Vikingstad, E M; George, K P; Johnson, A F; Cao, Y
2000-04-01
In 95% of right handed individuals the left hemisphere is dominant for speech and language function. The evidence for this is accumulated primarily from clinical populations. We investigated cortical topography of language function and lateralization in a sample of the right handed population using functional magnetic resonance imaging and two lexical-semantic paradigms. Activated cortical language networks were assessed topographically and quantitatively by using a lateralization index. As a group, we observed left hemispheric language dominance. Individually, the lateralization index varied continuously from left hemisphere dominant to bilateral representation. In males, language primarily lateralized to left, and in females, approximately half had left lateralization and the other half had bilateral representation. Our data indicate that a previous view of female bilateral hemispheric dominance for language (McGlone, 1980. Sex differences in human brain asymmetry: a critical survey. Behav Brain Sci 3:215-263; Shaywitz et al., 1995. Sex differences in the functional organization of the brain for language. Nature 373:607-609) simplifies the complexity of cortical language distribution in this population. Analysis of the distribution of the lateralization index in our study allowed us to make this difference in females apparent.
Sampling probability distributions of lesions in mammograms
NASA Astrophysics Data System (ADS)
Looney, P.; Warren, L. M.; Dance, D. R.; Young, K. C.
2015-03-01
One approach to image perception studies in mammography using virtual clinical trials involves the insertion of simulated lesions into normal mammograms. To facilitate this, a method has been developed that allows for sampling of lesion positions across the cranio-caudal and medio-lateral radiographic projections in accordance with measured distributions of real lesion locations. 6825 mammograms from our mammography image database were segmented to find the breast outline. The outlines were averaged and smoothed to produce an average outline for each laterality and radiographic projection. Lesions in 3304 mammograms with malignant findings were mapped on to a standardised breast image corresponding to the average breast outline using piecewise affine transforms. A four dimensional probability distribution function was found from the lesion locations in the cranio-caudal and medio-lateral radiographic projections for calcification and noncalcification lesions. Lesion locations sampled from this probability distribution function were mapped on to individual mammograms using a piecewise affine transform which transforms the average outline to the outline of the breast in the mammogram. The four dimensional probability distribution function was validated by comparing it to the two dimensional distributions found by considering each radiographic projection and laterality independently. The correlation of the location of the lesions sampled from the four dimensional probability distribution function across radiographic projections was shown to match the correlation of the locations of the original mapped lesion locations. The current system has been implemented as a web-service on a server using the Python Django framework. The server performs the sampling, performs the mapping and returns the results in a javascript object notation format.
NASA Technical Reports Server (NTRS)
Brooke, G.; Perrett, J. C.; Watson, A. A.
1986-01-01
An array of 8 x 1.0 sq m plastic scintillation counters and 13 water-Cerenkov detectors (1 to 13.5 sq m) were operated at the center of the Haverah Park array to study some features of air showers produced by 10(16) eV primaries. Measurements of the scintillator lateral distribution function, the water-Cerenkov lateral distribution function, and of the distance dependence of the Cerenkov/scintillator ratio are described.
The investigation of the lateral interaction effect's on traffic flow behavior under open boundaries
NASA Astrophysics Data System (ADS)
Bouadi, M.; Jetto, K.; Benyoussef, A.; El Kenz, A.
2017-11-01
In this paper, an open boundaries traffic flow system is studied by taking into account the lateral interaction with spatial defects. For a random defects distribution, if the vehicles velocities are weakly correlated, the traffic phases can be predicted by considering the corresponding inflow and outflow functions. Conversely, if the vehicles velocities are strongly correlated, a phase segregation appears inside the system's bulk which induces the maximum current appearance. Such velocity correlation depends mainly on the defects densities and the probabilities of lateral deceleration. However, for a compact defects distribution, the traffic phases are predictable by using the inflow in the system beginning, the inflow entering the defects zone and the outflow function.
Function Lateralization via Measuring Coherence Laterality
Wang, Ze; Mechanic-Hamilton, Dawn; Pluta, John; Glynn, Simon; Detre, John A.
2009-01-01
A data-driven approach for lateralization of brain function based on the spatial coherence difference of functional MRI (fMRI) data in homologous regions-of-interest (ROI) in each hemisphere is proposed. The utility of using coherence laterality (CL) to determine function laterality was assessed first by examining motor laterality using normal subjects’ data acquired both at rest and with a simple unilateral motor task and subsequently by examining mesial temporal lobe memory laterality in normal subjects and patients with temporal lobe epilepsy. The motor task was used to demonstrate that CL within motor ROI correctly lateralized functional stimulation. In patients with unilateral epilepsy studied during a scene-encoding task, CL in a hippocampus-parahippocampus-fusiform (HPF) ROI was concordant with lateralization based on task activation, and the CL index (CLI) significantly differentiated the right side group to the left side group. By contrast, normal controls showed a symmetric HPF CLI distribution. Additionally, similar memory laterality prediction results were still observed using CL in epilepsy patients with unilateral seizures after the memory encoding effect was removed from the data, suggesting the potential for lateralization of pathological brain function based on resting fMRI data. A better lateralization was further achieved via a combination of the proposed approach and the standard activation based approach, demonstrating that assessment of spatial coherence changes provides a complementary approach to quantifying task-correlated activity for lateralizing brain function. PMID:19345736
The timing of sequences of saccades in visual search.
Van Loon, E M; Hooge, I Th C; Van den Berg, A V
2002-01-01
According to the LATER model (linear approach to thresholds with ergodic rate), the latency of a single saccade in response to target appearance can be understood as a decision process, which is subject to (i) variations in the rate of (visual) information processing; and (ii) the threshold for the decision. We tested whether the LATER model can also be applied to the sequences of saccades in a multiple fixation search, during which latencies of second and subsequent saccades are typically shorter than that of the initial saccade. We found that the distributions of the reciprocal latencies for later saccades, unlike those of the first saccade, are highly asymmetrical, much like a gamma distribution. This suggests that the normal distribution of the rate r, which the LATER model assumes, is not appropriate to describe the rate distributions of subsequent saccades in a scanning sequence. By contrast, the gamma distribution is also appropriate to describe the distribution of reciprocal latencies for the first saccade. The change of the gamma distribution parameters as a function of the ordinal number of the saccade suggests a lowering of the threshold for second and later saccades, as well as a reduction in the number of target elements analysed. PMID:12184827
Spatial MEG laterality maps for language: clinical applications in epilepsy.
D'Arcy, Ryan C N; Bardouille, Timothy; Newman, Aaron J; McWhinney, Sean R; Debay, Drew; Sadler, R Mark; Clarke, David B; Esser, Michael J
2013-08-01
Functional imaging is increasingly being used to provide a noninvasive alternative to intracarotid sodium amobarbitol testing (i.e., the Wada test). Although magnetoencephalography (MEG) has shown significant potential in this regard, the resultant output is often reduced to a simplified estimate of laterality. Such estimates belie the richness of functional imaging data and consequently limit the potential value. We present a novel approach that utilizes MEG data to compute "complex laterality vectors" and consequently "laterality maps" for a given function. Language function was examined in healthy controls and in people with epilepsy. When compared with traditional laterality index (LI) approaches, the resultant maps provided critical information about the magnitude and spatial characteristics of lateralized function. Specifically, it was possible to more clearly define low LI scores resulting from strong bilateral activation, high LI scores resulting from weak unilateral activation, and most importantly, the spatial distribution of lateralized activation. We argue that the laterality concept is better presented with the inherent spatial sensitivity of activation maps, rather than being collapsed into a one-dimensional index. Copyright © 2012 Wiley Periodicals, Inc.
Retrieval of high-fidelity memory arises from distributed cortical networks.
Wais, Peter E; Jahanikia, Sahar; Steiner, Daniel; Stark, Craig E L; Gazzaley, Adam
2017-04-01
Medial temporal lobe (MTL) function is well established as necessary for memory of facts and events. It is likely that lateral cortical regions critically guide cognitive control processes to tune in high-fidelity details that are most relevant for memory retrieval. Here, convergent results from functional and structural MRI show that retrieval of detailed episodic memory arises from lateral cortical-MTL networks, including regions of inferior frontal and angular gyrii. Results also suggest that recognition of items based on low-fidelity, generalized information, rather than memory arising from retrieval of relevant episodic details, is not associated with functional connectivity between MTL and lateral cortical regions. Additionally, individual differences in microstructural properties in white matter pathways, associated with distributed MTL-cortical networks, are positively correlated with better performance on a mnemonic discrimination task. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Aliev, N.; Alimov, T.; Kakhkharov, M.; Makhmudov, B. M.; Rakhimova, N.; Tashpulatov, R.; Kalmykov, N. N.; Khristiansen, G. B.; Prosin, V. V.
1985-01-01
The Samarkand extensive air showers (EAS) array was used to measure the mean and individual lateral distribution functions (LDF) of EAS Cerenkov light. The analysis of the individual parameters b showed that the mean depth of EAS maximum and the variance of the depth distribution of maxima of EAS with energies of approx. 2x10 to the 15th power eV can properly be described in terms of Kaidalov-Martirosyan quark-gluon string model (QGSM).
NASA Astrophysics Data System (ADS)
Sumi, C.
Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).
The MONET code for the evaluation of the dose in hadrontherapy
NASA Astrophysics Data System (ADS)
Embriaco, A.
2018-01-01
The MONET is a code for the computation of the 3D dose distribution for protons in water. For the lateral profile, MONET is based on the Molière theory of multiple Coulomb scattering. To take into account also the nuclear interactions, we add to this theory a Cauchy-Lorentz function, where the two parameters are obtained by a fit to a FLUKA simulation. We have implemented the Papoulis algorithm for the passage from the projected to a 2D lateral distribution. For the longitudinal profile, we have implemented a new calculation of the energy loss that is in good agreement with simulations. The inclusion of the straggling is based on the convolution of energy loss with a Gaussian function. In order to complete the longitudinal profile, also the nuclear contributions are included using a linear parametrization. The total dose profile is calculated in a 3D mesh by evaluating at each depth the 2D lateral distributions and by scaling them at the value of the energy deposition. We have compared MONET with FLUKA in two cases: a single Gaussian beam and a lateral scan. In both cases, we have obtained a good agreement for different energies of protons in water.
NASA Astrophysics Data System (ADS)
Mertens, Christopher; Moyers, Michael; Walker, Steven; Tweed, John
Recent developments in NASA's High Charge and Energy Transport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. The new version of HZETRN based on Green function methods, GRNTRN, is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral scattering distributions with beam measurements taken at Loma Linda Medical University. The simulated and measured lateral proton distributions will be compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone, iron, and lead target materials.
Information theory lateral density distribution for Earth inferred from global gravity field
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1981-01-01
Information Theory Inference, better known as the Maximum Entropy Method, was used to infer the lateral density distribution inside the Earth. The approach assumed that the Earth consists of indistinguishable Maxwell-Boltzmann particles populating infinitesimal volume elements, and followed the standard methods of statistical mechanics (maximizing the entropy function). The GEM 10B spherical harmonic gravity field coefficients, complete to degree and order 36, were used as constraints on the lateral density distribution. The spherically symmetric part of the density distribution was assumed to be known. The lateral density variation was assumed to be small compared to the spherically symmetric part. The resulting information theory density distribution for the cases of no crust removed, 30 km of compensated crust removed, and 30 km of uncompensated crust removed all gave broad density anomalies extending deep into the mantle, but with the density contrasts being the greatest towards the surface (typically + or 0.004 g cm 3 in the first two cases and + or - 0.04 g cm 3 in the third). None of the density distributions resemble classical organized convection cells. The information theory approach may have use in choosing Standard Earth Models, but, the inclusion of seismic data into the approach appears difficult.
Lateral distribution of the radio signal in extensive air showers measured with LOPES
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga, J. C.; Asch, T.; Badea, A. F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration
2010-01-01
The antenna array LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from extensive air showers. The coincident measurements allow us to reconstruct the electric field strength at observation level in dependence of general EAS parameters. In the present work, the lateral distribution of the radio signal in air showers is studied in detail. It is found that the lateral distributions of the electric field strengths in individual EAS can be described by an exponential function. For about 20% of the events a flattening towards the shower axis is observed, preferentially for showers with large inclination angle. The estimated scale parameters R0, describing the slope of the lateral profiles range between 100 and 200 m. No evidence for a direct correlation of R0 with shower parameters like azimuth angle, geomagnetic angle, or primary energy can be found. This indicates that the lateral profile is an intrinsic property of the radio emission during the shower development which makes the radio detection technique suitable for large scale applications.
Hund-Georgiadis, Margret; Lex, Ulrike; Friederici, Angela D; von Cramon, D Yves
2002-07-01
Language lateralization was assessed by two independent functional techniques, fMRI and a dichotic listening test (DLT), in an attempt to establish a reliable and non-invasive protocol of dominance determination. This should particularly address the high intraindividual variability of language lateralization and allow decision-making in individual cases. Functional MRI of word classification tasks showed robust language lateralization in 17 right-handers and 17 left-handers in terms of activation in the inferior frontal gyrus. The DLT was introduced as a complementary tool to MR mapping for language dominance assessment, providing information on perceptual language processing located in superior temporal cortices. The overall agreement of lateralization assessment between the two techniques was 97.1%. Conflicting results were found in one subject, and diverging indices in ten further subjects. Increasing age, non-familial sinistrality, and a non-dominant writing hand were identified as the main factors explaining the observed mismatch between the two techniques. This finding stresses the concept of an intrahemispheric distribution of language function that is obviously associated with certain behavioral characteristics.
Zhang, Ying; Yu, Qinqin; Jiang, Nan; Yan, Xu; Wang, Chao; Wang, Qingmei; Liu, Jianzhong; Zhu, Muyuan; Bednarek, Sebastian Y; Xu, Jian; Pan, Jianwei
2017-01-01
Phototropism is the process by which plants grow towards light in order to maximize the capture of light for photosynthesis, which is particularly important for germinating seedlings. In Arabidopsis, hypocotyl phototropism is predominantly triggered by blue light (BL), which has a profound effect on the establishment of asymmetric auxin distribution, essential for hypocotyl phototropism. Two auxin efflux transporters ATP-binding cassette B19 (ABCB19) and PIN-formed 3 (PIN3) are known to mediate the effect of BL on auxin distribution in the hypocotyl, but the details for how BL triggers PIN3 lateralization remain poorly understood. Here, we report a critical role for clathrin in BL-triggered, PIN3-mediated asymmetric auxin distribution in hypocotyl phototropism. We show that unilateral BL induces relocalization of clathrin in the hypocotyl. Loss of clathrin light chain 2 (CLC2) and CLC3 affects endocytosis and lateral distribution of PIN3 thereby impairing BL-triggered establishment of asymmetric auxin distribution and consequently, phototropic bending. Conversely, auxin efflux inhibitors N-1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid affect BL-induced relocalization of clathrin, endocytosis and lateralization of PIN3 as well as asymmetric distribution of auxin. These results together demonstrate an important interplay between auxin and clathrin function that dynamically regulates BL-triggered hypocotyl phototropism in Arabidopsis. © 2016 John Wiley & Sons Ltd.
Dissociating error-based and reinforcement-based loss functions during sensorimotor learning
McGregor, Heather R.; Mohatarem, Ayman
2017-01-01
It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. PMID:28753634
Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.
Cashaback, Joshua G A; McGregor, Heather R; Mohatarem, Ayman; Gribble, Paul L
2017-07-01
It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.
NASA Astrophysics Data System (ADS)
Gherghel-Lascu, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertania, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2017-06-01
The charged particle densities obtained from CORSIKA simulated EAS, using the QGSJet-II.04 hadronic interaction model are used for primary energy reconstruction. Simulated data are reconstructed by using Lateral Energy Correction Functions computed with a new realistic model of the Grande stations implemented in Geant4.10.
Comments on Lindesay: laterality shift in homosexual men.
Annett, M
1988-01-01
The raised incidences of strong left-handedness and of mixed-handedness in homosexual men, as in dyslexics, are mutually consistent under the normal distribution function, as expected by the right shift theory of handedness. It is argued that atypical laterality in these groups is better described as a "reduction of right shift" than as a "left shift".
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John
2010-01-01
Recent developments in NASA s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, P.; Ghose, D.
The sputter ripple formation in polycrystalline metal thin films of Al, Co, Cu, and Ag has been studied by 16.7 keV Ar{sup +} and O{sub 2}{sup +} ion bombardment as a function of angle of ion incidence. The experimental results show the existence of a critical angle of ion incidence ({theta}{sub c}) beyond which the ripples of wave vectors perpendicular to the projected ion beam direction appear. Monte Carlo simulation (SRIM) is carried out to calculate the depth, longitudinal and lateral straggling widths of energy deposition as these values are crucial in determining the critical angle {theta}{sub c}. It ismore » found that the radial energy distribution of the damage cascade has the maximum slightly away from the ion path in contradiction to the Gaussian distribution and the distribution is better characterized by an exponential function. The lower values of lateral straggling widths as those extracted from the measured critical angles using the Bradley and Harper theory indicate a highly anisotropic deposited-energy distribution.« less
ACOSS Eleven (Active Control of Space Structures). Volume 1
1983-12-01
Influence Function ................. 19 3.4 Mirror Deformations. ........................... o............. 23 3.5 Selection of Point Objects...to simulate errors in the knowledge of influence function . 5) The influence function for edge actuators may be different from that for interior... Influence Function Each of the three mirrors has 37 actuators distributed on an equi- lateral triangular lattice as shown in Figure 3-3. In consultation with
Um, Sungyong; Lee, Sung Gi; Woo, Hee-Gweon; Cho, Sungdong; Sohn, Honglae
2013-01-01
Adsorption and desorption characteristics of gradient distributed Bragg reflector (DBR) porous silicon (PSi) were investigated under the exposure of organic vapors. Gradient DBR PSi whose average pore size decreased as the lateral distance from the Pt electrode increased was generated by using an asymmetric etching configuration. The reflection resonances were measured as a function of lateral distance from a point closest to the plate Pt electrode to a position on the silicon surface. Two types of gradient DBR PSi (H- and HO-terminated gradient DBR PSi) were used in this study. The detection of volatile organic compounds (VOCs) using the gradient DBR PSi had been achieved. When the vapor of VOCs condensed in the nanopores, the gradient DBR PSi modified with hydrophobic and hydrophilic functionality exhibited different pore adsorption and desorption characteristics.
Differential quadrature method of nonlinear bending of functionally graded beam
NASA Astrophysics Data System (ADS)
Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You
2018-02-01
Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.
Wigner analysis of three dimensional pupil with finite lateral aperture
Chen, Hsi-Hsun; Oh, Se Baek; Zhai, Xiaomin; Tsai, Jui-Chang; Cao, Liang-Cai; Barbastathis, George; Luo, Yuan
2015-01-01
A three dimensional (3D) pupil is an optical element, most commonly implemented on a volume hologram, that processes the incident optical field on a 3D fashion. Here we analyze the diffraction properties of a 3D pupil with finite lateral aperture in the 4-f imaging system configuration, using the Wigner Distribution Function (WDF) formulation. Since 3D imaging pupil is finite in both lateral and longitudinal directions, the WDF of the volume holographic 4-f imager theoretically predicts distinct Bragg diffraction patterns in phase space. These result in asymmetric profiles of diffracted coherent point spread function between degenerate diffraction and Bragg diffraction, elucidating the fundamental performance of volume holographic imaging. Experimental measurements are also presented, confirming the theoretical predictions. PMID:25836443
Phenomenological characteristic of the electron component in gamma-quanta initiated showers
NASA Technical Reports Server (NTRS)
Nikolsky, S. I.; Stamenov, J. N.; Ushev, S. Z.
1985-01-01
The phenomenological characteristics of the electron component in showers initiated by primary gamma-quanta were analyzed on the basis of the Tien Shan experimental data. It is shown that the lateral distribution of the electrons ion gamma-quanta initiated showers can be described with NKG - function with age parameters bar S equals 0, 76 plus or minus 0, 02, different from the same parameter for normal showers with the same size bar S equals 0, 85 plus or minus 0, 01. The lateral distribution of the correspondent electron energy flux in gamma-quanta initiated showers is steeper as in normal cosmic ray showers.
Eckstein, Felix; Hudelmaier, Martin; Cahue, September; Marshall, Meredith; Sharma, Leena
2010-01-01
Malalignment is known to impact the medial-to-lateral load distribution in the tibiofemoral joint. In this longitudinal study, we test the hypothesis that subchondral bone surface areas functionally adapt to the load distribution in malaligned knees. Alignment (hip-knee-ankle angle) was measured from full limb films in 174 participants with knee osteoarthritis. Coronal MR images were acquired at baseline and 26.6±5.4 months later. The subchondral bone surface area of the weight-bearing tibiofemoral cartilages was segmented, with readers blinded to the order of acquisition. The size of the subchondral bone surface areas was computed after triangulation using proprietary software. The hip-knee-ankle angle showed a significant correlation with the tibial (r2=0.25, p<0.0001) and femoral (r2=0.07, p<0.001) ratio of medial-to-lateral subchondral bone surface area. In the tibia, the ratio was significantly different between varus (1.28:1), neutral (1.18:1) and valgus (1.13:1) knees (ANOVA; p<0.00001). Similar observations were made in the weight-bearing femur (0.94:1 in neutral, 0.97.1 in varus, 0.91:1 in valgus knees; ANOVA p=0.018). The annualized longitudinal increase in subchondral bone surface area was significant (p<0.05) in the medial tibia (+0.13%), medial femur (+0.26%) and lateral tibia (+0.19%). In the medial femur, the change between baseline and follow-up was significantly different (ANOVA; p=0.020) between neutral, varus and valgus knees, the increase in surface area being significantly greater (p=0.019) in varus than in neutral knees. Tibiofemoral subchondral bone surface areas are shown to be functionally adapted to the medial-to-lateral load distribution. The longitudinal findings indicate that this adaptational process may continue to take place at advanced age. PMID:19148562
Allken, Vaneeda; Chepkoech, Joy-Loi; Einevoll, Gaute T; Halnes, Geir
2014-01-01
Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca(2+)-spikes and possibly by backpropagating action potentials. Ca(2+)-spikes in INs are predominantly mediated by T-type Ca(2+)-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling.
Allken, Vaneeda; Chepkoech, Joy-Loi; Einevoll, Gaute T.; Halnes, Geir
2014-01-01
Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca2+-spikes and possibly by backpropagating action potentials. Ca2+-spikes in INs are predominantly mediated by T-type Ca2+-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling. PMID:25268996
Jordan, Laura K; Kajiura, Stephen M; Gordon, Malcolm S
2009-10-01
Short range hydrodynamic and electrosensory signals are important during final stages of prey capture in elasmobranchs (sharks, skates and rays), and may be particularly useful for dorso-ventrally flattened batoids with mouths hidden from their eyes. In stingrays, both the lateral line canal and electrosensory systems are highly modified and complex with significant differences on ventral surfaces that relate to feeding ecology. This study tests functional hypotheses based on quantified differences in sensory system morphology of three stingray species, Urobatis halleri, Myliobatis californica and Pteroplatytrygon violacea. Part I investigates the mechanosensory lateral line canal system whereas part II focuses on the electrosensory system. Stingray lateral line canals include both pored and non-pored sections and differ in branching complexity and distribution. A greater proportion of pored canals and high pore numbers were predicted to correspond to increased response to water flow. Behavioral experiments were performed to compare responses of stingrays to weak water jets mimicking signals produced by potential prey at velocities of 10-20 cm s(-1). Bat rays, M. californica, have the most complex and broadly distributed pored canal network and demonstrated both the highest response rate and greater response intensity to water jet signals. Results suggest that U. halleri and P. violacea may rely on additional sensory input, including tactile and visual cues, respectively, to initiate stronger feeding responses. These results suggest that stingray lateral line canal morphology can indicate detection capabilities through responsiveness to weak water jets.
A Probabilistic Wake Vortex Lateral Transport Model Using Data from SFO and DEN
NASA Technical Reports Server (NTRS)
Mellman, George R.; Delisi, Donald P.
2008-01-01
In a previous report, we considered the behavior of the lateral position of vortices as a function of time after vortex formation for Out of Ground Effects (OGE) data for aircraft landing at San Francisco International Airport (SFO). We quantified the spread in lateral position as a function of time and examined how predictable lateral position is under a variety of assumptions. The combination of spread and predictability allowed us to derive probability distribution functions (PDFs) for lateral position given observed crosswind (CW) velocities. In this study, we examine the portability of these PDFs with respect to other landing sites. To this end, we consider OGE data obtained by the Federal Aviation Administration for landings at Denver International Airport (DEN) between 04/05/2006 and 06/03/2006. We consider vortices from both B733 (Boeing 737 models 200-500) and B757 (Boeing 757) aircraft. The data set contains 635 B733 landings and 506 B757 landings. The glide slope altitude for these measurements was 280 m, determined by the average initial vortex observation adjusted for a 3-second delay in the initial observation. The comparable SFO altitude was 158 m. We note that the principal mechanism for lateral transport in the OGE regime is advection by the ambient wind. This implies that a simple crosswind correction may be effective in explaining much of the variation in the lateral transport data. In this study, we again consider the use of ASOS data and average Lidar crosswind data over the vortex altitude range to predict vortex location as a function of time.
Bao, H R C; Zhu, D; Gong, H; Gu, G S
2013-03-01
In recent years, with technological advances in arthroscopy and magnetic resonance imaging and improved biomechanical studies of the meniscus, there has been some progress in the diagnosis and treatment of injuries to the roots of the meniscus. However, the biomechanical effect of posterior lateral meniscus root tears on the knee has not yet become clear. The purpose of this study was to determine the effect of a complete radial posterior lateral meniscus root tear on the knee contact mechanics and the function of the posterior meniscofemoral ligament on the knee with tear in the posterior root of lateral meniscus. A finite element model of the knee was developed to simulate different cases for intact knee, a complete radial posterior lateral meniscus root tear, a complete radial posterior lateral meniscus root tear with posterior meniscofemoral ligament deficiency, and total meniscectomy of the lateral meniscus. A compressive load of 1000 N was applied in all cases to calculate contact areas, contact pressure, and meniscal displacements. The complete radial posterior lateral meniscus root tear decreased the contact area and increased the contact pressure on the lateral compartment under compressive load. We also found a decreased contact area and increased contact pressure in the medial compartment, but it was not obvious compared to the lateral compartment. The lateral meniscus was radially displaced by compressive load after a complete radial posterior lateral meniscus root tear, and the displacement took place mainly in the body and posterior horn of lateral meniscus. There were further decrease in contact area and increases in contact pressure and raidial displacement of the lateral meniscus in the case of the complete posterior lateral meniscus root tear in combination with posterior meniscofemoral ligament deficiency. Complete radial posterior lateral meniscus root tear is not functionally equivalent to total meniscectomy. The posterior root torn lateral meniscus continues to provide some load transmission and distribution functions across the joint. The posterior meniscofemoral ligament prevents excessive radial displacement of the posterior root torn lateral meniscus and assists the torn lateral meniscus in transmitting a certain amount of stress in the lateral compartment.
Kober, Hedy; Barrett, Lisa Feldman; Joseph, Josh; Bliss-Moreau, Eliza; Lindquist, Kristen; Wager, Tor D.
2009-01-01
We performed an updated quantitative meta-analysis of 162 neuroimaging studies of emotion using a novel multi-level kernel-based approach, focusing on locating brain regions consistently activated in emotional tasks and their functional organization into distributed functional groups, independent of semantically defined emotion category labels (e.g., “anger,” “fear”). Such brain-based analyses are critical if our ways of labeling emotions are to be evaluated and revised based on consistency with brain data. Consistent activations were limited to specific cortical sub-regions, including multiple functional areas within medial, orbital, and inferior lateral frontal cortices. Consistent with a wealth of animal literature, multiple subcortical activations were identified, including amygdala, ventral striatum, thalamus, hypothalamus, and periaqueductal gray. We used multivariate parcellation and clustering techniques to identify groups of co-activated brain regions across studies. These analyses identified six distributed functional groups, including medial and lateral frontal groups, two posterior cortical groups, and paralimbic and core limbic/brainstem groups. These functional groups provide information on potential organization of brain regions into large-scale networks. Specific follow-up analyses focused on amygdala, periaqueductal gray (PAG), and hypothalamic (Hy) activations, and identified frontal cortical areas co-activated with these core limbic structures. While multiple areas of frontal cortex co-activated with amygdala sub-regions, a specific region of dorsomedial prefrontal cortex (dmPFC, Brodmann’s Area 9/32) was the only area co-activated with both PAG and Hy. Subsequent mediation analyses were consistent with a pathway from dmPFC through PAG to Hy. These results suggest that medial frontal areas are more closely associated with core limbic activation than their lateral counterparts, and that dmPFC may play a particularly important role in the cognitive generation of emotional states. PMID:18579414
RNAV STAR Procedural Adherence
NASA Technical Reports Server (NTRS)
Stewart, Michael J.; Matthews, Bryan L.
2017-01-01
In this exploratory archival study we mined the performance of 24 major US airports area navigation standard terminal arrival routes (RNAV STARs) over the preceding three years. Overlaying radar track data on top of RNAV STAR routes provided a comparison between aircraft flight paths and the waypoint positions and altitude restrictions. NASA Ames Supercomputing resources were utilized to perform the data mining and processing. We investigated STARs by lateral transition path (full-lateral), vertical restrictions (full-lateral/full-vertical), and skipped waypoints (skips). In addition, we graphed altitudes and their frequencies of occurrence for altitude restrictions. Full-lateral compliance was generally greater than Full-lateral/full-vertical, but the delta between the rates was not always consistent. Full-lateral/full-vertical usage medians of the 2016 procedures ranged from 0 in KDEN (Denver) to 21 in KMEM (Memphis). Waypoint skips ranged from 0 to nearly 100 for specific waypoints. Altitudes restrictions were sometimes missed by systemic amounts in 1000 ft. increments from the restriction, creating multi-modal distributions. Other times, altitude misses looked to be more normally distributed around the restriction. This work is a preliminary investigation into the objective performance of instrument procedures and provides a framework to track how procedural concepts and design intervention function. In addition, this tool may aid in providing acceptability metrics as well as risk assessment information.
