar lesions.

    PubMed

    Zee, D S

    1996-01-01

    Alternating skew deviation, in which the side of the higher eye changes depending upon whether gaze is directed to the left or the right, is a frequent sign in patients with posterior fossa lesions, including those restricted to the cerebellum. Here we propose a mechanism for alternating skews related to the otolith-ocular responses to fore and aft pitch of the head in lateral-eyed animals. In lateral-eyed animals the expected response to a static head pitch is cyclorotation of the eyes. But if the eyes are rotated horizontally in the orbit, away from the primary position, a compensatory skew deviation should also appear. The direction of the skew would depend upon whether the eyes were directed to the right (left eye forward, right eye backward) or to the left (left eye backward, right eye forward). In contrast, for frontal-eyed animals, skew deviations are counterproductive because they create diplopia and interfere with binocular vision. We attribute the emergence of skew deviations in frontal-eyed animals in pathological conditions to 1) an imbalance in otolithocular pathways and 2) a loss of the component of ocular motor innervation that normally corrects for the differences in pulling directions and strengths of the various ocular muscles as the eyes change position in the orbit. Such a compensatory mechanism is necessary to ensure optimal binocular visual function during and after head motion. This compensatory mechanism may depend upon the cerebellum.

  13. Correlations between cephalometric and photographic measurements of facial attractiveness in Chinese and US patients after orthodontic treatment.

    PubMed

    Oh, Hee Soo; Korn, Edward L; Zhang, Xiaoyun; Liu, Yan; Xu, Tianmin; Boyd, Robert; Baumrind, Sheldon

    2009-12-01

    Orthodontists rely on esthetic judgments from facial photographs. Concordance between estimates of facial attractiveness made from lateral cephalograms and those made from clinical photographs has not been determined. We conducted a preliminary examination to correlate clinicians' rankings of facial attractiveness from standardized end-of-treatment facial photographs (Photo Attractiveness Rank) with cephalometric measurements of facial attractiveness made for the same subjects at the same time. Forty-five Chinese and US orthodontic clinicians ranked end-of-treatment photographs of separate samples of 45 US and 48 Chinese adolescent patients for facial attractiveness. Separately for each sample, the photographic rankings were correlated with the values of 21 conventional hard- and soft-tissue measures from lateral cephalograms taken at the same visits as the photographs. Among US patients, higher rank for facial attractiveness on the photographs was strongly associated with higher values for profile angle, chin prominence, lower lip prominence, and Z-angle, and also with lower values for angle of convexity, H-angle, and ANB. Among Chinese patients, higher rank for facial attractiveness on the photographs was strongly associated with higher values for Z-angle and chin prominence, and also with lower values for angle of convexity, H-angle, B-line to upper lip, and mandibular plane angle. Chinese patients whose %lower face height values approximated the ethnic "ideal" (54%) tended to rank higher for facial attractiveness than patients with either higher or lower values for %lower face height. The absolute values of the correlations for the 7 US measures noted above ranged from 0.41 to 0.59; those of the 7 Chinese measures ranged from 0.39 to 0.49.The P value of the least statistically significant of these 14 correlations was 0.006, unadjusted for multiple comparisons. On the other hand, many cephalometric measures believed by clinicians to be indicators of facial attractiveness failed to correlate with facial attractiveness rank for either ethnicity at even the P <0.05 level, including SN-pogonion angle, lower incisor to mandibular plane angle, and Wits appraisal. In general, there was less association than expected or desired between objective measurements on the lateral cephalograms and clinicians' rankings of facial attractiveness on sets of clinical photographs.

  14. Resonance energy shifts during nuclear Bragg diffraction of x rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, J.; Brown, G.S.; Brown, D.E.

    1989-10-09

    We have observed dramatic changes in the time distribution of synchrotron x rays resonantly scattered from {sup 57}Fe nuclei in a crystal of yttrium iron garnet, which depend on the deviation angle of the incident radiation from the Bragg angle. These changes are caused by small shifts in the effective energies of the hyperfine-split nuclear resonances, an effect of dynamical diffraction for the coherently excited nuclei in the crystal. The very high brightness of the synchro- tron x-ray source allows this effect to be observed in a 15-min measurement.

  15. Preliminary Design Code for an Axial Stage Compressor

    DTIC Science & Technology

    2001-09-01

    8217 incidence angle correction factor for thickness Public dkt (3, 3) As Double ’ deviation angle correction factor for thickness Public i0ref(3, 3) As...202775.302703857 dkit(4) = 25013.8597869873 dkit(3) = -1269.01561832427 dkit(2) = 41.3428950682282 dkit(1) = 7.56794627627824 dkt (i, j) = CurveFit2...ikit(1), ikit(2), ikit(3), ikit(4), ikit(5), ikit(6), tc(i, j)) d0ref(i, j) = ksh * dkt (i, j) * d010(i, j) dref(i, j) = d0ref(i, j) + dm(i, j

  16. Quasi-cylindrical theory of wing-body interference at supersonic speeds and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N

    1955-01-01

    A theoretical method is presented for calculating the flow field about wing-body combinations employing bodies deviating only slightly in shape from a circular cylinder. The method is applied to the calculation of the pressure field acting between a circular cylindrical body and a rectangular wing. The case of zero body angle of attack and variable wing incidence is considered as well as the case of zero wing incidence and variable body angle of attack. An experiment was performed especially for the purpose of checking the calculative examples.

  17. Teleseismic P-wave polarization analysis at the Gräfenberg array

    NASA Astrophysics Data System (ADS)

    Cristiano, L.; Meier, T.; Krüger, F.; Keers, H.; Weidle, C.

    2016-12-01

    P-wave polarization at the Gräfenberg array (GRF) in southern Germany is analysed in terms of azimuthal deviations and deviations in the vertical polarization using 20 yr of broad-band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth-dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyse their periodicity as a function of backazimuth. The dominant periods are 180° and 360°. At low frequencies, between 0.03 and 0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180° periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20°E with an uncertainty of about 8° and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low-frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high-frequency band between 0.1 and 0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360° periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric anisotropy in the area of the GRF array. Seismic anisotropy is more variable in the brittle upper crust compared to lower crustal and subcrustal depths.

  18. An improved lateral control wheel steering law for the Transport Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Ragsdale, W. A.

    1992-01-01

    A lateral control wheel steering law with improved performance was developed for the Transport Systems Research Vehicle (TSRV) simulation and used in the Microwave Landing System research project. The control law converted rotational hand controller inputs into roll rate commands, manipulated ailerons, spoilers, and the rudder to achieve the desired roll rates. The system included automatic turn coordination, track angle hold, and autopilot/autoland modes. The resulting control law produced faster roll rates (15 degrees/sec), quicker response to command reversals, and safer bank angle limits, while using a more concise program code.

  19. Setup deviations for whole-breast radiotherapy with TomoDirect: A comparison of weekly and biweekly image-guided protocols

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hong; Jung, Joo-Young; Bae, Sun Hyun; Moon, Seong Kwon; Cho, Kwang Hwan

    2016-10-01

    The purpose of this study was to compare patient setup deviations for different image-guided protocols (weekly vs. biweekly) that are used in TomoDirect three-dimensional conformal radiotherapy (TD-3DCRT) for whole-breast radiation therapy (WBRT). A total of 138 defined megavoltage computed tomography (MVCT) image sets from 46 breast cancer cases were divided into two groups based on the imaging acquisition times: weekly or biweekly. The mean error, three-dimensional setup displacement error (3D-error), systematic error (Σ), and random error (σ) were calculated for each group. The 3D-errors were 4.29 ± 1.11 mm and 5.02 ± 1.85 mm for the weekly and biweekly groups, respectively; the biweekly error was 14.6% higher than the weekly error. The systematic errors in the roll angle and the x, y, and z directions were 0.48°, 1.72 mm, 2.18 mm, and 1.85 mm for the weekly protocol and 0.21°, 1.24 mm, 1.39 mm, and 1.85 mm for the biweekly protocol. Random errors in the roll angle and the x, y, and z directions were 25.7%, 40.6%, 40.0%, and 40.8% higher in the biweekly group than in the weekly group. For the x, y, and z directions, the distributions of the treatment frequency at less than 5 mm were 98.6%, 91.3%, and 94.2% in the weekly group and 94.2%, 89.9%, and 82.6% in the biweekly group. Moreover, the roll angles with 0 - 1° were 79.7% and 89.9% in the weekly and the biweekly groups, respectively. Overall, the evaluation of setup deviations for the two protocols revealed no significant differences (p > 0.05). Reducing the frequency of MVCT imaging could have promising effects on imaging doses and machine times during treatment. However, the biweekly protocol was associated with increased random setup deviations in the treatment. We have demonstrated a biweekly protocol of TD-3DCRT for WBRT, and we anticipate that our method may provide an alternative approach for considering the uncertainties in the patient setup.

  20. Preliminary design study of a lateral-directional control system using thrust vectoring

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1985-01-01

    A preliminary design of a lateral-directional control system for a fighter airplane capable of controlled operation at extreme angles of attack is developed. The subject airplane is representative of a modern twin-engine high-performance jet fighter, is equipped with ailerons, rudder, and independent horizontal-tail surfaces. Idealized bidirectional thrust-vectoring engine nozzles are appended to the mathematic model of the airplane to provide additional control moments. Optimal schedules for lateral and directional pseudo control variables are calculated. Use of pseudo controls results in coordinated operation of the aerodynamic and thrust-vectoring controls with minimum coupling between the lateral and directional airplane dynamics. Linear quadratic regulator designs are used to specify a preliminary flight control system to improve the stability and response characteristics of the airplane. Simulated responses to step pilot control inputs are stable and well behaved. For lateral stick deflections, peak stability axis roll rates are between 1.25 and 1.60 rad/sec over an angle-of-attack range of 10 deg to 70 deg. For rudder pedal deflections, the roll rates accompanying the sideslip responses can be arrested by small lateral stick motions.

  1. Mach 6 experimental and theoretical stability and performance of a cruciform missile at angles of attack up to 65 degrees

    NASA Technical Reports Server (NTRS)

    Hartman, Edward R.; Johnston, Patrick J.

    1987-01-01

    An experimental and theoretical investigation of the longitudinal and lateral-directional stability and control of an axisymmetric cruciform-finned missile has been conducted at Mach 6. The angle-of-attack range extended from 20 to 65 deg to encompass maximum lift. Longitudinal stability, performance, and trim could be accurately predicted with the fins at a fin roll angle of 0 deg but not when the fins were at a fin roll angle of 45 deg. At this roll angle, windward fin choking occurred at angles of attack above 50 deg and reduced the effectiveness of the fins and caused pitch-up.

  2. Osteoarthritis of the patella, lateral femoral condyle and posterior medial femoral condyle correlate with range of motion.

    PubMed

    Suzuki, Takashi; Motojima, Sayaka; Saito, Shu; Ishii, Takao; Ryu, Keinosuke; Ryu, Junnosuke; Tokuhashi, Yasuaki

    2013-11-01

    The type of osteoarthritis and the degree of severity which causes restriction of knee range of motion (ROM) is still largely unknown. The objective of this study was to analyse the location and the degree of cartilage degeneration that affect knee range of motion and the connection, if any, between femorotibial angle (FTA) and knee ROM restriction. Four hundreds and fifty-six knees in 230 subjects with knee osteoarthritis undergoing knee arthroplasty were included. Articular surface was divided into eight sections, and cartilage degeneration was evaluated macroscopically during the operation. Cartilage degeneration was classified into four grades based on the degree of exposure of subchondral bone. A Pearson correlation was conducted between FTA and knee flexion angle to determine whether high a degree of FTA caused knee flexion restriction. A logistic regression analysis was also conducted to detect the locations and levels of cartilage degeneration causing knee flexion restriction. No correlation was found between FTA and flexion angle (r = -0.08). Flexion angle was not restricted with increasing FTA. Logistic regression analysis showed significant correlation between restricted knee ROM and levels of knee cartilage degeneration in the patella (odds ratio (OR) = 1.77; P = 0.01), the lateral femoral condyle (OR = 1.62; P = 0.03) and the posterior medial femoral condyle (OR = 1.80; P = 0.03). For clinical relevance, soft tissue release and osteophyte resection around the patella, lateral femoral condyle and posterior medial femoral condyle might be indicated to obtain a higher degree of knee flexion angle.

  3. Control for small-speed lateral flight in a model insect.

    PubMed

    Zhang, Yan Lai; Sun, Mao

    2011-09-01

    Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.

