Science.gov

Sample records for lateral diffusion electrodes

  1. The structure of hydrophobic gas diffusion electrodes.

    NASA Technical Reports Server (NTRS)

    Giner, J.

    1972-01-01

    The 'flooded agglomerate' model of the Teflon-bonded gas diffusion electrode is discussed. A mathematical treatment of the 'flooded agglomerate' model is given; it can be used to predict the performance of the electrode as a function of measurable physical parameters.

  2. Lateral drug diffusion in human nails.

    PubMed

    Palliyil, Biji B; Li, Cong; Owaisat, Suzan; Lebo, David B

    2014-12-01

    The main objective of the current work is to demonstrate the process of passive lateral diffusion in the human nail plate and its effect on the passive transungual permeation of antifungal drug ciclopirox olamine (CPO). A water soluble dye, methyl red sodium salt (MR) was used to visualize the process of lateral diffusion using a novel suspended nail experiment. The decline in concentration of CPO correlates with that of concentration of MR from the proximal to the distal end of the nail in suspended nail study. Three toenails each were trimmed to 5 mm × 5 mm (25 mm(2)), 7 mm × 7 mm (49 mm(2)), and 9 mm × 9 mm (81 mm(2)) to study the extent and effect of lateral diffusion of the CPO on its in vitro transungual permeation. The permeation flux of CPO decreased as the surface area of the toenail increased. There was a positive correlation between the concentrations of CPO and MR in the area of application and in the peripheral area of the toenails of the three surface areas, confirming the findings in the suspended nail experiment. Profound lateral diffusion of CPO was demonstrated and shown to reduce the in vitro passive transungual drug permeation and prolong the lag-time in human toenails. The study data implies that during passive in vitro transungual permeation experiments, the peripheral nail around the area of drug application has to be kept to a minimum, in order to get reliable data which mimics the in vivo situation. PMID:24970585

  3. Lateral drug diffusion in human nails.

    PubMed

    Palliyil, Biji B; Li, Cong; Owaisat, Suzan; Lebo, David B

    2014-12-01

    The main objective of the current work is to demonstrate the process of passive lateral diffusion in the human nail plate and its effect on the passive transungual permeation of antifungal drug ciclopirox olamine (CPO). A water soluble dye, methyl red sodium salt (MR) was used to visualize the process of lateral diffusion using a novel suspended nail experiment. The decline in concentration of CPO correlates with that of concentration of MR from the proximal to the distal end of the nail in suspended nail study. Three toenails each were trimmed to 5 mm × 5 mm (25 mm(2)), 7 mm × 7 mm (49 mm(2)), and 9 mm × 9 mm (81 mm(2)) to study the extent and effect of lateral diffusion of the CPO on its in vitro transungual permeation. The permeation flux of CPO decreased as the surface area of the toenail increased. There was a positive correlation between the concentrations of CPO and MR in the area of application and in the peripheral area of the toenails of the three surface areas, confirming the findings in the suspended nail experiment. Profound lateral diffusion of CPO was demonstrated and shown to reduce the in vitro passive transungual drug permeation and prolong the lag-time in human toenails. The study data implies that during passive in vitro transungual permeation experiments, the peripheral nail around the area of drug application has to be kept to a minimum, in order to get reliable data which mimics the in vivo situation.

  4. Penetration and lateral diffusion characteristics of polycrystalline graphene barriers.

    PubMed

    Yoon, Taeshik; Mun, Jeong Hun; Cho, Byung Jin; Kim, Taek-Soo

    2014-01-01

    We report penetration and lateral diffusion behavior of environmental molecules on synthesized polycrystalline graphene. Penetration occurs through graphene grain boundaries resulting in local oxidation. However, when the penetrated molecules diffuse laterally, the oxidation region will expand. Therefore, we measured the lateral diffusion rate along the graphene-copper interface for the first time by the environment-assisted crack growth test. It is clearly shown that the lateral diffusion is suppressed due to the high van der Waals interaction. Finally, we employed bilayer graphene for a perfect diffusion barrier facilitated by decreased defect density and increased lateral diffusion path.

  5. Diffusion in biofilms respiring on electrodes

    SciTech Connect

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Beyenal, Haluk

    2012-11-15

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed for noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that (1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; (2) Drs at a given location decreases with G. sulfurreducens biofilm age; (3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and (4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms.

  6. DIFFUSION IN BIOFILMS RESPIRING ON ELECTRODES

    PubMed Central

    Renslow, RS; Babauta, JT; Majors, PD; Beyenal, H

    2013-01-01

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that 1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; 2) Drs at a given location decreases with G. sulfurreducens biofilm age; 3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and 4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms. PMID:23420623

  7. Characterization and optimization of liquid electrodes for lateral dielectrophoresis.

    PubMed

    Demierre, Nicolas; Braschler, Thomas; Linderholm, Pontus; Seger, Urban; van Lintel, Harald; Renaud, Philippe

    2007-03-01

    Using the concept of insulator-based "electrodeless" dielectrophoresis, we present a novel geometry for shaping electric fields to achieve lateral deviation of particles in liquid flows. The field is generated by lateral planar metal electrodes and is guided along access channels to the active area in the main channel. The equipotential surfaces at the apertures of the access channels behave as vertical "liquid" electrodes injecting the current into the main channel. The field between a pair of adjacent liquid electrodes generates the lateral dielectrophoretic force necessary for particle manipulation. We use this force for high-speed deviation of particles. By adding a second pair of liquid electrodes, we focus a particle stream. The position of the focused stream can be swept across the channel by adjusting the ratio of the voltages applied to the two pairs. Based on conformal mapping, we provide an analytical model for estimating the potential at the liquid electrodes and the field distribution in the main channel. We show that the simulated particle trajectories agree with observations. Finally, we show that the model can be used to optimize the device geometry in different applications. PMID:17330167

  8. Rapid prototyping of electrochemical lateral flow devices: stencilled electrodes.

    PubMed

    Aller Pellitero, Miguel; Kitsara, Maria; Eibensteiner, Friedrich; del Campo, F Javier

    2016-04-21

    A straightforward and very cost effective method is proposed to prototype electrodes using pressure sensitive adhesives (PSA) and a simple cutting technique. Two cutting methods, namely blade cutting and CO2 laser ablation, are compared and their respective merits are discussed. The proposed method consists of turning the protective liner on the adhesive into a stencil to apply screen-printing pastes. After the electrodes have been printed, the liner is removed and the PSA can be used as a backing material for standard lateral flow membranes. We present the fabrication of band electrodes down to 250 μm wide, and their characterization using microscopy techniques and cyclic voltammetry. The prototyping approach presented here facilitates the development of new electrochemical devices even if very limited fabrication resources are available. Here we demonstrate the fabrication of a simple lateral-flow device capable of determining glucose in blood. The prototyping approach presented here is highly suitable for the development of novel electroanalytical tools. PMID:26998899

  9. Tunable diffusive lateral inhibition in chemical cells⋆

    PubMed Central

    Li, Ning; Tompkins, Nathan; Gonzalez-Ochoa, Hector; Fraden, Seth

    2015-01-01

    The Belousov-Zhabotinsky (BZ) reaction has become the prototype of nonlinear chemical dynamics. Microfluidic techniques provide a convenient method for emulsifying BZ solutions into monodispersed drops with diameters of tens to hundreds of microns, providing a unique system in which reaction-diffusion theory can be quantitatively tested. In this work, we investigate monolayers of microfluidically generated BZ drops confined in close-packed two-dimensional (2D) arrays through experiments and finite element simulations. We describe the transition from oscillatory to stationary chemical states with increasing coupling strength, controlled by independently varying the reaction chemistry within a drop and diffusive flux between drops. For stationary drops, we studied how the ratio of stationary oxidized to stationary reduced drops varies with coupling strength. In addition, using simulation, we quantified the chemical heterogeneity sufficient to induce mixed stationary and oscillatory patterns. PMID:25795263

  10. Characterization of gas diffusion electrodes for metal-air batteries

    NASA Astrophysics Data System (ADS)

    Danner, Timo; Eswara, Santhana; Schulz, Volker P.; Latz, Arnulf

    2016-08-01

    Gas diffusion electrodes are commonly used in high energy density metal-air batteries for the supply of oxygen. Hydrophobic binder materials ensure the coexistence of gas and liquid phase in the pore network. The phase distribution has a strong influence on transport processes and electrochemical reactions. In this article we present 2D and 3D Rothman-Keller type multiphase Lattice-Boltzmann models which take into account the heterogeneous wetting behavior of gas diffusion electrodes. The simulations are performed on FIB-SEM 3D reconstructions of an Ag model electrode for predefined saturation of the pore space with the liquid phase. The resulting pressure-saturation characteristics and transport correlations are important input parameters for modeling approaches on the continuum scale and allow for an efficient development of improved gas diffusion electrodes.

  11. Numerical evaluation of lateral diffusion inside diffusive gradients in thin films samplers.

    PubMed

    Santner, Jakob; Kreuzeder, Andreas; Schnepf, Andrea; Wenzel, Walter W

    2015-05-19

    Using numerical simulation of diffusion inside diffusive gradients in thin films (DGT) samplers, we show that the effect of lateral diffusion inside the sampler on the solute flux into the sampler is a nonlinear function of the diffusion layer thickness and the physical sampling window size. In contrast, earlier work concluded that this effect was constant irrespective of parameters of the sampler geometry. The flux increase caused by lateral diffusion inside the sampler was determined to be ∼8.8% for standard samplers, which is considerably lower than the previous estimate of ∼20%. Lateral diffusion is also propagated to the diffusive boundary layer (DBL), where it leads to a slightly stronger decrease in the mass uptake than suggested by the common 1D diffusion model that is applied for evaluating DGT results. We introduce a simple correction procedure for lateral diffusion and demonstrate how the effect of lateral diffusion on diffusion in the DBL can be accounted for. These corrections often result in better estimates of the DBL thickness (δ) and the DGT-measured concentration than earlier approaches and will contribute to more accurate concentration measurements in solute monitoring in waters.

  12. Numerical Evaluation of Lateral Diffusion Inside Diffusive Gradients in Thin Films Samplers

    PubMed Central

    2015-01-01

    Using numerical simulation of diffusion inside diffusive gradients in thin films (DGT) samplers, we show that the effect of lateral diffusion inside the sampler on the solute flux into the sampler is a nonlinear function of the diffusion layer thickness and the physical sampling window size. In contrast, earlier work concluded that this effect was constant irrespective of parameters of the sampler geometry. The flux increase caused by lateral diffusion inside the sampler was determined to be ∼8.8% for standard samplers, which is considerably lower than the previous estimate of ∼20%. Lateral diffusion is also propagated to the diffusive boundary layer (DBL), where it leads to a slightly stronger decrease in the mass uptake than suggested by the common 1D diffusion model that is applied for evaluating DGT results. We introduce a simple correction procedure for lateral diffusion and demonstrate how the effect of lateral diffusion on diffusion in the DBL can be accounted for. These corrections often result in better estimates of the DBL thickness (δ) and the DGT-measured concentration than earlier approaches and will contribute to more accurate concentration measurements in solute monitoring in waters. PMID:25877251

  13. Lateral Membrane Diffusion Modulated by a Minimal Actin Cortex

    PubMed Central

    Heinemann, Fabian; Vogel, Sven K.; Schwille, Petra

    2013-01-01

    Diffusion of lipids and proteins within the cell membrane is essential for numerous membrane-dependent processes including signaling and molecular interactions. It is assumed that the membrane-associated cytoskeleton modulates lateral diffusion. Here, we use a minimal actin cortex to directly study proposed effects of an actin meshwork on the diffusion in a well-defined system. The lateral diffusion of a lipid and a protein probe at varying densities of membrane-bound actin was characterized by fluorescence correlation spectroscopy (FCS). A clear correlation of actin density and reduction in mobility was observed for both the lipid and the protein probe. At high actin densities, the effect on the protein probe was ∼3.5-fold stronger compared to the lipid. Moreover, addition of myosin filaments, which contract the actin mesh, allowed switching between fast and slow diffusion in the minimal system. Spot variation FCS was in accordance with a model of fast microscopic diffusion and slower macroscopic diffusion. Complementing Monte Carlo simulations support the analysis of the experimental FCS data. Our results suggest a stronger interaction of the actin mesh with the larger protein probe compared to the lipid. This might point toward a mechanism where cortical actin controls membrane diffusion in a strong size-dependent manner. PMID:23561523

  14. Modeling diffusion-induced stress in nanowire electrode structures

    NASA Astrophysics Data System (ADS)

    Deshpande, Rutooj; Cheng, Yang-Tse; Verbrugge, Mark W.

    There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, a large volume change on the order of a few to several hundred percent, can occur. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the active electrode materials. Our work is aimed at developing a mathematical model relating surface energy with diffusion-induced stresses in nanowire electrodes. With decreasing size of the electrode, the ratio of surface area to volume increases. Thus, surface energy and surface stress can play an important role in mitigating DISs in nanostructured electrodes. In this work, we establish relationships between the surface energy, surface stress, and the magnitude of DISs in nanowires. We find that DISs, especially the tensile stresses, can decrease significantly due to the surface effects. Our model also establishes a relationship between stress and the nanowire radius. We show that, with decreasing size, the electrode material will be less prone to mechanical degradation, leading to an increase in the life of lithium ion batteries, provided other phenomena are unaffected by increased surface area (e.g., chemical degradation reactions). Also we show that, in the case of nanostructures, surface strain energy is significant in magnitude comparing with bulk strain energy. A mathematical tool to calculate total strain energy is developed that can be used to compare strain energy with the fracture energy of that material in electrode system.

  15. Lateral Diffusion on Tubular Membranes: Quantification of Measurements Bias

    PubMed Central

    Sandrin, Fanny; Izeddin, Ignacio; Bassereau, Patricia; Triller, Antoine

    2011-01-01

    Single Particle Tracking (SPT) is a powerful technique for the analysis of the lateral diffusion of the lipid and protein components of biological membranes. In neurons, SPT allows the study of the real-time dynamics of receptors for neurotransmitters that diffuse continuously in and out synapses. In the simplest case where the membrane is flat and is parallel to the focal plane of the microscope the analysis of diffusion from SPT data is relatively straightforward. However, in most biological samples the membranes are curved, which complicates analysis and may lead to erroneous conclusions as for the mode of lateral diffusion. Here we considered the case of lateral diffusion in tubular membranes, such as axons, dendrites or the neck of dendritic spines. Monte Carlo simulations allowed us to evaluate the error in diffusion coefficient (D) calculation if the curvature is not taken into account. The underestimation is determined by the diameter of the tubular surface, the frequency of image acquisition and the degree of mobility itself. We found that projected trajectories give estimates that are 25 to 50% lower than the real D in case of 2D-SPT over the tubular surface. The use of 3D-SPT improved the measurements if the frequency of image acquisition was fast enough in relation to the mobility of the molecules and the diameter of the tube. Nevertheless, the calculation of D from the components of displacements in the axis of the tubular structure gave accurate estimate of D, free of geometrical artefacts. We show the application of this approach to analyze the diffusion of a lipid on model tubular membranes and of a membrane-bound GFP on neurites from cultured rat hippocampal neurons. PMID:21980531

  16. Semianalytical method of solution for solid phase diffusion in lithium ion battery electrodes: Variable diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Renganathan, Sindhuja; White, Ralph E.

    A semianalytical methodology based on the integral transform technique is proposed to solve the diffusion equation with concentration dependent diffusion coefficient in a spherical intercalation electrode particle. The method makes use of an integral transform pair to transform the nonlinear partial differential equation into a set of ordinary differential equations, which is solved with less computational efforts. A general solution procedure is presented and two illustrative examples are used to demonstrate the usefulness of this method for modeling of diffusion process in lithium ion battery electrode. The solutions obtained using the method presented in this study are compared to the numerical solutions.

  17. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    SciTech Connect

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    2013-09-20

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

  18. Lateral Diffusion of Nutrients by Mammalian Herbivores in Terrestrial Ecosystems

    PubMed Central

    Wolf, Adam; Doughty, Christopher E.; Malhi, Yadvinder

    2013-01-01

    Animals translocate nutrients by consuming nutrients at one point and excreting them or dying at another location. Such lateral fluxes may be an important mechanism of nutrient supply in many ecosystems, but lack quantification and a systematic theoretical framework for their evaluation. This paper presents a mathematical framework for quantifying such fluxes in the context of mammalian herbivores. We develop an expression for lateral diffusion of a nutrient, where the diffusivity is a biologically determined parameter depending on the characteristics of mammals occupying the domain, including size-dependent phenomena such as day range, metabolic demand, food passage time, and population size. Three findings stand out: (a) Scaling law-derived estimates of diffusion parameters are comparable to estimates calculated from estimates of each coefficient gathered from primary literature. (b) The diffusion term due to transport of nutrients in dung is orders of magnitude large than the coefficient representing nutrients in bodymass. (c) The scaling coefficients show that large herbivores make a disproportionate contribution to lateral nutrient transfer. We apply the diffusion equation to a case study of Kruger National Park to estimate the conditions under which mammal-driven nutrient transport is comparable in magnitude to other (abiotic) nutrient fluxes (inputs and losses). Finally, a global analysis of mammalian herbivore transport is presented, using a comprehensive database of contemporary animal distributions. We show that continents vary greatly in terms of the importance of animal-driven nutrient fluxes, and also that perturbations to nutrient cycles are potentially quite large if threatened large herbivores are driven to extinction. PMID:23951141

  19. Diffuse charge and Faradaic reactions in porous electrodes.

    PubMed

    Biesheuvel, P M; Fu, Yeqing; Bazant, Martin Z

    2011-06-01

    Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage capacities for ions and electrons, to improve the transport of mass and charge, and to enhance reaction rates. Existing porous electrode theories make a number of simplifying assumptions: (i) The charge-transfer rate is assumed to depend only on the local electrostatic potential difference between the electrode matrix and the pore solution, without considering the structure of the double layer (DL) formed in between; (ii) the charge-transfer rate is generally equated with the salt-transfer rate not only at the nanoscale of the matrix-pore interface, but also at the macroscopic scale of transport through the electrode pores. In this paper, we extend porous electrode theory by including the generalized Frumkin-Butler-Volmer model of Faradaic reaction kinetics, which postulates charge transfer across the molecular Stern layer located in between the electron-conducting matrix phase and the plane of closest approach for the ions in the diffuse part of the DL. This is an elegant and purely local description of the charge-transfer rate, which self-consistently determines the surface charge and does not require consideration of reference electrodes or comparison with a global equilibrium. For the description of the DLs, we consider the two natural limits: (i) the classical Gouy-Chapman-Stern model for thin DLs compared to the macroscopic pore dimensions, e.g., for high-porosity metallic foams (macropores >50 nm) and (ii) a modified Donnan model for strongly overlapping DLs, e.g., for porous activated carbon particles (micropores <2 nm). Our theory is valid for electrolytes where both ions are mobile, and it accounts for voltage and concentration differences not only on the macroscopic scale of the full electrode, but also on the local scale of the DL. The model is simple enough to allow us to derive analytical approximations for the steady-state and early transients. We

  20. Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization.

    PubMed Central

    Sowers, A E; Hackenbrock, C R

    1981-01-01

    A method combining electrophoresis and freeze-fracture electron microscopy is described; the method was used to determine the lateral diffusion coefficient of intramembrane particles (integral proteins) in the mitochondrial inner membrane. An electric current was passed through microsuspensions of purified, spherical inner membranes at pH 7.4, which caused an electrophoretic migration of intramembrane particles in the membrane plane into a single, crowded patch facing the positive electrode. The membrane microsuspensions were quick-frozen at specified times after the packed particles were released from the electrophoretic force and while the particles were diffusing back to a random distribution. Observed concentration gradients of intramembrane particles during this time were quantitatively compared with and found to follow a mathematical model for Fickian diffusion of particles on a spherical membrane. The results determine the kinetics of free diffusion of integral proteins at the resolution of individual proteins. The diffusion coefficient of the integral proteins in the mitochondrial inner membrane was determined to be 8.3 X 10(-10) cm2/sec at 20 degrees C, from which a root-mean-square displacement of 57 nm in 10 msec is predicted. Images PMID:6947228

  1. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.

    PubMed

    Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong

    2016-01-20

    Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs.

  2. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.

    PubMed

    Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong

    2016-01-20

    Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs. PMID:26699194

  3. Influence of Alcohols on the Lateral Diffusion in Phospholipid Membranes.

    PubMed

    Rifici, Simona; D'Angelo, Giovanna; Crupi, Cristina; Branca, Caterina; Conti Nibali, Valeria; Corsaro, Carmelo; Wanderlingh, Ulderico

    2016-02-25

    The effects of hexanol and octanol on the lateral mobility of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayer are investigated by means of pulsed-gradient stimulated-echo NMR spectroscopy. Three distinct diffusions are identified for the DMPC/alcohol systems. They are ascribed to the water, the alcohol, and the lipid. We find that the presence of alcohols promotes the lipid diffusion process both in the liquid and in the interdigitated phases. Furthermore, using the Arrhenius approach, the activation energies are calculated. An explanation in terms of a free volume model, that takes into account also the observed increase of the activation energy in both phases, is proposed. The results obtained here are compared with those presented in our previous work on 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) in order to examine the dependence of the lipid translational diffusion process upon the membrane acyl chain length. A peculiar influence of alcohols on different membranes is found.

  4. Lateral Diffusion of Bedload Transport under Laminar Flow

    NASA Astrophysics Data System (ADS)

    Ortiz, C. P.; Houssais, M.; Purohit, P. K.; Durian, D. J.; Jerolmack, D. J.

    2014-12-01

    Lateral sediment transport is a key momentum-exchange mechanism to model equilibrium channel geometry and channel bar evolution. We study sediment transport from a statistical mechanical point of view akin to Furbish et al. 2012. This approach holds promise for linking grain-scale motion to macroscopic transport, but there are few data to definitively develop and test such models. We study an experimental model river, composed of monodisperse acrylic spheres dispersed in silicon oil, driven by a layer of fluid under steady shear. We choose to drive fluid flow in the laminar regime (Re < 1) to suppress fluid turbulence and isolate granular and bed structure controls. We use a refractive-index-matched laser scanning technique to observe the motion of particles at the surface of the bed as well as the particle dynamics below the surface. We study how the probability distribution of displacements varies as a function of distance from the bed surface and as a function of distance to the channel center. In the streamwise direction, in agreement with Furbish et al. 2012, we find that the dynamics can be decomposed into an advection and a diffusion term. In the lateral direction, we find a competition between diffusion and an elastic-like interaction with the bed. We study this lateral stochastic process and find a need to introduce two parameters to quantify this competition. The first parameter describes the tendency for particles to reside near the center of the channel and the second parameter describes the kinetic energy distribution of the particles. We study how the requisite averaging scales and ensemble sizes to achieve statistically convergent parameters, and we explore how these parameters depend on the driving rate.

  5. Single crystalline Si substrate growth by lateral diffusion epitaxy

    NASA Astrophysics Data System (ADS)

    Li, Bo; Yu, Hao Ling; Shen, Huaxiang; Kitai, Adrian

    2013-03-01

    A novel crystal growth method named lateral diffusion epitaxy (LDE) as well as the necessary growth apparatus are described in detail. Single crystalline Si strips are grown on (1 1 1) Si substrates by LDE. The thickness of the LDE Si strips is around 100 μm, and the aspect ratio of width to thickness is around 2 which is an improvement compared with Si strips grown by conventional liquid phase epitaxy (LPE). The LDE Si strip can be peeled off from the substrate for further device processing since the 100 μm thickness provides reasonable mechanical strength. Due to the low cost of LDE technology it is potentially a good candidate for PV application if the LDE can achieve continuous growth and therefore grow Si strips in sizes for practical application.

  6. FABRICATION OF LATERAL ORGANIC SPIN VALVES BASED ON La0.7Sr0.3MnO3 ELECTRODES

    NASA Astrophysics Data System (ADS)

    Jiang, S. W.; Wang, P.; Jiang, S. C.; Chen, B. B.; Wang, M.; Jiang, Z. S.; Wu, D.

    2014-06-01

    We report the successful fabrication of lateral organic spin valves (OSVs) using polycrystalline pentacene as spacer and half-metallic La0.7Sr0.3MnO3 (LSMO) as two electrodes. The distance between two electrodes ranges from 30 nm to 100 nm. The current-voltage characteristics follow the power law relation, which are attributed to the space charge limited current behavior. The devices with a spacing of 30 nm exhibits clear spin-valve characteristics with a magnetoresistance (MR) ratio of 2% at 9 K. The MR effects disappear for electrode spacing about 100 nm, suggesting that the spin diffusion length is less than 100 nm.

  7. Fabrication of lateral electrodes on semiconductor nanowires through structurally matched insulation for functional optoelectronics.

    PubMed

    Sheng, Yun; Sun, Huabin; Wang, Jianyu; Gao, Fan; Wang, Junzhuan; Pan, Lijia; Pu, Lin; Zheng, Youdou; Shi, Yi

    2013-01-18

    A strategy of using structurally matched alumina insulation to produce lateral electrodes on semiconductor nanowires is presented. Nanowires in the architecture are structurally matched with alumina insulation using selective anodic oxidation. Lateral electrodes are fabricated by directly evaporating metallic atoms onto the opposite sides of the nanowires. The integrated architecture with lateral electrodes propels carriers to transport them across nanowires and is crucially beneficial to the injection/extraction in optoelectronics. The matched architecture and the insulating properties of the alumina layer are investigated experimentally. ZnO nanowires are functionalized into an ultraviolet photodiode as an example. The present strategy successfully implements an advantageous architecture and is significant in developing diverse semiconductor nanowires in optoelectronic applications.

  8. Fabrication of lateral electrodes on semiconductor nanowires through structurally matched insulation for functional optoelectronics

    NASA Astrophysics Data System (ADS)

    Sheng, Yun; Sun, Huabin; Wang, Jianyu; Gao, Fan; Wang, Junzhuan; Pan, Lijia; Pu, Lin; Zheng, Youdou; Shi, Yi

    2013-01-01

    A strategy of using structurally matched alumina insulation to produce lateral electrodes on semiconductor nanowires is presented. Nanowires in the architecture are structurally matched with alumina insulation using selective anodic oxidation. Lateral electrodes are fabricated by directly evaporating metallic atoms onto the opposite sides of the nanowires. The integrated architecture with lateral electrodes propels carriers to transport them across nanowires and is crucially beneficial to the injection/extraction in optoelectronics. The matched architecture and the insulating properties of the alumina layer are investigated experimentally. ZnO nanowires are functionalized into an ultraviolet photodiode as an example. The present strategy successfully implements an advantageous architecture and is significant in developing diverse semiconductor nanowires in optoelectronic applications.

  9. Enhanced Organic Solar Cell Stability through the Effective Blocking of Oxygen Diffusion using a Self-Passivating Metal Electrode.

    PubMed

    Lee, Hansol; Jo, Sae Byeok; Lee, Hyo Chan; Kim, Min; Sin, Dong Hun; Ko, Hyomin; Cho, Kilwon

    2016-03-01

    A new and simple strategy for enhancing the stability of organic solar cells (OSCs) was developed by using self-passivating metal top electrodes. Systematic investigations on O2 permeability of Al top electrodes revealed that the main pathways for oxidation-induced degradation could be greatly suppressed by simply controlling the nanoscale morphology of the Al electrode. The population of nanoscale pinholes among Al grains, which critically decided the diffusion of O2 molecules toward the Al-organic interfaces that are vulnerable to oxidation, was successfully regulated by rapidly depositing Al or promoting lateral growth among the Al grains, accompanied by increasing the deposition thickness. Our observations suggested that the stability of OSCs with conventional architectures might be greatly enhanced simply by controlling the fabrication conditions of the Al top electrode, without the aid of additional secondary treatments.

  10. Lateral actuation of an organic droplet on conjugated polymer electrodes via imbalanced interfacial tensions.

    PubMed

    Xu, Wei; Xu, Jian; Li, Xin; Tian, Ye; Choi, Chang-Hwan; Yang, Eui-Hyeok

    2016-08-17

    This paper presents a new mechanism for the controlled lateral actuation of organic droplets on dodecylbenzenesulfonate-doped polypyrrole (PPy(DBS)) electrodes at low voltages (∼0.9 V) in an aqueous environment. The droplet actuation is based on the tunable surface wetting properties of the polymer electrodes induced by electrochemical redox reactions. The contact angle of a dichloromethane (DCM) droplet on the PPy(DBS) surface switches between ∼119° upon oxidation (0.6 V) and ∼150° upon reduction (-0.9 V) in 0.1 M NaNO3 solution. The droplet placed across the reduced and oxidized PPy(DBS) electrodes experiences imbalanced interfacial tensions, which prompt the actuation of the droplet from the reduced electrode to the oxidized electrode. The lateral actuation of DCM droplets on two PPy(DBS) electrodes is demonstrated, and the actuation process is studied. The driving force due to the imbalanced interfacial tensions is estimated to be approximately 10(-7) N for a 6 μL droplet. PMID:27426489

  11. Comparison of lateral and vertical diffusion in several valleys

    SciTech Connect

    Barr, S.

    1983-01-01

    The turbulent dispersion of tracers nocturnal in four valleys was examined. Two are reasonably large with greater than 600-m terrain relief and two are well-formed but are shallow and narrow. Both Anderson Creek, California and Parachute Creek, Colorado are large and deep enough to produce a systematic cool air drainage wind regime although the difference in valley shapes makes the structure of that wind field quite different. Parachute Creek is a deep linear valley in which a vigorous down-valley flow develops and exits at the mouth without significant obstruction. Anderson Creek is a three-dimensional bowl with a very flat outflow region from which the cool air backs up to form a quasi-stagnant pool 200 to 300 m deep. Inhomogeneous turbulence is a major factor in the transport history of tracers in Anderson Creek. In the slope-wind potion of the basin the plume growth is systematic and about 1.5 to 2 Pasquill-Gifford categories more vigorous than estimated by radiation and windspeed. The slower mean wind and greater meandering that the plume encounters in the cool air pool makes a distinct change in the tracer cloud behavior. Residence times are long and the apparent width of a time integrated plume is much greater than predicted by plume model considerations. The two small-scale terrain features, Corral Gulch and Los Alamos Canyon, tend to channel the wind generated locally on the next larger scale but produce only weak, shallow slope-wind characteristics themselves. The gross diffusion is more vigorous by about one Pasquill-Gifford category than indicated by the radiation- windspeed system and is consistent with measured sigma/sub A/ values. Both valleys tend to constrain the lateral spread of tracer. Vertical growth estimates suggest that plumes can grow above the height of the valley walls. It is reasonable to expect that material thus exhaled by a valley is distributed in the surrounding area including adjacent valleys.

  12. Electrochemical disinfection using the gas diffusion electrode system.

    PubMed

    Xu, Wenying; Li, Ping; Dong, Bin

    2010-01-01

    A study on the electrochemical disinfection with H2O2 generated at the gas diffusion electrode (GDE) from active carbon/polytetrafluoroethylene was performed in a non-membrane cell. The effects of Pt load and the pore-forming agent content in GDE, and operating conditions were investigated. The experimental results showed that nearly all bacterial cultures inoculated in the secondary effluent from wastewater treatment plant could be inactivated within 30 min at a current density of 10 mA/cm2. The disinfection improved with increasing Pt load. Addition of the pore-forming agent NH4HCO3 improved the disinfection, while a drop in the pH value resulted in a rapid rise of germicidal efficacy and the disinfection time was shortened with increasing oxygen flow rate. Adsorption was proved to be ineffective in destroying bacteria, while germicidal efficacy increased with current density. The acceleration rate was different, it initially increased with current density. Then decreased, and finally reached a maximum at a current density of 6.7 mA/cm2. The disinfection also improved with decreasing total bacterial count. The germicidal efficacy in the cathode compartment was approximately the same as in the anode compartment, indicating that the contribution of direct oxidation and the indirect treatment of bacterial cultures by hydroxyl radical was similar to the oxidative indirect effect of the generated H2O2.

  13. [Electrochemical disinfection using the gas diffusion electrode system].

    PubMed

    Xu, Wen-Ying; Li, Ping; Dong, Bin

    2010-01-01

    Study on the electrochemical disinfection with the H2O2 produced at the gas diffusion electrode (GDE) prepared from active carbon/ poly-tetrafluoroethylene (PTFE) was performed in the non-membrane cell. The effects of PTFE mass fraction W(PTFE) and content of the pore-forming agent in GDE m(NH4CO3), operating conditions such as pH value and oxygen flow rate Q(o2)) on disinfection were investigated, respectively. The experimental results showed that H2 O2 reached peak production at W(PTFE) of 0.5 in GDE. Addition of the pore-forming agent in the appropriate amount improved the disinfection, and this phenomenon was more obvious at neutral pH than at acidic pH. BET specific area analysis indicated that the average pore size in the membrane electrode first decreased significantly with the increasing amount of pore-forming agent, and then increased moderately. This helped the mass transfer of oxygen at the GDE. Adsorption made little or no progress to kill the bacteria during the electrolysis. Drop of pH value resulted in a rapid rise of the germicidal efficacy. This system had a broad pH coverage: when total bacterial count in raw water was 10(6) CFU x mL(-1), pH 3-10,the germicidal efficacy was greater than 80% after 30 min electrolysis using the GDE with W(Pt) of 3 per thousand as cathode. Increase of the oxygen flow rate Q(o2) within limits had little influence on the production of H2 O2 and the succeeding disinfection. On one hand, resistance of the solution and energy consumption on the disinfection increased at high oxygen flow rate, which gave rise to an increase in the operating cost of disinfection with the GDE system; on the other hand, treatment time could be reduced reasonably at high oxygen flow rate, which leads to reduction of equipment investment. Killing mechanism study showed that the direct oxidation and formation of the free radicals at the anode played a greater role in the beginning, and then the oxidative indirect effect of the generated H2 O2 at

  14. Lateral spin valves with two-different Heusler-alloy electrodes on the same platform

    SciTech Connect

    Oki, S.; Yamada, S.; Tanikawa, K.; Yamasaki, K.; Miyao, M.; Hamaya, K.

    2013-11-18

    Using room-temperature molecular beam epitaxy on Si(111), we demonstrate Heusler-alloy bilayers consisting of L2{sub 1}-Co{sub 2}FeSi (CFS) and D0{sub 3}-Fe{sub 3}Si (FS). By fabricating lateral spin valves with L2{sub 1}-CFS and D0{sub 3}-FS electrodes, we can see ideal spin signals even though we use one L2{sub 1}-CFS as a spin injector and another D0{sub 3}-FS as a spin detector. The difference in the spin absorption between L2{sub 1}-CFS and D0{sub 3}-FS can also be examined, and we find that the spin resistance of D0{sub 3}-FS is larger than that of L2{sub 1}-CFS. This work will be useful for understanding spin transport in lateral spin-valve devices with different Heusler-alloy electrodes.

  15. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  16. Time of Flight Electrochemistry: Diffusion Coefficient Measurements Using Interdigitated Array (IDA) Electrodes

    SciTech Connect

    Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.

    2014-09-26

    A simple and straightforward method for measuring diffusion coefficients using interdigitated array (IDA) electrodes is reported. The method does not require that the exact electrode area be known but depends only the size of the gap between the IDA electrode pairs. Electroactive molecules produced at the generator electrode of the IDA by a voltage step or scan can diffuse to the collector electrode and the time delay before the current for the reverse electrochemical reaction is detected at the collector is used to calculate the diffusion coefficient. The measurement of the diffusion rate of Ru(NH3)6+2 in aqueous solution has been used as an example measuring diffusion coefficients using this method. Additionally, a digital simulation of the electrochemical response of the IDA electrodes was used to simulate the entire current/voltage/time behavior of the system and verify the experimentally measured diffusion coefficients. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences.

  17. The membrane skeleton of erythrocytes: models of its effect on lateral diffusion.

    PubMed

    Saxton, M J

    1990-01-01

    The membrane skeleton, a network of structural proteins attached to the cytoplasmic surface of the plasma membrane, hinders lateral diffusion of integral proteins. 2. In some types of cells, such as epithelial cells and nerve cells, the obstruction of lateral diffusion by the membrane skeleton is one of the mechanisms by which proteins are localized to domains on the cell surface. 3. The effect of the membrane skeleton on lateral diffusion may involve steric hindrance, transient binding or both. Three pictures of the effect are reviewed, the discrete barrier model, the continuous barrier model and the transient binding model. 4. Experiments to distinguish the models are discussed.

  18. Electrochemical measurement of lateral diffusion coefficients of ubiquinones and plastoquinones of various isoprenoid chain lengths incorporated in model bilayers.

    PubMed Central

    Marchal, D; Boireau, W; Laval, J M; Moiroux, J; Bourdillon, C

    1998-01-01

    The long-range diffusion coefficients of isoprenoid quinones in a model of lipid bilayer were determined by a method avoiding fluorescent probe labeling of the molecules. The quinone electron carriers were incorporated in supported dimyristoylphosphatidylcholine layers at physiological molar fractions (<3 mol%). The elaborate bilayer template contained a built-in gold electrode at which the redox molecules solubilized in the bilayer were reduced or oxidized. The lateral diffusion coefficient of a natural quinone like UQ10 or PQ9 was 2.0 +/- 0.4 x 10(-8) cm2 s(-1) at 30 degrees C, two to three times smaller than the diffusion coefficient of a lipid analog in the same artificial bilayer. The lateral mobilities of the oxidized or reduced forms could be determined separately and were found to be identical in the 4-13 pH range. For a series of isoprenoid quinones, UQ2 or PQ2 to UQ10, the diffusion coefficient exhibited a marked dependence on the length of the isoprenoid chain. The data fit very well the quantitative behavior predicted by a continuum fluid model in which the isoprenoid chains are taken as rigid particles moving in the less viscous part of the bilayer and rubbing against the more viscous layers of lipid heads. The present study supports the concept of a homogeneous pool of quinone located in the less viscous region of the bilayer. PMID:9545054

  19. The lateral diffusion of lipid probes in the surface membrane of Schistosoma mansoni

    PubMed Central

    1986-01-01

    The technique of fluorescence recovery after photobleaching was used to measure the lateral diffusion of fluorescent lipid analogues in the surface membrane of Schistosoma mansoni. Our data reveal that although some lipids could diffuse freely others exhibited restricted lateral diffusion. Quenching of lipid fluorescence by a non-permeant quencher, trypan blue, showed that there was an asymmetric distribution of lipids across the double bilayer of mature parasites. Those lipids that diffused freely were found to reside mainly in the external monolayer of the outer membrane whereas lipids with restricted lateral diffusion were located mainly in one or more of the monolayers beneath the external monolayer. Formation of surface membrane blebs allowed us to measure the lateral diffusion of lipids in the membrane without the influence of underlying cytoskeletal structures. The restricted diffusion found on the normal surface membrane of mature parasites was found to be released in membrane blebs. Quenching of fluorescent lipids on blebs indicated that all probes were present almost entirely in the external monolayer. Juvenile worms exhibited lower lateral diffusion coefficients than mature parasites: in addition, the lipids partitioned into the external monolayer. The results are discussed in terms of membrane organization, cytoskeletal contacts, and biological significance. PMID:3745270

  20. Application of gas diffusion electrodes in bioelectrochemical syntheses and energy conversion.

    PubMed

    Horst, Angelika E W; Mangold, Klaus-Michael; Holtmann, Dirk

    2016-02-01

    Combining the advantages of biological components (e.g., reaction specificity, self-replication) and electrochemical techniques in bioelectrochemical systems offers the opportunity to develop novel efficient and sustainable processes for the production of a number of valuable products. The choice of electrode material has a great impact on the performance of bioelectrochemical systems. In addition to the redox process at the electrodes, interactions of biocatalysts with electrodes (e.g., enzyme denaturation or biofouling) need to be considered. In recent years, gas diffusion electrodes (GDEs) have proved to be very attractive electrodes for bioelectrochemical purposes. GDEs are porous electrodes, that posses a large three-phase boundary surface. At this interface, a solid catalyst supports the electrochemical reaction between gaseous and liquid phase. This mini-review discusses the application of GDEs in microbial and enzymatic fuel cells, for microbial electrolysis, in biosensors and for electroenzymatic synthesis reactions.

  1. Static and Dynamic Effects of Lateral Carrier Diffusion in Semiconductor Lasers

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. It is well known that the value of diffusion coefficients affects the threshold pumping current of a semiconductor laser. At the same time, the strength of carrier diffusion process is expected to affect the modulation bandwidth of an AC-modulated laser. It is important not only to investigate the combined DC and AC effects due to carrier diffusion, but also to separate the AC effects from that of the combined effects in order to provide design insights for high speed modulation. In this presentation, we apply a hydrodynamic model developed by the present authors recently from the semiconductor Bloch equations. The model allows microscopic calculation of the lateral carrier diffusion coefficient, which is a nonlinear function of the carrier density and plasma temperature. We first studied combined AC and DC effects of lateral carrier diffusion by studying the bandwidth dependence on diffusion coefficient at a given DC current under small signal modulation. The results show an increase of modulation bandwidth with decrease in the diffusion coefficient. We simultaneously studied the effects of nonlinearity in the diffusion coefficient. To clearly identify how much of the bandwidth increase is a result of decrease in the threshold pumping current for smaller diffusion coefficient, thus an effective increase of DC pumping, we study the bandwidth dependence on diffusion coefficient at a given relative pumping. A detailed comparison of the two cases will be presented.

  2. Exploratory laboratory study of lateral turbulent diffusion at the surface of an alluvial channel

    USGS Publications Warehouse

    Sayre, William W.; Chamberlain, A.R.

    1964-01-01

    In natural streams turbulent diffusion is one of the principal mechanisms by which liquid and suspended-particulate contaminants are dispersed in the flow. A knowledge of turbulence characteristics is therefore essential in predicting the dispersal rates of contaminants in streams. In this study the theory of diffusion by continuous movements for homogeneous turbulence is applied to lateral diffusion at the surface of an open channel in which there is uniform flow. An exploratory-laboratory investigation was conducted in which the lateral dispersion at the water surface of a sand-Led flume was studied by measuring the lateral spread from a point source of small floating polyethylene articles. The experiment was restricted to a single set of low and channel geometry conditions. The results of the study indicate that with certain restrictions lateral dispersion in alluvial channels may be successfully described by the theory of diffusion by continuous movements. The experiment demonstrates a means for evaluating the lateral diffusion coefficient and also methods for quantitatively estimating fundamental turbulence properties, such as the intensity and the Lagrangian integral scale of turbulence in an alluvial channel. The experimental results show that with increasing distance from the source the coefficient of lateral turbulent diffusion increases initially but tends toward a constant limiting value. This result is in accordance with turbulent diffusion theory. Indications are that the distance downstream from the source required for the diffusion coefficient to reach its limiting value is actually very small when compared to the length scale of most diffusion phenomena in natural streams which are of practical interest.

  3. Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures.

    PubMed

    Bogaert, Kevin; Liu, Song; Chesin, Jordan; Titow, Denis; Gradečak, Silvija; Garaj, Slaven

    2016-08-10

    Controlled growth of two-dimensional transition metal dichalcogenide (TMD) lateral heterostructures would enable on-demand tuning of electronic and optoelectronic properties in this new class of materials. Prior to this work, compositional modulations in lateral TMD heterostructures have been considered to depend solely on the growth chronology. We show that in-plane diffusion can play a significant role in the chemical vapor deposition of MoS2/WS2 lateral heterostructures leading to a variety of nontrivial structures whose composition does not necessarily follow the growth order. Optical, structural, and compositional studies of TMD crystals captured at different growth temperatures and in different diffusion stages suggest that compositional mixing versus segregation are favored at high and low growth temperatures, respectively. The observed diffusion mechanism will expand the realm of possible lateral heterostructures, particularly ones that cannot be synthesized using traditional methods.

  4. Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures.