Timing in a Variable Interval Procedure: Evidence for a Memory Singularity
Matell, Matthew S.; Kim, Jung S.; Hartshorne, Loryn
2013-01-01
Rats were trained in either a 30s peak-interval procedure, or a 15–45s variable interval peak procedure with a uniform distribution (Exp 1) or a ramping probability distribution (Exp 2). Rats in all groups showed peak shaped response functions centered around 30s, with the uniform group having an earlier and broader peak response function and rats in the ramping group having a later peak function as compared to the single duration group. The changes in these mean functions, as well as the statistics from single trial analyses, can be better captured by a model of timing in which memory is represented by a single, average, delay to reinforcement compared to one in which all durations are stored as a distribution, such as the complete memory model of Scalar Expectancy Theory or a simple associative model. PMID:24012783
Voltage stress effects on microcircuit accelerated life test failure rates
NASA Technical Reports Server (NTRS)
Johnson, G. M.
1976-01-01
The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.
Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi
2012-01-01
The common chameleon, Chamaeleo chameleon, is an arboreal lizard with highly independent, large-amplitude eye movements. In response to a moving threat, a chameleon on a perch responds with distinct avoidance movements that are expressed in its continuous positioning on the side of the perch distal to the threat. We analyzed body-exposure patterns during threat avoidance for evidence of lateralization, that is, asymmetry at the functional/behavioral levels. Chameleons were exposed to a threat approaching horizontally from the left or right, as they held onto a vertical pole that was either wider or narrower than the width of their head, providing, respectively, monocular or binocular viewing of the threat. We found two equal-sized sub-groups, each displaying lateralization of motor responses to a given direction of stimulus approach. Such an anti-symmetrical distribution of lateralization in a population may be indicative of situations in which organisms are regularly exposed to crucial stimuli from all spatial directions. This is because a bimodal distribution of responses to threat in a natural population will reduce the spatial advantage of predators. PMID:22685546
Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi
2012-01-01
The common chameleon, Chamaeleo chameleon, is an arboreal lizard with highly independent, large-amplitude eye movements. In response to a moving threat, a chameleon on a perch responds with distinct avoidance movements that are expressed in its continuous positioning on the side of the perch distal to the threat. We analyzed body-exposure patterns during threat avoidance for evidence of lateralization, that is, asymmetry at the functional/behavioral levels. Chameleons were exposed to a threat approaching horizontally from the left or right, as they held onto a vertical pole that was either wider or narrower than the width of their head, providing, respectively, monocular or binocular viewing of the threat. We found two equal-sized sub-groups, each displaying lateralization of motor responses to a given direction of stimulus approach. Such an anti-symmetrical distribution of lateralization in a population may be indicative of situations in which organisms are regularly exposed to crucial stimuli from all spatial directions. This is because a bimodal distribution of responses to threat in a natural population will reduce the spatial advantage of predators.
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2015-05-01
The KASCADE-Grande large area (128 m2) Muon Tracking Detector has been built with the aim to identify muons ( Eμthr = 800 MeV) in Extensive Air Showers by track measurements under 18 r.l. shielding. This detector provides high-accuracy angular information (approx. 0.3 °) for muons up to 700 m distance from the shower core. In this work we present the lateral density distributions of muons in EAS measured with the Muon Tracking Detector of the KASCADE-Grande experiment. The density is calculated by counting muon tracks in a muon-to-shower-axis distance range from 100 m to 610 m from showers with reconstructed energy of 1016 -1017 eV and zenith angle θ < 18 ° . In the distance range covered by the experiment, these distributions are well described by functions phenomenologically determined already in the fifties (of the last century) by Greisen. They are compared also with the distributions obtained with the KASCADE scintillator array (Eμthr = 230 MeV) and with distributions obtained using simulated showers.
Nonequilibrium approach regarding metals from a linearised kappa distribution
NASA Astrophysics Data System (ADS)
Domenech-Garret, J. L.
2017-10-01
The widely used kappa distribution functions develop high-energy tails through an adjustable kappa parameter. The aim of this work is to show that such a parameter can itself be regarded as a function, which entangles information about the sources of disequilibrium. We first derive and analyse an expanded Fermi-Dirac kappa distribution. Later, we use this expanded form to obtain an explicit analytical expression for the kappa parameter of a heated metal on which an external electric field is applied. We show that such a kappa index causes departures from equilibrium depending on the physical magnitudes. Finally, we study the role of temperature and electric field on such a parameter, which characterises the electron population of a metal out of equilibrium.
Lateral root development in the maize (Zea mays) lateral rootless1 mutant
Husakova, Eva; Hochholdinger, Frank; Soukup, Ales
2013-01-01
Background and Aims The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Methods Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. Key Results The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. Conclusions The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired. PMID:23456690
Lateral root development in the maize (Zea mays) lateral rootless1 mutant.
Husakova, Eva; Hochholdinger, Frank; Soukup, Ales
2013-07-01
The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired.
Right-sided dominance of the bilateral vestibular system in the upper brainstem and thalamus.
Dieterich, Marianne; Kirsch, V; Brandt, T
2017-10-01
MRI diffusion tensor imaging tractography was performed on the bilateral vestibular brainstem pathways, which run from the vestibular nuclei via the paramedian and posterolateral thalamic subnuclei to the parieto-insular vestibular cortex. Twenty-one right-handed healthy subjects participated. Quantitative analysis revealed a rope-ladder-like system of vestibular pathways in the brainstem with crossings at pontine and mesencephalic levels. Three structural types of right-left fiber distributions could be delineated: (1) evenly distributed pathways at the lower pontine level from the vestibular nuclei to the pontine crossing, (2) a moderate, pontomesencephalic right-sided lateralization between the pontine and mesencephalic crossings, and (3) a further increase of the right-sided lateralization above the mesencephalic crossing leading to the thalamic vestibular subnuclei. The increasing lateralization along the brainstem was the result of an asymmetric number of pontine and mesencephalic crossing fibers which was higher for left-to-right crossings. The dominance of the right vestibular meso-diencephalic circuitry in right-handers corresponds to the right-hemispheric dominance of the vestibular cortical network. The structural asymmetry apparent in the upper brainstem might be interpreted in relation to the different functions of the vestibular system depending on their anatomical level: a symmetrical sensorimotor reflex control of eye, head, and body mediated by the lower brainstem; a lateralized right-sided upper brainstem-thalamic function as part of the dominant right-sided cortical/subcortical vestibular system that enables a global percept of body motion and orientation in space.
Measuring charge nonuniformity in MOS devices
NASA Technical Reports Server (NTRS)
Maserjian, J.; Zamani, N.
1980-01-01
Convenient method of determining inherent lateral charge non-uniformities along silicon dioxide/silicon interface of metal-oxide-semiconductor (MOS) employs rapid measurement of capacitance of interface as function of voltage at liquid nitrogen temperature. Charge distribution is extracted by fast-Fourier-transform analysis of capacitance voltage (C-V) measurement.
Elwell, Josie; Choi, Joseph; Willing, Ryan
2017-02-08
Lateralizing the center of rotation (COR) of reverse total shoulder arthroplasty (rTSA) could improve functional outcomes and mitigate scapular notching, a commonly occurring complication of the procedure. However, resulting increases in torque at the bone-implant interface may negatively affect initial fixation of the glenoid-side component, especially if only two fixation screws can be placed. Shoulder-specific finite element (FE) models of four fresh-frozen cadaveric shoulders were constructed. Scapular geometry and material property distributions were derived from CT data. Generic baseplates with two and four fixation screws were virtually implanted, after which superiorly-oriented shear loads, accompanied by a compressive load, were applied incrementally further from the glenoid surface to simulate lateralization of the COR. Relationships between lateralization, adduction range of motion (ROM), the number of fixation screws and micromotion of the baseplate (initial implant fixation) were characterized. Lateralization significantly increases micromotion (p=0.015) and adduction ROM (p=0.001). Using two, versus four, baseplate fixation screws significantly increases micromotion (p=0.008). The effect of lateralization and the number of screws on adduction ROM and baseplate fixation is variable on a shoulder-specific basis. Trade-offs exist between functional outcomes, namely adduction ROM, and initial implant fixation and the negative effect of lateralization on implant fixation is amplified when only two fixation screws are used. The possibility of lateralizing the COR in order to improve functional outcomes of the procedure should be considered on a patient-specific basis accounting for factors such as availability and quality of bone stock. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gender differences in lateralization of mismatch negativity in dichotic listening tasks.
Ikezawa, Satoru; Nakagome, Kazuyuki; Mimura, Masaru; Shinoda, Junko; Itoh, Kenji; Homma, Ikuo; Kamijima, Kunitoshi
2008-04-01
With the aim of investigating gender differences in the functional lateralization subserving preattentive processing of language stimuli, we compared auditory mismatch negativities (MMNs) using dichotic listening tasks. Forty-four healthy volunteers, including 23 males and 21 females, participated in the study. MMNs generated by pure-tone and phonetic stimuli were compared, to check for the existence of language-specific gender differences in lateralization. Both EEG amplitude and scalp current density (SCD) data were analyzed. With phonetic MMNs, EEG findings revealed significantly larger amplitude in females than males, especially in the right hemisphere, while SCD findings revealed left hemisphere dominance and contralateral dominance in males alone. With pure-tone MMNs, no significant gender differences in hemispheric lateralization appeared in either EEG or SCD findings. While males exhibited left-lateralized activation with phonetic MMNs, females exhibited more bilateral activity. Further, the contralateral dominance of the SCD distribution associated with the ear receiving deviant stimuli in males indicated that ipsilateral input as well as interhemispheric transfer across the corpus callosum to the ipsilateral side was more suppressed in males than in females. The findings of the present study suggest that functional lateralization subserving preattentive detection of phonetic change differs between the genders. These results underscore the significance of considering the gender differences in the study of MMN, especially when phonetic stimulus is adopted. Moreover, they support the view of Voyer and Flight [Voyer, D., Flight, J., 2001. Gender differences in laterality on a dichotic task: the influence of report strategies. Cortex 37, 345-362.] in that the gender difference in hemispheric lateralization of language function is observed in a well-managed-attention condition, which fits the condition adopted in the MMN measurement; subjects are required to focus attention to a distraction task and thereby ignore the phonetic stimuli that elicit MMN.
Cipolletta, Sabrina; Gammino, Giorgia Rosamaria; Palmieri, Arianna
2017-12-01
To identify illness trajectories in amyotrophic lateral sclerosis by analysing personal, social and functional dimensions related to amyotrophic lateral sclerosis progression. Previous studies have considered some psychological distinct variables that may moderate illness progression, but no research has combined an extensive qualitative understanding of amyotrophic lateral sclerosis patients' psychological characteristics and illness progression. A mixed-methods approach was used to combine quantitative and qualitative measures. Illness progression was assessed through a longitudinal design. Eighteen patients with amyotrophic lateral sclerosis attending a Neurology Department in northern Italy participated in the study. Semi-structured interviews to explore personal experience, and dependency grids to assess the distribution of dependency; ALSFRS-R and neuropsychological screening were, respectively, used to measure physical and cognitive impairment. To assess the progression of the disease, ALSFRS-R was re-administered after 8 months and mortality rate was considered. Data were analysed using the grounded theory approach. Illness progression changed according to the perception of the disease, the trust placed in medical care, self-construction and the distribution of dependency. Based on these categories, cases that had similar experiences were grouped, and four illness trajectories were identified: aggressiveness, threat, constriction and guilt. The findings suggest that it is possible to identify different illness trajectories in amyotrophic lateral sclerosis. Personalised intervention strategies may be construed based on the different trajectories identified. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha
2014-10-28
For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, evenmore » though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.« less
Sparsely-distributed organization of face and limb activations in human ventral temporal cortex
Weiner, Kevin S.; Grill-Spector, Kalanit
2011-01-01
Functional magnetic resonance imaging (fMRI) has identified face- and body part-selective regions, as well as distributed activation patterns for object categories across human ventral temporal cortex (VTC), eliciting a debate regarding functional organization in VTC and neural coding of object categories. Using high-resolution fMRI, we illustrate that face- and limb-selective activations alternate in a series of largely nonoverlapping clusters in lateral VTC along the inferior occipital gyrus (IOG), fusiform gyrus (FG), and occipitotemporal sulcus (OTS). Both general linear model (GLM) and multivoxel pattern (MVP) analyses show that face- and limb-selective activations minimally overlap and that this organization is consistent across experiments and days. We provide a reliable method to separate two face-selective clusters on the middle and posterior FG (mFus and pFus), and another on the IOG using their spatial relation to limb-selective activations and retinotopic areas hV4, VO-1/2, and hMT+. Furthermore, these activations show a gradient of increasing face selectivity and decreasing limb selectivity from the IOG to the mFus. Finally, MVP analyses indicate that there is differential information for faces in lateral VTC (containing weakly- and highly-selective voxels) relative to non-selective voxels in medial VTC. These findings suggest a sparsely-distributed organization where sparseness refers to the presence of several face- and limb-selective clusters in VTC, and distributed refers to the presence of different amounts of information in highly-, weakly-, and non-selective voxels. Consequently, theories of object recognition should consider the functional and spatial constraints of neural coding across a series of nonoverlapping category-selective clusters that are themselves distributed. PMID:20457261
NASA Astrophysics Data System (ADS)
Bagheri, Zahra; Davoudifar, Pantea; Rastegarzadeh, Gohar; Shayan, Milad
2017-03-01
In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.
Lavi, Yael; Gov, Nir; Edidin, Michael; Gheber, Levi A.
2012-01-01
Lateral heterogeneity of cell membranes has been demonstrated in numerous studies showing anomalous diffusion of membrane proteins; it has been explained by models and experiments suggesting dynamic barriers to free diffusion, that temporarily confine membrane proteins into microscopic patches. This picture, however, comes short of explaining a steady-state patchy distribution of proteins, in face of the transient opening of the barriers. In our previous work we directly imaged persistent clusters of MHC-I, a type I transmembrane protein, and proposed a model of a dynamic equilibrium between proteins newly delivered to the cell surface by vesicle traffic, temporary confinement by dynamic barriers to lateral diffusion, and dispersion of the clusters by diffusion over the dynamic barriers. Our model predicted that the clusters are dynamic, appearing when an exocytic vesicle fuses with the plasma membrane and dispersing with a typical lifetime that depends on lateral diffusion and the dynamics of barriers. In a subsequent work, we showed this to be the case. Here we test another prediction of the model, and show that changing the stability of actin barriers to lateral diffusion changes cluster lifetimes. We also develop a model for the distribution of cluster lifetimes, consistent with the function of barriers to lateral diffusion in maintaining MHC-I clusters. PMID:22500754
Language lateralization in healthy right-handers.
Knecht, S; Deppe, M; Dräger, B; Bobe, L; Lohmann, H; Ringelstein, E; Henningsen, H
2000-01-01
Our knowledge about the variability of cerebral language lateralization is derived from studies of patients with brain lesions and thus possible secondary reorganization of cerebral functions. In healthy right-handed subjects 'atypical', i.e. right hemisphere language dominance, has generally been assumed to be exceedingly rare. To test this assumption we measured language lateralization in 188 healthy subjects with moderate and strong right-handedness (59% females) by a new non-invasive, quantitative technique previously validated by direct comparison with the intracarotid amobarbital procedure. During a word generation task the averaged hemispheric perfusion differences within the territories of the middle cerebral arteries were determined. (i) The natural distribution of language lateralization was found to occur along a bimodal continuum. (ii) Lateralization was equivalent in men and women. (iii) Right hemisphere dominance was found in 7.5% of subjects. These findings indicate that atypical language dominance in healthy right-handed subjects of either sex is considerably more common than previously suspected.
Prenatal and pubertal testosterone affect brain lateralization.
Beking, T; Geuze, R H; van Faassen, M; Kema, I P; Kreukels, B P C; Groothuis, T G G
2018-02-01
After decades of research, the influence of prenatal testosterone on brain lateralization is still elusive, whereas the influence of pubertal testosterone on functional brain lateralization has not been investigated, although there is increasing evidence that testosterone affects the brain in puberty. We performed a longitudinal study, investigating the relationship between prenatal testosterone concentrations in amniotic fluid, pubertal testosterone concentrations in saliva, and brain lateralization (measured with functional Transcranial Doppler ultrasonography (fTCD)) of the Mental Rotation, Chimeric Faces and Word Generation tasks. Thirty boys and 30 girls participated in this study at the age of 15 years. For boys, we found a significant interaction effect between prenatal and pubertal testosterone on lateralization of Mental Rotation and Chimeric Faces. In the boys with low prenatal testosterone levels, pubertal testosterone was positively related to the strength of lateralization in the right hemisphere, while in the boys with high prenatal testosterone levels, pubertal testosterone was negatively related to the strength of lateralization. For Word Generation, pubertal testosterone was negatively related to the strength of lateralization in the left hemisphere in boys. For girls, we did not find any significant effects, possibly because their pubertal testosterone levels were in many cases below quantification limit. To conclude, prenatal and pubertal testosterone affect lateralization in a task-specific way. Our findings cannot be explained by simple models of prenatal testosterone affecting brain lateralization in a similar way for all tasks. We discuss alternative models involving age dependent effects of testosterone, with a role for androgen receptor distribution and efficiency. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Grammatical Analysis as a Distributed Neurobiological Function
Bozic, Mirjana; Fonteneau, Elisabeth; Su, Li; Marslen-Wilson, William D
2015-01-01
Language processing engages large-scale functional networks in both hemispheres. Although it is widely accepted that left perisylvian regions have a key role in supporting complex grammatical computations, patient data suggest that some aspects of grammatical processing could be supported bilaterally. We investigated the distribution and the nature of grammatical computations across language processing networks by comparing two types of combinatorial grammatical sequences—inflectionally complex words and minimal phrases—and contrasting them with grammatically simple words. Novel multivariate analyses revealed that they engage a coalition of separable subsystems: inflected forms triggered left-lateralized activation, dissociable into dorsal processes supporting morphophonological parsing and ventral, lexically driven morphosyntactic processes. In contrast, simple phrases activated a consistently bilateral pattern of temporal regions, overlapping with inflectional activations in L middle temporal gyrus. These data confirm the role of the left-lateralized frontotemporal network in supporting complex grammatical computations. Critically, they also point to the capacity of bilateral temporal regions to support simple, linear grammatical computations. This is consistent with a dual neurobiological framework where phylogenetically older bihemispheric systems form part of the network that supports language function in the modern human, and where significant capacities for language comprehension remain intact even following severe left hemisphere damage. PMID:25421880
Priming vs. Rhyming: Orthographic and Phonological Representations in the Left and Right Hemispheres
ERIC Educational Resources Information Center
Lindell, Annukka K.; Lum, Jarrad A. G.
2008-01-01
The right cerebral hemisphere has long been argued to lack phonological processing capacity. Recently, however, a sex difference in the cortical representation of phonology has been proposed, suggesting discrete left hemisphere lateralization in males and more distributed, bilateral representation of function in females. To evaluate this…
NASA Technical Reports Server (NTRS)
Wang, Jai-Ching; Watring, D.; Lehoczky. S. L.; Su, C. H.; Gillies, D.; Szofran, F.; Sha, Y. G.; Sha, Y. G.
1999-01-01
Infrared detected materials, such as Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te have energy gaps almost linearly proportional to their composition. Due to the wide separation of liquidus and solidus curves of their phase diagram, there are compositional segregation in both of the axial and radial directions of these crystals grown in the Bridgman system unidirectionally with constant growth rate. It is important to understand the mechanisms, which affect lateral segregation such that large radially uniform composition crystal can be produced. Following Coriel, etc's treatment, we have developed a theory to study the effect of a curved melt-solid interface shape on lateral composition distribution. The model is considered to be a cylindrical system with azimuthal symmetry and a curved melt-solid interface shape which can be expressed as a linear combination of a series of Bessell's functions. The results show that melt-solid interface shape has a dominant effect on the lateral composition distribution of these systems. For small values of beta, the solute concentration at the melt-solid interface scales linearly with interface shape with a proportional constant of the produce of beta and (1 -k), where beta = VR/D, with V as growth velocity, R as the sample radius, D as the diffusion constant and k as the distribution constant. A detailed theory will be presented. A computer code has been developed and simulations have been performed and compared with experimental results. These will be published in another paper.
NASA Technical Reports Server (NTRS)
Wang, Jai-Ching; Watring, Dale A.; Lehoczky, Sandor L.; Su, Ching-Hua; Gillies, Don; Szofran, Frank
1999-01-01
Infrared detector materials, such as Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te have energy gaps almost linearly proportional to its composition. Due to the wide separation of liquidus and solidus curves of their phase diagram, there are compositional segregations in both of axial and radial directions of these crystals grown in the Bridgman system unidirectionally with constant growth rate. It is important to understand the mechanisms which affect lateral segregation such that large uniform radial composition crystal is possible. Following Coriell, etc's treatment, we have developed a theory to study the effect of a curved melt-solid interface shape on the lateral composition distribution. The system is considered to be cylindrical system with azimuthal symmetric with a curved melt-solid interface shape which can be expressed as a linear combination of a series of Bessell's functions. The results show that melt-solid interface shape has a dominate effect on lateral composition distribution of these systems. For small values of b, the solute concentration at the melt-solid interface scales linearly with interface shape with a proportional constant of the product of b and (1 - k), where b = VR/D, with V as growth velocity, R as sample radius, D as diffusion constant and k as distribution constant. A detailed theory will be presented. A computer code has been developed and simulations have been performed and compared with experimental results. These will be published in another paper.
Verimli, Ural; Sehirli, Umit S
2016-09-01
The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.
Ripening of Semiconductor Nanoplatelets.
Ott, Florian D; Riedinger, Andreas; Ochsenbein, David R; Knüsel, Philippe N; Erwin, Steven C; Mazzotti, Marco; Norris, David J
2017-11-08
Ostwald ripening describes how the size distribution of colloidal particles evolves with time due to thermodynamic driving forces. Typically, small particles shrink and provide material to larger particles, which leads to size defocusing. Semiconductor nanoplatelets, thin quasi-two-dimensional (2D) particles with thicknesses of only a few atomic layers but larger lateral dimensions, offer a unique system to investigate this phenomenon. Experiments show that the distribution of nanoplatelet thicknesses does not defocus during ripening, but instead jumps sequentially from m to (m + 1) monolayers, allowing precise thickness control. We investigate how this counterintuitive process occurs in CdSe nanoplatelets. We develop a microscopic model that treats the kinetics and thermodynamics of attachment and detachment of monomers as a function of their concentration. We then simulate the growth process from nucleation through ripening. For a given thickness, we observe Ostwald ripening in the lateral direction, but none perpendicular. Thicker populations arise instead from nuclei that capture material from thinner nanoplatelets as they dissolve laterally. Optical experiments that attempt to track the thickness and lateral extent of nanoplatelets during ripening appear consistent with these conclusions. Understanding such effects can lead to better synthetic control, enabling further exploration of quasi-2D nanomaterials.
Distribution of protein motors along the lateral wall of the outer hair cell.
Wada, H; Usukura, H; Takeuchi, S; Sugawara, M; Kakehata, S; Ikeda, K
2001-12-01
The outer hair cell (OHC) plays an important role in the normal functioning of the cochlea, and cochlear amplification is believed to be based on OHC electromotility. This electromotility putatively arises from a conformational change of molecules, i.e., 'protein motors', which would be distributed along the plasma membrane. Although it has been assumed that protein motors are distributed in a restricted area of the plasma membrane, details of such distribution remain unclarified. In this study, first, in order to understand the difference in the stiffness along the cell axis, the local deformation of the OHC in response to hypotonic stimulation is analyzed by measuring the displacement of microspheres attached randomly to the lateral wall of the cell. As a result, the stiffness is expected to be constant throughout the region except in the apical part of the cell, and the stiffness of the apical part is expected to be higher than that of the other regions. Then, the local elongation and contraction of the OHC in response to sinusoidal voltage stimulation are analyzed by measuring the displacement of the microspheres in the same way as in the case of the hypotonic stimulation. From the two measurements mentioned above, it is concluded that there are no motors in the apical and basal parts of the cell, and that the motors are equally distributed along the cell lateral wall in the middle part of the cell.
TH-C-BRD-02: Analytical Modeling and Dose Calculation Method for Asymmetric Proton Pencil Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelover, E; Wang, D; Hill, P
2014-06-15
Purpose: A dynamic collimation system (DCS), which consists of two pairs of orthogonal trimmer blades driven by linear motors has been proposed to decrease the lateral penumbra in pencil beam scanning proton therapy. The DCS reduces lateral penumbra by intercepting the proton pencil beam near the lateral boundary of the target in the beam's eye view. The resultant trimmed pencil beams are asymmetric and laterally shifted, and therefore existing pencil beam dose calculation algorithms are not capable of trimmed beam dose calculations. This work develops a method to model and compute dose from trimmed pencil beams when using the DCS.more » Methods: MCNPX simulations were used to determine the dose distributions expected from various trimmer configurations using the DCS. Using these data, the lateral distribution for individual beamlets was modeled with a 2D asymmetric Gaussian function. The integral depth dose (IDD) of each configuration was also modeled by combining the IDD of an untrimmed pencil beam with a linear correction factor. The convolution of these two terms, along with the Highland approximation to account for lateral growth of the beam along the depth direction, allows a trimmed pencil beam dose distribution to be analytically generated. The algorithm was validated by computing dose for a single energy layer 5×5 cm{sup 2} treatment field, defined by the trimmers, using both the proposed method and MCNPX beamlets. Results: The Gaussian modeled asymmetric lateral profiles along the principal axes match the MCNPX data very well (R{sup 2}≥0.95 at the depth of the Bragg peak). For the 5×5 cm{sup 2} treatment plan created with both the modeled and MCNPX pencil beams, the passing rate of the 3D gamma test was 98% using a standard threshold of 3%/3 mm. Conclusion: An analytical method capable of accurately computing asymmetric pencil beam dose when using the DCS has been developed.« less
Subchondral bone density distribution of the talus in clinically normal Labrador Retrievers.
Dingemanse, W; Müller-Gerbl, M; Jonkers, I; Vander Sloten, J; van Bree, H; Gielen, I
2016-03-15
Bones continually adapt their morphology to their load bearing function. At the level of the subchondral bone, the density distribution is highly correlated with the loading distribution of the joint. Therefore, subchondral bone density distribution can be used to study joint biomechanics non-invasively. In addition physiological and pathological joint loading is an important aspect of orthopaedic disease, and research focusing on joint biomechanics will benefit veterinary orthopaedics. This study was conducted to evaluate density distribution in the subchondral bone of the canine talus, as a parameter reflecting the long-term joint loading in the tarsocrural joint. Two main density maxima were found, one proximally on the medial trochlear ridge and one distally on the lateral trochlear ridge. All joints showed very similar density distribution patterns and no significant differences were found in the localisation of the density maxima between left and right limbs and between dogs. Based on the density distribution the lateral trochlear ridge is most likely subjected to highest loads within the tarsocrural joint. The joint loading distribution is very similar between dogs of the same breed. In addition, the joint loading distribution supports previous suggestions of the important role of biomechanics in the development of OC lesions in the tarsus. Important benefits of computed tomographic osteoabsorptiometry (CTOAM), i.e. the possibility of in vivo imaging and temporal evaluation, make this technique a valuable addition to the field of veterinary orthopaedic research.
NASA Technical Reports Server (NTRS)
Goodman, J. A.; Gupta, S. C.; Freudenreich, H. T.; Sivaprasad, K.; Tonwar, S. C.; Yodh, G. B.; Ellsworth, R. W.; Goodman, M. C.; Bogert, M. C.; Burnstein, R.
1985-01-01
The distribution of muons near shower cores was studied at sea level at Fermilab using the E594 neutrino detector to sample the muon with E testing 3 GeV. These data are compared with detailed Monte Carlo simulations to derive conclusions about the composition of cosmic rays near the bend in the all particle spectrum. Monte Carlo simulations generating extensive air showers (EAS) with primary energy in excess of 50 TeV are described. Each shower record contains details of the electron lateral distribution and the muon and hadron lateral distributions as a function of energy, at the observation level of 100g/cm. The number of detected electrons and muons in each case was determined by a Poisson fluctuation of the number incident. The resultant predicted distribution of muons, electrons, the rate events are compared to those observed. Preliminary results on the rate favor a heavy primary dominated cosmic ray spectrum in energy range 50 to 1000 TeV.
NASA Astrophysics Data System (ADS)
Wilkinson, S. J.; Hukins, D. W. L.
1999-08-01
Elastic scattering of X-rays can provide the following information on the fibrous protein collagen: its molecular structure, the axial arrangement of rod-like collagen molecules in a fibril, the lateral arrangement of molecules within a fibril, and the orientation of fibrils within a biological tissue. The first part of the paper reviews the principles involved in deducing this information. The second part describes a new computer program for measuring the equatorial intensity distribution, that provides information on the lateral arrangement of molecules within a fibril, and the angular distribution of the equatorial peaks that provides information on the orientation of fibrils. Orientation of fibrils within a tissue is quantified by the orientation distribution function, g( φ), which represents the probability of finding a fibril oriented between φ and φ+ δφ. The application of the program is illustrated by measurement of g( φ) for the collagen fibrils in demineralised cortical bone from cow tibia.