  4. Lateral Compression Properties of Magnesium Alloy Tubes Fabricated via Hydrostatic Extrusion Integrated with Circular ECAP

    NASA Astrophysics Data System (ADS)

    Lv, Jiuming; Hu, Fangyi; Cao, Quoc Dinh; Yuan, Renshu; Wu, Zhilin; Cai, Hongming; Zhao, Lei; Zhang, Xinping

    2017-03-01

    Hydrostatic extrusion integrated with circular equal channel angular pressing has been previously proposed for fabricating AZ80 magnesium alloy tubes as a method to obtain high-strength tubes for industrial applications. In order to axial tensile strength, circumferential mechanical properties are also important for tubular structures. The tensile properties of AZ80 tubes have been previously studied; however, the circumferential properties have not been examined. In this work, circumferential mechanical properties of these tubes were studied using lateral compression tests. An analytical model is proposed to evaluate the circumferential elongation, which is in good agreement with finite element results. The effects of the extrusion ratio and conical mandrel angle on the circumferential elongation and lateral compression strength are discussed. The strain distribution in the sample during lateral compression testing was found to be inhomogeneous, and cracks initially appeared on the inner surface of the sample vertex. The circumferential elongation and lateral compression strength increased with the extrusion ratio and conical mandrel angle. The anisotropy of the tube's mechanical properties was insignificant when geometric effects were ignored.

  5. Testing General Relativity with Accretion-Flow Imaging of Sgr A^{*}.

    PubMed

    Johannsen, Tim; Wang, Carlos; Broderick, Avery E; Doeleman, Sheperd S; Fish, Vincent L; Loeb, Abraham; Psaltis, Dimitrios

    2016-08-26

    The Event Horizon Telescope is a global, very long baseline interferometer capable of probing potential deviations from the Kerr metric, which is believed to provide the unique description of astrophysical black holes. Here, we report an updated constraint on the quadrupolar deviation of Sagittarius A^{*} within the context of a radiatively inefficient accretion flow model in a quasi-Kerr background. We also simulate near-future constraints obtainable by the forthcoming eight-station array and show that in this model already a one-day observation can measure the spin magnitude to within 0.005, the inclination to within 0.09°, the position angle to within 0.04°, and the quadrupolar deviation to within 0.005 at 3σ confidence. Thus, we are entering an era of high-precision strong gravity measurements.

  6. Successful treatment of open jaw and jaw deviation dystonia with botulinum toxin using a simple intraoral approach.

    PubMed

    Moscovich, Mariana; Chen, Zhongxing Peng; Rodriguez, Ramon

    2015-03-01

    Oromandibular dystonia (OMD) is a focal dystonia that involves the mouth, jaw, and/or tongue. It can be classified as idiopathic, tardive dystonia or secondary to other neurological disorders and subdivided into jaw opening, jaw closing, jaw deviation and lip pursing. The muscles involved in jaw opening dystonia are usually the digastrics and lateral pterygoids. It is known that the lateral pterygoids may be approached both internally and externally. The external approach is the most common; however neurologists experienced in treating patients with botulinum toxin can safely and with no extra cost perform the intraoral procedure. We report our experience in the treatment of jaw opening and jaw deviation dystonia using the intraoral injection approach. Eight patients were selected from the University of Florida with a clinical diagnosis of open jaw/jaw deviation dystonia. All of them were injected with onabotulinum toxin A using the internal approach and the clinical global impression scale was applied. The mean age of the patients was 67 (standard deviation [SD] 10.2) years, with a disease duration of 10.2 (SD 7.7) years and the mean distance they traveled to our institution was 448 km (278 miles). After treatment, six patients scored as very much improved in the clinical global impression scale and two patients scored as much improved. Only one patient reported an adverse event of nasal speech following one of the injections that improved after 4 weeks. Botulinum toxin injections for open jaw/jaw deviation dystonia can be safely performed with the intraoral approach without the need of special devices other than electromyography. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Observed Methods for Felling Hardwood Trees with Chain Saws

    Treesearch

    Jerry L. Koger

    1983-01-01

    The angles and lengths of the cutting surfaces made by chain saw operators on hardwood tree stumps are described by means, standard deviations, ranges, and regression equations. Recommended felling guidelines are compared with observed felling methods used by experienced timber cutters in the southern Appalachian Mountains.

  8. Offshell quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin; Horwitz, Lawrence P.

    2013-04-01

    In this paper, we develop the quantum field theory of off-shell electromagnetism, and use it to calculate the Møller scattering cross-section. This calculation leads to qualitative deviations from the usual scattering cross-sections, which are, however, small effects, but may be visible at small angles near the forward direction.

  9. SU-F-T-414: Mathematical Formulation of Gantry Starting Angle for Right Medial Tangential Arc in Left Intact Partial Breast Irradiation Using Volumetric Modulated Arc Therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giri, U; Sarkar, B; Kaur, H

    Purpose: To choose appropriate gantry starting angle for partial left breast irradiation using volumetric modulated arc therapy (VMAT). Methods: A random patient of left breast carcinoma was selected for this study. The slice which was selected for this mathematical formulation was having maximum breast thickness and maximum medial and lateral tangential distance. After this appropriate isocenter was chosen on that CT slice. The distances between various points were measured by the measuring tool in Monaco 5.00.04. Using the various trigonometric equations, a final equation was derived which shows the relationship between Gantry start angle, isocenter Location and tissue thickness. Results:more » The final equation for gantry start for right medial tangential arc is given asStarting angle = 270°+tan^(−1)(sin(θ)/(x-1/x-2 +cosθ))The above equation was tested for 10 cases and it was found to be appropriate for all the cases. Conclusion: Gantry starting angle for partial arc irradiation depends upon Breast thickness, Distance between Medial and lateral tangent and isocenter location.« less

  10. WE-EF-207-06: Dedicated Cone-Beam Breast CT with Laterally-Shifted Detector: Monte Carlo Evaluation of X-Ray Scatter Distribution and Scatter-To-Primary Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L; Vedantham, S; Karellas, A

    2015-06-15

    Purpose: To determine the spatial distribution of x-ray scatter and scatter-to-primary ratio (SPR) in projections during cone-beam breast CT (CBBCT) with laterally-shifted detector that results in coronal (fan-angle) truncation. Methods: We hypothesized that CBBCT with coronal truncation would lower SPR due to reduction in irradiated breast volume, and that the location of maximum x-ray scatter fluence (scatter-peak) in the detector plane can be determined from the ratio of irradiated-to-total breast volume, breast dimensions and system geometry. Monte Carlo simulations (GEANT4) reflecting a prototype CBBCT system were used to record the position-dependent primary and scatter x-ray photon fluence incident on themore » detector without coronal truncation (full fan-angle, 2f=24-degrees) and with coronal truncation (fan-angle, f+ f=12+2.7-degrees). Semi-ellipsoidal breasts (10/14/18-cm diameter, chest-wall to nipple length: 0.75xdiameter, 2%/14%/100% fibroglandular content) aligned with the axis-of-rotation (AOR) were modeled. Mono-energy photons were simulated and weighted for 2 spectra (49kVp, 1.4-mm Al HVL; 60kVp, 3.76-mm Al HVL). In addition to SPR, the scatter maps were analyzed to identify the location of the scatter-peak. Results: For CBBCT without fan-angle truncation, the scatter-peaks were aligned with the projection of the AOR onto the detector for all breasts. With truncated fan-beam, the scatter-peaks were laterally-shifted from the projection of the AOR along the fan-angle direction by 14/38/70-pixels for 10/14/18-cm diameter breasts. The corresponding theoretical shifts were 14.8/39.7/68-pixels (p=0.47, 2-tailed paired-ratio t-test). Along the cone-angle, the shift in scatter-peaks between truncated and full-fan angle CBBCT were 2/2/4 -pixels for 10/14/18-cm diameter breasts. CBBCT with fan-angle truncation reduced SPR by 14/22/28% for 10/14/18-cm diameter breasts. 60kVp reduced SPR by 21–25% compared to 49kVp. Peak SPR for CBBCT with fan-angle truncation (60kVp) were 0.09/0.25/0.73 for 10/14/18-cm diameter breasts. Conclusion: CBBCT with laterally-shifted detector geometry and with appropriate kVp/beam quality reduces SPR. If residual scatter needs correction, the location corresponding to scatter-peak can be analytically computed. This work was supported in part by NIH R01 CA128906. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less

  11. An In-Vitro Evaluation and Comparison of Apical Sealing Ability of Three Different Obturation Technique - Lateral Condensation, Obtura II, and Thermafil.

    PubMed

    Emmanuel, Samson; Shantaram, Kulkarni; Sushil, Kumar C; Manoj, Likhitkar

    2013-04-01

    Success of non-surgical root canal treatment is predicted by meticulous cleaning and shaping of the root canal system, three-dimensional obturation and a well-fitting "leakage-free" coronal restoration. The techniques of obturation that are available have their own relative position in the historical development of filling techniques. Over the years, pitfalls with one technique have often led to the development of newer methods of obturation, along with the recognition that no one method of obturation may satisfy all clinical cases. A total of 120 extracted human permanent anterior maxillary and mandibular single rooted teeth were selected for the present study and divided into 3 groups based on the method of obturation technique. Following the preparation the patency at the apical foramen was confirmed by passing a file #15. After obturation of all three groups, teeth were immersed in 1% of aqueous methylene blue dye for a period of two weeks and then samples were subjected to spectrophotometric analysis. The present study was conducted to evaluate in vitro the spectrophotometric analysis to quantitatively analyze relative amount of dye penetration using lateral condensation (Group I), Obtura II (Group II ), Thermafil obturating technique (Group III) with ZOE sealer used in all groups. Teeth obturated with lateral condensation (Group I) shows mean value of 0.0243 and standard deviation of 0.0056. The Group II thermoplasticized injectable moulded Guttapercha (Obtura II) showed 0.0239 mean and standard deviation value of 0.0045 and Group III Thermafil obturation technique shows 0.0189 as mean value and 0.0035 standard deviation values. Following conclusion was drawn from the present study. Group III i.e., Thermafil obturating technique shows minimum mean apical dye penetration compared to Group II (ObturaII) and Group I (lateral condensation).Lateral condensation shows maximum mean apical dye penetration in all three groups.There is no significant difference between the apical dye penetration of lateral condensation and Obtura II. Obturation, lateral condensation, Obtura II, Thermafil, Spectrophotometer, dye penetration. How to cite this article: Samson E, Kulkarni S, Sushil K C, Likhitkar M. An In-Vitro Evaluation and Comparison of Apical Sealing Ability of Three Different Obturation Technique - Lateral Condensation, Obtura II, and Thermafil. J Int Oral Health 2013; 5(2):35-43.

  12. EARLY REGULATION IN CHILDREN WHO ARE LATER DIAGNOSED WITH AUTISM SPECTRUM DISORDER. A LONGITUDINAL STUDY WITHIN THE DANISH NATIONAL BIRTH COHORT.

    PubMed

    Lemcke, Sanne; Parner, Erik T; Bjerrum, Merete; Thomsen, Per H; Lauritsen, Marlene B

    2018-03-01

    Studies have shown that children later diagnosed with autism spectrum disorders (ASD) in their first years of life might show symptoms in main developmental areas and that these signs might be sensed by the parents. The present study investigated in a large birth cohort if children later diagnosed with ASD had deviations at 6 and 18 months in areas such as the ability to self-regulate emotions, feeding, and sleeping. The study was based on prospective information collected from 76,322 mothers who participated in the Danish National Birth Cohort. When the children reached an average age of 11 years, 973 children with ASD and a control group of 300 children with intellectual disability (IDnoASD) were identified via Danish health registries. Associations were found between short periods of breast-feeding and the children later diagnosed with ASD and IDnoASD as well as associations at 18 months to deviations in regulation of emotions and activity. The similarities in these associations emphasize how difficult it is to distinguish between diagnoses early in life. © 2018 Michigan Association for Infant Mental Health.

  13. Subtalar fusion for pes valgus in cerebral palsy: results of a modified technique in the setting of single event multilevel surgery.