    PubMed

    Bogaert, Kevin; Liu, Song; Chesin, Jordan; Titow, Denis; Gradečak, Silvija; Garaj, Slaven

    2016-08-10

    Controlled growth of two-dimensional transition metal dichalcogenide (TMD) lateral heterostructures would enable on-demand tuning of electronic and optoelectronic properties in this new class of materials. Prior to this work, compositional modulations in lateral TMD heterostructures have been considered to depend solely on the growth chronology. We show that in-plane diffusion can play a significant role in the chemical vapor deposition of MoS2/WS2 lateral heterostructures leading to a variety of nontrivial structures whose composition does not necessarily follow the growth order. Optical, structural, and compositional studies of TMD crystals captured at different growth temperatures and in different diffusion stages suggest that compositional mixing versus segregation are favored at high and low growth temperatures, respectively. The observed diffusion mechanism will expand the realm of possible lateral heterostructures, particularly ones that cannot be synthesized using traditional methods. PMID:27438807

  5. Dynamics of the atmospheric pressure diffuse dielectric barrier discharge between cylindrical electrodes in roll-to-roll PECVD reactor

    NASA Astrophysics Data System (ADS)

    Starostin, Sergey A.; Welzel, Stefan; Liu, Yaoge; van der Velden-Schuermans, Bernadette; Bouwstra, Jan B.; van de Sanden, Mauritius C. M.; de Vries, Hindrik W.

    2015-07-01

    The high current diffuse dielectric barrier discharge (DBD) was operated in a bi-axial cylindrical electrode configuration using nitrogen, oxygen and argon gas flow with the addition of tetraethyl orthosilicate as precursor for silica-like film deposition. The behaviour of the transient plasma was visualized by means of fast imaging from two orthogonal directions. The formation and propagation (~3 × 104 m s-1) of lateral ionization waves with the transverse light emission structure similar to the low pressure glow discharge was observed at time scales below 1 µs. Despite plasma non-uniformity at nanosecond time scale the deposition process on the web-rolled polymer results in smooth well adherent films with good film uniformity and excellent gas diffusion barrier properties. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  6. Lateral Diffusion of CO2 in Leaves Is Not Sufficient to Support Photosynthesis[w

    PubMed Central

    Morison, James I.L.; Gallouët, Emily; Lawson, Tracy; Cornic, Gabriel; Herbin, Raphaèle; Baker, Neil R.

    2005-01-01

    Lateral diffusion of CO2 was investigated in photosynthesizing leaves with different anatomy by gas exchange and chlorophyll a fluorescence imaging using grease to block stomata. When one-half of the leaf surface of the heterobaric species Helianthus annuus was covered by 4-mm-diameter patches of grease, the response of net CO2 assimilation rate (A) to intercellular CO2 concentration (Ci) indicated that higher ambient CO2 concentrations (Ca) caused only limited lateral diffusion into the greased areas. When single 4-mm patches were applied to leaves of heterobaric Phaseolus vulgaris and homobaric Commelina communis, chlorophyll a fluorescence images showed dramatic declines in the quantum efficiency of photosystem II electron transport (measured as Fq′/Fm′) across the patch, demonstrating that lateral CO2 diffusion could not support A. The Fq′/Fm′ values were used to compute images of Ci across patches, and their dependence on Ca was assessed. At high Ca, the patch effect was less in C. communis than P. vulgaris. A finite-volume porous-medium model for assimilation rate and lateral CO2 diffusion was developed to analyze the patch images. The model estimated that the effective lateral CO2 diffusion coefficients inside C. communis and P. vulgaris leaves were 22% and 12% of that for free air, respectively. We conclude that, in the light, lateral CO2 diffusion cannot support appreciable photosynthesis over distances of more than approximately 0.3 mm in normal leaves, irrespective of the presence or absence of bundle sheath extensions, because of the CO2 assimilation by cells along the diffusion pathway. PMID:16113223

  7. Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection

    DOEpatents

    Sun, Jiangang; Deemer, Chris

    2003-01-01

    A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.

  8. Vanadium diaphragm electrode serves as hydrogen diffuser in lithium hydride cell

    NASA Technical Reports Server (NTRS)

    Crouthamel, C. E.; Heinrich, R. R.; Johnson, C. E.

    1967-01-01

    Lithium hydride cell uses vanadium diaphragm electrode as a hydrogen diffuser. Vanadium is high in hydrogen gas solubility and permeability, is least sensitive to adverse surface effects, maintains good mechanical strength in hydrogen atmospheres, and appears to be compatible with all alkali-halide electrolytes and lithium metals.

  9. A quantitative radioluminographic imaging method for evaluating lateral diffusion rates in skin.

    PubMed

    Rush, Allison K; Miller, Matthew A; Smith, Edward D; Kasting, Gerald B

    2015-10-28

    A method is presented for measuring the lateral diffusion coefficients of exogenously applied compounds on excised skin. The method involves sequential high resolution imaging of the spatial distribution of β-radiation associated with [(14)C]-labeled compounds to monitor the development of the concentration profile on the skin surface. It is exemplified by measurements made on three radiolabeled test compounds--caffeine, testosterone, and zinc pyrithione (ZnPT)--administered as solutions. Lateral diffusivity is expected to be an important determinant of the topical bioavailability of ZnPT, which is characteristically administered as a fine suspension and must reach microorganisms in molecular form to exert biocidal activity. Application of the test compounds at levels below and above their estimated saturation doses in the upper stratum corneum allows one to distinguish between diffusion-limited and dissolution rate-limited kinetics. The effective lateral diffusivities of the two chemically stable reference compounds, caffeine and testosterone, were (1-4) × 10(-9) cm(2)/s and (3-9) × 10(-9) cm(2)/s, respectively. Lateral transport of [(14)C] associated with ZnPT was formulation-dependent, with effective diffusivities of (1-2) × 10(-9) cm(2)/s in water and (3-9) × 10(-9) cm(2)/s in a 1% body wash solution. These differences are thought to be related to molecular speciation and/or the presence of a residual surfactant phase on the skin surface. All values were greater than those estimated for the transverse diffusivities of these compounds in stratum corneum by factors ranging from 250 to over 2000. Facile lateral transport on skin, combined with a low transdermal permeation rate, may thus be seen to be a key factor in the safe and effective use of ZnPT as a topical antimicrobial agent. PMID:26241749

  10. A quantitative radioluminographic imaging method for evaluating lateral diffusion rates in skin.

    PubMed

    Rush, Allison K; Miller, Matthew A; Smith, Edward D; Kasting, Gerald B

    2015-10-28

    A method is presented for measuring the lateral diffusion coefficients of exogenously applied compounds on excised skin. The method involves sequential high resolution imaging of the spatial distribution of β-radiation associated with [(14)C]-labeled compounds to monitor the development of the concentration profile on the skin surface. It is exemplified by measurements made on three radiolabeled test compounds--caffeine, testosterone, and zinc pyrithione (ZnPT)--administered as solutions. Lateral diffusivity is expected to be an important determinant of the topical bioavailability of ZnPT, which is characteristically administered as a fine suspension and must reach microorganisms in molecular form to exert biocidal activity. Application of the test compounds at levels below and above their estimated saturation doses in the upper stratum corneum allows one to distinguish between diffusion-limited and dissolution rate-limited kinetics. The effective lateral diffusivities of the two chemically stable reference compounds, caffeine and testosterone, were (1-4) × 10(-9) cm(2)/s and (3-9) × 10(-9) cm(2)/s, respectively. Lateral transport of [(14)C] associated with ZnPT was formulation-dependent, with effective diffusivities of (1-2) × 10(-9) cm(2)/s in water and (3-9) × 10(-9) cm(2)/s in a 1% body wash solution. These differences are thought to be related to molecular speciation and/or the presence of a residual surfactant phase on the skin surface. All values were greater than those estimated for the transverse diffusivities of these compounds in stratum corneum by factors ranging from 250 to over 2000. Facile lateral transport on skin, combined with a low transdermal permeation rate, may thus be seen to be a key factor in the safe and effective use of ZnPT as a topical antimicrobial agent.

  11. Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes

    SciTech Connect

    Camley, Brian A.; Lerner, Michael G.; Pastor, Richard W.; Brown, Frank L. H.

    2015-12-28

    The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed simulations to accurately predict membrane-protein diffusivities and related transport properties. Estimates for the relative error associated with periodic boundary artifacts are 50% and higher for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion in pure DPPC bilayers support the underlying hydrodynamic model.

  12. Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes.

    PubMed

    Camley, Brian A; Lerner, Michael G; Pastor, Richard W; Brown, Frank L H

    2015-12-28

    The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed simulations to accurately predict membrane-protein diffusivities and related transport properties. Estimates for the relative error associated with periodic boundary artifacts are 50% and higher for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion in pure DPPC bilayers support the underlying hydrodynamic model.

  13. Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Camley, Brian A.; Lerner, Michael G.; Pastor, Richard W.; Brown, Frank L. H.

    2015-12-01

    The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed simulations to accurately predict membrane-protein diffusivities and related transport properties. Estimates for the relative error associated with periodic boundary artifacts are 50% and higher for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion in pure DPPC bilayers support the underlying hydrodynamic model.

  14. Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, Chao; Li, Qingfeng; Jensen, Jens Oluf; He, Ronghuan; Cleemann, Lars N.; Nilsson, Morten S.; Bjerrum, Niels J.; Zeng, Qingxue

    Gas diffusion electrodes for high-temperature PEMFC based on acid-doped polybenzimidazole membranes were prepared by a tape-casting method. The overall porosity of the electrodes was tailored in a range from 38% to 59% by introducing porogens into the supporting and/or catalyst layers. The investigated porogens include volatile ammonium oxalate, carbonate and acetate and acid-soluble zinc oxide, among which are ammonium oxalate and ZnO more effective in improving the overall electrode porosity. Effects of the electrode porosity on the fuel cell performance were investigated in terms of the cathodic limiting current density and minimum air stoichiometry, anodic limiting current and hydrogen utilization, as well as operations under different pressures and temperatures.

  15. Perturbation of the Heat Lateral Diffusion by Interface Resistance in Layered Structures

    NASA Astrophysics Data System (ADS)

    Frétigny, C.; Duquesne, J.-Y.; Fournier, D.

    2015-06-01

    It is well established that interface resistances do usually exist in layered structures, and their values strongly depend on their origin. They may arise from different vibrational properties of the layers, nonharmonic processes at the interface, surface chemical contamination, interfacial defects, etc. Numerous studies have been published to evaluate their values, most of the time, in a perpendicular heat diffusion scheme. In this paper, the effect of interface resistances on the lateral modulated surface temperature of a layered structure for cylindrical symmetry heat diffusion is studied. The thermoreflectance microscope is a particularly convenient tool to record heat lateral diffusion from a surface modulated heated point and thus to evidence the presence of such resistance interfaces. In a first part, the theoretical model of heat diffusion in cylindrical symmetry, in a layered structure exhibiting an interface resistance between the layer and the substrate, is briefly described. In a second part, the C/I configuration (good conductive layer deposited on an insulating substrate, with an interface resistance) is investigated. Experimental results illustrate the theory. In the third part, the reverse case I/C (insulating layer deposited on a conductive substrate, with an interface resistance) is discussed. To conclude, all the cases and the ability of the lateral diffusion to recover interface thermal resistances are compared.

  16. Variations of boundary reaction rate and particle size on the diffusion-induced stress in a phase separating electrode

    SciTech Connect

    Zhang, Lei; He, Linghui; Ni, Yong; Song, Yicheng

    2014-10-14

    In contrast to the case of single-phase delithiation wherein faster discharging leads to higher diffusion-induced stress (DIS), this paper reports nonmonotonous dependency of the boundary reaction rate on the DIS in nanosized spherical electrode accompanying phase separation. It is attributed to a transition from two-phase to single-phase delithiation driven by increase of the boundary reaction rate leading to narrowing and vanishing of the miscibility gap in a range of the particle size. The profiles of lithium concentration and the DIS are identified during the transition based on a continuum model. The resultant maximum DIS first decreases in the region of two-phase delithiation and later returns to increase in the region of single-phase delithiation with the increase of the boundary reaction rate. A map for the failure behavior in the spherical electrode particle is constructed based on the Tresca failure criterion. These results indicate that the failure caused by the DIS can be avoided by appropriate selection of the said parameters in such electrodes.

  17. LATERAL HEAT FLOW INFRARED THERMOGRAPHY FOR THICKNESS INDEPENDENT DETERMINATION OF THERMAL DIFFUSIVITY IN CFRP

    SciTech Connect

    Tralshawala, Nilesh; Howard, Don; Knight, Bryon; Plotnikov, Yuri; Ringermacher, Harry

    2008-02-28

    In conventional infrared thermography, determination of thermal diffusivity requires thickness information. Recently GE has been experimenting with the use of lateral heat flow to determine thermal diffusivity without thickness information. This work builds on previous work at NASA Langley and Wayne State University but we incorporate thermal time of flight (tof) analysis rather than curve fitting to obtain quantitative information. We have developed appropriate theoretical models and a tof based data analysis framework to experimentally determine all components of thermal diffusivity from the time-temperature measurements. Initial validation was carried out using finite difference simulations. Experimental validation was done using anisotropic carbon fiber reinforced polymer (CFRP) composites. We found that in the CFRP samples used, the in-plane component of diffusivity is about eight times larger than the through-thickness component.

  18. Improved chemically amplified photoresist characterization using interdigitated electrode sensors: photoacid diffusivity measurements

    NASA Astrophysics Data System (ADS)

    Berger, Cody M.; Henderson, Clifford L.

    2004-05-01

    The ability of interdigitated electrodes to serve as novel chemically amplified resist characterization tools has recently been demonstrated through their ability to measure the Dill C kinetic rate constant for photoacid generation. The work presented in this paper attempts to further extend the capabilities of the interdigitated electrode (IDE) sensors by investigating their potential use as a measurement tool for photoacid diffusion coefficients. Impedance spectroscopy of chemically amplified photoresist coated interdigitated electrodes is used to calculate the bulk ionic conductivity of the resist film. The ionic conductivity is subsequently utilized in the Nernst-Einstein equation to calculate the diffusion coefficient of the photoacid, assuming that it is the major charge carrying species in the film. A detailed description of the measurement and data analysis processes required to calculate the diffusion coefficient of triphenylsulfonium triflate in poly(p-hydroxystyrene) is provided. In addition, the effect of varying the relative humidity of the measurement environment upon the impedance data collected has been examined. It has been observed that the presence of water within the resist film, typically as a result of absorption of water from the humid ambient environment, dramatically changes the conductivity of the resist coated IDE. This change is apparently the result of changes in the proton conduction mechanism within the resist as a function of film water content. A discussion of several possible causes of this phenomena and its impact on the interpretation of the electrical data and the calculation and meaning of an acid diffusion coefficient are presented.

  19. Effect of curcumin on lateral diffusion of phosphatidylcholines in saturated and unsaturated bilayers.

    PubMed

    Filippov, Andrei V; Kotenkov, Sergey A; Munavirov, Bulat; Antzutkin, Oleg N

    2014-09-01

    Curcumin, a dietary polyphenol, is a natural spice with preventive and therapeutic potential for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Curcumin possesses a spectrum of antioxidant, anti-inflammatory, anticarcinogenic, and antimutagenic properties. Because of this broad spectrum of pharmacological activity, it has been suggested that, like cholesterol, curcumin exerts its effect on a rather basic biological level, such as on lipid bilayers of biomembranes. The effect of curcumin on translational mobility of lipids in biomembranes has not yet been studied. In this work, we used (1)H NMR diffusometry to explore lateral diffusion in planar-oriented bilayers of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) at curcumin concentrations of up to 40 mol % and in the temperature range of 298-333 K. The presence of curcumin at much lower concentrations (∼7 mol %) leads to a decrease in the lateral diffusion coefficient of DOPC by a factor of 1.3 at lower temperatures and by a factor of 1.14 at higher temperatures. For DMPC, the diffusion coefficient decreases by a factor of 1.5 at lower temperatures and by a factor of 1.2 at higher temperatures. Further increasing the curcumin concentration has no effect. Comparison with cholesterol showed that curcumin and cholesterol influence lateral diffusion of lipids differently. The effect of curcumin is determined by its solubility in lipid bilayers, which is as low as 10 mol % that is much less than that of cholesteroĺs 66 mol %.

  20. Lateral diffusion in substrate-supported lipid monolayers as a function of ambient relative humidity.

    PubMed Central

    Baumgart, Tobias; Offenhäusser, Andreas

    2002-01-01

    We analyzed the influence of water activity on the lateral self-diffusion of supported phospholipid monolayers. Lipid monolayer membranes were supported by polysaccharide cushions (chitosan and agarose), or glass. A simple diffusion model was derived, based on activated diffusion with an activation energy, E(a), which depends on the hydration state of the lipid headgroup. A crucial assumption of the derived model is that E(a) can be calculated assuming an exponential decay of the humidity-dependent disjoining pressure in the monolayer/substrate interface with respect to the equilibrium separation distance. A plot of ln(D) against ln(p(0)/p), where D is the measured diffusion coefficient and p(0) and p are the partial water pressures at saturation and at a particular relative humidity, respectively, was observed to be linear in all cases (i.e., for differing lipids, lateral monolayer pressures, temperatures, and substrates), in accordance with the above-mentioned diffusion model. No indications for humidity-induced first-order phase transitions in the supported phospholipid monolayers were found. Many biological processes such as vesicle fusion and recognition processes involve dehydration/hydration cycles, and it can be expected that the water activity significantly affects the kinetics of these processes in a manner similar to that examined in the present work. PMID:12202374

  1. Influence of impeller and diffuser geometries on the lateral fluid forces of whirling centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Ohashi, Hideo; Sakurai, Akira; Nishihama, Jiro

    1989-01-01

    Lateral fluid forces on two-dimensional centrifugal impellers, which whirl on a circular orbit in a vaneless diffuser, were reported. Experiments were further conducted for the cases in which a three-dimensional centrifugal impeller, a model of the boiler feed pump, whirls in vaneless and vaned diffusers. The influence of the clearance configuration between the casing and front shroud of the impeller was also investigated. The result indicated that the fluid dynamic interaction between the impeller and the guide vanes induces quite strong fluctuating fluid forces to the impeller, but nevertheless its influence on radial and tangential force components averaged over a whirling orbit is relatively small.

  2. Measurement of lateral charge diffusion in thick, fully depleted, back-illuminated CCDs

    SciTech Connect

    Karcher, Armin; Bebek, Christopher J.; Kolbe, William F.; Maurath, Dominic; Prasad, Valmiki; Uslenghi, Michela; Wagner, Martin

    2004-06-30

    Lateral charge diffusion in back-illuminated CCDs directly affects the point spread function (PSF) and spatial resolution of an imaging device. This can be of particular concern in thick, back-illuminated CCDs. We describe a technique of measuring this diffusion and present PSF measurements for an 800 x 1100, 15 mu m pixel, 280 mu m thick, back-illuminated, p-channel CCD that can be over-depleted. The PSF is measured over a wavelength range of 450 nm to 650 nm and at substrate bias voltages between 6 V and 80 V.

  3. Lateral diffusion epitaxy (LDE) of single crystal silicon with downward facing substrate

    NASA Astrophysics Data System (ADS)

    Yu, Luke H. L.; Li, Bo; Shen, Huaxiang; Kitai, Adrian H.

    2012-10-01

    An increase in the aspect ratio of silicon platelets grown by Lateral Diffusion Epitaxy (LDE) is achieved. Epitaxial growth is achieved by a compound graphite slider boat in which an oxidized silicon plate is placed above the seed line on the substrate. The function of the plate is to i) favor side wall growth by limiting vertical nucleation on the platelets, and ii) to enhance the surface smoothness by restricting diffusion of silicon to a horizontal direction. We have studied layer growth from the In-Si liquid phase by reducing the gap between substrate and plate. By reducing the gap, it allows for a more uniform growth of silicon from the side wall of the strip. In addition, we investigate repositioning the silicon seed line to a downward orientation. In this case, the diffusion rate increases due to a gravity effect.

  4. A clinically applicable approach for detecting spontaneous action potential spikes in amyotrophic lateral sclerosis with a linear electrode array.

    PubMed

    Jahanmiri-Nezhad, Faezeh; Li, Xiaoyan; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping

    2014-02-01

    Examination of spontaneous muscle activity is an important part of the routine electromyogram (EMG) in assessing neuromuscular diseases. The EMG is specifically valuable as a diagnostic test in supporting the diagnosis of amyotrophic lateral sclerosis. High-density surface EMG is a relatively new technique that has until now been used in research but has the potential for clinical application. This study presents a simple high-density surface EMG method for automatic detection of spontaneous action potentials from surface electrode array recordings of patients with amyotrophic lateral sclerosis. To reduce computational complexity while maintaining useful information from the electrode array recording, the multichannel high-density surface EMG was transferred to single-dimensional data by calculating the maximum difference across all channels of the electrode array. A spike detection threshold was then set in the single-dimensional domain to identify the firing times of each spontaneous action potential spike, whereas a spike extraction threshold was used to define the onset and offset of the spontaneous spikes. These data were used to extract the spontaneous spike waveforms from the electrode array EMG. A database of detected spontaneous spikes was thus obtained, including their waveforms, on all channels along with their corresponding firing times. This newly developed method makes use of the information from different channels of the electrode array EMG recording. It also has the primary feature of being simple and fast in implementation, with convenient parameter adjustment and user-computer interaction. Hence, it has good possibilities for clinical application.

  5. Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization.

    PubMed

    Wang, Yangyang; Sun, Che-Nan; Fan, Fei; Sangoro, Joshua R; Berman, Marc B; Greenbaum, Steve G; Zawodzinski, Thomas A; Sokolov, Alexei P

    2013-04-01

    Electrode polarization analysis is frequently used to determine free-ion diffusivity and number density in ionic conductors. In the present study, this approach is critically examined in a wide variety of electrolytes, including aqueous and nonaqueous solutions, polymer electrolytes, and ionic liquids. It is shown that the electrode polarization analysis based on the Macdonald-Trukhan model [J. Chem. Phys. 124, 144903 (2006); J. Non-Cryst. Solids 357, 3064 (2011)] progressively fails to give reasonable values of free-ion diffusivity and number density with increasing salt concentration. This should be expected because the original model of electrode polarization is designed for dilute electrolytes. An empirical correction method which yields ion diffusivities in reasonable agreement with pulsed-field gradient nuclear magnetic resonance measurements is proposed. However, the analysis of free-ion diffusivity and number density from electrode polarization should still be exercised with great caution because there is no solid theoretical justification for the proposed corrections. PMID:23679415

  6. Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization

    SciTech Connect

    Wang, Yangyang; Sun, Che-Nan; Fan, Fei; Sangoro, Joshua R; Berman, Marc; Greenbaum, Steve; Zawodzinski, Thomas; Sokolov, Alexei P

    2013-01-01

    Electrode polarization analysis is frequently used to determine free-ion diffusivity and number density in ionic conductors. In the present study, this approach is critically examined in a wide variety of electrolytes, including aqueous and nonaqueous solutions, polymer electrolytes, and ionic liquids. It is shown that the electrode polarization analysis based on theMacdonald-Trukhan model [J. Chem. Phys. 124, 144903 (2006); J. Non-Cryst. Solids 357, 3064 (2011)] progressively fails to give reasonable values of free-ion diffusivity and number density with increasing salt concentration. This should be expected because the original model of electrode polarization is designed for dilute electrolytes. An empirical correction method which yields ion diffusivities in reasonable agreement with pulsed-field gradient nuclear magnetic resonance measurements is proposed. However, the analysis of free-ion diffusivity and number density from electrode polarization should still be exercised with great caution because there is no solid theoretical justification for the proposed corrections.

  7. Paper electrode integrated lateral flow immunosensor for quantitative analysis of oxidative stress induced DNA damage

    PubMed Central

    Zhu, Xuena; Shah, Pratikkumar; Stoff, Susan; Liu, Hongyun; Li, Chen-zhong

    2014-01-01

    A novel device combining electrochemical and colorimetric detection is developed for the rapid measurement of 8-hydroxy-2′-deoxyguanosine (8-OHdG), a DNA oxidative damage biomarker. The device takes advantage of the speed and low cost of the conventional strip test as well as the high reliability and accuracy of electrochemical assay. Competitive immunoreactions were performed on the lateral flow strip, and the captured 8-OHdG on the control line was determined by chronoamperometric measurement with carbon nanotubes paper as the working electrode. At the same time, the color intensity of the test line was measured by a scanner and analyzed by the ImageJ software. The device was able to detect 8-OHdG concentrations in PBS as low as 2.07 ng mL−1 by the colorimetric method and 3.11 ng mL−1 by the electrochemical method. Furthermore, the device was successfully utilized to detect 8-OHdG in urine with a detection limit of 5.76 ng mL−1 (colorimetric method) and 8.85 ng mL−1 (electrochemical method), respectively. In conclusion, the integrated device with dual detections can provide a rapid, visual, quantitative and feasible detection method for 8-OHdG. The integration of these two methods holds two major advantages over tests based on single method. Firstly, it can provide double confidence on the same assay. Secondly, by involving two methods that differ in principle, the integration could potentially avoid false results coming from one method. In addition, these methods do not require expensive equipment or trained personnel, deeming it suitable for use as a simple, economical, portable field kit for on-site monitoring of 8-OHdG in a variety of clinical settings. PMID:24733353

  8. Lateral diffusivity coefficients from the dynamics of a SF6 patch in a coastal environment

    NASA Astrophysics Data System (ADS)

    Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Nencioli, F.; Bouffard, J.; Blain, S.; Diaz, F.; Labasque, T.; Quéguiner, B.; Dekeyser, I.

    2016-01-01

    The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (γ = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2 s- 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.

  9. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: Diffusion media effects

    NASA Astrophysics Data System (ADS)

    Kim, Soowhan; Ahn, Byung Ki; Mench, M. M.

    In this work, the effects of properties of diffusion media (DM) (stiffness, thickness and micro-porous layer (MPL)) on the physical damage of membrane electrode assembly (MEA) subjected to freeze/thaw cycling were studied. Pressure uniformity of the diffusion media onto the catalyst layer (CL) was determined to be a key parameter to mitigate freeze-induced physical damage. Stiffer diffusion media, enabling more uniform compression under the channels and lands, can mitigate surface cracks, but flexible cloth diffusion media experienced severe catalyst layer surface damage. The thickness of the diffusion media and existence of a micro-porous layer were not observed to be major factors to mitigate freeze-damage when the catalyst layer is in contact with liquid. Interfacial delamination between diffusion media and catalyst layers, but not between the catalyst layer and membrane, was observed. This permanent deformation of the stiff diffusion media in the channel locations as well as fractures of carbon fibers increased electrical resistance, and may increase water flooding, resulting in reduced longevity and operational losses. Although use of a freeze-tolerable MEA design (negligible virgin cracked catalyst layers with thinner reinforced membrane) [S. Kim, M.M. Mench, J. Power Sources, in press] with stiff diffusion media can reduce the freeze-damage in the worst case scenario test condition of direct liquid contact, extensive irreversible damage (diffusion media/catalyst layer interfacial delamination) was not completely prevented. In addition to proper material selection, liquid water contact with the catalyst layer should be removed prior to shutdown to a frozen state to permit long-term cycling damage and facilitate frozen start.

  10. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect

    Li, Lee Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan

    2014-07-15

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0 cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  11. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air.

    PubMed

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ~30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented. PMID:24182161

  12. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air.

    PubMed

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ~30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented.

  13. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ˜30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented.

  14. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  15. A barrier to lateral diffusion of porphyropsin in Necturus rod outer segment disks.

    PubMed Central

    Drzymala, R E; Weiner, H L; Dearry, C A; Liebman, P A

    1984-01-01

    Microspectrophotometry was used to study lateral diffusion of the visual pigment, porphyropsin , in the disk membrane in intact mudpuppy (Necturus maculosus) rod outer segments (ROS), isolated in frog Ringer's solution. A concentration gradient of unbleached visual pigment was produced on the disks by rapidly photobleaching 40% of the pigment in an area spanning 1/4 or 1/2 of the cell's width. The change in optical density of the cells at 580 nm was then followed with time on either the bleached or unbleached side. The temperature dependence of porphyropsin diffusion yielded a Q10 of 2.5 between 10 and 20 degrees C with an activation energy of 12 +/- 2 kcal. At completion of pigment diffusion, the center and edge of the disk had, respectively, attained only 90 and 55% of the concentration expected. Computed diffusion coefficients (5.4 X 10(-9) cm2/s) were similar at the center and periphery of the disk immediately after the flash, however, an additional slow component for diffusion was detected at the periphery. A comparison of optical density at 525 nm along the diameter of ROS before and after the flash showed a persistent (20 min) postbleach concentration gradient of unbleached porphyropsin . This suggests that 15% of the prophyropsins may be sequestered into distinct areas on a mudpuppy disk and are not free to diffuse over the whole surface. This argument is supported by the observation that mudpuppy disks are separated into petal -shaped regions by incisures, some of which penetrate nearly to the disk center. Images FIGURE 7 FIGURE 8 PMID:6722262

  16. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    SciTech Connect

    Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao

    2011-04-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  17. The Effect of Lateral Intrusions on Thermohaline Fronts - Diffusive or Frontogenetic?

    NASA Astrophysics Data System (ADS)

    Simeonov, J. A.; Stern, M. E.

    2003-12-01

    A density compensated thermohaline front with a finite width and specified total lateral salinity variation, superimposed on a finger favorable thermocline is studied by means of linear theory and non-linear numerical calculations using parameterized finger fluxes. By retaining the relatively small molecular heat diffusion and the dependence of the finger Nusselt number Nu on the density ratio, we show that marginal stability with critical frontal salinity variation is possible. The lateral eddy fluxes induce a mean vertical velocity which can sharpen the front, but when the frontal salinity variation exceeds a certain supercritical value the effect of the eddy fluxes exceeds that of the mean vertical velocity and the front diffuses. Non-linear 2D spectral calculations showed that the modification of the mean horizontal gradients is small and that the intrusions continue to grow exponentially even after they have produced overturns. By extrapolating our linear theory results beyond the overturning stage, the intrusion velocity was estimated to be proportional to the Brunt-Vaisala frequency multiplied by the intrusion thickness.

  18. Limiting diffusion current at rotating disk electrode with dense particle layer.

    PubMed

    Weroński, P; Nosek, M; Batys, P

    2013-09-28

    Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers. PMID:24089793

  19. Fabrication of stainless steel mesh gas diffusion electrode for power generation in microbial fuel cell.

    PubMed

    You, Shi-Jie; Wang, Xiu-Heng; Zhang, Jin-Na; Wang, Jing-Yuan; Ren, Nan-Qi; Gong, Xiao-Bo

    2011-01-15

    This study reports the fabrication of a new membrane electrode assembly by using stainless steel mesh (SSM) as raw material and its effectiveness as gas diffusion electrode (GDE) for electrochemical oxygen reduction in microbial fuel cell (MFC). Based on feeding glucose (0.5 g L(-1)) substrate to a single-chambered MFC, power generation using SSM-based GDE was increased with the decrease of polytetrafluoroethylene (PTFE) content applied during fabrication, reaching the optimum power density of 951.6 mW m(-2) at 20% PTFE. Repeatable cell voltage of 0.51 V (external resistance of 400 Ω) and maximum power density of 951.6 mW m(-2) produced for the MFC with SSM-based GDE are comparable to that of 0.52 V and 972.6 mW m(-2), respectively obtained for the MFC containing typical carbon cloth (CC)-made GDE. Besides, Coulombic efficiency (CE) is found higher for GDE (SSM or CC) with membrane assembly than without, which results preliminarily from the mitigation of Coulombic loss being associated with oxygen diffusion and substrate crossover. This study demonstrates that with its good electrical conductivity and much lower cost, the SSM-made GDE suggests a promising alternative as efficient and more economically viable material to conventional typical carbon for power production from biomass in MFC.

  20. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization.

    PubMed

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P; Johnson, G Allan

    2015-08-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved three-dimensional (3D) reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  1. Effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induced stresses in spherical composition-gradient electrodes

    SciTech Connect

    Zhang, Kai; Li, Yong; Zheng, Bailin

    2015-09-14

    The composition-gradient electrode material is considered as one of the most promising materials for lithium-ion batteries because of its excellent electrochemical performance and thermal stability. In this work, the effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induce stress in the composition-gradient electrodes were studied. The coupling equations of elasticity and diffusion under both potentiostatic charging and galvanostatic charging were developed to obtain the distributions of both the Li-ions concentration and the stress. The results indicated that the effects of the concentration-dependent elastic modulus on the Li-ions diffusion and the diffusion-induce stresses are controlled by the lithiation induced stiffening factor in the composition-gradient electrodes: a low stiffening factor at the center and a high stiffening factor at the surface lead to a significant effect, whereas a high stiffening factor at the center and a low stiffening factor at the surface result in a minimal effect. The results in this work provide guidance for the selection of electrode materials.

  2. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes.

    PubMed

    Chervin, Christopher N; Parker, Joseph F; Nelson, Eric S; Rolison, Debra R; Long, Jeffrey W

    2016-04-29

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode-a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  3. Structural and diffusion imaging versus clinical assessment to monitor amyotrophic lateral sclerosis

    PubMed Central

    Cardenas-Blanco, Arturo; Machts, Judith; Acosta-Cabronero, Julio; Kaufmann, Joern; Abdulla, Susanne; Kollewe, Katja; Petri, Susanne; Schreiber, Stefanie; Heinze, Hans-Jochen; Dengler, Reinhard; Vielhaber, Stefan; Nestor, Peter J.

    2016-01-01

    Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects upper and lower motor neurons. Observational and intervention studies can be tracked using clinical measures such as the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) but for a complete understanding of disease progression, objective in vivo biomarkers of both central and peripheral motor pathway pathology are highly desirable. The aim of this study was to determine the utility of structural and diffusion imaging as central nervous system biomarkers compared to the standard clinical measure, ALSFRS-R, to track longitudinal evolution using three time-point measurements. N = 34 patients with ALS were scanned and clinically assessed three times at a mean of three month time intervals. The MRI biomarkers were structural T1-weighted volumes for cortical thickness measurement as well as deep grey matter volumetry, voxel-based morphometry and diffusion tensor imaging (DTI). Cortical thickness focused specifically on the precentral gyrus while quantitative DTI biomarkers focused on the corticospinal tracts. The evolution of imaging biomarkers and ALSFRS-R scores over time were analysed using a mixed effects model that accounted for the scanning interval as a fixed effect variable, and, the initial measurements and time from onset as random variables. The mixed effects model showed a significant decrease in the ALSFRS-R score, (p < 0.0001, and an annual rate of change (AROC) of − 7.3 points). Similarly, fractional anisotropy of the corticospinal tract showed a significant decrease (p = 0.009, AROC = − 0.0066) that, in turn, was driven by a significant increase in radial diffusivity combined with a trend to decrease in axial diffusivity. No significant change in cortical thickness of the precentral gyrus was found (p > 0.5). In addition, deep grey matter volumetry and voxel-based morphometry also identified no significant changes. Furthermore, the

  4. Design issues for lateral double-diffused metal-oxide-semiconductor with higher breakdown voltage.

    PubMed

    Sung, Kunsik; Won, Taeyoung

    2013-05-01

    In this paper, we discuss a new High-Side nLDMOSFET whose breakdown voltage is over 100 V while meeting the thermal budget for the conventional process. The proposed n-channel lateral double-diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET) has a feature in that the structure comprises a gap of 5 microm between the DEEP N-WELL and the center of the source, the surface of which is implanted by the NADJUST-layer for high breakdown voltage and simultaneously the low specific on-resistance. The computer simulation of the proposed High-Side nLDMOS exhibits BVdss of 126 V and R(ON,sp) of as low as 2.50 m(omega) x cm2. The NBL, which plays a significant role as a blocking layer against the punch-through seems to function as a hurdle for increasing the breakdown voltage. PMID:23858840

  5. Electrochemical Effect of Different Modified Glassy Carbon Electrodes on the Values of Diffusion Coefficient for Some Heavy Metal Ions

    NASA Astrophysics Data System (ADS)

    Radhi, M. M.; Amir, Y. K. A.; Alwan, S. H.; Tee, T. W.

    2013-04-01

    Glassy carbon electrode (GCE) was modified with carbon nanotubes (CNT), C60 and activated carbon (AC) by mechanical attachment method and solution evaporation technique to preparation CNT/GCE, C60/GCE and AC/GCE, these electrodes were modified in Li+ solution via cyclic voltammetry (CV) potential cycling to preparing CNT/Li+/GCE, C60/Li+/GCE and AC/Li+/GCE. The sensing characteristics of the modified film electrodes, demonstrated in the application study for different heavy metal ions such as Hg2+, Cd2+, and Mn2+. Cyclic voltammetric effect by chronoamperometry (CA) technique was investigated to determination the diffusion coefficient (Df) values from Cottrell equation at these ions. Based on Cottrell equation (diffusion coefficient) of the redox current peaks of different heavy metal ions at different modified electrodes were studied to evaluate the sensing of these electrodes by the diffusion coefficient values. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe that the diffusion process are high at CNT/Li+/GCE, C60/Li+/GCE and AC/Li+/GCE, but it has low values at unmodified GCE.

  6. Impedance experimentation for an electrode interface in human fetal tissue: Novel pathological régime of anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Ovadia, Marc; Fayn, Evgueni; Zavitz, Daniel H.

    2006-06-01

    Impedance spectroscopic experimentation at the superfused electrode|living tissue interface for human fetal skin was performed in three-electrode potentiostatic configuration for noble metal electrodes, with spectral analysis of the current. The impedance plane locus observed, reflects a diffusional element frequently in series with a distributed element of Havriliak-Negami type. In a minority of experiments no impedance could be defined, due to the presence of an additional peak in every cycle in the shoulder of the current waveform. This nonlinearity has never been reported before for a system of the present type, and may represent a novel pathological régime of anomalous diffusion.

  7. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes

    NASA Astrophysics Data System (ADS)

    Chervin, Christopher N.; Parker, Joseph F.; Nelson, Eric S.; Rolison, Debra R.; Long, Jeffrey W.

    2016-04-01

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  8. Magnetically Diffused Radial Electric-Arc Air Heater Employing Water-Cooled Copper Electrodes

    NASA Technical Reports Server (NTRS)

    Mayo, R. F.; Davis, D. D., Jr.

    1962-01-01

    A magnetically rotated electric-arc air heater has been developed that is novel in that an intense magnetic field of the order of 10,000 to 25,000 gauss is employed. This field is supplied by a coil that is connected in series with the arc. Experimentation with this heater has shown that the presence of an intense magnetic field transverse to the arc results in diffusion of the arc and that the arc has a positive effective resistance. With the field coil in series with the arc, highly stable arc operation is obtained from a battery power supply. External ballast is not required to stabilize the arc when it is operating at maximum power level. The electrode erosion rate is so low that the airstream contamination is no more than 0.07 percent and may be substantially less.

  9. Nano-fabricated perpendicular magnetic anisotropy electrodes for lateral spin valves and observation of Nernst-Ettingshausen related signals

    SciTech Connect

    Chejanovsky, N.; Sharoni, A.

    2014-08-21

    Lateral spin valves (LSVs) are efficient structures for characterizing spin currents in spintronics devices. Most LSVs are based on ferromagnetic (FM) electrodes for spin-injection and detection. While there are advantages for using perpendicular magnetic anisotropy (PMA) FM, e.g., stability to nano-scaling, these have almost not been studied. This is mainly due to difficulties in fabricating PMA FMs in a lateral geometry. We present here an efficient method, based on ion-milling through an AlN mask, for fabrication of LSVs with multi-layered PMA FMs such as Co/Pd and Co/Ni. We demonstrate, using standard permalloy FMs, that the method enables efficient spin injection. We show the multi-layer electrodes retain their PMA properties as well as spin injection and detection in PMA LSVs. In addition, we find a large asymmetric voltage signal which increases with current. We attribute this to a Nernst-Ettingshausen effect caused by local Joule heating and the perpendicular magnetic easy axis.

  10. Lateral diffusion of nerve growth factor receptor: modulation by ligand-binding and cell-associated factors.

    PubMed Central

    Venkatakrishnan, G; McKinnon, C A; Ross, A H; Wolf, D E

    1990-01-01

    We compared the properties in human melanoma cell line A875 and rat pheochromocytoma cell line PC12 of nerve growth factor receptor (NGFr). We also analyzed NGFr and a truncated NGFR lacking the cytoplasmic domain, which were transiently expressed in COS cells. The full-length NGFR expressed in COS cells bound nerve growth factor (NGF) with positive cooperativity, but A875 NGFr and truncated NGFr in COS cells did not display positive cooperativity. The anti-human NGFr monoclonal antibody NGFR5 was characterized and found not to compete with NGF for binding to NGFr. Fabs were prepared from NGFR5 and 192, an anti-rat NGFR monoclonal antibody that was previously shown not to compete with NGF for binding. Fluorescein-labeled Fabs were used to measure the distribution and lateral diffusion of the NGFr. NGFr expressed on COS and A875 cells are diffusely distributed, but NGFr on the surface of PC12 cells appeared, for some cells, to be patched. In A875 cells, 51% of the NGFr was free to diffuse with diffusion coefficient (D) approximately 7 X 10(-10) cm2/s. In COS cells, 43% diffused with D approximately 5 X 10(-10) cm2/s. There was no significant difference in diffusibility between the full-length NGFr and the truncated NGFr. We compared NGFr diffusion on PC12 cells in suspension or adherent to collagen-coated coverslips. For suspension cells, we obtained 32% recovery with D approximately 2.5 X 10(-9) cm2/s. On adherent cells, we obtained 17% recovery with 6 X 10(-9) cm2/s. Binding of NGF enhanced lateral diffusion of NGFr in A875 cells and in PC12 cells in suspension but did not alter lateral diffusion of NGFr in COS cells or in adherent PC12 cells. NGF had no effect on the diffusing fraction or the distribution of NGFR for any cell line. Images PMID:1964090

  11. Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes.

    PubMed

    Van Aken, Katherine L; McDonough, John K; Li, Song; Feng, Guang; Chathoth, Suresh M; Mamontov, Eugene; Fulvio, Pasquale F; Cummings, Peter T; Dai, Sheng; Gogotsi, Yury

    2014-07-16

    While most supercapacitors are limited in their performance by the stability of the electrolyte, using neat ionic liquids (ILs) as the electrolyte can expand the voltage window and temperature range of operation. In this study, ILs with bis(trifluoromethylsulfonyl)imide (Tf2N) as the anion were investigated as the electrolyte in onion-like carbon-based electrochemical capacitors. To probe the influence of cations on the electrochemical performance of supercapacitors, three different cations were used: 1-ethyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium and 1,6-bis(3-methylimidazolium-1-yl). A series of electrochemical characterization tests was performed using cyclic voltammetry (CV), galvanostatic cycling and electrochemical impedance spectroscopy (EIS). Diffusion coefficients were measured using EIS and correlated with quasielastic neutron scattering and molecular dynamics simulation. These three techniques were used in parallel to confirm a consistent trend between the three ILs. It was found that the IL with the smaller sized cation had a larger diffusion coefficient, leading to a higher capacitance at faster charge-discharge rates. Furthermore, the IL electrolyte performance was correlated with increasing temperature, which limited the voltage stability window and led to the formation of a solid electrolyte interphase on the carbon electrode surface, evident in both the CV and EIS experiments.

  12. Notch-mediated lateral inhibition regulates proneural wave propagation when combined with EGF-mediated reaction diffusion.