Fiber types of the anterior and lateral cervical muscles in elderly males.
Cornwall, Jon; Kennedy, Ewan
2015-09-01
The anterior and lateral cervical muscles (ALCM) are generally considered to be postural, yet few studies have investigated ALCM fiber types to help clarify the function of these muscles. This study aimed to systematically investigate ALCM fiber types in cadavers. Anterior and lateral cervical muscles (four scalenus anterior, medius, posterior muscles; five longus colli, five longus capitis taken bilaterally from one cadaver) were removed from four male embalmed cadavers (mean age 87.25 years). Paraffin-embedded specimens were sectioned then stained immunohistochemically to identify type I and II skeletal muscle fibers. Proportional fiber type numbers and cross-sectional area (CSA) occupied by fiber types were determined using stereology (random systematic sampling). Results were analyzed using ANOVA (P < 0.05) and descriptive statistics. Scalenus anterior had the greatest average number and CSA of type I fibers (71.9 and 83.7%, respectively); longus capitis had the lowest number (48.5%) and CSA (61.4%). All scalene muscles had significantly greater type I CSA than longus capitis and longus colli; scalenus anterior and medius had significantly greater type I numbers than longus capitis and longus colli. Some significant differences were observed between individual cadavers in longus colli for CSA, and longus capitis for number. The ALCM do not share a common functional fiber type distribution, although similar fiber type distributions are shared by longus colli and longus capitis, and by the scalene muscles. Contrary to conventional descriptions, longus colli and longus capitis have type I fiber proportions indicative of postural as well as phasic muscle function.
Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George
2013-01-01
How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697
Measuring the muon content of air showers with IceTop
NASA Astrophysics Data System (ADS)
Gonzalez, Javier G.
2015-08-01
IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300 m) from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We will also discuss the prospects for low energy muon studies with IceTop.
Grammatical analysis as a distributed neurobiological function.
Bozic, Mirjana; Fonteneau, Elisabeth; Su, Li; Marslen-Wilson, William D
2015-03-01
Language processing engages large-scale functional networks in both hemispheres. Although it is widely accepted that left perisylvian regions have a key role in supporting complex grammatical computations, patient data suggest that some aspects of grammatical processing could be supported bilaterally. We investigated the distribution and the nature of grammatical computations across language processing networks by comparing two types of combinatorial grammatical sequences--inflectionally complex words and minimal phrases--and contrasting them with grammatically simple words. Novel multivariate analyses revealed that they engage a coalition of separable subsystems: inflected forms triggered left-lateralized activation, dissociable into dorsal processes supporting morphophonological parsing and ventral, lexically driven morphosyntactic processes. In contrast, simple phrases activated a consistently bilateral pattern of temporal regions, overlapping with inflectional activations in L middle temporal gyrus. These data confirm the role of the left-lateralized frontotemporal network in supporting complex grammatical computations. Critically, they also point to the capacity of bilateral temporal regions to support simple, linear grammatical computations. This is consistent with a dual neurobiological framework where phylogenetically older bihemispheric systems form part of the network that supports language function in the modern human, and where significant capacities for language comprehension remain intact even following severe left hemisphere damage. Copyright © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
He, Ping; Lei, Jianshe; Yuan, Xiaohui; Xu, Xiwei; Xu, Qiang; Liu, Zhikun; Mi, Qi; Zhou, Lianqing
2018-05-01
The lateral Moho variations and the geometry of the Main Himalayan Thrust under the Nepal Himalayan orogen are investigated to determine a new crustal model using a large number of high-quality receiver functions recorded by the HIMNT and HiCLIMB portable seismic networks. Our new model shows an evident and complicated lateral Moho depth variation of 8-16 km in the east-west direction, which is related to the surface tectonic features. These results suggest a non-uniformed crustal deformation, resulted from the splitting and/or tearing of the Indian plate during the northward subduction. Our migrated receiver function images illustrate a discernible ramp structure of the Main Himalayan Thrust with an abrupt downward bending close to the hypocenter of the 2015 Gorkha Mw 7.8 earthquake. The distribution of the aftershocks coincides with the present decollement structure. Integrating previous magnetotelluric soundings and tomographic results, our results suggest that the ramp-shaped structure within the Main Himalayan Thrust could enhance stress concentration leading to the nucleation of the large earthquake. Our new crustal model provides new clues to the formation of the Himalayan orogen.
Ibrahim, George M; Morgan, Benjamin R; Doesburg, Sam M; Taylor, Margot J; Pang, Elizabeth W; Donner, Elizabeth; Go, Cristina Y; Rutka, James T; Snead, O Carter
2015-04-01
Epilepsy is associated with disruption of integration in distributed networks, together with altered localization for functions such as expressive language. The relation between atypical network connectivity and altered localization is unknown. In the current study we tested whether atypical expressive language laterality was associated with the alteration of large-scale network integration in children with medically-intractable localization-related epilepsy (LRE). Twenty-three right-handed children (age range 8-17) with medically-intractable LRE performed a verb generation task in fMRI. Language network activation was identified and the Laterality index (LI) was calculated within the pars triangularis and pars opercularis. Resting-state data from the same cohort were subjected to independent component analysis. Dual regression was used to identify associations between resting-state integration and LI values. Higher positive values of the LI, indicating typical language localization were associated with stronger functional integration of various networks including the default mode network (DMN). The normally symmetric resting-state networks showed a pattern of lateralized connectivity mirroring that of language function. The association between atypical language localization and network integration implies a widespread disruption of neural network development. These findings may inform the interpretation of localization studies by providing novel insights into reorganization of neural networks in epilepsy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Developmental instability and schizotypy.
Rosa, A; van Os, J; Fañanás, L; Barrantes, N; Caparrós, B; Gutiérrez, B; Obiols, J
2000-06-16
It has been suggested that evidence of developmental disturbance of cognition and lateralisation in schizophrenia can be best understood from the perspective of developmental stability (DS), an indicator of the extent to which an individual develops according to a specified ontogenic programme in the presence of environmental noise. Higher levels of fluctuating asymmetry (FA; the difference between right and left side of a quantitative morphological trait such as dermatoglyphics) are thought to reflect less DS. We examined this issue for dimensions of schizotypy. Associations between FA, measures of laterality and cognitive function on the one hand, and negative and positive dimensions of schizotypy on the other, were examined in a sample of 260 healthy adolescents aged 11.9-15.6years. FA was measured as a-b ridge count right-left differences. Neuropsychological measures yielded a general cognitive ability score and a frontal function score. Laterality was assessed with the Annett scale. Measures of psychosis proneness were normally distributed. Negative schizotypy was associated with more FA and lower general cognitive ability in a dose-response fashion. The association with FA was more apparent in boys. No associations existed with laterality or frontal function. The negative dimension of schizotypy may be associated with early developmental instability, resembling the pattern seen in the negative symptom dimension of schizophrenia. Measures of fluctuating asymmetry may be more sensitive with regard to the schizotypy phenotype than measures of laterality.
Mazoyer, Bernard; Zago, Laure; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Perchey, Guy; Mellet, Emmanuel; Petit, Laurent; Tzourio-Mazoyer, Nathalie
2014-01-01
Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH). A hemispheric functional lateralization index (HFLI) for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH) and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely “Typical” (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH), “Ambilateral” (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH) and “Strongly-atypical” (right-hemisphere dominance with clear negative HFLI values, 7% of LH). Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population) who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance. PMID:24977417
Mazoyer, Bernard; Zago, Laure; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Perchey, Guy; Mellet, Emmanuel; Petit, Laurent; Tzourio-Mazoyer, Nathalie
2014-01-01
Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH). A hemispheric functional lateralization index (HFLI) for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH) and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely "Typical" (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH), "Ambilateral" (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH) and "Strongly-atypical" (right-hemisphere dominance with clear negative HFLI values, 7% of LH). Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population) who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.
NASA Astrophysics Data System (ADS)
Syaina, L. P.; Majidi, M. A.
2018-04-01
Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.
Cerebral asymmetry for mental rotation: effects of response hand, handedness and gender.
Johnson, Blake W; McKenzie, Kirsten J; Hamm, Jeff P
2002-10-28
We assessed lateralization of brain function during mental rotation, measuring the scalp distribution of a 400-600 ms latency event-related potential (ERP) with 128 recording electrodes. Twenty-four subjects, consisting of equal numbers of dextral and sinistral males and females, performed a mental rotation task under two response conditions (dominant non-dominant hand). For males, ERPs showed a right parietal bias regardless of response hand. For females, the parietal ERPs were slightly left-lateralized when making dominant hand responses, but strongly right-lateralized when making non-dominant hand responses. These results support the notion that visuo-spatial processing is more bilaterally organized in females. However, left hemisphere resources may be allocated to response preparation when using the non-dominant hand, forcing visuo-spatial processing to the right hemisphere.
NASA Astrophysics Data System (ADS)
Coy, R. N.; Cunningham, G.; Pryke, C. L.; Watson, A. A.
1997-03-01
Measurements of the lateral distribution function (ldf) of Extensive Air Showers (EAS) as recorded by the array of water-Čerenkov detectors at Haverah Park are described, and accurate experimental parameterizations expressing the mean ldf for 2 × 10 17 < E < 4 × 10 18 eV, 50 < r < 700 m, and θ < 45° are given. An extrapolation of these relations to the regime E ≥ 10 19 eV and r > 700 m is described: extrapolation in this energy domain appears valid, and an approximate correction term is given for the larger core distances. The results of recent Monte Carlo simulations of shower development and detector behavior are compared to the parameterized ldf. The agreement is good increasing confidence that these simulations may be trusted as design tools for the Auger project, a proposed 'next generation' detector system.
Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.
McAleavey, Stephen
2011-01-01
We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.
Flores-Rivera, E; Villegas-Castrejon, H; Vazquez-Nin, G H
1996-04-01
The synaptonemal complexes (SCs) are nuclear structures specific for meiosis. They have a central role in homolog chromosomes coupling; they are essential in crossing over events and chromosomic segregation during the first meiotic division. When its joining ends in pakiteno stage, each synaptonemal extends along the bivalent joining the ends to nuclear wrapping. The SCs are characterized by the presence of two lateral elements and a central region. The lateral elements are parallel and equidistant. The chromatine of homolog chromosomes fixes in a series of loops to these elements. The central region is between the lateral elements. It is formed by the latero-medial fibers and the medial element. The first ones are perpendicularly oriented to the longitudinal axis of CS and connect lateral elements with the medial element. The recombination modules have an active role in recombination processes and quiasma formation, they are associated, at intervals, with the central region among the homolog chromosomes. The localization and function of nucleic acids in formation and coupling of synaptonemal complex is little known, so methodologic alternatives are looked for to resolve this type of problems. In this work, ADN distribution in chicken ovocytes in cigotene, using techniques for electronic microscopy of immuno-oro, were studied. Besides, cytochemical techniques, were used as preferential contrast for ADN or preferential for ribonucleoproteins (RNPs). The combination of preferential tincture for RNPs and immunolocalization of ADN show that chromatin accumulates jointly with ribonucleoproteins in nor coupled lateral elements and the presence of numerous RNPs fibers distributed around lateral elements. Recombination nodules were found among lateral elements during the coupling, these nodules are PTA positives, which means ADN presence, and so, ADN presence among lateral elements. THe presence of a bridge of marked fibers with coloidal gold (ADN) uniting not coupled lateral elements, suggests ADN as a sort of macromollecule forming synapsis sites.
Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn
2017-06-21
The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.
The hump in the Cerenkov lateral distribution of gamma ray showers
NASA Technical Reports Server (NTRS)
Sinha, S.; Sao, M. V. S.
1985-01-01
The lateral distribution of atmospheric Cerenkov photons emitted by gamma ray showers of energy 100 GeV is calculated. The lateral distribution shows a characteristic hump at a distance of approx. 135 meter from the core. The hump is shown to be due to electrons of threshold energy 1 GeV, above which the mean scattering angle becomes smaller than the Cerenkov angle.
Scanning Probe Microscopy for Identifying the Component Materials of a Nanostripe Structure
NASA Astrophysics Data System (ADS)
Mizuno, Akira; Ando, Yasuhisa
2010-08-01
The authors prepared a nanostripe structure in which two types of metal are arranged alternately, and successfully identified the component materials using scanning probe microscopy (SPM) to measure the lateral force distribution image. The nanostripe structure was prepared using a new method developed by the authors and joint development members. The lateral force distribution image was measured in both friction force microscopy (FFM) and lateral modulation friction force microscopy (LM-FFM) modes. In FFM mode, the effect of slope angle appeared in the lateral force distribution image; therefore, no difference in the type of material was observed. On the other hand, in LM-FFM mode, the effect of surface curvature was observed in the lateral force distribution image. A higher friction force on chromium than on gold was identified, enabling material identification.
Testing the anisotropy in the angular distribution of Fermi/GBM gamma-ray bursts
NASA Astrophysics Data System (ADS)
Tarnopolski, M.
2017-12-01
Gamma-ray bursts (GRBs) were confirmed to be of extragalactic origin due to their isotropic angular distribution, combined with the fact that they exhibited an intensity distribution that deviated strongly from the -3/2 power law. This finding was later confirmed with the first redshift, equal to at least z = 0.835, measured for GRB970508. Despite this result, the data from CGRO/BATSE and Swift/BAT indicate that long GRBs are indeed distributed isotropically, but the distribution of short GRBs is anisotropic. Fermi/GBM has detected 1669 GRBs up to date, and their sky distribution is examined in this paper. A number of statistical tests are applied: nearest neighbour analysis, fractal dimension, dipole and quadrupole moments of the distribution function decomposed into spherical harmonics, binomial test and the two-point angular correlation function. Monte Carlo benchmark testing of each test is performed in order to evaluate its reliability. It is found that short GRBs are distributed anisotropically in the sky, and long ones have an isotropic distribution. The probability that these results are not a chance occurrence is equal to at least 99.98 per cent and 30.68 per cent for short and long GRBs, respectively. The cosmological context of this finding and its relation to large-scale structures is discussed.
Illness as a source of variation of laterality in lions (Panthera leo).
Zucca, Paolo; Baciadonna, Luigi; Masci, Stefano; Mariscoli, Massimo
2011-05-01
Brain asymmetry--i.e. the specialisation of each cerebral hemisphere for sensorimotor processing mechanisms and for specific cognitive functions-is widely distributed among vertebrates. Several factors, such as embryological manipulations, sex, age, and breeds, can influence the maintenance, strength, and direction of laterality within a certain vertebrate species. Brain lateralisation is a universal phenomenon characterising not only cerebral control of cognitive or emotion-related functions but also cerebral regulation of somatic processes, and its evolution is strongly influenced by social selection pressure. Diseases are well known to be a cost of sociality but their role in influencing behaviour has received very little attention. The present study investigates the influence of illness conditions as a source of variation on laterality in a social keystone vertebrate predator model, the lion. In a preliminary stage, the clinical conditions of 24 adult lions were assessed. The same animals were scored for forelimb preference when in the quadrupedal standing position. Lions show a marked forelimb preference with a population bias towards the use of the right forelimb. Illness conditions strongly influenced the strength of laterality bias, with a significant difference between clinically healthy and sick lions. According to these results, health conditions should be recognised as an important source of variation in brain lateralisation.
Atypical hemispheric dominance for attention: functional MRI topography.
Flöel, Agnes; Jansen, Andreas; Deppe, Michael; Kanowski, Martin; Konrad, Carsten; Sommer, Jens; Knecht, Stefan
2005-09-01
The right hemisphere is predominantly involved in tasks associated with spatial attention. However, left hemispheric dominance for spatial attention can be found in healthy individuals, and both spatial attention and language can be lateralized to the same hemisphere. Little is known about the underlying regional distribution of neural activation in these 'atypical' individuals. Previously a large number of healthy subjects were screened for hemispheric dominance of visuospatial attention and language, using functional Doppler ultrasonography. From this group, subjects were chosen who were 'atypical' for hemispheric dominance of visuospatial attention and language, and their pattern of brain activation was studied with functional magnetic resonance imaging during a task probing spatial attention. Right-handed subjects with the 'typical' pattern of brain organization served as control subjects. It was found that subjects with an inverted lateralization of language and spatial attention (language right, attention left) recruited left-hemispheric areas in the attention task, homotopic to those recruited by control subjects in the right hemisphere. Subjects with lateralization of both language and attention to the right hemisphere activated an attentional network in the right hemisphere that was comparable to control subjects. The present findings suggest that not the hemispheric side, but the intrahemispheric pattern of activation is the distinct feature for the neural processes underlying language and attention.
Vertebrate Left-Right Asymmetry: What Can Nodal Cascade Gene Expression Patterns Tell Us?
Schweickert, Axel; Ott, Tim; Kurz, Sabrina; Tingler, Melanie; Maerker, Markus; Fuhl, Franziska; Blum, Martin
2017-12-29
Laterality of inner organs is a wide-spread characteristic of vertebrates and beyond. It is ultimately controlled by the left-asymmetric activation of the Nodal signaling cascade in the lateral plate mesoderm of the neurula stage embryo, which results from a cilia-driven leftward flow of extracellular fluids at the left-right organizer. This scenario is widely accepted for laterality determination in wildtype specimens. Deviations from this norm come in different flavors. At the level of organ morphogenesis, laterality may be inverted (situs inversus) or non-concordant with respect to the main body axis (situs ambiguus or heterotaxia). At the level of Nodal cascade gene activation, expression may be inverted, bilaterally induced, or absent. In a given genetic situation, patterns may be randomized or predominantly lacking laterality (absence or bilateral activation). We propose that the distributions of patterns observed may be indicative of the underlying molecular defects, with randomizations being primarily caused by defects in the flow-generating ciliary set-up, and symmetrical patterns being the result of impaired flow sensing, on the left, the right, or both sides. This prediction, the reasoning of which is detailed in this review, pinpoints functions of genes whose role in laterality determination have remained obscure.
2015-01-01
The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation. PMID:25328493
Huang, Kun; García, Angel E
2014-10-14
The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl- sn -glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation.
The large-scale organization of shape processing in the ventral and dorsal pathways
Culham, Jody C; Plaut, David C; Behrmann, Marlene
2017-01-01
Although shape perception is considered a function of the ventral visual pathway, evidence suggests that the dorsal pathway also derives shape-based representations. In two psychophysics and neuroimaging experiments, we characterized the response properties, topographical organization and perceptual relevance of these representations. In both pathways, shape sensitivity increased from early visual cortex to extrastriate cortex but then decreased in anterior regions. Moreover, the lateral aspect of the ventral pathway and posterior regions of the dorsal pathway were sensitive to the availability of fundamental shape properties, even for unrecognizable images. This apparent representational similarity between the posterior-dorsal and lateral-ventral regions was corroborated by a multivariate analysis. Finally, as with ventral pathway, the activation profile of posterior dorsal regions was correlated with recognition performance, suggesting a possible contribution to perception. These findings challenge a strict functional dichotomy between the pathways and suggest a more distributed model of shape processing. PMID:28980938
Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows
Hyndes, Glenn A.; Heck, Kenneth L.; Vergés, Adriana; Harvey, Euan S.; Kendrick, Gary A.; Lavery, Paul S.; McMahon, Kathryn; Orth, Robert J.; Pearce, Alan; Vanderklift, Mathew; Wernberg, Thomas; Whiting, Scott; Wilson, Shaun
2016-01-01
Abstract Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more direct-consumption-based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions. PMID:28533562
Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows.
Hyndes, Glenn A; Heck, Kenneth L; Vergés, Adriana; Harvey, Euan S; Kendrick, Gary A; Lavery, Paul S; McMahon, Kathryn; Orth, Robert J; Pearce, Alan; Vanderklift, Mathew; Wernberg, Thomas; Whiting, Scott; Wilson, Shaun
2016-11-01
Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more direct-consumption-based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions.
NASA Technical Reports Server (NTRS)
Messiter, A. F.
1979-01-01
Analytical solutions are derived which incorporate additional physical effects as higher order terms for the case when the sonic line is very close to the wall. The functional form used for the undisturbed velocity profile is described to indicate how various parameters will be calculated for later comparison with experiment. The basic solutions for the pressure distribution are derived. Corrections are added for flow along a wall having longitudinal curvature and for flow in a circular pipe, and comparisons with available experimental data are shown.
Yuan, Cheng-song; Chen, Wan; Chen, Chen; Yang, Guang-hua; Hu, Chao; Tang, Kang-lai
2015-01-01
We investigated the effects on subtalar joint stress distribution after cannulated screw insertion at different positions and directions. After establishing a 3-dimensional geometric model of a normal subtalar joint, we analyzed the most ideal cannulated screw insertion position and approach for subtalar joint stress distribution and compared the differences in loading stress, antirotary strength, and anti-inversion/eversion strength among lateral-medial antiparallel screw insertion, traditional screw insertion, and ideal cannulated screw insertion. The screw insertion approach allowing the most uniform subtalar joint loading stress distribution was lateral screw insertion near the border of the talar neck plus medial screw insertion close to the ankle joint. For stress distribution uniformity, antirotary strength, and anti-inversion/eversion strength, lateral-medial antiparallel screw insertion was superior to traditional double-screw insertion. Compared with ideal cannulated screw insertion, slightly poorer stress distribution uniformity and better antirotary strength and anti-inversion/eversion strength were observed for lateral-medial antiparallel screw insertion. Traditional single-screw insertion was better than double-screw insertion for stress distribution uniformity but worse for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion was slightly worse for stress distribution uniformity than was ideal cannulated screw insertion but superior to traditional screw insertion. It was better than both ideal cannulated screw insertion and traditional screw insertion for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion is an approach with simple localization, convenient operation, and good safety. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Functional network centrality in obesity: A resting-state and task fMRI study.
García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane
2015-09-30
Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Path-integral theory of an axially confined worm-like chain
NASA Astrophysics Data System (ADS)
Smith, D. A.
2001-06-01
A path-integral formulation is developed for the thermodynamic properties of a worm-like chain moving on a surface and laterally confined by a harmonic potential. The free energy of the chain is calculated as a function of its length and boundary conditions at each end. Distribution functions for chain displacements can be constructed by utilizing the Markov property as a function of displacement φ(s) and its derivative dφ(s)/ds along the path. These quantities are also calculated in the presence of pinning sites which impose fixed positive or negative displacements, foreshadowing their application to a model for the regulation of striated muscle.
Sadananda, Monika; Bischof, Hans-Joachim
2006-08-23
The lateral forebrain of zebra finches that comprises parts of the lateral nidopallium and parts of the lateral mesopallium is supposed to be involved in the storage and processing of visual information acquired by an early learning process called sexual imprinting. This information is later used to select an appropriate sexual partner for courtship behavior. Being involved in such a complicated behavioral task, the lateral nidopallium should be an integrative area receiving input from many other regions of the brain. Our experiments indeed show that the lateral nidopallium receives input from a variety of telencephalic regions including the primary and secondary areas of both visual pathways, the globus pallidus, the caudolateral nidopallium functionally comparable to the prefrontal cortex, the caudomedial nidopallium involved in song perception and storage of song-related memories, and some parts of the arcopallium. There are also a number of thalamic, mesencephalic, and brainstem efferents including the catecholaminergic locus coeruleus and the unspecific activating reticular formation. The spatial distribution of afferents suggests a compartmentalization of the lateral nidopallium into several subdivisions. Based on its connections, the lateral nidopallium should be considered as an area of higher order processing of visual information coming from the tectofugal and the thalamofugal visual pathways. Other sensory modalities and also motivational factors from a variety of brain areas are also integrated here. These findings support the idea of an involvement of the lateral nidopallium in imprinting and the control of courtship behavior.
Cholinergic and nitrergic neuronal networks in the goldfish telencephalon.
Giraldez-Perez, Rosa M; Gaytan, Susana P; Pasaro, Rosario
2013-01-01
The general organization of cholinergic and nitrergic elements in the central nervous system seems to be highly conserved among vertebrates, with the involvement of these neurotransmitter systems now well established in sensory, motor and cognitive processing. The goldfish is a widely used animal model in neuroanatomical, neurophysiological, and behavioral research. The purpose of this study was to examine pallial and subpallial cholinoceptive, cholinergic and nitrergic populations in the goldfish telencephalon by means of histochemical and immunohistochemical techniques in order to identify neurons containing acetylcholinesterase (AChE), choline acetyltransferase (ChAT), NADPH-diaphorase (NADPHd), and neuronal nitric oxide synthase (nNOS), and to relate their distribution to their putative functional significance. Regions containing AChE-labeled neurons represented terminal fields of cholinergic inputs as well as a widespread distribution of AChE-related enzymes; these regions also usually contained NADPHd-labeled neurons and often contained small numbers of nNOS-positive cells. However, the ventral subdivisions of the medial and lateral parts of the dorsal telencephalic area, and the ventral and lateral parts of the ventral telencephalic area, were devoid of nNOS-labeled cells. ChAT-positive neurons were found only in the lateral part of the ventral telencephalic area. ChAT- and nNOS-positive fibers exhibited a radial orientation, and were seen as thin axons with en-passant boutons. The distribution of these elements could help to elucidate the role of cholinergic and nitrergic neuronal networks in the goldfish telencephalon.
Choi, Wonsik; Seabron, Eric; Mohseni, Parsian K; Kim, Jeong Dong; Gokus, Tobias; Cernescu, Adrian; Pochet, Pascal; Johnson, Harley T; Wilson, William L; Li, Xiuling
2017-02-28
Selective lateral epitaxial (SLE) semiconductor nanowires (NWs), with their perfect in-plane epitaxial alignment, ability to form lateral complex p-n junctions in situ, and compatibility with planar processing, are a distinctive platform for next-generation device development. However, the incorporation and distribution of impurity dopants in these planar NWs via the vapor-liquid-solid growth mechanism remain relatively unexplored. Here, we present a detailed study of SLE planar GaAs NWs containing multiple alternating axial segments doped with Si and Zn impurities by metalorganic chemical vapor deposition. The dopant profile of the lateral multi-p-n junction GaAs NWs was imaged simultaneously with nanowire topography using scanning microwave impedance microscopy and correlated with infrared scattering-type near-field optical microscopy. Our results provide unambiguous evidence that Zn dopants in the periodically twinned and topologically corrugated p-type segments are preferentially segregated at twin plane boundaries, while Si impurity atoms are uniformly distributed within the n-type segments of the NWs. These results are further supported by microwave impedance modulation microscopy. The density functional theory based modeling shows that the presence of Zn dopant atoms reduces the formation energy of these twin planes, and the effect becomes significantly stronger with a slight increase of Zn concentration. This implies that the twin formation is expected to appear when a threshold planar concentration of Zn is achieved, making the onset and twin periodicity dependent on both Zn concentration and nanowire diameter, in perfect agreement with our experimental observations.
The vomeronasal organ of the cat.
Salazar, I; Sanchez Quinteiro, P; Cifuentes, J M; Garcia Caballero, T
1996-01-01
The vomeronasal organ of the cat was studied macroscopically, by light microscopy and by immunohistochemical techniques. Special attention was paid to the general distribution of the various soft tissue components of this organ (duct, glands, connective tissue, blood vessels and nerves.) Examination of series of transverse sections showed that the wall of the vomeronasal duct bears 44 different types of epithelium: simple columnar in the caudal part of the duct, respiratory and receptor respectively on the lateral and medial walls of the middle part of the duct, and stratified squamous rostrally. The pattern of distribution of other soft tissue components was closely associated with that of epithelium types. In areas where the duct wall was lined with receptor epithelium, nerves and connective tissue were present between the epithelium and the medial sheet of the vomeronasal cartilage. Most glands and blood vessels were located lateral to those areas of the duct wall lined with respiratory epithelium. Numerous basal cells were present in the sensory epithelium. Understanding of the distribution of the soft tissue components of this organ may shed light on its function. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Figs. 13-14 PMID:8621344
Measurements of water uptake of maize roots: the key function of lateral roots
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.
2014-12-01
Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be efficient in extracting water from the subsoil and better tolerate periods of water shortage. However, in this case the xylem axial resistance could be the limiting factor for the uptake of water.
Yin, Dazhi; Liu, Wenjing; Zeljic, Kristina; Wang, Zhiwei; Lv, Qian; Fan, Mingxia; Cheng, Wenhong; Wang, Zheng
2016-09-28
Extensive evidence suggests that frontoparietal regions can dynamically update their pattern of functional connectivity, supporting cognitive control and adaptive implementation of task demands. However, it is largely unknown whether this flexibly functional reconfiguration is intrinsic and occurs even in the absence of overt tasks. Based on recent advances in dynamics of resting-state functional resonance imaging (fMRI), we propose a probabilistic framework in which dynamic reconfiguration of intrinsic functional connectivity between each brain region and others can be represented as a probability distribution. A complexity measurement (i.e., entropy) was used to quantify functional flexibility, which characterizes heterogeneous connectivity between a particular region and others over time. Following this framework, we identified both functionally flexible and specialized regions over the human life span (112 healthy subjects from 13 to 76 years old). Across brainwide regions, we found regions showing high flexibility mainly in the higher-order association cortex, such as the lateral prefrontal cortex (LPFC), lateral parietal cortex, and lateral temporal lobules. In contrast, visual, auditory, and sensory areas exhibited low flexibility. Furthermore, we observed that flexibility of the right LPFC improved during maturation and reduced due to normal aging, with the opposite occurring for the left lateral parietal cortex. Our findings reveal dissociable changes of frontal and parietal cortices over the life span in terms of inherent functional flexibility. This study not only provides a new framework to quantify the spatiotemporal behavior of spontaneous brain activity, but also sheds light on the organizational principle behind changes in brain function across the human life span. Recent neuroscientific research has demonstrated that the human capability of adaptive task control is primarily the result of the flexible operation of frontal brain networks. However, it remains unclear whether this flexibly functional reconfiguration is intrinsic and occurs in the absence of an overt task. In this study, we propose a probabilistic framework to quantify the functional flexibility of each brain region using resting-state fMRI. We identify regions showing high flexibility mainly in the higher-order association cortex. In contrast, primary and unimodal visual and sensory areas show low flexibility. On the other hand, our findings reveal dissociable changes of frontal and parietal cortices in terms of inherent functional flexibility over the life span. Copyright © 2016 the authors 0270-6474/16/3610060-15$15.00/0.