    PubMed

    Shore, Benjamin J; Smith, Katherine R; Riazi, Arash; Symons, Sean B V; Khot, Abhay; Graham, Kerr

    2013-06-01

    We studied the use of cortico-cancellous circular allograft combined with cannulated screw fixation for the correction of dorsolateral peritalar subluxation in a series of children with bilateral spastic cerebral palsy undergoing single event multilevel surgery. Forty-six children who underwent bilateral subtalar fusion between January 1999 and December 2004 were retrospectively reviewed. Gait laboratory records, Gross Motor Function Classification System (GMFCS) levels, Functional Mobility Scale (FMS) scores, and radiographs were reviewed. The surgical technique used an Ollier type incision with a precut cortico-cancellous allograft press-fit into the prepared sinus tarsi. One or two 7.3 mm fully threaded cancellous screws were used to fix the subtalar joint. Radiographic analysis included preoperative and postoperative standing lateral radiographs measuring the lateral talocalcaneal angle, lateral talo-first metatarsal angle, and navicular cuboid overlap. Fusion rate was assessed with radiographs >12 months after surgery. The mean patient age was 12.9 years (range, 7.8 to 18.4 y) with an average follow-up of 55 months. Statistically significant improvement postoperatively was found for all 3 radiographic indices: lateral talocalcaneal angle, mean improvement 20 degrees (95% CI, 17.5-22.1; P<0.001); lateral talo-first metatarsal angle, mean improvement 21 degrees (95% CI, 19.2-23.4; P<0.001); and navicular cuboid overlap, mean improvement 29% (95% CI, 25.7%-32.6%; P<0.001). FMS improved across all patients, with Gross Motor Function Classification System III children experiencing a 70% improvement across all 3 FMS distances (5, 50, and 500 m). All 3 radiographic measures improved significantly (P<0.001). Fusion was achieved in 45 patients and there were no wound complications. With this study, we demonstrate significant improvement in radiographic segmental alignment and overall function outcome with this modified subtalar fusion technique. We conclude that this technique is an effective complement for children with dorsolateral peritalar subluxation undergoing single event multilevel surgery. Level IV.

  14. Loading differences in single-leg landing in the forehand- and backhand-side courts after an overhead stroke in badminton: A novel tri-axial accelerometer research.

    PubMed

    Sasaki, Shogo; Nagano, Yasuharu; Ichikawa, Hiroshi

    2018-05-10

    Anterior cruciate ligament (ACL) injuries in badminton commonly occur during single-leg landing after an overhead stroke in the backhand-side court. This study compared differences in trunk acceleration and kinematic variables during single-leg landing in the forehand- and backhand-side courts after an overhead stroke. Eighteen female junior badminton players performed two singles games while wearing a tri-axial accelerometer. The moment that over 4g of resultant acceleration was generated was determined using synchronised video cameras. Trunk lateral inclination and hip abduction angles at the point of landing with over 4g of resultant acceleration were analysed. Mediolateral acceleration in the backhand-side court was greater than that in the opposite-side court (p < 0.001, ES = 0.840). Both trunk lateral angles were larger than those previously reported in injured participants and the hip abduction angle in the backhand-side court was larger than that in the forehand-side court (p < 0.001, ES = 2.357). The lateral and vertical acceleration in the backhand-side court showed moderate-to-strong correlations with the trunk and hip angles. The mediolateral physical demand and high-risk posture in the backhand-side court may be associated with a higher incidence of knee injuries during badminton games.

  15. Fixator-assisted medial tibial plateau elevation to treat severe Blount's disease: outcomes at maturity.

    PubMed

    Fitoussi, F; Ilharreborde, B; Lefevre, Y; Souchet, P; Presedo, A; Mazda, K; Penneçot, G F

    2011-04-01

    Severe forms of Blount's disease may be associated with medial tibial plateau (MTP) depression. Management should then take account of joint congruence, laxity, limb axis, torsional abnomality, leg length discrepancy (LLD) and eventual recurrence history. Eight knees (six patients) were managed in a single step comprising MTP elevation osteotomy, lateral epiphysiodesis and proximal tibia osteotomy to correct varus and rotational deformity. Fixation was achieved using an Ilizarov external fixator. Mean age was 10.5 years. Mean hip-knee-ankle (HKA) angle was 151°; distal femoral varus, 94°; metaphyseal-diaphyseal angle (MDA), 27°; and angle of depression of the medial tibial plateau (ADMTP), 42°. Predicted residual proximal tibial growth was 2.6 cm. At a mean 48 months' follow-up, results were good in six cases, medium in one and poor (due to incomplete lateral epiphysiodesis) in one. Mean lateral tibial torsion was 9° and final LLD 11 mm. Weight-bearing was resumed at 2 months, and the fixator was removed at 5.5 months postoperatively. At end of follow-up, mean HKA angle was 179.6°, MDA 7.3° and ADMTP 5.4°. This technically demanding procedure gave satisfactory results in terms of axes and congruence; longer term assessment remains needed. Level IV. Retrospective study. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. Anthropometric and Anthroposcopic Analysis of Periorbital Features in Malaysian Population: An Inter-racial Study.

    PubMed

    Packiriswamy, Vasanthakumar; Kumar, Pramod; Bashour, Mounir

    2018-05-03

    In oculoplastic operations, knowledge of the dimensions of periorbital features based on age, gender, and race is essential for achieving better aesthetic result. This article seeks to determine the racial and gender differences of periorbital features among Malaysian Malay (MM), Malaysian Indian (MI), and Malaysian Chinese (MI) subjects. Evaluation of periorbital features was done on photographs of 200 MM, 200 MI, and 200 MC subjects, aged 18 to 26 years. The measured values were evaluated by an independent t -test. A significant difference was found between MM and MI in all measurements except interbrow distance in males, eyebrow thickness in females, and apex to lateral limbus distance in both sexes. Between MI and MC the difference was insignificant for interbrow distance in male groups, apex to lateral limbus distance in females, and palpebral fissure inclination and eyebrow apex angle in both sexes. Between MM and MC, significant differences were found for eyebrow thickness and medial canthus tilt in female group. Male groups showed significant difference for apex to lateral limbus and lateral canthus distance and eyebrow apex angle. Eyebrow height, palpebral fissure width, and intercanthal distance were significantly different in both sexes. Sexual dimorphism was found for all measurements in MI, but MM and MC showed insignificant difference for eyebrow apex angle. Four types of epicanthus were observed in MM and MC and three types in MI. Eyebrow apex between lateral limbus and lateral canthus was the most common position in all racial groups. Significant racial and gender differences exist for certain periorbital measurements. The knowledge of these differences is expected to influence the surgical outcome. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Factors affecting femoral rotational angle based on the posterior condylar axis in gap-based navigation-assisted total knee arthroplasty for valgus knee.

    PubMed

    Lee, Sung-Sahn; Lee, Yong-In; Kim, Dong-Uk; Lee, Dae-Hee; Moon, Young-Wan

    2018-01-01

    Achieving proper rotational alignment of the femoral component in total knee arthroplasty (TKA) for valgus knee is challenging because of lateral condylar hypoplasia and lateral cartilage erosion. Gap-based navigation-assisted TKA enables surgeons to determine the angle of femoral component rotation (FCR) based on the posterior condylar axis. This study evaluated the possible factors that affect the rotational alignment of the femoral component based on the posterior condylar axis. Between 2008 and 2016, 28 knees were enrolled. The dependent variable for this study was FCR based on the posterior condylar axis, which was obtained from the navigation system archives. Multiple regression analysis was conducted to identify factors that might predict FCR, including body mass index (BMI), Kellgren-Lawrence grade (K-L grade), lateral distal femoral angles obtained from the navigation system and radiographs (NaviLDFA, XrayLDFA), hip-knee-ankle (HKA) axis, lateral gap under varus stress (LGVS), medial gap under valgus stress (MGVS), and side-to-side difference (STSD, MGVS - LGVS). The mean FCR was 6.1° ± 2.0°. Of all the potentially predictive factors evaluated in this study, only NaviLDFA (β = -0.668) and XrayLDFA (β = -0.714) predicted significantly FCR. The LDFAs, as determined using radiographs and the navigation system, were both predictive of the rotational alignment of the femoral component based on the posterior condylar axis in gap-based TKA for valgus knee. A 1° increment with NaviLDFA led to a 0.668° decrement in FCR, and a 1° increment with XrayLDFA led to a 0.714° decrement. This suggests that symmetrical lateral condylar hypoplasia of the posterior and distal side occurs in lateral compartment end-stage osteoarthritis with valgus deformity.

  18. Solid state laser

    NASA Technical Reports Server (NTRS)

    Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)

    1993-01-01

    A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.

  19. Torsional deformity of apical vertebra in adolescent idiopathic scoliosis.

    PubMed

    Kotwicki, Tomasz; Napiontek, Marek

    2002-01-01

    CT scans of structural thoracic idiopathic scoliosis were reviewed in nine patients admitted to our department for scoliosis surgery. The apical vertebra scans were chosen and the following parameters were evaluated: 1) alpha angle formed by the axis of vertebra and the axis of spinous process 2) beta concave and beta convex angle between the spinous process and the left and right transverse process, respectively, 3) gamma concave and gamma convex angle between the axis of vertebra and the left and right transverse process, respectively, 4) the rotation angle to the sagittal plane. The constant deviation of the spinous process towards the convex side of the curve was observed. The vertebral body itself was distorted towards the concavity of the curve. The angle between the spinous process and the transverse process was smaller on the convex side of the curve. The torsional, intravertebral deformity of the apical vertebra was a factor acting in the direction opposite to the rotation, in the sense to reduce the deformity of the spine in idiopathic scoliosis.

  20. Cylindrically symmetric Fresnel lens for high concentration photovoltaic

    NASA Astrophysics Data System (ADS)

    Hung, Yu-Ting; Su, Guo-Dung

    2009-08-01

    High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.

  1. A SMALL-ANGLE DRILL-HOLE WHIPSTOCK

    DOEpatents

    Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.

    1963-01-29

    A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)

  2. Two horizontal rectus eye muscle surgery combined with botulinum toxin for the treatment of very large angle esotropia. A pilot study.

    PubMed

    Khan, Arif O

    2005-01-01

    To evaluate the effectiveness of a proposed new protocol for the primary treatment for very large angle esotropia: two muscle horizontal rectus muscle surgery with simultaneous botulinum toxin A injection in a small pilot study. Eight patients who had esotropia at near (ET') greater than 60 prism diopters (in actuality 70 to 100 prism diopters ET') underwent 2 muscle horizontal rectus surgery with simultaneous botulinum toxin A injection of the medial rectus intraoperatively. This was the only surgical procedure for all patients included in this report. Seven patients underwent bilateral medial rectus recession and bilateral injection, and one patient underwent a unilateral medial rectus recession / lateral rectus resection procedure with unilateral medial rectus injection. Postoperatively, 6 of the 8 patients demonstrated residual esotropia at near of less than 10 prism diopters and were considered "successful" by the conventional criteria of binocular alignment within 8 prism diopters of orthotropia. Two undercorrections occurred in patients with 100 and 85 prism diopters of preop ET' respectively. But 3 other patients with such large deviations had satisfactory results. All patients and families were satisfied with postoperative binocular alignment, so no further surgery was undertaken. The patient who underwent unilateral surgery had the least surgical effect and was the largest undercorrection, probably because only one medial rectus received a Botox injection. Considering only the bilateral cases, results were "successful" in 6 of 7 cases. Most patients suffered an extended period of Botox induced exotropia in the postop' period before recovery from the paresis. One patient had a transient, successfully treated, postoperative strabismic amblyopia while exotropic. Bilateral medial rectus recession with simultaneous botulinum injection is a safe and effective primary surgical procedure for very large angle esotropia. A more extensive study is indicated to confirm these findings.

  3. Directional synthetic aperture flow imaging.

    PubMed

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov

    2004-09-01

    A method for flow estimation using synthetic aperture imaging and focusing along the flow direction is presented. The method can find the correct velocity magnitude for any flow angle, and full color flow images can be measured using only 32 to 128 pulse emissions. The approach uses spherical wave emissions with a number of defocused elements and a linear frequency-modulated pulse (chirp) to improve the signal-to-noise ratio. The received signals are dynamically focused along the flow direction and these signals are used in a cross-correlation estimator for finding the velocity magnitude. The flow angle is manually determined from the B-mode image. The approach can be used for both tissue and blood velocity determination. The approach was investigated using both simulations and a flow system with a laminar flow. The flow profile was measured with a commercial 7.5 MHz linear array transducer. A plastic tube with an internal diameter of 17 mm was used with an EcoWatt 1 pump generating a laminar, stationary flow. The velocity profile was measured for flow angles of 90 and 60 degrees. The RASMUS research scanner was used for acquiring radio frequency (RF) data from 128 elements of the array, using 8 emissions with 11 elements in each emission. A 20-micros chirp was used during emission. The RF data were subsequently beamformed off-line and stationary echo canceling was performed. The 60-degree flow with a peak velocity of 0.15 m/s was determined using 16 groups of 8 emissions, and the relative standard deviation was 0.36% (0.65 mm/s). Using the same setup for purely transverse flow gave a standard deviation of 1.2% (2.1 mm/s). Variation of the different parameters revealed the sensitivity to number of lines, angle deviations, length of correlation interval, and sampling interval. An in vivo image of the carotid artery and jugular vein of a healthy 29-year-old volunteer was acquired. A full color flow image using only 128 emissions could be made with a high-velocity precision.