    PubMed

    Sato, Makoto; Yasugi, Tetsuo; Minami, Yoshiaki; Miura, Takashi; Nagayama, Masaharu

    2016-08-30

    Notch-mediated lateral inhibition regulates binary cell fate choice, resulting in salt and pepper patterns during various developmental processes. However, how Notch signaling behaves in combination with other signaling systems remains elusive. The wave of differentiation in the Drosophila visual center or "proneural wave" accompanies Notch activity that is propagated without the formation of a salt and pepper pattern, implying that Notch does not form a feedback loop of lateral inhibition during this process. However, mathematical modeling and genetic analysis clearly showed that Notch-mediated lateral inhibition is implemented within the proneural wave. Because partial reduction in EGF signaling causes the formation of the salt and pepper pattern, it is most likely that EGF diffusion cancels salt and pepper pattern formation in silico and in vivo. Moreover, the combination of Notch-mediated lateral inhibition and EGF-mediated reaction diffusion enables a function of Notch signaling that regulates propagation of the wave of differentiation. PMID:27535937

  13. Notch-mediated lateral inhibition regulates proneural wave propagation when combined with EGF-mediated reaction diffusion

    PubMed Central

    Sato, Makoto; Yasugi, Tetsuo; Minami, Yoshiaki; Miura, Takashi; Nagayama, Masaharu

    2016-01-01

    Notch-mediated lateral inhibition regulates binary cell fate choice, resulting in salt and pepper patterns during various developmental processes. However, how Notch signaling behaves in combination with other signaling systems remains elusive. The wave of differentiation in the Drosophila visual center or “proneural wave” accompanies Notch activity that is propagated without the formation of a salt and pepper pattern, implying that Notch does not form a feedback loop of lateral inhibition during this process. However, mathematical modeling and genetic analysis clearly showed that Notch-mediated lateral inhibition is implemented within the proneural wave. Because partial reduction in EGF signaling causes the formation of the salt and pepper pattern, it is most likely that EGF diffusion cancels salt and pepper pattern formation in silico and in vivo. Moreover, the combination of Notch-mediated lateral inhibition and EGF-mediated reaction diffusion enables a function of Notch signaling that regulates propagation of the wave of differentiation. PMID:27535937

  14. Manipulating the Lateral Diffusion of Surface-Anchored EGF Demonstrates that Receptor Clustering Modulates Phosphorylation Levels

    PubMed Central

    Stabley, D.; Retterer, S.; Marshall, S.; Salaita, K.

    2013-01-01

    Upon activation, the epidermal growth factor (EGF) receptor becomes phosphorylated and triggers a vast signaling network that has profound effects on cell growth. The EGF receptor is observed to assemble into clusters after ligand binding and tyrosine kinase autophosphorylation, but the role of these assemblies in the receptor signaling pathway remains unclear. To address this question, we measured the phosphorylation of EGFR when the EGF ligand was anchored onto laterally mobile and immobile surfaces. We found that cells generated clusters of ligand-receptor complex on mobile EGF surfaces, and displayed a lower ratio of phosphorylated EGFR to EGF when compared to immobilized EGF that is unable to cluster. This result was verified by tuning the lateral assembly of ligand-receptor complexes on the surface of living cells using patterned supported lipid bilayers. Nanoscale metal lines fabricated into the supported membrane constrained lipid diffusion and EGF receptor assembly into micron and sub-micron scale corrals. Single cell analysis indicated that clustering impacts EGF receptor activation, and larger clusters (> 1 µm2) of ligand-receptor complex generated lower EGF receptor phosphorylation per ligand than smaller assemblies (< 1 µm2) in HCC1143 cells that were engaged to ligand-functionalized surfaces. We investigated the mechanism of EGFR clustering by treating cells with compounds that disrupt the cytoskeleton (Latrunculin-B), clathrin-mediated endocytosis (Pitstop2), and inhibit EGFR activation (Gefitinib). These results help elucidate the nature of large-scale EGFR clustering, thus underscoring the general significance of receptor spatial organization in tuning function. PMID:23416883

  15. Lateralization of Brain Networks and Clinical Severity in Toddlers with Autism Spectrum Disorder: A HARDI Diffusion MRI Study.

    PubMed

    Conti, Eugenia; Calderoni, Sara; Gaglianese, Anna; Pannek, Kerstin; Mazzotti, Sara; Rose, Stephen; Scelfo, Danilo; Tosetti, Michela; Muratori, Filippo; Cioni, Giovanni; Guzzetta, Andrea

    2016-03-01

    Recent diffusion tensor imaging studies in adolescents and children with Autism Spectrum Disorder (ASD) have reported a loss or an inversion of the typical left-right lateralization in fronto-temporal regions crucial for sociocommunicative skills. No studies explored atypical lateralization in toddlers and its correlation with clinical severity of ASD. We recruited a cohort of 20 subjects aged 36 months or younger receiving a first clinical diagnosis of ASD (15 males; age range 20-36 months). Patients underwent diffusion MRI (High-Angular-Resolution Diffusion Imaging protocol). Data from cortical parcellation were combined with tractography to obtain a connection matrix and diffusion indexes (DI ) including mean fractional anisotropy (DFA ), number of tracts (DNUM ), and total tract length (DTTL ). A laterality index was generated for each measure, and then correlated with the Autism Diagnostic Observation Schedule-Generic (ADOS-G) total score. Laterality indexes of DFA were significantly correlated with ADOS-G total scores only in two intrafrontal connected areas (correlation was positive in one case and negative in the other). Laterality indexes of DTTL and DNUM showed significant negative correlations (P < 0.05) in six connected areas, mainly fronto-temporal. This study provides first evidence of a significant correlation between brain lateralization of diffusion indexes and clinical severity in toddlers with a first diagnosis of ASD. Significant correlations mainly involved regions within the fronto-temporal circuits, known to be crucial for sociocommunicative skills. It is of interest that all correlations but one were negative, suggesting an inversion of the typical left-right asymmetry in subjects with most severe clinical impairment. PMID:26280255

  16. Role of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion.

    PubMed

    Mainali, Dipak; Syed, Aleem; Arora, Neha; Smith, Emily A

    2014-12-01

    Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24% increase in the mobile integrin population, (2) 14% of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45% increase in the diameter of the confined zone, and (4) there was a 29% increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.

  17. Trench-gate-integrated superjunction lateral double-diffused MOSFET with low specific on-resistance

    NASA Astrophysics Data System (ADS)

    Onishi, Yasuhiko; Hashimoto, Yoshio

    2015-08-01

    In this paper, a new low-voltage planar gate superjunction (SJ) lateral double-diffused MOSFET (LDMOSFET) is presented. The proposed trench-gate-integrated SJ-LDMOSFET is composed of a conventional planar gate structure and a trench gate structure extending into a drift region through a channel region, which helps reduce both drift resistance and channel resistance. By device simulation, we confirmed that current crowding near the top surface was alleviated by the spread of electron current into the drift region through the accumulation layer of the trench gate. As a result, the specific on-resistance (RON · A) of the trench-gate-integrated SJ-LDMOSFET can be reduced by increasing SJ thickness (TSJ), and the trench-gate-integrated SJ-LDMOSFET with a TSJ of 4 µm achieved an RON · A of 0.47 mΩ·cm2 at a breakdown voltage of 97 V. This is about 14% lower than the one-dimensional Si limit.

  18. Effect of local velocity on diffusion-induced stress in large-deformation electrodes of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhang, Kai; Zheng, Bailin; Yang, Fuqian

    2016-07-01

    In this work, the contribution of local velocity to the resultant flux of lithium in lithium-ion battery is introduced into the diffusion equation to describe the migration of lithium in the active material of electrodes. The effect of the local velocity on the stress evolution in a spherical electrode made of silicon is analyzed, using the derived diffusion equation and nonlinear theory of elasticity. Two boundary conditions at the surface of the electrode, which represent two extreme conditions of real electrode materials, are used in the stress analysis: one is stress-free, and the other is immobile. The numerical results with the stress-free boundary condition suggest that the effect of the local velocity on the distribution of radial stress and hoop stress increases with the increase of time and the effect of the local velocity on the distribution of lithium is relatively small. In comparison with the results without the effect of the local velocity, the effect of the local velocity is negligible for the immobile boundary condition. The numerical result shows that the use of the immobile boundary condition leads to the decrease of von-Mises stress, which likely will retard the mechanical degradation of electrode and improve the electrochemical performance of lithium-ion battery.

  19. Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology.

    PubMed

    Kassubek, Jan; Müller, Hans-Peter; Del Tredici, Kelly; Brettschneider, Johannes; Pinkhardt, Elmar H; Lulé, Dorothée; Böhm, Sarah; Braak, Heiko; Ludolph, Albert C

    2014-06-01

    Diffusion tensor imaging can identify amyotrophic lateral sclerosis-associated patterns of brain alterations at the group level. Recently, a neuropathological staging system for amyotrophic lateral sclerosis has shown that amyotrophic lateral sclerosis may disseminate in a sequential regional pattern during four disease stages. The objective of the present study was to apply a new methodological diffusion tensor imaging-based approach to automatically analyse in vivo the fibre tracts that are prone to be involved at each neuropathological stage of amyotrophic lateral sclerosis. Two data samples, consisting of 130 diffusion tensor imaging data sets acquired at 1.5 T from 78 patients with amyotrophic lateral sclerosis and 52 control subjects; and 55 diffusion-tensor imaging data sets at 3.0 T from 33 patients with amyotrophic lateral sclerosis and 22 control subjects, were analysed by a tract of interest-based fibre tracking approach to analyse five tracts that become involved during the course of amyotrophic lateral sclerosis: the corticospinal tract (stage 1); the corticorubral and the corticopontine tracts (stage 2); the corticostriatal pathway (stage 3); the proximal portion of the perforant path (stage 4); and two reference pathways. The statistical analyses of tracts of interest showed differences between patients with amyotrophic lateral sclerosis and control subjects for all tracts. The significance level of the comparisons at the group level was lower, the higher the disease stage with corresponding involved fibre tracts. Both the clinical phenotype as assessed by the amyotrophic lateral sclerosis functional rating scale-revised and disease duration correlated significantly with the resulting staging scheme. In summary, the tract of interest-based technique allowed for individual analysis of predefined tract structures, thus making it possible to image in vivo the disease stages in amyotrophic lateral sclerosis. This approach can be used not only for

  20. Lateral Ventricular Cerebrospinal Fluid Diffusivity as a Potential Neuroimaging Marker of Brain Temperature in Multiple Sclerosis: A Hypothesis and Implications

    PubMed Central

    Hasan, Khader M.; Lincoln, John A.; Nelson, Flavia M.; Wolinsky, Jerry S.; Narayana, Ponnada A.

    2014-01-01

    In this retrospective study we tested the hypothesis that the net effect of impaired electrical conduction and therefore increased heat dissipation in multiple sclerosis (MS) results in elevated lateral ventricular (LV) cerebrospinal fluid (CSF) diffusivity as a measure of brain temperature estimated in vivo using diffusion tensor imaging (DTI). We used validated DTI-based segmentation methods to obtain normalized LV-CSF volume and its corresponding CSF diffusivity in 108 MS patients and 103 healthy controls in the age range of 21-63 years. The LV CSF diffusivity was ~2% higher in MS compared to controls that corresponds to a temperature rise of ~1 °C that could not be explained by changes in the CSF viscosity due to altered CSF protein content in MS. The LV diffusivity decreased with age in healthy controls (r=−0.29; p=0.003), but not in MS (r=0.15; p=0.11), possibly related to MS pathology. Age-adjusted LV diffusivity increased with lesion load (r=0.518; p=1x10−8). Our data suggest that the total brain lesion load is the primary contributor to the increase in LV CSF diffusivity in MS. These findings suggest that LV diffusivity is a potential in vivo biomarker of the mismatch between heat generation and dissipation in MS. We also discuss limitations and possible confounders. PMID:25485790

  1. Lateral ventricular cerebrospinal fluid diffusivity as a potential neuroimaging marker of brain temperature in multiple sclerosis: a hypothesis and implications.

    PubMed

    Hasan, Khader M; Lincoln, John A; Nelson, Flavia M; Wolinsky, Jerry S; Narayana, Ponnada A

    2015-04-01

    In this retrospective study we tested the hypothesis that the net effect of impaired electrical conduction and therefore increased heat dissipation in multiple sclerosis (MS) results in elevated lateral ventricular (LV) cerebrospinal fluid (CSF) diffusivity as a measure of brain temperature estimated in vivo using diffusion tensor imaging (DTI). We used validated DTI-based segmentation methods to obtain normalized LV-CSF volume and its corresponding CSF diffusivity in 108 MS patients and 103 healthy controls in the age range of 21-63 years. The LV CSF diffusivity was ~2% higher in MS compared to controls that correspond to a temperature rise of ~1°C that could not be explained by changes in the CSF viscosity due to altered CSF protein content in MS. The LV diffusivity decreased with age in healthy controls (r=-0.29; p=0.003), but not in MS (r=0.15; p=0.11), possibly related to MS pathology. Age-adjusted LV diffusivity increased with lesion load (r=0.518; p=1×10(-8)). Our data suggest that the total brain lesion load is the primary contributor to the increase in LV CSF diffusivity in MS. These findings suggest that LV diffusivity is a potential in vivo biomarker of the mismatch between heat generation and dissipation in MS. We also discuss limitations and possible confounders. PMID:25485790

  2. Delineation of Early and Later Adult Onset Depression by Diffusion Tensor Imaging

    PubMed Central

    Yu, Hongjun; Nie, Binbin; Li, Na; Luo, Chunrong; Li, Haijun; Liu, Fang; Bai, Yan; Shan, Baoci; Xu, Lin; Xu, Xiufeng

    2014-01-01

    Background Due to a lack of evidence, there is no consistent age of onset to define early onset (EO) versus later onset (LO) major depressive disorder (MDD). Fractional anisotropy (FA), derived from diffusion tensor imaging (DTI), has been widely used to study neuropsychiatric disorders by providing information about the brain circuitry, abnormalities of which might facilitate the delineation of EO versus LO MDD. Method In this study, 61 pairs of untreated, non-elderly, first-episode MDD patients and healthy controls (HCs) aged 18–45 years old received DTI scans. The voxel-based analysis method (VBM), classification analysis, using the Statistical Package for the Social Sciences (SPSS), and regression analyses were used to determine abnormal FA clusters and their correlations with age of onset and clinical symptoms. Results Classification analysis suggested in the best model that there were two subgroups of MDD patients, delineated by an age of onset of 30 years old, by which MDD patients could be divided into EO (18–29 years old) and LO (30–45 years old) groups. LO MDD was characterized by decreased FA, especially in the white matter (WM) of the fronto-occipital fasciculus and posterior limb of internal capsule, with a negative correlation with the severity of depressive symptoms; in marked contrast, EO MDD showed increased FA, especially in the WM of the corpus callosum, corticospinal midbrain and inferior fronto-occipital fasciculus, while FA of the WM near the midbrain had a positive correlation with the severity of depressive symptoms. Conclusion Specific abnormalities of the brain circuitry in EO vs. LO MDD were delineated by an age of onset of 30 years old, as demonstrated by distinct abnormal FA clusters with opposite correlations with clinical symptoms. This DTI study supported the evidence of an exact age for the delineation of MDD, which could have broad multidisciplinary importance. Trial Registration ClinicalTrials.gov NCT00703742 PMID:25393297

  3. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins.

    PubMed

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domains in real time in living cells.

  4. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins

    SciTech Connect

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A.

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domains in real time in living cells. - Highlights: • Diffusion enhances TR-FRET from membrane proteins labeled with lanthanide donors. • Diffusion-dependent FRET can overshadow FRET due to oligomerization or clustering. • FRET studies using lanthanide-tagged membrane proteins should consider diffusion. • FRET from lanthanide donors can be used to monitor membrane protein diffusion.

  5. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size.

  6. Measurement of lateral diffusion rates in membranes by pulsed magnetic field gradient, magic angle spinning-proton nuclear magnetic resonance.

    PubMed

    Gawrisch, Klaus; Gaede, Holly C

    2007-01-01

    Membrane organization, including the presence of domains, can be characterized by measuring lateral diffusion rates of lipids and membrane-bound substances. Magic angle spinning (MAS) yields well-resolved proton nuclear magnetic resonance (NMR) of lipids in biomembranes. When combined with pulsed-field gradient NMR (rendering what is called "pulsed magnetic field gradients-MAS-NMR"), it permits precise diffusion measurements on the micrometer lengths scale for any substance with reasonably well-resolved proton MAS-NMR resonances, without the need of preparing oriented samples. Sample preparation procedures, the technical requirements for the NMR equipment, and spectrometer settings are described. Additionally, equations for analysis of diffusion data obtained from unoriented samples, and a method for correcting the data for liposome curvature are provided.

  7. Isotopic evidence for lateral flow and diffusive transport, but not sublimation, in a sloped seasonal snowpack, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Evans, Samantha L.; Flores, Alejandro N.; Heilig, Achim; Kohn, Matthew J.; Marshall, Hans-Peter; McNamara, James P.

    2016-04-01

    Oxygen and hydrogen isotopes in snow were measured in weekly profiles during the growth and decline of a sloped subalpine snowpack, southern Idaho, 2011-2012. Isotopic steps (10‰, δ18O; 80‰, δD) were preserved relative to physical markers throughout the season, albeit with some diffusive smoothing. Melting stripped off upper layers without shifting isotopes within the snowpack. Meltwater is in isotopic equilibrium with snow at the top but not with snow at each respective collection height. Transport of meltwater occurred primarily along pipes and lateral flow paths allowing the snowpack to melt initially in reverse stratigraphic order. Isotope diffusivities are ~2 orders of magnitude faster than estimated from experiments but can be explained by higher temperature and porosity. A better understanding of how snowmelt isotopes change during meltout improves hydrograph separation methods, whereas constraints on isotope diffusivities under warm conditions improve models of ice core records in low-latitude settings.

  8. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Teng, Yun; Li, Lee; Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-01

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm3, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  9. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    SciTech Connect

    Teng, Yun; Li, Lee Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-15

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm{sup 3}, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  10. Nonlinearity Effects of Lateral Density Diffusion Coefficient on Gain-Guided VCSEL Performance

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. In this paper, we apply a hydrodynamic model developed from the semiconductor Bloch equations to numerically study the effects of nonlinearity in the diffusion coefficient on single mode operation and direct modulation of a gain-guided InGaAs/GaAs multiple quantum well laser, operating not too far from threshold. We found that a small diffusion coefficient is advantageous for lowering the threshold current and increasing the modulation bandwidth. Most importantly, the effects of nonlinearity in the coefficient can be approximately reproduced by replacing the coefficient with an effective constant diffusion coefficient, which corresponds roughly to the half height density of the density distribution.

  11. Electrochemical Reduction of CO2 to Organic Acids by a Pd-MWNTs Gas-Diffusion Electrode in Aqueous Medium

    PubMed Central

    Lu, Guang; Bian, Zhaoyong; Liu, Xin

    2013-01-01

    Pd-multiwalled carbon nanotubes (Pd-MWNTs) catalysts for the conversion of CO2 to organic acids were prepared by the ethylene glycol reduction and fully characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) technologies. The amorphous Pd particles with an average size of 5.7 nm were highly dispersed on the surface of carbon nanotubes. Functional groups of the MWNTs played a key role in the palladium deposition. The results indicated that Pd-MWNTs could transform CO2 into organic acid with high catalytic activity and CO2 could take part in the reduction reaction directly. Additionally, the electrochemical reduction of CO2 was investigated by a diaphragm electrolysis device, using a Pd-MWNTs gas-diffusion electrode as a cathode and a Ti/RuO2 net as an anode. The main products in present system were formic acid and acetic acid identified by ion chromatograph. The selectivity of the products could be achieved by reaction conditions changing. The optimum faraday efficiencies of formic and acetic acids formed on the Pd-MWNTs gas-diffusion electrode at 4 V electrode voltages under 1 atm CO2 were 34.5% and 52.3%, respectively. PMID:24453849

  12. Cell wall constrains lateral diffusion of plant plasma-membrane proteins

    PubMed Central

    Martinière, Alexandre; Lavagi, Irene; Nageswaran, Gayathri; Rolfe, Daniel J.; Maneta-Peyret, Lilly; Luu, Doan-Trung; Botchway, Stanley W.; Webb, Stephen E. D.; Mongrand, Sebastien; Maurel, Christophe; Martin-Fernandez, Marisa L.; Kleine-Vehn, Jürgen; Friml, Jirí; Moreau, Patrick; Runions, John

    2012-01-01

    A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein–protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction. PMID:22689944

  13. Effects of reversible chemical reaction on Li diffusion and stresses in spherical composition-gradient electrodes

    SciTech Connect

    Li, Yong; Zhang, Kai; Zheng, Bailin Zhang, Xiaoqian; Wang, Qi

    2015-06-28

    Composition-gradient electrode materials have been proven to be one of the most promising materials in lithium-ion battery. To study the mechanism of mechanical degradation in spherical composition-gradient electrodes, the finite deformation theory and reversible chemical theory are adopted. In homogeneous electrodes, reversible electrochemical reaction may increase the magnitudes of stresses. However, reversible electrochemical reaction has different influences on stresses in composition-gradient electrodes, resulting from three main inhomogeneous factors—forward reaction rate, backward reaction rate, and reaction partial molar volume. The decreasing transition form of forward reaction rate, increasing transition form of backward reaction rate, and increasing transition form of reaction partial molar volume can reduce the magnitudes of stresses. As a result, capacity fading and mechanical degradation are reduced by taking advantage of the effects of inhomogeneous factors.

  14. Impedance spectroscopy analysis of an electrolytic cell limited by Ohmic electrodes: The case of ions with two different diffusion coefficients dispersed in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Batalioto, F.; Barbero, G.; Figueiredo Neto, A. M.

    2007-11-01

    We analyze the influence of Ohmic electrodes on the impedance spectroscopy of an electrolytic cell in the shape of a slab. The electrolyte is assumed completely dissociated. The positive and negative ions have different diffusion coefficients. We show that in the very low frequency limit, the electrical impedance of the cell reduces to a pure resistance, whose value depends on the diffusion coefficients and on the conductivity of the electrodes. The ratio between the diffusion coefficients determines the numerical value of the plateaus of the resistance, and the position and amplitude of the local minimum of the reactance of the cell.

  15. Improving Breakdown Behavior by Substrate Bias in a Novel Double Epi-layer Lateral Double Diffused MOS Transistor

    NASA Astrophysics Data System (ADS)

    Li, Qi; Wang, Wei-Dong; Liu, Yun; Wei, Xue-Ming

    2012-02-01

    A new lateral double diffused MOS (LDMOS) transistor with a double epitaxial layer formed by an n-type substrate and a p-type epitaxial layer is reported (DEL LDMOS). The mechanism of the improved breakdown characteristic is that the high electric field around the drain is reduced by substrate reverse bias, which causes the redistribution of the bulk electric field in the drift region, and the vertical blocking voltage is shared by the drain side and the source side. The numerical results indicate that the trade-off between breakdown voltage and on-resistance of the proposed device is improved greatly in comparison to that of the conventional LDMOS.

  16. Spin diffusion and non-local spin-valve effect in an exfoliated multilayer graphene with a Co electrode

    NASA Astrophysics Data System (ADS)

    Li, Lijun; Lee, Inyeal; Lim, Dongsuk; Rathi, Servin; Kang, Moonshik; Uemura, Tetsuya; Kim, Gil-Ho

    2016-08-01

    We fabricated a non-local spin valve with a thin layer of graphite with Co transparent electrodes. The spin-valve effect and spin precession were observed at room temperature. The magnitude of the mangetoresistance increases when temperature decreases. The spin-relaxation time, {τ }s, obtained from the fitting of the Hanle curves increases with decreasing temperature with a weak dependence ∼ {T}-0.065 while the spin-diffusion constant D decreases. At room temperature, {τ }s exceeds 100 ps and the spin-diffusion length, {λ }s, is ∼2 μm. The temperature dependence of {λ }s is not monotonic, and it has the largest value at room temperature. Our results show that multilayer graphene is a suitable material for spintronic devices.

  17. Determination of the thermal diffusivity of bulk and layered samples by time domain thermoreflectance: Interest of lateral heat diffusion investigation in nanoscale time range

    SciTech Connect

    Belliard, L. Charron, E.; Vincent, S.; Perrin, B.; Fournier, D.; Frétigny, C.

    2015-02-14

    We report on thermal investigations performed in a time resolved experimental scheme. The time domain thermoreflectance (TDTR) is applied in an unusual geometry where the pump and probe beams are not superimposed but focused and shifted. In this way, the determination of the in-plane thermal diffusivity is achieved from temperature snapshots at different time delays. In the first part, taking into account the specific generation process and the detection inherent to the time domain thermoreflectance approach, an analytical solution for the temperature field is obtained for bulk samples, and compared to experimental data. A comparison with the frequency domain thermoreflectance microscopy is also outlined. In Part II section, the lateral heat diffusion in a layered structure is investigated. The comparison of the heat diffusion spreading in case of a highly conductive layer deposited on an insulator substrate and the reverse situation are carefully studied. Finally, we show how the time dependence is efficient to probe and identify material thermal properties or thermal interfacial resistance.

  18. Determination of the thermal diffusivity of bulk and layered samples by time domain thermoreflectance: Interest of lateral heat diffusion investigation in nanoscale time range

    NASA Astrophysics Data System (ADS)

    Belliard, L.; Frétigny, C.; Charron, E.; Vincent, S.; Perrin, B.; Fournier, D.

    2015-02-01

    We report on thermal investigations performed in a time resolved experimental scheme. The time domain thermoreflectance (TDTR) is applied in an unusual geometry where the pump and probe beams are not superimposed but focused and shifted. In this way, the determination of the in-plane thermal diffusivity is achieved from temperature snapshots at different time delays. In the first part, taking into account the specific generation process and the detection inherent to the time domain thermoreflectance approach, an analytical solution for the temperature field is obtained for bulk samples, and compared to experimental data. A comparison with the frequency domain thermoreflectance microscopy is also outlined. In Part II section, the lateral heat diffusion in a layered structure is investigated. The comparison of the heat diffusion spreading in case of a highly conductive layer deposited on an insulator substrate and the reverse situation are carefully studied. Finally, we show how the time dependence is efficient to probe and identify material thermal properties or thermal interfacial resistance.

  19. Effects of Lateral Plasma Density and Temperature Diffusion on VCSEL Performance

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The hydrodynamic model is further verified by applying to a gain-guided single mode VCSEL. DC effects of D(sub NN): (1) increase threshold current J(sub th) and decrease slope efficiency; (2) within the studied range (50% pumping within threshold and realistic diffusion coefficient for a single mode), the L-I relation scales with the relative Injection current (J/J(sub th) - 1). AC effects of D(sub NN): (1) decrease spectral bandwidth and responsivity of direct-current modulation; (2) within the studied range, the frequency response follows the same formal dependence as predicted without diffusion and under a linear gain model, while the resonant frequency position similarly scales with the relative injection current; (3) therefore, it is concluded that the AC effects of D(sub NN) is purely of static nature and reflected via its influence on ot and J(sub th). Within this study, the nonlinear effects of D(sub NN) are mostly reproducible with an equivalent constant diffusion coefficient.

  20. Effect of lithium-ion diffusibility on interfacial resistance of LiCoO2 thin film electrode modified with lithium tungsten oxides

    NASA Astrophysics Data System (ADS)

    Hayashi, Tetsutaro; Miyazaki, Takamichi; Matsuda, Yasutaka; Kuwata, Naoaki; Saruwatari, Motoaki; Furuichi, Yuki; Kurihara, Koji; Kuzuo, Ryuichi; Kawamura, Junichi

    2016-02-01

    To investigate the contribution of lithium-ion diffusibility of lithium tungsten oxides (LWOs) to low interfacial resistance, we fabricate thin-film electrodes of 6Li-enriched LiCoO2 (6LCO) modified with various structure-types of 6Li-enriched LWOs by pulsed laser deposition. The electrodes are subjected to X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and secondary-ion mass spectrometry (SIMS) analyses. XRD reveals that the LWO layers have Li2WO4 structure with rhombohedral and tetragonal symmetries and amorphous states. EIS shows that the lowest interfacial resistance of the positive electrodes is given by the amorphous state, followed in order by the tetragonal and the rhombohedral symmetry, and that the diffusion coefficients of lithium-ions in the electrodes increase in the same order. SIMS demonstrates that the fastest lithium-ion self-diffusibility into the LWOs is found in the amorphous state, followed in order by tetragonal and rhombohedral symmetry. Furthermore, the amorphous state LWO modification shows smooth lithium-ion diffusion between the LWO and LCO layers after the electrochemical test. Conversely, the rhombohedral LWO modification demonstrates congested lithium-ion diffusion between the LWO and LCO layers after the test. Thus, fast lithium-ion self-diffusibility into the LWO-modified LCO contributes to enhancing the diffusion of lithium-ions, resulting in the reduction of interfacial resistance.

  1. Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor

    PubMed Central

    Mai, Liqiang; Li, Han; Zhao, Yunlong; Xu, Lin; Xu, Xu; Luo, Yanzhu; Zhang, Zhengfei; Ke, Wang; Niu, Chaojiang; Zhang, Qingjie

    2013-01-01

    Layered intercalation compounds NaxMnO2 (x = 0.7 and 0.91) nanoflakes have been prepared directly through wet electrochemical process with Na+ ions intercalated into MnO2 interlayers spontaneously. The as-prepared NaxMnO2 nanoflake based supercapacitors exhibit faster ionic diffusion with enhanced redox peaks, tenfold-higher energy densities up to 110 Wh·kg−1 and higher capacitances over 1000 F·g−1 in aqueous sodium system compared with traditional MnO2 supercapacitors. Due to the free-standing electrode structure and suitable crystal structure, NaxMnO2 nanoflake electrodes also maintain outstanding electrochemical stability with capacitance retention up to 99.9% after 1000 cycles. Besides, pre-intercalation effect is further studied to explain this enhanced electrochemical performance. This study indicates that the suitable pre-intercalation is effective to improve the diffusion of electrolyte cations and other electrochemical performance for layered oxides, and suggests that the as-obtained nanoflakes are promising materials to achieve the hybridization of both high energy and power density for advanced supercapacitors.

  2. Current, charge, and capacitance during scanning probe oxidation of silicon. I. Maximum charge density and lateral diffusion

    NASA Astrophysics Data System (ADS)

    Dagata, J. A.; Perez-Murano, F.; Martin, C.; Kuramochi, H.; Yokoyama, H.

    2004-08-01

    A comprehensive analysis of the electrical current passing through the tip-substrate junction during oxidation of silicon by scanning probe microscopy (SPM) is presented. This analysis of experimental results under dc-bias conditions resolves the role of electronic and ionic contributions, especially for the initial stages of the reaction, determines the effective contact area of the tip-substrate junction, and unifies the roles of space charge and meniscus formation. In Part I of this work, we demonstrate that SPM oxidation is governed by a maximum charge density generated by electronic species within the junction at the onset of the oxidation process. Excess charge is channeled into lateral diffusion, keeping the charge density within the reaction zone constant and reducing the aspect ratio of the resulting oxide features. A uniform charge density implies that SPM oxides contain a fixed defect concentration, in accordance with the space-charge model. The effective (electrical) thickness of SPM oxides determined by these defects is investigated by Fowler-Nordheim analysis. We conclude that most of the electrical current involved in high voltage SPM oxidation of Si does not actually induce surface oxide growth, and that lateral diffusion and small aspect ratios are unavoidable aspects of contact-mode conditions.

  3. Molecular mechanism for lateral lipid diffusion between the outer membrane external leaflet and a beta-barrel hydrocarbon ruler.

    PubMed

    Khan, M Adil; Bishop, Russell E

    2009-10-20

    Membrane-intrinsic enzymes are embedded in lipids, yet how such enzymes interrogate lipid substrates remains a largely unexplored fundamental question. The outer membrane phospholipid:lipid A palmitoyltransferase PagP combats host immune defenses during infection and selects a palmitate chain using its beta-barrel interior hydrocarbon ruler. Both a molecular embrasure and crenel in Escherichia coli PagP display weakened transmembrane beta-strand hydrogen bonding to provide potential lateral routes for diffusion of the palmitoyl group between the hydrocarbon ruler and outer membrane external leaflet. Prolines in strands A and B lie beneath the dynamic L1 surface loop flanking the embrasure, whereas the crenel is flanked by prolines in strands F and G. Reversibly barricading the embrasure prevents lipid A palmitoylation without affecting the slower phospholipase reaction. Lys42Ala PagP is also a dedicated phospholipase, implicating this disordered L1 loop residue in lipid A recognition. The embrasure barricade additionally prevents palmitoylation of nonspecific fatty alcohols, but not miscible alcohols. Irreversibly barricading the crenel inhibits both lipid A palmitoylation and phospholipase reactions without compromising PagP structure. These findings indicate lateral palmitoyl group diffusion within the PagP hydrocarbon ruler is likely gated during phospholipid entry via the crenel and during lipid A egress via the embrasure.

  4. Molecular Mechanism for Lateral Lipid Diffusion between the Outer Membrane External Leaflet and a β-Barrel Hydrocarbon Ruler†

    PubMed Central

    Khan, M. Adil; Bishop, Russell E.

    2016-01-01

    Membrane-intrinsic enzymes are embedded in lipids, yet how such enzymes interrogate lipid substrates remains a largely unexplored fundamental question. The outer membrane phospholipid:lipid A palmitoyltransferase PagP combats host immune defenses during infection and selects a palmitate chain using its β-barrel interior hydrocarbon ruler. Both a molecular embrasure and crenel in Escherichia coli PagP display weakened transmembrane β-strand hydrogen bonding to provide potential lateral routes for diffusion of the palmitoyl group between the hydrocarbon ruler and outer membrane external leaflet. Prolines in strands A and B lie beneath the dynamic L1 surface loop flanking the embrasure, whereas the crenel is flanked by prolines in strands F and G. Reversibly barricading the embrasure prevents lipid A palmitoylation without affecting the slower phospholipase reaction. Lys42Ala PagP is also a dedicated phospholipase, implicating this disordered L1 loop residue in lipid A recognition. The embrasure barricade additionally prevents palmitoylation of nonspecific fatty alcohols, but not miscible alcohols. Irreversibly barricading the crenel inhibits both lipid A palmitoylation and phospholipase reactions without compromising PagP structure. These findings indicate lateral palmitoyl group diffusion within the PagP hydrocarbon ruler is likely gated during phospholipid entry via the crenel and during lipid A egress via the embrasure. PMID:19769329

  5. Lateral Pressure Dependence of the Phospholipid Transmembrane Diffusion Rate in Planar-Supported Lipid Bilayers

    PubMed Central

    Anglin, Timothy C.; Conboy, John C.

    2008-01-01

    The dependence of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) flip-flop kinetics on the lateral membrane pressure in a phospholipid bilayer was investigated by sum-frequency vibrational spectroscopy. Planar-supported lipid bilayers were prepared on fused silica supports using the Langmuir-Blodgett/Langmuir-Schaeffer technique, which allows precise control over the lateral surface pressure and packing density of the membrane. The lipid bilayer deposition pressure was varied from 28 to 42 mN/m. The kinetics of lipid flip-flop in these membranes was measured by sum-frequency vibrational spectroscopy at 37°C. An order-of-magnitude difference in the rate constant for lipid translocation (10.9 × 10−4 s−1 to 1.03 × 10−4 s−1) was measured for membranes prepared at 28 mN/m and 42 mN/m, respectively. This change in rate results from only a 7.4% change in the packing density of the lipids in the bilayer. From the observed kinetics, the area of activation for native phospholipid flip-flop in a protein-free DPPC planar-supported lipid bilayer was determined to be 73 ± 12 Å2/molecule at 37°C. Significance of the observed activation area and potential future applications of the technique to the study of phospholipid flip-flop are discussed. PMID:18339755

  6. Electrode materials, thermal annealing sequences, and lateral/vertical phase separation of polymer solar cells from multiscale molecular simulations.

    PubMed

    Lee, Cheng-Kuang; Wodo, Olga; Ganapathysubramanian, Baskar; Pao, Chun-Wei

    2014-12-10

    The nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link between morphology and processing conditions. Our analysis indicates that vertical phase segregation of P3HT:PCBM blend strongly depends on the electrode material and thermal annealing schedule. A thin P3HT-rich film is formed on the top, regardless of bottom electrode material, when the BHJ layer is exposed to the free surface during thermal annealing. In addition, preferential segregation of P3HT chains and PCBM molecules toward PEDOT:PSS and Al electrodes, respectively, is observed. Detailed morphology analysis indicated that, surprisingly, vertical phase segregation does not affect the connectivity of donor/acceptor domains with respective electrodes. However, the formation of P3HT/PCBM depletion zones next to the P3HT/PCBM-rich zones can be a potential bottleneck for electron/hole transport due to increase in transport pathway length. Analysis in terms of fraction of intra- and interchain charge transports revealed that processing schedule affects the average vertical orientation of polymer chains, which may be crucial for enhanced charge transport, nongeminate recombination, and charge collection. The present study establishes a more detailed link between processing and morphology by combining multiscale molecular simulation framework with an

  7. Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance.

    PubMed

    Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-10-01

    Light propagation models often simplify the interface between the optical fiber probe tip and tissue to a laterally uniform boundary with mismatched refractive indices. Such simplification neglects the precise optical properties of the commonly used probe tip materials, e.g. stainless steel or black epoxy. In this paper, we investigate the limitations of the laterally uniform probe-tissue interface in Monte Carlo simulations of diffuse reflectance. In comparison to a realistic probe-tissue interface that accounts for the layout and properties of the probe tip materials, the simplified laterally uniform interface is shown to introduce significant errors into the simulated diffuse reflectance.

  8. Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance

    PubMed Central

    Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-01-01

    Light propagation models often simplify the interface between the optical fiber probe tip and tissue to a laterally uniform boundary with mismatched refractive indices. Such simplification neglects the precise optical properties of the commonly used probe tip materials, e.g. stainless steel or black epoxy. In this paper, we investigate the limitations of the laterally uniform probe-tissue interface in Monte Carlo simulations of diffuse reflectance. In comparison to a realistic probe-tissue interface that accounts for the layout and properties of the probe tip materials, the simplified laterally uniform interface is shown to introduce significant errors into the simulated diffuse reflectance. PMID:26504647

  9. Towards combined electrochemistry and surface-enhanced resonance Raman of heme proteins: Improvement of diffusion electrochemistry of cytochrome c at silver electrodes chemically modified with 4-mercaptopyridine.

    PubMed

    Millo, Diego; Ranieri, Antonio; Koot, Wynanda; Gooijer, Cees; van der Zwan, Gert

    2006-08-01

    To date, a successful combination of surface-enhanced resonance Raman spectroscopy (SERRS) and electrochemistry to study heme proteins is inhibited by the problems raised by the prerequisite to use silver as electrode metal. This paper indicates an approach to overcome these problems. It describes a quick and reproducible procedure to prepare silver electrodes chemically modified with 4-mercaptopyridine suitable to perform diffusion electrochemistry of cytochrome c (cyt c). The method involves the employment of a mechanical and a chemical treatment and avoids the use of alumina slurries and any electrochemical pretreatment. Cyclic voltammetry (CV) was used to test the electrochemical response of cyt c, and the CV signals were found identical with those obtained on gold electrodes under the same experimental conditions. Compared to previous literature, a significant improvement of the CV signal of cyt c at silver electrodes was achieved. Preliminary results show that this treatment can be also successfully employed for the preparation of SERRS-active electrodes.

  10. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes

    PubMed Central

    2015-01-01

    Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption. PMID:26369420

  11. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes.

    PubMed

    Pean, Clarisse; Daffos, Barbara; Rotenberg, Benjamin; Levitz, Pierre; Haefele, Matthieu; Taberna, Pierre-Louis; Simon, Patrice; Salanne, Mathieu

    2015-10-01

    Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption.

  12. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes.

    PubMed

    Pean, Clarisse; Daffos, Barbara; Rotenberg, Benjamin; Levitz, Pierre; Haefele, Matthieu; Taberna, Pierre-Louis; Simon, Patrice; Salanne, Mathieu

    2015-10-01

    Supercapacitors are electrochemical devices which store energy by ion adsorption on the surface of a porous carbon. They are characterized by high power delivery. The use of nanoporous carbon to increase their energy density should not hinder their fast charging. However, the mechanisms for ion transport inside electrified nanopores remain largely unknown. Here we show that the diffusion is characterized by a hierarchy of time scales arising from ion confinement, solvation, and electrosorption effects. By combining electrochemistry experiments with molecular dynamics simulations, we determine the in-pore conductivities and diffusion coefficients and their variations with the applied potential. We show that the diffusion of the ions is slower by 1 order of magnitude compared to the bulk electrolyte. The desolvation of the ions occurs on much faster time scales than electrosorption. PMID:26369420

  13. Lateral electrophoresis and diffusion of Concanavalin A receptors in the membrane of embryonic muscle cell

    PubMed Central

    Poo, M. M.; Poo, W. J.; Lam, J. W.

    1978-01-01

    A uniform electric field of 10 V/cm applied across the surface of embryonic toad Xenopus muscle cells results in the asymmetric accumulation of concanavalin A (Con A) receptors toward one side of the cells within 10 min, as visualized by postfield fluorescent Con A labeling. This field produces an extracellular voltage difference of 20 mV across these 20-microns wide cells. The effect is reversible in two respects: (a) Additional exposure of the cell to the same field of opposite polarity for 10 min completely reverses the asymmetric accumulation to the other side of the cell. (b) Relaxation occurs after the removal of the field and results in complete recovery of the uniform distribution in 30 min. Both the accumulation and the recovery movements are independent of cell metabolism, and appear to be electrophoretic and diffusional in nature. The threshold field required to induce a detectable accumulation by the present method is between 1.0 and 1.5 V/cm (corresponding to a voltage difference of 2-3 mV across a 20-microns wide cell). The electrophoretic mobility of the most mobile population of nonliganded Con A receptors is estimated to be about 2 x 10(-3) microns/s per V/cm, while their diffusion coefficient is in the range of 4-7 x 10(-10) cm2/s. Extensive accumulation of the Con A receptors by an electric field results in the formation of immobile aggregates. The Con A receptors appear to consist of a heterogeneous population of membrane components different in their charge properties, mobility, and capability in forming aggregates. PMID:10605452

  14. Narrow groove welding gas diffuser assembly and welding torch

    SciTech Connect

    Rooney, Stephen J.

    2000-02-04

    A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

  15. Narrow groove welding gas diffuser assembly and welding torch

    DOEpatents

    Rooney, Stephen J.

    2001-01-01

    A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes a manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

  16. Manipulating the Lateral Diffusion of Surface-Anchored EGF Demonstrates that Receptor Clustering Modulates its Phosphorylation Levels

    SciTech Connect

    Stabley, Daniel; Retterer, Scott T; Marshal, Stephen; Salaita, Khalid

    2013-01-01

    Upon activation, the epidermal growth factor (EGF) receptor becomes phosphorylated and triggers a vast signaling network that has profound effects on cell growth. The EGF receptor is observed to assemble into clusters after ligand binding and tyrosine kinase autophosphorylation, but the role of these assemblies in the receptor signaling pathway remains unclear. To address this question, we measured the phosphorylation of EGFR when the EGF ligand was anchored onto laterally mobile and immobile surfaces. We found that cells generated clusters of ligand-receptor complex on mobile EGF surfaces, and generated a lower ratio of phosphorylated EGFR to EGF than when compared to immobilized EGF that is unable to cluster. This result was verified by tuning the lateral assembly of ligand-receptor complexes on the surface of living cells using patterned supported lipid bilayers. Nanoscale metal lines fabricated into the supported membrane constrained lipid diffusion and EGF receptor assembly into micron and sub-micron scale corrals. Single cell analysis indicated that clustering impacts EGF receptor activation, and larger clusters (> 1 m2) of ligand-receptor complex generated lower EGF receptor phosphorylation per ligand than smaller assemblies (< 1 m2) in HCC1143 cells that were engaged to ligand-functionalized surfaces. We investigated EGFR clustering by treating cells with compounds that disrupt the cytoskeleton (Latrunculin-B), clathrin-mediated endocytosis (Pitstop2), and inhibit EGFR activation (Gefitinib). These results help elucidate the nature of large-scale EGFR clustering, thus underscoring the general significance of receptor spatial organization in tuning function.

  17. Spin-related thermoelectric conversion in lateral spin-valve devices with single-crystalline Co2FeSi electrodes

    NASA Astrophysics Data System (ADS)

    Yamasaki, Kento; Oki, Soichiro; Yamada, Shinya; Kanashima, Takeshi; Hamaya, Kohei

    2015-04-01

    We demonstrate the conversion between a heat current and a spin current in Cu-based lateral spin valves (LSVs) with single-crystalline Co2FeSi (CFS) electrodes. We can observe the thermally induced spin injection from CFS into Cu resulting from the spin-dependent Seebeck effect, and the heat current generated by the spin-dependent Peltier effect can be detected even in the LSV structures. This study is an important step toward understanding heat-spin conversion in single-crystalline materials with various electronic band structures.

  18. A milling crowd model for local and long-range obstructed lateral diffusion. Mobility of excimeric probes in the membrane of intact erythrocytes.