Laterality patterns of brain functional connectivity: gender effects.
Tomasi, Dardo; Volkow, Nora D
2012-06-01
Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism).
Laterality Patterns of Brain Functional Connectivity: Gender Effects
Tomasi, Dardo; Volkow, Nora D.
2012-01-01
Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism). PMID:21878483
Variable parameter McCarthy-Muskingum routing method considering lateral flow
NASA Astrophysics Data System (ADS)
Yadav, Basant; Perumal, Muthiah; Bardossy, Andras
2015-04-01
The fully mass conservative variable parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price (2013) for routing floods in channels and rivers without considering lateral flow is extended herein for accounting uniformly distributed lateral flow contribution along the reach. The proposed procedure is applied for studying flood wave movement in a 24.2 km river stretch between Rottweil and Oberndorf gauging stations of Neckar River in Germany wherein significant lateral flow contribution by intermediate catchment rainfall prevails during flood wave movement. The geometrical elements of the cross-sectional information of the considered routing river stretch without considering lateral flow are estimated using the Robust Parameter Estimation (ROPE) algorithm that allows for arriving at the best performing set of bed width and side slope of a trapezoidal section. The performance of the VPMM method is evaluated using the Nash-Sutcliffe model efficiency criterion as the objective function to be maximized using the ROPE algorithm. The twenty-seven flood events in the calibration set are considered to identify the relationship between 'total rainfall' and 'total losses' as well as to optimize the geometric characteristics of the prismatic channel (width and slope of the trapezoidal section). Based on this analysis, a relationship between total rainfall and total loss of the intermediate catchment is obtained and then used to estimate the lateral flow in the reach. Assuming the lateral flow hydrograph is of the form of inflow hydrograph and using the total intervening catchment runoff estimated from the relationship, the uniformly distributed lateral flow rate qL at any instant of time is estimated for its use in the VPMM routing method. All the 27 flood events are simulated using this routing approach considering lateral flow along the reach. Many of these simulations are able to simulate the observed hydrographs very closely. The proposed approach of accounting lateral flow using the VPMM method is independently verified by routing flood hydrograph of 6 flood events which are not used in the total rainfall vs total loss relationship established for the intervening catchment of the studied river reach. Close reproduction of the outflow hydrographs of these independent events using the proposed VPMM method accounting for lateral flow demonstrate the practical utility of the method.
NASA Technical Reports Server (NTRS)
Hussain, A. K. M. F.
1980-01-01
Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.
Brown, Erika E. A.
2016-01-01
The morphology and distribution of lateral line neuromasts vary between ecomorphological types of anuran tadpoles, but little is known about how this structural variability contributes to differences in lateral-line mediated behaviors. Previous research identified distinct differences in one such behavior, positive rheotaxis towards the source of a flow, in two tadpole species, the African clawed frog (Xenopus laevis; type 1) and the American bullfrog (Rana catesbeiana; type 4). Because these two species had been tested under different flow conditions, we re-evaluated these findings by quantifying flow-sensing behaviors of bullfrog tadpoles in the same flow field in which X. laevis tadpoles had been tested previously. Early larval bullfrog tadpoles were exposed to flow in the dark, in the presence of a discrete light cue, and after treatment with the ototoxin gentamicin. In response to flow, tadpoles moved downstream, closer to a side wall, and higher in the water column, but they did not station-hold. Tadpoles exhibited positive rheotaxis, but with long latencies, low to moderate accuracy, and considerable individual variability. This is in contrast to the robust, stereotyped station-holding and accurate rheotaxis of X. laevis tadpoles. The presence of a discrete visual cue and gentamicin treatment altered spatial positioning and disrupted rheotaxis in both tadpole species. Species differences in lateral-line mediated behaviors may reflect differences in neuromast number and distribution, life history, or perceptual salience of other environmental cues. PMID:27870909
Truncation of the Binary Distribution Function in Globular Cluster Formation
NASA Astrophysics Data System (ADS)
Vesperini, E.; Chernoff, David F.
1996-02-01
We investigate a population of primordial binaries during the initial stage of evolution of a star cluster. For our calculations we assume that equal-mass stars form rapidly in a tidally truncated gas cloud, that ˜10% of the stars are in binaries, and that the resulting star cluster undergoes an epoch of violent relaxation. We study the collisional interaction of the binaries and single stars, in particular, the ionization of the binaries and the energy exchange between binaries and single stars. We find that for large N systems (N > 1000), even the most violent beginning leaves the binary distribution function largely intact. Hence, the binding energy originally tied up in the cloud's protostellar pairs is preserved during the relaxation process, and the binaries are available to interact at later times within the virialized cluster.
Temporal Lobe White Matter Asymmetry and Language Laterality in Epilepsy Patients
Ellmore, Timothy M.; Beauchamp, Michael S.; Breier, Joshua I.; Slater, Jeremy D.; Kalamangalam, Giridhar P.; O’Neill, Thomas J.; Disano, Michael A.; Tandon, Nitin
2009-01-01
Recent studies using diffusion tensor imaging (DTI) have advanced our knowledge of the organization of white matter subserving language function. It remains unclear, however, how DTI may be used to predict accurately a key feature of language organization: its asymmetric representation in one cerebral hemisphere. In this study of epilepsy patients with unambiguous lateralization on Wada testing (19 left and 4 right lateralized subjects; no bilateral subjects), the predictive value of DTI for classifying the dominant hemisphere for language was assessed relative to the existing standard - the intra-carotid Amytal (Wada) procedure. Our specific hypothesis is that language laterality in both unilateral left- and right-hemisphere language dominant subjects may be predicted by hemispheric asymmetry in the relative density of three white matter pathways terminating in the temporal lobe implicated in different aspects of language function: the arcuate (AF), uncinate (UF), and inferior longitudinal fasciculi (ILF). Laterality indices computed from asymmetry of high anisotropy AF pathways, but not the other pathways, classified the majority (19 of 23) of patients using the Wada results as the standard. A logistic regression model incorporating information from DTI of the AF, fMRI activity in Broca’s area, and handedness was able to classify 22 of 23 (95.6%) patients correctly according to their Wada score. We conclude that evaluation of highly anisotropic components of the AF alone has significant predictive power for determining language laterality, and that this markedly asymmetric distribution in the dominant hemisphere may reflect enhanced connectivity between frontal and temporal sites to support fluent language processes. Given the small sample reported in this preliminary study, future research should assess this method on a larger group of patients, including subjects with bihemispheric dominance. PMID:19874899
Land, Peter W; Kyonka, E; Shamalla-Hannah, L
2004-01-23
We used immunohistochemistry to localize vesicular glutamate transporters VGLUT1 and VGLUT2 in the rat lateral geniculate nucleus. The lateral geniculate nucleus is intensely immunoreactive for both transporters. Monocular eye removal abolished staining for VGLUT2 in a pattern corresponding to the distribution of terminals from the missing eye, without affecting distribution of VGLUT1 immunoreactivity. These data indicate retinal ganglion cells are the source of VGLUT2-containing synapses in the lateral geniculate nucleus.
Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.
2017-03-01
Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.
A Dual Power Law Distribution for the Stellar Initial Mass Function
NASA Astrophysics Data System (ADS)
Hoffmann, Karl Heinz; Essex, Christopher; Basu, Shantanu; Prehl, Janett
2018-05-01
We introduce a new dual power law (DPL) probability distribution function for the mass distribution of stellar and substellar objects at birth, otherwise known as the initial mass function (IMF). The model contains both deterministic and stochastic elements, and provides a unified framework within which to view the formation of brown dwarfs and stars resulting from an accretion process that starts from extremely low mass seeds. It does not depend upon a top down scenario of collapsing (Jeans) masses or an initial lognormal or otherwise IMF-like distribution of seed masses. Like the modified lognormal power law (MLP) distribution, the DPL distribution has a power law at the high mass end, as a result of exponential growth of mass coupled with equally likely stopping of accretion at any time interval. Unlike the MLP, a power law decay also appears at the low mass end of the IMF. This feature is closely connected to the accretion stopping probability rising from an initially low value up to a high value. This might be associated with physical effects of ejections sometimes (i.e., rarely) stopping accretion at early times followed by outflow driven accretion stopping at later times, with the transition happening at a critical time (therefore mass). Comparing the DPL to empirical data, the critical mass is close to the substellar mass limit, suggesting that the onset of nuclear fusion plays an important role in the subsequent accretion history of a young stellar object.
Vertebrate Left-Right Asymmetry: What Can Nodal Cascade Gene Expression Patterns Tell Us?
Schweickert, Axel; Ott, Tim; Kurz, Sabrina; Tingler, Melanie; Maerker, Markus; Fuhl, Franziska; Blum, Martin
2017-01-01
Laterality of inner organs is a wide-spread characteristic of vertebrates and beyond. It is ultimately controlled by the left-asymmetric activation of the Nodal signaling cascade in the lateral plate mesoderm of the neurula stage embryo, which results from a cilia-driven leftward flow of extracellular fluids at the left-right organizer. This scenario is widely accepted for laterality determination in wildtype specimens. Deviations from this norm come in different flavors. At the level of organ morphogenesis, laterality may be inverted (situs inversus) or non-concordant with respect to the main body axis (situs ambiguus or heterotaxia). At the level of Nodal cascade gene activation, expression may be inverted, bilaterally induced, or absent. In a given genetic situation, patterns may be randomized or predominantly lacking laterality (absence or bilateral activation). We propose that the distributions of patterns observed may be indicative of the underlying molecular defects, with randomizations being primarily caused by defects in the flow-generating ciliary set-up, and symmetrical patterns being the result of impaired flow sensing, on the left, the right, or both sides. This prediction, the reasoning of which is detailed in this review, pinpoints functions of genes whose role in laterality determination have remained obscure. PMID:29367579
Vancassel, Sylvie; Aïd, Sabah; Pifferi, Fabien; Morice, Elise; Nosten-Bertrand, Marika; Chalon, Sylvie; Lavialle, Monique
2005-11-15
Anatomic and functional brain lateralization underlies hemisphere specialization for cognitive and motor control, and deviations from the normal patterns of asymmetry appear to be related to behavioral deficits. Studies on n-3 polyunsaturated fatty acid (PUFA) deficiency and behavioral impairments led us to postulate that a chronic lack of n-3 PUFA can lead to changes in lateralized behavior by affecting structural or neurochemical patterns of asymmetry in motor-related brain structures. We compared the effects of a chronic n-3 PUFA deficient diet with a balanced diet on membrane phospholipid fatty acids composition and immunolabeling of choline acetyltransferase (ChAt), as a marker of cholinergic neurons, in left and right striatum of rats. Lateral motor behavior was assessed by rotation and paw preference. Control rats had an asymmetric PUFA distribution with a right behavioral preference, whereas ChAt density was symmetrical. In deficient rats, the cholinergic neuron density was 30% lower on the right side, associated with a loss of PUFA asymmetry and behavior laterality. They present higher rotation behavior, and significantly more of them failed the handedness test. These results indicate that a lack of n-3 PUFA is linked with a lateral behavior deficit, possibly leading to cognitive disturbances.
Field-size dependence of doses of therapeutic carbon beams.
Kusano, Yohsuke; Kanai, Tatsuaki; Yonai, Shunsuke; Komori, Masataka; Ikeda, Noritoshi; Tachikawa, Yuji; Ito, Atsushi; Uchida, Hirohisa
2007-10-01
To estimate the physical dose at the center of spread-out Bragg peaks (SOBP) for various conditions of the irradiation system, a semiempirical approach was applied. The dose at the center of the SOBP depends on the field size because of large-angle scattering particles in the water phantom. For a small field of 5 x 5 cm2, the dose was reduced to 99.2%, 97.5%, and 96.5% of the dose used for the open field in the case of 290, 350, and 400 MeV/n carbon beams, respectively. Based on the three-Gaussian form of the lateral dose distributions of the carbon pencil beam, which has previously been shown to be effective for describing scattered carbon beams, we reconstructed the dose distributions of the SOBP beam. The reconstructed lateral dose distribution reproduced the measured lateral dose distributions very well. The field-size dependencies calculated using the reconstructed lateral dose distribution of the therapeutic carbon beam agreed with the measured dose dependency very well. The reconstructed beam was also used for irregularly shaped fields. The resultant dose distribution agreed with the measured dose distribution. The reconstructed beams were found to be applicable to the treatment-planning system.
Eye-hand laterality and right thoracic idiopathic scoliosis.
Catanzariti, Jean-François; Guyot, Marc-Alexandre; Agnani, Olivier; Demaille, Samantha; Kolanowski, Elisabeth; Donze, Cécile
2014-06-01
The adolescent idiopathic scoliosis (AIS) pathogenesis remains unknown. Certain studies have shown that there is a correlation between manual laterality and scoliotic deviation. A full study of manual laterality needs to be paired with one for visual dominance. With the aim of physiopathological research, we have evaluated the manual and visual laterality in AIS. A retrospective study from prospective data collection is used to evaluate the distribution of eye-hand laterality (homogeneous or crossed) of 65 right thoracic AIS (mean age 14.8 ± 1.8 years; mean Cobb angle: 32.8°) and a control group of 65 sex and age-matched (mean age 14.6 ± 1.8 years). The manual laterality was defined by the modified Edinburgh Handedness Inventory. The evaluation of the visual laterality is done using three tests (kaleidoscope test, hole-in-the-card test, distance-hole-in-the-card test). The group of right thoracic AIS presents a significantly higher frequency of crossed eye-hand laterality (63 %) than the control group (63 vs. 29.2 %; p < 0.001). In the AIS group, the most frequent association, within crossed laterality is "right hand dominant-left eye dominant" (82.9 %). There is no relationship with the Cobb angle. Those with right thoracic AIS show a higher occurrence of crossed eye-hand laterality. This could point physiopathological research of AIS towards functional abnormality of the optic chiasma through underuse of cross visual pathways, and in particular accessory optic pathways. It would be useful to explore this by carrying out research on AISs through neuroimaging and neurofunctional exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassiliev, O
Purpose: Radial dose distribution D(r) is the dose as a function of lateral distance from the path of a heavy charged particle. Its main application is in modelling of biological effects of heavy ions, including applications to hadron therapy. It is the main physical parameter of a broad group of radiobiological models known as the amorphous track models. Our purpose was to calculate D(r) with Monte Carlo for carbon ions of therapeutic energies, find a simple formula for D(r) and fit it to the Monte Carlo data. Methods: All calculations were performed with Geant4-DNA code, for carbon ion energies frommore » 10 to 400 MeV/u (ranges in water: ∼ 0.4 mm to 27 cm). The spatial resolution of dose distribution in the lateral direction was 1 nm. Electron tracking cut off energy was 11 eV (ionization threshold). The maximum lateral distance considered was 10 µm. Over this distance, D(r) decreases with distance by eight orders of magnitude. Results: All calculated radial dose distributions had a similar shape dominated by the well-known inverse square dependence on the distance. Deviations from the inverse square law were observed close to the beam path (r<10 nm) and at large distances (r >1 µm). At small and large distances D(r) decreased, respectively, slower and faster than the inverse square of distance. A formula for D(r) consistent with this behavior was found and fitted to the Monte Carlo data. The accuracy of the fit was better than 10% for all distances considered. Conclusion: We have generated a set of radial dose distributions for carbon ions that covers the entire range of therapeutic energies, for distances from the ion path of up to 10 µm. The latter distance is sufficient for most applications because dose beyond 10 µm is extremely low.« less
Buckling of Low Arches or Curved Beams of Small Curvature
NASA Technical Reports Server (NTRS)
Fung, Y C; Kaplan, A
1952-01-01
A general solution, based on the classical buckling criterion, is given for the problem of buckling of low arches under a lateral loading acting toward the center of curvature. For a sinusoidal arch under sinusoidal loading, the critical load can be expressed exactly as a simple function of the beam dimension parameters. For other arch shapes and load distributions, approximate values of the critical load can be obtained by summing a few terms of a rapidly converging Fourier series. The effects of initial end thrust and axial and lateral elastic support are discussed. The buckling load based on energy criterion of Karman and Tsien is also calculated. Results for both the classical and the energy criteria are compared with experimental results.
Erichsen, Jonathan T; May, Paul J
2002-01-01
The distribution of preganglionic motoneurons supplying the ciliary ganglion in the cat was defined both qualitatively and quantitatively. These cells were retrogradely labeled directly, following injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the ciliary ganglion, or were transsynaptically labeled following injections of WGA into the vitreous chamber. Almost half of the cells are distributed rostral to the oculomotor nucleus, both in and lateral to the anteromedian nucleus. Of the remaining preganglionic motoneurons, roughly 20% of the total are located dorsal to the oculomotor nucleus. Strikingly few of these neurons are actually found within the Edinger-Westphal nucleus proper. Instead, the majority are found in the adjacent supraoculomotor area or along the midline between the two somatic nuclei. An additional population, roughly 30% of the total, is located ventral to the oculomotor nucleus. This study also provides evidence for a functional subdivision of this preganglionic population. Pupil-related preganglionic motoneurons were transsynaptically labeled by injecting WGA into the anterior chamber, while lens-related preganglionic motoneurons were transsynaptically labeled by injecting WGA into the ciliary muscle. The results suggest that the pupil-related preganglionic motoneurons, that is, those controlling the iris sphincter pupillae muscle, are located rostrally, in and lateral to the anteromedian nucleus. In contrast, lens-related preganglionic motoneurons, that is, those controlling the ciliary muscle are particularly prevalent caudally, both dorsal and ventral to the oculomotor nucleus. Thus, the cat intraocular muscle preganglionic innervation is spatially organized with respect to function, despite the dispersed nature of its distribution.
X-ray microimaging of cisplatin distribution in ovarian cancer cells
NASA Astrophysics Data System (ADS)
Kiyozuka, Yasuhiko; Takemoto, Kuniko; Yamamoto, Akitsugu; Guttmann, Peter; Tsubura, Airo; Kihara, Hiroshi
2000-05-01
X-ray microscopy has the possibility to be in use for elemental analysis of tissue and cells especially under physiological conditions with high lateral resolution. In X-ray microimaging cisdiamminedichloroplatinum II (cisplatin: CDDP), an anticancer agent, which has a platinum atom at its functional center gives sufficient contrast against organic material at sub-cellular level. We analyzed the enhance effect and intracellular distribution of CDDP in human ovarian cancer cells with the transmission X-ray microscope at BESSY, Berlin. Two human ovarian cancer cell lines (MN-1 and EC) were treated with 1 and 10 μg/ml of CDDP for 4 hours and compared with untreated cells X-ray images of CDDP-treated samples show clearly labeled nucleoli, periphery of the nucleus and mitochondria, in a concentration-dependent manner. CDDP binds to DNA molecules via the formation of intra- or-inter-strand cross-links. Higher contrasts at the periphery of nucleus and nucleoli suggest the distribution of tightly packed heterochromatin. In addition, results show the possibility that CDDP binds to mitochondrial DNA. Biological function of cisplatin is not only the inhibition of DNA replication but is suggested to disturb mitochondrial function and RNA synthesis in the nucleolus.
A method for modeling laterally asymmetric proton beamlets resulting from collimation
Gelover, Edgar; Wang, Dongxu; Hill, Patrick M.; Flynn, Ryan T.; Gao, Mingcheng; Laub, Steve; Pankuch, Mark; Hyer, Daniel E.
2015-01-01
Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σx1,σx2,σy1,σy2) together with the spatial location of the maximum dose (μx,μy). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets. PMID:25735287
The maximum entropy method of moments and Bayesian probability theory
NASA Astrophysics Data System (ADS)
Bretthorst, G. Larry
2013-08-01
The problem of density estimation occurs in many disciplines. For example, in MRI it is often necessary to classify the types of tissues in an image. To perform this classification one must first identify the characteristics of the tissues to be classified. These characteristics might be the intensity of a T1 weighted image and in MRI many other types of characteristic weightings (classifiers) may be generated. In a given tissue type there is no single intensity that characterizes the tissue, rather there is a distribution of intensities. Often this distributions can be characterized by a Gaussian, but just as often it is much more complicated. Either way, estimating the distribution of intensities is an inference problem. In the case of a Gaussian distribution, one must estimate the mean and standard deviation. However, in the Non-Gaussian case the shape of the density function itself must be inferred. Three common techniques for estimating density functions are binned histograms [1, 2], kernel density estimation [3, 4], and the maximum entropy method of moments [5, 6]. In the introduction, the maximum entropy method of moments will be reviewed. Some of its problems and conditions under which it fails will be discussed. Then in later sections, the functional form of the maximum entropy method of moments probability distribution will be incorporated into Bayesian probability theory. It will be shown that Bayesian probability theory solves all of the problems with the maximum entropy method of moments. One gets posterior probabilities for the Lagrange multipliers, and, finally, one can put error bars on the resulting estimated density function.
Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize
NASA Astrophysics Data System (ADS)
Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea
2016-04-01
Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks-old maize the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. For the five weeks-old maize, water was mainly taken up by the crown roots and their associated laterals. The ability of crown roots to uptake water from the distal segments can help maize to extract water from deep soil layers and better tolerate drought. Reference Ahmed MA, Zarebanadkouki M, Kaestner A, Carminati A (2015) Measurements of water uptake of maize roots: the key function of lateral roots. Plant and Soil 1-19. doi: 10.1007/s11104-015-2639-6
Functional morphology of the sound-generating labia in the syrinx of two songbird species.
Riede, Tobias; Goller, Franz
2010-01-01
In songbirds, two sound sources inside the syrinx are used to produce the primary sound. Laterally positioned labia are passively set into vibration, thus interrupting a passing air stream. Together with subsyringeal pressure, the size and tension of the labia determine the spectral characteristics of the primary sound. Very little is known about how the histological composition and morphology of the labia affect their function as sound generators. Here we related the size and microstructure of the labia to their acoustic function in two songbird species with different acoustic characteristics, the white-crowned sparrow and zebra finch. Histological serial sections of the syrinx and different staining techniques were used to identify collagen, elastin and hyaluronan as extracellular matrix components. The distribution and orientation of elastic fibers indicated that the labia in white-crowned sparrows are multi-layered structures, whereas they are more uniformly structured in the zebra finch. Collagen and hyaluronan were evenly distributed in both species. A multi-layered composition could give rise to complex viscoelastic properties of each sound source. We also measured labia size. Variability was found along the dorso-ventral axis in both species. Lateral asymmetry was identified in some individuals but not consistently at the species level. Different size between the left and right sound sources could provide a morphological basis for the acoustic specialization of each sound generator, but only in some individuals. The inconsistency of its presence requires the investigation of alternative explanations, e.g. differences in viscoelastic properties of the labia of the left and right syrinx. Furthermore, we identified attachments of syringeal muscles to the labia as well as to bronchial half rings and suggest a mechanism for their biomechanical function.
Functional morphology of the sound-generating labia in the syrinx of two songbird species
Riede, Tobias; Goller, Franz
2010-01-01
In songbirds, two sound sources inside the syrinx are used to produce the primary sound. Laterally positioned labia are passively set into vibration, thus interrupting a passing air stream. Together with subsyringeal pressure, the size and tension of the labia determine the spectral characteristics of the primary sound. Very little is known about how the histological composition and morphology of the labia affect their function as sound generators. Here we related the size and microstructure of the labia to their acoustic function in two songbird species with different acoustic characteristics, the white-crowned sparrow and zebra finch. Histological serial sections of the syrinx and different staining techniques were used to identify collagen, elastin and hyaluronan as extracellular matrix components. The distribution and orientation of elastic fibers indicated that the labia in white-crowned sparrows are multi-layered structures, whereas they are more uniformly structured in the zebra finch. Collagen and hyaluronan were evenly distributed in both species. A multi-layered composition could give rise to complex viscoelastic properties of each sound source. We also measured labia size. Variability was found along the dorso-ventral axis in both species. Lateral asymmetry was identified in some individuals but not consistently at the species level. Different size between the left and right sound sources could provide a morphological basis for the acoustic specialization of each sound generator, but only in some individuals. The inconsistency of its presence requires the investigation of alternative explanations, e.g. differences in viscoelastic properties of the labia of the left and right syrinx. Furthermore, we identified attachments of syringeal muscles to the labia as well as to bronchial half rings and suggest a mechanism for their biomechanical function. PMID:19900184
Adaptation to stimulus statistics in the perception and neural representation of auditory space.
Dahmen, Johannes C; Keating, Peter; Nodal, Fernando R; Schulz, Andreas L; King, Andrew J
2010-06-24
Sensory systems are known to adapt their coding strategies to the statistics of their environment, but little is still known about the perceptual implications of such adjustments. We investigated how auditory spatial processing adapts to stimulus statistics by presenting human listeners and anesthetized ferrets with noise sequences in which interaural level differences (ILD) rapidly fluctuated according to a Gaussian distribution. The mean of the distribution biased the perceived laterality of a subsequent stimulus, whereas the distribution's variance changed the listeners' spatial sensitivity. The responses of neurons in the inferior colliculus changed in line with these perceptual phenomena. Their ILD preference adjusted to match the stimulus distribution mean, resulting in large shifts in rate-ILD functions, while their gain adapted to the stimulus variance, producing pronounced changes in neural sensitivity. Our findings suggest that processing of auditory space is geared toward emphasizing relative spatial differences rather than the accurate representation of absolute position.
Dewan, Adam K; Tricas, Timothy C
2014-01-01
Detailed neuroanatomical studies of model species are necessary to facilitate comparative experiments which test hypotheses relevant to brain evolution and function. Butterflyfishes (Chaetodontidae) boast numerous sympatric species that differ in social behavior, aggression and feeding ecology. However, the ability to test hypotheses relevant to brain function in this family is hindered by the lack of detailed neural descriptions. The cytoarchitecture of the telencephalon in the monogamous and territorial multiband butterflyfish, Chaetodon multicinctus, was determined with Nissl-stained serial sections and an immunohistochemical analysis of arginine vasotocin (AVT), serotonin, substance P and tyrosine hydroxylase. The ventral telencephalon was similar to that of other perciform fishes studied, with one major difference. A previously undescribed postcommissural region, the cuneate nucleus, was identified and putatively assigned to the ventral telencephalon. While the function of this nucleus is unknown, preliminary studies indicate that it may be part of a behaviorally relevant subpallial neural circuit that is modulated by AVT. The dorsal telencephalon consisted of 15 subdivisions among central, medial, lateral, dorsal and posterior zones. Several regions of the dorsal telencephalon of C. multicinctus differed from many other perciform fishes examined thus far. The nucleus taenia was in a more caudal position, and the central and lateral zones were enlarged. Within the lateral zone, an unusual third, ventral subdivision and a large-celled division were present. One hypothesis is that the enlarged ventral subdivision of the lateral zone (potential hippocampus homolog) relates to an enhancement of spatial learning or olfactory memory, which are important for this coral reef fish. This study provides the neuroanatomical basis for future comparative and evolutionary studies of brain organization and neuropeptide distributions, physiological studies of neural processing and insight into the complex social behavior of butterflyfishes. © 2014 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Muñoz-Gorriz, J.; Monaghan, S.; Cherkaoui, K.; Suñé, J.; Hurley, P. K.; Miranda, E.
2017-12-01
The angular wavelet analysis is applied for assessing the spatial distribution of breakdown spots in Pt/HfO2/Pt capacitors with areas ranging from 104 to 105 μm2. The breakdown spot lateral sizes are in the range from 1 to 3 μm, and they appear distributed on the top metal electrode as a point pattern. The spots are generated by ramped and constant voltage stresses and are the consequence of microexplosions caused by the formation of shorts spanning the dielectric film. This kind of pattern was analyzed in the past using the conventional spatial analysis tools such as intensity plots, distance histograms, pair correlation function, and nearest neighbours. Here, we show that the wavelet analysis offers an alternative and complementary method for testing whether or not the failure site distribution departs from a complete spatial randomness process in the angular domain. The effect of using different wavelet functions, such as the Haar, Sine, French top hat, Mexican hat, and Morlet, as well as the roles played by the process intensity, the location of the voltage probe, and the aspect ratio of the device, are all discussed.