  4. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  5. Stability of one-stage adjustable suture for the correction of horizontal strabismus.

    PubMed Central

    Chow, P C

    1989-01-01

    One-stage adjustable suture for strabismus correction, with the whole operation done under topical anaesthesia and adjustment done on the table, was performed on 45 consecutive patients. The stability of the post-adjustment result was studied by comparing the post-adjustment deviation on the operating table to that at six weeks and three months after operation. The stability was comparable to that following the usual two-stage adjustable suture. The original angle of deviation and the fusion status were found to have no bearing on the stability of the procedure. PMID:2667637

  6. Analysis of the electromagnetic wave resistivity tool in deviated well drilling

    NASA Astrophysics Data System (ADS)

    Zhang, Yumei; Xu, Lijun; Cao, Zhang

    2014-04-01

    Electromagnetic wave resistivity (EWR) tools are used to provide real-time measurements of resistivity in the formation around the tool in Logging While Drilling (LWD). In this paper, the acquired resistivity information in the formation is analyzed to extract more information, including dipping angle and azimuth direction of the drill. A finite element (FM) model of EWR tool working in layered earth formations is established. Numerical analysis and FM simulations are employed to analyze the amplitude ratio and phase difference between the voltages measured at the two receivers of the EWR tool in deviated well drilling.

  7. Standard Deviation of Spatially-Averaged Surface Cross Section Data from the TRMM Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Jones, Jeffrey A.

    2010-01-01

    We investigate the spatial variability of the normalized radar cross section of the surface (NRCS or Sigma(sup 0)) derived from measurements of the TRMM Precipitation Radar (PR) for the period from 1998 to 2009. The purpose of the study is to understand the way in which the sample standard deviation of the Sigma(sup 0) data changes as a function of spatial resolution, incidence angle, and surface type (land/ocean). The results have implications regarding the accuracy by which the path integrated attenuation from precipitation can be inferred by the use of surface scattering properties.

  8. Crystal structure of N-(3-chloro-1-methyl-1H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Gamouh, Ahmed; Saadi, Mohamed; El Ammari, Lahcen

    2014-09-01

    In the title compound, C15H14ClN3O3S, the dihedral angle between the planes of the indazole ring system (r.m.s. deviation = 0.007 Å) and the benzene ring is 89.05 (7)°. The meth-oxy C atom deviates from its attached ring by 0.196 (3) Å. In the crystal, inversion dimers linked by pairs of N-H⋯O hydrogen bonds generate R 2 (2)(8) loops. The dimers are connected into [010] chains by C-H⋯O inter-actions.

  9. Factors Associated With Kyphosis Progression in Older Women: 15 years experience in the Study of Osteoporotic Fractures

    PubMed Central

    Kado, DM; Huang, MH; Karlamangla, AS; Cawthon, P; Katzman, W; Hillier, TA; Ensrud, K; Cummings, SR

    2012-01-01

    Age-related hyperkyphosis is thought to be a result of underlying vertebral fractures, but studies suggest that among the most hyperkyphotic women, only one in three have underlying radiographic vertebral fractures. Although commonly observed, there is no widely accepted definition of hyperkyphosis in older persons, and other than vertebral fracture, no major causes have been identified. To identify important correlates of kyphosis and risk factors for its progression over time, we conducted a 15 year retrospective cohort study of 1,196 women, aged 65 years and older at baseline (1986–88), from four communities across the United States: Baltimore County, MD; Minneapolis, MN, Portland, Oregon, and the Monongahela Valley, PA. Cobb angle kyphosis was measured from radiographs obtained at baseline and an average of 3.7 and 15 years later. Repeated measures, mixed effects analyses were performed. At baseline, the mean kyphosis angle was 44.7 degrees (standard error 0.4, standard deviation 11.9) and significant correlates included a family history of hyperkyphosis, prevalent vertebral fracture, low bone mineral density, greater body weight, degenerative disc disease, and smoking. Over an average of 15 years, the mean increase in kyphosis was 7.1 degrees (standard error 0.25). Independent determinants of greater kyphosis progression were prevalent and incident vertebral fractures, low bone mineral density and concurrent bone density loss, low body weight, and concurrent weight loss. Thus, age-related kyphosis progression may be best prevented by slowing bone density loss and avoiding weight loss. PMID:22865329

  10. Exploratory low-speed wind-tunnel study of concepts designed to improve aircraft stability and control at high angles of attack. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hahne, D. E.

    1985-01-01

    A wind tunnel investigation of concepts to improve the high angle-of-attack stability and control characteristics of a high performance aircraft was conducted. The effect of vertical tail geometry on stability and the effectiveness of several conventional and unusual control concepts was determined. These results were obtained over a large angle-of-attack range. Vertical tail location, cant angle and leading edge sweep could influence both longitudinal and lateral-directional stability. The control concepts tested were found to be effective and to provide control into the post stall angle-of-attack region.

  11. Preoperative Planning and Intraoperative Technique for Accurate Translation of a Distal First Metatarsal Osteotomy.

    PubMed

    Wynes, Jacob; Lamm, Bradley M; Andrade, Bijan J; Malay, D Scot

    2016-01-01

    We used preoperative radiographic and intraoperative anatomic measurements to predict and achieve, respectively, the precise amount of capital fragment lateral translation required to restore anatomic balance to the first metatarsophalangeal joint. Correlation was used to relate the amount of capital fragment translation and operative reduction of the first intermetatarsal angle (IMA), hallux abductus angle (HAA), tibial sesamoid position (TSP), metatarsus adductus angle, and first metatarsal length. The mean capital fragment lateral translation was 5.54 ± 1.64 mm, and the mean radiographic reductions included a first IMA of 5.04° ± 2.85°, an HAA of 9.39° ± 8.38°, and a TSP of 1.38 ± 0.9. These changes were statistically (p < .001) and clinically (≥32.55%) significant. The mean reduction of the metatarsus adductus angle was 0.66° ± 4.44° and that for the first metatarsal length was 0.33 ± 7.27 mm, and neither of these were statistically (p = .5876 and 0.1247, respectively) or clinically (≤3.5%) significant. Pairwise correlations between the amount of lateral translation of the capital fragment and the first IMA, HAA, and TSP values were moderately positive and statistically significant (r = 0.4412, p = .0166; r = 0.5391, p = .0025; and r = 0.3729, p = .0463; respectively). In contrast, the correlation with metatarsus adductus and the first metatarsal shortening were weak and not statistically significant (r = 0.2296, p = .2308 and r = -0.2394, p = .2109, respectively). The results of our study indicate that predicted preoperative and executed intraoperative lateral translation of the capital fragment correlates with statistically and clinically significant reductions in the first IMA, HAA, and TSP. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  12. [Treatment of thoracolumbar burst fracture with lateral anterior decompression, internal fixation with Ventrofix and bone graft with titanic mesh].

    PubMed

    Zhang, Shi-min; Zhang, Zhao-jie; Liu, Yu-zhang; Zhang, Lu-tang; Li, Xing

    2011-11-01

    To discuss the efficacy of lateral anterior decompression, internal fixation with Ventrofix and bone graft with titanic mesh in the treatment of severe thoracolumbar burst fracture. From January 2008 to January 2010, 21 patients with severe thoracolumbar burst fracture were treated with lateral anterior decompression, internal fixation with Ventrofix, bone graft with titanic mesh. There were 15 males and 6 females, ranging in age from 21 to 46 years with an average of 32.2 years. Segment of fracture: 3 cases were in T11, 6 cases in T12, 7 cases in L1, 5 cases in L2. The mean kyphosis angle was 20.1 degrees and loading of fracture was 7.8 scores. Twenty-one cases accompany with incomplete paralysis. Nerves functions were observed according to Frankel grade; correction and maintain of kyphosis angle were observed by X-rays and CT. All the patients were followed up from 12 to 34 months with an average of 18.5 years. Postoperative complication including injury of pleura in 1 case, dynamic ileus in 2 cases, ilioinguinal nerve injury in 1 case, faulty union of wound in 1 case. All the above complications got recovery after symptomatic treatment. The mean kyphosis angle in fusional segment were 4.2 degrees and the rate of correction was 79%. Nerves functions of all patients got improvement and no internal fixation fail, kyphosis angle obviously lost, titanium mesh shifting, loosening and breakage of screw were found at final follow-up. Lateral anterior decompression, bone graft with titanic mesh, internal fixation with Ventrofix is an idea technique for severe thoracolumber burst fracture, but the method can not be used for patient with severity osteoporosis.

  13. DRO1 influences root system architecture in Arabidopsis and Prunus species.

    PubMed

    Guseman, Jessica M; Webb, Kevin; Srinivasan, Chinnathambi; Dardick, Chris

    2017-03-01

    Roots provide essential uptake of water and nutrients from the soil, as well as anchorage and stability for the whole plant. Root orientation, or angle, is an important component of the overall architecture and depth of the root system; however, little is known about the genetic control of this trait. Recent reports in Oryza sativa (rice) identified a role for DEEPER ROOTING 1 (DRO1) in influencing the orientation of the root system, leading to positive changes in grain yields under water-limited conditions. Here we found that DRO1 and DRO1-related genes are present across diverse plant phyla, and fall within the IGT gene family. The IGT family also includes TAC1 and LAZY1, which are known to affect the orientation of lateral shoots. Consistent with a potential role in root development, DRO1 homologs in Arabidopsis and peach showed root-specific expression. Promoter-reporter constructs revealed that AtDRO1 is predominantly expressed in both the root vasculature and root tips, in a distinct developmental pattern. Mutation of AtDRO1 led to more horizontal lateral root angles. Overexpression of AtDRO1 under a constitutive promoter resulted in steeper lateral root angles, as well as shoot phenotypes including upward leaf curling, shortened siliques and narrow lateral branch angles. A conserved C-terminal EAR-like motif found in IGT genes was required for these ectopic phenotypes. Overexpression of PpeDRO1 in Prunus domestica (plum) led to deeper-rooting phenotypes. Collectively, these data indicate a potential application for DRO1-related genes to alter root architecture for drought avoidance and improved resource use. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  14. Sonoanatomical Change of Phrenic Nerve According to Posture During Ultrasound-Guided Stellate Ganglion Block

    PubMed Central

    Joeng, Eui Soo; Jeong, Young Cheol; Park, Bum Jun; Kang, Seok; Yang, Seung Nam

    2016-01-01

    Objective To evaluate the risk of phrenic nerve injury during ultrasound-guided stellate ganglion block (US-SGB) according to sonoanatomy of the phrenic nerve, and determine a safer posture for needle insertion by assessing its relationship with surrounding structure according to positional change. Methods Twenty-nine healthy volunteers were recruited and underwent ultrasound in two postures, i.e., supine position with the neck extension and head rotation, and lateral decubitus position. The transducer was placed at the anterior tubercle of the C6 level to identify phrenic nerve. The cross-sectional area (CSA), depth from skin, distance between phrenic nerve and anterior tubercle of C6 transverse process, and the angle formed by anterior tubercle, posterior tubercle and phrenic nerve were measured. Results The phrenic nerve was clearly identified in the intermuscular fascia layer between the anterior scalene and sternocleidomastoid muscles. The distance between the phrenic nerve and anterior tubercle was 10.33±3.20 mm with the supine position and 9.20±3.31 mm with the lateral decubitus position, respectively. The mean CSA and skin depth of phrenic nerve were not statistically different between the two positions. The angle with the supine position was 48.37°±27.43°, and 58.89°±30.02° with the lateral decubitus position. The difference of angle between the two positions was statistically significant. Conclusion Ultrasound is a useful tool for assessing the phrenic nerve and its anatomical relation with other cervical structures. In addition, lateral decubitus position seems to be safer by providing wider angle for needle insertion than the supine position in US-SGB. PMID:27152274

  15. Sonoanatomical Change of Phrenic Nerve According to Posture During Ultrasound-Guided Stellate Ganglion Block.

    PubMed

    Joeng, Eui Soo; Jeong, Young Cheol; Park, Bum Jun; Kang, Seok; Yang, Seung Nam; Yoon, Joon Shik

    2016-04-01

    To evaluate the risk of phrenic nerve injury during ultrasound-guided stellate ganglion block (US-SGB) according to sonoanatomy of the phrenic nerve, and determine a safer posture for needle insertion by assessing its relationship with surrounding structure according to positional change. Twenty-nine healthy volunteers were recruited and underwent ultrasound in two postures, i.e., supine position with the neck extension and head rotation, and lateral decubitus position. The transducer was placed at the anterior tubercle of the C6 level to identify phrenic nerve. The cross-sectional area (CSA), depth from skin, distance between phrenic nerve and anterior tubercle of C6 transverse process, and the angle formed by anterior tubercle, posterior tubercle and phrenic nerve were measured. The phrenic nerve was clearly identified in the intermuscular fascia layer between the anterior scalene and sternocleidomastoid muscles. The distance between the phrenic nerve and anterior tubercle was 10.33±3.20 mm with the supine position and 9.20±3.31 mm with the lateral decubitus position, respectively. The mean CSA and skin depth of phrenic nerve were not statistically different between the two positions. The angle with the supine position was 48.37°±27.43°, and 58.89°±30.02° with the lateral decubitus position. The difference of angle between the two positions was statistically significant. Ultrasound is a useful tool for assessing the phrenic nerve and its anatomical relation with other cervical structures. In addition, lateral decubitus position seems to be safer by providing wider angle for needle insertion than the supine position in US-SGB.