    PubMed Central

    Eisinger, J; Flores, J; Petersen, W P

    1986-01-01

    A new model for lateral diffusion, the milling crowd model (MC), is proposed and is used to derive the dependence of the monomeric and excimeric fluorescence yields of excimeric membrane probes on their concentration. According to the MC model, probes migrate by performing spatial exchanges with a randomly chosen nearest neighbor (lipid or probe). Only nearest neighbor probes, one of which is in the excited state, may form an excimer. The exchange frequency, and hence the local lateral diffusion coefficient, may then be determined from experiment with the aid of computer simulation of the excimer formation kinetics. The same model is also used to study the long-range lateral diffusion coefficient of probes in the presence of obstacles (e.g., membrane proteins). The dependence of the monomeric and excimeric fluorescence yields of 1-pyrene-dodecanoic acid probes on their concentration in the membranes of intact erythrocytes was measured and compared with the prediction of the MC model. The analysis yields an excimer formation rate for nearest neighbor molecules of approximately 1 X 10(7) s-1 and an exchange frequency of approximately greater than 2 X 10(7) s-1, corresponding to a local diffusion coefficient of greater than 3 X 10(-8) cm2 s-1. This value is several times larger than the long-range diffusion coefficient for a similar system measured in fluorescence photobleaching recovery experiments. The difference is explained by the fact that long-range diffusion is obstructed by dispersed membrane proteins and is therefore greatly reduced when compared to free diffusion. The dependence of the diffusion coefficient on the fractional area covered by obstacles and on their size is derived from MC simulations and is compared to those of other theories lateral diffusibility. PMID:3778578

  19. Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, T.; Kaempgen, M.; Nopphawan, P.; Wee, G.; Mhaisalkar, S.; Srinivasan, M.

    Thin, lightweight, and flexible gas-diffusion electrodes (GDEs) based on freestanding entangled networks of single-walled carbon nanotubes (SWNTs) decorated with Ag nanoparticles (AgNPs) are tested as the air-breathing cathode in a zinc-air battery. The SWNT networks provide a highly porous surface for active oxygen absorption and diffusion. The high conductivity of SWNTs coupled with the catalytic activity of AgNPs for oxygen reduction leads to an improvement in the performance of the zinc-air cell. By modulating the pH value and the reaction time, different sizes of AgNPs are decorated uniformly on the SWNTs, as revealed by transmission electron microscopy and powder X-ray diffraction. AgNPs with sizes of 3-5 nm double the capacity and specific energy of a zinc-air battery as compared with bare SWNTs. The simplified, lightweight architecture shows significant advantages over conventional carbon-based GDEs in terms of weight, thickness and conductivity, and hence may be useful for mobile and portable applications.

  20. Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer

    NASA Astrophysics Data System (ADS)

    Wang, Qinian; Dong, Heng; Yu, Han; Yu, Hongbing

    2015-04-01

    Gas diffusion electrode (GDE) with Nafion bonded catalyst layer (CL) for electrochemical reduction of CO2 to formate (ERCF) suffers from CO2 mass transfer limitation. In this work, polytetrafluoroethylene (PTFE) with contents of 5.9 wt%, 7.7 wt%, 11.1 wt% and 20 wt% are added into the CL of the GDE with Sn catalyst (P-SGDE) for ERCF. The morphologies and porous structures of the P-SGDEs are examined by scanning electron microscope and mercury intrusion measurement, respectively. The electrochemical performances of the P-SGDEs are investigated by linear sweep voltammetry, electrochemical impedance spectroscopy and constant potential electrolysis. The results show that the Faraday efficiency (86.75 ± 2.89%) and current density (21.67 ± 1.29 mA cm-2) for ERCF were improved by 25.4% and 25.8% respectively when the content of PTFE is 11.1 wt%, probably owing to the enhancement in the catalyst active surface area and CO2 diffusion. This Faraday efficiency is the highest one found for ERCF with Sn GDE under similar conductions.

  1. Temperature dependence of the non-local resistance and spin diffusion length in metallic lateral spin valves

    NASA Astrophysics Data System (ADS)

    Erickson, Michael J.; Leighton, Chris; Crowell, Paul A.

    2010-03-01

    We report measurements of the T dependence of the non-local spin signal in lateral metallic spin valves with transparent ferromagnet (FM) / normal metal (N) interfaces. We have employed complementary spin valve and Hanle effect measurements to systematically study spin injection and relaxation. Devices were deposited in UHV from high purity sources of all four combinations of Ni0.8Fe0.2 or Co FM's and Cu or Al N channels. Devices of width 250 nm, thicknesses 200 - 400 nm, and FM contact separations (d = 250 to 2000 nm) were fabricated on a single substrate using an in-situ shadow masking technique. δRNL measurements show a very different T dependence for NiFe and Co devices while showing similar behavior for both Al and Cu. This is generally consistent with the measured resistivities and modeling based on the assumption of transparent interfaces. Fitting δRNL vs. d yields a spin diffusion length with weak T dependence for both Al and Cu and is independent of FM. Hanle effect measurements confirm a consistent picture of spin relaxation. Work supported by the University of Minnesota NSF MRSEC.

  2. Use of LARS system for the quantitative determination of smoke plume lateral diffusion coefficients from ERTS images of Virginia

    NASA Technical Reports Server (NTRS)

    Blais, R. N.; Copeland, G. E.; Lerner, T. H.

    1975-01-01

    A technique for measuring smoke plume of large industrial sources observed by satellite using LARSYS is proposed. A Gaussian plume model is described, integrated in the vertical, and inverted to yield a form for the lateral diffusion coefficient, Ky. Given u, wind speed; y sub l, the horizontal distance of a line of constant brightness from the plume symmetry axis a distance x sub l, downstream from reference point at x=x sub 2, y=0, then K sub y = u ((y sub 1) to the 2nd power)/2 x sub 1 1n (x sub 2/x sub 1). The technique is applied to a plume from a power plant at Chester, Virginia, imaged August 31, 1973 by LANDSAT I. The plume bends slightly to the left 4.3 km from the source and estimates yield Ky of 28 sq m/sec near the source, and 19 sq m/sec beyond the bend. Maximum ground concentrations are estimated between 32 and 64 ug/cu m. Existing meteorological data would not explain such concentrations.

  3. High-frequency performances of superjunction laterally diffused metal-oxide-semiconductor transistors for RF power applications

    NASA Astrophysics Data System (ADS)

    Chen, Bo-Yuan; Chen, Kun-Ming; Chiu, Chia-Sung; Huang, Guo-Wei; Chang, Edward Yi

    2016-04-01

    This paper presents the dc and high-frequency performances of laterally diffused metal-oxide-semiconductor (LDMOS) transistors with superjunction (SJ) structures. The SJ-LDMOS transistors were fabricated using a 0.5-µm CMOS process. By utilizing a modified SJ/RESURF layout (Type I) or a tapered SJ layout (Type II) in our devices, better high-frequency performances and higher breakdown voltages are achieved compared with conventional SJ counterpart, owing to the suppression of the substrate-assisted depletion effect and the reduction of the drain resistance. For Type I device with an optimal SJ layout dimension, the cutoff frequency and the breakdown voltage are 3.7 GHz and 68 V, respectively. For Type II device with a smallest p-pillar width near the drain, they can be enhanced further and reach to 4.9 GHz and 83 V. These experimental results suggest that the SJ-LDMOS can be used in the RF power amplifiers.

  4. Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: effects of particle size and hydrodynamic diffusion.

    PubMed

    Krittayavathananon, Atiweena; Srimuk, Pattarachai; Luanwuthi, Santamon; Sawangphruk, Montree

    2014-12-16

    Although metal nanoparticle/graphene composites have been widely used as the electrode in electrochemical sensors, two effects, consisting of the particle size of the nanoparticles and the hydrodynamic diffusion of analytes to the electrodes, are not yet fully understood. In this work, palladium nanoparticles/reduced graphene oxide (PdNPs/rGO) composites were synthesized using an in situ polyol method. Palladium(II) ions and graphene oxide were reduced together with a reducing agent, ethylene glycol. By varying the concentration of palladium(II) nitrate, PdNPs with different sizes were decorated on the surface of rGO sheets. The as-fabricated PdNPs/rGO rotating disk electrodes (RDEs) were investigated toward hydrazine detection. Overall, a 3.7 ± 1.4 nm diameter PdNPs/rGO RDE exhibits high performance with a rather low limit of detection of about 7 nM at a rotation speed of 6000 rpm and provides a wide linear range of 0.1-1000 μM with R(2) = 0.995 at 2000 rpm. This electrode is highly selective to hydrazine without interference from uric acid, glucose, ammonia, caffeine, methylamine, ethylenediamine, hydroxylamine, n-butylamine, adenosine, cytosine, guanine, thymine, and l-arginine. The PdNPs/rGO RDEs with larger sizes show lower detection performance. Interestingly, the detection performance of the electrodes is sensitive to the hydrodynamic diffusion of hydrazine. The as-fabricated electrode can detect trace hydrazine in wastewater with high stability, demonstrating its practical use as an electrochemical sensor. These findings may lead to an awareness of the effect of the hydrodynamic diffusion of analyte that has been previously ignored, and the 3.7 ± 1.4 nm PdNPs/rGO RDE may be useful toward trace hydrazine detection, especially in wastewater from related chemical industries.

  5. Ab initio diffuse-interface model for lithiated electrode interface evolution

    NASA Astrophysics Data System (ADS)

    Stournara, Maria E.; Kumar, Ravi; Qi, Yue; Sheldon, Brian W.

    2016-07-01

    The study of chemical segregation at interfaces, and in particular the ability to predict the thickness of segregated layers via analytical expressions or computational modeling, is a fundamentally challenging topic in the design of novel heterostructured materials. This issue is particularly relevant for the phase-field (PF) methodology, which has become a prominent tool for describing phase transitions. These models rely on phenomenological parameters that pertain to the interfacial energy and thickness, quantities that cannot be experimentally measured. Instead of back-calculating these parameters from experimental data, here we combine a set of analytical expressions based on the Cahn-Hilliard approach with ab initio calculations to compute the gradient energy parameter κ and the thickness λ of the segregated Li layer at the LixSi-Cu interface. With this bottom-up approach we calculate the thickness λ of the Li diffuse interface to be on the order of a few nm, in agreement with prior experimental secondary ion mass spectrometry observations. Our analysis indicates that Li segregation is primarily driven by solution thermodynamics, while the strain contribution in this system is relatively small. This combined scheme provides an essential first step in the systematic evaluation of the thermodynamic parameters of the PF methodology, and we believe that it can serve as a framework for the development of quantitative interface models in the field of Li-ion batteries.

  6. Ab initio diffuse-interface model for lithiated electrode interface evolution.

    PubMed

    Stournara, Maria E; Kumar, Ravi; Qi, Yue; Sheldon, Brian W

    2016-07-01

    The study of chemical segregation at interfaces, and in particular the ability to predict the thickness of segregated layers via analytical expressions or computational modeling, is a fundamentally challenging topic in the design of novel heterostructured materials. This issue is particularly relevant for the phase-field (PF) methodology, which has become a prominent tool for describing phase transitions. These models rely on phenomenological parameters that pertain to the interfacial energy and thickness, quantities that cannot be experimentally measured. Instead of back-calculating these parameters from experimental data, here we combine a set of analytical expressions based on the Cahn-Hilliard approach with ab initio calculations to compute the gradient energy parameter κ and the thickness λ of the segregated Li layer at the Li_{x}Si-Cu interface. With this bottom-up approach we calculate the thickness λ of the Li diffuse interface to be on the order of a few nm, in agreement with prior experimental secondary ion mass spectrometry observations. Our analysis indicates that Li segregation is primarily driven by solution thermodynamics, while the strain contribution in this system is relatively small. This combined scheme provides an essential first step in the systematic evaluation of the thermodynamic parameters of the PF methodology, and we believe that it can serve as a framework for the development of quantitative interface models in the field of Li-ion batteries. PMID:27575197

  7. The effect of formulation excipients on the penetration and lateral diffusion of ibuprofen on and within the stratum corneum following topical application to humans.

    PubMed

    Gee, Carol M; Watkinson, Adam C; Nicolazzo, Joseph A; Finnin, Barrie C

    2014-03-01

    Distribution profiles of topically applied drugs can be influenced by the presence of excipients. This study investigated the effect of common topical excipients on the simultaneous lateral diffusion and stratum corneum (SC) penetration of a model compound, ibuprofen (IBU) in humans. IBU solutions with and without propylene glycol (PG), polyethylene glycol 200 (PEG 200), and/or octisalate (OS) were dosed onto the forearm of participants. At various times, 10 "tape-strippings" were obtained with perforated concentric tapes and analyzed for IBU concentration and SC protein mass. Complimentary in vitro permeation studies assessed the effect of excipients on the percutaneous absorption of IBU across human skin. Following in vivo application, IBU displayed a greater tendency for lateral diffusion when applied with OS, whereas IBU resisted lateral diffusion when dosed with PG and PEG 200. After 24 h, 25.3 ± 8.0% and 55.5 ± 18.6% of IBU was recovered from the SC in vivo with and without excipients, respectively. There was a twofold-to threefold enhancement in IBU flux in vitro when applied with excipients. The lower IBU recovery from the SC when applied with excipients may be attributed to the permeation enhancement effects of these excipients. The ability of IBU to laterally diffuse appears to be dependent on formulation excipients.

  8. Computationally efficient approach for solving time dependent diffusion equation with discrete temporal convolution applied to granular particles of battery electrodes

    NASA Astrophysics Data System (ADS)

    Senegačnik, Jure; Tavčar, Gregor; Katrašnik, Tomaž

    2015-03-01

    The paper presents a computationally efficient method for solving the time dependent diffusion equation in a granule of the Li-ion battery's granular solid electrode. The method, called Discrete Temporal Convolution method (DTC), is based on a discrete temporal convolution of the analytical solution of the step function boundary value problem. This approach enables modelling concentration distribution in the granular particles for arbitrary time dependent exchange fluxes that do not need to be known a priori. It is demonstrated in the paper that the proposed method features faster computational times than finite volume/difference methods and Padé approximation at the same accuracy of the results. It is also demonstrated that all three addressed methods feature higher accuracy compared to the quasi-steady polynomial approaches when applied to simulate the current densities variations typical for mobile/automotive applications. The proposed approach can thus be considered as one of the key innovative methods enabling real-time capability of the multi particle electrochemical battery models featuring spatial and temporal resolved particle concentration profiles.

  9. Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model.

    PubMed

    Figini, Matteo; Scotti, Alessandro; Marcuzzo, Stefania; Bonanno, Silvia; Padelli, Francesco; Moreno-Manzano, Victoria; García-Verdugo, José Manuel; Bernasconi, Pia; Mantegazza, Renato; Bruzzone, Maria Grazia; Zucca, Ileana

    2016-01-01

    Diffusion-weighted Magnetic Resonance Imaging (dMRI) has relevant applications in the microstructural characterization of the spinal cord, especially in neurodegenerative diseases. Animal models have a pivotal role in the study of such diseases; however, in vivo spinal dMRI of small animals entails additional challenges that require a systematical investigation of acquisition parameters. The purpose of this study is to compare three acquisition protocols and identify the scanning parameters allowing a robust estimation of the main diffusion quantities and a good sensitivity to neurodegeneration in the mouse spinal cord. For all the protocols, the signal-to-noise and contrast-to noise ratios and the mean value and variability of Diffusion Tensor metrics were evaluated in healthy controls. For the estimation of fractional anisotropy less variability was provided by protocols with more diffusion directions, for the estimation of mean, axial and radial diffusivity by protocols with fewer diffusion directions and higher diffusion weighting. Intermediate features (12 directions, b = 1200 s/mm2) provided the overall minimum inter- and intra-subject variability in most cases. In order to test the diagnostic sensitivity of the protocols, 7 G93A-SOD1 mice (model of amyotrophic lateral sclerosis) at 10 and 17 weeks of age were scanned and the derived diffusion parameters compared with those estimated in age-matched healthy animals. The protocols with an intermediate or high number of diffusion directions provided the best differentiation between the two groups at week 17, whereas only few local significant differences were highlighted at week 10. According to our results, a dMRI protocol with an intermediate number of diffusion gradient directions and a relatively high diffusion weighting is optimal for spinal cord imaging. Further work is needed to confirm these results and for a finer tuning of acquisition parameters. Nevertheless, our findings could be important for the

  10. Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model

    PubMed Central

    Marcuzzo, Stefania; Bonanno, Silvia; Padelli, Francesco; Moreno-Manzano, Victoria; García-Verdugo, José Manuel; Bernasconi, Pia; Mantegazza, Renato; Bruzzone, Maria Grazia; Zucca, Ileana

    2016-01-01

    Diffusion-weighted Magnetic Resonance Imaging (dMRI) has relevant applications in the microstructural characterization of the spinal cord, especially in neurodegenerative diseases. Animal models have a pivotal role in the study of such diseases; however, in vivo spinal dMRI of small animals entails additional challenges that require a systematical investigation of acquisition parameters. The purpose of this study is to compare three acquisition protocols and identify the scanning parameters allowing a robust estimation of the main diffusion quantities and a good sensitivity to neurodegeneration in the mouse spinal cord. For all the protocols, the signal-to-noise and contrast-to noise ratios and the mean value and variability of Diffusion Tensor metrics were evaluated in healthy controls. For the estimation of fractional anisotropy less variability was provided by protocols with more diffusion directions, for the estimation of mean, axial and radial diffusivity by protocols with fewer diffusion directions and higher diffusion weighting. Intermediate features (12 directions, b = 1200 s/mm2) provided the overall minimum inter- and intra-subject variability in most cases. In order to test the diagnostic sensitivity of the protocols, 7 G93A-SOD1 mice (model of amyotrophic lateral sclerosis) at 10 and 17 weeks of age were scanned and the derived diffusion parameters compared with those estimated in age-matched healthy animals. The protocols with an intermediate or high number of diffusion directions provided the best differentiation between the two groups at week 17, whereas only few local significant differences were highlighted at week 10. According to our results, a dMRI protocol with an intermediate number of diffusion gradient directions and a relatively high diffusion weighting is optimal for spinal cord imaging. Further work is needed to confirm these results and for a finer tuning of acquisition parameters. Nevertheless, our findings could be important for the

  11. Electrochemical synthesis of urea at gas-diffusion electrodes. 4: Simultaneous reduction of carbon dioxide and nitrate ions with various metal catalysts

    SciTech Connect

    Shibata, Masami; Yoshida, Kohji; Furuya, Nagakazu

    1998-07-01

    Simultaneous reduction of carbon dioxide and nitrate ions was examined at gas-diffusion electrodes with various catalysts (Cr, Mo, Mn, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, An, Cd, In, Tl, Sn and Pb). The formation of urea, CO, formic acid, nitrite ions, and ammonia at the gas-diffusion electrodes with groups 11--14 catalysts, except for Au, was found in the simultaneous reduction. The maximum faradaic efficiency of urea formation on Zn catalysts is approximately 35% at {minus}1.75 V. The formation of urea at the gas-diffusion electrodes with groups 6--10 catalysts was not found in the simultaneous reduction of CO{sub 2} and nitrate. Relationship of the ability for urea formation to the ability for CO and NH{sub 3} formation was investigated with various catalysts. The ability for urea formation with the catalysts depends on the ability for CO and NH{sub 3} formation. The catalysts with high ability for CO and NU{sub 3} formation could form large amounts of CO-like and ammonia-like precursors. The faradaic efficiency of urea formation for simultaneous reduction with nitrate ions is lower than that with nitrite ions. This result seems to be related to the ability for ammonia-like precursor formation.

  12. Results of pulsed radiofrequency technique with two laterally placed electrodes in the annulus in patients with chronic lumbar discogenic pain.

    PubMed

    Fukui, Sei; Rohof, Olav

    2012-08-01

    Discogenic pain is an important cause of low back pain (LBP). We have developed a pulsed radiofrequency (P-RF) technique, using two electrodes placed bilaterally in the annulus, for applying radiofrequency current in the disc (bi-annular P-RF disc method). The purpose of this study was to investigate the effect of the bi-annular P-RF disc method, using Diskit needles (Neurotherm, Middleton, MA, USA) in patients with discogenic LBP. The subjects were 15 patients with a mean age of 37.3 ± 8.63 years with chronic discogenic lower back pain that was not responsive to aggressive nonoperative care. Two Diskit II needles (15-cm length, 20G needles with a 20-mm active tip) were placed bilaterally in the annulus in the disc. Pulsed radiofrequency was applied for 12 min at a setting of 5 × 50 ms/s and 60 V. The pain intensity scores on a 0-10 numeric rating scale (NRS) and the Roland-Morris Disability Questionnaire (RMDQ) were measured pretreatment, and at 1 week and 1, 3, and 6 months post-treatment. The mean pain severity score (NRS) improved from 7.27 ± 0.58 pretreatment to 2.5 ± 0.94 at the 6-month follow-up (p < 0.01). The RMDQ showed significant (p < 0.01) improvement, from 10.70 ± 2.35 pretreatment to 2.10 ± 1.85 at the 6-month follow up (p < 0.01). The bi-annular P-RF disc method with consecutive P-RF 5/5/60 V, 12-min (with Diskit needle), appears to be a safe, minimally invasive treatment option for patients with chronic discogenic LBP. PMID:22476553

  13. Multi-electrode laterally coupled distributed feedback InGaAsP/InP lasers: a prescription for longitudinal mode control

    NASA Astrophysics Data System (ADS)

    Benhsaien, Abdessamad; Dridi, Kais; Zhang, Jessica; Hall, Trevor J.

    2013-10-01

    Photonic Integrated Circuits (PICs) enable photons as data carriers at a very high speed. PIC market opportunities call for reduced wafer dimensions, power consumption and cost as well as enhanced reliability. The PIC technology development must cater for the latter relentless traits. In particular, monolithic PICs are sought as they can integrate hundreds of components and functions onto a single chip. InGaAsP/InP laterally-coupled distributed feedback (LC-DFB) lasers stand as key enablers in the PIC technology thanks to the compelling advantages their embedded high-order surface-gratings have. The patterning of the spatial corrugation along the sidewalls of the LC-DFB ridge, has been established to make the epitaxial overgrowth unnecessary thereby reducing the cost and time of manufacturing, and ultimately increasing the yield. LC-DFBs boast a small footprint synonymous of enhanced monolithic integrate-ability. Nonetheless, LC-DFBs suffer from the adverse longitudinal spatial hole burning (LSHB) effects materialized by typically quite high threshold current levels. Indeed, the carrier density longitudinal gradient- responsible for modes contending for the available material gain in the cavity- may be alleviated somewhat by segmenting the LC-DFB electrode into two or three reasonably interspaced longitudinal sections. In this work we report on the realization and performance of various electrode partition configurations. At room temperature, the experimental characterization of many as-cleaved LC-DFB devices provides ample evidence of superior performance such as a narrow linewidth (less than 400 kHz), a wide wavelength tune-ability (over 4 nm) and a hop-free single mode emission (side mode suppression ratio (SMSR) exceeding 54dB).

  14. Language laterality in autism spectrum disorder and typical controls: a functional, volumetric, and diffusion tensor MRI study.

    PubMed

    Knaus, Tracey A; Silver, Andrew M; Kennedy, Meaghan; Lindgren, Kristen A; Dominick, Kelli C; Siegel, Jeremy; Tager-Flusberg, Helen

    2010-02-01

    Language and communication deficits are among the core features of autism spectrum disorder (ASD). Reduced or reversed asymmetry of language has been found in a number of disorders, including ASD. Studies of healthy adults have found an association between language laterality and anatomical measures but this has not been systematically investigated in ASD. The goal of this study was to examine differences in gray matter volume of perisylvian language regions, connections between language regions, and language abilities in individuals with typical left lateralized language compared to those with atypical (bilateral or right) asymmetry of language functions. Fourteen adolescent boys with ASD and 20 typically developing adolescent boys participated, including equal numbers of left- and right-handed individuals in each group. Participants with typical left lateralized language activation had smaller frontal language region volume and higher fractional anisotropy of the arcuate fasciculus compared to the group with atypical language laterality, across both ASD and control participants. The group with typical language asymmetry included the most right-handed controls and fewest left-handers with ASD. Atypical language laterality was more prevalent in the ASD than control group. These findings support an association between laterality of language function and language region anatomy. They also suggest anatomical differences may be more associated with variation in language laterality than specifically with ASD. Language laterality therefore may provide a novel way of subdividing samples, resulting in more homogenous groups for research into genetic and neurocognitive foundations of developmental disorders.

  15. Continuous fluorescence microphotolysis of anthracene-labeled phospholipids in membranes. Theoretical approach of the simultaneous determination of their photodimerization and lateral diffusion rates.

    PubMed Central

    Ferrières, X; Lopez, A; Altibelli, A; Dupou-Cezanne, L; Lagouanelle, J L; Tocanne, J F

    1989-01-01

    Anthracene is a fluorescent and photoactivatable (dimerization) group which can be used for investigating the lateral distribution and dynamics of lipids in membranes. In fluorescence recovery after photobleaching or in microphotolysis experiments, and when using this fluorophore, the bleaching (or microphotolysis) step in the illuminated part of the membrane is in fact the sum of two antagonistic processes: fluorescence decay, which is due to dimerization of anthracene residues, and fluorescence recovery, which is due to a diffusion mediated exchange of bleached and unbleached particles between the illuminated and diffusion area in the membrane. Here, we propose a new mathematical algorithm that enables such a second-order reaction-diffusion process to be analyzed. After coupling a fluorescence recovery step to a microphotolysis step, this algorithm allows us to calculate the lateral diffusion coefficient D and the photodimerization constant K of anthracene-labeled lipids in membranes, two parameters which contribute to the understanding of the fluidity of the lipid phase in membranes. This algorithm also provides us with a complete description of the anthracene-labeled molecules distribution in the illuminated and diffusion area, at any time of the experiment. The fluorescence recovery after microphotolysis procedure we propose was tested with an anthracene-labeled phosphatidylcholine inserted in egg-phosphatidylcholine multilayers, in monolayers adsorbed onto alkylated glass surfaces and in the plasma membrane of Chinese hamster ovary cells. It is shown that this procedure can also be used to evaluate the important parameters of probe mobile fraction and to determine the relative size of the illuminated and diffusion areas. This will enable membranes to be explored in terms of microdomains and/or macrodomains. PMID:2765646

  16. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes.

    PubMed

    Verma, Sumit; Lu, Xun; Ma, Sichao; Masel, Richard I; Kenis, Paul J A

    2016-03-14

    The electroreduction of CO2 to C1-C2 chemicals can be a potential strategy for utilizing CO2 as a carbon feedstock. In this work, we investigate the effect of electrolytes on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Electrolyte concentration was found to play a major role in the process for the electrolytes (KOH, KCl, and KHCO3) studied here. Several fold improvements in partial current densities of CO (jCO) were observed on moving from 0.5 M to 3.0 M electrolyte solution independent of the nature of the anion. jCO values as high as 440 mA cm(-2) with an energy efficiency (EE) of ≈ 42% and 230 mA cm(-2) with EE ≈ 54% were observed when using 3.0 M KOH. Electrochemical impedance spectroscopy showed that both the charge transfer resistance (Rct) and the cell resistance (Rcell) decreased on moving from a 0.5 M to a 3.0 M KOH electrolyte. Anions were found to play an important role with respect to reducing the onset potential of CO in the order OH(-) (-0.13 V vs. RHE) < HCO3(-) (-0.46 V vs. RHE) < Cl(-) (-0.60 V vs. RHE). A decrease in Rct upon increasing electrolyte concentration and the effect of anions on the cathode can be explained by an interplay of different interactions in the electrical double layer that can either stabilize or destabilize the rate limiting CO2˙(-) radical. EMIM based ionic liquids and 1 : 2 choline Cl urea based deep eutectic solvents (DESs) have been used for CO2 capture but exhibit low conductivity. Here, we investigate if the addition of KCl to such solutions can improve conductivity and hence jCO. Electrolytes containing KCl in combination with EMIM Cl, choline Cl, or DESs showed a two to three fold improvement in jCO in comparison to those without KCl. Using such mixtures can be a strategy for integrating the process of CO2 capture with CO2 conversion. PMID:26661416

  17. Effects of lateral diffusion on morphology and dynamics of a microscopic lattice-gas model of pulsed electrodeposition

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Roberts, Daniel E.; Rikvold, Per Arne

    2005-02-01

    The influence of nearest-neighbor diffusion on the decay of a metastable low-coverage phase (monolayer adsorption) in a square lattice-gas model of electrochemical metal deposition is investigated by kinetic Monte Carlo simulations. The phase-transformation dynamics are compared to the well-established Kolmogorov-Johnson-Mehl-Avrami theory. The phase transformation is accelerated by diffusion, but remains in accord with the theory for continuous nucleation up to moderate diffusion rates. At very high diffusion rates the phase-transformation kinetic shows a crossover to instantaneous nucleation. Then, the probability of medium-sized clusters is reduced in favor of large clusters. Upon reversal of the supersaturation, the adsorbate desorbs, but large clusters still tend to grow during the initial stages of desorption. Calculation of the free energy of subcritical clusters by enumeration of lattice animals yields a quasiequilibrium distribution which is in reasonable agreement with the simulation results. This is an improvement relative to classical droplet theory, which fails to describe the distributions, since the macroscopic surface tension is a bad approximation for small clusters.

  18. Influence of the electron cross-field diffusion in negative ion sources with the transverse magnetic field and the plasma-electrode bias

    SciTech Connect

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2010-02-15

    The physical mechanisms involved in the extraction of H{sup -} ions from the negative ion source are studied with a PIC 2D3V code. The effect of a weak magnetic field transverse to the extraction direction is taken into account, along with a variable bias voltage applied on the plasma electrode (PE). In addition to previous modeling works, the electron diffusion across the magnetic field is taken into account as a simple one-dimensional random-walk process. The results show that without PE bias, the value of the diffusion coefficient has a significant influence upon the value of the extracted H{sup -} current. However, the value of this coefficient does not affect qualitatively the mechanism leading to the peak of extracted H{sup -} ion current observed for an optimum value of the PE bias.

  19. Language Laterality in Autism Spectrum Disorder and Typical Controls: A Functional, Volumetric, and Diffusion Tensor MRI Study

    ERIC Educational Resources Information Center

    Knaus, Tracey A.; Silver, Andrew M.; Kennedy, Meaghan; Lindgren, Kristen A.; Dominick, Kelli C.; Siegel, Jeremy; Tager-Flusberg, Helen

    2010-01-01

    Language and communication deficits are among the core features of autism spectrum disorder (ASD). Reduced or reversed asymmetry of language has been found in a number of disorders, including ASD. Studies of healthy adults have found an association between language laterality and anatomical measures but this has not been systematically…

  20. Anomalous output characteristic shift for the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer

    SciTech Connect

    Liu, Siyang; Zhang, Chunwei; Sun, Weifeng; Su, Wei; Wang, Shaorong; Ma, Shulang; Huang, Yu

    2014-04-14

    Anomalous output characteristic shift of the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer is investigated. It shows that the linear drain current has obvious decrease when the output characteristic of fresh device is measured for two consecutive times. The charge pumping experiments demonstrate that the decrease is not from hot-carrier degradation. The reduction of cross section area for the current flowing, which results from the squeezing of the depletion region surrounding the P-top layer, is responsible for the shift. Consequently, the current capability of this special device should be evaluated by the second measured output characteristic.

  1. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, De-zheng; Wang, Wen-chun; Liu, Zhi-jie; Wang, Sen; Jiang, Peng-chao; Zhang, Shuai

    2014-09-01

    In this paper, positive, negative, and bipolar nanosecond pulses are employed to generate stable and diffuse discharge plasma using array needles-plate electrode configuration at atmospheric pressure. A comparison study of discharge images, electrical characteristics, optical emission spectra, and plasma vibrational temperature and rotational temperatures in three pulsed polarity discharges is carried on under different discharge conditions. It is found that bipolar pulse is beneficial to the excitation of diffuse dielectric barrier discharge, which can generate a room temperature plasma with more homogeneous and higher discharge intensity compared with unipolar discharges. Under the condition of 6 mm electrode gap distance, 26 kV pulse peak voltage, and 150 Hz pulse repetition rate, the emission intensity of N2 (C3Πu → B3Πg) of the bipolar pulsed discharge is 4 times higher than the unipolar discharge (both positive and negative), while the plasma gas temperature is kept at 300 K, which is about 10-20 K lower than the unipolar discharge plasma.

  2. Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy

    PubMed Central

    1991-01-01

    A recently introduced extension of video-enhanced light microscopy, called Nanovid microscopy, documents the dynamic reorganization of individual cell surface components on living cells. 40-microns colloidal gold probes coupled to different types of poly-L-lysine label negative cell surface components of PTK2 cells. Evidence is provided that they bind to negative sialic acid residues of glycoproteins, probably through nonspecific electrostatic interactions. The gold probes, coupled to short poly-L-lysine molecules (4 kD) displayed Brownian motion, with a diffusion coefficient in the range 0.1-0.2 micron2/s. A diffusion coefficient in the 0.1 micron2/s range was also observed with 40-nm gold probes coupled to an antibody against the lipid-linked Thy-1 antigen on 3T3 fibroblasts. Diffusion of these probes is largely confined to apparent microdomains of 1-2 microns in size. On the other hand, the gold probes, coupled to long poly-L-lysine molecules (240 kD) molecules and bound to the leading lamella, were driven rearward, toward the boundary between lamelloplasm and perinuclear cytoplasm at a velocity of 0.5-1 micron/min by a directed ATP-dependent mechanism. This uniform motion was inhibited by cytochalasin, suggesting actin microfilament involvement. A similar behavior on MO cells was observed when the antibody-labeled gold served as a marker for the PGP-1 (GP-80) antigen. These results show that Nanovid microscopy, offering the possibility to observe the motion of individual specific cell surface components, provides a new and powerful tool to study the dynamic reorganization of the cell membrane during locomotion and in other biological contexts as well. PMID:1670778

  3. Shrinkage Behavior and Diffusion in Ni-based Internal Electrodes with Additional Amount and Particle Size of BaTiO3 Additive

    NASA Astrophysics Data System (ADS)

    Kang, Ji-Hun; Joo, Dongwon; Jung, Yeon-Gil; Paik, Ungyu

    2008-02-01

    The effect of additional amount and particle size of BaTiO3 additive on shrinkage behavior and inter-diffusion in Ni-based internal electrodes has been investigated, in order to reduce the large shrinkage mismatch between the internal electrode and the dielectric layer and to control the thermal and/or residual stresses in multilayer ceramic capacitors (MLCCs). Ni powder of 100-500 nm and two kinds of BaTiO3 powders of 100 and 200 nm were used as matrix and additive, respectively. The Ni and BaTiO3 powders were mixed with volume ratios of 95:5, 90:10, 85:15, respectively, and then cold-isostatic pressed. The shrinkage of starting materials and each composite was measured in a range of 700-1300 °C with 150 °C interval in H2/Ar atmosphere, using ASTM standard method. Diffusion phenomena at interface of Ni/BaTiO3 composites with 85:15 and 90:10 volume ratios were investigated using SEM, EDX, and TEM. The particle size affects the shrinkage behavior in relatively low temperatures below 1000 °C, showing a turning point at that temperature. The final shrinkage of composites is matched with that of bulk BaTiO3 of smaller particle size, independent of additional amount of BaTiO3 additive. A reaction layer of about 1000 nm wide is observed at the interface between the Ni and BaTiO3 powders in the composite of 85:15 volume ratio. The quantitative amount of elemental Ni diffused into the BaTiO3 is about 9.7 mass% in the composite of 90:10 volume ratio, without another phase seen in the Ni.

  4. Lateral Diffusion of Proteins on Supported Lipid Bilayers: Additive Friction of Synaptotagmin 7 C2A–C2B Tandem Domains

    PubMed Central

    2015-01-01

    The synaptotagmin (Syt) family of proteins contains tandem C2 domains, C2A and C2B, which bind membranes in the presence of Ca2+ to trigger vesicle fusion during exocytosis. Despite recent progress, the role and extent of interdomain interactions between C2A and C2B in membrane binding remain unclear. To test whether the two domains interact on a planar lipid bilayer (i.e., experience thermodynamic interdomain contacts), diffusion of fluorescent-tagged C2A, C2B, and C2AB domains from human Syt7 was measured using total internal reflection fluorescence microscopy with single-particle tracking. The C2AB tandem exhibits a lateral diffusion constant approximately half the value of the isolated single domains and does not change when additional residues are engineered into the C2A–C2B linker. This is the expected result if C2A and C2B are separated when membrane-bound; theory predicts that C2AB diffusion would be faster if the two domains were close enough together to have interdomain contact. Stopped-flow measurements of membrane dissociation kinetics further support an absence of interdomain interactions, as dissociation kinetics of the C2AB tandem remain unchanged when rigid or flexible linker extensions are included. Together, the results suggest that the two C2 domains of Syt7 bind independently to planar membranes, in contrast to reported interdomain cooperativity in Syt1. PMID:25437758

  5. Modulation of manual preference induced by lateralized practice diffuses over distinct motor tasks: age-related effects

    PubMed Central

    Souza, Rosana M.; Coelho, Daniel B.; Teixeira, Luis A.

    2014-01-01

    In this study we investigated the effect of use of the non-preferred left hand to practice different motor tasks on manual preference in children and adults. Manual preference was evaluated before, immediately after and 20 days following practice. Evaluation was made with tasks of distinct levels of complexity requiring reaching and manipulation of cards at different eccentricities in the workspace. Results showed that left hand use in adults induced increased preference of that hand at the central position when performing the simple task, while left hand use by the children induced increased preference of the left hand at the rightmost positions in the performance of the complex task. These effects were retained over the rest period following practice. Kinematic analysis showed that left hand use during practice did not lead to modification of intermanual performance asymmetry. These results indicate that modulation of manual preference was a consequence of higher frequency of use of the left hand during practice rather than of change in motor performance. Findings presented here support the conceptualization that confidence on successful performance when using a particular limb generates a bias in hand selection, which diffuses over distinct motor tasks. PMID:25538656

  6. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  7. Effect of centrophenoxine and BCE-001 treatment on lateral diffusion of proteins in the hepatocyte plasma membrane as revealed by fluorescence recovery after photobleaching in rat liver smears.

    PubMed

    Zs-Nagy, I; Ohta, M; Kitani, K

    1989-01-01

    The average lateral diffusion coefficient of proteins (D) in the cell membrane of hepatocytes has been measured in liver smears by fluorescence recovery after photobleaching (FRAP), based on the so-called peroxide-induced autofluorescence (PIAF) deriving from the oxidation of riboflavin bound to membrane proteins. It has been previously shown that D displays a significant negative linear age correlation. The in vivo effects of two drugs were tested on this parameter. Young (2.7 months) and old (24-26 months) male rats received centrophenoxine (CPH) or a new drug (BCE-001) by either intraperitoneal (i.p.) injection or per os through a gastric tube for 26 to 42 days. D was measured on a double-blind basis in the hepatocyte plasma membrane of treated and control groups. The CPH and BCE-001 treatments did not affect the value of D in the young rats. However, the latter drug increased their growth rate. An increase of D in old animals was induced by treatment with either drug. When the drug effects in old rats were compared, BCE-001 proved to be more efficient than CPH, and at the same time was able to significantly retard the age-dependent loss of body weight characteristic of these animals at the age of approximately 2 years. Our results are in good accord with the predictions of the membrane hypothesis of aging as regards the role of properly placed OH. free radical scavengers in the improvement of membrane and overall cell function.

  8. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Liang, Tian-Ran; Wang, Hua-Bo; Li, He-Ping; Bao, Cheng-Yu

    2007-05-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  9. Electrodes for microfluidic applications

    DOEpatents

    Crocker, Robert W.; Harnett, Cindy K.; Rognlien, Judith L.

    2006-08-22

    An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.

  10. Lateral diffusion, function, and expression of the slow channel congenital myasthenia syndrome αC418W nicotinic receptor mutation with changes in lipid raft components.

    PubMed

    Oyola-Cintrón, Jessica; Caballero-Rivera, Daniel; Ballester, Leomar; Baéz-Pagán, Carlos A; Martínez, Hernán L; Vélez-Arroyo, Karla P; Quesada, Orestes; Lasalde-Dominicci, José A

    2015-10-30

    Lipid rafts, specialized membrane microdomains in the plasma membrane rich in cholesterol and sphingolipids, are hot spots for a number of important cellular processes. The novel nicotinic acetylcholine receptor (nAChR) mutation αC418W, the first lipid-exposed mutation identified in a patient that causes slow channel congenital myasthenia syndrome was shown to be cholesterol-sensitive and to accumulate in microdomains rich in the membrane raft marker protein caveolin-1. The objective of this study is to gain insight into the mechanism by which lateral segregation into specialized raft membrane microdomains regulates the activable pool of nAChRs. We performed fluorescent recovery after photobleaching (FRAP), quantitative RT-PCR, and whole cell patch clamp recordings of GFP-encoding Mus musculus nAChRs transfected into HEK 293 cells to assess the role of cholesterol and caveolin-1 (CAV-1) in the diffusion, expression, and functionality of the nAChR (WT and αC418W). Our findings support the hypothesis that a cholesterol-sensitive nAChR might reside in specialized membrane microdomains that upon cholesterol depletion become disrupted and release the cholesterol-sensitive nAChRs to the pool of activable receptors. In addition, our results in HEK 293 cells show an interdependence between CAV-1 and αC418W that could confer end plates rich in αC418W nAChRs to a susceptibility to changes in cholesterol levels that could cause adverse drug reactions to cholesterol-lowering drugs such as statins. The current work suggests that the interplay between cholesterol and CAV-1 provides the molecular basis for modulating the function and dynamics of the cholesterol-sensitive αC418W nAChR.

  11. Electrode Migration in Patients with Perimodiolar Cochlear Implant Electrodes.

    PubMed

    Mittmann, Philipp; Rademacher, Grit; Mutze, Sven; Ernst, Arneborg; Todt, Ingo

    2015-01-01

    Migration of a cochlear implant electrode is a hitherto uncommon complication. So far, array migration has only been observed in lateral wall electrodes. Between 1999 and 2014, a total of 27 patients received bilateral perimodiolar electrode arrays at our institution. The insertion depth angle was estimated on the initial postoperative scans and compared with the insertion depth angle of the postoperative scans performed after contralateral cochlear implantation. Seven (25.93%) patients were found to have an electrode array migration of more than 15°. Electrode migration in perimodiolar electrodes seems to be less frequent and to occur to a lower extent than in lateral wall electrodes. Electrode migration was clinically asymptomatic in all cases.

  12. Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes.

    PubMed

    Kim, Hee-Dong; Kim, Kyeong Heon; Kim, Su Jin; Kim, Tae Geun

    2015-11-01

    A novel conducting filament (CF)-embedded indium tin oxide (ITO) film is fabricated using an electrical breakdown method. To assess the performance of this layer as an ohmic contact, it is applied to GaN (gallium nitride) light-emitting diodes (LEDs) as a p-type electrode for comparison with typical GaN LEDs using metallic ITO. The operating voltage and output power of the LED with the CF embedded ITO are 3.93 V and 8.49 mW, respectively, at an injection current of 100 mA. This is comparable to the operating voltage and output power of the conventionally fabricated LEDs using metallic ITO (3.93 V and 8.43 mW). Moreover, the CF-ITO LED displays uniform and bright light emission indicating excellent current injection and spreading. These results suggest that the proposed method of forming ohmic contacts is at least as effective as the conventional method. PMID:26561146

  13. Imaging transient formation of diffusion layers with fluorescence-enabled electrochemical microscopy.

    PubMed

    Oja, Stephen M; Zhang, Bo

    2014-12-16

    Fluorescence-enabled electrochemical microscopy (FEEM) is demonstrated as a new technique to image transient concentration profiles of redox species generated on ultramicroelectrodes (UMEs). FEEM converts an electrical signal into an optical signal by electrically coupling a conventional redox reaction to a fluorogenic reporter reaction on a closed bipolar electrode. We describe the implementation of FEEM for diffusion layer imaging and use an array of thousands of parallel bipolar electrodes to image the diffusion layers of UMEs in two and three dimensions. This new technique provides a way to image an entire 2-dimensional lateral cross section of a dynamic diffusion layer in a single experiment. By taking several of these lateral cross sections at different axial positions in the diffusion layer, a 3-dimensional image of the diffusion layer can be built. We image the diffusion layer of a 10 μm diameter carbon fiber electrode over the course of a cyclic voltammetry experiment and compare the FEEM-generated images to concentration profiles generated from numerical simulation. We also image the diffusion layer of a two electrode array consisting of two 10 μm diameter carbon fibers over the course of a potential step experiment.