2015-07-31
El-Sheikh, and A. El-Aidarous. 2013. Floristic diversity and vegetation analysis of Wadi Al- Noman, Mecca, Saudi Arabia. Turkish Journal of Botany ...M. Bleby. 2006. Redistribution of soil water by lateral roots mediated by stem tissues. Journal of Experimental Botany 57:3283–3291. 199 Burgess, S...and J. S. Sperry. 2000. Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. American Journal of Botany 87:1287–1299
McDonald, Carrie R.; Thesen, Thomas; Hagler, Donald J.; Carlson, Chad; Devinksy, Orrin; Kuzniecky, Rubin; Barr, William; Gharapetian, Lusineh; Trongnetrpunya, Amy; Dale, Anders M.; Halgren, Eric
2009-01-01
Purpose To examine distributed patterns of language processing in healthy controls and patients with epilepsy using magnetoencephalography (MEG), and to evaluate the concordance between laterality of distributed MEG sources and language laterality as determined by the intracarotid amobarbitol procedure (IAP). Methods MEG was performed in ten healthy controls using an anatomically-constrained, noise-normalized distributed source solution (dSPM). Distributed source modeling of language was then applied to eight patients with intractable epilepsy. Average source strengths within temporoparietal and frontal lobe regions of interest (ROIs) were calculated and the laterality of activity within ROIs during discrete time windows was compared to results from the IAP. Results In healthy controls, dSPM revealed activity in visual cortex bilaterally from ~80-120ms in response to novel words and sensory control stimuli (i.e., false fonts). Activity then spread to fusiform cortex ~160-200ms, and was dominated by left hemisphere activity in response to novel words. From ~240-450ms, novel words produced activity that was left-lateralized in frontal and temporal lobe regions, including anterior and inferior temporal, temporal pole, and pars opercularis, as well as bilaterally in posterior superior temporal cortex. Analysis of patient data with dSPM demonstrated that from 350-450ms, laterality of temporoparietal sources agreed with the IAP 75% of the time, whereas laterality of frontal MEG sources agreed with the IAP in all eight patients. Discussion Our results reveal that dSPM can unveil the timing and spatial extent of language processes in patients with epilepsy and may enhance knowledge of language lateralization and localization for use in preoperative planning. PMID:19552656
Wylie, Douglas R; Pakan, Janelle M P; Huynh, Hang; Graham, David J; Iwaniuk, Andrew N
2012-05-01
Zebrin II (aldolase C) is expressed in a subset of Purkinje cells in the mammalian and avian cerebella such that there is a characteristic parasagittal organization of zebrin-immunopositive stripes alternating with zebrin-immunonegative stripes. Zebrin is expressed not only in the soma and dendrites of Purkinje cells but also in their axonal terminals. Here we describe the distribution of zebrin immunoreactivity in both the vestibular and the cerebellar nuclei of pigeons (Columba livia) and hummingbirds (Calypte anna, Selasphorus rufus). In the medial cerebellar nucleus, zebrin-positive labeling was particularly heavy in the “shell,” whereas the “core” was zebrin negative. In the lateral cerebellar nucleus, labeling was not as heavy, but a positive shell and negative core were also observed. In the vestibular nuclear complex, zebrin-positive terminal labeling was heavy in the dorsolateral vestibular nucleus and the lateral margin of the superior vestibular nucleus. The central and medial regions of the superior nucleus were generally zebrin negative. Labeling was moderate to heavy in the medial vestibular nucleus, particulary the rostral half of the parvocellular subnucleus. A moderate amount of zebrin-positive labeling was present in the descending vestibular nucleus: this was heaviest laterally, and the central region was generally zebrin negative. Zebrin-positive terminals were also observed in the the cerebellovestibular process, prepositus hypoglossi, and lateral tangential nucleus. We discuss our findings in light of similar studies in rats and with respect to the corticonuclear projections to the cerebellar nuclei and the functional connections of the vestibulocerebellum with the vestibular nuclei. Copyright © 2011 Wiley Periodicals, Inc.
Towards a cosmic-ray mass-composition study at Tunka Radio Extension
NASA Astrophysics Data System (ADS)
Kostunin, D.; Bezyazeekov, P. A.; Budnev, N. M.; Fedorov, O.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Korosteleva, E. E.; Krömer, O.; Kungel, V.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Osipova, E. A.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.
2017-03-01
The Tunka Radio Extension (Tunka-Rex) is a radio detector at the TAIGA facility located in Siberia nearby the southern tip of Lake Baikal. Tunka-Rex measures air-showers induced by high-energy cosmic rays, in particular, the lateral distribution of the radio pulses. The depth of the air-shower maximum, statistically depends on the mass of the primary particle, is determined from the slope of the lateral distribution function (LDF). Using a model-independent approach, we have studied possible features of the one-dimensional slope method and tried to find improvements for the reconstruction of primary mass. To study the systematic uncertainties given by different primary particles, we have performed simulations using the CONEX and CoREAS software packages of the recently released CORSIKA v7.5 including the modern high-energy hadronic models QGSJet-II.04 and EPOS-LHC. The simulations have shown that the largest systematic uncertainty in the energy deposit is due to the unknown primary particle. Finally, we studied the relation between the polarization and the asymmetry of the LDF.
NASA Astrophysics Data System (ADS)
Palmieri, N.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.
2013-05-01
The LOPES experiment, a digital radio interferometer located at KIT (Karlsruhe Institute of Technology), obtained remarkable results for the detection of radio emission from extensive air showers at MHz frequencies. Features of the radio lateral distribution function (LDF) measured by LOPES are explored in this work for a precise reconstruction of two fundamental air shower parameters: the primary energy and the shower Xmax. The method presented here has been developed on (REAS3-)simulations, and is applied to LOPES measurements. Despite the high human-made noise at the LOPES site, it is possible to reconstruct both the energy and Xmax for individual events. On the one hand, the energy resolution is promising and comparable to the one of the co-located KASCADE-Grande experiment. On the other hand, Xmax values are reconstructed with the LOPES measurements with a resolution of 90 g/cm2. A precision on Xmax better than 30 g/cm2 is predicted and achievable in a region with a lower human-made noise level.
NASA Astrophysics Data System (ADS)
Chen, Xiao-jun; Dong, Li-zhi; Wang, Shuai; Yang, Ping; Xu, Bing
2017-11-01
In quadri-wave lateral shearing interferometry (QWLSI), when the intensity distribution of the incident light wave is non-uniform, part of the information of the intensity distribution will couple with the wavefront derivatives to cause wavefront reconstruction errors. In this paper, we propose two algorithms to reduce the influence of a non-uniform intensity distribution on wavefront reconstruction. Our simulation results demonstrate that the reconstructed amplitude distribution (RAD) algorithm can effectively reduce the influence of the intensity distribution on the wavefront reconstruction and that the collected amplitude distribution (CAD) algorithm can almost eliminate it.
Groen, Margriet A; Whitehouse, Andrew J O; Badcock, Nicholas A; Bishop, Dorothy V M
2012-01-01
In the majority of people, language production is lateralized to the left cerebral hemisphere and visuospatial skills to the right. However, questions remain as to when, how, and why humans arrive at this division of labor. In this study, we assessed cerebral lateralization for language production and for visuospatial memory using functional transcranial Doppler ultrasound in a group of 60 typically developing children between the ages of six and 16 years. The typical pattern of left-lateralized activation for language production and right-lateralized activation for visuospatial memory was found in the majority of the children (58%). No age-related change in direction or strength of lateralization was found for language production. In contrast, the strength of lateralization (independent of direction) for visuospatial memory function continued to increase with age. In addition, boys showed a trend for stronger right-hemisphere lateralization for visuospatial memory than girls, but there was no gender effect on language laterality. We tested whether having language and visuospatial functions in the same hemisphere was associated with poor cognitive performance and found no evidence for this “functional crowding” hypothesis. We did, however, find that children with left-lateralized language production had higher vocabulary and nonword reading age-adjusted standard scores than other children, regardless of the laterality of visuospatial memory. Thus, a link between language function and left-hemisphere lateralization exists, and cannot be explained in terms of maturational change. PMID:22741100
Schuenke, M D; Vleeming, A; Van Hoof, T; Willard, F H
2012-01-01
Movement and stability of the lumbosacral region is contingent on the balance of forces distributed through the myofascial planes associated with the thoracolumbar fascia (TLF). This structure is located at the common intersection of several extremity muscles (e.g. latissimus dorsi and gluteus maximus), as well as hypaxial (e.g. ventral trunk muscles) and epaxial (paraspinal) muscles. The mechanical properties of the fascial constituents establish the parameters guiding the dynamic interaction of muscle groups that stabilize the lumbosacral spine. Understanding the construction of this complex myofascial junction is fundamental to biomechanical analysis and implementation of effective rehabilitation in individuals with low back and pelvic girdle pain. Therefore, the main objectives of this study were to describe the anatomy of the lateral margin of the TLF, and specifically the interface between the fascial sheath surrounding the paraspinal muscles and the aponeurosis of the transversus abdominis (TA) and internal oblique (IO) muscles. The lateral margin of the TLF was exposed via serial reduction dissections from anterior and posterior approaches. Axial sections (cadaveric and magnetic resonance imaging) were examined to characterize the region between the TA and IO aponeurosis and the paraspinal muscles. It is confirmed that the paraspinal muscles are enveloped by a continuous paraspinal retinacular sheath (PRS), formed by the deep lamina of the posterior layer of the TLF. The PRS extends from the spinous process to transverse process, and is distinct from both the superficial lamina of the posterior layer and middle layer of the TLF. As the aponeurosis approaches the lateral border of the PRS, it appears to separate into two distinct laminae, which join the anterior and posterior walls of the PRS. This configuration creates a previously undescribed fat-filled lumbar interfascial triangle situated along the lateral border of the paraspinal muscles from the 12th rib to the iliac crest. This triangle results in the unification of different fascial sheaths along the lateral border of the TLF, creating a ridged-union of dense connective tissue that has been termed the lateral raphe (Spine, 9,1984, 163). This triangle may function in the distribution of laterally mediated tension to balance different viscoelastic moduli, along either the middle or posterior layers of the TLF. PMID:22582887
Nowicki, Julie L; Takimoto, Ryoko; Burke, Ann Campbell
2003-02-01
Patterning events along the anterior-posterior (AP) axis of vertebrate embryos result in the distribution of muscle and bone forming a highly effective functional system. A key aspect of regionalized AP patterning results from variation in the migratory pattern of somite cells along the dorsal-ventral (DV) axis of the body. This occurs as somite cell populations expand around the axis or migrate away from the dorsal midline and cross into the lateral plate. The fate of somitic cells has been intensely studied and many details have been reported about inductive signaling from other tissues that influence somite cell fate and behavior. We are interested in understanding the specific differences between somites in particular AP regions and how these differences contribute to the global pattern of the organism. Using orthotopic transplants of segmental plate between quail and chick embryos, we have mapped the interface of the somitic and lateral plate mesoderm during the formation of the body wall in cervical and thoracic regions. This interface does not change dramatically in the mid-cervical region, but undergoes extensive changes in the thoracic region. Based on this regional mapping and consistent with the extensive literature, we suggest a revised method of classifying regions of the body wall that relies on embryonic cell lineages rather than adult functional criteria.
Wang, Yan; Zhang, Yiquan; Yin, Zhe; Wang, Jie; Zhu, Yongzhe; Peng, Haoran; Zhou, Dongsheng; Qi, Zhongtian; Yang, Wenhui
2018-01-01
Swarming motility is ultimately mediated by the proton-powered lateral flagellar (laf) system in Vibrio parahaemolyticus. Expression of laf genes is tightly regulated by a number of environmental conditions and regulatory factors. The nucleoid-associated DNA-binding protein H-NS is a small and abundant protein that is widely distributed in bacteria, and H-NS-like protein-dependent expression of laf genes has been identified in Vibrio cholerae and V. parahaemolyticus. The data presented here show that H-NS acts as a repressor of the swarming motility in V. parahaemolyticus. A single σ 28 -dependent promoter was detected for lafA encoding the flagellin of the lateral flagella, and its activity was directly repressed by H-NS. Thus, H-NS represses swarming motility by directly acting on lafA. Briefly, this work revealed a novel function for H-NS as a repressor of the expression of lafA and swarming motility in V. parahaemolyticus.
Span-Load Distribution as a Factor in Stability in Roll
NASA Technical Reports Server (NTRS)
Knight, Montgomery; Noyes, Richard W
1932-01-01
This report gives the results of pressure-distribution tests made to study the effects on lateral stability of changing the span-load distribution on a rectangular monoplane wing model of fairly thick section. Three methods of changing the distribution were employed: variation in profile along the span to a thin symmetrical section at the tip, twist from +5 degrees to -15 degrees at the tip, and sweepback from +20 degrees to -20 degrees. The tests were conducted in a 5-foot closed-throat atmospheric wind tunnel. The investigation shows the following results: (1) change in profile along the span from the NACA-84 at the root to the NACA-M2 at the tip considerably reduces lateral instability, but also reduces the general effectiveness of the wing. (2) washout up to 11 degrees progressively reduces maximum lateral instability. (3) transition from sweepforward to sweepback gradually reduces the useful angle-of-attack range, but has no clearly defined effect on maximum lateral instability.
Twin tubular pinch effect in curving confined flows
Clime, Liviu; Morton, Keith J.; Hoa, Xuyen D.; Veres, Teodor
2015-01-01
Colloidal suspensions of buoyancy neutral particles flowing in circular pipes focus into narrow distributions near the wall due to lateral migration effects associated with fluid inertia. In curving flows, these distributions are altered by Dean currents and the interplay between Reynolds and Dean numbers is used to predict equilibrium positions. Here, we propose a new description of inertial lateral migration in curving flows that expands current understanding of both focusing dynamics and equilibrium distributions. We find that at low Reynolds numbers, the ratio δ between lateral inertial migration and Dean forces scales simply with the particle radius, coil curvature and pipe radius as . A critical value δc = 0.148 of this parameter is identified along with two related inertial focusing mechanisms. In the regime below δc, coined subcritical, Dean forces generate permanently circulating, twinned annuli, each with intricate equilibrium particle distributions including eyes and trailing arms. At δ > δc (supercritical regime) inertial lateral migration forces are dominant and particles focus to a single stable equilibrium position. PMID:25927878
NASA Technical Reports Server (NTRS)
Donegan, James J; Robinson, Samuel W , Jr; Gates, Ordway, B , jr
1955-01-01
A method is presented for determining the lateral-stability derivatives, transfer-function coefficients, and the modes for lateral motion from frequency-response data for a rigid aircraft. The method is based on the application of the vector technique to the equations of lateral motion, so that the three equations of lateral motion can be separated into six equations. The method of least squares is then applied to the data for each of these equations to yield the coefficients of the equations of lateral motion from which the lateral-stability derivatives and lateral transfer-function coefficients are computed. Two numerical examples are given to demonstrate the use of the method.
Minimum noise impact aircraft trajectories
NASA Technical Reports Server (NTRS)
Jacobson, I. D.; Melton, R. G.
1981-01-01
Numerical optimization is used to compute the optimum flight paths, based upon a parametric form that implicitly includes some of the problem restrictions. The other constraints are formulated as penalties in the cost function. Various aircraft on multiple trajectores (landing and takeoff) can be considered. The modular design employed allows for the substitution of alternate models of the population distribution, aircraft noise, flight paths, and annoyance, or for the addition of other features (e.g., fuel consumption) in the cost function. A reduction in the required amount of searching over local minima was achieved through use of the presence of statistical lateral dispersion in the flight paths.
Is SOD1 loss of function involved in amyotrophic lateral sclerosis?
Saccon, Rachele A.; Bunton-Stasyshyn, Rosie K. A.; Fisher, Elizabeth M.C.; Fratta, Pietro
2013-01-01
Mutations in the gene superoxide dismutase 1 (SOD1) are causative for familial forms of the neurodegenerative disease amyotrophic lateral sclerosis. When the first SOD1 mutations were identified they were postulated to give rise to amyotrophic lateral sclerosis through a loss of function mechanism, but experimental data soon showed that the disease arises from a—still unknown—toxic gain of function, and the possibility that loss of function plays a role in amyotrophic lateral sclerosis pathogenesis was abandoned. Although loss of function is not causative for amyotrophic lateral sclerosis, here we re-examine two decades of evidence regarding whether loss of function may play a modifying role in SOD1–amyotrophic lateral sclerosis. From analysing published data from patients with SOD1–amyotrophic lateral sclerosis, we find a marked loss of SOD1 enzyme activity arising from almost all mutations. We continue to examine functional data from all Sod1 knockout mice and we find obvious detrimental effects within the nervous system with, interestingly, some specificity for the motor system. Here, we bring together historical and recent experimental findings to conclude that there is a possibility that SOD1 loss of function may play a modifying role in amyotrophic lateral sclerosis. This likelihood has implications for some current therapies aimed at knocking down the level of mutant protein in patients with SOD1–amyotrophic lateral sclerosis. Finally, the wide-ranging phenotypes that result from loss of function indicate that SOD1 gene sequences should be screened in diseases other than amyotrophic lateral sclerosis. PMID:23687121
Distribution of MCH-containing fibers in the feline brainstem: Relevance for REM sleep regulation.
Costa, Alicia; Castro-Zaballa, Santiago; Lagos, Patricia; Chase, Michael H; Torterolo, Pablo
2018-06-01
Neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator are localized in the postero-lateral hypothalamus and incerto-hypothalamic area. These neurons project diffusely throughout the central nervous system and have been implicated in critical physiological processes, such as sleep. Unlike rodents, in the order carnivora as well as in humans, MCH exerts its biological functions through two receptors: MCHR-1 and MCHR-2. Hence, the cat is an optimal animal to model MCHergic functions in humans. In the present study, we examined the distribution of MCH-positive fibers in the brainstem of the cat. MCHergic axons with distinctive varicosities and boutons were heterogeneously distributed, exhibiting different densities in distinct regions of the brainstem. High density of MCHergic fibers was found in the dorsal raphe nucleus, the laterodorsal tegmental nucleus, the periaqueductal gray, the pendunculopontine tegmental nucleus, the locus coeruleus and the prepositus hypoglossi. Because these areas are involved in the control of REM sleep, the present anatomical data support the role of this neuropeptidergic system in the control of this behavioral state. Copyright © 2018 Elsevier Inc. All rights reserved.
Detection of superlattice domain formation in ternary lipid mixtures using fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Mutlu, Burcin; Lopez, Stephanie; Vaughn, Mark; Huang, Juyang; Cheng, K.
2011-10-01
Multicomponent lipid bilayers represent an important model system for studying the structures and functions of cell membranes. At present, the lateral organization of lipid components, particularly the formation of regular distribution, in lipid membranes containing charged lipid, e.g., phosphatidylserine, is not clear. Using a ternary phosphatidylcholine/phosphatidylserine/cholesterol lipid bilayer system, the presence of ordered domain formation was examined by measuring the fluorescence anisotropy of the embedded fluorescent probe, 22-(N-(7-nitrobenz-2-oxa-1,3-diazol- 4-yl)amino)-23,24-bisnor-5-cholen-3β- ol (NBD-CHOL), with structure similar to that of a cholesterol, as a function of phospatidylserine composition. The plot of the anisotropy vs. phosphatidylserine revealed abrupt changes at certain critical compositions of phosphatidylserine. Some of these critical compositions agree favorably with those predicted by the headgroup superlattice model suggesting that the charged phosphatidylserine lipid molecules adopt a superlattice-like distribution in the lipid bilayer at some predicted compositions. The ordered distribution of charged lipids may play an important role in the regulation of the composition of the biological membranes.
Henriques, Alexandre; Huebecker, Mylene; Blasco, Hélène; Keime, Céline; Andres, Christian R; Corcia, Philippe; Priestman, David A; Platt, Frances M; Spedding, Michael; Loeffler, Jean-Philippe
2017-07-12
Recent metabolomic reports connect dysregulation of glycosphingolipids, particularly ceramide and glucosylceramide, to neurodegeneration and to motor unit dismantling in amyotrophic lateral sclerosis at late disease stage. We report here altered levels of gangliosides in the cerebrospinal fluid of amyotrophic lateral sclerosis patients in early disease stage. Conduritol B epoxide is an inhibitor of acid beta-glucosidase, and lowers glucosylceramide degradation. Glucosylceramide is the precursor for all of the more complex glycosphingolipids. In SOD1 G86R mice, an animal model of amyotrophic lateral sclerosis, conduritol B epoxide preserved ganglioside distribution at the neuromuscular junction, delayed disease onset, improved motor function and preserved motor neurons as well as neuromuscular junctions from degeneration. Conduritol B epoxide mitigated gene dysregulation in the spinal cord and restored the expression of genes involved in signal transduction and axonal elongation. Inhibition of acid beta-glucosidase promoted faster axonal elongation in an in vitro model of neuromuscular junctions and hastened recovery after peripheral nerve injury in wild type mice. Here, we provide evidence that glycosphingolipids play an important role in muscle innervation, which degenerates in amyotrophic lateral sclerosis from the early disease stage. This is a first proof of concept study showing that modulating the catabolism of glucosylceramide may be a therapeutic target for this devastating disease.
Zhu, X. R.; Poenisch, F.; Lii, M.; Sawakuchi, G. O.; Titt, U.; Bues, M.; Song, X.; Zhang, X.; Li, Y.; Ciangaru, G.; Li, H.; Taylor, M. B.; Suzuki, K.; Mohan, R.; Gillin, M. T.; Sahoo, N.
2013-01-01
Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm2/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. Conclusions: We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future. PMID:23556893
Zhu, X R; Poenisch, F; Lii, M; Sawakuchi, G O; Titt, U; Bues, M; Song, X; Zhang, X; Li, Y; Ciangaru, G; Li, H; Taylor, M B; Suzuki, K; Mohan, R; Gillin, M T; Sahoo, N
2013-04-01
To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm(2)/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.
Castro, Daniel C.; Cole, Shannon L.; Berridge, Kent C.
2015-01-01
The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH) and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc) and ventral pallidum (VP), in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (“liking”) and motivational incentive salience (“wanting”) of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating vs. intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including “liking” and “wanting” for food rewards. PMID:26124708
NASA Technical Reports Server (NTRS)
Ross, Muriel D.
2003-01-01
In a letter to Robert Hooke, written on 5 February, 1675, Isaac Newton wrote "If I have seen further than certain other men it is by standing upon the shoulders of giants." In his context, Newton was referring to the work of Galileo and Kepler, who preceded him. However, every field has its own giants, those men and women who went before us and, often with few tools at their disposal, uncovered the facts that enabled later researchers to advance knowledge in a particular area. This review traces the history of the evolution of views from early giants in the field of vestibular research to modern concepts of vestibular organ organization and function. Emphasis will be placed on the mammalian maculae as peripheral processors of linear accelerations acting on the head. This review shows that early, correct findings were sometimes unfortunately disregarded, impeding later investigations into the structure and function of the vestibular organs. The central themes are that the macular organs are highly complex, dynamic, adaptive, distributed parallel processors of information, and that historical references can help us to understand our own place in advancing knowledge about their complicated structure and functions.
Shin, Hyun Jin; Lee, Shin-Hyo; Shin, Kang-Jae; Koh, Ki-Seok; Song, Wu-Chul
2018-06-01
To elucidate the intramuscular distribution and branching patterns of the abducens nerve in the lateral rectus (LR) muscle so as to provide anatomical confirmation of the presence of compartmentalization, including for use in clinical applications such as botulinum toxin injections. Thirty whole-mount human cadaver specimens were dissected and then Sihler's stain was applied. The basic dimensions of the LR and its intramuscular nerve distribution were investigated. The distances from the muscle insertion to the point at which the abducens nerve enters the LR and to the terminal nerve plexus were also measured. The LR was 46.0 mm long. The abducens nerve enters the muscle on the posterior one-third of the LR and then typically divides into a few branches (average of 1.8). This supports a segregated abducens nerve selectively innervating compartments of the LR. The intramuscular nerve distribution showed a Y-shaped ramification with root-like arborization. The intramuscular nerve course finished around the middle of the LR (24.8 mm posterior to the insertion point) to form the terminal nerve plexus. This region should be considered the optimal target site for botulinum toxin injections. We have also identified the presence of an overlapping zone and communicating nerve branches between the neighboring LR compartments. Sihler's staining is a useful technique for visualizing the entire nerve network of the LR. Improving the knowledge of the nerve distribution patterns is important not only for researchers but also clinicians to understand the functions of the LR and the diverse pathophysiology of strabismus.
Study on light scattering characterization for polishing surface of optical elements
NASA Astrophysics Data System (ADS)
Zhang, Yingge; Tian, Ailing; Wang, Chunhui; Wang, Dasen; Liu, Weiguo
2017-02-01
Based on the principle of bidirectional reflectance distribution function (BRDF), the relationship between the surface roughness and the spatial scattering distribution of the optical elements were studied. First, a series of optical components with different surface roughness was obtained by the traditional polishing processing, and measured by Talysurf CCI 3000. Secondly, the influences of different factors on the scattering characteristics were simulated and analyzed, such as different surface roughness, incident wavelength and incident angle. Finally, the experimental device was built, and the spatial distribution of scattered light was measured with the different conditions, and then the data curve variation was analyzed. It was shown that the experimental method was reliable by comparing the simulation and experimental results. Base on this to know, many studies on light scattering characteristics for optical element polishing surface can try later.
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Ksendzov, Alexander; Franz, Kale J.; Bagheri, Mahmood; Forouhar, Siamak
2012-01-01
We demonstrate single-mode laterally coupled distributed-feedback diode lasers at 2.05 microns employing low-loss etched gratings. Single-facet CW output exceeds 50 mW near room temperature with linewidth below 1 MHz over 10-ms observation times
Sliding mode-based lateral vehicle dynamics control using tyre force measurements
NASA Astrophysics Data System (ADS)
Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward
2015-11-01
In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.
An Abstract Systolic Model and Its Application to the Design of Finite Element Systems.
1983-01-01
networks as a collection of communicating. parallel :.,’-.processes, some of the techniques for the verification of distributed systems ,.woi (see for...item must be collected . even If there is no Interest In its value. In this case. the collection of the data is simply achieved by changing the state of...the appropriate data as well as for collecting the output data and performing some additional tasks that we will discuss later. A basic functional
2002-05-23
22/02; David Tate, “VR in the Field: Hunter Warrior & JCOS/MCM Situational Awareness Using the Virtual Reality Responsive Workbench;” available from... Fetterman Union-Pacific Railroad N. Platte River Missouri River Missouri River Yellowstone River Bighorn R. Black Hills Powder R. Little Missouri R... Fetterman on March 1, 1876, and made contact with a Sioux band on the Powder River two weeks later. However, the lead Unit of Action failed to defeat
Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.
Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro
2012-07-30
Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Yoshida, H; Faust, A; Wilckens, J; Kitagawa, M; Fetto, J; Chao, Edmund Y-S
2006-01-01
Estimation of the hip joint contact area and pressure distribution during activities of daily living is important in predicting joint degeneration mechanism, prosthetic implant wear, providing biomechanical rationales for preoperative planning and postoperative rehabilitation. These biomechanical data were estimated utilizing a generic hip model, the Discrete Element Analysis technique, and the in vivo hip joint contact force data. The three-dimensional joint potential contact area was obtained from the anteroposterior radiograph of a subject and the actual joint contact area and pressure distribution in eight activities of daily living were calculated. During fast, normal, and slow walking, the peak pressure of moderate magnitude was located at the lateral roof of the acetabulum during mid-stance. In standing up and sitting down, and during knee bending, the peak pressures were located at the edge of the posterior horn and the magnitude of the peak pressure during sitting down was 2.8 times that of normal walking. The peak pressure was found at the lateral roof in climbing up stairs which was higher than that in going down stairs. These results can be used to rationalize rehabilitation protocols, functional restrictions after complex acetabular reconstructions, and prosthetic component wear and fatigue test set up. The same model and analysis can provide further insight to soft tissue loading and pathology such as labral injury. When the pressure distribution on the acetabulum is inverted onto the femoral head, prediction of subchondral bone collapse associated with avascular necrosis can be achieved with improved accuracy.
Influence of meniscus shape in the cross sectional plane on the knee contact mechanics.
Łuczkiewicz, Piotr; Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Zarzycki, Witold
2015-06-01
We present a three dimensional finite element analysis of stress distribution and menisci deformation in the human knee joint. The study is based on the Open Knee model with the geometry of the lateral meniscus which shows some degenerative disorders. The nonlinear analysis of the knee joint under compressive axial load is performed. We present results for intact knee, knee with complete radial posterior meniscus root tear and knee with total meniscectomy of medial or lateral meniscus. We investigate how the meniscus shape in the cross sectional plane influences knee-joint mechanics by comparing the results for flat (degenerated) lateral and normal medial meniscus. Specifically, the deformation of the menisci in the coronal plane and the corresponding stress values in cartilages are studied. By analysing contact resultant force acting on the menisci in axial plane we have shown that restricted extrusion of the torn lateral meniscus can be attributed to small slope of its cross section in the coronal plane. Additionally, the change of the contact area and the resultant force acting on the menisci as the function of compressive load are investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Landhäusser, S. M.; Snedden, J.; Silins, U.; Devito, K. J.
2012-04-01
Spatial root distribution, root morphology, and intra- and inter-clonal connections of mature boreal trembling aspen clones (Populus tremuloides Michx.) were explored to shed light on the functional relationships between vertical and horizontal distribution of roots and the variation in soil water availability along hill slopes. Root systems of mature aspen were hydraulically excavated in large plots (6 m wide and 12 m long) and to a depth of 30 cm. Most aspen roots were located in the upper 20 cm of the soil and fine and coarse root occupancy was highest in the lower slope positions and lowest towards the upper hill slope position likely because of soil moisture availability. Observation of the root system distribution along the hill slope correlated well with the observation of greater leaf area carried by trees growing at the lower portion of the hill slope. Interestingly, trees growing at the bottom of the slope required also less sapwood area to support the same amount of leaf area of trees growing at the top of a slope. These observations appear to be closely related to soil moisture availability and with that greater productivity at the bottom of the slope. However, trees growing on the upper slope tended to have long lateral roots extending downslope, which suggests long distance water transport through these lateral feeder roots. Genetic analysis indicated that both intra- and inter-clonal root connections occur in aspen, which can play a role in the sharing of resources along moisture gradients. Root systems of boreal aspen growing on upper slope positions exhibited a combination of three attributes (1) asymmetric lateral root systems, that are skewed downslope, (2) deeper taproots, and (3) intra and inter-clonal root connections, which can all be considered adaptive strategies to avoid drought stress in upper slope positions.