  16. Interstellar Pickup Ion Acceleration in the Turbulent Magnetic Field at the Solar Wind Termination Shock Using a Focused Transport Approach

    NASA Astrophysics Data System (ADS)

    Ye, Junye; le Roux, Jakobus A.; Arthur, Aaron D.

    2016-08-01

    We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q-Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape (q-value) and the standard deviation (σ-value) of the q-Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.

  17. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko; González, P. A.

    2018-06-01

    In this paper, we study the weak gravitational lensing in the spacetime of rotating regular black hole geometries such as Ayon-Beato-García (ABG), Bardeen, and Hayward black holes. We calculate the deflection angle of light using the Gauss-Bonnet theorem (GBT) and show that the deflection of light can be viewed as a partially topological effect in which the deflection angle can be calculated by considering a domain outside of the light ray applied to the black hole optical geometries. Then, we demonstrate also the deflection angle via the geodesics formalism for these black holes to verify our results and explore the differences with the Kerr solution. These black holes have, in addition to the total mass and rotation parameter, different parameters of electric charge, magnetic charge, and deviation parameter. We find that the deflection of light has correction terms coming from these parameters, which generalizes the Kerr deflection angle.

  18. MO-F-CAMPUS-T-03: Data Driven Approaches for Determination of Treatment Table Tolerance Values for Record and Verification Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, N; DiCostanzo, D; Fullenkamp, M

    2015-06-15

    Purpose: To determine appropriate couch tolerance values for modern radiotherapy linac R&V systems with indexed patient setup. Methods: Treatment table tolerance values have been the most difficult to lower, due to many factors including variations in patient positioning and differences in table tops between machines. We recently installed nine linacs with similar tables and started indexing every patient in our clinic. In this study we queried our R&V database and analyzed the deviation of couch position values from the acquired values at verification simulation for all patients treated with indexed positioning. Mean and standard deviations of daily setup deviations weremore » computed in the longitudinal, lateral and vertical direction for 343 patient plans. The mean, median and standard error of the standard deviations across the whole patient population and for some disease sites were computed to determine tolerance values. Results: The plot of our couch deviation values showed a gaussian distribution, with some small deviations, corresponding to setup uncertainties on non-imaging days, and SRS/SRT/SBRT patients, as well as some large deviations which were spot checked and found to be corresponding to indexing errors that were overriden. Setting our tolerance values based on the median + 1 standard error resulted in tolerance values of 1cm lateral and longitudinal, and 0.5 cm vertical for all non- SRS/SRT/SBRT cases. Re-analizing the data, we found that about 92% of the treated fractions would be within these tolerance values (ignoring the mis-indexed patients). We also analyzed data for disease site based subpopulations and found no difference in the tolerance values that needed to be used. Conclusion: With the use of automation, auto-setup and other workflow efficiency tools being introduced into radiotherapy workflow, it is very essential to set table tolerances that allow safe treatments, but flag setup errors that need to be reassessed before treatments.« less

  19. SURBAL: computerized metes and bounds surveying

    Treesearch

    Roger N. Baughman; James H. Patric

    1970-01-01

    A computer program has been developed at West Virginia University for use in metes and bounds surveying. Stations, slope distances, slope angles, and bearings are primary information needed for this program. Other information needed may include magnetic deviation, acceptable closure error, desired map scale, and title designation. SURBAL prints out latitudes and...

  20. SU-E-T-81: A Study On Correlation Between Gamma Analysis for Midline and Lateralized Tumors Using VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Syam; Anjana

    Purpose: To evaluate the fluence for the midline and lateralized tumors for VMAT technique using 2D seven29 detector array combined with the Octavius phantom. Methods: 60 cases that are already being treated with volumetric modulated arc therapy (VMAT) have selected for this study. This includes tumors situated at the medial and lateral. Medial refers to the tumor situated at the midline of the body and lateral means toward the side or away from the midline of the body. Verification plans were created for each treatment plan in Varian Eclipse treatment planning system (version10, Varian medical systems, Palo Alto,CA) with themore » 2D Seven29 detector array and the Octavius phantom(PTW, Freiburg, Germany). Measurements were performed on a Varian Clinac 2100 iX, linear accelerator equipped with a millennium 120 leaf collimator. Analysis was done by comparing the fluence measured for the tumors situated on the midline and tumors situated laterally. Results: Fluence measured for all the delivered plans were analyzed using Verisoft software (PTW, Freiburg, Germany). The gamma pass percentage for midline tumors were found to be higher compared with the lateralized ones. The standard deviation between gamma values for midline and lateralized tumors is 2.18 and 3.5 respectively. Also the standard deviation between the point doses for midline and lateralized tumors is 0.38 and 0.29 respectively. The average gamma passing rate for midline tumors is 96.55% and for lateralized tumors are 94.94% for 3%DD and 3mm DTA criteria. From the T test, it was found that there is no significant difference between the gamma pass percentage between midline and lateralized tumors with p value of 0.28. Conclusion: There is no particular correlation found in the gamma pass criteria for midline and lateralized tumors.« less

  1. Does distal tibiofibular joint mobilization decrease limitation of ankle dorsiflexion?

    PubMed

    Fujii, Misaki; Suzuki, Daisuke; Uchiyama, Eiichi; Muraki, Takayuki; Teramoto, Atsushi; Aoki, Mitsuhiro; Miyamoto, Shigenori

    2010-02-01

    Limitation of ankle motion is in many cases treated by joint mobilization (JM), a kind of manual physical therapy technique. Until now, the JM approach has mainly focused on the talocrural joint, with less attention to the distal tibiofibular joint. We applied cyclic loading to the lateral malleolus as in JM in order to clarify the relationship between the dorsiflexion angle and the excursion of the lateral malleolus. Seven normal, fresh-frozen cadaver legs were used. To each specimen, cyclic loading with a 30N force was applied 1000 times to the lateral malleolus at a speed of 15N/s. The displacement of the lateral malleolus was measured with a magnetic tracking system. The maximum dorsiflexion angle was measured before and after cyclic loading. After the first 100 and 1000 times of cyclic loading, the tibia was displaced 0.44+/-0.30mm and 0.75+/-0.36mm, respectively, and the fibula was displaced 0.44+/-0.28mm and 0.92+/-0.39mm, respectively. The average dorsiflexion angle increased from 14.36+/-7.51 degrees to 16.74+/-7.21 degrees after cyclic loading (P<0.05). Movement of the distal tibiofibular joint led to a significant increase in the range of ankle dorsiflexion. These results suggest that tibiofibular JM would be effective for limitation of ankle dorsiflexion.

  2. Morphological configuration of the cranial base among children aged 8 to 12 years.

    PubMed

    Cossio, Lina; López, Jorge; Rueda, Zulma Vanessa; Botero-Mariaca, Paola

    2016-06-14

    Cranial base is used as reference structure to determine the skeletal type in cephalometric analysis. The purpose was to assess the cranial base length on lateral cephalic radiographs of children between 8 and 12 and compare these measurements with baseline studies in order to evaluate the relationship between the length and the cranial base angle, articular angle, gonial angle and skeletal type. A Cross-sectional study in 149 children aged 8-12 years, originally from Aburrá Valley, who had lateral cephalic radiographs and consented to participate in this study. The variables studied included: age, sex, sella-nasion, sella-nasion-articular, sella-nasion-basion, articular-gonion-menton, gonion-menton, sella-nasion-point B, sella-nasion-point A y point A-nasion-point B. These variables were digitally measured through i-dixel 2 digital software. One-way ANOVA was used to determine mean values and mean value differences. The values obtained were compared with previous studies. A p value <0.05 was considered significant. Cranial base lengths are smaller in each age and sex group, with differences exceeding 10 mm for measurement, compared both with the study by Riolo (Michigan) and the study carried out in Damasco (Antioquia). No relation was found between the skeletal type and the anterior cranial base length, the sella angle and the cranial base angle. Also, no relation was found between the gonial angle and sella angle or the cranial base angle. The cranial base varies from one population to another. Accordingly, compared to other studies it is shorter for the assessed sample.

  3. The relation between chondromalacia patella and meniscal tear and the sulcus angle/ trochlear depth ratio as a powerful predictor.

    PubMed

    Resorlu, Hatice; Zateri, Coskun; Nusran, Gurdal; Goksel, Ferdi; Aylanc, Nilufer

    2017-01-01

    To investigate the relation between chondromalacia patella and the sulcus angle/trochlear depth ratio as a marker of trochlear morphology. In addition, we also planned to show the relationship between meniscus damage, subcutaneous adipose tissue thickness as a marker of obesity, patellar tilt angle and chondromalacia patella. Patients with trauma, rheumatologic disease, a history of knee surgery and patellar variations such as patella alba and patella baja were excluded. Magnetic resonance images of the knees of 200 patients were evaluated. Trochlear morphology from standardized levels, patellar tilt angle, lateral/medial facet ratio, subcutaneous adipose tissue thickness from 3 locations and meniscus injury were assessed by two specialist radiologists. Retropatellar cartilage was normal in 108 patients (54%) at radiological evaluation, while chondromalacia patella was determined in 92 (46%) cases. Trochlear sulcus angle and prepatellar subcutaneous adipose tissue thickness were significantly high in patients with chondromalacia patella, while trochlear depth and lateral patellar tilt angle were low. The trochlear sulcus angle/trochlear depth ratio was also high in chondromalacia patella and was identified as an independent risk factor at regression analysis. Additionally, medial meniscal tear was observed in 35 patients (38%) in the chondromalacia patella group and in 27 patients (25%) in the normal group, the difference being statistically significant (P = 0.033). An increased trochlear sulcus angle/trochlear depth ratio is a significant predictor of chondromalacia patella. Medial meniscus injury is more prevalent in patients with chondromalacia patella in association with impairment in knee biomechanics and the degenerative process.

  4. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location.