  14. Positive electrodes of nickel-cadmium batteries

    NASA Technical Reports Server (NTRS)

    Wabner, D. W.; Kandler, L.; Krienke, W.

    1985-01-01

    Ni hydroxide sintered electrodes which are filled electrochemically are superior to chemically treated electrodes. In the electrochemical process, the hydroxide grows on the Ni grains and possesses a well-defined porous structure. Diffusion and conducting mechanisms are therefore facilitated.

  15. Multifunctional reference electrode

    DOEpatents

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  16. Multifunctional reference electrode

    DOEpatents

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  17. Floating-diffusion electrometer with adjustable sensitivity

    NASA Technical Reports Server (NTRS)

    Tower, John R. (Inventor)

    1989-01-01

    The effective capacitance of the floating diffusion in a floating-diffusion electrometer is modified to adjust electrometer sensitivity. This is done by changing the direct potential applied to a gate electrode proximate to the floating diffusion.

  18. Atomic Insight into the Lithium Storage and Diffusion Mechanism of SiO2/Al2O3 Electrodes of Lithium Ion Batteries: ReaxFF Reactive Force Field Modeling.

    PubMed

    Ostadhossein, Alireza; Kim, Sung-Yup; Cubuk, Ekin D; Qi, Yue; van Duin, Adri C T

    2016-04-01

    Atomically deposited layers of SiO2 and Al2O3 have been recognized as promising coating materials to buffer the volumetric expansion and capacity retention upon the chemo-mechanical cycling of the nanostructured silicon- (Si-) based electrodes. Furthermore, silica (SiO2) is known as a promising candidate for the anode of next-generation lithium ion batteries (LIBs) due to its superior specific charge capacity and low discharge potential similar to Si anodes. In order to describe Li-transport in mixed silica/alumina/silicon systems we developed a ReaxFF potential for Li-Si-O-Al interactions. Using this potential, a series of hybrid grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations were carried out to probe the lithiation behavior of silica structures. The Li transport through both crystalline and amorphous silica was evaluated using the newly optimized force field. The anisotropic diffusivity of Li in crystalline silica cases is demonstrated. The ReaxFF diffusion study also verifies the transferability of the new force field from crystalline to amorphous phases. Our simulation results indicates the capability of the developed force field to examine the energetics and kinetics of lithiation as well as Li transportation within the crystalline/amorphous silica and alumina phases and provide a fundamental understanding on the lithiation reactions involved in the Si electrodes covered by silica/alumina coating layers.

  19. Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana.

    PubMed

    Guenoune-Gelbart, Dana; Elbaum, Michael; Sagi, Guy; Levy, Amit; Epel, Bernard L

    2008-03-01

    Virus spread through plasmodesmata (Pd) is mediated by virus-encoded movement proteins (MPs) that modify Pd structure and function. The MP of Tobacco mosaic virus ((TMV)MP) is an endoplasmic reticulum (ER) integral membrane protein that binds viral RNA (vRNA), forming a vRNA:MP:ER complex. It has been hypothesized that (TMV)MP causes Pd to dilate, thus potentiating a cytoskeletal mediated sliding of the vRNA:MP:ER complex through Pd; in the absence of MP, by contrast, the ER cannot move through Pd. An alternate model proposes that cell-to-cell spread takes place by diffusion of the MP:vRNA complex in the ER membranes which traverse Pd. To test these models, we measured the effect of (TMV)MP and replicase expression on cell-to-cell spread of several green fluorescent protein-fused probes: a soluble cytoplasmic protein, two ER lumen proteins, and two ER membrane-bound proteins. Our data support the diffusion model in which a complex that includes ER-embedded MP, vRNA, and other components diffuses in the ER membrane within the Pd driven by the concentration gradient between an infected cell and adjacent noninfected cells. The data also suggest that the virus replicase and MP function together in altering Pd conductivity.

  20. Origin, Diffusion, and Differentiation of Y-Chromosome Haplogroups E and J: Inferences on the Neolithization of Europe and Later Migratory Events in the Mediterranean Area

    PubMed Central

    Semino, Ornella; Magri, Chiara; Benuzzi, Giorgia; Lin, Alice A.; Al-Zahery, Nadia; Battaglia, Vincenza; Maccioni, Liliana; Triantaphyllidis, Costas; Shen, Peidong; Oefner, Peter J.; Zhivotovsky, Lev A.; King, Roy; Torroni, Antonio; Cavalli-Sforza, L. Luca; Underhill, Peter A.; Santachiara-Benerecetti, A. Silvana

    2004-01-01

    The phylogeography of Y-chromosome haplogroups E (Hg E) and J (Hg J) was investigated in >2,400 subjects from 29 populations, mainly from Europe and the Mediterranean area but also from Africa and Asia. The observed 501 Hg E and 445 Hg J samples were subtyped using 36 binary markers and eight microsatellite loci. Spatial patterns reveal that (1) the two sister clades, J-M267 and J-M172, are distributed differentially within the Near East, North Africa, and Europe; (2) J-M267 was spread by two temporally distinct migratory episodes, the most recent one probably associated with the diffusion of Arab people; (3) E-M81 is typical of Berbers, and its presence in Iberia and Sicily is due to recent gene flow from North Africa; (4) J-M172(xM12) distribution is consistent with a Levantine/Anatolian dispersal route to southeastern Europe and may reflect the spread of Anatolian farmers; and (5) E-M78 (for which microsatellite data suggest an eastern African origin) and, to a lesser extent, J-M12(M102) lineages would trace the subsequent diffusion of people from the southern Balkans to the west. A 7%–22% contribution of Y chromosomes from Greece to southern Italy was estimated by admixture analysis. PMID:15069642

  1. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  2. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  3. Magnetohydrodynamic electrode

    DOEpatents

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  4. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  5. Working Electrodes

    NASA Astrophysics Data System (ADS)

    Komorsky-Lovrić, Šebojka

    In electrochemistry an electrode is an electronic conductor in contact with an ionic conductor. The electronic conductor can be a metal, or a semiconductor, or a mixed electronic and ionic conductor. The ionic conductor is usually an electrolyte solution; however, solid electrolytes and ionic melts can be used as well. The term "electrode" is also used in a technical sense, meaning the electronic conductor only. If not specified otherwise, this meaning of the term "electrode" is the subject of the present chapter. In the simplest case the electrode is a metallic conductor immersed in an electrolyte solution. At the surface of the electrode, dissolved electroactive ions change their charges by exchanging one or more electrons with the conductor. In this electrochemical reaction both the reduced and oxidized ions remain in solution, while the conductor is chemically inert and serves only as a source and sink of electrons. The technical term "electrode" usually also includes all mechanical parts supporting the conductor (e.g., a rotating disk electrode or a static mercury drop electrode). Furthermore, it includes all chemical and physical modifications of the conductor, or its surface (e.g., a mercury film electrode, an enzyme electrode, and a carbon paste electrode). However, this term does not cover the electrolyte solution and the ionic part of a double layer at the electrode/solution interface. Ion-selective electrodes, which are used in potentiometry, will not be considered in this chapter. Theoretical and practical aspects of electrodes are covered in various books and reviews [1-9].

  6. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  7. Kinetic analysis of the activation of transducin by photoexcited rhodopsin. Influence of the lateral diffusion of transducin and competition of guanosine diphosphate and guanosine triphosphate for the nucleotide site.

    PubMed Central

    Bruckert, F; Chabre, M; Vuong, T M

    1992-01-01

    The activation of transducin (T) by photoexcited rhodopsin (R*) is kinetically dissected within the framework of Michaelis-Menten enzymology, taking transducin as substrate of the enzyme R*. The light scattering "release" signal (Vuong, T.M., M. Chabre, and L. Stryer, 1984, Nature (Lond.). 311:659-661) was used to monitor the kinetics of transducin activation at 20 degrees C. In addition, the influence of nonuniform distributions of R* on these activation kinetics is also explored. Sinusoidal patterns of R* were created with interference fringes from two crossed laser beams. Two characteristic times were extracted from the Michaelis-Menten analysis: t(form), the diffusion-related time needed to form the enzyme-substrate R*-transducin is 0.25 +/- 0.1 ms, and T(cat), the time taken by R* to perform the chemistry of catalysis on transducin is 1.2 +/- 0.2 ms, in the absence of added guanosine diphosphate (GDP) and at saturating levels of guanosine triphosphate (GTP). With t(form) being but 20% of the total activation time t(form) + t(cat), transducin activation by R* is not limited by lateral diffusion. This is further borne out by the observation that uniform and sinusoidal patterns of R* elicited release signals of indistinguishable kinetics. When (GDP) = (GTP) = 500 microM, t(cat) is lengthened twofold. As the in vivo GDP and GTP levels are comparable, the exchange of nucleotides may well be the rate-limiting process. PMID:1420903

  8. Measurement of the lateral diffusion of dipalmitoylphosphatidylcholine adsorbed on silica beads in the absence and presence of melittin: a 31P two-dimensional exchange solid-state NMR study.

    PubMed Central

    Picard, F; Paquet, M J; Dufourc, E J; Auger, M

    1998-01-01

    31P two-dimensional exchange solid-state NMR spectroscopy was used to measure the lateral diffusion, D(L), in the fluid phase of dipalmitoylphosphatidylcholine (DPPC) in the presence and absence of melittin. The use of a spherical solid support with a radius of 320 +/- 20 nm, on which lipids and peptides are adsorbed together, and a novel way of analyzing the two-dimensional exchange patterns afforded a narrow distribution of D(L) centered at a value of (8.8 +/- 0.5) x 10(-8) cm2/s for the pure lipid system and a large distribution of D(L) spanning 1 x 10(-8) to 10 x 10(-8) cm2/s for the lipids in the presence of melittin. In addition, the determination of D(L) for nonsupported DPPC multilamellar vesicles (MLVs) suggests that the support does not slow down the lipid diffusion and that the radii of the bilayers vary from 300 to 800 nm. Finally, the DPPC-melittin complex is stabilized at the surface of the silica beads in the gel phase, opening the way to further study of the interaction between melittin and DPPC. PMID:9533697

  9. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  10. A Pascalian lateral drift sensor

    NASA Astrophysics Data System (ADS)

    Jansen, H.

    2016-09-01

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  11. Graphene based nanocomposite hybrid electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  12. Activated transport in AMTEC electrodes

    NASA Astrophysics Data System (ADS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Oconnor, D.; Kikkert, S.

    1992-08-01

    Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. Little can be learned about the detailed mass transport process from the ac impedance or current voltage curves of an electrode at one set of operating parameters, because the transport process includes a number of important physical parameters that are not all uniquely determined by one experiment. The temperature dependence of the diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and pre-exponential, but at least two activated processes may be operative, and the activation parameters should be expected to depend on the alkali metal activity gradient that the electrode experiences. In the case of Pt/W/Mn electrodes operated for 2500 hours, limiting currents varied with electrode thickness, and the activation parameters could be assigned primarily to the surface/grain boundary diffusion process.

  13. Hot-carrier-induced linear drain current and threshold voltage degradation for thin layer silicon-on-insulator field P-channel lateral double-diffused metal-oxide-semiconductor

    SciTech Connect

    Zhou, Xin; Qiao, Ming; He, Yitao; Li, Zhaoji; Zhang, Bo

    2015-11-16

    Hot-carrier-induced linear drain current (I{sub dlin}) and threshold voltage (V{sub th}) degradations for the thin layer SOI field p-channel lateral double-diffused MOS (pLDMOS) are investigated. Two competition degradation mechanisms are revealed and the hot-carrier conductance modulation model is proposed. In the channel, hot-hole injection induced positive oxide trapped charge and interface trap gives rise to the V{sub th} increasing and the channel conductance (G{sub ch}) decreasing, then reduces I{sub dlin}. In the p-drift region, hot-electron injection induced negative oxide trapped charge enhances the conductance of drift doping resistance (G{sub d}), and then increases I{sub dlin}. Consequently, the eventual I{sub dlin} degradation is controlled by the competition of the two mechanisms due to conductance modulation in the both regions. Based on the model, it is explained that the measured I{sub dlin} anomalously increases while the V{sub th} is increasing with power law. The thin layer field pLDMOS exhibits more severe V{sub th} instability compared with thick SOI layer structure; as a result, it should be seriously evaluated in actual application in switching circuit.

  14. Hot-carrier-induced linear drain current and threshold voltage degradation for thin layer silicon-on-insulator field P-channel lateral double-diffused metal-oxide-semiconductor

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Qiao, Ming; He, Yitao; Li, Zhaoji; Zhang, Bo

    2015-11-01

    Hot-carrier-induced linear drain current (Idlin) and threshold voltage (Vth) degradations for the thin layer SOI field p-channel lateral double-diffused MOS (pLDMOS) are investigated. Two competition degradation mechanisms are revealed and the hot-carrier conductance modulation model is proposed. In the channel, hot-hole injection induced positive oxide trapped charge and interface trap gives rise to the Vth increasing and the channel conductance (Gch) decreasing, then reduces Idlin. In the p-drift region, hot-electron injection induced negative oxide trapped charge enhances the conductance of drift doping resistance (Gd), and then increases Idlin. Consequently, the eventual Idlin degradation is controlled by the competition of the two mechanisms due to conductance modulation in the both regions. Based on the model, it is explained that the measured Idlin anomalously increases while the Vth is increasing with power law. The thin layer field pLDMOS exhibits more severe Vth instability compared with thick SOI layer structure; as a result, it should be seriously evaluated in actual application in switching circuit.

  15. Modeling of a triple reduced surface field silicon-on-insulator lateral double-diffused metal-oxide-semiconductor field-effect transistor with low on-state resistance

    NASA Astrophysics Data System (ADS)

    Yu-Ru, Wang; Yi-He, Liu; Zhao-Jiang, Lin; Dong, Fang; Cheng-Zhou, Li; Ming, Qiao; Bo, Zhang

    2016-02-01

    An analytical model for a novel triple reduced surface field (RESURF) silicon-on-insulator (SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) field effect transistor with n-type top (N-top) layer, which can obtain a low on-state resistance, is proposed in this paper. The analytical model for surface potential and electric field distributions of the novel triple RESURF SOI LDMOS is presented by solving the two-dimensional (2D) Poisson’s equation, which can also be applied to single, double and conventional triple RESURF SOI structures. The breakdown voltage (BV) is formulized to quantify the breakdown characteristic. Besides, the optimal integrated charge of N-top layer (Qntop) is derived, which can give guidance for doping the N-top layer. All the analytical results are well verified by numerical simulation results, showing the validity of the presented model. Hence, the proposed model can be a good tool for the device designers to provide accurate first-order design schemes and physical insights into the high voltage triple RESURF SOI device with N-top layer. Project supported by the National Natural Science Foundation of China (Grant No. 61376080), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030313736), and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2013J030).

  16. Lateral genomics.

    PubMed

    Doolittle, W F

    1999-12-01

    More than 20 complete prokaryotic genome sequences are now publicly available, each by itself an unparalleled resource for understanding organismal biology. Collectively, these data are even more powerful: they could force a dramatic reworking of the framework in which we understand biological evolution. It is possible that a single universal phylogenetic tree is not the best way to depict relationships between all living and extinct species. Instead a web- or net-like pattern, reflecting the importance of horizontal or lateral gene transfer between lineages of organisms, might provide a more appropriate visual metaphor. Here, I ask whether this way of thinking is really justified, and explore its implications.

  17. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  18. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  19. Photoelectrochemical electrodes

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Rembaum, A. (Inventor)

    1983-01-01

    The surface of a moderate band gap semiconductor such as p-type molybdenum sulfide is modified to contain an adherent film of charge mediating ionene polymer containing an electroactive unit such as bipyridimium. Electron transport between the electrode and the mediator film is favorable and photocorrosion and recombination processes are suppressed. Incorporation of particles of catalyst such as platinum within the film provides a reduction in overvoltage. The polymer film is readily deposited on the electrode surface and can be rendered stable by ionic or addition crosslinking. Catalyst can be predispersed in the polymer film or a salt can be impregnated into the film and reduced therein.

  20. Graphene-based battery electrodes having continuous flow paths

    DOEpatents

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  1. Lateral conduction infrared photodetector

    DOEpatents

    Kim, Jin K.; Carroll, Malcolm S.

    2011-09-20

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  2. Carbon nanotube macrofilm-based nanocomposite electrodes for energy applications

    NASA Astrophysics Data System (ADS)

    Cao, Zeyuan

    , Ni)) with CNT macofilms as high performance anodes for rechargeable lithium-ion batteries and as catalysts for oxygen reduction/evolution (ORR/OER). All MxOy-CNT macrofilm nanocomposites inherit the high specific capacity and cycling stability for lithium-ion batteries. NiO/SWNT and Co3O4/SWNT (200 °C) have their specialized high catalytic activities for ORR and OER in alkaline solutions, respectively. NiO/SWNT also exhibits an excellent electrochemical performance in asymmetric supercapacitors with a high power and energy density. Experimental measurements on electrochemical kinetics such as potentiostatic/galvanostatic intermittent titration techniques (PITT/GITT) are depended to understand the underlying improved Li+ diffusion behavior of nanocomposites. Critical effects of the film thickness have been identified. The CNT macrofilm with a thickness that is comparable to the characteristic diffusion length of 300~500 nm enables the nanocomposite with the highest Li+ chemical diffusion coefficient and thus an optimal electrochemical performance. The adhesive characteristic of CNT macrofilms is noticed for the first time after fragmentation by ultrasound that origins from irregular structures of laterally 2-D distributed CNT segments. The fragmented CNT macrofilms (FCNT) as "bifunctional" adhesive conductors promote a general approach to construct nanocomposite electrodes with both cathode and anode materials for lithium-ion batteries. An in-situ tribology method combining the wear track imaging and force measurement is employed to evaluate the adhesion strength of the adhesive FCNT conductors. The results show that the FCNT macrofilms have a higher adhesion strength than the conventional polymer binder polyvinylidene fluoride (PVDF). It is confirmed that the fabricated nanocomposite electrodes exhibit high rate and retention capabilities, superior to the electrodes using PVDF and carbon black. Thus, FCNT is recognized to be a competent substitute for polymer

  3. Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes.

    PubMed

    Michan, Alison L; Divitini, Giorgio; Pell, Andrew J; Leskes, Michal; Ducati, Caterina; Grey, Clare P

    2016-06-29

    The solid electrolyte interphase (SEI) of the high capacity anode material Si is monitored over multiple electrochemical cycles by (7)Li, (19)F, and (13)C solid-state nuclear magnetic resonance spectroscopies, with the organics dominating the SEI. Homonuclear correlation experiments are used to identify the organic fragments -OCH2CH2O-, -OCH2CH2-, -OCH2CH3, and -CH2CH3 contained in both oligomeric species and lithium semicarbonates ROCO2Li, RCO2Li. The SEI growth is correlated with increasing electrode tortuosity by using focused ion beam and scanning electron microscopy. A two-stage model for lithiation capacity loss is developed: initially, the lithiation capacity steadily decreases, Li(+) is irreversibly consumed at a steady rate, and pronounced SEI growth is seen. Later, below 50% of the initial lithiation capacity, less Si is (de)lithiated resulting in less volume expansion and contraction; the rate of Li(+) being irreversibly consumed declines, and the Si SEI thickness stabilizes. The decreasing lithiation capacity is primarily attributed to kinetics, the increased electrode tortuousity severely limiting Li(+) ion diffusion through the bulk of the electrode. The resulting changes in the lithiation processes seen in the electrochemical capacity curves are ascribed to non-uniform lithiation, the reaction commencing near the separator/on the surface of the particles.

  4. Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes.

    PubMed

    Michan, Alison L; Divitini, Giorgio; Pell, Andrew J; Leskes, Michal; Ducati, Caterina; Grey, Clare P

    2016-06-29

    The solid electrolyte interphase (SEI) of the high capacity anode material Si is monitored over multiple electrochemical cycles by (7)Li, (19)F, and (13)C solid-state nuclear magnetic resonance spectroscopies, with the organics dominating the SEI. Homonuclear correlation experiments are used to identify the organic fragments -OCH2CH2O-, -OCH2CH2-, -OCH2CH3, and -CH2CH3 contained in both oligomeric species and lithium semicarbonates ROCO2Li, RCO2Li. The SEI growth is correlated with increasing electrode tortuosity by using focused ion beam and scanning electron microscopy. A two-stage model for lithiation capacity loss is developed: initially, the lithiation capacity steadily decreases, Li(+) is irreversibly consumed at a steady rate, and pronounced SEI growth is seen. Later, below 50% of the initial lithiation capacity, less Si is (de)lithiated resulting in less volume expansion and contraction; the rate of Li(+) being irreversibly consumed declines, and the Si SEI thickness stabilizes. The decreasing lithiation capacity is primarily attributed to kinetics, the increased electrode tortuousity severely limiting Li(+) ion diffusion through the bulk of the electrode. The resulting changes in the lithiation processes seen in the electrochemical capacity curves are ascribed to non-uniform lithiation, the reaction commencing near the separator/on the surface of the particles. PMID:27232540

  5. Submersed sensing electrode used in fuel-cell type hydrogen detector

    NASA Technical Reports Server (NTRS)

    Niedrach, L. W.; Rudek, F. P.; Rutkoneski, M. D.

    1971-01-01

    Electrode has silicone rubber diffusion barrier with fixed permeation constant for hydrogen. Barrier controls flow of hydrogen to anode and Faraday relationship establishes upper limit for current through cell. Electrode fabrication is described.

  6. Iron serves as diffusion barrier in thermally regenerative galvanic cell

    NASA Technical Reports Server (NTRS)

    Crouthamel, C. E.

    1967-01-01

    Pure iron or iron-coated diaphragm provides a hydrogen diffusion electrode for a thermally regenerative galvanic cell. It allows the gas to diffuse through its interatomic spaces and resists the corrosive action of the cell environment.

  7. Bridging of lateral nanoelectrodes with a metal particle chain

    NASA Astrophysics Data System (ADS)

    Burghard, M.; Philipp, G.; Roth, S.; von Klitzing, K.

    Lateral electrode lines separated by about 150 nm were connected by isolated chains of closely arranged 10-nm gold colloidal particles. Prior to gold particle adsorption, the electrodes were bridged by a polymer with attached thiol groups. Elongation of the polymer strands during adsorption was achieved via flow effects exerted by a receding meniscus or application of an electric field perpendicular to the electrode array.

  8. resterilizable electrode for electrosurgery

    NASA Technical Reports Server (NTRS)

    Engstrom, E. R.; Houge, J. C.

    1979-01-01

    Required properties of flexibility, electrical conductivity, tensile strength, and tear resistance of electrosurgical electrodes is retained through utilization of flexible-polymer/conductive particle composites for electrodes.

  9. Subcutaneous electrode structure

    NASA Technical Reports Server (NTRS)

    Lund, G. F. (Inventor)

    1980-01-01

    A subcutaneous electrode structure suitable for a chronic implant and for taking a low noise electrocardiogram of an active animal, comprises a thin inflexible, smooth disc of stainless steel having a diameter as of 5 to 30 mm, which is sutured in place to the animal being monitored. The disc electrode includes a radially directed slot extending in from the periphery of the disc for approximately 1/3 of the diameter. Electrical connection is made to the disc by means of a flexible lead wire that extends longitudinally of the slot and is woven through apertures in the disc and held at the terminal end by means of a spot welded tab. Within the slot, an electrically insulative sleeve, such as silicone rubber, is placed over the wire. The wire with the sleeve mounted thereon is captured in the plane of the disc and within the slot by means of crimping tabs extending laterally of the slot and over the insulative wire. The marginal lip of the slot area is apertured and an electrically insulative potting material such as silicone rubber, is potted in place overlaying the wire slot region and through the apertures.

  10. Nanoband array electrode as a platform for high sensitivity enzyme-based glucose biosensing.

    PubMed

    Falk, Magnus; Sultana, Reshma; Swann, Marcus J; Mount, Andrew R; Freeman, Neville J

    2016-12-01

    We describe a novel glucose biosensor based on a nanoband array electrode design, manufactured using standard semiconductor processing techniques, and bio-modified with glucose oxidase immobilized at the nanoband electrode surface. The nanoband array architecture allows for efficient diffusion of glucose and oxygen to the electrode, resulting in a thousand-fold improvement in sensitivity and wide linear range compared to a conventional electrode. The electrode constitutes a robust and manufacturable sensing platform. PMID:27118384

  11. AC impedance modelling study on porous electrodes of proton exchange membrane fuel cells using an agglomerate model

    NASA Astrophysics Data System (ADS)

    Gerteisen, Dietmar; Hakenjos, Alex; Schumacher, Jürgen O.

    A one-dimensional model of the PEM fuel cell cathode is developed to analyse ac impedance spectra and polarisation curves. The porous gas diffusion electrode is assumed to consist of a network of dispersed catalyst (Pt/C) forming spherically shaped agglomerated zones that are filled with electrolyte. The coupled differential equation system describes: ternary gas diffusion in the backing (O2 , N2 , water vapour), Fickian diffusion and Tafel kinetics for the oxygen reduction reaction (ORR) inside the agglomerates, proton migration with ohmic losses and double-layer charging in the electrode. Measurements are made of a temperature-controlled fuel cell with a geometric area of 1.4 cm × 1.4 cm. Lateral homogeneity is ensured by using a high stoichiometry of λmin . The model predicts the behaviour of measured polarisation curves and impedance spectra. It is found that a better humidification of the electrode leads to a higher volumetric double-layer capacity. The catalyst layer resistance shows the same behaviour depending on the humidification as the membrane resistance. Model parameters, e.g. Tafel slope, ionic resistance and agglomerate radius are varied. A sensitivity analysis of the model parameters is conducted.

  12. Electrode migration after cochlear implant surgery: more common than expected?

    PubMed

    Dietz, Aarno; Wennström, Minna; Lehtimäki, Antti; Löppönen, Heikki; Valtonen, Hannu

    2016-06-01

    The overall complication rate of cochlear implant surgery is low and so-called electrode failures (electrode migration, misplacement, etc.,) account for only a minority of all complications. The aim of this study was to explore the prevalence of electrode migration as the cause for increased impedance values and non-auditory stimulation in the basal channels. Within the scope of a quality control process, the cochlear implant database of the Kuopio University Hospital (Finland) was reviewed. Patients with gradual elevation of impedance values and/or non-auditory stimulation of the basal electrode channels were re-examined and cone-beam computed tomography was administered. There were 162 cochlear implant recipients and 201 implanted devices registered in the database. A total of 18 patients (18 devices) were identified having significantly increased impedance values or non-auditory stimulation of the basal electrodes. Cone-beam computed tomography revealed extra-cochlear electrodes in 12 of these patients due to the migration of the electrode array. All extruded electrodes were lateral wall electrodes, i.e., straight electrode arrays (Cochlear CI422 and Med-El devices). The most common feature of electrode migration was the gradual increase of the impedance values in the basal electrodes, even though telemetry could also be unsuspicious. Electrode migration after cochlear implant surgery may be more common than previously reported. At surgery, special attention should be paid to the reliable fixation of the electrode array. This study underlines the importance of postoperative imaging after cochlear implant surgery.

  13. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  14. Metal fiber - carbon electrodes for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Smith, Robert Fendlay

    An investigation was carried out to determine activities for oxygen reduction and current efficiencies to hydrogen peroxide of commercially available nickel fibers, carbon fibers, and carbon powders. The activities and current efficiencies were determined by conducting Rotating Ring Disk Electrode Experiments (RRDE) on porous electrodes that utilize an interlocking network of metal fibers with carbon fibers and/or powders. Experimentation was also done using PTFE - carbon powder and PTFE - nickel fiber paste electrodes to remove any porosity and symbiotic effects of the nickel - carbon electrodes. Results of the traditional flat plate PTFE electrodes were compared to the porous electrodes to verify the proposed mathematical viability of porous electrode RRDE. RRDE experiments showed that the most active carbons for oxygen reduction have a surface area to volume ratio of 1000 m2/g, and current rent efficiency to hydrogen peroxide was increased as the average pore size increased. A mathematical model and half-cell polarization experiments were used to characterize and optimize oxygen reduction in gas diffusion electrodes consisting of carbon fibers and/or powders entrapped in a sinter-locked network of nickel microfibers. Important electrode physical parameters, such as nickel fiber loading (0.005 to 0.01 g/cm2) , nickel fiber diameter (2 to 12 mum), void volume (73 to 96%), distance of the active layer from the gas supply (0 to 0.005 cm), and addition of a peroxide decomposition catalyst (0 to 0.004 g/cm2) were systematically varied to determine their effects on electrode performance. Experimentally determined total currents and current efficiencies to hydrogen peroxide were compared to calculated values for model verification. Other important parameters, including intra-electrode oxygen and hydrogen peroxide concentrations, overpotentials, and reaction rates, were simulated to help optimize the electrode. Fabricated metal fiber-carbon electrodes were compared to a

  15. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  16. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  17. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  18. Micromachined electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  19. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  20. Controlled porosity in electrodes

    SciTech Connect

    Chiang, Yet-Ming; Bae, Chang-Jun; Halloran, John William; Fu, Qiang; Tomsia, Antoni P.; Erdonmez, Can K.

    2015-06-23

    Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm.sup.2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.

  1. Materials analyses and electrochemical impedance of implantable metal electrodes.

    PubMed

    Howlader, Matiar M R; Ul Alam, Arif; Sharma, Rahul P; Deen, M Jamal

    2015-04-21

    Implantable electrodes with high flexibility, high mechanical fixation and low electrochemical impedance are desirable for neuromuscular activation because they provide safe, effective and stable stimulation. In this paper, we report on detailed materials and electrical analyses of three metal implantable electrodes - gold (Au), platinum (Pt) and titanium (Ti) - using X-ray photoelectron spectroscopy (XPS), scanning acoustic microscopy, drop shape analysis and electrochemical impedance spectroscopy. We investigated the cause of changes in electrochemical impedance of long-term immersed Au, Pt and Ti electrodes on liquid crystal polymers (LCPs) in phosphate buffered saline (PBS). We analyzed the surface wettability, surface and interface defects and the elemental depth profile of the electrode-adhesion layers on the LCP. The impedance of the electrodes decreased at lower frequencies, but increased at higher frequencies compared with that of the short-term immersion. The increase of impedances was influenced by the oxidation of the electrode/adhesion-layers that affected the double layer capacitance behavior of the electrode/PBS. The oxidation of the adhesion layer for all the electrodes was confirmed by XPS. Alkali ions (sodium) were adsorbed on the Au and Pt surfaces, but diffused into the Ti electrode and LCPs. The Pt electrode showed a higher sensitivity to surface and interface defects than that of Ti and Au electrodes. These findings may be useful when designing electrodes for long-term implantable devices.

  2. Method of making an electrode

    DOEpatents

    Isenberg, Arnold O.

    1986-01-01

    Disclosed is a method of coating an electrode on a solid oxygen conductive oxide layer. A coating of particles of an electronic conductor is formed on one surface of the oxide layer and a source of oxygen is applied to the opposite surface of the oxide layer. A metal halide vapor is applied over the electronic conductor and the oxide layer is heated to a temperature sufficient to induce oxygen to diffuse through the oxide layer and react with the metal halide vapor. This results in the growing of a metal oxide coating on the particles of electronic conductor, thereby binding them to the oxide layer.

  3. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  4. Gold nanowire electrodes in array: simulation study and experiments.

    PubMed

    Wahl, Amélie; Dawson, Karen; MacHale, John; Barry, Seán; Quinn, Aidan J; O'Riordan, Alan

    2013-01-01

    Recent developments in nanofabrication have enabled fabrication of robust and reproducible nanoelectrodes with enhanced performance, when compared to microelectrodes. A hybrid electron beam/photolithography technique is shown that permits discrete gold nanowire electrode arrays to be routinely fabricated at reasonable cost. Fabricated devices include twelve gold nanowire working electrode arrays, an on-chip gold counter electrode and an on-chip platinum pseudo reference electrode. Using potential sweep techniques, when diffusionally independent, these nanowires exhibit measurable currents in the nanoAmpere regime and display steady-state voltammograms even at very high scan rates (5000 mV s(-1)) indicative of fast analyte mass transport to the electrode. Nanowire electrode arrays offer the potential for enhancements in electroanalysis including increased signal to noise ratio and increased sensitivity while also allowing quantitative detection at much lower concentrations. However, to achieve this goal a full understanding of the diffusion profiles existing at nanowire arrays is required. To this end, we simulate the effects of altering inter-electrode separations on analyte diffusion for a range of scan rates at nanowire electrode arrays, and perform the corresponding experiments. We show that arrays with diffusionally independent concentration profiles demonstrate superior electrochemical performance compared to arrays with overlapping diffusion profiles when employing sweep voltammetric techniques. By contrast, we show that arrays with diffusionally overlapping profiles exhibit enhanced performance when employing step voltammetric techniques.

  5. Improved biomedical electrode

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.

    1972-01-01

    Newly designed electrode is prefilled, disposable, electrolyte-saturated spong. New design permits longe periods of storage without deterioration, and readiness in matter of seconds. Electrodes supply signals for electroencephalogram, electro-oculogram, and electrocardiogram.

  6. Corneal-shaping electrode

    DOEpatents

    Doss, James D.; Hutson, Richard L.

    1982-01-01

    The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.

  7. Dry electrodes for electrocardiography.

    PubMed

    Meziane, N; Webster, J G; Attari, M; Nimunkar, A J

    2013-09-01

    Patient biopotentials are usually measured with conventional disposable Ag/AgCl electrodes. These electrodes provide excellent signal quality but are irritating for long-term use. Skin preparation is usually required prior to the application of electrodes such as shaving and cleansing with alcohol. To overcome these difficulties, researchers and caregivers seek alternative electrodes that would be acceptable in clinical and research environments. Dry electrodes that operate without gel, adhesive or even skin preparation have been studied for many decades. They are used in research applications, but they have yet to achieve acceptance for medical use. So far, a complete comparison and evaluation of dry electrodes is not well described in the literature. This work compares dry electrodes for biomedical use and physiological research, and reviews some novel systems developed for cardiac monitoring. Lastly, the paper provides suggestions to develop a dry-electrode-based system for mobile and long-term cardiac monitoring applications.

  8. Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes

    PubMed Central

    You, Tiangui; Ou, Xin; Niu, Gang; Bärwolf, Florian; Li, Guodong; Du, Nan; Bürger, Danilo; Skorupa, Ilona; Jia, Qi; Yu, Wenjie; Wang, Xi; Schmidt, Oliver G.; Schmidt, Heidemarie

    2015-01-01

    BiFeO3 based MIM structures with Ti-implanted Pt bottom electrodes and Au top electrodes have been fabricated on Sapphire substrates. The resulting metal-insulator-metal (MIM) structures show bipolar resistive switching without an electroforming process. It is evidenced that during the BiFeO3 thin film growth Ti diffuses into the BiFeO3 layer. The diffused Ti effectively traps and releases oxygen vacancies and consequently stabilizes the resistive switching in BiFeO3 MIM structures. Therefore, using Ti implantation of the bottom electrode, the retention performance can be greatly improved with increasing Ti fluence. For the used raster-scanned Ti implantation the lateral Ti distribution is not homogeneous enough and endurance slightly degrades with Ti fluence. The local resistive switching investigated by current sensing atomic force microscopy suggests the capability of down-scaling the resistive switching cell to one BiFeO3 grain size by local Ti implantation of the bottom electrode. PMID:26692104

  9. Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes.

    PubMed

    You, Tiangui; Ou, Xin; Niu, Gang; Bärwolf, Florian; Li, Guodong; Du, Nan; Bürger, Danilo; Skorupa, Ilona; Jia, Qi; Yu, Wenjie; Wang, Xi; Schmidt, Oliver G; Schmidt, Heidemarie

    2015-01-01

    BiFeO3 based MIM structures with Ti-implanted Pt bottom electrodes and Au top electrodes have been fabricated on Sapphire substrates. The resulting metal-insulator-metal (MIM) structures show bipolar resistive switching without an electroforming process. It is evidenced that during the BiFeO3 thin film growth Ti diffuses into the BiFeO3 layer. The diffused Ti effectively traps and releases oxygen vacancies and consequently stabilizes the resistive switching in BiFeO3 MIM structures. Therefore, using Ti implantation of the bottom electrode, the retention performance can be greatly improved with increasing Ti fluence. For the used raster-scanned Ti implantation the lateral Ti distribution is not homogeneous enough and endurance slightly degrades with Ti fluence. The local resistive switching investigated by current sensing atomic force microscopy suggests the capability of down-scaling the resistive switching cell to one BiFeO3 grain size by local Ti implantation of the bottom electrode. PMID:26692104

  10. Compartmented electrode structure

    DOEpatents

    Vissers, Donald R.; Shimotake, Hiroshi; Gay, Eddie C.; Martino, Fredric J.

    1977-06-14

    Electrodes for secondary electrochemical cells are provided with compartments for containing particles of the electrode reactant. The compartments are defined by partitions that are generally impenetrable to the particles of reactant and, in some instances, to the liquid electrolyte used in the cell. During cycling of the cell, reactant material initially loaded into a particular compartment is prevented from migrating and concentrating within the lower portion of the electrode or those portions of the electrode that exhibit reduced electrical resistance.

  11. The CMG Nickel Electrode

    NASA Technical Reports Server (NTRS)

    Depaul, R. A.; Gutridge, I.

    1981-01-01

    The development and design of the Controlled Microgeometry electrode are described. Advantages of the electrode over others in existance include a higher number of ampere hours per kilogram and the ability to make them over a wide range of thicknesses. The parameters that control the performance of the electrode can be individually controlled over a wide range. Therefore, the electrode may be designed to give the optimum performance for a given duty cycle.

  12. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  13. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  14. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  15. Insulated ECG electrodes

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; David, R. M.

    1973-01-01

    Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.

  16. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, Bruce E.; Miller, John L.; Ault, Earl R.

    1994-01-01

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window.

  17. A Simple Hydrogen Electrode

    ERIC Educational Resources Information Center

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  18. Fuel cell electrodes

    SciTech Connect

    Strmcnik, Dusan; Cuesta, Angel; Stamenkovic, Vojislav; Markovic, Nenad

    2015-06-23

    A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.

  19. Microresonator electrode design

    DOEpatents

    Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.

    2016-05-10

    A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.

  20. Failure analysis of the lithium battery: A study of the header deposit on the cell top and diffusion within the electrode glass seal using nuclear microanalysis and FFTIR spectroscopy

    NASA Technical Reports Server (NTRS)

    Hassan, Razi A.

    1991-01-01

    The Solid Rocket Booster Range Safety System (SRBRSS) uses a lithium/poly-carbon monofluoride primary battery as a source of electrical power. After cell fabrication and activation, some battery cells have shown self discharge. One possible source of this cell discharge has been suggested to be the formation and growth of a conducting crystallized chemical compound across the glass bead insulator, electrically shorting the glass bead to the casing. This laboratory has begun an analysis of this compound, the glass seal holding the cathode into place, and the cell electrolyte, using Fast Fourier Transform Infrared (FFTIR) Analysis, Rutherford Backscattering Spectroscopy (RBS), and Nuclear Reaction Microanalysis. Preliminary measurements have confirmed the existence of lithium, nitrogen, fluorine, and oxygen on a reddish-brown deposit covering parts of the glass seal holding the positive electrode in place. Cells using Li metal electrodes, have many advantages over conventional primary batteries. One principal disadvantage of using Li batteries on a commercial basis would be the environmental impact of the fluorocarbon material. Another would be the relatively high expense of (CF)n.

  1. Template-directed porous electrodes in electroanalysis.

    PubMed

    Walcarius, Alain

    2010-01-01

    Nano- and/or macrostructuring of electrode surfaces has recently emerged as a powerful method of improving the performances of electrochemical devices by enhancing both molecular accessibility and rapid mass transport via diffusion, by increasing the electroactive surface area in comparison to the geometric one, and/or by providing confinement platforms for hosting suitable reagents. This brief overview highlights how template technology offers advantages in terms of designing new types of porous electrodes-mostly based on thin films, and functionalized or not-and discusses their use in analytical chemistry via some recent examples from the literature on electrochemical sensors and biosensors.

  2. Spark gap electrode erosion

    NASA Astrophysics Data System (ADS)

    Krompholz, H.; Kristiansen, M.

    1984-12-01

    The results of a one-year contract on electrode erosion phenomena are summarized. The arc voltage drop in a spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was extended. A jet model for electrode erosion was proposed and an experimental arrangement for testing the model was constructed. The effects of inhomogeneities and impurities in the electrodes were investigated. Some of the work described here is scheduled for completion in 1985 under a current grant (AFOSR 84-0032). The areas of investigation described here include: (1) Self breakdown voltage distributions; (2) Electrode erosion; (3) Spark gap voltage recovery.

  3. Lateral flow strip assay

    DOEpatents

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  4. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  5. Li + ion diffusion in nanoscale alumina coatings

    NASA Astrophysics Data System (ADS)

    Johannes, Michelle; Bernstein, Noam

    Nanoscale coatings of alumina are used to stabilize surfaces for a variety of technologies. Diffusion of ions through these coatings is of primary importance: in some cases, diffusion is unwanted (e.g. corrosion) and in others (e.g. electrode materials), it is necessary. In this work DFT and AIMD calculations are used to investigate Li+ ion diffusion through a nano-layer of alumina, examining the phase (alpha, gamma, and amorphous), ion concentration, and electron count dependence. We look at the role of the surface itself in promoting diffusion. One of our main findings is that as the number of ions or charge increases, the diffusivity rises. We show how our data can explain electrochemical data from coated LiCoO2 cathodes and may point toward better and more efficient coatings for stabilizing electrodes.

  6. Lateral canthal surgery.

    PubMed

    Chong, Kelvin Kam-Lung; Goldberg, Robert A

    2010-08-01

    The lateral canthus is a delicate and complicated three-dimensional structure with function relevant to the health of the ocular surface. Dysfunction of the lateral canthus, due to aging changes or iatrogenic trauma, results in ocular morbidity ranging from chronic irritation to tearing to recalcitrant keratopathy. From an aesthetic standpoint, symmetric, normally positioned lateral canthi are cornerstones of youthful periorbital appearance, disruption of which leads to cosmetically significant deformity or asymmetry. Reconstruction of the lateral canthus is important in the rehabilitation of the aging eyelid and an unfortunate necessity after failed lateral canthal surgery. The common methods for improving or maintaining position, tone, and shape of the lower eyelid and lateral canthus use tightening or shortening the lower eyelid horizontally, keeping the canthal angle in an appropriate vertical level, and hugging the ocular surface. Many techniques have been described for the reconstruction of the lateral canthus in functional conditions or for aesthetic purposes. These methods have met with varying success. In this article, we begin with a discussion of the anatomy and physiology of the lateral canthus, followed by clinical examples of lateral canthal abnormalities and underlying pathophysiologies. A review of surgical options for the lateral canthus is presented with concluding remarks on postoperative complications. PMID:20524167

  7. Minimizing electrode edge in organic transistors with ultrathin reduced graphene oxide for improving charge injection efficiency.

    PubMed

    Xu, Zeyang; Chen, Xiaosong; Zhang, Suna; Wu, Kunjie; Li, Hongwei; Meng, Yancheng; Li, Liqiang

    2016-05-11

    Electrode materials and geometry play a crucial role in the charge injection efficiency in organic transistors. Reduced graphene oxide (RGO) electrodes show good compatibility with an organic semiconductor from the standpoint of energy levels and ordered growth of the organic semiconductor, both of which are favourable for charge injection. However, the wide electrode edge (>10 nm) in commonly-used RGO electrodes is generally detrimental to charge injection. In this study, ultrathin (about 3 nm) RGO electrodes are fabricated via a covalency-based assembly strategy, which has advantages such as robustness against solvents, high conductivity, transparency, and easy scaling-up. More remarkably, the ultrathin electrode fabricated in this study has a narrow edge, which may facilitate the diffusion and assembly of organic semiconductors and thus form a uniform semiconductor film across the electrode/channel junction area. As a result, the minimized electrode edge may significantly improve the charge injection in organic transistors compared with thick electrodes. PMID:27062997

  8. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  9. Uncharged positive electrode composition

    DOEpatents

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  10. Nanoscopic electrode molecular probes

    DOEpatents

    Krstic, Predrag S.; Meunier, Vincent

    2012-05-22

    The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.