Bein, Thomas; Ploner, Franz; Ritzka, Markus; Pfeifer, Michael; Schlitt, Hans J; Graf, Bernhard M
2010-07-01
We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positions in a stepwise (10 degrees ) mode up to 60 degrees. EIT images [arbitrary units (AU)] were generated and scanned for assessment of relative ventilation distribution changes [tidal volume (V(T))]. A calibration procedure of arbitrary units (AUs) versus ventilator-derived V(T) performed in all patients during three predefined positions (supine, 60 degrees-left dependent and 60 degrees-right-dependent) showed a significant correlation between V(T) in supine, left and right lateral positions with the corresponding AUs (r(2) = 0.356, P<0.05). Changes in V(T) were calculated and compared to supine position, and specific regions of interest (ROIs) were analysed. In our study, in contrast to recent findings, a change in lateral positions did not induce a significant change in regional tidal volume distribution. In right lateral positions, a broader variation of V(T) with a trend towards an increase in the dependently positioned lung was observed in comparison with supine. Lateral positioning promotes the redistribution of ventilation to the ventral regions of the lung. The use of EIT technology might become a helpful tool for understanding and guiding posture therapy in mechanically ventilated patients.
Bein, Thomas; Ploner, Franz; Ritzka, Markus; Pfeifer, Michael; Schlitt, Hans J; Graf, Bernhard M
2010-01-01
We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positions in a stepwise (10°) mode up to 60°. EIT images [arbitrary units (AU)] were generated and scanned for assessment of relative ventilation distribution changes [tidal volume (VT)]. A calibration procedure of arbitrary units (AUs) versus ventilator-derived VT performed in all patients during three predefined positions (supine, 60°-left dependent and 60°-right-dependent) showed a significant correlation between VT in supine, left and right lateral positions with the corresponding AUs (r2 = 0·356, P<0·05). Changes in VT were calculated and compared to supine position, and specific regions of interest (ROIs) were analysed. In our study, in contrast to recent findings, a change in lateral positions did not induce a significant change in regional tidal volume distribution. In right lateral positions, a broader variation of VT with a trend towards an increase in the dependently positioned lung was observed in comparison with supine. Lateral positioning promotes the redistribution of ventilation to the ventral regions of the lung. The use of EIT technology might become a helpful tool for understanding and guiding posture therapy in mechanically ventilated patients. PMID:20491842
Tfayli, Ali; Bonnier, Franck; Farhane, Zeineb; Libong, Danielle; Byrne, Hugh J; Baillet-Guffroy, Arlette
2014-06-01
The use of animals for scientific research is increasingly restricted by legislation, increasing the demand for human skin models. These constructs present comparable bulk lipid content to human skin. However, their permeability is significantly higher, limiting their applicability as models of barrier function, although the molecular origins of this reduced barrier function remain unclear. This study analyses the stratum corneum (SC) of one such commercially available reconstructed skin model (RSM) compared with human SC by spectroscopic imaging and chromatographic profiling. Total lipid composition was compared by chromatographic analysis (HPLC). Raman spectroscopy was used to evaluate the conformational order, lateral packing and distribution of lipids in the surface and skin/RSM sections. Although HPLC indicates that all SC lipid classes are present, significant differences are observed in ceramide profiles. Raman imaging demonstrated that the RSM lipids are distributed in a non-continuous matrix, providing a better understanding of the limited barrier function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Functional Specialization in the Human Brain Estimated By Intrinsic Hemispheric Interaction
Wang, Danhong; Buckner, Randy L.
2014-01-01
The human brain demonstrates functional specialization, including strong hemispheric asymmetries. Here specialization was explored using fMRI by examining the degree to which brain networks preferentially interact with ipsilateral as opposed to contralateral networks. Preferential within-hemisphere interaction was prominent in the heteromodal association cortices and minimal in the sensorimotor cortices. The frontoparietal control network exhibited strong within-hemisphere interactions but with distinct patterns in each hemisphere. The frontoparietal control network preferentially coupled to the default network and language-related regions in the left hemisphere but to attention networks in the right hemisphere. This arrangement may facilitate control of processing functions that are lateralized. Moreover, the regions most linked to asymmetric specialization also display the highest degree of evolutionary cortical expansion. Functional specialization that emphasizes processing within a hemisphere may allow the expanded hominin brain to minimize between-hemisphere connectivity and distribute domain-specific processing functions. PMID:25209275
The role of knee alignment in disease progression and functional decline in knee osteoarthritis.
Sharma, L; Song, J; Felson, D T; Cahue, S; Shamiyeh, E; Dunlop, D D
2001-07-11
Knee osteoarthritis (OA) is a leading cause of disability in older persons. Few risk factors for disease progression or functional decline have been identified. Hip-knee-ankle alignment influences load distribution at the knee; varus and valgus alignment increase medial and lateral load, respectively. To test the hypotheses that (1) varus alignment increases risk of medial knee OA progression during the subsequent 18 months, (2) valgus alignment increases risk of subsequent lateral knee OA progression, (3) greater severity of malalignment is associated with greater subsequent loss of joint space, and (4) greater burden of malalignment is associated with greater subsequent decline in physical function. Prospective longitudinal cohort study conducted March 1997 to March 2000 at an academic medical center in Chicago, Ill. A total of 237 persons recruited from the community with primary knee OA, defined by presence of definite tibiofemoral osteophytes and at least some difficulty with knee-requiring activity; 230 (97%) completed the study. Progression of OA, defined as a 1-grade increase in severity of joint space narrowing on semiflexed, fluoroscopically confirmed knee radiographs; change in narrowest joint space width; and change in physical function between baseline and 18 months, compared by knee alignment at baseline. Varus alignment at baseline was associated with a 4-fold increase in the odds of medial progression, adjusting for age, sex, and body mass index (adjusted odds ratio [OR], 4.09; 95% confidence interval [CI], 2.20-7.62). Valgus alignment at baseline was associated with a nearly 5-fold increase in the odds of lateral progression (adjusted OR, 4.89; 95% CI, 2.13-11.20). Severity of varus correlated with greater medial joint space loss during the subsequent 18 months (R = 0.52; 95% CI, 0.40-0.62 in dominant knees), and severity of valgus correlated with greater subsequent lateral joint space loss (R = 0.35; 95% CI, 0.21-0.47 in dominant knees). Having alignment of more than 5 degrees (in either direction) in both knees at baseline was associated with significantly greater functional deterioration during the 18 months than having alignment of 5 degrees or less in both knees, after adjusting for age, sex, body mass index, and pain. This is, to our knowledge, the first demonstration that in primary knee OA varus alignment increases risk of medial OA progression, that valgus alignment increases risk of lateral OA progression, that burden of malalignment predicts decline in physical function, and that these effects can be detected after as little as 18 months of observation.
Characterizing resonant component in speech: A different view of tracking fundamental frequency
NASA Astrophysics Data System (ADS)
Dong, Bin
2017-05-01
Inspired by the nonlinearity and nonstationarity and the modulations in speech, Hilbert-Huang Transform and cyclostationarity analysis are employed to investigate the speech resonance in vowel in sequence. Cyclostationarity analysis is not directly manipulated on the target vowel, but on its intrinsic mode functions one by one. Thanks to the equivalence between the fundamental frequency in speech and the cyclic frequency in cyclostationarity analysis, the modulation intensity distributions of the intrinsic mode functions provide much information for the estimation of the fundamental frequency. To highlight the relationship between frequency and time, the pseudo-Hilbert spectrum is proposed to replace the Hilbert spectrum here. After contrasting the pseudo-Hilbert spectra of and the modulation intensity distributions of the intrinsic mode functions, it finds that there is usually one intrinsic mode function which works as the fundamental component of the vowel. Furthermore, the fundamental frequency of the vowel can be determined by tracing the pseudo-Hilbert spectrum of its fundamental component along the time axis. The later method is more robust to estimate the fundamental frequency, when meeting nonlinear components. Two vowels [a] and [i], picked up from a speech database FAU Aibo Emotion Corpus, are applied to validate the above findings.
Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok
2015-01-01
Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.
Porter, David; Michael, Shona; Kirkwood, Craig
2007-12-01
To investigate: (a) associations between the direction of scoliosis, direction of pelvic obliquity, direction of windswept deformity and side of hip subluxation/ dislocation in non-ambulant people with cerebral palsy; and (b) the lateral distribution of these postural asymmetries. Cross-sectional observational study. Posture management services in three centres in the UK. Non-ambulant people at level five on the gross motor function classification system for cerebral palsy. Direction of pelvic obliquity and lateral spinal curvature determined from physical examination, direction of windswept hip deformity derived from range of hip abduction/adduction, and presence/side of unilateral hip subluxation defined by hip migration percentage. A total of 747 participants were included in the study, aged 6-80 years (median 18 years 10 months). Associations between the direction of scoliosis and direction of pelvic obliquity, and between the direction of windswept hip deformity and side hip subluxation/dislocation were confirmed. A significant association was also seen between the direction of scoliosis and the direction of the windswept hip deformity (P<0.001) such that the convexity of the lateral spinal curve was more likely to be opposite to the direction of windsweeping. Furthermore, significantly more windswept deformities to the right (P=0.007), hips subluxed on the left (P=0.002) and lateral lumbar/lower thoracic spinal curves convex to the left (P=0.03) were observed. The individual asymmetrical postural deformities are not unrelated in terms of direction and not equally distributed to the left/right. A pattern of postural deformity was observed.
Michael, Shona; Kirkwood, Craig
2008-01-01
Objective: To investigate: (a) associations between the direction of scoliosis, direction of pelvic obliquity, direction of windswept deformity and side of hip subluxation/dislocation in non-ambulant people with cerebral palsy; and (b) the lateral distribution of these postural asymmetries. Design: Cross-sectional observational study. Setting: Posture management services in three centres in the UK. Subjects: Non-ambulant people at level five on the gross motor function classification system for cerebral palsy. Main measures: Direction of pelvic obliquity and lateral spinal curvature determined from physical examination, direction of windswept hip deformity derived from range of hip abduction/adduction, and presence/side of unilateral hip subluxation defined by hip migration percentage. Results: A total of 747 participants were included in the study, aged 6–80 years (median 18 years 10 months). Associations between the direction of scoliosis and direction of pelvic obliquity, and between the direction of windswept hip deformity and side hip subluxation/dislocation were confirmed. A significant association was also seen between the direction of scoliosis and the direction of the windswept hip deformity (P < 0.001) such that the convexity of the lateral spinal curve was more likely to be opposite to the direction of windsweeping. Furthermore, significantly more windswept deformities to the right (P = 0.007), hips subluxed on the left (P = 0.002) and lateral lumbar/lower thoracic spinal curves convex to the left (P = 0.03) were observed. Conclusions: The individual asymmetrical postural deformities are not unrelated in terms of direction and not equally distributed to the left/right. A pattern of postural deformity was observed. PMID:18042604
Surface slip during large Owens Valley earthquakes
NASA Astrophysics Data System (ADS)
Haddon, E. K.; Amos, C. B.; Zielke, O.; Jayko, A. S.; Bürgmann, R.
2016-06-01
The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ˜1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ˜0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ˜6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ˜7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ˜0.6 and 1.6 mm/yr (1σ) over the late Quaternary.
Tsiagkas, Giannis; Nikolaou, Christoforos; Almirantis, Yannis
2014-12-01
CpG Islands (CGIs) are compositionally defined short genomic stretches, which have been studied in the human, mouse, chicken and later in several other genomes. Initially, they were assigned the role of transcriptional regulation of protein-coding genes, especially the house-keeping ones, while more recently there is found evidence that they are involved in several other functions as well, which might include regulation of the expression of RNA genes, DNA replication etc. Here, an investigation of their distributional characteristics in a variety of genomes is undertaken for both whole CGI populations as well as for CGI subsets that lie away from known genes (gene-unrelated or "orphan" CGIs). In both cases power-law-like linearity in double logarithmic scale is found. An evolutionary model, initially put forward for the explanation of a similar pattern found in gene populations is implemented. It includes segmental duplication events and eliminations of most of the duplicated CGIs, while a moderate rate of non-duplicated CGI eliminations is also applied in some cases. Simulations reproduce all the main features of the observed inter-CGI chromosomal size distributions. Our results on power-law-like linearity found in orphan CGI populations suggest that the observed distributional pattern is independent of the analogous pattern that protein coding segments were reported to follow. The power-law-like patterns in the genomic distributions of CGIs described herein are found to be compatible with several other features of the composition, abundance or functional role of CGIs reported in the current literature across several genomes, on the basis of the proposed evolutionary model. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Das, G. S.; Hazarika, P.; Goswami, U. D.
2018-07-01
We have studied the distribution patterns of lateral density, arrival time and angular position of Cherenkov photons generated in Extensive Air Showers (EASs) initiated by γ-ray, proton and iron primaries incident with various energies and at various zenith angles. This study is the extension of our earlier work [1] to cover a wide energy range of ground based γ-ray astronomy with a wide range of zenith angles (≤40°) of primary particles, as well as the extension to study the angular distribution patterns of Cherenkov photons in EASs. This type of study is important for distinguishing the γ-ray initiated showers from the hadronic showers in the ground based γ-ray astronomy, where Atmospheric Cherenkov Technique (ACT) is being used. Importantly, such study gives an insight on the nature of γ-ray and hadronic showers in general. In this work, the CORSIKA 6.990 simulation code is used for generation of EASs. Similarly to the case of Ref. [1], this study also revealed that, the lateral density and arrival time distributions of Cherenkov photons vary almost in accordance with the functions: ρch(r) =ρ0e-βr and tch(r) =t0eΓ/rλ respectively by taking different values of the parameters of functions for the type, energy and zenith angle of the primary particle. The distribution of Cherenkov photon's angular positions with respect to shower axis shows distinctive features depending on the primary type, its energy and the zenith angle. As a whole this distribution pattern for the iron primary is noticeably different from those for γ-ray and proton primaries. The value of the angular position at which the maximum number of Cherenkov photons are concentrated, increases with increase in energy of vertically incident primary, but for inclined primary it lies within a small value (≤1°) for almost all energies and primary types. No significant difference in the results obtained by using the high energy hadronic interaction models, viz., QGSJETII and EPOS has been observed.
Lin, Chia-Cheng; Barker, Jeffrey W; Sparto, Patrick J; Furman, Joseph M; Huppert, Theodore J
2017-04-01
Studies suggest that aging affects the sensory re-weighting process, but the neuroimaging evidence is minimal. Functional Near-Infrared Spectroscopy (fNIRS) is a novel neuroimaging tool that can detect brain activities during dynamic movement condition. In this study, fNIRS was used to investigate the hemodynamic changes in the frontal-lateral, temporal-parietal, and occipital regions of interest (ROIs) during four sensory integration conditions that manipulated visual and somatosensory feedback in 15 middle-aged and 15 older adults. The results showed that the temporal-parietal ROI was activated more when somatosensory and visual information were absent in both groups, which indicated the sole use of vestibular input for maintaining balance. While both older adults and middle-aged adults had greater activity in most brain ROIs during changes in the sensory conditions, the older adults had greater increases in the occipital ROI and frontal-lateral ROIs. These findings suggest a cortical component to sensory re-weighting that is more distributed and requires greater attention in older adults.
Polyanska, Liliana; Critchley, Hugo D; Rae, Charlotte L
2017-01-01
Tourette Syndrome (TS) is a neurodevelopmental condition characterized by chronic multiple tics, which are experienced as compulsive and 'unwilled'. Patients with TS can differ markedly in the frequency, severity, and bodily distribution of tics. Moreover, there are high comorbidity rates with attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), anxiety disorders, and depression. This complex clinical profile may account for apparent variability of findings across neuroimaging studies that connect neural function to cognitive and motor behavior in TS. Here we crystalized information from neuroimaging regarding the functional circuitry of TS, and furthermore, tested specifically for neural determinants of tic severity, by applying activation likelihood estimation (ALE) meta-analyses to neuroimaging (activation) studies of TS. Fourteen task-based studies (13 fMRI and one H2O-PET) met rigorous inclusion criteria. These studies, encompassing 25 experiments and 651 participants, tested for differences between TS participants and healthy controls across cognitive, motor, perceptual and somatosensory domains. Relative to controls, TS participants showed distributed differences in the activation of prefrontal (inferior, middle, and superior frontal gyri), anterior cingulate, and motor preparation cortices (lateral premotor cortex and supplementary motor area; SMA). Differences also extended into sensory (somatosensory cortex and the lingual gyrus; V4); and temporo-parietal association cortices (posterior superior temporal sulcus, supramarginal gyrus, and retrosplenial cortex). Within TS participants, tic severity (reported using the Yale Global Tic Severity Scale; YGTSS) selectively correlated with engagement of SMA, precentral gyrus, and middle frontal gyrus across tasks. The dispersed involvement of multiple cortical regions with differences in functional reactivity may account for heterogeneity in the symptomatic expression of TS and its comorbidities. More specifically for tics and tic severity, the findings reinforce previously proposed contributions of premotor and lateral prefrontal cortices to tic expression.
Tschentscher, Nadja; Mitchell, Daniel; Duncan, John
2017-05-03
Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD function to a process of attentional focus on the successive parts of complex behavior. SIGNIFICANCE STATEMENT Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts. We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor foregrounding of task-critical information across a distributed MD system. Copyright © 2017 Tschentscher et al.
Lindell, Annukka K; Hudry, Kristelle
2013-09-01
Language is typically a highly lateralized function, with atypically reduced or reversed lateralization linked to language impairments. Given the diagnostic and prognostic role of impaired language for autism spectrum disorders (ASDs), this paper reviews the growing body of literature that examines patterns of lateralization in individuals with ASDs. Including research from structural and functional imaging paradigms, and behavioral evidence from investigations of handedness, the review confirms that atypical lateralization is common in people with ASDs. The evidence indicates reduced structural asymmetry in fronto-temporal language regions, attenuated functional activation in response to language and pre-linguistic stimuli, and more ambiguous (mixed) hand preferences, in individuals with ASDs. Critically, the evidence emphasizes an intimate relationship between atypical lateralization and language impairment, with more atypical asymmetries linked to more substantive language impairment. Such evidence highlights opportunities for the identification of structural and functional biomarkers of ASDs, affording the potential for earlier diagnosis and intervention implementation.
Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.
Oettinger, D; Mendoza, M; Herrmann, H J
2013-07-01
We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.
Wellenreuther, Maren; Brock, Michelle; Montgomery, John; Clements, Kendall D
2010-01-01
The mechanoreceptive lateral line system in fishes detects hydrodynamic stimuli and plays a critical role in many fundamental behaviours, including orientation to water currents and the detection of stationary objects, prey and predators. Interspecific variation in lateral line structure may result from a process of functional adaptation, with the background level of hydrodynamic activity proposed as an important selective pressure. Here we use the eight species of the ecologically diverse New Zealand marine triplefin fish of the genus Forsterygion and one species from the sister genus Notoclinops to investigate interspecific differences in lateral line morphology and to assess the relationship between lateral line characteristics and exposure to wave energy (fetch/depth ratio). Overall, the results show that lateral line traits are divergent between species, and these differences could in part be related to the wave exposure of the habitats that the species occupy. Specifically, numbers of canal neuromasts differed significantly between species, and most canal groupings increased in neuromast number with fetch/depth ratio, while the number and area of some superficial neuromast groupings decreased significantly with exposure. Distribution of superficial neuromasts along the trunk in the semi-pelagic and paedomorphic species F. maryannae differed from the other, demersal species, which may be associated with the unique lifestyle of this species and/or developmental processes. Canal architecture also differed considerably between species, but displayed no relationship with fetch/depth ratio. The results from this study indicate that some interspecific differences in lateral line organs may be a by-product of selection for habitat divergence. Future work should explore additional causal factors that might have influenced the evolution of lateral morphology in these species, including phylogenetic and allometric effects. Copyright 2010 S. Karger AG, Basel.
Kurt H. Johnsen; Chris A. Maier; Lance W. Kress
2005-01-01
In order to help assess spatial competition for below-ground resources, we quantified the effects of fertilization on root biomass quantity and lateral root distribution of midrotation Pinus taeda trees. Open-top chambers exposed trees to ambient or ambient plus 200 µmol mol-1 atmospheric CO2...
Evidence for a Functional Hierarchy of Association Networks.
Choi, Eun Young; Drayna, Garrett K; Badre, David
2018-05-01
Patient lesion and neuroimaging studies have identified a rostral-to-caudal functional gradient in the lateral frontal cortex (LFC) corresponding to higher-order (complex or abstract) to lower-order (simple or concrete) cognitive control. At the same time, monkey anatomical and human functional connectivity studies show that frontal regions are reciprocally connected with parietal and temporal regions, forming parallel and distributed association networks. Here, we investigated the link between the functional gradient of LFC regions observed during control tasks and the parallel, distributed organization of association networks. Whole-brain fMRI task activity corresponding to four orders of hierarchical control [Badre, D., & D'Esposito, M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19, 2082-2099, 2007] was compared with a resting-state functional connectivity MRI estimate of cortical networks [Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125-1165, 2011]. Critically, at each order of control, activity in the LFC and parietal cortex overlapped onto a common association network that differed between orders. These results are consistent with a functional organization based on separable association networks that are recruited during hierarchical control. Furthermore, corticostriatal functional connectivity MRI showed that, consistent with their participation in functional networks, rostral-to-caudal LFC and caudal-to-rostral parietal regions had similar, order-specific corticostriatal connectivity that agreed with a striatal gating model of hierarchical rule use. Our results indicate that hierarchical cognitive control is subserved by parallel and distributed association networks, together forming multiple localized functional gradients in different parts of association cortex. As such, association networks, while connectionally organized in parallel, may be functionally organized in a hierarchy via dynamic interaction with the striatum.
Sproule, Michael K. J.
2017-01-01
Neural heterogeneities are seen ubiquitously within the brain and greatly complicate classification efforts. Here we tested whether the responses of an anatomically well-characterized sensory neuron population to natural stimuli could be used for functional classification. To do so, we recorded from pyramidal cells within the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus in response to natural electro-communication stimuli as these cells can be anatomically classified into six different types. We then used two independent methodologies to functionally classify responses: one relies of reducing the dimensionality of a feature space while the other directly compares the responses themselves. Both methodologies gave rise to qualitatively similar results: while ON and OFF-type cells could easily be distinguished from one another, ELL pyramidal neuron responses are actually distributed along a continuum rather than forming distinct clusters due to heterogeneities. We discuss the implications of our results for neural coding and highlight some potential advantages. PMID:28384244
Bouck, G. Benjamin
1971-01-01
The structure, assembly, and composition of the extracellular hairs (mastigonemes) of Ochromonas are detailed in this report. These mastigonemes form two lateral unbalanced rows, each row on opposite sides of the long anterior flagellum. Each mastigoneme consists of lateral filaments of two distinct sizes attached to a tubular shaft. The shaft is further differentiated into a basal region at one end and a group of from one to three terminal filaments at the free end. Mastigoneme ontogeny as revealed especially in deflagellated and regenerating cells appears to begin by assembly of the basal region and shaft within the perinuclear continuum. However, addition of lateral filaments to the shaft and extrusion of the mastigonemes to the cell surface is mediated by the Golgi complex. The ultimate distribution of mastigonemes on the flagellar surface seems to be the result of extrusion of mastigonemes near the base of the flagellum, and it is suggested that mastigonemes are then pulled up the flagellum as the axoneme elongates. Efforts to characterize mastigonemes biochemically after isolation and purification on cesium chloride (CsCl) followed by electrophoresis on acrylamide gels have demonstrated what appear to be a single major polypeptide and several differentially migrating carbohydrates. The polypeptide is not homologous with microtuble protein. The functionally anomalous role of mastigonemes in reversing flagellar thrust is discussed in relation to their distribution relative to flagellar anatomy and to the plane of flagellar undulations. PMID:5123323
Marinkovic, Ksenija; Courtney, Maureen G.; Witzel, Thomas; Dale, Anders M.; Halgren, Eric
2014-01-01
Although a crucial role of the fusiform gyrus (FG) in face processing has been demonstrated with a variety of methods, converging evidence suggests that face processing involves an interactive and overlapping processing cascade in distributed brain areas. Here we examine the spatio-temporal stages and their functional tuning to face inversion, presence and configuration of inner features, and face contour in healthy subjects during passive viewing. Anatomically-constrained magnetoencephalography (aMEG) combines high-density whole-head MEG recordings and distributed source modeling with high-resolution structural MRI. Each person's reconstructed cortical surface served to constrain noise-normalized minimum norm inverse source estimates. The earliest activity was estimated to the occipital cortex at ~100 ms after stimulus onset and was sensitive to an initial coarse level visual analysis. Activity in the right-lateralized ventral temporal area (inclusive of the FG) peaked at ~160 ms and was largest to inverted faces. Images containing facial features in the veridical and rearranged configuration irrespective of the facial outline elicited intermediate level activity. The M160 stage may provide structural representations necessary for downstream distributed areas to process identity and emotional expression. However, inverted faces additionally engaged the left ventral temporal area at ~180 ms and were uniquely subserved by bilateral processing. This observation is consistent with the dual route model and spared processing of inverted faces in prosopagnosia. The subsequent deflection, peaking at ~240 ms in the anterior temporal areas bilaterally, was largest to normal, upright faces. It may reflect initial engagement of the distributed network subserving individuation and familiarity. These results support dynamic models suggesting that processing of unfamiliar faces in the absence of a cognitive task is subserved by a distributed and interactive neural circuit. PMID:25426044
Sensitivity of EAS measurements to the energy spectrum of muons
NASA Astrophysics Data System (ADS)
Espadanal, J.; Cazon, L.; Conceição, R.
2017-01-01
We have studied how the energy spectrum of muons at production affects some of the most common measurements related to muons in extensive air shower studies, namely, the number of muons at the ground, the slope of the lateral distribution of muons, the apparent muon production depth, and the arrival time delay of muons at ground. We found that by changing the energy spectrum by an amount consistent with the difference between current models (namely EPOS-LHC and QGSJET-II.04), the muon surface density at ground increases 5% at 20° zenith angle and 17% at 60° zenith angle. This effect introduces a zenith angle dependence on the reconstructed number of muons which might be experimentally observed. The maximum of the muon production depth distribution at 40° increases ∼ 10 g/cm2 and ∼ 0 g/cm2 at 60°, which, from pure geometrical considerations, increases the arrival time delay of muons. There is an extra contribution to the delay due to the subluminal velocities of muons of the order of ∼ 3 ns at all zenith angles. Finally, changes introduced in the logarithmic slope of the lateral density function are less than 2%.
Mestres-Missé, Anna; Trampel, Robert; Turner, Robert; Kotz, Sonja A
2016-04-01
A key aspect of optimal behavior is the ability to predict what will come next. To achieve this, we must have a fairly good idea of the probability of occurrence of possible outcomes. This is based both on prior knowledge about a particular or similar situation and on immediately relevant new information. One question that arises is: when considering converging prior probability and external evidence, is the most probable outcome selected or does the brain represent degrees of uncertainty, even highly improbable ones? Using functional magnetic resonance imaging, the current study explored these possibilities by contrasting words that differ in their probability of occurrence, namely, unbalanced ambiguous words and unambiguous words. Unbalanced ambiguous words have a strong frequency-based bias towards one meaning, while unambiguous words have only one meaning. The current results reveal larger activation in lateral prefrontal and insular cortices in response to dominant ambiguous compared to unambiguous words even when prior and contextual information biases one interpretation only. These results suggest a probability distribution, whereby all outcomes and their associated probabilities of occurrence--even if very low--are represented and maintained.
Van Ginckel, Ans; Thijs, Youri; Hesar, Narmin Ghani Zadeh; Mahieu, Nele; De Clercq, Dirk; Roosen, Philip; Witvrouw, Erik
2009-04-01
The purpose of this prospective cohort study was to identify dynamic gait-related risk factors for Achilles tendinopathy (AT) in a population of novice runners. Prior to a 10-week running program, force distribution patterns underneath the feet of 129 subjects were registered using a footscan pressure plate while the subjects jogged barefoot at a comfortable self-selected pace. Throughout the program 10 subjects sustained Achilles tendinopathy of which three reported bilateral complaints. Sixty-six subjects were excluded from the statistical analysis. Therefore the statistical analysis was performed on the remaining sample of 63 subjects. Logistic regression analysis revealed a significant decrease in the total posterior-anterior displacement of the Centre Of Force (COF) (P=0.015) and a laterally directed force distribution underneath the forefoot at 'forefoot flat' (P=0.016) as intrinsic gait-related risk factors for Achilles tendinopathy in novice runners. These results suggest that, in contrast to the frequently described functional hyperpronation following a more inverted touchdown, a lateral foot roll-over following heel strike and diminished forward force transfer underneath the foot should be considered in the prevention of Achilles tendinopathy.
A method for modeling laterally asymmetric proton beamlets resulting from collimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelover, Edgar; Wang, Dongxu; Flynn, Ryan T.
2015-03-15
Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEVmore » parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σ{sub x1},σ{sub x2},σ{sub y1},σ{sub y2}) together with the spatial location of the maximum dose (μ{sub x},μ{sub y}). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets.« less
Aizawa, Hidenori; Bianco, Isaac H; Hamaoka, Takanori; Miyashita, Toshio; Uemura, Osamu; Concha, Miguel L; Russell, Claire; Wilson, Stephen W; Okamoto, Hitoshi
2005-02-08
The habenulae are part of an evolutionarily highly conserved limbic-system conduction pathway that connects telencephalic nuclei to the interpeduncular nucleus (IPN) of the midbrain . In zebrafish, unilateral activation of the Nodal signaling pathway in the left brain specifies the laterality of the asymmetry of habenular size . We show "laterotopy" in the habenulo-interpeduncular projection in zebrafish, i.e., the stereotypic, topographic projection of left-sided habenular axons to the dorsal region of the IPN and of right-sided habenular axons to the ventral IPN. This asymmetric projection is accounted for by a prominent left-right (LR) difference in the size ratio of the medial and lateral habenular sub-nuclei, each of which specifically projects either to ventral or dorsal IPN targets. Asymmetric Nodal signaling directs the orientation of laterotopy but is dispensable for the establishment of laterotopy itself. Our results reveal a mechanism by which information distributed between left and right sides of the brain can be transmitted bilaterally without loss of LR coding, which may play a crucial role in functional lateralization of the vertebrate brain .