    PubMed

    Zehnder, M S; Connert, T; Weiger, R; Krastl, G; Kühl, S

    2016-10-01

    To present a novel method utilizing 3D printed templates to gain guided access to root canals and to evaluate its accuracy in vitro. Sixty extracted human teeth were placed into six maxillary jaw models. Preoperative CBCT scans were matched with intra-oral scans using the coDiagnostix(™) software. Access cavities, sleeves and templates for guidance were virtually planned. Templates were produced by a 3D printer. After access cavity preparation by two operators, a postoperative CBCT scan was superimposed on the virtual planning. Accuracy was measured by calculating the deviation of planned and prepared cavities in three dimensions and angle. Ninety-five per cent confidence intervals were calculated for both operators. All root canals were accessible after cavity preparation with 'Guided Endodontics'. Deviations of planned and prepared access cavities were low with means ranging from 0.16 to 0.21 mm for different aspects at the base of the bur and 0.17-0.47 mm at the tip of the bur. Mean of angle deviation was 1.81°. Overlapping 95% confidence intervals revealed no significant difference between operators. 'Guided Endodontics' allowed an accurate access cavity preparation up to the apical third of the root utilizing printed templates for guidance. All root canals were accessible after preparation. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Aero-thermal Calibration of the NASA Glenn Icing Research Tunnel (2000 Tests)

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen; Curry, Monroe R., III

    2001-01-01

    Aerothermal calibration measurements and flow quality surveys were made in the test section of the Icing Research Tunnel at the NASA Glenn Research Center. These surveys were made following major facility modifications including widening of the heat exchanger tunnel section, replacement of the heat exchanger, installation of new turning vanes, and installation of new fan exit guide vanes. Standard practice at NASA Glenn requires that test section calibration and flow quality surveys be performed following such major facility modifications. A single horizontally oriented rake was used to survey the flow field at several vertical positions within a single cross-sectional plane of the test section. These surveys provided a detailed mapping of the total and static pressure, total temperature, Mach number, velocity, flow angle and turbulence intensity. Data were acquired over the entire velocity and total temperature range of the facility. No icing conditions were tested; however, the effects of air sprayed through the water injecting spray bars were assessed. All data indicate good flow quality. Mach number standard deviations were less than 0.0017, flow angle standard deviations were between 0.3 deg and 0.8 deg, total temperature standard deviations were between 0.5 and 1.8 F for subfreezing conditions, axial turbulence intensities varied between 0.3 and 1.0 percent, and transverse turbulence intensities varied between 0.3 and 1.5 percent. Measurement uncertainties were also quantified.

  6. Acute acquired comitant esotropia related to excessive Smartphone use.

    PubMed

    Lee, Hyo Seok; Park, Sang Woo; Heo, Hwan

    2016-04-09

    To describe the clinical characteristics and outcomes of acute acquired comitant esotropia (AACE) related to excessive smartphone use in adolescents. The medical records of 12 patients with AACE and a history of excessive smartphone use were retrospectively reviewed, and the duration of smartphone use, angle of deviation, refractive error, stereopsis, and treatment options were analyzed. All patients showed convergent and comitant esotropia ranging from 15 to 45 prism diopters (PD; average: 27.75 ± 11.47 PD) at far fixation. The angle of deviation was nearly equivalent for far and near fixation. Every patient used a smartphone for more than 4 h a day over a period of several months (minimum 4 months). Myopic refractive errors were detected in eight patients (average:-3.84 ± 1.68 diopters (D]), and the remaining four patients showed mild hyperopic refractive error (average: +0.84 ± 0.53 D). Reductions in esodeviation were noted in all patients after refraining from smartphone use, and bilateral medial rectus recession was performed in three patients with considerable remnant esodeviation. Postoperative exams showed orthophoria with good stereoacuity in these patients. Excessive smartphone use might influence AACE development in adolescents. Refraining from smartphone use can decrease the degree of esodeviation in these patients, and remnant deviation can be successfully managed with surgical correction.

  7. Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma.

    PubMed

    Adachi, Sayaka; Yuki, Kenya; Awano-Tanabe, Sachiko; Ono, Takeshi; Shiba, Daisuke; Murata, Hiroshi; Asaoka, Ryo; Tsubota, Kazuo

    2018-02-13

    To investigate the relationship between clinical risk factors, including visual field (VF) defects and visual acuity, and a fear of falling, among patients with primary open-angle glaucoma (POAG). All participants answered the following question at a baseline ophthalmic examination: Are you afraid of falling? The same question was then answered every 12 months for 3 years. A binocular integrated visual field was calculated by merging a patient's monocular Humphrey field analyzer VFs, using the 'best sensitivity' method. The means of total deviation values in the whole, superior peripheral, superior central, inferior central, and inferior peripheral VFs were calculated. The relationship between these mean VF measurements, and various clinical factors, against patients' baseline fear of falling and future fear of falling was analyzed using multiple logistic regression. Among 392 POAG subjects, 342 patients (87.2%) responded to the fear of falling question at least twice in the 3 years study period. The optimal regression model for patients' baseline fear of falling included age, gender, mean of total deviation values in the inferior peripheral VF and number of previous falls. The optimal regression equation for future fear of falling included age, gender, mean of total deviation values in the inferior peripheral VF and number of previous falls. Defects in the inferior peripheral VF area are significantly related to the development of a fear of falling.

  8. Foot pressure and center of pressure in athletes with ankle instability during lateral shuffling and running gait.

    PubMed

    Huang, P-Y; Lin, C-F; Kuo, L-C; Liao, J-C

    2011-12-01

    This study evaluates foot pressure and center of pressure (COP) patterns in individuals with ankle instability during running and lateral shuffling. Eleven participants with ankle instability (AI) and 11 normal subjects (Normal) performed running and lateral shuffling tasks. The outcome measures were foot progression angle, peak pressure, and displacement of COP during stance phase. During running, the foot progression angle, that is, the angle of foot abduction, was lower in the AI group (Normal: 13.46° ± 4.45°; AI: 8.78° ± 3.91°), and the 1st metatarsal contact pressure (Normal: 0.76 ± 0.47 N/cm(2)·kg; AI: 1.05 ± 0.70 N/cm(2)·kg) and the 3rd metatarsal peak pressure were higher in the AI (Normal: 0.96 ± 0.60 N/cm(2)·kg; AI: 1.54 ± 0.68 N/cm(2)·kg). The medial-lateral (M-L) COP in the late-stance phase of running for the AI group transferred faster from lateral to medial foot than the Normal group. For lateral shuffling, the AI group had greater peak pressure at the 1st (Normal: 0.76 ± 0.67 N/cm(2)·kg; AI: 1.49 ± 1.04 N/cm(2)·kg), 2nd (Normal: 0.57 ± 0.39 N/cm(2)·kg; AI: 0.87 ± 0.68 N/cm(2)·kg), 3rd (Normal: 0.70 ± 0.54 N/cm(2)·kg; AI: 1.42 ± 0.87 N/cm(2)·kg), and 4th (Normal: 0.52 ± 0.38 N/cm(2)·kg; AI: 1.12 ± 0.78 N/cm(2)·kg) metatarsal areas than the Normal group. The M-L COP located more laterally from the early to mid-stance phase in the AI compared with the Normal group. The findings suggest that COP displacement during lateral shuffle may be a factor in ankle instability while the foot progression angle during running may be a compensatory strategy. © 2011 John Wiley & Sons A/S.

  9. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    NASA Astrophysics Data System (ADS)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  10. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF.

    PubMed

    Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu

    2018-04-01

    Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.

  11. Gas-liquid flow splitting in T-junction with inclined lateral arm

    NASA Astrophysics Data System (ADS)

    Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu

    2018-02-01

    This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.

  12. Low-speed wind tunnel investigation of the lateral-directional characterisitcs of a large-scale variable wing-sweep fighter model in the high-lift configuration

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Maki, R. L.

    1973-01-01

    The low-speed characteristics of a large-scale model of the F-14A aircraft were studied in tests conducted in the Ames Research Center 40- by 80-Foot Wind Tunnel. The primary purpose of the present tests was the determination of lateral-directional stability levels and control effectiveness of the aircraft in its high-lift configuration. Tests were conducted at wing angles of attack between minus 2 deg and 30 deg and with sideslip angles between minus 12 deg and 12 deg. Data were taken at a Reynolds number of 8.0 million based on a wing mean aerodynamic chord of 2.24 m (7.36 ft). The model configuration was changed as required to show the effects of direct lift control (spoilers) at yaw, yaw angle with speed brake deflected, and various amounts and combinations of roll control.

  13. Aerodynamics, aeroelasticity, and stability of hang gliders. Experimental results. [Ames 7- by 10-ft wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kroo, I. M.

    1981-01-01

    One-fifth-scale models of three basic ultralight glider designs were constructed to simulate the elastic properties of full scale gliders and were tested at Reynolds numbers close to full scale values. Twenty-four minor modifications were made to the basic configurations in order to evaluate the effects of twist, reflex, dihedral, and various stability enhancement devices. Longitudinal and lateral data were obtained at several speeds through an angle of attack range of -30 deg to +45 deg with sideslip angles of up to 20 deg. The importance of vertical center of gravity displacement is discussed. Lateral data indicate that effective dihedral is lost at low angles of attack for nearly all of the configurations tested. Drag data suggest that lift-dependent viscous drag is a large part of the glider's total drag as is expected for thin, cambered sections at these relatively low Reynolds numbers.

  14. The Effect of Lateral Inclination of the Thrust Axis and of Sweepback of the Leading Edge of the Wing on Propulsive and Net Efficiencies of a Wing-Nacelle-Propeller Combination

    NASA Technical Reports Server (NTRS)

    Wood, Donald H.; Windler, Ray

    1935-01-01

    This report describes and gives the results of tests made to determine the effect of lateral inclination of the propeller thrust axis to the direction of flight. A wing-nacelle-propeller combination with the nacelle axis located successively parallel to and at 15 degrees to the perpendicular to the leading edge of a wing was tested with the combination at several angles of yaw. Tests of the wing alone at the same angles of yaw were also made. The data are presented in the usual graphic form. An increase in propulsive efficiency with increase in angle of the thrust axis was found. The change in net efficiency, found by charging the whole nacelle drag to the power unit, was negligible, however, within the range of the tests.

  15. Nonplanar wing load-line and slender wing theory

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1977-01-01

    Nonplanar load line, slender wing, elliptic wing, and infinite aspect ratio limit loading theories are developed. These are quasi two dimensional theories but satisfy wing boundary conditions at all points along the nonplanar spanwise extent of the wing. These methods are applicable for generalized configurations such as the laterally nonplanar wing, multiple nonplanar wings, or wing with multiple winglets of arbitrary shape. Two dimensional theory infers simplicity which is practical when analyzing complicated configurations. The lateral spanwise distribution of angle of attack can be that due to winglet or control surface deflection, wing twist, or induced angles due to multiwings, multiwinglets, ground, walls, jet or fuselage. In quasi two dimensional theory the induced angles due to these extra conditions are likewise determined for two dimensional flow. Equations are developed for the normal to surface induced velocity due to a nonplanar trailing vorticity distribution. Application examples are made using these methods.

  16. Low-speed static and dynamic force tests of a generic supersonic cruise fighter configuration

    NASA Technical Reports Server (NTRS)

    Hahne, David E.

    1989-01-01

    Static and dynamic force tests of a generic fighter configuration designed for sustained supersonic flight were conducted in the Langley 30- by 60-foot tunnel. The baseline configuration had a 65 deg arrow wing, twin wing mounted vertical tails and a canard. Results showed that control was available up to C sub L,max (maximum lift coefficient) from aerodynamic controls about all axes but control in the pitch and yaw axes decreased rapidly in the post-stall angle-of-attack region. The baseline configuration showed stable lateral-directional characteristics at low angles of attack but directional stability occurred near alpha = 25 deg as the wing shielded the vertical tails. The configuration showed positive effective dihedral throughout the test angle-of-attack range. Forced oscillation tests indicated that the baseline configuration had stable damping characteristics about the lateral-directional axes.

  17. Reliability of photogrammetry in the evaluation of the postural aspects of individuals with structural scoliosis.

    PubMed

    Saad, Karen Ruggeri; Colombo, Alexandra Siqueira; Ribeiro, Ana Paula; João, Sílvia Maria Amado

    2012-04-01

    The purpose of this study was to investigate the reliability of photogrammetry in the measurement of the postural deviations in individuals with idiopathic scoliosis. Twenty participants with scoliosis (17 women and three men), with a mean age of 23.1 ± 9 yrs, were photographed from the posterior and lateral views. The postural aspects were measured with CorelDRAW software. High inter-rater and test-retest reliability indices were found. It was observed that with more severity of scoliosis, greater were the variations between the thoracic kyphosis and lumbar lordosis measures obtained by the same examiner from the left lateral view photographs. A greater body mass index (BMI) was associated with greater variability of the trunk rotation measures obtained by two independent examiners from the right, lateral view (r = 0.656; p = 0.002). The severity of scoliosis was also associated with greater inter-rater variability measures of trunk rotation obtained from the left, lateral view (r = 0.483; p = 0.036). Photogrammetry demonstrated to be a reliable method for the measurement of postural deviations from the posterior and lateral views of individuals with idiopathic scoliosis and could be complementarily employed for the assessment procedures, which could reduce the number of X-rays used for the follow-up assessments of these individuals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The rotation of ripple pattern and the shape of the collision cascade in ion sputtered thin metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, P.; Ghose, D.