  11. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, Gordon F. (Inventor)

    1982-01-01

    A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  12. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, G. F. (Inventor)

    1980-01-01

    A low noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free ranging subject is described. The electrode comprises a pocket shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member, remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  13. Highly compliant transparent electrodes

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Diebold, Roger M.; McNamara, Alena; Clarke, David R.

    2012-08-01

    Adaptive optical devices based on electric field induced deformation of dielectric elastomers require transparent and highly compliant electrodes to conform to large shape changes. Electrical, optical, and actuation properties of acrylic elastomer electrodes fabricated with single-walled carbon nanotubes (SWCNTs) and silver nanowires (AgNWs) have been evaluated. Based on these properties, a figure of merit is introduced for evaluating the overall performance of deformable transparent electrodes. This clearly indicates that SWCNTs outperform AgNWs. Under optimal conditions, optical transparency as high as 91% at 190% maximum actuation strain is readily achievable using SWCNT electrodes.

  14. Lipid diffusion in alcoholic environment.

    PubMed

    Rifici, Simona; Corsaro, Carmelo; Crupi, Cristina; Nibali, Valeria Conti; Branca, Caterina; D'Angelo, Giovanna; Wanderlingh, Ulderico

    2014-08-01

    We have studied the effects of a high concentration of butanol and octanol on the phase behavior and on the lateral mobility of 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) by means of differential scanning calorimetry and pulsed-gradient stimulated-echo (PGSTE) NMR spectroscopy. A lowering of the lipid transition from the gel to the liquid-crystalline state for the membrane-alcohol systems has been observed. NMR measurements reveal three distinct diffusions in the DPPC-alcohol systems, characterized by a high, intermediate, and slow diffusivity, ascribed to the water, the alcohol, and the lipid, respectively. The lipid diffusion process is promoted in the liquid phase while it is hindered in the interdigitated phase due to the presence of alcohols. Furthermore, in the interdigitated phase, lipid lateral diffusion coefficients show a slight temperature dependence. To the best of our knowledge, this is the first time that lateral diffusion coefficients on alcohol with so a long chain, and at low temperatures, are reported. By the Arrhenius plots of the temperature dependence of the diffusion coefficients, we have evaluated the apparent activation energy in both the liquid and in the interdigitated phase. The presence of alcohol increases this value in both phases. An explanation in terms of a free volume model that takes into account also for energy factors is proposed.

  15. Slanted liquid microlens array by using diffuser

    NASA Astrophysics Data System (ADS)

    Shin, DooSeub; Kim, JunOh; Lee, JunSik; Kim, CheolJoong; Koo, GyoHyun; Won, Yong Hyub

    2016-03-01

    This paper aims to describe a slanted liquid microlens array using diffusers. Ordinary liquid microlens has vertical side walls. The shape of it, however, has several weaknesses such as a low value of diopter and a difficulty in evaporating electrode. The diffuser causes UV light to spread slantly not straightly. This research shows a result of a slanted liquid micro lens having side walls with an angle of 74 degrees and verifies a high value of diopter and a well-filmed electrode. In order to achieve a high percentage of fill factor, it also presents matching values for refractive indices of the two media, oil and chamber.

  16. Reading Disability and Laterality.

    ERIC Educational Resources Information Center

    Sparrow, Sara S.

    The purpose of this study was to determine how retarded readers differed from normal readers in the various ways laterality is manifested. An additional purpose was to investigate the development of laterality as seen across several age levels. Subjects were 80 white male 9-, 10-, 11-, and 12-year-olds from regular classrooms in suburban…

  17. Lateral subtalar dislocation.

    PubMed

    Sharda, Praveen; DuFosse, Julian

    2008-07-01

    Subtalar dislocations are rare in routine orthopedic practice. While many of these dislocations are a result of high-energy injuries such as fall from a height or traffic accidents, it is not uncommon for patients to present after slipping down a few stairs. Two types of dislocation have been described, medial and lateral. The type of dislocation is described according to the position of the foot. In lateral subtalar dislocation the head of talus is found medially and the calcaneus is dislocated laterally. The navicular may lie dorsolateral to the talus. The reverse is true of lateral dislocation. Medial dislocation has been referred to as "basketball foot" due to its preponderance in basketball players.4 The deciding factor is the inverted or everted position of the foot when the force is dissipated through the weak talonavicular and talocalcaneal ligaments. This article presents a case of an adult with lateral subtalar dislocation following a fall.

  18. Vaneless diffusers

    NASA Astrophysics Data System (ADS)

    Senoo, Y.

    The influence of vaneless diffusers on flow in centrifugal compressors, particularly on surge, is discussed. A vaneless diffuser can demonstrate stable operation in a wide flow range only if it is installed with a backward leaning blade impeller. The circumferential distortion of flow in the impeller disappears quickly in the vaneless diffuser. The axial distortion of flow at the diffuser inlet does not decay easily. In large specific speed compressors, flow out of the impeller is distorted axially. Pressure recovery of diffusers at distorted inlet flow is considerably improved by half guide vanes. The best height of the vanes is a little 1/2 diffuser width. In small specific speed compressors, flow out of the impeller is not much distorted and pressure recovery can be predicted with one-dimensional flow analysis. Wall friction loss is significant in narrow diffusers. The large pressure drop at a small flow rate can cause the positive gradient of the pressure-flow rate characteristic curve, which may cause surging.

  19. High performance amorphous selenium lateral photodetector

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Allec, Nicholas; Karim, Karim S.

    2012-03-01

    Lateral amorphous selenium (a-Se) detectors based on the metal-semiconductor-metal (MSM) device structure have been studied for indirect detector medical imaging applications. These detectors have raised interest due to their simple structure, ease of fabrication, high-speed, low dark current, low capacitance per unit area and better light utilization. The lateral device structure has a benefit that the electrode spacing may be easily controlled to reduce the required bias for a given desired electric field. In indirect conversion x-ray imaging, the scintillator is coupled to the top of the a-Se MSM photodetector, which itself is integrated on top of the thin-film-transistor (TFT) array. The carriers generated at the top surface of the a-Se layer experience a field that is parallel to the surface, and does not initially sweep them away from the surface. Therefore these carriers may recombine or get trapped in surface states and change the field at the surface, which may degrade the performance of the photodetector. In addition, due to the finite width of the electrodes, the fill factor of the device is less than unity. In this study we examine the effect of lateral drift of carriers and the fill factor on the photodetector performance. The impact of field magnitude on the performance is also investigated.

  20. Cytoplasmic hydrogen ion diffusion coefficient.

    PubMed Central

    al-Baldawi, N F; Abercrombie, R F

    1992-01-01

    The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134

  1. Single file diffusion in microtubules

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew; Farrell, Spencer; Brown, Aidan

    2015-03-01

    We investigate the single file diffusion (SFD) of large particles entering a confined tubular geometry, such as luminal diffusion of proteins inside microtubules or flagella. While single-file effects have no effect on particle density, we report significant single-file effects for individually-tracked tracer particle motion. Both exact and approximate ordering statistics of particles entering semi-infinite tubes agree well with our stochastic simulations. Considering initially empty semi-infinite tubes, with particles entering at one end starting from an initial time t = 0 , tracked particles display super-diffusive effective exponents just after they enter the system and trends towards diffusive exponents at later times. Equivalently, if diffusive exponents are assumed the effective diffusivity is reduced at early times and enhanced at later times through a logarithmic factor logN , where N is the number of particles in the tube. When we number each particle from the first (n = 1) to the most recent (n = N), we find good scaling collapse of the effective diffusivity for all n. Techniques that track individual particles, or local groups of particles, such as photo-activation or photobleaching, will exhibit single-file effects.

  2. Long term flight electrodes

    NASA Technical Reports Server (NTRS)

    Mosier, B.

    1975-01-01

    The reproducibility, stability, and methods of preparation for the various types and forms of biomedical electrodes are discussed. A critical and selective compilation of information on biological and/or physiological electrodes is presented. A discussion of plant hydrocolloids, clays, hydrophyllic colloids, synthetic waxes, and acrylic polymers is included.

  3. Electrodes with fiber structure

    NASA Technical Reports Server (NTRS)

    Benczur-Uermoessy, G.; Berger, G.; Haschka, F.

    1986-01-01

    An electrode framework with a fiber structure, universally applicable in alkaline storage battery systems, was developed and readied for production. Storage batteries with these electrodes present higher energy and power densities and are economical to produce. The design is applicable to all rechargable storage batteries and might replace the previous variety of designs.

  4. Membrane Bioprobe Electrodes

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  5. Hollow Electrode Discharge Triodes

    NASA Astrophysics Data System (ADS)

    Schoenbach, K. H.; Peterkin, F. E.; Tessnow, T.

    1996-10-01

    The current through a direct current micro-hollow electrode (electrode hole diameter: 0.7 mm) discharge in argon was shown to be controllable by means of a third, external electrode placed close to the cathode opening. By increasing the potential of the positively biased control electrode from zero to 30 V the discharge current could be linearly reduced from 5 μA to 0.75 μA, at a discharge voltage of 300 V. The current-voltage characteristic of the micro-hollow electrode discharge was found to have a positive slope, allowing parallel discharge operation without ballast. By drilling holes through a metal-plated, dielectric film, an array of hollow electrode discharges could be generated. It was shown that each discharge responds individually to variations in the potential of the corresponding external control electrode. The simplicity of the electrode configuration and the possibility of linear, electrical control of the individual discharge currents offers the possibility to use these triode arrays in addressable flat panel displays (patent pending).

  6. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior.

    PubMed

    Cui, Ling; Murray, Erica P

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%-18% O₂ at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity. PMID:26404312

  7. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior

    PubMed Central

    Cui, Ling; Murray, Erica P.

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%–18% O2 at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity. PMID:26404312

  8. Analysis of diode lasers with lateral spatial variations in thickness

    NASA Astrophysics Data System (ADS)

    Streifer, W.; Burnham, R. D.; Scifres, D. R.

    1980-07-01

    Diode lasers with active and/or cladding regions whose thicknesses vary spatially parallel to the p-n junction are analyzed. It is shown that lateral real-refractive-index waveguiding occurs and that a diffusion gradient exists which propels the injected charges into the lasing modal volume. Lateral mode patterns and thresholds are calculated and sensitivity to higher-order lateral mode oscillation is evaluated for various stripe widths and spreading resistances. Results are shown to agree well with experimental data.

  9. HIGH VOLTAGE ELECTRODES

    DOEpatents

    Murray, J.J.

    1963-04-23

    S>This patent relates to electrode structure for creating an intense direct current electric field which may have a field strength of the order of two to three times that heretofore obtained, with automatic suppression of arcing. The positive electrode is a conventional conductive material such as copper while the negative electrode is made from a special material having a resistivity greater than that of good conductors and less than that of good insulators. When an incipient arc occurs, the moderate resistivity of the negative electrode causes a momentary, localized decrease in the electric field intensity, thus suppressing the flow of electrons and avoiding arcing. Heated glass may be utilized for the negative electrode, since it provides the desired combination of resistivity, capacity, dielectric strength, mechani-cal strength, and thermal stability. (AEC)

  10. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    SciTech Connect

    Feng, Guang; Li, Song; Zhao, Wei; Cummings, Peter T.

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ion layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.

  11. Lateral superlattice solar cells

    SciTech Connect

    Mascarenhas, A.; Zhang, Y.; Millunchick, J.M.; Twesten, R.D.; Jones, E.D.

    1997-10-01

    A novel structure which comprises of a lateral superlattice as the active layer of a solar cell is proposed. If the alternating regions A and B of a lateral superlattice ABABAB... are chosen to have a Type-II band offset, it is shown that the performance of the active absorbing region of the solar cell is optimized. In essence, the Type-II lateral superlattice region can satisfy the material requirements for an ideal solar cells active absorbing region, i.e. simultaneously having a very high transition probability for photogeneration and a very long minority carrier recombination lifetime.

  12. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  13. Electroretinography in dogs using a fiber electrode prototype.

    PubMed

    Pereira, A L; Montiani-Ferreira, F; Santos, V R; Salomão, S R; Souza, C; Berezovsky, A

    2013-03-01

    We compared two electroretinography (ERG) electrodes in dogs using ERG standards of the International Society for Clinical Electrophysiology of Vision (ISCEV). Ten healthy Yorkshire terrier dogs (mean age, 2.80 ± 1.42 years; 6 females) weighing 5.20 ± 1.56 kg were evaluated using an ERG system for veterinary use. Dark- and light-adapted ERG responses were recorded using an ERG-Jet electrode and a fiber electrode prototype. The examinations were performed during 2 visits, 3 weeks apart. Both electrodes (ERG-Jet or fiber prototype) were used on each animal and the first eye to be recorded (OD × OS) was selected randomly. Three weeks later the examination was repeated on the same animal switching the type of electrode to be used that day and the first eye to be examined. The magnitude and waveform quality obtained with the two electrode types were similar for all ERG responses. ERG amplitudes and implicit times obtained from dogs using the fiber electrode prototype were comparable to those obtained with the ERG-Jet electrode for rod, maximal rod-cone summed, cone, and 30-Hz flicker responses. The fiber electrode prototype is a low-cost device, available as an alternative instrument for clinical veterinary ERG recording for retinal function assessment.

  14. Amyotrophic Lateral Sclerosis

    MedlinePlus

    Amyotrophic lateral sclerosis (ALS) is a nervous system disease that attacks nerve cells called neurons in your ... people with ALS die from respiratory failure. The disease usually strikes between age 40 and 60. More ...

  15. Lateral orientation (image)

    MedlinePlus

    ... chest, and the ears are lateral to the head. A medial orientation is a position toward the midline of the body. An example of medial orientation is the eyes, which are medial to the ears on the head.

  16. Electrodes for sealed secondary batteries

    NASA Technical Reports Server (NTRS)

    Boies, D. B.; Child, F. T.

    1972-01-01

    Self-supporting membrane electrode structures, in which active ingredients and graphite are incorporated in a polymeric matrix, improve performance of electrodes in miniature, sealed, alkaline storage batteries.

  17. Layered electrode for electrochemical cells

    DOEpatents

    Swathirajan, Swathy; Mikhail, Youssef M.

    2001-01-01

    There is provided an electrode structure comprising a current collector sheet and first and second layers of electrode material. Together, the layers improve catalyst utilization and water management.

  18. Preventing errors in laterality.

    PubMed

    Landau, Elliot; Hirschorn, David; Koutras, Iakovos; Malek, Alexander; Demissie, Seleshie

    2015-04-01

    An error in laterality is the reporting of a finding that is present on the right side as on the left or vice versa. While different medical and surgical specialties have implemented protocols to help prevent such errors, very few studies have been published that describe these errors in radiology reports and ways to prevent them. We devised a system that allows the radiologist to view reports in a separate window, displayed in a simple font and with all terms of laterality highlighted in separate colors. This allows the radiologist to correlate all detected laterality terms of the report with the images open in PACS and correct them before the report is finalized. The system is monitored every time an error in laterality was detected. The system detected 32 errors in laterality over a 7-month period (rate of 0.0007 %), with CT containing the highest error detection rate of all modalities. Significantly, more errors were detected in male patients compared with female patients. In conclusion, our study demonstrated that with our system, laterality errors can be detected and corrected prior to finalizing reports.

  19. Measuring electrode assembly

    DOEpatents

    Bordenick, John E.

    1989-01-01

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.

  20. Measuring electrode assembly

    DOEpatents

    Bordenick, J.E.

    1988-04-26

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.

  1. Direct imaging of lateral movements of AMPA receptors inside synapses.

    PubMed

    Tardin, Catherine; Cognet, Laurent; Bats, Cécile; Lounis, Brahim; Choquet, Daniel

    2003-09-15

    Trafficking of AMPA receptors in and out of synapses is crucial for synaptic plasticity. Previous studies have focused on the role of endo/exocytosis processes or that of lateral diffusion of extra-synaptic receptors. We have now directly imaged AMPAR movements inside and outside synapses of live neurons using single-molecule fluorescence microscopy. Inside individual synapses, we found immobile and mobile receptors, which display restricted diffusion. Extra-synaptic receptors display free diffusion. Receptors could also exchange between these membrane compartments through lateral diffusion. Glutamate application increased both receptor mobility inside synapses and the fraction of mobile receptors present in a juxtasynaptic region. Block of inhibitory transmission to favor excitatory synaptic activity induced a transient increase in the fraction of mobile receptors and a decrease in the proportion of juxtasynaptic receptors. Altogether, our data show that rapid exchange of receptors between a synaptic and extra-synaptic localization occurs through regulation of receptor diffusion inside synapses. PMID:12970178

  2. Recipes for lateral spin transport between magnetic contacts, advantage of carbon-based materials.

    NASA Astrophysics Data System (ADS)

    Fert, Albert

    2010-03-01

    After the presentation of magneto-transport results [1] on metallic carbon nanotubes (CNT) between LSMO electrodes (MR 60-70%, [VAP -- VP] 60mV), I will discuss the general problem of spin transport in a nonmagnetic lateral channel between spin-polarized contacts in both the diffusive and ballistic regimes. In the diffusive regime, a treatment by the classical drift-diffusion equations applied to a multi-terminal structure is used to calculate what can be expected for the output signal with local or non-local voltage probes. A general result is that the output signal (δR = δV/I where δV is the local or non-local output voltage), directly related to the spin accumulation splitting in the channel, scales with the smallest of the relevant spin and interfaces resistances. In the best situation, that is with only tunnel contacts having the same (large) resistance RT and separated by less than the spin diffusion length (λ) in a lateral channel limited to the zone of the contacts, the signal δR increases in proportion of RT as long as the dwell time is smaller than the spin lifetime. δR can be thus much larger than the spin resistance of the channel (product of its resistivity by the ratio λ/section ). This explain why, in the experiments of Ref.[1] on CNT, δR can be as large as 90 Mφ, that is of the order of the tunnel contact resistances and much larger than the spin resistance of the CNT (smaller signals in experiments with CNT or graphene are often due the leak of spin accumulation in lateral channels extending too far outside the contacts). The relative disadvantage for semiconductors comes from the too long dwell time due to much smaller electron velocities than in metallic CNTs (and graphene). We will conclude by a similar analysis of the ballistic regime and a discussion of experiments with graphene. [4pt] [1] Hueso et al, Nature 445, 410 (2007).

  3. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    SciTech Connect

    CATO DM; DAHL MM; PHILO GL; EDGEMON GL; BELL DR.JLS; MOORE CG

    2010-03-26

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  4. Electrode for electrochemical cell

    DOEpatents

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  5. Electrode for electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.

    1981-01-01

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  6. Electrodes for solid state devices

    NASA Technical Reports Server (NTRS)

    Bickler, D. B. (Inventor)

    1983-01-01

    The invention relates to coated metal powders and to dispersions of such powders in liquid vehicles forming screenable, sinterable pastes for use in forming electrodes on photovoltaic devices. The primary nickel or copper metal particles are provided with a carrier of lower melting sintering metals such as 1-20% by weight, of a non-oxidizing metal such as lead or tin. The powdered metal systems operate on the basis of fusing together by way of eutectic alloying. As the paste is heated during firing the organic binder is first vaporized. An eutectic of the base metal (copper) and coating (tin) forms at the intersections of the base metal grains. This eutectic dissolves the grains and as the temperature is raised above the eutectic temperature, more of the base metal is dissolved. While the temperature is held at the higher value, the much smaller amount of sintering metal disappears as the eutectic dissolves and diffuses into the base metal until the composition of the eutectic is so enriched with base metal that it no longer has the eutectic properties and it solidifies. In this high temperature solidification, the base metal grains became thoroughly alloyed together and will not separate at the eutectic temperature (a lower temperature than their solidification by diffusion).

  7. Laterally bendable belt conveyor

    SciTech Connect

    Peterson, W.J.

    1982-09-24

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  8. Laterally closed lattice homomorphisms

    NASA Astrophysics Data System (ADS)

    Toumi, Mohamed Ali; Toumi, Nedra

    2006-12-01

    Let A and B be two Archimedean vector lattices and let be a lattice homomorphism. We call that T is laterally closed if T(D) is a maximal orthogonal system in the band generated by T(A) in B, for each maximal orthogonal system D of A. In this paper we prove that any laterally closed lattice homomorphism T of an Archimedean vector lattice A with universal completion Au into a universally complete vector lattice B can be extended to a lattice homomorphism of Au into B, which is an improvement of a result of M. Duhoux and M. Meyer [M. Duhoux and M. Meyer, Extended orthomorphisms and lateral completion of Archimedean Riesz spaces, Ann. Soc. Sci. Bruxelles 98 (1984) 3-18], who established it for the order continuous lattice homomorphism case. Moreover, if in addition Au and B are with point separating order duals (Au)' and B' respectively, then the laterally closedness property becomes a necessary and sufficient condition for any lattice homomorphism to have a similar extension to the whole Au. As an application, we give a new representation theorem for laterally closed d-algebras from which we infer the existence of d-algebra multiplications on the universal completions of d-algebras.

  9. Laterally bendable belt conveyor

    DOEpatents

    Peterson, William J.

    1985-01-01

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  10. Note: electrode polarization of Galinstan electrodes for liquid impedance spectroscopy.

    PubMed

    Mellor, Brett L; Kellis, Nathan A; Mazzeo, Brian A

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  11. Note: Electrode polarization of Galinstan electrodes for liquid impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mellor, Brett L.; Kellis, Nathan A.; Mazzeo, Brian A.

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  12. Improved capacitive EKG electrode

    NASA Technical Reports Server (NTRS)

    Day, J. L.; Griffith, M. E.; Portnox, W. M.; Stotts, L. J.

    1979-01-01

    Light, compact electrode monitors heart signals through burn ointment and requires no electrolyte paste for coupling to skin. Innovation is useful because of its ability to monitor heart condition of burn victims.

  13. Microhollow Cathode Sustained Discharge with Split Third Electrodes

    NASA Astrophysics Data System (ADS)

    Sultana, Sharmin; Shin, Jichul

    2012-10-01

    The characteristics of stable, non-equilibrium, diffuse glow micro-hollow cathode sustained discharge (MCSD) with split third electrodes at moderate to atmospheric pressure in various flow rates are studied experimentally. Enlargement of sustained discharge volume in a split-electrode configuration is about eight times larger than that in a single planar third electrode case. At 100 Torr a maximum expansion of sustained glow discharge is measured as large as 10.3 mm with nine split third electrodes. Analytic estimate of average electron number density at the maximum expansion is measured to be as high as 2.99x10^10 cm-3 at 5 mA third electrode current. In the presence of 0.1 slpm gas flow, the discharge region increases to 18.8 mm with corresponding estimated density of 2.48x10^10 cm-3 at the same third electrode current. For specific pressure ranges, Faraday dark space is clearly visible near the MHCD hole. In the presence of gas flow across the gap, the sustained discharge is affected by linear momentum of the gas flow and its characteristics are altered accordingly such as current distribution over the electrodes. Feasibility of developing a flow velocimetry by using this dynamic phenomenon of MCSD with split electrodes is also studied.

  14. Unusual atypical language lateralization.

    PubMed

    Khan, Muhammad T; Oghlakian, Roger; Koubeissi, Mohamad Z

    2016-01-01

    Determining the language-dominant hemisphere is essential for planning epilepsy surgery. A 60-year-old right-handed woman with epilepsy since age 16 failed a partial right anterior lobectomy at age 21. Later, a brain MRI found extensive right-sided cortical dysplasia and periventricular heterotopia. Subsequently, prolonged video-EEG monitoring localized her seizures to the right temporoparietal region. Functional MRI was inconclusive in lateralizing her language, prompting a Wada test, which strongly lateralized language to the right. This unique case of atypical language representation in a right-handed individual with an extensive right-hemispheric congenital malformation and seizure focus illustrates the important thorough presurgical language assessment. PMID:27668182

  15. Speckle in a thick diffuser

    NASA Astrophysics Data System (ADS)

    Chang, Nien-An

    Theory and experiments on speckle generated from a thick diffuser are presented in this thesis. An overview of speckle from a diffuser in a 4F optical processor gives a basic understanding of the speckle formation and properties. The speckle size depends on the F number of the system, while the interior properties of a diffuser are evident in the wavelength dependence of speckle. We then move on to analyzing speckle from a thick diffuser, which is composed of particles embedded in a host medium. Emphasis on the theory is placed on solving for the wavelength decorrelation of speckle in a thick diffuser. A brief overview of the scattering theory for a particle using the Lorenz-Mie theory is included. Then we present a careful analysis of the speckle created by propagation through a thick diffuser. In the analysis we use an angular spectrum approach that is valid in the non-paraxial case together with a decomposition of the thick diffuser into a cascade of many screens. This calculation is well-suited to numerical analysis and an original computer software program has been provided as an Appendix in this thesis. By adding the scattered field from the randomly-located particles on any screen and propagating through a free space between each screen, one can generate a speckled field after going through the whole cascade. The theoretical predictions are summarized and later compared with experimental results on a series of opal milk glass diffusers. In many practical applications it is particularly advantageous to have mild thick diffusers of controllable diffusivity. We have extensively studied a new diffuser series fabricated using polystyrene spheres of various diameters embedded in gelatin. Theory and experiments are in good agreement.

  16. Electrostatic precipitator with precipitator electrodes

    SciTech Connect

    Junkers, G.

    1980-12-16

    The invention relates to an electrostatic precipitator with collecting electrodes which are arranged in rows adjacent to each other and in respective pairs at equal distances from a respective discharge electrode with which they cooperate. Spring elements are provided between the collecting electrodes and influence the stiffness and oscillating properties of the array of the collecting electrodes.

  17. Diffusional protection of electrode surfaces using regular arrays of immobilised droplets: overcoming interferences in electroanalysis.

    PubMed

    Simm, Andrew O; Ordeig, Olga; Del Campo, Javier; Muñoz, Francesc Xavier; Compton, Richard G

    2006-09-01

    Regular arrays of ca. micron sized droplets on a gold electrode surface can block diffusion to the electrode surface of one metal ion (which binds with the material in the droplet) whilst having no significant effect on another (which does not), so allowing interference effects in electroanalysis to be eliminated.

  18. Lateral Thinking of Prospective Teachers

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Xavier, S. Amaladoss

    2013-01-01

    Edward de Bono who invented the term "lateral thinking" in 1967 is the pioneer of lateral thinking. Lateral thinking is concerned with the generation of new ideas. Liberation from old ideas and the stimulation of new ones are twin aspects of lateral thinking. Lateral thinking is a creative skills from which all people can benefit…

  19. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  20. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  1. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  2. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  3. Laterally bendable belt conveyor

    SciTech Connect

    Peterson, W.J.

    1985-07-02

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making laterial turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rolles which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  4. Humor in Later Life.

    ERIC Educational Resources Information Center

    Frazier, Billie H.

    This document contains a brief bibliography of peer-reviewed literature, with abstracts, on humor in later life. It is one of 12 bibliographies on aging prepared by the National Agricultural Library for its "Pathfinders" series of publications. Topics covered by the other 11 bibliographies include aging parents, adult children, dementia and…

  5. Holographic lateral shear interferometer.

    PubMed

    Malacara, D; Mallick, S

    1976-11-01

    A new type of lateral shear holographic interferometer is described. It can be used to test lenses as well as spherical and aspherical surfaces. A null pattern with straight fringes can be obtained for an aspherical surface, provided one has a prototype that can be used for making the hologram.

  6. Diffusion in membranes: Toward a two-dimensional diffusion map

    NASA Astrophysics Data System (ADS)

    Toppozini, Laura; Garcia-Sakai, Victoria; Bewley, Robert; Dalgliesh, Robert; Perring, Toby; Rheinstädter, Maikel C.

    2015-01-01

    For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.

  7. Capacitive de-ionization electrode

    SciTech Connect

    Daily, III, William D.

    2013-03-19

    An electrode "cell" for use in a capacitive deionization (CDI) reactor consists of the electrode support structure, a non-reactive conductive material, the electrode accompaniment or substrate and a flow through screen/separator. These "layers" are repeated and the electrodes are sealed together with gaskets between two end plates to create stacked sets of alternating anode and cathode electrodes in the CDI reactor.

  8. Weld electrode cooling study

    NASA Astrophysics Data System (ADS)

    Masters, Robert C.; Simon, Daniel L.

    1999-03-01

    The U.S. auto/truck industry has been mandated by the Federal government to continuously improve their fleet average gas mileage, measured in miles per gallon. Several techniques are typically used to meet these mandates, one of which is to reduce the overall mass of cars and trucks. To help accomplish this goal, lighter weight sheet metal parts, with smaller weld flanges, have been designed and fabricated. This paper will examine the cooling characteristics of various water cooled weld electrodes and shanks used in resistance spot welding applications. The smaller weld flanges utilized in modern vehicle sheet metal fabrications have increased industry's interest in using one size of weld electrode (1/2 inch diameter) for certain spot welding operations. The welding community wants more data about the cooling characteristics of these 1/2 inch weld electrodes. To hep define the cooling characteristics, an infrared radiometer thermal vision system (TVS) was used to capture images (thermograms) of the heating and cooling cycles of several size combinations of weld electrodes under typical production conditions. Tests results will show why the open ended shanks are more suitable for cooling the weld electrode assembly then closed ended shanks.

  9. HIGH CHARGE EFFECTS IN SILICON DRIFT DETECTORS WITH LATERAL CONFINEMENT OF ELECTRONS.

    SciTech Connect

    CASTOLDI,A.; REHAK,P.

    1995-10-21

    A new drift detector prototype which provides suppression of the lateral diffusion of electrons has been tested as a function of the signal charge up to high charge levels, when electrostatic repulsion is not negligible. The lateral diffusion of the electron cloud has been measured for injected charges up to 2 {center_dot} 10{sup 5} electrons. The maximum number of electrons for which the suppression of the lateral spread is effective is obtained.

  10. Fluid dynamics of double diffusive systems

    SciTech Connect

    Koseff, J.R.

    1989-04-07

    A study of mixing processes in doubly diffusive systems is being conducted. Continuous gradients of two diffusing components (heat and salinity in our case) are being used as initial conditions, and forcing is introduced by lateral heating and surface shear. The goals of the proposed work include: (1) quantification of the effects of finite amplitude disturbances on stable, double diffusive systems, particularly with respect to lateral heating, (2) development of an improved understanding of the physical phenomena present in wind-driven shear flows in double diffusive stratified environments, (3) increasing our knowledge-base on turbulent flow in stratified environments and how to represent it, and (4) formulation of a numerical code for such flows. The work is being carried out in an experimental facility which is located in the Stanford Environmental Fluid Mechanics Laboratory, and on laboratory minicomputers and CRAY computers. In particular we are focusing on the following key issues: (1) the formation and propagation of double diffusive intrusions away from a heated wall and the effects of lateral heating on the double diffusive system; (2) the interaction between the double diffusively influenced fluxes and the turbulence induced fluxes; (3) the measurement of heat and mass fluxes; and (4) the influence of double diffusive gradients on mixed layer deepening. 1 fig.

  11. Processing of carbon composite paper as electrode for fuel cell

    NASA Astrophysics Data System (ADS)

    Mathur, R. B.; Maheshwari, Priyanka H.; Dhami, T. L.; Sharma, R. K.; Sharma, C. P.

    The porous carbon electrode in a fuel cell not only acts as an electrolyte and a catalyst support, but also allows the diffusion of hydrogen fuel through its fine porosity and serves as a current-carrying conductor. A suitable carbon paper electrode is developed and possesses the characteristics of high porosity, permeability and strength along with low electrical resistivity so that it can be effectively used in proton-exchange membrane and phosphoric acid fuel cells. The electrode is prepared through a combination of two important techniques, viz., paper-making technology by first forming a porous chopped carbon fibre preform, and composite technology using a thermosetting resin matrix. The study reveals an interdependence of one parameter on another and how judicious choice of the processing conditions are necessary to achieve the desired characteristics. The current-voltage performance of the electrode in a unit fuel cell matches that of a commercially-available material.

  12. Electrode materials for coal-fired MHD generators

    NASA Astrophysics Data System (ADS)

    Perkins, R. A.

    1980-10-01

    Metallic materials are evaluated as electrodes for coal fired MHD generators. A laboratory test that simulates the electrochemical and corrosive environment was developed and used to characterize electrode behavior in a diffuse current flow (nonarcing) mode of operation. High current density requires that an electron transport mechanism of current flow be maintained. With inert, stable electrodes, anode polarization occurs and ionic conduction prevails, limiting current to low values. The nature of this behavior and approaches to overcoming anodic polarization are studied as a function of electrode material, slag composition, and temperature. By operating at high temperatures and with controlled slag chemistries to produce a very fluid slag, depolarization may be achieved by mechanical mixing. Interrupted current flow are required to aid in breaking down anodic polarization.

  13. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  14. Lateral flow assays.

    PubMed

    Koczula, Katarzyna M; Gallotta, Andrea

    2016-06-30

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. PMID:27365041

  15. Lateral flow assays

    PubMed Central

    Koczula, Katarzyna M.

    2016-01-01

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. PMID:27365041

  16. Lateral Attitude Change.

    PubMed

    Glaser, Tina; Dickel, Nina; Liersch, Benjamin; Rees, Jonas; Süssenbach, Philipp; Bohner, Gerd

    2015-08-01

    The authors propose a framework distinguishing two types of lateral attitude change (LAC): (a) generalization effects, where attitude change toward a focal object transfers to related objects, and (b) displacement effects, where only related attitudes change but the focal attitude does not change. They bring together examples of LAC from various domains of research, outline the conditions and underlying processes of each type of LAC, and develop a theoretical framework that enables researchers to study LAC more systematically in the future. Compared with established theories of attitude change, the LAC framework focuses on lateral instead of focal attitude change and encompasses both generalization and displacement. Novel predictions and designs for studying LAC are presented.

  17. Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Mack, Florian; Klages, Merle; Scholta, Joachim; Jörissen, Ludwig; Morawietz, Tobias; Hiesgen, Renate; Kramer, Dominik; Zeis, Roswitha

    2014-06-01

    The electrode morphology influences the properties and performance of polymer electrolyte membrane fuel cells (PEMFC). Here we report our studies of two different electrodes for high-temperature PEMFC prepared by spraying and coating and their impact on the fuel cell performance. Differences in 3D microstructure and adhesion between catalyst layer and gas diffusion layer (GDL) of the electrodes were studied with X-ray microtomography. Scanning electrode microscope investigations show hairline cracks between agglomerates on the surface of the sprayed electrode, whereas the coated electrode shows a network of shrinkage cracks in the catalyst layer. The distribution of the electrode binder polytetrafluoroethylene (PTFE) is related to the locally resolved conductivity, which was determined by scanning the electrode surfaces with a conductive atomic force microscopy (AFM) tip. The macrostructures of the sprayed and coated electrodes are different but contain similar pore structures. The coated electrode has a higher PTFE concentration on the top region, which tends to form a nonconductive and less wettable "skin" on the electrode surface and delays the start-up of the fuel cell. In contrast to low-temperature PEMFC, the electrode morphology has only a minor impact on the steady-state cell performance of high-temperature PEMFC.

  18. Conjugal amyotrophic lateral sclerosis

    PubMed Central

    Dewitt, John D.; Kwon, Julia; Burton, Rebecca

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a disease characterized by progressive degeneration of motor neurons in the motor cortex, brainstem, and spinal cord. The incidence of sporadic ALS is 1.5 to 2.7 in 100,000, and the prevalence is 5.2 to 6.0 in 100,000. Conjugal ALS is even rarer than sporadic ALS. We report a case of conjugal ALS encountered in our outpatient neurology clinic. PMID:22275781

  19. Hemispheric lateralization in reasoning.

    PubMed

    Turner, Benjamin O; Marinsek, Nicole; Ryhal, Emily; Miller, Michael B

    2015-11-01

    A growing body of evidence suggests that reasoning in humans relies on a number of related processes whose neural loci are largely lateralized to one hemisphere or the other. A recent review of this evidence concluded that the patterns of lateralization observed are organized according to two complementary tendencies. The left hemisphere attempts to reduce uncertainty by drawing inferences or creating explanations, even at the cost of ignoring conflicting evidence or generating implausible explanations. Conversely, the right hemisphere aims to reduce conflict by rejecting or refining explanations that are no longer tenable in the face of new evidence. In healthy adults, the hemispheres work together to achieve a balance between certainty and consistency, and a wealth of neuropsychological research supports the notion that upsetting this balance results in various failures in reasoning, including delusions. However, support for this model from the neuroimaging literature is mixed. Here, we examine the evidence for this framework from multiple research domains, including an activation likelihood estimation analysis of functional magnetic resonance imaging studies of reasoning. Our results suggest a need to either revise this model as it applies to healthy adults or to develop better tools for assessing lateralization in these individuals. PMID:26426534

  20. Composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  1. Composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  2. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  3. Porous electrode preparation method

    DOEpatents

    Arons, Richard M.; Dusek, Joseph T.

    1983-01-01

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  4. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  5. Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.

    1993-01-01

    Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.

  6. Optical and electrical investigation of a cylindrical diffuse-discharge chamber

    NASA Astrophysics Data System (ADS)

    Teng, Yun; Li, Lee; Cheng, Yong; Ma, Ning; Peng, Ming-yang; Liu, Ming-hai

    2015-03-01

    More and more attention has been attached to atmospheric-pressure air diffuse plasma due to its enormous potential applications. In this paper, we designed a large-scale, cylindrical diffuse-plasma chamber using wire electrodes and a repetitive nanosecond pulse generator. The plasma chamber can be completely exposed in the open air without any barrier dielectric, and the length of cylindrical plasma chamber was extensible. Using optical and electrical measurements, we investigated the effects of electrode distance, electrode length, pulse repetition frequency, and electrode angle on the uniformity of discharge space. Four discharge regions were distinguished based on different spectral characteristics. Additionally, it was found that the discharge uniformity was improved as the electrode distance decreases, but remained almost constant with the variations of electrode length and pulse repetition frequency. Both of the plasma uniformity and the power density increased significantly as the electrode angle reduced.

  7. Optical and electrical investigation of a cylindrical diffuse-discharge chamber

    SciTech Connect

    Teng, Yun; Li, Lee Cheng, Yong; Ma, Ning; Peng, Ming-yang; Liu, Ming-hai

    2015-03-15

    More and more attention has been attached to atmospheric-pressure air diffuse plasma due to its enormous potential applications. In this paper, we designed a large-scale, cylindrical diffuse-plasma chamber using wire electrodes and a repetitive nanosecond pulse generator. The plasma chamber can be completely exposed in the open air without any barrier dielectric, and the length of cylindrical plasma chamber was extensible. Using optical and electrical measurements, we investigated the effects of electrode distance, electrode length, pulse repetition frequency, and electrode angle on the uniformity of discharge space. Four discharge regions were distinguished based on different spectral characteristics. Additionally, it was found that the discharge uniformity was improved as the electrode distance decreases, but remained almost constant with the variations of electrode length and pulse repetition frequency. Both of the plasma uniformity and the power density increased significantly as the electrode angle reduced.

  8. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  9. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  10. Sandwich-type electrode

    DOEpatents

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  11. Ceramic component for electrodes

    DOEpatents

    Marchant, David D.

    1979-01-01

    A ceramic component suitable for preparing MHD generator electrodes consists of HfO.sub.2 and sufficient Tb.sub.4 O.sub.7 to stabilize at least 60 volume percent of the HfO.sub.2 into the cubic structure. The ceramic component may also contain a small amount of PrO.sub.2, Yb.sub.2 O.sub.3 or a mixture of both to improve stability and electronic conductivity of the electrode. The component is highly resistant to corrosion by molten potassium seed and molten coal slag in the MHD fluid and exhibits both ionic and electronic conductivity.

  12. [Electrocatalytic behavior of diamond electrode for organic pollutant].

    PubMed

    Zhao, Guo-hua; Li, Ming-li; Wu, Wei-wei; Li, Rong-bing; He, Xian-chang

    2004-09-01

    The physical and electrochemical behaviors of the boron-doped diamond film electrode prepared by chemical vapor deposition technique were studied. The surface microstructure of the electrode was demonstrated by means of scanning electron microscopy. The electrochemical behaviors of the electrode were investigated using cyclic voltammetry and AC Impedance. The diamond films were polycrystalline and had uniform grains in micron grade. The results showed that the electrode had a very wide potential window and very low background current. The potential windows in acidic, neutral or alkaline medium were separately 4.3 V, 4.0 V and 3.0 V. The background current was as low as -9 x 10(-6)-5 x 10(-7) A. In electrolyte including Ferri/Ferrocyanide, the electrode surface kept good activity, and the electrochemical reaction carrying out on the surface was a diffusion-controlled reaction, with good quasi-reversibility. Studies of the oxidation of organic compounds showed that the electrocatalytic oxidation behavior was selective. Compared with Pt and graphite electrodes, the diamond electrode could oxidate aromatic compounds like phenol and nitrobenzene effectively, and the process of oxidation was very simple and complete.

  13. Dual porosity gas evolving electrode

    DOEpatents

    Townsend, Carl W.

    1994-01-01

    A dual porosity electrode for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  14. Dual porosity gas evolving electrode

    DOEpatents

    Townsend, C.W.

    1994-11-15

    A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  15. PZT Thin-Film Micro Probe Device with Dual Top Electrodes

    NASA Astrophysics Data System (ADS)

    Luo, Chuan

    Lead zirconate titanate (PZT) thin-film actuators have been studied intensively for years because of their potential applications in many fields. In this dissertation, a PZT thin-film micro probe device is designed, fabricated, studied, and proven to be acceptable as an intracochlear acoustic actuator. The micro probe device takes the form of a cantilever with a PZT thin-film diaphragm at the tip of the probe. The tip portion of the probe will be implanted in cochlea later in animal tests to prove its feasibility in hearing rehabilitation. The contribution of the dissertation is three-fold. First, a dual top electrodes design, consisting of a center electrode and an outer electrode, is developed to improve actuation displacement of the PZT thin-film diaphragm. The improvement by the dual top electrodes design is studied via a finite element model. When the dimensions of the dual electrodes are optimized, the displacement of the PZT thin-film diaphragm increases about 30%. A PZT thin-film diaphragm with dual top electrodes is fabricated to prove the concept, and experimental results confirm the predictions from the finite element analyses. Moreover, the dual electrode design can accommodate presence of significant residual stresses in the PZT thin-film diaphragm by changing the phase difference between the two electrodes. Second, a PZT thin-film micro probe device is fabricated and tested. The fabrication process consists of PZT thin-film deposition and deep reactive ion etching (DRIE). The uniqueness of the fabrication process is an automatic dicing mechanism that allows a large number of probes to be released easily from the wafer. Moreover, the fabrication is very efficient, because the DRIE process will form the PZT thin-film diaphragm and the special dicing mechanism simultaneously. After the probes are fabricated, they are tested with various possible implantation depths (i.e., boundary conditions). Experimental results show that future implantation depths

  16. Virtual electrodes for high-density electrode arrays

    SciTech Connect

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  17. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  18. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes. PMID:22945587

  19. BUBBLE DYNAMICS AT GAS-EVOLVING ELECTRODES

    SciTech Connect

    Sides, Paul J.

    1980-12-01

    Nucleation of bubbles, their growth by diffusion of dissolved gas to the bubble surface and by coalescence, and their detachment from the electrode are all very fast phenomena; furthermore, electrolytically generated bubbles range in size from ten to a few hundred microns; therefore, magnification and high speed cinematography are required to observe bubbles and the phenomena of their growth on the electrode surface. Viewing the action from the front side (the surface on which the bubbles form) is complicated because the most important events occur close to the surface and are obscured by other bubbles passing between the camera and the electrode; therefore, oxygen was evolved on a transparent tin oxide "window" electrode and the events were viewed from the backside. The movies showed that coalescence of bubbles is very important for determining the size of bubbles and in the chain of transport processes; growth by diffusion and by coalescence proceeds in series and parallel; coalescing bubbles cause significant fluid motion close to the electrode; bubbles can leave and reattach; and bubbles evolve in a cycle of growth by diffusion and different modes of coalescence. An analytical solution for the primary potential and current distribution around a spherical bubble in contact with a plane electrode is presented. Zero at the contact point, the current density reaches only one percent of its undisturbed value at 30 percent of the radius from that point and goes through a shallow maximum two radii away. The solution obtained for spherical bubbles is shown to apply for the small bubbles of electrolytic processes. The incremental resistance in ohms caused by sparse arrays of bubbles is given by {Delta}R = 1.352 af/kS where f is the void fraction of gas in the bubble layer, a is the bubble layer thickness, k is the conductivity of gas free electrolyte, and S is the electrode area. A densely populated gas bubble layer on an electrode was modeled as a hexagonal array of

  20. Method and means for detecting optically transmitted signals and establishing optical interference pattern between electrodes

    DOEpatents

    Kostenbauder, Adnah G.

    1988-01-01

    A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode.

  1. Method and means for detecting optically transmitted signals and establishing optical interference pattern between electrodes

    DOEpatents

    Kostenbauder, A.G.

    1988-06-28

    A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode. 4 figs.

  2. Battery electrode growth accommodation

    DOEpatents

    Bowen, Gerald K.; Andrew, Michael G.; Eskra, Michael D.

    1992-01-01

    An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

  3. Dry EEG Electrodes

    PubMed Central

    Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. Pelayo

    2014-01-01

    Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications. PMID:25046013

  4. Localizing and tracking electrodes using stereovision in epilepsy cases

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Roberts, David W.; Paulsen, Keith D.

    2015-03-01

    In epilepsy cases, subdural electrodes are often implanted to acquire intracranial EEG (iEEG) for seizure localization and resection planning. However, the electrodes may shift significantly between implantation and resection, during the time that the patient is monitored for iEEG recording. As a result, the accuracy of surgical planning based on electrode locations at the time of resection can be compromised. Previous studies have only quantified the electrode shift with respect to the skull, but not with respect to the cortical surface, because tracking cortical shift between surgeries is challenging. In this study, we use an intraoperative stereovision (iSV) system to visualize and localize the cortical surface as well as electrodes, record three-dimensional (3D) locations of the electrodes in MR space at the time of implantation and resection, respectively, and quantify the raw displacements, i.e., with respect to the skull. Furthermore, we track the cortical surface and quantify the shift between surgeries using an optical flow (OF) based motion-tracking algorithm. Finally, we compute the electrode shift with respect to the cortical surface by subtracting the cortical shift from raw measured displacements. We illustrate the method using one patient example. In this particular patient case, the results show that the electrodes not only shifted significantly with respect to the skull (8.79 +/- 3.00 mm in the lateral direction, ranging from 2.88 mm to 12.87 mm), but also with respect to the cortical surface (7.20 +/- 3.58 mm), whereas the cortical surface did not shift significantly in the lateral direction between surgeries (2.23 +/- 0.76 mm).

  5. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  6. Lateral Lumbar Interbody Fusion.

    PubMed

    Pawar, Abhijit; Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-12-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  7. Lateral Lumbar Interbody Fusion

    PubMed Central

    Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-01-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  8. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.

    PubMed

    Biesheuvel, P M; Bazant, M Z

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the "supercapacitor regime" of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the "desalination regime" of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  9. Characterization of dry biopotential electrodes.

    PubMed

    Xie, Li; Yang, Geng; Xu, Linlin; Seoane, Fernando; Chen, Qiang; Zheng, Lirong

    2013-01-01

    Driven by the increased interest in wearable long-term healthcare monitoring systems, varieties of dry electrodes are proposed based on different materials with different patterns and structures. Most of the studies reported in the literature focus on proposing new electrodes and comparing its performance with commercial electrodes. Few papers are about detailed comparison among different dry electrodes. In this paper, printed metal-plate electrodes, textile based electrodes, and spiked electrodes are for the first time evaluated and compared under the same experimental setup. The contact impedance and noise characterization are measured. The in-vivo electrocardiogram (ECG) measurement is applied to evaluate the overall performance of different electrodes. Textile electrodes and printed electrodes gain comparable high-quality ECG signals. The ECG signal obtained by spiked electrodes is noisier. However, a clear ECG envelope can be observed and the signal quality can be easily improved by backend signal processing. The features of each type of electrodes are analyzed and the suitable application scenario is addressed.

  10. Characterization of nanoporous gold electrodes for bioelectrochemical applications.

    PubMed

    Scanlon, Micheál D; Salaj-Kosla, Urszula; Belochapkine, Serguei; MacAodha, Domhnall; Leech, Dónal; Ding, Yi; Magner, Edmond

    2012-01-31

    The high surface areas of nanostructured electrodes can provide for significantly enhanced surface loadings of electroactive materials. The fabrication and characterization of nanoporous gold (np-Au) substrates as electrodes for bioelectrochemical applications is described. Robust np-Au electrodes were prepared by sputtering a gold-silver alloy onto a glass support and subsequent dealloying of the silver component. Alloy layers were prepared with either a uniform or nonuniform distribution of silver and, post dealloying, showed clear differences in morphology on characterization with scanning electron microscopy. Redox reactions under kinetic control, in particular measurement of the charge required to strip a gold oxide layer, provided the most accurate measurements of the total electrochemically addressable electrode surface area, A(real). Values of A(real) up to 28 times that of the geometric electrode surface area, A(geo), were obtained. For diffusion-controlled reactions, overlapping diffusion zones between adjacent nanopores established limiting semi-infinite linear diffusion fields where the maximum current density was dependent on A(geo). The importance of measuring the surface area available for the immobilization was determined using the redox protein, cyt c. The area accessible to modification by a biological macromolecule, A(macro), such as cyt c was reduced by up to 40% compared to A(real), demonstrating that the confines of some nanopores were inaccessible to large macromolecules due to steric hindrances. Preliminary studies on the preparation of np-Au electrodes modified with osmium redox polymer hydrogels and Myrothecium verrucaria bilirubin oxidase (MvBOD) as a biocathode were performed; current densities of 500 μA cm(-2) were obtained in unstirred solutions. PMID:22004670

  11. Inhomogeneous longitudinal distribution of Ni atoms on graphene induced by layer-number-dependent internal diffusion

    NASA Astrophysics Data System (ADS)

    Hasegawa, M.; Tashima, K.; Kotsugi, M.; Ohkochi, T.; Suemitsu, M.; Fukidome, H.

    2016-09-01

    The intrinsic transport properties, such as carrier mobility and saturation velocity, of graphene are the highest among materials owing to its linear band dispersion and weak backscattering. However, the reported field-effect mobility of transistors using graphene as a channel is much lower than the intrinsic channel mobility. One of the reasons for this low mobility is the high contact resistance between graphene and metals used for the source and drain electrodes, which results from the interfacial roughness. Even Ni, which is a promising contact metal for many materials because of its high adhesion and lower contact resistance, does not meet the requirement as a contact metal for graphene. Noticing that the interfacial roughness between the a metal and graphene is strongly related to the onset of the contact resistance, we performed transmission electron microscopy and photoemission electron microscopy measurements to evaluate the microscopic lateral and longitudinal distributions of Ni atoms at the Ni/graphene interface formed on epitaxial graphene (EG) on 4H-SiC(0001). Our data revealed that the deposited Ni atoms diffused into the EG layers, but they did not reach the EG/SiC interface, and the diffusion was stronger on bilayered graphene than on monolayered graphene. We thus ascribe the layer-number-dependent internal diffusion of Ni atoms in EG as a cause of the microscopic interfacial roughness between graphene and the metal. Ensuring homogeneous distribution of the number of EG layers should be key to lowering the contact resistance.

  12. 8. UPPER INSIDE CHORD, VERTICAL, LATERAL STRUT, UPPER LATERAL & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. UPPER INSIDE CHORD, VERTICAL, LATERAL STRUT, UPPER LATERAL & GUSSET PLATE, ONE DIAGONAL BRACE - Enterprise Parker Truss Bridge, Spanning Smoky Hill River on K-43 Highway, Enterprise, Dickinson County, KS

  13. 7. UPPER INSIDE CHORD, VERTICAL, LATERAL STRUT, UPPER LATERAL & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. UPPER INSIDE CHORD, VERTICAL, LATERAL STRUT, UPPER LATERAL & GUSSET PLATE, TWO DIAGONAL BRACES - Enterprise Parker Truss Bridge, Spanning Smoky Hill River on K-43 Highway, Enterprise, Dickinson County, KS

  14. Electroformed Electrodes for Electrical-Discharge Machining

    NASA Technical Reports Server (NTRS)

    Werner, A.; Cassidenti, M.

    1984-01-01

    Copper electrodes replace graphite electrodes in many instances of electrical-discharge machining (EDM) of complex shapes. Copper electrodes wear longer and cause less contamination of EDM dielectric fluid than do graphite electrodes.

  15. Laterality and language experience.

    PubMed

    Hull, Rachel; Vaid, Jyotsna

    2006-09-01

    A meta-analysis was conducted on studies that examined hemispheric functional asymmetry for language in brain-intact monolingual and bilingual adults. Data from 23 laterality studies that directly compared bilingual and monolingual speakers on the same language were analysed (n = 1234). Variables examined were language experience (monolingual, bilingual), experimental paradigm (dichotic listening, visual hemifield presentation, and dual task) and, among bilinguals, the influence of second language proficiency (proficient vs nonproficient) and onset of bilingualism (early, or before age 6; and late, or after age 6). Overall, monolinguals and late bilinguals showed reliable left hemisphere dominance, while early bilinguals showed reliable bilateral hemispheric involvement. Within bilinguals, there was no reliable effect of language proficiency when age of L2 acquisition was controlled. The findings indicate that early learning of one vs. two languages predicts divergent patterns of cerebral language lateralisation in adulthood. PMID:16882556

  16. Lateral Flow Immunoassay.

    PubMed

    Ching, Kathryn H

    2015-01-01

    Lateral flow immunoassays (LFIAs) are a staple in the field of rapid diagnostics. These small handheld devices require no specialized training or equipment to operate, and generate a result within minutes of sample application. They are an ideal format for many types of home test kits, for emergency responders and for food manufacturers and producers looking for a quick evaluation of a given sample. LFIAs rely on high quality monoclonal antibodies that recognize the analyte of interest. As monoclonal antibody technology becomes more accessible to smaller laboratories, there has been increased interest in developing LFIA prototypes for potential commercial manufacture. In this chapter, the basics of designing and building an LFIA prototype are described. PMID:26160571

  17. Laterality and language experience.

    PubMed

    Hull, Rachel; Vaid, Jyotsna

    2006-09-01

    A meta-analysis was conducted on studies that examined hemispheric functional asymmetry for language in brain-intact monolingual and bilingual adults. Data from 23 laterality studies that directly compared bilingual and monolingual speakers on the same language were analysed (n = 1234). Variables examined were language experience (monolingual, bilingual), experimental paradigm (dichotic listening, visual hemifield presentation, and dual task) and, among bilinguals, the influence of second language proficiency (proficient vs nonproficient) and onset of bilingualism (early, or before age 6; and late, or after age 6). Overall, monolinguals and late bilinguals showed reliable left hemisphere dominance, while early bilinguals showed reliable bilateral hemispheric involvement. Within bilinguals, there was no reliable effect of language proficiency when age of L2 acquisition was controlled. The findings indicate that early learning of one vs. two languages predicts divergent patterns of cerebral language lateralisation in adulthood.

  18. Lateral Abdominal Wall Reconstruction

    PubMed Central

    Baumann, Donald P.; Butler, Charles E.

    2012-01-01

    Lateral abdominal wall (LAW) defects can manifest as a flank hernias, myofascial laxity/bulges, or full-thickness defects. These defects are quite different from those in the anterior abdominal wall defects and the complexity and limited surgical options make repairing the LAW a challenge for the reconstructive surgeon. LAW reconstruction requires an understanding of the anatomy, physiologic forces, and the impact of deinnervation injury to design and perform successful reconstructions of hernia, bulge, and full-thickness defects. Reconstructive strategies must be tailored to address the inguinal ligament, retroperitoneum, chest wall, and diaphragm. Operative technique must focus on stabilization of the LAW to nonyielding points of fixation at the anatomic borders of the LAW far beyond the musculofascial borders of the defect itself. Thus, hernias, bulges, and full-thickness defects are approached in a similar fashion. Mesh reinforcement is uniformly required in lateral abdominal wall reconstruction. Inlay mesh placement with overlying myofascial coverage is preferred as a first-line option as is the case in anterior abdominal wall reconstruction. However, interposition bridging repairs are often performed as the surrounding myofascial tissue precludes a dual layered closure. The decision to place bioprosthetic or prosthetic mesh depends on surgeon preference, patient comorbidities, and clinical factors of the repair. Regardless of mesh type, the overlying soft tissue must provide stable cutaneous coverage and obliteration of dead space. In cases where the fasciocutaneous flaps surrounding the defect are inadequate for closure, regional pedicled flaps or free flaps are recruited to achieve stable soft tissue coverage. PMID:23372458

  19. Theory of transition times: Catalysis at rotating disk electrodes

    SciTech Connect

    Scherson, Daniel A.; Ross, Philip N.

    1981-03-10

    An exact solution to the problem of convective diffusion to a rotating disk electrode with a prescribed initial profile and current step conditions at the surface is presented. Based on this solution a current density-transition time relationship is established which in the limit reduces to a previously proposed expression that accounts for experimentally observed deviations from the Sand equation. Applications of this theory in connection with the determination of rate parameters for electroactive species undergoing a catalytic reaction at the electrode surface are discussed.

  20. Catalyzed enzyme electrodes

    SciTech Connect

    Zawodzinski, T.A.; Wilson, M.S.; Rishpon, J.; Gottesfeld, S.

    1992-12-31

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid, polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  1. Catalyzed enzyme electrodes

    SciTech Connect

    Zawodzinski, T.A.; Wilson, M.S.; Rishpon, J.; Gottesfeld, S.

    1993-07-13

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  2. Inert electrode connection

    SciTech Connect

    Weyand, John D.; Woods, Robert W.; DeYoung, David H.; Ray, Siba P.

    1985-01-01

    An inert electrode connection is disclosed wherein a layer of inert electrode material is bonded to a layer of conductive material by providing at least one intermediate layer of material therebetween comprising a predetermined ratio of inert material to conductive material. In a preferred embodiment, the connection is formed by placing in a die a layer of powdered inert material, at least one layer of a mixture of powdered inert material and conductive material, and a layer of powdered conductive material. The connection is then formed by pressing the material at 15,000-20,000 psi to form a powder compact and then densifying the powder compact in an inert or reducing atmosphere at a temperature of 1200.degree.-1500.degree. C.

  3. Magnetohydrodynamic generator electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.

    1979-01-01

    An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.

  4. Long life reference electrode

    DOEpatents

    Yonco, Robert M.; Nagy, Zoltan

    1989-01-01

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservior and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved.

  5. Long life reference electrode

    DOEpatents

    Yonco, R.M.; Nagy, Z.

    1987-07-30

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

  6. Long life reference electrode

    DOEpatents

    Yonco, R.M.; Nagy, Z.

    1989-04-04

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

  7. Catalyzed enzyme electrodes

    DOEpatents

    Zawodzinski, Thomas A.; Wilson, Mahlon S.; Rishpon, Judith; Gottesfeld, Shimshon

    1993-01-01

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  8. Inert electrode connection

    DOEpatents

    Weyand, J.D.; Woods, R.W.; DeYoung, D.H.; Ray, S.P.

    1985-02-19

    An inert electrode connection is disclosed wherein a layer of inert electrode material is bonded to a layer of conductive material by providing at least one intermediate layer of material therebetween comprising a predetermined ratio of inert material to conductive material. In a preferred embodiment, the connection is formed by placing in a die a layer of powdered inert material, at least one layer of a mixture of powdered inert material and conductive material, and a layer of powdered conductive material. The connection is then formed by pressing the material at 15,000--20,000 psi to form a powder compact and then densifying the powder compact in an inert or reducing atmosphere at a temperature of 1,200--1,500 C. 5 figs.

  9. Ice electrode electrolytic cell

    SciTech Connect

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1992-12-31

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  10. Nickel anode electrode

    DOEpatents

    Singh, Prabhakar; Benedict, Mark

    1987-01-01

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  11. Membrane reference electrode

    DOEpatents

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  12. Ice electrode electrolytic cell

    DOEpatents

    Glenn, David F.; Suciu, Dan F.; Harris, Taryl L.; Ingram, Jani C.

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  13. Ice electrode electrolytic cell

    DOEpatents

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  14. Fuel cell oxygen electrode

    DOEpatents

    Shanks, H.R.; Bevolo, A.J.; Danielson, G.C.; Weber, M.F.

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A/sub x/WO/sub 3/ where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt/sub y/WO/sub 3/ where y is at least 0.8.

  15. Electrostatic Levitator Electrode Layout

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  16. Fuel cell oxygen electrode

    DOEpatents

    Shanks, Howard R.; Bevolo, Albert J.; Danielson, Gordon C.; Weber, Michael F.

    1980-11-04

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

  17. Lateral compartment cartilage changes and lateral elbow pain.

    PubMed

    Rajeev, Aysha; Pooley, Joseph

    2009-02-01

    The aim of our study is to document the arthroscopic findings in resistant lateral elbow pain. We have reviewed the findings in a consecutive series of 117 elbow arthroscopies performed on patients with lateral elbow pain resistant to conservative treatment. We found established degenerative changes involving articular cartilage in 68 patients (59%). In 60 of these 68 patients (88%) the degenerative changes were confined to the lateral compartment and contrasted with a normal appearance of the articular cartilage of the medial compartment. Primary lateral compartment arthritis is more common than previously thought, it mostly affects a young population and could easily be misdiagnosed as lateral epicondylitis.

  18. Electrode array for neural stimulation

    DOEpatents

    Wessendorf, Kurt O.; Okandan, Murat; Stein, David J.; Yang, Pin; Cesarano, III, Joseph; Dellinger, Jennifer

    2011-08-16

    An electrode array for neural stimulation is disclosed which has particular applications for use in a retinal prosthesis. The electrode array can be formed as a hermetically-sealed two-part ceramic package which includes an electronic circuit such as a demultiplexer circuit encapsulated therein. A relatively large number (up to 1000 or more) of individually-addressable electrodes are provided on a curved surface of a ceramic base portion the electrode array, while a much smaller number of electrical connections are provided on a ceramic lid of the electrode array. The base and lid can be attached using a metal-to-metal seal formed by laser brazing. Electrical connections to the electrode array can be provided by a flexible ribbon cable which can also be used to secure the electrode array in place.

  19. Transparent electrode for optical switch

    DOEpatents

    Goldhar, Julius; Henesian, Mark A.

    1986-01-01

    A low pressure gas electrode utilizing ionized gas in a glow discharge regime forms a transparent electrode for electro-optical switches. The transparent electrode comprises a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the electrode is a transparent electrode. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. The plasma can be created either by the main high voltage pulser used to charge up the crystal or by auxiliary discharges or external sources of ionization. A typical configuration utilizes 10 torr argon in the discharge region adjacent to each crystal face.

  20. Shielded capacitive electrode

    DOEpatents

    Kireeff Covo, Michel

    2013-07-09

    A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

  1. Unitary plate electrode

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)

    1985-01-01

    The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).

  2. Carbon cloth supported electrode

    DOEpatents

    Lu, Wen-Tong P.; Ammon, Robert L.

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  3. Engineering the Electrode-Electrolyte Interface: From Electrode Architecture to Zinc Redox in Ionic Liquid Electrolytes

    NASA Astrophysics Data System (ADS)

    Engstrom, Erika

    2011-12-01

    The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic

  4. Reflexive Planning for Later Life

    ERIC Educational Resources Information Center

    Denton, Margaret A.; Kemp, Candace L.; French, Susan; Gafni, Amiram; Joshi, Anju; Rosenthal, Carolyn J.; Davies, Sharon

    2004-01-01

    Informed by Giddens' (1991) concept of "reflexive life" planning and the notion of later life as a time of increasing social and financial risk, this research explores the idea of "reflexive planning for later life". We utilize a conceptual model that incorporates three types of planning for later life: public protection, self-insurance, and…

  5. Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes.

    PubMed

    Kang, Peng; Zhang, Sheng; Meyer, Thomas J; Brookhart, Maurice

    2014-08-11

    An iridium pincer dihydride catalyst was immobilized on carbon nanotube-coated gas diffusion electrodes (GDEs) by using a non-covalent binding strategy. The as-prepared GDEs are efficient, selective, durable, gas permeable electrodes for electrocatalytic reduction of CO2 to formate. High turnover numbers (ca. 54,000) and turnover frequencies (ca. 15 s(-1)) were enabled by the novel electrode architecture in aqueous solutions saturated in CO2 with added HCO3(-).

  6. Development And Testing Of The Inertial Electrostatic Confinement Diffusion Thruster

    NASA Technical Reports Server (NTRS)

    Becnel, Mark D.; Polzin, Kurt A.

    2013-01-01

    The Inertial Electrostatic Confinement (IEC) diffusion thruster is an experiment in active development that takes advantage of physical phenomenon that occurs during operation of an IEC device. The IEC device has been proposed as a fusion reactor design that relies on traditional electrostatic ion acceleration and is typically arranged in a spherical geometry. The design incorporates two radially-symmetric spherical electrodes. Often the inner electrode utilizes a grid of wire shaped in a sphere with a radius 15 to 50 percent of the radius of the outer electrode. The inner electrode traditionally has 90 percent or more transparency to allow particles (ions) to pass to the center of the spheres and collide/recombine in the dense plasma core at r=0. When operating the IEC, an unsteady plasma leak is typically observed passing out one of the gaps in the lattice grid of the inner electrode. The IED diffusion thruster is based upon the idea that this plasma leak can be used for propulsive purposes. The IEC diffusion thruster utilizes the radial symmetry found in the IEC device. A cylindrical configuration is employed here as it will produce a dense core of plasma the length of the cylindrical grid while promoting the plasma leak to exhaust through an electromagnetic nozzle at one end of the apparatus. A proof-of-concept IEC diffusion thruster is operational and under testing using argon as propellant (Figure 1).

  7. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    DOEpatents

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  8. Diamond heteroepitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Tang, Yung-Hsiu

    This dissertation describes improvements in the growth of single crystal diamond by microwave plasma-assisted chemical vapor deposition (CVD). Heteroepitaxial (001) diamond was grown on 1 cm. 2 a-plane sapphiresubstrates using an epitaxial (001) Ir thin-film as a buffer layer. Low-energy ion bombardment of the Ir layer, a process known as bias-enhanced nucleation, is a key step in achieving a high density of diamond nuclei. Bias conditions were optimized to form uniformly-high nucleation densities across the substrates, which led to well-coalesced diamond thin films after short growth times. Epitaxial lateral overgrowth (ELO) was used as a means of decreasing diamond internal stress by impeding the propagation of threading dislocations into the growing material. Its use in diamond growth requires adaptation to the aggressive chemical and thermal environment of the hydrogen plasma in a CVD reactor. Three ELO variants were developed. The most successful utilized a gold (Au) mask prepared by vacuum evaporation onto the surface of a thin heteroepitaxial diamond layer. The Au mask pattern, a series of parallel stripes on the micrometer scale, was produced by standard lift-off photolithography. When diamond overgrows the mask, dislocations are largely confined to the substrate. Differing degrees of confinement were studied by varying the stripe geometry and orientation. Significant improvement in diamond quality was found in the overgrown regions, as evidenced by reduction of the Raman scattering linewidth. The Au layer was found to remain intact during diamond overgrowth and did not chemically bond with the diamond surface. Besides impeding the propagation of threading dislocations, it was discovered that the thermally-induced stress in the CVD diamond was significantly reduced as a result of the ductile Au layer. Cracking and delamination of the diamond from the substrate was mostly eliminated. When diamond was grown to thicknesses above 0.1 mm it was found that

  9. An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder

    SciTech Connect

    Osaka, Tetsuya, Liu, X.; Nojima, Masashi; Momma, Toshiyuki

    1999-05-01

    An electric double layer capacitor (EDLC) was prepared with an activated carbon powder electrode with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based gel electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were used as plasticizer and tetraethylammonium tetrafluoroborate (TEABF{sub 4}) was used as the supporting electrolyte. An optimized gel electrolyte of PVdF-HFP/PC/EC/TEABF{sub 4} - 23/31/35/11 mass ratio exhibited high ionic conductivity of 5 {times} 10{sup {minus}3} S/cm, high electrode capacitance, and good mechanical strength. An electrode consisting of activated carbon (AC) with the gel electrolyte as the binder (AC/PVdF-HFP based gel, 7/3 mass ratio) showed a higher specific capacitance and a lower ion diffusion resistance within the electrode than a carbon electrode, prepared with PVdF-HFP binder without plasticizer. This suggests that an electrode mixed with the gel electrolyte has a lower ion diffusion resistance inside the electrode. The highest specific capacitance of 123 F/g was achieved with an electrode containing AC with a specific surface area of 2500 m{sup 2}/g. A coin-type EDLC cell with optimized components showed excellent cycleability exceeding 10{sup 4} cycles with ca. 100% coulombic efficiency achieved when charging and discharging was repeated between 1.0 and 2.5 V at 1.66 mA/cm{sup 2}.

  10. Hierarchically porous graphene as a lithium-air battery electrode.

    PubMed

    Xiao, Jie; Mei, Donghai; Li, Xiaolin; Xu, Wu; Wang, Deyu; Graff, Gordon L; Bennett, Wendy D; Nie, Zimin; Saraf, Laxmikant V; Aksay, Ilhan A; Liu, Jun; Zhang, Ji-Guang

    2011-11-01

    The lithium-air battery is one of the most promising technologies among various electrochemical energy storage systems. We demonstrate that a novel air electrode consisting of an unusual hierarchical arrangement of functionalized graphene sheets (with no catalyst) delivers an exceptionally high capacity of 15000 mAh/g in lithium-O(2) batteries which is the highest value ever reported in this field. This excellent performance is attributed to the unique bimodal porous structure of the electrode which consists of microporous channels facilitating rapid O(2) diffusion while the highly connected nanoscale pores provide a high density of reactive sites for Li-O(2) reactions. Further, we show that the defects and functional groups on graphene favor the formation of isolated nanosized Li(2)O(2) particles and help prevent air blocking in the air electrode. The hierarchically ordered porous structure in bulk graphene enables its practical applications by promoting accessibility to most graphene sheets in this structure.

  11. Hierarchically porous graphene as a lithium-air battery electrode.

    PubMed

    Xiao, Jie; Mei, Donghai; Li, Xiaolin; Xu, Wu; Wang, Deyu; Graff, Gordon L; Bennett, Wendy D; Nie, Zimin; Saraf, Laxmikant V; Aksay, Ilhan A; Liu, Jun; Zhang, Ji-Guang

    2011-11-01

    The lithium-air battery is one of the most promising technologies among various electrochemical energy storage systems. We demonstrate that a novel air electrode consisting of an unusual hierarchical arrangement of functionalized graphene sheets (with no catalyst) delivers an exceptionally high capacity of 15000 mAh/g in lithium-O(2) batteries which is the highest value ever reported in this field. This excellent performance is attributed to the unique bimodal porous structure of the electrode which consists of microporous channels facilitating rapid O(2) diffusion while the highly connected nanoscale pores provide a high density of reactive sites for Li-O(2) reactions. Further, we show that the defects and functional groups on graphene favor the formation of isolated nanosized Li(2)O(2) particles and help prevent air blocking in the air electrode. The hierarchically ordered porous structure in bulk graphene enables its practical applications by promoting accessibility to most graphene sheets in this structure. PMID:21985448

  12. Study on the Inter-electrode Process of Aluminum Electrolysis

    NASA Astrophysics Data System (ADS)

    Yang, Youjian; Gao, Bingliang; Wang, Zhaowen; Shi, Zhongning; Hu, Xianwei

    2016-02-01

    The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode-cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas-liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm-2 is approximately 50 pct.

  13. Ceramic component for electrodes

    DOEpatents

    Marchant, David D.; Bates, J. Lambert

    1980-01-01

    A ceramic component suitable for preparing MHD generator electrodes having the compositional formula: Y.sub.x (Mg.sub.y Cr.sub.z).sub.w Al.sub.(1-w) O.sub.3 where x=0.9 to 1.05, y=0.02 to 0.2, z=0.8 to 1.05 and w=1.0 to 0.5. The component is resistant to the formation of hydration products in an MHD environment, has good electrical conductivity and exhibits a lower electrochemical corrosion rate than do comparable compositions of lanthanum chromite.

  14. Cosmetic Lateral Canthoplasty: Preserving the Lateral Canthal Angle

    PubMed Central

    Lee, Kyu Ho; Choi, Hong Lim; Jeong, Eui Cheol

    2016-01-01

    Cosmetic lateral canthoplasty, in which the size of the eye is increased by extending the palpebral fissure and decreasing the degree of the eye slant, has become a prevalent procedure for East Asians. However, it is not uncommon for there to be complications or unfavorable results after the surgery. With this in mind, the authors have designed a surgical method to reduce complications in cosmetic lateral canthoplasty by preserving the lateral canthal angle. We discuss here the anatomy required for surgery, the surgical methods, and methods for reducing complications during cosmetic lateral canthoplasty. PMID:27462563

  15. Gold electrodes from recordable CDs

    PubMed

    Angnes; Richter; Augelli; Kume

    2000-11-01

    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  16. Jointed Holder For Welding Electrodes

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Adjustable-angle holder enables use of standard straight electrode with custom-fabricated bent gas cup for welding in difficult-to-reach places. Electrode replaced easily, without removing cup, with aid of tool loosening miniature collet nut on holder. Consumes fewer electrodes for given amount of welding. Angle of holder continuously adjustable to fit angle of gas cup or geometry of part welded. Holder made double-jointed to accommodate gas cup having compound angles.

  17. Electrodynamic Arrays Having Nanomaterial Electrodes

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  18. Low-Noise Implantable Electrode

    NASA Technical Reports Server (NTRS)

    Lund, G. F.

    1982-01-01

    New implantable electrocardiogram electrode much less sensitive than previous designs to spurious biological potentials. Designed in novel "pocket" configuration, new electrode is intended as sensor for radiotelemetry of biological parameters in experiments on unrestrained subjects. Electrode is esentially squashed cylinder that admits body fluid into interior. Cylinder and electrical lead are made of stainless steel. Spot welding and crimping are used for assembly, rather than soldering.

  19. Steel Collet For Welding Electrodes

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.; Burley, Richard K.; Fogul, Irving

    1992-01-01

    Improved steel collet holds electrode for tungsten inert-gas welding but allows quick and easy replacement. Also ensures reliable arc starting. Slip-on compression ring compresses tapered section of body of collet around inner end of welding electrode. Collet mounted in receptacle below stack of lenses and filters in coaxial-vision welding torch. Blind hole in collet protects outermost lens from damage by electrode.

  20. Early detection of Candida albicans biofilms at porous electrodes.

    PubMed

    Congdon, Robert B; Feldberg, Alexander S; Ben-Yakar, Natalie; McGee, Dennis; Ober, Christopher; Sammakia, Bahgat; Sadik, Omowunmi A

    2013-02-15

    We describe the development of an electrochemical sensor for early detection of biofilm using Candida albicans. The electrochemical sensor used the ability of biofilms to accept electrons from redox mediators relative to the number of metabolically active cells present. Cyclic voltammetry and differential pulse voltammetry techniques were used to monitor the redox reaction of K(3)Fe(CN)(6) at porous reticulated vitreous carbon (RVC) (238.7 cm(2)) working electrodes versus Ag/AgCl reference. A shift in the peak potential occurred after 12 h of film growth, which is attributed to the presence of C. albicans. Moreover, the intensity of the ferricyanide reduction peak first increased as C. albicans deposited onto the porous electrodes at various growth times. The peak current subsequently decreased at extended periods of growth of 48 h. The reduction in peak current was attributed to the biofilm reaching its maximum growth thickness, which correlated with the maximum number of metabolically active cells. The observed diffusion coefficients for the bare RVC and biofilm-coated electrodes were 2.2 × 10(-3) and 7.0 × 10(-6) cm(2)/s, respectively. The increase in diffusivity from the bare electrode to the biofilm-coated electrode indicated some enhancement of electron transfer mediated by the biofilm to the porous electrode. Verification of the growth of biofilm was achieved using scanning electron microcopy and laser scanning confocal imaging microscopy. Validation with conventional plating techniques confirmed that the correlation (R(2) = 0.9392) could be achieved between the electrochemical sensors data and colony-forming units. PMID:23107627

  1. NIST Diffusion Data Center

    National Institute of Standards and Technology Data Gateway

    NIST Diffusion Data Center (Web, free access)   The NIST Diffusion Data Center is a collection of over 14,100 international papers, theses, and government reports on diffusion published before 1980.

  2. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  3. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  4. Design of dual working electrodes for concentration process in metalloimmunoassay.

    PubMed

    Hori, Nobuyasu; Chikae, Miyuki; Kirimura, Hiroya; Takamura, Yuzuru

    2016-10-01

    Electrochemical immunosensing, particularly through a metalloimmunoassay, is a promising approach for development of point-of-care (POC) diagnostics devices. This study investigated the structure of dual working electrodes (W1 and W2), used in a silver nanoparticles-labeled sandwich-type immunoassay and silver concentration process, paying special attention to the position of W1 relative to W2. The new structures of the dual working electrodes were fabricated for efficient silver concentration and evaluated experimentally, which showed that the duration of prereduction before current measurement decreased from 480 s to 300 s by transforming the position of W1 from 1 line to 2 lines or 6 parts. The experimental results were also compared with numerical simulations based on three-dimensional diffusion, and the prereduction step almost followed the three-dimensional diffusion equation. Using numerical simulations, the ideal structures of dual working electrodes were designed based on relationships between the structures and duration of prereduction or the LOD. In the case of 36 lines at an area ratio of W1 to W1 + W2 of 1 to 10, the prereduction duration decreased to 96 s. The dual working electrodes designed in this study promise to shorten the total analysis time and lower the LOD for POC diagnostics. PMID:27572238

  5. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  6. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  7. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  8. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low Earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  9. Influence of implantation on the electrochemical properties of smooth and porous TiN coatings for stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Meijs, S.; Sørensen, C.; Sørensen, S.; Rechendorff, K.; Fjorback, M.; Rijkhoff, N. J. M.

    2016-04-01

    Objective. To determine whether changes in electrochemical properties of porous titanium nitride (TiN) electrodes as a function of time after implantation are different from those of smooth TiN electrodes. Approach. Eight smooth and 8 porous TiN coated electrodes were implanted in 8 rats. Before implantation, voltage transients, cyclic voltammograms and impedance spectra were recorded in phosphate buffered saline (PBS). After implantation, these measurements were done weekly to investigate how smooth and porous electrodes were affected by implantation. Main results. The electrode capacitance of the porous TiN electrodes decreased more than the capacitance of the smooth electrodes due to acute implantation under fast measurement conditions (such as stimulation pulses). This indicates that protein adhesion presents a greater diffusion limitation for counter-ions for the porous than for the smooth electrodes. The changes in electrochemical properties during the implanted period were similar for smooth and porous TiN electrodes, indicating that cell adhesion poses a similar diffusion limitation for smooth and porous electrodes. Significance. This knowledge can be used to optimize the porous structure of the TiN film, so that the effect of protein adhesion on the electrochemical properties is diminished. Alternatively, an additional coating could be applied on the porous TiN that would prevent or minimize protein adhesion.

  10. Pyrrole copolymers with enhanced ion diffusion rates for lithium batteries

    SciTech Connect

    Calvert, P.; Gardlund, Z.; Huntoon, T.; Hall, H.K.; Padias, A.

    1998-07-01

    Copolymers of pyrrole with a polyether-substituted pyrrole were tested as cathodes for lithium batteries. The charge and discharge characteristics showed that anion transport was much faster in the copolymer than in polypyrrole. As a result these electrodes store and release much more charge at higher current densities but are similar to polypyrrole at low currents. Pulse and relaxation measurements of the ion diffusion showed that this difference was due to a ten-fold increase in the anion diffusion coefficient.

  11. Tonoplast Aquaporins Facilitate Lateral Root Emergence.

    PubMed

    Reinhardt, Hagen; Hachez, Charles; Bienert, Manuela Désirée; Beebo, Azeez; Swarup, Kamal; Voß, Ute; Bouhidel, Karim; Frigerio, Lorenzo; Schjoerring, Jan K; Bennett, Malcolm J; Chaumont, Francois

    2016-03-01

    Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence.

  12. NiCd battery electrodes, C-150

    NASA Technical Reports Server (NTRS)

    Holleck, G.; Turchan, M.; Hopkins, J.

    1972-01-01

    Electrodes for a nongassing negative limited nickel-cadmium cell are discussed. The key element is the development of cadmium electrodes with high hydrogen overvoltage. For this, the following electrode structures were manufactured and their physical and electrochemical characteristics were evaluated: (1) silver-sinter-based Cd electrodes, (2) Teflon-bonded Cd electrodes, (3) electrodeposited Cd sponge, and (4) Cd-sinter structures.

  13. Design and characterisation of a thin-film electrode array with shared reference/counter electrodes for electrochemical detection.

    PubMed

    Uludag, Yildiz; Olcer, Zehra; Sagiroglu, Mahmut Samil

    2014-07-15

    In the current study, a novel electrode array and integrated microfluidics have been designed and characterised in order to create a sensor chip which is not only easy, rapid and cheaper to produce but also have a smaller imprint and good electrochemical sensing properties. The current study includes the assessment of the effects of an Au quasi-reference electrode and the use of shared reference/counter electrodes for the array, in order to obtain a small array that can be produced using a fine metal mask. In the study, it is found that when Au is used as the quasi-reference electrode, the arrays with shared reference and counter electrodes result in faster electron transfer kinetics and prevent the potential change with respect to scan rate, and hence is advantageous with respect to conventional electrodes. In addition, the resulting novel electrode array has been shown to result in higher current density (10.52 µA/cm(2); HRP detection assay) and measured diffusion coefficient (14.40×10(-12) cm(2)/s; calculated from the data of cyclic voltammetry with 1mM potassium ferricyanide) with respect to conventional electrodes tested in the study. Using the new electrode arrays, the detection limits obtained from horse radish peroxidase (HRP) and bisphenol A assays were 12.5 ng/ml (2.84×10(-10) M ) and 10 ng/ml (44×10(-9) M), respectively. Performing the HRP detection assay in a flow injection system using array integrated microfluidics provided 25 times lower detection limit (11.36×10(-12) M), although Ti has been used as electrode material instead of Au. In short, incorporation of this new electrode array to lab-on-a-chip or MEMs (micro-electro mechanic systems) technologies may pave the way for easy to use automated biosensing devices that could be used for a variety of applications from diagnostics to environmental monitoring, and studies will continue to move forward in this direction. PMID:24561521

  14. Design and characterisation of a thin-film electrode array with shared reference/counter electrodes for electrochemical detection.

    PubMed

    Uludag, Yildiz; Olcer, Zehra; Sagiroglu, Mahmut Samil

    2014-07-15

    In the current study, a novel electrode array and integrated microfluidics have been designed and characterised in order to create a sensor chip which is not only easy, rapid and cheaper to produce but also have a smaller imprint and good electrochemical sensing properties. The current study includes the assessment of the effects of an Au quasi-reference electrode and the use of shared reference/counter electrodes for the array, in order to obtain a small array that can be produced using a fine metal mask. In the study, it is found that when Au is used as the quasi-reference electrode, the arrays with shared reference and counter electrodes result in faster electron transfer kinetics and prevent the potential change with respect to scan rate, and hence is advantageous with respect to conventional electrodes. In addition, the resulting novel electrode array has been shown to result in higher current density (10.52 µA/cm(2); HRP detection assay) and measured diffusion coefficient (14.40×10(-12) cm(2)/s; calculated from the data of cyclic voltammetry with 1mM potassium ferricyanide) with respect to conventional electrodes tested in the study. Using the new electrode arrays, the detection limits obtained from horse radish peroxidase (HRP) and bisphenol A assays were 12.5 ng/ml (2.84×10(-10) M ) and 10 ng/ml (44×10(-9) M), respectively. Performing the HRP detection assay in a flow injection system using array integrated microfluidics provided 25 times lower detection limit (11.36×10(-12) M), although Ti has been used as electrode material instead of Au. In short, incorporation of this new electrode array to lab-on-a-chip or MEMs (micro-electro mechanic systems) technologies may pave the way for easy to use automated biosensing devices that could be used for a variety of applications from diagnostics to environmental monitoring, and studies will continue to move forward in this direction.

  15. Diffusing Diffusivity: A Model for Anomalous, yet Brownian, Diffusion

    NASA Astrophysics Data System (ADS)

    Chubynsky, Mykyta V.; Slater, Gary W.

    2014-08-01

    Wang et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 15160 (2009)] have found that in several systems the linear time dependence of the mean-square displacement (MSD) of diffusing colloidal particles, typical of normal diffusion, is accompanied by a non-Gaussian displacement distribution G(x ,t), with roughly exponential tails at short times, a situation they termed "anomalous yet Brownian" diffusion. The diversity of systems in which this is observed calls for a generic model. We present such a model where there is diffusivity memory but no direction memory in the particle trajectory, and we show that it leads to both a linear MSD and a non-Gaussian G(x ,t) at short times. In our model, the diffusivity is undergoing a (perhaps biased) random walk, hence the expression "diffusing diffusivity". G(x ,t) is predicted to be exactly exponential at short times if the distribution of diffusivities is itself exponential, but an exponential remains a good fit for a variety of diffusivity distributions. Moreover, our generic model can be modified to produce subdiffusion.

  16. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    DOE PAGESBeta

    Feng, Guang; Li, Song; Zhao, Wei; Cummings, Peter T.

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ionmore » layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.« less

  17. Anomalous diffusion due to obstacles: a Monte Carlo study.

    PubMed Central

    Saxton, M J

    1994-01-01

    In normal lateral diffusion, the mean-square displacement of the diffusing species is proportional to time. But in disordered systems anomalous diffusion may occur, in which the mean-square displacement is proportional to some other power of time. In the presence of moderate concentrations of obstacles, diffusion is anomalous over short distances and normal over long distances. Monte Carlo calculations are used to characterize anomalous diffusion for obstacle concentrations between zero and the percolation threshold. As the obstacle concentration approaches the percolation threshold, diffusion becomes more anomalous over longer distances; the anomalous diffusion exponent and the crossover length both increase. The crossover length and time show whether anomalous diffusion can be observed in a given experiment. PMID:8161693

  18. EDM Electrode for Internal Grooves

    NASA Technical Reports Server (NTRS)

    Ramani, V.; Werner, A.

    1985-01-01

    Electroerosive process inexpensive alternative to broaching. Hollow brass electrodes, soldered at one end to stainless-steel holding ring, held in grooves in mandrel. These electrodes used to machine grooves electrically in stainless-steel tube three-eights inch (9.5 millimeters) in diameter. Tool used on tubes already in place in equipment.

  19. Making EDM Electrodes By Stereolithography

    NASA Technical Reports Server (NTRS)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  20. Electrochemical photovoltaic cells and electrodes

    DOEpatents

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  1. Improved photovoltaic cells and electrodes

    DOEpatents

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  2. Thermal characterization of Li-ion cell electrodes by photothermal deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Loges, André; Herberger, Sabrina; Werner, Daniel; Wetzel, Thomas

    2016-09-01

    Contactless and temperature-dependent evaluation of thermal diffusivities of Li-ion cell electrodes based on photothermal deflection spectroscopy (PDS) measurements is introduced and applied to electrodes from three prismatic hardcase Li-ion cells. The accuracy of the method is validated using reference materials, which cover a wide range of thermal diffusivity. The effective thermal diffusivities of the three anode and cathode coatings and of the current collectors are determined in the temperature range of 5-45 °C. Furthermore, the temperature-dependent specific heat capacity of the electrodes is evaluated by differential scanning calorimetry (DSC) measurements in the same temperature range. Based on the experimental results the through-plane and in-plane thermal conductivity of the electrodes is calculated and compared to previously reported values. The results indicate significant influence of the porosity and manufacturing process on the effective thermal conductivity of the electrodes. The three mayor impact factors on thermal conductivity of electrodes are (i) composition, (ii) morphology of the coating and (iii) the thickness ratio of coating to current collector.