    The sputter ripple formation in polycrystalline metal thin films of Al, Co, Cu, and Ag has been studied by 16.7 keV Ar{sup +} and O{sub 2}{sup +} ion bombardment as a function of angle of ion incidence. The experimental results show the existence of a critical angle of ion incidence ({theta}{sub c}) beyond which the ripples of wave vectors perpendicular to the projected ion beam direction appear. Monte Carlo simulation (SRIM) is carried out to calculate the depth, longitudinal and lateral straggling widths of energy deposition as these values are crucial in determining the critical angle {theta}{sub c}. It ismore » found that the radial energy distribution of the damage cascade has the maximum slightly away from the ion path in contradiction to the Gaussian distribution and the distribution is better characterized by an exponential function. The lower values of lateral straggling widths as those extracted from the measured critical angles using the Bradley and Harper theory indicate a highly anisotropic deposited-energy distribution.« less

  19. Space shuttle: Longitudinal and lateral aerodynamic characteristics of the 0.0035-scale GD/C aerospace booster (B-15B-1)

    NASA Technical Reports Server (NTRS)

    Debevoise, J. M.; Mcginnis, R. F.

    1972-01-01

    Force tests on a 0.0035-scale model of the General Dynamics/Convair space shuttle B-15B-1 booster were conducted in the MSFC trisonic wind tunnel during February and March 1971. Longitudinal and lateral characteristics were obtained at Mach numbers from 0.6 to 4.96. The configuration tested had a low delta wing, all-movable canard controls of delta planform, and a single vertical tail. Most of the test was devoted to obtaining data relevant to the transition from atmospheric reentry to subsonic cruise. In that portion of the test the angles of attack ranged from 6 degrees to 60 degrees, and yaw runs were made at angles of attack of 15 and 35 degrees. The rest of the test was devoted to obtaining booster-alone buildup data relevant to the launch phase. For the launch phase, the Mach number range was from 0.6 to 2.0, the angles of attack were from -10 to +10 degrees, and yaw runs were made at zero angle of attack.

  20. Some effects of nonlinear variation in the directional-stability and damping-in-yawing derivatives on the lateral stability of an airplane

    NASA Technical Reports Server (NTRS)

    Sternfield, Leonard

    1951-01-01

    A theoretical investigation has been made to determine the effect of nonlinear stability derivatives on the lateral stability of an airplane. Motions were calculated on the assumption that the directional-stability and the damping-in-yawing derivatives are functions of the angle of sideslip. The application of the Laplace transform to the calculation of an airplane motion when certain types of nonlinear derivatives are present is described in detail. The types of nonlinearities assumed correspond to the condition in which the values of the directional-stability and damping-in-yawing derivatives are zero for small angle of sideslip.

  1. Comparison of theoretically predicted lateral-directional aerodynamic characteristics with full-scale wind tunnel data on the ATLIT airplane

    NASA Technical Reports Server (NTRS)

    Griswold, M.; Roskam, J.

    1980-01-01

    An analytical method is presented for predicting lateral-directional aerodynamic characteristics of light twin engine propeller-driven airplanes. This method is applied to the Advanced Technology Light Twin Engine airplane. The calculated characteristics are correlated against full-scale wind tunnel data. The method predicts the sideslip derivatives fairly well, although angle of attack variations are not well predicted. Spoiler performance was predicted somewhat high but was still reasonable. The rudder derivatives were not well predicted, in particular the effect of angle of attack. The predicted dynamic derivatives could not be correlated due to lack of experimental data.

  2. Porous Titanium Wedges in Lateral Column Lengthening for Adult-Acquired Flatfoot Deformity.

    PubMed

    Moore, Spencer H; Carstensen, S Evan; Burrus, M Tyrrell; Cooper, Truitt; Park, Joseph S; Perumal, Venkat

    2017-10-01

    Lateral column lengthening (LCL) is a common procedure for reconstruction of stage II flexible adult-acquired flatfoot deformity (AAFD). The recent development of porous titanium wedges for this procedure provides an alternative to allograft and autograft. The purpose of this study was to report radiographic and clinical outcomes achieved with porous titanium wedges in LCL. A retrospective analysis of 34 feet in 30 patients with AAFD that received porous titanium wedges for LCL from January 2011 to October 2014. Deformity correction was assessed using both radiographic and clinical parameters. Radiographic correction was assessed using the lateral talo-first metatarsal angle, the talonavicular uncoverage percentage, and the first metatarsocuneiform height. The hindfoot valgus angle was measured. Patients were followed from a minimum of 6 months up to 4 years (mean 16.1 months). Postoperative radiographs demonstrated significant correction in all 3 radiographic criteria and the hindfoot valgus angle. We had no cases of nonunion, no wedge migration, and no wedges have been removed to date. The most common complication was calcaneocuboid joint pain (14.7%). Porous titanium wedges in LCL can achieve good radiographic and clinical correction of AAFD with a low rate of nonunion and other complications. Level IV: Case series.

  3. A novel method of measuring spatial rotation angle using MEMS tilt sensors

    NASA Astrophysics Data System (ADS)

    Cao, Jian'an; Zhu, Xin; Wu, Hao; Zhang, Leping

    2017-10-01

    This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α, the sensor’s swing angle on the measuring plane; β, the angle between the rotation axis and the horizontal plane; and γ, the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of  ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°.

  4. Transverse plane of apical vertebra of structural thoracic curve: vertebra displacement versus vertebral deformation.

    PubMed

    Kotwicki, Tomasz; Napiontek, Marek; Nowakowski, Andrzej

    2006-01-01

    CT transversal scans of the trunk provided at the level of Th8 or Th9 (apical vertebra) of 23 patients with structural thoracic scoliosis were reviewed. The following parameters were studied: 1) alpha angle formed by the axis of vertebra and the axis of spinous process, 2) beta concave and beta convex angle between the spinous process and the left and right transverse process respectively, 3) gamma concave and gamma convex angle between the axis of vertebra and the left and right transverse process respectively, 4) rotation angle to the sagittal plane according to Aaro and Dahlborn, 5) Cobb angle. Values of measured parameters demonstrated a common pattern of intravertebral deformity: counter clockwise deviation of the spinous process (alpha angle 15,0 +/-8,5 degrees), beta concave (69,8 +/-8,5 degrees) significantly greater than beta convex (38,8 +/-8,5 degrees), gamma concave (54,3 +/-7,8 degrees) not different from gamma convex (56,0 +/-8,0 degrees). Strong linear positive correlation between alpha angle and Aaro-Dahlborn angle was observed (r=0,78, p<0,05). Changes in morphology of apical vertebra due to intravertebral bone remodelling followed the vertebral spatial displacement and there existed a linear correlation in between. The two processes develop in opposite directions.

  5. Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy.

    PubMed

    Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M

    2018-03-01

    Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.

  6. Acute Acquired Concomitant Esotropia

    PubMed Central

    Chen, Jingchang; Deng, Daming; Sun, Yuan; Shen, Tao; Cao, Guobin; Yan, Jianhua; Chen, Qiwen; Ye, Xuelian

    2015-01-01

    Abstract Acute acquired concomitant esotropia (AACE) is a rare, distinct subtype of esotropia. The purpose of this retrospective study was to describe the clinical characteristics and discuss the classification and etiology of AACE. Charts from 47 patients with AACE referred to our institute between October 2010 and November 2014 were reviewed. All participants underwent a complete medical history, ophthalmologic and orthoptic examinations, and brain and orbital imaging. Mean age at onset was 26.6 ± 12.2 years. Of the 18 cases with deviations ≤ 20 PD, 16 presented with diplopia at distance and fusion at near vision at the onset of deviation; differences between distance and near deviations were < 8 PD; all cases except one were treated with prism and diplopia resolved. Of the 29 cases with deviations > 20 PD, 5 were mild hypermetropic with age at onset between 5 and 19 years, 16 were myopic, and 8 were emmetropic with age at onset > 12 years; 24 were surgically treated and 5 cases remained under observation; all 24 cases achieved normal retinal correspondence or fusion or stereopsis on postoperative day 1 in synoptophore; in 23 cases diplopia or visual confusion resolved postoperatively. Of the 47 cases, brain and orbital imaging in 2 cases revealed a tumor in the cerebellopontine angle and 1 case involved spinocerebellar ataxia as revealed by genetic testing. AACE in this study was characterized by a sudden onset of concomitant nonaccommodative esotropia with diplopia or visual confusion at 5 years of age or older and the potential for normal binocular vision. We suggest that AACE can be divided into 2 subgroups consisting of patients with relatively small versus large angle deviations. Coexisting or underlying neurological diseases were infrequent in AACE. PMID:26705210

  7. A three-dimensional analysis of skeletal and dental characteristics in skeletal class III patients with facial asymmetry.

    PubMed

    Yu, Jinfeng; Hu, Yun; Huang, Mingna; Chen, Jun; Ding, Xiaoqian; Zheng, Leilei

    2018-03-15

    To evaluate the skeletal and dental characteristics in skeletal class III patients with facial asymmetry and to analyse the relationships among various parts of the stomatognathic system to provide a theoretical basis for clinical practice. Asymmetric cone-beam computed tomography data acquired from 56 patients were evaluated using Mimics 10.0 and 3-Matic software. Skeletal and dental measurements were performed to assess the three-dimensional differences between two sides. Pearson correlation analysis was used to determine the correlations among measurements. Linear measurements, such as ramal height, mandible body length, ramal height above the sigmoid notch (RHASN), maxillary height, condylar height, buccal and total cancellous bone thickness, and measurements of condylar size, were significantly larger on the nondeviated side than on the deviated side (P <  0.05). Crown root ratio and buccolingual angle of mandibular first molar were found to be significantly smaller on the nondeviated side than on the deviated side (P <  0.05). A negative correlation was also discovered between the buccolingual angle of mandibular first molar and the ramal height (P <  0.01). In patients with facial asymmetry, asymmetries in the mandible, maxilla and condylar morphology, and skeletal canting served as major components of skeletal asymmetry. Furthermore, a reduced thickness of buccal cancellous bone and a larger crown root ratio were found on the deviated side, indicating that orthodontic camouflage has limitations and potential risks. A combination of orthodontics and orthognathic surgery may be the advisable choice in patients with a menton deviation greater than 4 mm. An important association between vertical skeletal disharmony and dental compensation was also observed.

  8. SUPPLEMENTARY COMPARISON: EUROMET.L-S10 Comparison of squareness measurements

    NASA Astrophysics Data System (ADS)

    Mokros, Jiri

    2005-01-01

    The idea of performing a comparison of squareness resulted from the need to review the MRA Appendix C, Category 90° square. At its meeting in October 1999 (in Prague) it was decided upon a first comparison of squareness measurements in the framework of EUROMET, numbered #570, starting in 2000, with the Slovak Institute of Metrology (SMU) as the pilot laboratory. During the preparation stage of the project, it was agreed that it should be submitted as a EUROMET supplementary comparison in the framework of the Mutual Recognition Arrangement (MRA) of the Metre Convention and would boost confidence in calibration and measurement certificates issued by the participating national metrology institutes. The aim of the comparison of squareness measurement was to compare and verify the declared calibration measurement capabilities of participating laboratories and to investigate the effect of systematic influences in the measurement process and their elimination. Eleven NMIs from the EUROMET region carried out this project. Two standards were calibrated: granite squareness standard of rectangular shape, cylindrical squareness standard of steel with marked positions for the profile lines. The following parameters had to be calibrated: granite squareness standard: interior angle γB between two lines AB and AC (envelope - LS regression) fitted through the measured profiles, and/or granite squareness standard: interior angle γLS between two LS regression lines AB and AC fitted through the measured profiles, cylindrical squareness standard: interior angles γ0°, γ90°, γ180°, γ270° between the LS regression line fitted through the measurement profiles at 0°, 90°, 180°, 270° and the envelope plane of the basis (resting on a surface plate), local LS straightness deviation for all measured profiles (2 and 4) of both standards. The results of the comparison are the deviations of profiles and angles measured by the individual NMIs from the reference values. These resulted from the weighted mean of data from participating laboratories, while some of them were excluded on the basis of statistical evaluation. Graphical interpretations of all deviations are contained in the Final Report. In order to compare the individual deviations mutually (25 profiles for the granite square and 44 profiles for the cylinder), graphical illustrations of 'standard deviations' and both extreme values (max. and min.) of deviations were created. This regional supplementary comparison has provided independent information about the metrological properties of the measuring equipment and method used by the participating NMIs. The Final Report does not contain the En values. Participants could not estimate some contributions in the uncertainty budget on the basis of previous comparisons, since no comparison of this kind had ever been organized. Therefore the En value cannot reflect the actual state of the given NMI. Instead of En, an analysis has been performed by means of the Grubbs test according to ISO 5725-2. This comparison provided information about the state of provision of metrological services in the field of big squares measurement. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EUROMET, according to the provisions of the Mutual Recognition Arrangement (MRA).

  9. A six-month followup of a randomized trial comparing the efficacy of a lateral-wedge insole with subtalar strapping and an in-shoe lateral-wedge insole in patients with varus deformity osteoarthritis of the knee.

    PubMed

    Toda, Yoshitaka; Tsukimura, Noriko

    2004-10-01

    To assess the effect of a lateral-wedge insole with elastic strapping of the subtalar joint on the femorotibial angle in patients with varus deformity of the knee. The efficacy of a wedged insole with subtalar straps and that of a traditional wedged insole shoe insert were compared. Sixty-six female outpatients with knee osteoarthritis (OA) were randomized (according to birth date) to be treated with either the strapped or the traditional inserted insole. Standing radiographs with unilateral insole use were used to analyze the femorotibial angles for each patient. In both groups, the baseline and 6-month visual analog scale (VAS) scores for subjective knee pain and the Lequesne index scores for knee OA were compared. The 61 patients who completed the 6-month study were evaluated. At baseline, there was no significant difference in the femorotibial angle (P = 0.66) and the VAS score (P = 0.75) between the 2 groups. At the 6-month assessment, the 29 subjects wearing the subtalar-strapped insole demonstrated a significantly decreased femorotibial angle (P < 0.0001) and significantly improved VAS scores (P = 0.001) and Lequesne index scores (P = 0.033) compared with their baseline assessments. These significant differences were not observed in the 32 subjects assigned to the traditional shoe-inserted wedged insole. These results suggest that an insole with a subtalar strap maintained the valgus correction of the femorotibial angle in patients with varus knee OA for 6 months, indicating longer-term clinical improvement with the strapped insert compared with the traditional insert. Copyright 2004 American College of Rheumatology

  10. Kinetic measures of restabilisation during volitional stepping reveal age-related alterations in the control of mediolateral dynamic stability.

    PubMed

    Singer, Jonathan C; McIlroy, William E; Prentice, Stephen D

    2014-11-07

    Research examining age-related changes in dynamic stability during stepping has recognised the importance of the restabilisation phase, subsequent to foot-contact. While regulation of the net ground reaction force (GRFnet) line of action is believed to influence dynamic stability during steady-state locomotion, such control during restabilisation remains unknown. This work explored the origins of age-related decline in mediolateral dynamic stability by examining the line of action of GRFnet relative to the centre of mass (COM) during restabilisation following voluntary stepping. Healthy younger and older adults (n=20 per group) performed three single-step tasks (varying speed and step placement), altering the challenge to stability control. Age-related differences in magnitude and intertrial variability of the angle of divergence of GRFnet line of action relative to the COM were quantified, along with the peak mediolateral and vertical GRFnet components. The angle of divergence was further examined at discrete points during restabilisation, to uncover events of potential importance to stability control. Older adults exhibited a reduced angle of divergence throughout restabilisation. Temporal and spatial constraints on stepping increased the magnitude and intertrial variability of the angle of divergence, although not differentially among the older adults. Analysis of the time-varying angle of divergence revealed age-related reductions in magnitude, with increases in timing and intertrial timing variability during the later phase of restabilisation. This work further supports the idea that age-related challenges in lateral stability control emerge during restabilisation. Age-related alterations during the later phase of restabilisation may signify challenges with reactive control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Next-day residual effects of gabapentin, diphenhydramine, and triazolam on simulated driving performance in healthy volunteers: a phase 3, randomized, double-blind, placebo-controlled, crossover trial.

    PubMed

    Kay, Gary G; Schwartz, Howard I; Wingertzahn, Mark A; Jayawardena, Shyamalie; Rosenberg, Russell P

    2016-05-01

    Next-day residual effects of a nighttime dose of gabapentin 250 mg were evaluated on simulated driving performance in healthy participants in a randomized, placebo-controlled, double-blind, multicenter, four-period crossover study that included diphenhydramine citrate 76 mg and triazolam 0.5 mg. At treatment visits, participants (n = 59) were dosed at ~23:30, went to bed immediately, and awakened 6.5 h postdose for evaluation. The primary endpoint was the standard deviation of lateral position for the 100-km driving scenario. Additional measures of driving, sleepiness, and cognition were included. Study sensitivity was established with triazolam, which demonstrated significant next-day impairment on all driving endpoints, relative to placebo (p < 0.001). Gabapentin demonstrated noninferiority to placebo on standard deviation of lateral position and speed deviation but not for lane excursions. Diphenhydramine citrate demonstrated significant impairment relative to gabapentin and placebo on speed deviation (p < 0.05). Other comparisons were either nonsignificant or statistically ineligible per planned, sequential comparisons. Secondary endpoints for sleepiness and cognitive performance were supportive of these conclusions. Together, these data suggest that low-dose gabapentin had no appreciable next-day effects on simulated driving performance or cognitive functioning. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Impacted maxillary canines and root resorption of adjacent teeth: A retrospective observational study.

    PubMed

    Guarnieri, R; Cavallini, C; Vernucci, R; Vichi, M; Leonardi, R; Barbato, E

    2016-11-01

    The prevalence of impacted maxillary canine is reported to be between 1% and 3%. The lack of monitoring and the delay in the treatment of the impacted canine can cause different complications such as: displacement of adjacent teeth, loss of vitality of neighbouring teeth, shortening of the dental arch, follicular cysts, canine ankylosis, recurrent infections, recurrent pain, internal resorption of the canine and the adjacent teeth, external resorption of the canine and the adjacent teeth, combination of these factors. An appropriate diagnosis, accurate predictive analysis and early intervention are likely to prevent such undesirable effects. The objective is to evaluate, by means of a retrospective observational study, the possibility of carrying out a predictive analysis of root resorption adjacent to the impacted canines by means of orthopantomographs, so as to limit the prescription of additional 3D radiography. 120 subjects with unilateral or bilateral maxillary impacted canine were examined and 50 patients with 69 impacted maxillary canine (22 male, 28 female; mean age: 11.7 years) satisfied the inclusion criteria of the study. These patients were subjected to a basic clinical and radiographic investigation (orthopantomographs and computerized tomography). All panoramic films were viewed under standardized conditions for the evaluation of two main variables: maxillary canine angulations (a, b, g angles) and the overlapping between the impacted teeth and the lateral incisor (Analysis of Lindauer). Binary logistic regression was used to estimate the likelihood of resorbed lateral incisors depending on sector location and angle measurements. Results indicated that b angle has the greatest influence on the prediction of root resorption (predictive value of b angle = 76%). If β angle <18° and Lindauer = I, the probability of resorption is 0.06. Evaluation of b angle and superimposition lateral incisor/impacted canine analysed on orthopantomographs could be one of the evaluation criteria for prescribing second level examination (CT and CTCB) and for detecting root resorption of impacted maxillary canine adjacent teeth.

  13. Descriptive Quantitative Analysis of Rearfoot Alignment Radiographic Parameters.

    PubMed

    Meyr, Andrew J; Wagoner, Matthew R

    2015-01-01

    Although the radiographic parameters of the transverse talocalcaneal angle (tTCA), calcaneocuboid angle (CCA), talar head uncovering (THU), calcaneal inclination angle (CIA), talar declination angle (TDA), lateral talar-first metatarsal angle (lTFA), and lateral talocalcaneal angle (lTCA) form the basis of the preoperative evaluation and procedure selection for pes planovalgus deformity, the so-called normal values of these measurements are not well-established. The objectives of the present study were to retrospectively evaluate the descriptive statistics of these radiographic parameters (tTCA, CCA, THU, CIA, TDA, lTFA, and lTCA) in a large population, and, second, to determine an objective basis for defining "normal" versus "abnormal" measurements. As a secondary outcome, the relationship of these variables to the body mass index was assessed. Anteroposterior and lateral foot radiographs from 250 consecutive patients without a history of previous foot and ankle surgery and/or trauma were evaluated. The results revealed a mean measurement of 24.12°, 13.20°, 74.32%, 16.41°, 26.64°, 8.37°, and 43.41° for the tTCA, CCA, THU, CIA, TDA, lTFA, and lTCA, respectively. These were generally in line with the reported historical normal values. Descriptive statistical analysis demonstrated that the tTCA, THU, and TDA met the standards to be considered normally distributed but that the CCA, CIA, lTFA, and lTCA demonstrated data characteristics of both parametric and nonparametric distributions. Furthermore, only the CIA (R = -0.2428) and lTCA (R = -0.2449) demonstrated substantial correlation with the body mass index. No differentiations in deformity progression were observed when the radiographic parameters were plotted against each other to lead to a quantitative basis for defining "normal" versus "abnormal" measurements. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  14. 7-Chloro-5-(2-ethoxy­phen­yl)-1-methyl-3-propyl-2,6-dihydro-1H-pyrazolo[4,3-d]pyrimidine

    PubMed Central

    Zhou, Ming-Qiu; Zhu, Kai; Lv, Xiao-Ping; Han, Ping-Fang; Wei, Ping

    2009-01-01

    In the title compound, C17H21ClN4O, the benzene ring is oriented at dihedral angles of 1.59 (3) and 1.27 (3)° with respect to the pyrimidine and pyrazole rings, while the dihedral angle between the pyrimidine and pyrazole rings is 0.83 (3)°. An intra­molecular N—H⋯O hydrogen bond results in the formation of a planar (r.m.s. deviation 0.004 Å) six-membered ring. PMID:21577789

  15. Graded bit patterned magnetic arrays fabricated via angled low-energy He ion irradiation.

    PubMed

    Chang, L V; Nasruallah, A; Ruchhoeft, P; Khizroev, S; Litvinov, D

    2012-07-11

    A bit patterned magnetic array based on Co/Pd magnetic multilayers with a binary perpendicular magnetic anisotropy distribution was fabricated. The binary anisotropy distribution was attained through angled helium ion irradiation of a bit edge using hydrogen silsesquioxane (HSQ) resist as an ion stopping layer to protect the rest of the bit. The viability of this technique was explored numerically and evaluated through magnetic measurements of the prepared bit patterned magnetic array. The resulting graded bit patterned magnetic array showed a 35% reduction in coercivity and a 9% narrowing of the standard deviation of the switching field.

  16. Secondary Flows and Boundary-Layer Accumulations in Turbine Nozzles

    NASA Technical Reports Server (NTRS)

    Rohlik, Harold E; Kofskey, Milton G; Allen, Hubert W; Herzig, Howard Z

    1954-01-01

    An investigation of secondary-flow loss patterns originating in three sets of turbine nozzle blade passages was conducted by means of flow-visualization studies and detailed flow measurements. For all cases, high loss values were measured in the fluid downstream of the corners formed by the suction surfaces of the blades and the shrouds, and these losses were accompanied by discharge-angle deviations from design values. Despite the size of the loss regions and angle gradients, over-all mass-average blade efficiencies were of the order of 0.99 and 0.98 and, therefore, are not a good index of blade performance.

  17. Winding trajectories of noncircular composite shells

    NASA Astrophysics Data System (ADS)

    Nikityuk, V. A.; Fedorov, V. V.

    1995-07-01

    An approach has been proposed for determination of the trajectory parameters of a layer formed by winding of continuous ribbons on a complicated surface. An algorithm has been developed for determining the geodesic trajectories of the reinforcement fiber arrangement, reinforcement angles, and geodesic deviation angles. Conditions have been formulated for positional stability of the ribbons on the surface and avoidance of gaps and overlapping between the ribbons along with restrictions to the surface form. Results are given for a calculation of the geodesic turn parameters on a fuselage surface, which is not a surface of revolution, of a light airplane.

  18. 14 CFR 25.177 - Static lateral-directional stability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static lateral-directional stability. 25.177 Section 25.177 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... movements and forces must be substantially proportional to the angle of sideslip in a stable sense; and the...

  19. 14 CFR 25.177 - Static lateral-directional stability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static lateral-directional stability. 25.177 Section 25.177 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... movements and forces must be substantially proportional to the angle of sideslip in a stable sense; and the...

  20. An Energy Saving System for a Beam Pumping Unit

    PubMed Central

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-01-01

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance. PMID:27187402

Top