  3. Strictly homogeneous laterally complete modules

    NASA Astrophysics Data System (ADS)

    Chilin, V. I.; Karimov, J. A.

    2016-03-01

    Let A be a laterally complete commutative regular algebra and X be a laterally complete A-module. In this paper we introduce a notion of homogeneous and strictly homogeneous A-modules. It is proved that any homogeneous A-module is strictly homogeneous A-module, if the Boolean algebra of all idempotents in A is multi-σ-finite.

  4. Sensitive detection of rutin with novel ferrocene benzyne derivative modified electrodes.

    PubMed

    Liu, Meiling; Deng, Jianhui; Chen, Qiong; Huang, Yan; Wang, Linping; Zhao, Yan; Zhang, Youyu; Li, Haitao; Yao, Shouzhuo

    2013-03-15

    A new ferrocene benzyne derivative (Fc-SAc) that contained oligo-(phenylene-ethynylene) skeleton, ferrocene and thiolate terminal groups was firstly synthesized. The hydrolysis product of Fc-SAc (Fc-SH) was immobilized onto gold nanoparticles (AuNPs) modified glass carbon electrode (GCE) as sensing element for rutin detection with high sensitivity. The new sensing strategy was proposed by using two Fc-SH modified electrodes: Fc-S/AuNPs/GCE (Electrode1) and Fc-S/AuNPs/graphene-chitosan/GCE (Electrode2). The electrochemical oxidation of rutin on Electrode2 was a diffusion-controlled process, which was different from a mass-controlled process on Electrode1. Under the optimal conditions, the peak currents of the sensors were linearly related to the concentrations of rutin. The linear responses ranges were 0.05-30 μM and 0.04-100 μM with the regression coefficients of 0.998 and 0.997 on Electrode1 and Electrode2, respectively. Electrode2 presented wider linear range, superior high sensitivity, lower detection limit and better stability on determination of rutin.

  5. Low Resistance Electrode Construction

    SciTech Connect

    Redey, Laszlo; Karell, Eric

    2000-01-20

    An electrochemical cell having a cathode and an anode in contact with an electrolyte. Both electrodes or one of them has an electrically conducting non-metal receptacle defining a chamber with a first metal having a melting point in the range of from about room temperature to about 800 C inside said receptacle chamber. A second metal with a melting point greater than about 800 C is in contact with the first metal inside the receptacle chamber and extends outside of the receptacle chamber to form a terminal for the anode. The electrolyte may include the oxides, halides or mixtures thereof of one or more of Li, V, U, Al and the lanthanides. Metal may be produced at the cathode during operation of the cell and oxygen or chlorine at the anode.

  6. Electrochromic counter electrode

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Jorgensen, Gary J.

    2005-02-22

    The present invention discloses an amorphous material comprising nickel oxide doped with tantalum that is an anodically coloring electrochromic material. The material of the present invention is prepared in the form of an electrode (200) having a thin film (202) of an electrochromic material of the present invention residing on a transparent conductive film (203). The material of the present invention is also incorporated into an electrochromic device (100) as a thin film (102) in conjunction with a cathodically coloring prior art electrochromic material layer (104) such that the devices contain both anodically coloring (102) and cathodically coloring (104) layers. The materials of the electrochromic layers in these devices exhibit broadband optical complimentary behavior, ionic species complimentary behavior, and coloration efficiency complimentary behavior in their operation.

  7. Ribbed electrode substrates

    DOEpatents

    Breault, Richard D.; Goller, Glen J.

    1983-01-01

    A ribbed substrate for an electrochemical cell electrode is made from a mixture of carbon fibers and carbonizable resin and has a mean pore size in the ribs which is 60-75% of the mean pore size of the web portions of the substrate which interconnect the ribs. Preferably the mean pore size of the web portion is 25-45 microns; and, if the substrate includes edge seals parallel to the ribs, the edge seals preferably have a mean pore size no greater than about ten microns. Most preferably the substrate has the same ratio of carbon fibers to polymeric carbon in all areas, including the ribs, webs, and edge seals. A substrate according to the present invention will have better overall performance than prior art substrates and minimizes the substrate thickness required for the substrate to perform all its functions well.

  8. Low resistance electrode construction

    DOEpatents

    Redey, Laszlo; Karell, Eric J.

    2002-01-01

    An electrochemical cell having a cathode and an anode in contact with an electrolyte. Both electrodes or one of them has an electrically conducting non-metal receptacle defining a chamber with a first metal having a melting point in the range of from about room temperature to about 800.degree. C. inside said receptacle chamber. A second metal with a melting point greater than about 800.degree. C. is in contact with the first metal inside the receptacle chamber and extends outside of the receptacle chamber to form a terminal for the anode. The electrolyte may include the oxides, halides or mixtures thereof of one or more of Li, V, U, Al and the lanthanides. Metal may be produced at the cathode during operation of the cell and oxygen or chlorine at the anode.

  9. Multi Electrode Semiconductor Detectors

    NASA Astrophysics Data System (ADS)

    Amendolia, S. R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foà, L.; Focardi, E.; Giazotto, A.; Giorgi, M. A.; Marrocchesi, P. S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M. L.

    1981-04-01

    Detectors with very high space resolution have been built in our laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments.

  10. The significance of laterality effects.

    PubMed Central

    Warrington, E K; Pratt, R T

    1981-01-01

    Language laterality can be unequivocally ascertained by comparing the effects of unilateral ECT to the right and the left hemisphere. It has been shown in right-handed depressed patients that a unilateral treatment to the left hemisphere resulted in transient dysphasia whereas unilateral ECT to the right hemisphere did not. The language laterality in a small group of left-handed depressed patients has been ascertained. Evidence is presented to show that neither dichotic listening nor hand position for writing provide satisfactory indices of language laterality. The ear advantage was more closely related to strength of sinistrality than to language laterality--that is sidedness appears to overide brainedness. The results favour a spatial attention hypothesis rather than a structural hypothesis as the main determinant of laterality effects. PMID:7229640

  11. Additional field verification of convective scaling for the lateral dispersion parameter

    SciTech Connect

    Sakiyama, S.K.; Davis, P.A.

    1988-07-01

    The results of a series of diffusion trials over the heterogeneous surface of the Canadian Precambrian Shield provide additional support for the convective scaling of the lateral dispersion parameter. The data indicate that under convective conditions, the lateral dispersion parameter can be scaled with the convective velocity scale and the mixing depth. 10 references.

  12. Electrode for a lithium cell

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  13. Composite electrode/electrolyte structure

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  14. Method for fabrication of electrodes

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.; Barksdale, Randy

    2004-06-22

    Described herein is a method to fabricate porous thin-film electrodes for fuel cells and fuel cell stacks. Furthermore, the method can be used for all fuel cell electrolyte materials which utilize a continuous electrolyte layer. An electrode layer is deposited on a porous host structure by flowing gas (for example, Argon) from the bottomside of the host structure while simultaneously depositing a conductive material onto the topside of the host structure. By controlling the gas flow rate through the pores, along with the process conditions and deposition rate of the thin-film electrode material, a film of a pre-determined thickness can be formed. Once the porous electrode is formed, a continuous electrolyte thin-film is deposited, followed by a second porous electrode to complete the fuel cell structure.

  15. In situ chemical probing of the electrode-electrolyte interface by ToF-SIMS

    SciTech Connect

    Liu, Bingwen; Yu, Xiao-Ying; Zhu, Zihua; Hua, Xin; Yang, Li; Wang, Zhaoying

    2014-01-01

    A portable vacuum interface allowing direct probing of the electrode-electrolyte interface was developed. A classical electrochemical system consisting of gold working electrode, platinum counter electrode, platinum reference electrode, and potassium iodide electrolyte was used to demonstrate real-time observation of the gold iodide adlayer on the electrode and chemical species as a result of redox reactions using cyclic voltammetry (CV) and the time-of-flight secondary ion mass spectrometry (ToF-SIMS, a vacuum-based surface analytical technique) simultaneously. This microfluidic electrochemical probe provides a new way to investigate the surface region with adsorbed molecules and region of diffused layer with chemical speciation in liquids in situ by surface sensitive techniques.

  16. Mass transport at infinite regular arrays of microband electrodes submitted to natural convection: theory and experiments.

    PubMed

    Pebay, Cécile; Sella, Catherine; Thouin, Laurent; Amatore, Christian

    2013-12-17

    Mass transport at infinite regular arrays of microband electrodes was investigated theoretically and experimentally in unstirred solutions. Even in the absence of forced hydrodynamics, natural convection limits the convection-free domain up to which diffusion layers may expand. Hence, several regimes of mass transport may take place according to the electrode size, gap between electrodes, time scale of the experiment, and amplitude of natural convection. They were identified through simulation by establishing zone diagrams that allowed all relative contributions to mass transport to be delineated. Dynamic and steady-state regimes were compared to those achieved at single microband electrodes. These results were validated experimentally by monitoring the chronoamperometric responses of arrays with different ratios of electrode width to gap distance and by mapping steady-state concentration profiles above their surface through scanning electrochemical microscopy. PMID:24283775

  17. Magnetite nanoparticles-chitosan composite containing carbon paste electrode for glucose biosensor application.

    PubMed

    Kavitha, A L; Prabu, H Gurumallesh; Babu, S Ananda; Suja, S K

    2013-01-01

    This work was aimed to develop reusable magnetite chitosan composite containing carbon paste electrode for biosensor application. Glucose oxidase (GOx) enzyme was used to prepare GOx-magnetite-chitosan nanocomposite containing carbon paste electrode for sensitive detection of glucose. The immobilized enzyme retained its bioactivity, exhibited a surface confined reversible electron transfer reaction, and had good stability. The surface parameters like surface coverage (tau), Diffusion coefficient (D0), and rate constant (kS) were studied. The carbon paste modified electrode virtually eliminated the interference during the detection of glucose. The excellent performance of the biosensor is attributed to large surface-to-volume ratio, high conductivity and good biocompatibility of chitosan, which enhances the enzyme absorption and promotes electron transfer between redox enzymes and the surface of electrode. The shelf life of the developed electrode system is about 12 weeks under refrigerated conditions. We report for the first time in the fabrication of carbon paste bioelectrode containing magnetite-chitosan-GOx.

  18. Smooth electrode and method of fabricating same

    DOEpatents

    Weaver, Stanton Earl; Kennerly, Stacey Joy; Aimi, Marco Francesco

    2012-08-14

    A smooth electrode is provided. The smooth electrode includes at least one metal layer having thickness greater than about 1 micron; wherein an average surface roughness of the smooth electrode is less than about 10 nm.

  19. Advantage of four-electrode over two-electrode defibrillators

    NASA Astrophysics Data System (ADS)

    Bragard, J.; Šimić, A.; Laroze, D.; Elorza, J.

    2015-12-01

    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish a normal heart rate. We propose a technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of this technique. We compare three different shock protocols, namely a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80% in the energy required for a defibrillation success rate of 90%. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock.

  20. Preset Electrodes for Electrical-Discharge Machining

    NASA Technical Reports Server (NTRS)

    Coker, Bill E.

    1987-01-01

    New electrode holder for electrical-discharge machining (EDM) provides for repeatable loading and setting of many electrodes. New holder is rotating-index tool carrying six, eight, or more electrodes. Before use, all electrodes set with aid of ring surrounding tool, and locked in position with screws. When electrode replaced, EDM operator pulls spring-loaded pin on tool so it rotates about center pin. Fresh electrode then rotated into position against workpiece.

  1. Operation mechanism of high performance organic permeable base transistors with an insulated and perforated base electrode

    NASA Astrophysics Data System (ADS)

    Kaschura, Felix; Fischer, Axel; Klinger, Markus P.; Doan, Duy Hai; Koprucki, Thomas; Glitzky, Annegret; Kasemann, Daniel; Widmer, Johannes; Leo, Karl

    2016-09-01

    The organic permeable base transistor is a vertical transistor architecture that enables high performance while maintaining a simple low-resolution fabrication. It has been argued that the charge transport through the nano-sized openings of the central base electrode limits the performance. Here, we demonstrate by using 3D drift-diffusion simulations that this is not the case in the relevant operation range. At low current densities, the applied base potential controls the number of charges that can pass through an opening and the opening is the current limiting factor. However, at higher current densities, charges accumulate within the openings and in front of the base insulation, allowing for an efficient lateral transport of charges towards the next opening. The on-state in the current-voltage characteristics reaches the maximum possible current given by space charge limited current transport through the intrinsic semiconductor layers. Thus, even a small effective area of the openings can drive huge current densities, and further device optimization has to focus on reducing the intrinsic layer thickness to a minimum.

  2. The anomaly of oxygen diffusion in aqueous xanthan solutions.

    PubMed

    Ho, C S; Ju, L K; Baddour, R F

    1988-06-20

    A membrane-covered polarographic oxygen electrode was used to measure oxygen diffusion coefficients in aqueous polyelectrolyte solutions of xanthan gum, sodium alginate, and sodium carboxymethylcellulose (CMC). In sodium alginate solutions, dilute xanthan solutions, and solutions containing more than 0.3 wt % CMC, oxygen diffusion coefficients decrease with increasing polymer concentrations. Interestingly, in dilute CMC solutions and concentrate xanthan solutions containing more than 0.5 wt % xanthan gum, oxygen diffusion coefficients increase with increasing polymer concentrations, and values exceeding that in pure water are generally observed.

  3. MHD Electrode and wall constructions

    DOEpatents

    Way, Stewart; Lempert, Joseph

    1984-01-01

    Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.

  4. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  5. Capacitance enhancement via electrode patterning

    SciTech Connect

    Ho, Tuan A.; Striolo, Alberto

    2013-11-28

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  6. Capacitance enhancement via electrode patterning.

    PubMed

    Ho, Tuan A; Striolo, Alberto

    2013-11-28

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  7. Method of producing nickel electrode

    NASA Technical Reports Server (NTRS)

    Ikeda, Y.; Ohira, T.; Kumano, Y.; Nakao, T.

    1982-01-01

    A large capacity nickel electrode is provided in which the charging efficiency and discharge utilization coefficient are improved in comparison to nickel electrodes which are produced by the conventional method. Nickel electrodes retaining nickel active material or nickel active material and cobalt compounds on a porous nickel substrate are immersed in a cobalt sulfate aqueous solution whose pH is adjusted in the range of 3.5 to 6.0, followed by crystallization of the hydroxide or oxide by pyrolysis or immersion in alkali, thereby coating the surface of the nickel active material with cobalt crystals and simultaneously promoting alloying of the nickel-cobalt.

  8. Lateral Dominance and Reading Disability.

    ERIC Educational Resources Information Center

    Harris, Albert J.

    1979-01-01

    Theory and research on the relation of lateral dominance to the causation of reading disability are reviewed. Both direct and indirect measures of cerebral hemisphere functioning are considered. (SBH)

  9. Hyperaldosteronism: diagnosis, lateralization, and treatment.

    PubMed

    Harvey, Adrian M

    2014-06-01

    Primary hyperaldosteronism is an important and commonly unrecognized secondary cause of hypertension. This article provides an overview of the current literature with respect to screening, diagnosis, and lateralization. Selection and outcomes of medical and surgical treatment are discussed.

  10. Cerebral Laterality and Verbal Processes

    ERIC Educational Resources Information Center

    Sherman, Jay L.; And Others

    1976-01-01

    Research suggests that we process information by way of two distinct and functionally separate coding systems. Their location, somewhat dependent on cerebral laterality, varies in right- and left-handed persons. Tests this dual coding model. (Editor/RK)

  11. Simulation of Nerve Bundle Activation by Simultaneous Multipoint Extracellular Stimulation with Surface Electrodes

    NASA Astrophysics Data System (ADS)

    Takahashi, Hirokazu; Nakao, Masayuki; Kaga, Kimitaka

    Neural prostheses for restoring lost functions can benefit from selective activation of nerves. We had previously proposed a multiple gating stimulation, which can selectively activate a desired portion of nerve bundle, irrespective of a density of the electrode. In this paper, we discuss the design of electrode array and effective strategies to determine the stimulus parameters. A large electrode was less affected by the relative location of electrodes and the node of Ranvier, suggesting that a rectangular electrode, whose long side along a nerve bundle is longer than the internodal distance, i.e., on the order of 1 mm, would be more effective rather than a disk electrode. We could estimate an appropriate current at each electrode was a blocking threshold. For the lateral gating stimulation, the gate current should be set above the threshold, while, for depth-wise gating stimulation, the gate current should be set below the threshold. The spatial resolution of lateral gating stimulation is theoretically estimated at least at 50 μm when the grid of array was 1.2 mm, and that of depth-wise gating stimulation at 50 μm.

  12. Controlling the parameters of wet lateral oxidation for VCSEL fabrication

    NASA Astrophysics Data System (ADS)

    Riaziat, Majid; Reed, David; Kor, Alex

    2016-03-01

    Physical parameters that need to be controlled during the wet oxidation of VCSEL mesas are numerous and include: temperature uniformity, vapor flow pattern, epitaxial thickness and composition uniformity, diffusion through adjacent layers, oxidation onset delay, etch skirt, and wafer surface prep. We report the results of our studies on some of these factors including vapor flow patterns, and oxidation front monitoring. The results are being used for the optimization of our commercial system for wet lateral oxidation.

  13. Lateral plantar pain: diagnostic considerations.

    PubMed

    Bahel, Aditya; Yu, Joseph S

    2010-07-01

    Injuries that target the bones of the midfoot are important causes of pain. The medial aspect of the midfoot has been extensively studied but the lateral plantar region has not received as much attention. The objective of this article is to review the differential diagnosis of lateral plantar pain, emphasizing on the common mechanisms of injury, and to identify characteristic imaging findings for these pathologic conditions.

  14. Mixed Conducting Electrodes for Better AMTEC Cells

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Williams, Roger; Homer, Margie; Lara. Liana

    2003-01-01

    take place throughout the thickness of the cathode. The net effect is to reduce the diffusion and flow resistance to sodium through the electrode while reducing the electronic resistance by providing shorter conduction paths for electrons. Reduced resistance to both sodium transport and electronic conductivity results in an increase in electric power output.

  15. Conductive lithium storage electrode

    DOEpatents

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

    2014-10-07

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001electrodes and storage batteries.

  16. Apparatus for focused electrode induced polarization logging

    SciTech Connect

    Vinegar, H.J.; Waxman, M.H.

    1986-04-15

    An induced polarization logging tool is described for measuring parameters of a formation surrounding a borehole. The logging tool consists of: a non-conductive logging sonde; a plurality of electrodes disposed on the sonde, the electrodes including at least a survey current electrode and guard electrodes disposed on opposite sides of the survey current electrode, a non-polarizing voltage measuring electrode, a non-polarizing voltage reference electrode and a current return electrode, both the voltage reference and current return electrodes being located a greater distance from the survey current electrode than the guard electrodes; means connected to the survey current electrode and the guard electrodes for generating a signal representative of the potential difference in the formation between the survey current electrode and the guard electrodes; first control means directly coupled to the survey current electrode, the first control means controlling the current flow to the survey current electrode in response to the potential difference signal; a second control means directly coupled to the guard electrodes to control the current flow to the guard electrodes in response to the potential difference signal; a source of alternating current located at the surface, one end of the source being coupled to the two control means and the other to the current return electrode, the source supplying alternating current at various discrete frequencies between substantially 0.01 and 100 Hz; measurement means directly coupled to the voltage measurement and survey current electrodes to measure the amplitude and phase of the voltage induced in the formation and the amplitude and phase of the current flow to the survey electrode; and transmission means for transmitting the measurements to the surface.

  17. Computational characterization of diffusive mass transfer in porous solid oxide fuel cell components

    NASA Astrophysics Data System (ADS)

    Nelson, George J.

    Diffusive mass transport within porous SOFC components is explored using two modeling approaches that can better inform the SOFC electrode design process. These approaches include performance metrics for electrode cross-sectional design and a fractal approach for modeling mass transport within the pore structure of the electrode reaction zone. The performance metrics presented are based on existing analytical models for transport within SOFC electrodes. These metrics include a correction factor for button-cell partial pressure predictions and two forms of dimensionless reactant depletion current density. The performance impacts of multi-dimensional transport phenomena are addressed through the development of design maps that capture the trade-offs inherent in the reduction of mass transport losses within SOFC electrode cross-sections. As a complement to these bulk electrode models, a fractal model is presented for modeling diffusion within the electrochemically active region of an SOFC electrode. The porous electrode is separated into bulk and reaction zone regions, with the bulk electrode modeled in one-dimension based on the dusty-gas formalism. The reaction zone is modeled in detail with a two-dimensional finite element model using a regular Koch pore cross-section as a fractal template for the pore structure. Drawing on concepts from the analysis of porous catalysts, this model leads to a straightforward means of assessing the performance impacts of reaction zone microstructure. Together, the modeling approaches presented provide key insights into the impacts of bulk and microstructural geometry on the performance of porous SOFC components.

  18. Microfabricated diffusion source

    DOEpatents

    Oborny, Michael C.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  19. Modulation of Membrane Protein Lateral Mobility by Polyphosphates and Polyamines

    NASA Astrophysics Data System (ADS)

    Schindler, Melvin; Koppel, Dennis E.; Sheetz, Michael P.

    1980-03-01

    The lateral mobility of fluorescein-labeled membrane glycoproteins was measured in whole unlysed erythrocytes and erythrocyte ghosts by the technique of ``fluorescence redistribution after fusion.'' Measurements were made on polyethylene glycol-fused cell pairs in which only one member of the couplet was initially fluorescently labeled. Diffusion coefficients were estimated from the rate of fluorescence redistribution determined from successive scans with a focused laser beam across individual fused pairs. This technique allows for the analysis of diffusion within cell membranes without the possible damaging photochemical events caused by photobleaching. It was found that lateral mobility of erythrocyte proteins can be increased by the addition of polyphosphates (i.e., ATP and 2,3-diphosphoglycerate) and decreased by the addition of organic polyamines (i.e., neomycin and spermine). This control is exerted by these molecules only when they contact the cytoplasmic side of the membrane and is not dependent upon high-energy phosphates. Microviscosity experiments employing diphenylhexatriene demonstrated no changes in membrane lipid state as a function of these reagents. Our results, in conjunction with data on the physical interactions of cytoskeletal proteins, suggest that the diffusion effector molecules alter the lateral mobility of erythrocyte membrane proteins through modifications of interactions in the shell, which is composed of spectrin, actin, and component 4.1.

  20. Towards improved numerical schemes of turbulent lateral dispersion

    NASA Astrophysics Data System (ADS)

    Kämpf, Jochen; Cox, Darren

    2016-10-01

    This paper focuses on an alternative approach of lateral turbulent dispersion, proposed by Benoit Cushman-Roisin in 2008, that is based on a linear increase of the width of dispersing patches in a field of isotropic horizontal turbulence. In the open ocean, this Richardson-like dispersion regime is a well-observed feature on sub-mesoscale length scales from 10 to 100 km. In this work, we successfully validate and calibrate the new diffusion scheme using Lagrangian particles and Eulerian tracer in turbulent velocity fields simulated with the shallow-water equations. In discretized form, the new diffusion scheme exclusively relies on specification of a turbulent velocity scale that, unlike the turbulent diffusivity of Fickian approaches, is well defined through statistical properties of the turbulent flow.

  1. Active matter in lateral parabolic confinement: From subdiffusion to superdiffusion

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. E.; Potiguar, F. Q.

    2016-11-01

    In this work we studied the diffusive behavior of active brownian particles under lateral parabolic confinement. The results showed that we go from subdiffusion to ballistic motion as we vary the angular noise strength and confinement intensity. We argued that the subdiffusion regimes appear as consequence of the restricted space available for diffusion (achieved either through large confinement and/or large noise); we saw that when there are large confinement and noise intensity, a similar configuration to single file diffusion appears; on the other hand, normal and superdiffusive regimes may occur due to low noise (longer persistent motion), either through exploring a wider region around the potential minimum in the transverse direction (low confinement), or by forming independent clusters (high confinement).

  2. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, Bora; Bolstad, James J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

  3. Thin metal electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Wheeler, Bob L. (Inventor); Jefferies-Nakamura, Barbara (Inventor); Lamb, James L. (Inventor); Bankston, C. Perry (Inventor); Cole, Terry (Inventor)

    1989-01-01

    An electrode having higher power output is formed of a thin, porous film (less than 1 micrometer) applied to a beta-alumina solid electrolyte (BASE). The electrode includes an open grid, current collector such as a series of thin, parallel, grid lines applied to the thin film and a plurality of cross-members such as loop of metal wire surrounding the BASE tube. The loops are electrically connected by a bus wire. The overall impedance of the electrode considering both the contributions from the bulk BASE and the porous electrode BASE interface is low, about 0.5 OHM/cm.sup.2 and power densities of over 0.3 watt/cm.sup.2 for extended periods.

  4. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, B.; Bolstad, J.J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the present invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process. 4 figs.

  5. Research on rechargeable oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Giner, J.; Malachesky, P. A.; Holleck, G.

    1971-01-01

    Studies were carried out on a number of factors which may influence the behavior of the platinum electrocatalyst of oxygen electrodes for use in rechargeable metal-oxygen batteries or hydrogen-oxygen fuel cells. The effects of pretreatments for various potentials and added ionic species, which could be present in such systems, were studied with reguard to: (1) the state of surface oxidation, (2) platinum dissolution, (3) the kinetics of oxygen evolution and reduction (including the role of hydrogen peroxide), and (4) changes in porous electrode structure. These studies were carried out on smooth platinum, platinized platinum, and Teflon-bonded platinum black electrodes in carefully purified electrolyte solutions. The main factors which appear to affect rechargeable oxygen electrode performance and life are: (1) the buildup of a refractory anodic layer on extended cycling, and (2) the dissolution of platinum.

  6. Method of making biocompatible electrodes

    DOEpatents

    Wollam, John S.

    1992-01-01

    A process of improving the sensing function of biocompatible electrodes and the product so made are disclosed. The process is designed to alter the surfaces of the electrodes at their tips to provide increased surface area and therefore decreased contact resistance at the electrode-tissue interface for increased sensitivity and essentially includes rendering the tips atomically clean by exposing them to bombardment by ions of an inert gas, depositing an adhesion layer on the cleaned tips, forming a hillocked layer on the adhesion layer by increasing the temperature of the tips, and applying a biocompatible coating on the hillocked layer. The resultant biocompatible electrode is characterized by improved sensitivity, minimum voltage requirement for organ stimulation and a longer battery life for the device in which it is employed.

  7. Highly Robust Silver Nanowire Network for Transparent Electrode.

    PubMed

    Song, Tze-Bin; Rim, You Seung; Liu, Fengmin; Bob, Brion; Ye, Shenglin; Hsieh, Yao-Tsung; Yang, Yang

    2015-11-11

    Solution-processed silver nanowire networks are one of the promising candidates to replace a traditional indium tin oxide as next-generation transparent and flexible electrodes due to their ease of processing, moderate flexibility, high transparency, and low sheet resistance. To date, however, high stability of the nanowire networks remains a major challenge because the long-term usages of these electrodes are limited by their poor thermal and chemical stabilities. Existing methods for addressing this challenge mainly focus on protecting the nanowire network with additional layers that require vacuum processes, which can lead to an increment in manufacturing cost. Here, we report a straightforward strategy of a sol-gel processing as a fast and robust way to improve the stabilities of silver nanowires. Compared with reported nanoparticles embedded in nanowire networks, better thermal and chemical stabilities are achieved via sol-gel coating of TiO2 over the silver nanowire networks. The conformal surface coverage suppressed surface diffusion of silver atoms and prevented chemical corrosion from the environment. These results highlight the important role of the functional layer in providing better thermal and chemical stabilities along with improved electrical properties and mechanical robustness. The silver nanowire/TiO2 composite electrodes were applied as the source and drain electrodes for In2O3 thin-film transistors (TFTs) and the devices exhibited improved electrical performance annealed at 300 °C without the degradation of the electrodes. These key findings not only demonstrated a general and effective method to improve the thermal and chemical stabilities of metal nanowire networks but also provided a basic guideline toward rational design of highly efficient and robust composite electrodes.

  8. First principles study of nanostructured TiS2 electrodes for Na and Mg ion storage

    NASA Astrophysics Data System (ADS)

    Li, S. N.; Liu, J. B.; Liu, B. X.

    2016-07-01

    The development of competitive Na- and Mg-ion batteries (NIBs and MIBs) with performance comparable to Li-ion batteries is hindered by the major challenge of finding advanced electrode materials. In this work, nanostructured TiS2 electrodes including nanosheets, nanoribbons and nanotubes are shown by first principles calculations to achieve improved Na and Mg ion diffusion as compared with the bulk phase. Comparative studies between Li, Na, and Mg reveal that the diffusion kinetics of Na ions would especially benefit from the nanostructure design of TiS2. More specifically, the Na ion diffusivity turns out to be considerably higher than Li ion diffusivity, which is opposite to that observed in bulk TiS2. However, in the case of Mg ions, fast diffusion is still beyond attainment since a relatively high degree of interaction is expected between Mg and the S atoms. Edge-induced modifications of diffusion properties appear in both Na and Mg ions, while the mobility of Li ions along the ribbon edges may not be as appealing. Effects of the curvature of nanotubes on the adsorption strength and ion conductivity are also explored. Our results highlight the nanostructure design as a rich playground for exploring electrodes in NIBs and MIBs.

  9. Hybrid Diffusion Imaging

    PubMed Central

    Wu, Yu-Chien; Alexander, Andrew L.

    2007-01-01

    Diffusion measurements in the human central nervous system are complex to characterize and a broad spectrum of methods have been proposed. In this study, a comprehensive diffusion encoding and analysis approach, Hybrid Diffusion Imaging (HYDI), is described. The HYDI encoding scheme is composed of multiple concentric “shells” of constant diffusion-weighting, which may be used to characterize the signal behavior with low, moderate and high diffusion-weighting. HYDI facilitates the application of multiple data-analyses strategies including diffusion tensor imaging (DTI), multi-exponential diffusion measurements, diffusion spectrum imaging (DSI) and q-ball imaging (QBI). These different analysis strategies may provide complementary information. DTI measures (mean diffusivity and fractional anisotropy) may be estimated from either data in the inner shells or the entire HYDI data. Fast and slow diffusivities were estimated using a nonlinear least-squares bi-exponential fit on geometric means of the HYDI shells. DSI measurements from the entire HYDI data yield empirical model-independent diffusion information and are well-suited for characterizing tissue regions with complex diffusion behavior. DSI measurements were characterized using the zero displacement probability and the mean squared displacement. The outermost HYDI shell was analyzed using QBI analysis to estimate the orientation distribution function (ODF), which is useful for characterizing the directions of multiple fiber groups within a voxel. In this study, a HYDI encoding scheme with 102 diffusion-weighted measurements was obtained over most of the human cerebrum in under 30 minutes. PMID:17481920

  10. Heat and water transport in a polymer electrolyte fuel cell electrode

    SciTech Connect

    Mukherjee, Partha P; Mukundan, Rangachary; Borup, Rod L; Ranjan, Devesh

    2010-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

  11. Eight electrode optical readout gap

    DOEpatents

    Boettcher, Gordon E.; Crain, Robert W.

    1985-01-01

    A protective device for a plurality of electrical circuits includes a pluity of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  12. ECG-ELECTRODE INDUCED HYPOPIGMENTATION.

    PubMed

    Tripi, Paul A; Parthasarathy, Supraja N; Honda, Kord

    2016-06-01

    Skin reactions following the application of electrocardiography (ECG) electrodes have been reported in adults and children, and are postulated to result from contact with the conductive gel or adhesive used on the electrodes. Although contact dermatitis is the usual cause of such reactions, contact depigmentation or hypopigmentation may also occur. We report a case of hypopigmentation in a healthy boy following continuous electrocardiography monitoring during general anesthesia for dental rehabilitation.

  13. ECG-ELECTRODE INDUCED HYPOPIGMENTATION.

    PubMed

    Tripi, Paul A; Parthasarathy, Supraja N; Honda, Kord

    2016-06-01

    Skin reactions following the application of electrocardiography (ECG) electrodes have been reported in adults and children, and are postulated to result from contact with the conductive gel or adhesive used on the electrodes. Although contact dermatitis is the usual cause of such reactions, contact depigmentation or hypopigmentation may also occur. We report a case of hypopigmentation in a healthy boy following continuous electrocardiography monitoring during general anesthesia for dental rehabilitation. PMID:27487645

  14. 21 CFR 882.1340 - Nasopharyngeal electrode.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nasopharyngeal electrode. 882.1340 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1340 Nasopharyngeal electrode. (a) Identification. A nasopharyngeal electrode is an electrode which is temporarily placed in...

  15. 21 CFR 882.1320 - Cutaneous electrode.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cutaneous electrode. 882.1320 Section 882.1320...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1320 Cutaneous electrode. (a) Identification. A cutaneous electrode is an electrode that is applied directly to a patient's skin either...

  16. 21 CFR 870.2360 - Electrocardiograph electrode.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrocardiograph electrode. 870.2360 Section 870... electrode. (a) Identification. An electrocardiograph electrode is the electrical conductor which is applied... entitled “Class II Special Controls Guidance Document: Electrocardiograph Electrodes.” See § 870.1(e)...

  17. 21 CFR 882.1320 - Cutaneous electrode.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cutaneous electrode. 882.1320 Section 882.1320...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1320 Cutaneous electrode. (a) Identification. A cutaneous electrode is an electrode that is applied directly to a patient's skin either...

  18. 21 CFR 882.1340 - Nasopharyngeal electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nasopharyngeal electrode. 882.1340 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1340 Nasopharyngeal electrode. (a) Identification. A nasopharyngeal electrode is an electrode which is temporarily placed in...

  19. 21 CFR 870.2360 - Electrocardiograph electrode.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrocardiograph electrode. 870.2360 Section 870... electrode. (a) Identification. An electrocardiograph electrode is the electrical conductor which is applied... entitled “Class II Special Controls Guidance Document: Electrocardiograph Electrodes.” See § 870.1(e)...

  20. 21 CFR 882.1340 - Nasopharyngeal electrode.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nasopharyngeal electrode. 882.1340 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1340 Nasopharyngeal electrode. (a) Identification. A nasopharyngeal electrode is an electrode which is temporarily placed in...

  1. 21 CFR 882.1340 - Nasopharyngeal electrode.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nasopharyngeal electrode. 882.1340 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1340 Nasopharyngeal electrode. (a) Identification. A nasopharyngeal electrode is an electrode which is temporarily placed in...

  2. 21 CFR 882.1320 - Cutaneous electrode.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cutaneous electrode. 882.1320 Section 882.1320...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1320 Cutaneous electrode. (a) Identification. A cutaneous electrode is an electrode that is applied directly to a patient's skin either...

  3. 21 CFR 882.1320 - Cutaneous electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cutaneous electrode. 882.1320 Section 882.1320...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1320 Cutaneous electrode. (a) Identification. A cutaneous electrode is an electrode that is applied directly to a patient's skin either...

  4. 21 CFR 882.1320 - Cutaneous electrode.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cutaneous electrode. 882.1320 Section 882.1320...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1320 Cutaneous electrode. (a) Identification. A cutaneous electrode is an electrode that is applied directly to a patient's skin either...

  5. 21 CFR 870.2360 - Electrocardiograph electrode.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrocardiograph electrode. 870.2360 Section 870... electrode. (a) Identification. An electrocardiograph electrode is the electrical conductor which is applied... entitled “Class II Special Controls Guidance Document: Electrocardiograph Electrodes.” See § 870.1(e)...

  6. 21 CFR 882.1340 - Nasopharyngeal electrode.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nasopharyngeal electrode. 882.1340 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1340 Nasopharyngeal electrode. (a) Identification. A nasopharyngeal electrode is an electrode which is temporarily placed in...

  7. Nanoparticle embedded enzymes for improved lateral flow sensors.

    PubMed

    Özalp, Veli C; Zeydanlı, Uğur S; Lunding, Anita; Kavruk, Murat; Öz, M Tufan; Eyidoğan, Füsun; Olsen, Lars F; Öktem, Hüseyin A

    2013-08-01

    In this study, combining the nanoparticle embedded sensors with lateral flow assays, a novel strategy for ensuring the quality of signalling in lateral flow assays (LFAs) was developed. A LFA for reactive oxygen species (ROS) is reported that is based on horse radish peroxidase (HRP) which is co-entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution of hydrogen peroxides was quantified with this novel LFA-ROS sensor to obtain a linear range between 1 and 25 μM. Nanoparticle embedding of enzymes is proposed here as a general strategy for developing enzyme-based lateral flow assays, eliminating adverse effects associated with biological samples.

  8. Nanoparticle embedded enzymes for improved lateral flow sensors.

    PubMed

    Özalp, Veli C; Zeydanlı, Uğur S; Lunding, Anita; Kavruk, Murat; Öz, M Tufan; Eyidoğan, Füsun; Olsen, Lars F; Öktem, Hüseyin A

    2013-08-01

    In this study, combining the nanoparticle embedded sensors with lateral flow assays, a novel strategy for ensuring the quality of signalling in lateral flow assays (LFAs) was developed. A LFA for reactive oxygen species (ROS) is reported that is based on horse radish peroxidase (HRP) which is co-entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution of hydrogen peroxides was quantified with this novel LFA-ROS sensor to obtain a linear range between 1 and 25 μM. Nanoparticle embedding of enzymes is proposed here as a general strategy for developing enzyme-based lateral flow assays, eliminating adverse effects associated with biological samples. PMID:23730687

  9. Optineurin and amyotrophic lateral sclerosis.

    PubMed

    Maruyama, Hirofumi; Kawakami, Hideshi

    2013-07-01

    Amyotrophic lateral sclerosis is a devastating disease, and thus it is important to identify the causative gene and resolve the mechanism of the disease. We identified optineurin as a causative gene for amyotrophic lateral sclerosis. We found three types of mutations: a homozygous deletion of exon 5, a homozygous Q398X nonsense mutation and a heterozygous E478G missense mutation within its ubiquitin-binding domain. Optineurin negatively regulates the tumor necrosis factor-α-induced activation of nuclear factor kappa B. Nonsense and missense mutations abolished this function. Mutations related to amyotrophic lateral sclerosis also negated the inhibition of interferon regulatory factor-3. The missense mutation showed a cyotoplasmic distribution different from that of the wild type. There are no specific clinical symptoms related to optineurin. However, severe brain atrophy was detected in patients with homozygous deletion. Neuropathologically, an E478G patient showed transactive response DNA-binding protein of 43 kDa-positive neuronal intracytoplasmic inclusions in the spinal and medullary motor neurons. Furthermore, Golgi fragmentation was identified in 73% of this patient's anterior horn cells. In addition, optineurin is colocalized with fused in sarcoma in the basophilic inclusions of amyotrophic lateral sclerosis with fused in sarcoma mutations, and in basophilic inclusion body disease. These findings strongly suggest that optineurin is involved in the pathogenesis of amyotrophic lateral sclerosis.

  10. Discharge electrode wire assembly for electrostatic precipitator

    SciTech Connect

    Ivester, F. D.; Troulias, J. R.

    1985-03-05

    An electrostatic precipitator having a casing defining a precipitation chamber wherein a plurality of discharge electrode frames are disposed alternately between a plurality of collecting electrode plates. Each discharge electrode frame is comprised of a plurality of individual discharge electrode wires tautly strung across a support frame. Individual discharge electrode wires are maintained in a taut condition during operation by tensioning coil springs which interconnect neighboring discharge electrode wires to take-up any lengthening of the discharge electrode wires in a horizontal direction.

  11. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  12. Updating applied diffusion models

    SciTech Connect

    Weil, J.C.

    1985-11-01

    Most diffusion models currently used in air quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Society organized a workshop to help improve the basis of such models, their physics and hopefuly their performance. Reviews and recommendations were made on models in three areas: diffusion in the convective boundary layer (CBL), diffusion in the stabe boundary layer (SBL), and model uncertainty.

  13. Flat Panel Light Source with Lateral Gate Structure Based on SiC Nanowire Field Emitters

    NASA Astrophysics Data System (ADS)

    Youh, Meng-Jey; Tseng, Chun-Lung; Jhuang, Meng-Han; Chiu, Sheng-Cheng; Huang, Li-Hu; Gong, Jyun-An; Li, Yuan-Yao

    2015-06-01

    A field-emission light source with high luminance, excellent luminance uniformity, and tunable luminance characteristics with a novel lateral-gate structure is demonstrated. The lateral-gate triode structure comprises SiC nanowire emitters on a Ag cathode electrode and a pair of Ag gate electrodes placed laterally on both sides of the cathode. The simple and cost-effective screen printing technique is employed to pattern the lateral-gates and cathode structure on soda lime glass. The area coverage of the screen-printed cathode and gates on the glass substrate (area: 6 × 8 cm2) is in the range of 2.04% - 4.74% depending on the set of cathode-gate electrodes on the substrate. The lateral-gate structure with its small area coverage exhibits a two-dimensional luminance pattern with high brightness and good luminance uniformity. A maximum luminance of 10952 cd/cm2 and a luminance uniformity of >90% can be achieved with a gate voltage of 500 V and an anode voltage of 4000 V, with an anode current of 1.44 mA and current leakage to the gate from the cathode of about 10%.

  14. Flat Panel Light Source with Lateral Gate Structure Based on SiC Nanowire Field Emitters

    PubMed Central

    Youh, Meng-Jey; Tseng, Chun-Lung; Jhuang, Meng-Han; Chiu, Sheng-Cheng; Huang, Li-Hu; Gong, Jyun-An; Li, Yuan-Yao

    2015-01-01

    A field-emission light source with high luminance, excellent luminance uniformity, and tunable luminance characteristics with a novel lateral-gate structure is demonstrated. The lateral-gate triode structure comprises SiC nanowire emitters on a Ag cathode electrode and a pair of Ag gate electrodes placed laterally on both sides of the cathode. The simple and cost-effective screen printing technique is employed to pattern the lateral-gates and cathode structure on soda lime glass. The area coverage of the screen-printed cathode and gates on the glass substrate (area: 6 × 8 cm2) is in the range of 2.04% – 4.74% depending on the set of cathode-gate electrodes on the substrate. The lateral-gate structure with its small area coverage exhibits a two-dimensional luminance pattern with high brightness and good luminance uniformity. A maximum luminance of 10952 cd/cm2 and a luminance uniformity of >90% can be achieved with a gate voltage of 500 V and an anode voltage of 4000 V, with an anode current of 1.44 mA and current leakage to the gate from the cathode of about 10%. PMID:26042359

  15. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  16. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-08-12

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  17. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    SciTech Connect

    Ouchi, T; Kim, H; Ning, XH; Sadoway, DR

    2014-08-08

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75 V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.

  18. Diffusion Strategy Guide.

    ERIC Educational Resources Information Center

    McCutcheon, James R.; Sanders, John R.

    A methodology is presented for planning and managing the spread of educational innovations. The first portion of the guide develops a theoretical framework for diffusion which summarizes and capitalizes on the latest marketing and on the latest marketing and diffusion research findings. Major stages in the diffusion paradigm discussed include…

  19. Reduce Confusion about Diffusion.

    ERIC Educational Resources Information Center

    Hebrank, Mary R.

    1997-01-01

    Presents activities that allow students to explore the fundamental but poorly understood concept of diffusion by appealing to their kinesthetic senses first, then challenging their analytical skills as they try to deduce the mathematical principle involved. Presents a computer simulation of diffusion and discusses diffusion's limitations and…

  20. Handbook on atmospheric diffusion

    SciTech Connect

    Hanna, S.R.; Briggs, G.A.; Hosker, R.P. Jr.

    1982-01-01

    Basic meteorological concepts are covered as well as plume rise, source effects, and diffusion models. Chapters are included on cooling tower plumes and urban diffusion. Suggestions are given for calculating diffusion in special situations, such as for instantaneous releases over complex terrain, over long distances, and during times when chemical reactions or dry or wet deposition are important. (PSB)