Kinetic Measurements Reveal Enhanced Protein-Protein Interactions at Intercellular Junctions
Shashikanth, Nitesh; Kisting, Meridith A.; Leckband, Deborah E.
2016-01-01
The binding properties of adhesion proteins are typically quantified from measurements with soluble fragments, under conditions that differ radically from the confined microenvironment of membrane bound proteins in adhesion zones. Using classical cadherin as a model adhesion protein, we tested the postulate that confinement within quasi two-dimensional intercellular gaps exposes weak protein interactions that are not detected in solution binding assays. Micropipette-based measurements of cadherin-mediated, cell-cell binding kinetics identified a unique kinetic signature that reflects both adhesive (trans) bonds between cadherins on opposing cells and lateral (cis) interactions between cadherins on the same cell. In solution, proposed lateral interactions were not detected, even at high cadherin concentrations. Mutations postulated to disrupt lateral cadherin association altered the kinetic signatures, but did not affect the adhesive (trans) binding affinity. Perturbed kinetics further coincided with altered cadherin distributions at junctions, wound healing dynamics, and paracellular permeability. Intercellular binding kinetics thus revealed cadherin interactions that occur within confined, intermembrane gaps but not in solution. Findings further demonstrate the impact of these revealed interactions on the organization and function of intercellular junctions. PMID:27009566
Continuing the search for the engram: examining the mechanism of fear memories.
Josselyn, Sheena A
2010-07-01
The goal of my research is to gain insight using rodent models into the fundamental molecular, cellular and systems that make up the base of memory formation. My work focuses on fear memories. Aberrant fear and/or anxiety may be at the heart of many psychiatric disorders. In this article, I review the results of my research group; these results show that particular neurons in the lateral amygdala, a brain region important for fear, are specifically involved in particular fear memories. We started by showing that the transcription factor CREB (cAMP/Ca(2+) response element binding protein) plays a key role in the formation of fear memories. Next, we used viral vectors to overexpress CREB in a subset of lateral amygdala neurons. This not only facilitated fear memory formation but also "drove" the memory into the neurons with relatively increased CREB function. Finally, we showed that selective ablation of the neurons overexpressing CREB in the lateral amygdala selectively erased the fear memory. These findings are the first to show disruption of a specific memory by disrupting select neurons within a distributed network.
NASA Astrophysics Data System (ADS)
Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.
2016-10-01
The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Kroposki, B.; Kramer, W.
Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report alsomore » analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.« less
Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M.; Batista, Claudia Maria de Castro; Mattson, Mark P.; de Mello Coelho, Valeria
2016-01-01
We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN+ LLC. Some cortical NeuN+ neurons, GFAP+ glia limitans astrocytes, Iba-1+ microglia and S100β+ ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes. PMID:27029648
Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M; Batista, Claudia Maria de Castro; Mattson, Mark P; Mello Coelho, Valeria de
2016-03-31
We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN(+) LLC. Some cortical NeuN(+) neurons, GFAP(+) glia limitans astrocytes, Iba-1(+) microglia and S100β(+) ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes.
Dorso-Lateral Prefrontal Cortex MRI Measurements and Cognitive Performance in Autism
Griebling, Jessica; Minshew, Nancy J.; Bodner, Kimberly; Libove, Robin; Bansal, Rahul; Konasale, Prasad; Keshavan, Matcheri S.; Hardan, Antonio
2012-01-01
This study examined the relationships between volumetric measurements of frontal lobe structures and performance on executive function tasks in individuals with autism. MRI scans were obtained from 38 individuals with autism and 40 matched controls between the ages of 8 and 45 years. Executive function was assessed using neuropsychological measures including the Wisconsin Card Sorting Test and Tower of Hanoi. Differences in performance on the neuropsychological tests were found between the two groups. However, no differences in dorsolateral prefrontal cortex volumes were observed between groups. No correlations between volumetric measurements and performance on the neuropsychological tests were found. Findings from this study suggest that executive function deficits observed in autism are related to functional but not anatomical abnormalities of the frontal lobe. The absence of correlations suggests that executive dysfunction is not the result of focal brain alterations but, rather, is the result of a distributed neural network dysfunction. PMID:20097663
Two distinct forms of functional lateralization in the human brain
Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex
2013-01-01
The hemispheric lateralization of certain faculties in the human brain has long been held to be beneficial for functioning. However, quantitative relationships between the degree of lateralization in particular brain regions and the level of functioning have yet to be established. Here we demonstrate that two distinct forms of functional lateralization are present in the left vs. the right cerebral hemisphere, with the left hemisphere showing a preference to interact more exclusively with itself, particularly for cortical regions involved in language and fine motor coordination. In contrast, right-hemisphere cortical regions involved in visuospatial and attentional processing interact in a more integrative fashion with both hemispheres. The degree of lateralization present in these distinct systems selectively predicted behavioral measures of verbal and visuospatial ability, providing direct evidence that lateralization is associated with enhanced cognitive ability. PMID:23959883
Zverev, Yury
2016-08-01
In a recent paper, Mayolas Pi, Arrese, Aparicio, and Masià reported the absence of significant bilateral differences between legs in the average plantar pressure during walking in six- to seven-year-old children. However, the authors demonstrated bilateral differences in the distribution of plantar pressure during walking independent of foot preference in three tests: kicking a ball with precision, balancing on one foot, and jumping on one foot. From the results, Mayolas Pi et al. proposed that this asymmetric pattern of plantar pressure distribution is not caused by laterality. This paper suggests that the selected age range of participants and methods of diagnosing of laterality and data analysis could have significant effects on the results. Indeed, according to the literature, laterality in humans is a multidimensional trait with poor stabilization and conformity between different dimensions in preschool and younger school children. © The Author(s) 2016.
Mode characteristics of nonplanar double-heterojunction and large-optical-cavity laser structures
NASA Technical Reports Server (NTRS)
Butler, J. K.; Botez, D.
1982-01-01
Mode behavior of nonplanar double-heterojunction (DH) and large-optical-cavity (LOC) lasers is investigated using the effective index method to model the lateral field distribution. The thickness variations of various layers for the devices discussed are correlated with the growth characteristics of liquid-phase epitaxy over topographical features (channels, mesas) etched into the substrate. The effective dielectric profiles of constricted double-heterojunction (CDH)-LOC lasers show a strong influence on transverse mode operation: the fundamental transverse mode (i.e., in the plane perpendicular to the junction) may be laterally index-guided, while the first (high)-order mode is laterally index-antiguided. The analytical model developed uses a smoothly varying hyperbolic cosine distribution to characterize lateral index variations. The waveguide model is applied to several lasers to illustrate conditions necessary to convert leaky modes to trapped ones via the active-region gain distribution. Theoretical radiation patterns are calculated using model parameters, and matched to an experimental far-field pattern.
Structural behavior of supercritical fluids under confinement
NASA Astrophysics Data System (ADS)
Ghosh, Kanka; Krishnamurthy, C. V.
2018-01-01
The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P =5000 bar, 240 K ≤T ≤1500 K ) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features not significantly different from that due to normal gas regime. The heterogeneity across the Frenkel line, found to be present both in bulk and confined systems, might cause the breakdown of the universal scaling between structure and dynamics of fluids necessitating the determination of a unique relationship between them.
Structural behavior of supercritical fluids under confinement.
Ghosh, Kanka; Krishnamurthy, C V
2018-01-01
The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P=5000 bar, 240K≤T≤1500K) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features not significantly different from that due to normal gas regime. The heterogeneity across the Frenkel line, found to be present both in bulk and confined systems, might cause the breakdown of the universal scaling between structure and dynamics of fluids necessitating the determination of a unique relationship between them.
Lithio, Andrew
2016-01-01
The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190
Zhao, Jiangsan; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A.; Nakhforoosh, Alireza
2017-01-01
Abstract Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. PMID:28168270
Hwang, Jae-Ung; Wu, Guang; Yan, An; Lee, Yong-Jik; Grierson, Claire S.; Yang, Zhenbiao
2010-01-01
Rapid tip growth allows for efficient development of highly elongated cells (e.g. neuronal axons, fungal hyphae and pollen tubes) and requires an elaborate spatiotemporal regulation of the growing region. Here, we use the pollen tube as a model to investigate the mechanism regulating the growing region. ROPs (Rho-related GTPases from plants) are essential for pollen tip growth and display oscillatory activity changes in the apical plasma membrane (PM). By manipulating the ROP activity level, we showed that the PM distribution of ROP activity as an apical cap determines the tip growth region and that efficient tip growth requires an optimum level of the apical ROP1 activity. Excessive ROP activation induced the enlargement of the tip growth region, causing growth depolarization and reduced tube elongation. Time-lapse analysis suggests that the apical ROP1 cap is generated by lateral propagation of a localized ROP activity. Subcellular localization and gain- and loss-of-function analyses suggest that RhoGDI- and RhoGAP-mediated global inhibition limits the lateral propagation of apical ROP1 activity. We propose that the balance between the lateral propagation and the global inhibition maintains an optimal apical ROP1 cap and generates the apical ROP1 activity oscillation required for efficient pollen-tube elongation. PMID:20053639
Suzuki, Satoshi N; Kachi, Naoki; Suzuki, Jun-Ichirou
2008-09-01
During the development of an even-aged plant population, the spatial distribution of individuals often changes from a clumped pattern to a random or regular one. The development of local size hierarchies in an Abies forest was analysed for a period of 47 years following a large disturbance in 1959. In 1980 all trees in an 8 x 8 m plot were mapped and their height growth after the disturbance was estimated. Their mortality and growth were then recorded at 1- to 4-year intervals between 1980 and 2006. Spatial distribution patterns of trees were analysed by the pair correlation function. Spatial correlations between tree heights were analysed with a spatial autocorrelation function and the mark correlation function. The mark correlation function was able to detect a local size hierarchy that could not be detected by the spatial autocorrelation function alone. The small-scale spatial distribution pattern of trees changed from clumped to slightly regular during the 47 years. Mortality occurred in a density-dependent manner, which resulted in regular spacing between trees after 1980. The spatial autocorrelation and mark correlation functions revealed the existence of tree patches consisting of large trees at the initial stage. Development of a local size hierarchy was detected within the first decade after the disturbance, although the spatial autocorrelation was not negative. Local size hierarchies that developed persisted until 2006, and the spatial autocorrelation became negative at later stages (after about 40 years). This is the first study to detect local size hierarchies as a prelude to regular spacing using the mark correlation function. The results confirm that use of the mark correlation function together with the spatial autocorrelation function is an effective tool to analyse the development of a local size hierarchy of trees in a forest.
NASA Astrophysics Data System (ADS)
Cholet, Cybèle; Charlier, Jean-Baptiste; Moussa, Roger; Steinmann, Marc; Denimal, Sophie
2017-07-01
The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection-diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection-diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs) in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space - between the two reaches located in the unsaturated zone (R1), and in the zone that is both unsaturated and saturated (R2) - as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions) and localized infiltration in the secondary conduit network (tributaries) in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit-matrix exchanges, inducing a complex water mixing effect in the saturated zone. From our results we build the functional scheme of the karst system. It demonstrates the impact of the saturated zone on matrix-conduit exchanges in this shallow phreatic aquifer and highlights the important role of the unsaturated zone on storage and transfer functions of the system.
Liu, D W; Li, J; Guo, L; Rong, Q G; Zhou, Y H
2018-02-18
To analyze the stress distribution in the periodontal ligament (PDL) under different loading conditions at the stage of space closure by 3D finite element model of customized lingual appliances. The 3D finite element model was used in ANSYS 11.0 to analyze the stress distribution in the PDL under the following loading conditions: (1) buccal sliding mechanics (0.75 N,1.00 N,1.50 N), (2) palatal sliding mechanics (0.75 N,1.00 N,1.50 N), (3) palatal-buccal combined sliding mechanics (buccal 1.00 N + palatal 0.50 N, buccal 0.75 N + palatal 0.75 N, buccal 0.50 N+ palatal 1.00 N). The maximum principal stress, minimum principal stress and von Mises stress were evaluated. (1) buccal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress, which was the compressed stress, distributed in labial PDL of cervix of lateral incisor, and palatal distal PDL of cervix of canine. With increasing loa-ding, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in palatal PDL of cervix of lateral incisor and mesial PDL of cervix of canine. With increasing loading, the magnitude and range of minimum principal stress was increased. The area of minimum principal stress appeared in distal and mesial PDL of cervix of central incisor. von Mises stress:it distributed in labial and palatal PDL of cervix of lateral incisor and distal PDL of cervix of canine initially. With increasing loading, the magnitude and range of stress was increased towards the direction of root. Finally, there was stress concentration area at mesial PDL of cervix of canine. (2) palatal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress which was the compressed stress, distributed in palatal and distal PDL of cervix of canine, and distal-buccal and palatal PDL of cervix of lateral incisor. With increasing loading, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in distal-interproximal PDL of cervix of lateral incisor and mesial-interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of the stress was increased.von Mises stress: von Mises stress distributed in palatal and interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of stress was increased. Finally, von Mises stress distributing area appeared at distal-palatal PDL of cervix of canine. (3) palatal-buccal combined sliding mechanics: maximum principal stress: maximum principal stress still distributed in distal-palatal PDL of cervix of canine. Minimum principal stress: minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force increased, the stress concentrating area transferred to mesial PDL of cervix of canine.von Mises stress: it was lower and more well-distributed in palatal-buccal combined sliding mechanics than palatal or buccal sliding mechanics. Using buccal sliding mechanics,stress majorly distributed in PDL of lateral incisor and canine, and magnitude and range of stress increased with the increase of loading; Using palatal sliding mechanics, stress majorly distributed in PDL of canine, and magnitude and range of stress increased with the increase of loading; With palatal-buccal combined sliding mechanics, the maximum principal stress distributed in the distal PDL of canine. Minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force was increasing, the minimum principal stress distributing area shifted to mesial PDL of cervix of canine. When using 1.00 N buccal force and 0.50 N palatal force, the von Mises stress distributed uniformly in PDL and minimal stress appeared.
Li, Huai; Wu, Wei; Tian, Yong-jing; Huang, Tian-yin
2016-02-15
The particle size distribution (PSD) and its transformation processes in the stormwater runoffs in the ancient town of Suzhou were studied based on the particles size analyses, the water-quality monitoring data and the parameters of the rainfall-runoff models. The commercial districts, the modern residential area, the old residential area, the traffic area and the landscape tourist area were selected as the five functional example areas in the ancient town of Suzhou. The effects of antecedent dry period, the rainfall intensity and the amount of runoffs on the particle size distributions were studied, and the existing forms of the main pollutants in different functional areas and their possible relations were analyzed as well. The results showed that the particle size distribution, the migration processes and the output characteristics in the stormwater runoffs were greatly different in these five functional areas, which indicated different control measures for the pollution of the runoffs should be taken in the design process. The antecedent dry period, the rainfall intensity and the amount of runoffs showed significant correlations with the particle size distribution, showing these were the important factors. The output of the particles was greatly influenced by the flow scouring in the early period of the rainfall, and the correlations between the amount of runoffs and the particle migration ability presented significant difference in 30% (early period) and 70% (later period) of the runoff volume. The major existence form of the output pollutants was particle, and the correlation analyses of different diameter particles showed that the particles smaller than 150 microm were the dominant carrier of the pollutants via adsorption and accumulation processes.
Race, Elizabeth A; Shanker, Shanti; Wagner, Anthony D
2009-09-01
Past experience is hypothesized to reduce computational demands in PFC by providing bottom-up predictive information that informs subsequent stimulus-action mapping. The present fMRI study measured cortical activity reductions ("neural priming"/"repetition suppression") during repeated stimulus classification to investigate the mechanisms through which learning from the past decreases demands on the prefrontal executive system. Manipulation of learning at three levels of representation-stimulus, decision, and response-revealed dissociable neural priming effects in distinct frontotemporal regions, supporting a multiprocess model of neural priming. Critically, three distinct patterns of neural priming were identified in lateral frontal cortex, indicating that frontal computational demands are reduced by three forms of learning: (a) cortical tuning of stimulus-specific representations, (b) retrieval of learned stimulus-decision mappings, and (c) retrieval of learned stimulus-response mappings. The topographic distribution of these neural priming effects suggests a rostrocaudal organization of executive function in lateral frontal cortex.
Comparison of LOPES measurements with CoREAS and REAS 3.11 simulations
NASA Astrophysics Data System (ADS)
Ludwig, M.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haug, M.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.
2013-05-01
In the previous years, LOPES emerged as a very successful experiment measuring the radio emission from air showers in the MHz frequency range. In parallel, the theoretical description of radio emission was developed further and REAS became a widely used simulation Monte Carlo code. REAS 3 as well as CoREAS are based on the endpoint formalism, i.e. they calculate the emission of the air-shower without assuming specific emission mechanisms. While REAS 3 is based on histograms derived from CORSIKA simulations, CoREAS is directly implemented into CORSIKA without loss of information due to histogramming of the particle distributions. In contrast to the earlier versions of REAS, the newest version REAS 3.11 and CoREAS take into account a realistic atmospheric refractive index. To improve the understanding of the emission processes and judge the quality of the simulations, we compare their predictions with high-quality events measured by LOPES. We present results concerning the lateral distribution measured with 30 east-west aligned LOPES antennas. Only the simulation codes including the refractive index (REAS 3.11 and CoREAS) are able to reproduce the slope of measured lateral distributions, but REAS 3.0 predicts too steep lateral distributions, and does not predict rising lateral distributions as seen in a few LOPES events. Moreover, REAS 3.11 predicts an absolute amplitude compatible with the LOPES measurements.
Lateral density anomalies and the earth's gravitational field
NASA Technical Reports Server (NTRS)
Lowrey, B. E.
1978-01-01
The interpretation of gravity is valuable for understanding lithospheric plate motion and mantle convection. Postulated models of anomalous mass distributions in the earth and the observed geopotential as expressed in the spherical harmonic expansion are compared. In particular, models of the anomalous density as a function of radius are found which can closely match the average magnitude of the spherical harmonic coefficients of a degree. These models include: (1) a two-component model consisting of an anomalous layer at 200 km depth (below the earth's surface) and at 1500 km depth (2) a two-component model where the upper component is distributed in the region between 1000 and 2800 km depth, and(3) a model with density anomalies which continuously increase with depth more than an order of magnitude.
A Lateralization of Function Approach to Sex Differences in Spatial Ability: A Reexamination
ERIC Educational Resources Information Center
Rilea, Stacy L.
2008-01-01
The current study assessed the lateralization of function hypothesis (Rilea, S. L., Roskos-Ewoldsen, B., & Boles, D. (2004). "Sex differences in spatial ability: A lateralization of function approach." "Brain and Cognition," 56, 332-343) which suggested that it was the interaction of brain organization and the type of spatial task that led to sex…
Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi
2013-04-01
Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes. Copyright © 2013 Elsevier B.V. All rights reserved.
Paul P. Kormanik; H.D. Muse; S.J Sung
1991-01-01
Frequency distribution and heritability of first-order later root (FOLR) numbers in 1-0 seedlings were followed for 5 years for 115 different half-sib seedlots from the Georgia Forestry Commission's Arrowhead and Baldwin Seed Orchards. In 1986 and 1987, seedlings were permitted unrestricted growth under management conditions similar to those practiced in most...
Spatially Resolved Measurement of the Stress Tensor in Thin Membranes Using Bending Waves
NASA Astrophysics Data System (ADS)
Waitz, Reimar; Lutz, Carolin; Nößner, Stephan; Hertkorn, Michael; Scheer, Elke
2015-04-01
The mode shape of bending waves in thin silicon and silicon-carbide membranes is measured as a function of space and time, using a phase-shift interferometer with stroboscopic light. The mode shapes hold information about all the relevant mechanical parameters of the samples, including the spatial distribution of static prestress. We present a simple algorithm to obtain a map of the lateral tensor components of the prestress, with a spatial resolution much better than the wavelength of the bending waves. The method is not limited to measuring the stress of bending waves. It is applicable in almost any situation, where the fields determining the state of the system can be measured as a function of space and time.
Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark
2016-01-01
Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405
Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.
2013-12-01
Cosmic ray air showers emit radio pulses at MHz frequencies, which can be measured with radio antenna arrays - like LOPES at the Karlsruhe Institute of Technology in Germany. To improve the understanding of the radio emission, we test theoretical descriptions with measured data. The observables used for these tests are the absolute amplitude of the radio signal, and the shape of the radio lateral distribution. We compare lateral distributions of more than 500 LOPES events with two recent and public Monte Carlo simulation codes, REAS 3.11 and CoREAS (v 1.0). The absolute radio amplitudes predicted by REAS 3.11 are in good agreement with the LOPES measurements. The amplitudes predicted by CoREAS are lower by a factor of two, and marginally compatible with the LOPES measurements within the systematic scale uncertainties. In contrast to any previous versions of REAS, REAS 3.11 and CoREAS now reproduce the shape of the measured lateral distributions correctly. This reflects a remarkable progress compared to the situation a few years ago, and it seems that the main processes for the radio emission of air showers are now understood: The emission is mainly due to the geomagnetic deflection of the electrons and positrons in the shower. Less important but not negligible is the Askaryan effect (net charge variation). Moreover, we confirm that the refractive index of the air plays an important role, since it changes the coherence conditions for the emission: Only the new simulations including the refractive index can reproduce rising lateral distributions which we observe in a few LOPES events. Finally, we show that the lateral distribution is sensitive to the energy and the mass of the primary cosmic ray particles.
Gu, Feng; Zhang, Caicai; Hu, Axu; Zhao, Guoping
2013-12-01
For nontonal language speakers, speech processing is lateralized to the left hemisphere and musical processing is lateralized to the right hemisphere (i.e., function-dependent brain asymmetry). On the other hand, acoustic temporal processing is lateralized to the left hemisphere and spectral/pitch processing is lateralized to the right hemisphere (i.e., acoustic-dependent brain asymmetry). In this study, we examine whether the hemispheric lateralization of lexical pitch and acoustic pitch processing in tonal language speakers is consistent with the patterns of function- and acoustic-dependent brain asymmetry in nontonal language speakers. Pitch contrast in both speech stimuli (syllable /ji/ in Experiment 1) and nonspeech stimuli (harmonic tone in Experiment 1; pure tone in Experiment 2) was presented to native Cantonese speakers in passive oddball paradigms. We found that the mismatch negativity (MMN) elicited by lexical pitch contrast was lateralized to the left hemisphere, which is consistent with the pattern of function-dependent brain asymmetry (i.e., left hemisphere lateralization for speech processing) in nontonal language speakers. However, the MMN elicited by acoustic pitch contrast was also left hemisphere lateralized (harmonic tone in Experiment 1) or showed a tendency for left hemisphere lateralization (pure tone in Experiment 2), which is inconsistent with the pattern of acoustic-dependent brain asymmetry (i.e., right hemisphere lateralization for acoustic pitch processing) in nontonal language speakers. The consistent pattern of function-dependent brain asymmetry and the inconsistent pattern of acoustic-dependent brain asymmetry between tonal and nontonal language speakers can be explained by the hypothesis that the acoustic-dependent brain asymmetry is the consequence of a carryover effect from function-dependent brain asymmetry. Potential evolutionary implication of this hypothesis is discussed. © 2013.
ERIC Educational Resources Information Center
Van der Haegen, Lise; Cai, Qing; Seurinck, Ruth; Brysbaert, Marc
2011-01-01
The best established lateralized cerebral function is speech production, with the majority of the population having left hemisphere dominance. An important question is how to best assess the laterality of this function. Neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI) are increasingly used in clinical settings to…
Wang, Danhong; Buckner, Randy L.
2013-01-01
Asymmetry of the human cerebellum was investigated using intrinsic functional connectivity. Regions of functional asymmetry within the cerebellum were identified during resting-state functional MRI (n = 500 subjects) and replicated in an independent cohort (n = 500 subjects). The most strongly right lateralized cerebellar regions fell within the posterior lobe, including crus I and crus II, in regions estimated to link to the cerebral association cortex. The most strongly left lateralized cerebellar regions were located in lobules VI and VIII in regions linked to distinct cerebral association networks. Comparison of cerebellar asymmetry with independently estimated cerebral asymmetry revealed that the lateralized regions of the cerebellum belong to the same networks that are strongly lateralized in the cerebrum. The degree of functional asymmetry of the cerebellum across individuals was significantly correlated with cerebral asymmetry and varied with handedness. In addition, cerebellar asymmetry estimated at rest predicted cerebral lateralization during an active language task. These results demonstrate that functional lateralization is likely a unitary feature of large-scale cerebrocerebellar networks, consistent with the hypothesis that the cerebellum possesses a roughly homotopic map of the cerebral cortex including the prominent asymmetries of the association cortex. PMID:23076113
Effects of loss of lateral hydrological connectivity on fish functional diversity.
Liu, Xueqin; Wang, Hongzhu
2018-05-26
Loss of lateral hydrological connectivity (LHC) is a major cause of biodiversity decline in river floodplains, yet little is known about its effects on aquatic functional diversity in these ecosystems. We quantified functional alpha and beta diversity of fish assemblages in Yangtze River floodplain lakes, and explored their responses to loss of LHC using generalized linear mixed models. Functional richness was much lower in river disconnected lakes where functional evenness and divergence were higher. LHC was the most important factor shaping fish diversity patterns in this region. The predicted reduction due to loss of LHC was higher in functional richness (0.47-0.82) than in taxonomic richness (0.32) of all species assemblages in contrast to non-migratory species assemblages. It seemed that functional strategies were highly unevenly distributed between migratory and non-migratory fishes in the floodplain. Taxonomic beta diversity was much higher than functional beta diversity. The former was contributed mainly by spatial turnover component (73.6-83.8%) suggesting that dissimilarity among fish assemblages was largely induced by species replacement, while the latter was induced by nestedness-resultant component (70.7-86.0%) indicating a stronger role of function loss without replacement. Both taxonomic and functional beta diversity were higher in disconnected lakes, where they were significantly correlated with fishing activity and water quality. Our study determined for the first time the effects of loss of LHC on fish functional diversity in large river floodplains. We highlight the serious decline of fish functional richness in a large floodplain, and functional diversity remained highly vulnerable to loss of LHC even in such a species rich ecosystem. Our results provide important implications regarding biodiversity conservation and LHC restoration in large river floodplains. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Monte Carlo simulations for angular and spatial distributions in therapeutic-energy proton beams
NASA Astrophysics Data System (ADS)
Lin, Yi-Chun; Pan, C. Y.; Chiang, K. J.; Yuan, M. C.; Chu, C. H.; Tsai, Y. W.; Teng, P. K.; Lin, C. H.; Chao, T. C.; Lee, C. C.; Tung, C. J.; Chen, A. E.
2017-11-01
The purpose of this study is to compare the angular and spatial distributions of therapeutic-energy proton beams obtained from the FLUKA, GEANT4 and MCNP6 Monte Carlo codes. The Monte Carlo simulations of proton beams passing through two thin targets and a water phantom were investigated to compare the primary and secondary proton fluence distributions and dosimetric differences among these codes. The angular fluence distributions, central axis depth-dose profiles, and lateral distributions of the Bragg peak cross-field were calculated to compare the proton angular and spatial distributions and energy deposition. Benchmark verifications from three different Monte Carlo simulations could be used to evaluate the residual proton fluence for the mean range and to estimate the depth and lateral dose distributions and the characteristic depths and lengths along the central axis as the physical indices corresponding to the evaluation of treatment effectiveness. The results showed a general agreement among codes, except that some deviations were found in the penumbra region. These calculated results are also particularly helpful for understanding primary and secondary proton components for stray radiation calculation and reference proton standard determination, as well as for determining lateral dose distribution performance in proton small-field dosimetry. By demonstrating these calculations, this work could serve as a guide to the recent field of Monte Carlo methods for therapeutic-energy protons.
Geological factors affecting CO2 plume distribution
Frailey, S.M.; Leetaru, H.
2009-01-01
Understanding the lateral extent of a CO2 plume has important implications with regards to buying/leasing pore volume rights, defining the area of review for an injection permit, determining the extent of an MMV plan, and managing basin-scale sequestration from multiple injection sites. The vertical and lateral distribution of CO2 has implications with regards to estimating CO2 storage volume at a specific site and the pore pressure below the caprock. Geologic and flow characteristics such as effective permeability and porosity, capillary pressure, lateral and vertical permeability anisotropy, geologic structure, and thickness all influence and affect the plume distribution to varying degrees. Depending on the variations in these parameters one may dominate the shape and size of the plume. Additionally, these parameters do not necessarily act independently. A comparison of viscous and gravity forces will determine the degree of vertical and lateral flow. However, this is dependent on formation thickness. For example in a thick zone with injection near the base, the CO2 moves radially from the well but will slow at greater radii and vertical movement will dominate. Generally the CO2 plume will not appreciably move laterally until the caprock or a relatively low permeability interval is contacted by the CO2. Conversely, in a relatively thin zone with the injection interval over nearly the entire zone, near the wellbore the CO2 will be distributed over the entire vertical component and will move laterally much further with minimal vertical movement. Assuming no geologic structure, injecting into a thin zone or into a thick zone immediately under a caprock will result in a larger plume size. With a geologic structure such as an anticline, CO2 plume size may be restricted and injection immediately below the caprock may have less lateral plume growth because the structure will induce downward vertical movement of the CO2 until the outer edge of the plume reaches a spill point within the structure. ?? 2009 Elsevier Ltd. All rights reserved.
Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny
2011-01-01
Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Rossi, Ainsley; Blaustein, Sara; Brown, Joshua; Dieffenderfer, Kari; Ervin, Elaine; Griffin, Steven; Frierson, Elizabeth; Geist, Kathleen
2017-01-01
Background In addition to established interventions, dry needling may reduce impairments leading to greater functional abilities for individuals following ankle sprain. Hypothesis/Purpose The purpose of this study was to compare effects of spinal and peripheral dry needling (DN) with peripheral DN alone on impairments and functional performance among individuals with a history of lateral ankle sprain. Study Design Randomized controlled trial. Methods Twenty individuals with a history of lateral ankle sprain (18 bilateral, 2 unilateral) participated in this study (4 males, 16 females; mean age 28.9 + /- 9.2 years). During the first of two sessions, participants completed the Foot and Ankle Disability Index (FADI) and the Cumberland Ankle Instability Tool (CAIT) and their strength, unilateral balance, and unilateral hop test performance was assessed. Participants were randomly assigned to a spinal and peripheral DN group (SPDN), or a peripheral only DN group (PDN). Participants in the SPDN site group received DN to bilateral L5 multifidi and fibularis longus and brevis muscles on the involved lower extremity. Participants in the PDN group received DN to the fibularis muscles alone. Participants’ strength, balance and hop test performance were reassessed immediately following the intervention, and at follow-up 6-7 days later, all outcome measures were reassessed. Three-way mixed model ANOVAs and Mann-Whitney U tests assessed between group differences for outcome variables with normal distributions and non-normal distributions, respectively. Results ANOVAs showed significant group by time interaction (p<0.05) for invertor strength, significant side by group and time by group interactions (p<0.05) for plantarflexor-evertor strength, no significant findings for dorsiflexor-invertor strength, significant side by time interaction (p<0.05) for unilateral balance, significant main effect of time (p<0.05) for triple hop for distance test, and significant main effect of side (p<0.05) for the CAIT. Mann-Whitney U tests showed no significance (p>0.05) for the side hop test or FADI. Conclusion The results suggest that DN of the multifidi in addition to fibularis muscles does not result in improvements in strength, unilateral balance or unilateral hop test performance, compared to DN the fibularis muscles alone among individuals with a history of ankle sprain. PMID:29234555
Frasnelli, Elisa; Vinegoni, Claudio; Antolini, Renzo; Anfora, Gianfranco; Vallortigara, Giorgio; Haase, Albrecht
2011-01-01
The honeybee, Apis mellifera L. (Hymenoptera: Apidae), has recently become a model for studying brain asymmetry among invertebrates. A strong lateralization favouring the right antenna was discovered in odour learning and short-term memory recall experiments, and a lateral shift favouring the left antenna for long-term memory recall. Corresponding morphological asymmetries have been found in the distribution of olfactory sensilla between the antennae and confirmed by electrophysiological odour response measurements in isolated right and left antennae. The aim of this study was to investigate whether a morphological asymmetry can be observed in the volume of the primary olfactory centres of the central nervous system, the antennal lobes (ALs). Precise volume measurements of a subset of their functional units, the glomeruli, were performed in both sides of the brain, exploiting the advantages of two-photon microscopy. This novel method allowed minimal invasive acquisition of volume images of the ALs, avoiding artefacts from brain extraction and dehydration. The study was completed by a series of behavioural experiments in which response asymmetry in odour recall following proboscis extension reflex conditioning was assessed for odours, chosen to stimulate strong activity in the same glomeruli as in the morphological study. The volumetric measurements found no evidence of lateralization in the investigated glomeruli within the experimental limits. Instead, in the behavioural experiments, a striking odour dependence of the lateralization was observed. The results are discussed on the basis of recent neurophysiological and ethological experiments in A. mellifera. PMID:21402106
Miyatake, Aya; Nishio, Teiji; Ogino, Takashi
2011-10-01
The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. (12)C, (16)O, and (40)Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, "virtual positron emitter nuclei" was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data were made using the activity pencil beam kernel, which was composed of the measured depth data and the lateral data including multiple Coulomb scattering approximated by the Gaussian function, and were used for calculating activity distributions. The data of measured depth activity distributions for every target nucleus by proton beam energy were obtained using BOLPs-RGp. The form of the depth activity distribution was verified, and the data were made in consideration of the time-dependent change of the form. Time dependence of an activity distribution form could be represented by two half-lives. Gaussian form of the lateral distribution of the activity pencil beam kernel was decided by the effect of multiple Coulomb scattering. Thus, the data of activity pencil beam involving time dependence could be obtained in this study. The simulation of imaging of the proton-irradiated volume in a patient body using target nuclear fragment reactions was feasible with the developed APB algorithm taking time dependence into account. With the use of the APB algorithm, it was suggested that a system of simulation of activity distributions that has levels of both accuracy and calculation time appropriate for clinical use can be constructed.
Hanson, Brendon J; Hong, Wanjin
2003-09-05
Sorting nexins (SNXs) are a growing family of proteins characterized by the presence of a PX domain. The PX domain mediates membrane association by interaction with phosphoinositides. The SNXs are generally believed to participate in membrane trafficking, but information regarding the function of individual proteins is limited. In this report, we describe the major characteristics of one member, SNX16. SNX16 is a novel 343-amino acid protein consisting of a central PX domain followed by a potential coiled-coil domain and a C-terminal region. Like other sorting nexins, SNX16 associates with the membrane via the PX domain which interacts with the phospholipid phosphatidylinositol 3-phosphate. We show via biochemical and cellular studies that SNX16 is distributed in both early and late endosome/lysosome structures. The coiled-coil domain is necessary for localization to the later endosomal structures, as mutant SNX16 lacking this domain was found only in early endosomes. Trafficking of internalized epidermal growth factor was also delayed by this SNX16 mutant, as these cells showed a delay in the segregation of epidermal growth factor in the early endosome for its delivery to later compartments. In addition, the coiled-coil domain is shown here to be important for homo-oligomerization of SNX16. Taken together, these results suggest that SNX16 is a sorting nexin that may function in the trafficking of proteins between the early and late endosomal compartments.
Hendrickson, Phillip J; Yu, Gene J; Song, Dong; Berger, Theodore W
2016-01-01
This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust nonrandom pattern of spiking best described as a spatiotemporal "clustering." To identify the network property or properties responsible for generating such firing "clusters," we progressively eliminated from the model key mechanisms, such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatiotemporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" or "channels" that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics.
Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.
2016-01-01
Goal This manuscript describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. Methods The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatio-temporal “clustering”. To identify the network property or properties responsible for generating such firing “clusters”, we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Conclusion Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as “functional units” or “channels” that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics. PMID:26087482
McLoon, Linda K.; Vicente, André; Fitzpatrick, Krysta R.; Lindström, Mona
2018-01-01
Purpose We examined the pattern and extent of connective tissue distribution in the extraocular muscles (EOMs) and determined the ability of the interconnected connective tissues to disseminate force laterally. Methods Human EOMs were examined for collagens I, III, IV, and VI; fibronectin; laminin; and elastin using immunohistochemistry. Connective tissue distribution was examined with scanning electron microscopy. Rabbit EOMs were examined for levels of force transmission longitudinally and transversely using in vitro force assessment. Results Collagens I, III, and VI localized to the endomysium, perimysium, and epimysium. Collagen IV, fibronectin, and laminin localized to the basal lamina surrounding all myofibers. All collagens localized similarly in the orbital and global layers throughout the muscle length. Elastin had the most irregular pattern and ran longitudinally and circumferentially throughout the length of all EOMs. Scanning electron microscopy showed these elements to be extensively interconnected, from endomysium through the perimysium to the epimysium surrounding the whole muscle. In vitro physiology demonstrated force generation in the lateral dimension, presumably through myofascial transmission, which was always proportional to the force generated in the longitudinally oriented muscles. Conclusions A striking connective tissue matrix interconnects all the myofibers and extends, via perimysial connections, to the epimysium. These interconnections are significant and allow measurable force transmission laterally as well as longitudinally, suggesting that they may contribute to the nonlinear force summation seen in motor unit recording studies. This provides strong evidence that separate compartmental movements are unlikely as no region is independent of the rest of the muscle. PMID:29346490
Dye, Matthew W G; Seymour, Jenessa L; Hauser, Peter C
2016-04-01
Deafness results in cross-modal plasticity, whereby visual functions are altered as a consequence of a lack of hearing. Here, we present a reanalysis of data originally reported by Dye et al. (PLoS One 4(5):e5640, 2009) with the aim of testing additional hypotheses concerning the spatial redistribution of visual attention due to deafness and the use of a visuogestural language (American Sign Language). By looking at the spatial distribution of errors made by deaf and hearing participants performing a visuospatial selective attention task, we sought to determine whether there was evidence for (1) a shift in the hemispheric lateralization of visual selective function as a result of deafness, and (2) a shift toward attending to the inferior visual field in users of a signed language. While no evidence was found for or against a shift in lateralization of visual selective attention as a result of deafness, a shift in the allocation of attention from the superior toward the inferior visual field was inferred in native signers of American Sign Language, possibly reflecting an adaptation to the perceptual demands imposed by a visuogestural language.
Eisen, Andrew; Lemon, Roger; Kiernan, Matthew C; Hornberger, Michael; Turner, Martin R
2015-07-01
There is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential relevance in amyotrophic lateral sclerosis (ALS). We have recently proposed that ALS (and the related condition of frontotemporal dementia) may be viewed as a failure of interlinked functional complexes having their origins in key evolutionary adaptations. This can include loss of the direct projections from the corticospinal tract, and this is at least part of the explanation for impaired motor control in ALS. Since, in the monkey, corticospinal neurons also show mirror properties, ALS in humans might also affect the mirror neuron system. We speculate that a defective mirror neuron system might contribute to other ALS deficits affecting motor imagery, gesture, language and empathy. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Hemispheric differences of motor execution: a near-infrared spectroscopy study.
Helmich, Ingo; Rein, Robert; Niermann, Nico; Lausberg, Hedda
2013-01-01
Distal movements of the limbs are predominantly controlled by the contralateral hemisphere. However, functional neuroimaging studies do not unequivocally demonstrate a lateralization of the cerebral activation during hand movements. While some studies show a predominant activation of the contralateral hemisphere, other studies provide evidence for a symmetrically distributed bihemispheric activation. However, the divergent results may also be due to methodological shortcomings. Therefore, the present study using functional near-infrared spectroscopy examines cerebral activation in both hemispheres during motor actions of the right and left hands. Twenty participants performed a flexion/extension task with the right- or left-hand thumb. Cerebral oxygenation changes were recorded from 48 channels over the primary motor, pre-motor, supplementary motor, primary somatosensory cortex, subcentral area, and the supramarginal gyrus of each hemisphere. A consistent increase of cerebral oxygenation was found for oxygenated and for total hemoglobin in the hemisphere contralateral to the moving hand, regardless of the laterality. These findings are in line with previous data from localization [1-3] and brain imaging studies [4-6]. The present data support the proposition that there is no hemispheric specialization for simple distal motor tasks. Both hemispheres are equally activated during movement of the contralateral upper limb.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Chen, M.; Cohen, S.; Saco, P. M.; Hancock, G. R.
2013-12-01
In humid areas it is generally considered that soil moisture scales spatially according to the wetness index of the landscape. This scaling arises from lateral flow downslope of ground water within the soil zone. However, in semi-arid and drier regions, this lateral flow is small and fluxes are dominated by vertical flows driven by infiltration and evapotranspiration. Thus, in the absence of runon processes, soil moisture at a location is more driven by local factors such as soil and vegetation properties at that location rather than upstream processes draining to that point. The 'apparent' spatial randomness of soil and vegetation properties generally suggests that soil moisture for semi-arid regions is spatially random. In this presentation a new analysis of neutron probe data during summer from the Tarrawarra site near Melbourne, Australia shows persistent spatial organisation of soil moisture over several years. This suggests a link between permanent features of the catchment (e.g. soil properties) and soil moisture distribution, even though the spatial pattern of soil moisture during the 4 summers monitored appears spatially random. This and other data establishes a prima facie case that soil variations drive spatial variation in soil moisture. Accordingly, we used a previously published spatial scaling relationship for soil properties derived using the mARM pedogenesis model to simulate the spatial variation of soil grading. This soil grading distribution was used in the Rosetta pedotransfer model to derive a spatial distribution of soil functional properties (e.g. saturated hydraulic conductivity, porosity). These functional properties were then input into the HYDRUS-1D soil moisture model and soil moisture simulated for 3 years at daily resolution. The HYDRUS model used had previously been calibrated to field observed soil moisture data at our SASMAS field site. The scaling behaviour of soil moisture derived from this modelling will be discussed and compared with observed data from our SASMAS field sites.
Degnan, Andrew J.; Wisnowski, Jessica L.; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M.; Corby, Patricia; Schmithorst, Vincent J.; Panigrahy, Ashok
2015-01-01
Objective Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Methods Thirty-eight preadolescents (ages 9–13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Results Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Conclusion Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing. PMID:26098888
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasui, Keisuke, E-mail: k.yasui.20@west-med.jp; Toshito, Toshiyuki; Omachi, Chihiro
Purpose: In the authors’ proton therapy system, the patient-specific aperture can be attached to the nozzle of spot scanning beams to shape an irradiation field and reduce lateral fall-off. The authors herein verified this system for clinical application. Methods: The authors prepared four types of patient-specific aperture systems equipped with an energy absorber to irradiate shallow regions less than 4 g/cm{sup 2}. The aperture was made of 3-cm-thick brass and the maximum water equivalent penetration to be used with this system was estimated to be 15 g/cm{sup 2}. The authors measured in-air lateral profiles at the isocenter plane and integralmore » depth doses with the energy absorber. All input data were obtained by the Monte Carlo calculation, and its parameters were tuned to reproduce measurements. The fluence of single spots in water was modeled as a triple Gaussian function and the dose distribution was calculated using a fluence dose model. The authors compared in-air and in-water lateral profiles and depth doses between calculations and measurements for various apertures of square, half, and U-shaped fields. The absolute doses and dose distributions with the aperture were then validated by patient-specific quality assurance. Measured data were obtained by various chambers and a 2D ion chamber detector array. Results: The patient-specific aperture reduced the penumbra from 30% to 70%, for example, from 34.0 to 23.6 mm and 18.8 to 5.6 mm. The calculated field width for square-shaped apertures agreed with measurements within 1 mm. Regarding patient-specific aperture plans, calculated and measured doses agreed within −0.06% ± 0.63% (mean ± SD) and 97.1% points passed the 2%-dose/2 mm-distance criteria of the γ-index on average. Conclusions: The patient-specific aperture system improved dose distributions, particularly in shallow-region plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, S; Takayanagi, T; Fujii, Y
2014-06-15
Purpose: To present the validity of our beam modeling with double and triple Gaussian dose kernels for spot scanning proton beams in Nagoya Proton Therapy Center. This study investigates the conformance between the measurements and calculation results in absolute dose with two types of beam kernel. Methods: A dose kernel is one of the important input data required for the treatment planning software. The dose kernel is the 3D dose distribution of an infinitesimal pencil beam of protons in water and consists of integral depth doses and lateral distributions. We have adopted double and triple Gaussian model as lateral distributionmore » in order to take account of the large angle scattering due to nuclear reaction by fitting simulated inwater lateral dose profile for needle proton beam at various depths. The fitted parameters were interpolated as a function of depth in water and were stored as a separate look-up table for the each beam energy. The process of beam modeling is based on the method of MDACC [X.R.Zhu 2013]. Results: From the comparison results between the absolute doses calculated by double Gaussian model and those measured at the center of SOBP, the difference is increased up to 3.5% in the high-energy region because the large angle scattering due to nuclear reaction is not sufficiently considered at intermediate depths in the double Gaussian model. In case of employing triple Gaussian dose kernels, the measured absolute dose at the center of SOBP agrees with calculation within ±1% regardless of the SOBP width and maximum range. Conclusion: We have demonstrated the beam modeling results of dose distribution employing double and triple Gaussian dose kernel. Treatment planning system with the triple Gaussian dose kernel has been successfully verified and applied to the patient treatment with a spot scanning technique in Nagoya Proton Therapy Center.« less
Blumenfeld, Robert S; Nomura, Emi M; Gratton, Caterina; D'Esposito, Mark
2013-10-01
Anatomical connectivity differences between the dorsal and ventral lateral prefrontal cortex (PFC) of the non-human primate strongly suggests that these regions support different functions. However, after years of study, it remains unclear whether these regions are functionally distinct. In contrast, there has been a groundswell of recent studies providing evidence for a rostro-caudal functional organization, along the lateral as well as dorsomedial frontal cortex. Thus, it is not known whether dorsal and ventral regions of lateral PFC form distinct functional networks and how to reconcile any dorso-ventral organization with the medio-lateral and rostro-caudal axes. Here, we used resting-state connectivity data to identify parallel dorsolateral and ventrolateral streams of intrinsic connectivity with the dorsomedial frontal cortex. Moreover, we show that this connectivity follows a rostro-caudal gradient. Our results provide evidence for a novel framework for the intrinsic organization of the frontal cortex that incorporates connections between medio-lateral, dorso-ventral, and rostro-caudal axes.
Montagnese, Catherine M.; Székely, Tamás; Csillag, András; Zachar, Gergely
2015-01-01
Blue tits (Cyanistes coeruleus) are songbirds, used as model animals in numerous studies covering a wide field of research. Nevertheless, the distribution of neuropeptides in the brain of this avian species remains largely unknown. Here we present some of the first results on distribution of Vasotocine (AVT) and Vasoactive intestinal peptide (VIP) in the brain of males and females of this songbird species, using immunohistochemistry mapping. The bulk of AVT-like cells are found in the hypothalamic supraoptic, paraventricular and suprachiasmatic nuclei, bed nucleus of the stria terminalis, and along the lateral forebrain bundle. Most AVT-like fibers course toward the median eminence, some reaching the arcopallium, and lateral septum. Further terminal fields occur in the dorsal thalamus, ventral tegmental area and pretectal area. Most VIP-like cells are in the lateral septal organ and arcuate nucleus. VIP-like fibers are distributed extensively in the hypothalamus, preoptic area, lateral septum, diagonal band of Broca. They are also found in the bed nucleus of the stria terminalis, amygdaloid nucleus of taenia, robust nucleus of the arcopallium, caudo-ventral hyperpallium, nucleus accumbens and the brainstem. Taken together, these results suggest that both AVT and VIP immunoreactive structures show similar distribution to other avian species, emphasizing evolutionary conservatism in the history of vertebrates. The current study may enable future investigation into the localization of AVT and VIP, in relation to behavioral and ecological traits in the brain of tit species. PMID:26236200
Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi
2011-04-04
We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.
Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi
2011-01-01
We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth‐dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high‐bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L‐shaped bolus. The dose reproducibility, angular dependence and depth‐dose response were evaluated using a 190 MeV proton beam. Depth‐output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose‐weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L‐shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PACS number: 87.56.‐v
Geng, Dan; Ou, RuWei; Miao, XiaoHui; Zhao, LiHong; Wei, QianQian; Chen, XuePing; Liang, Yan; Shang, HuiFang; Yang, Rong
2017-10-01
This study surveys the quality of life of amyotrophic lateral sclerosis patients and the factors associated with amyotrophic lateral sclerosis patients' self-perceived burden and their caregivers' burden. Burdens of patients with amyotrophic lateral sclerosis and their caregivers in Chinese population are largely unknown. A cross-sectional study was conducted among 81 pairs of amyotrophic lateral sclerosis patients and their caregivers. Amyotrophic lateral sclerosis patients' self-perceived burden and caregivers' burden were assessed by the Self-Perceived Burden Scale and Zarit-Burden Interview, respectively. Quality of life of amyotrophic lateral sclerosis patients was measured using the World Health Organization Quality of Life-Bref. The amyotrophic lateral sclerosis Functional Rating Scale-Revised questionnaire was used to estimate patients' physical function. Both patients and caregivers reported a mild to moderate burden. The World Health Organization quality of life-Bref scores were decreased in respondents with lower amyotrophic lateral sclerosis Functional Rating Scale-Revised, higher Self-Perceived Burden Scale and higher Zarit-Burden Interview scores. Self-Perceived Burden Scale scores were associated with patients' knowledge of amyotrophic lateral sclerosis, respiratory function and female sex. Zarit-Burden Interview scores were associated with caregivers' age, patients' motor function and out-of-pocket payment. With increase in amyotrophic lateral sclerosis patients' self-perceived burden and caregivers' burden, quality of life of amyotrophic lateral sclerosis patients decreased. Female patients, who had known more about the disease, and those with severe respiratory dysfunction were subject to higher self-perceived burden. Older caregivers and caregivers of patients with severe motor dysfunction and more out-of-pocket payment experienced more care burdens. Our study suggests that paying more attention to female amyotrophic lateral sclerosis patients might benefit patients in China or other South-East Asian countries under the Confucian concept of ethics. There is an urgent demand to expand medical insurance coverage to cover amyotrophic lateral sclerosis in China and other developing countries. Long and adequate supports are needed for relieving caregiver's burden. To improve the quality of life of patients, relieving the patients' SBP and caregivers' burden is likely to be not only required, but also essential. © 2016 John Wiley & Sons Ltd.
Dynamic Response of an Optomechanical System to a Stationary Random Excitation in the Time Domain
Palmer, Jeremy A.; Paez, Thomas L.
2011-01-01
Modern electro-optical instruments are typically designed with assemblies of optomechanical members that support optics such that alignment is maintained in service environments that include random vibration loads. This paper presents a nonlinear numerical analysis that calculates statistics for the peak lateral response of optics in an optomechanical sub-assembly subject to random excitation of the housing. The work is unique in that the prior art does not address peak response probability distribution for stationary random vibration in the time domain for a common lens-retainer-housing system with Coulomb damping. Analytical results are validated by using displacement response data from random vibration testingmore » of representative prototype sub-assemblies. A comparison of predictions to experimental results yields reasonable agreement. The Type I Asymptotic form provides the cumulative distribution function for peak response probabilities. Probabilities are calculated for actual lens centration tolerances. The probability that peak response will not exceed the centration tolerance is greater than 80% for prototype configurations where the tolerance is high (on the order of 30 micrometers). Conversely, the probability is low for those where the tolerance is less than 20 micrometers. The analysis suggests a design paradigm based on the influence of lateral stiffness on the magnitude of the response.« less
[Modeling polarimetric BRDF of leaves surfaces].
Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min
2010-12-01
The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.
Lateral and Time Distributions of Extensive Air Showers for CHICOS
NASA Astrophysics Data System (ADS)
Jillings, C. J.; Wells, D.; Chan, K. C.; Hill, J.; Falkowski, B.; Sepikas, J.
2005-04-01
We report results of a series of detailed Monte-Carlo calculations to determine the density and arrival-time distribution of charged particles in extensive air showers. We have parameterized both distributions as a function of distance from the shower axis, energy of the primary cosmic-ray proton, and incident zenith angle. Muons and electrons are parameterized separately. These parameterizations can be easily used in maximum-likelihood reconstruction of air showers. Calculations were performed for primary energies between 10^18 and 10^21eV and zenith angles out to approximately 50^o. The calculations are appropriate for the California High School Cosmic Ray Observatory: a 400 km^2 array of scintillation detectors in Los Angeles county. The average elevation of the array is approximately 250 meters above sea level. Currently 64 of 90 sites are operational. The array will be completed this year. We thank the NSF, the CURE program at the Jet Propulsion Laboratory, the SURF program at Caltech, and the Chinese University of Hong Kong.
Resampling methods in Microsoft Excel® for estimating reference intervals
Theodorsson, Elvar
2015-01-01
Computer- intensive resampling/bootstrap methods are feasible when calculating reference intervals from non-Gaussian or small reference samples. Microsoft Excel® in version 2010 or later includes natural functions, which lend themselves well to this purpose including recommended interpolation procedures for estimating 2.5 and 97.5 percentiles. The purpose of this paper is to introduce the reader to resampling estimation techniques in general and in using Microsoft Excel® 2010 for the purpose of estimating reference intervals in particular. Parametric methods are preferable to resampling methods when the distributions of observations in the reference samples is Gaussian or can transformed to that distribution even when the number of reference samples is less than 120. Resampling methods are appropriate when the distribution of data from the reference samples is non-Gaussian and in case the number of reference individuals and corresponding samples are in the order of 40. At least 500-1000 random samples with replacement should be taken from the results of measurement of the reference samples. PMID:26527366
Resampling methods in Microsoft Excel® for estimating reference intervals.
Theodorsson, Elvar
2015-01-01
Computer-intensive resampling/bootstrap methods are feasible when calculating reference intervals from non-Gaussian or small reference samples. Microsoft Excel® in version 2010 or later includes natural functions, which lend themselves well to this purpose including recommended interpolation procedures for estimating 2.5 and 97.5 percentiles. The purpose of this paper is to introduce the reader to resampling estimation techniques in general and in using Microsoft Excel® 2010 for the purpose of estimating reference intervals in particular. Parametric methods are preferable to resampling methods when the distributions of observations in the reference samples is Gaussian or can transformed to that distribution even when the number of reference samples is less than 120. Resampling methods are appropriate when the distribution of data from the reference samples is non-Gaussian and in case the number of reference individuals and corresponding samples are in the order of 40. At least 500-1000 random samples with replacement should be taken from the results of measurement of the reference samples.
Reilly, Jamie; Garcia, Amanda; Binney, Richard J.
2016-01-01
Much remains to be learned about the neural architecture underlying word meaning. Fully distributed models of semantic memory predict that the sound of a barking dog will conjointly engage a network of distributed sensorimotor spokes. An alternative framework holds that modality-specific features additionally converge within transmodal hubs. Participants underwent functional MRI while covertly naming familiar objects versus newly learned novel objects from only one of their constituent semantic features (visual form, characteristic sound, or point-light motion representation). Relative to the novel object baseline, familiar concepts elicited greater activation within association regions specific to that presentation modality. Furthermore, visual form elicited activation within high-level auditory association cortex. Conversely, environmental sounds elicited activation in regions proximal to visual association cortex. Both conditions commonly engaged a putative hub region within lateral anterior temporal cortex. These results support hybrid semantic models in which local hubs and distributed spokes are dually engaged in service of semantic memory. PMID:27289210
NASA Astrophysics Data System (ADS)
Ahmed, Mutez A.; Zarebanadkouki, Mohsen; Kroener, Eva; Carminati, Andrea
2015-04-01
Water availability is a primary constraint to the global crop production. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers (40×38×1 cm) filled with sandy soil. The soil was partitioned into different compartments using 1-cm-thick layers of coarse sand. When the plants were two weeks-old we injected D2O into selected soil compartments. The experiments were performed during the day (transpiring plants) and night (non transpiring plants). The transport of D2O into roots was simulated using a convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Both during day and night measurements, D2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10-7cm2s-1)was similar to that of the distal segments of seminal roots (4.72×10-7cm2s-1) and higher than of the proximal segments (1.42×10-7cm2s-1). Water uptake of lateral roots (1.64×10-5cms-1)was much higher than that of the distal segments of seminal roots (1.18×10-12cms-1). Water uptake of the proximal seminal segments was negligible. We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. Breeding for lateral roots with high radial conductivity and seminal roots with large xylem vessels diameter would be beneficial in agroecosystems where water is available. In contrast, in arid and semi-arid areas seminal roots with a smaller xylem vessel diameter combined with deep branching of laterals would reduce transpiration rate and at the same time allow the uptake of water stored in the subsoil (Richards and Passioura 1989). Reference Richards RA, Passioura JB. (1989) A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Australian Journal of Agricultural Research 40, 943-950.
Kann, Sarah; Zhang, Sheng; Manza, Peter; Leung, Hoi-Chung
2016-01-01
Abstract Resting-state functional connectivity (rsFC) is widely used to examine cerebral functional organization. The imaging literature has described lateralization of insula activations during cognitive and affective processing. Evidence appears to support a role of the right-hemispheric insula in attentional orientation to salient stimulus, interoception, and physiological arousal, and a role of the left-hemispheric insula in cognitive and affective control, as well as perspective taking. In this study, in a large data set of healthy adults, we examined lateralization of the rsFC of the anterior insula (AI) by computing a laterality index (LI) of connectivity with 54 regions from the Automated Anatomic Labeling atlas. At a corrected threshold (p < 0.001), the AI is left lateralized in connectivity with the dorsomedial prefrontal cortex, superior frontal gyrus, inferior frontal cortex, and posterior orbital gyrus and right lateralized in connectivity with the postcentral gyrus, supramarginal gyrus, and superior parietal lobule. In gender differences, women, but not men, showed right-lateralized connectivity to the thalamus. Furthermore, in a subgroup of participants assessed by the tridimensional personality questionnaire, novelty seeking is correlated with the extent of left lateralization of AI connectivity to the pallidum and putamen in men and with the extent of right lateralization of AI connectivity to the parahippocampal gyrus in women. These findings support hemispheric functional differentiation of the AI. PMID:27604154
Kann, Sarah; Zhang, Sheng; Manza, Peter; Leung, Hoi-Chung; Li, Chiang-Shan R
2016-11-01
Resting-state functional connectivity (rsFC) is widely used to examine cerebral functional organization. The imaging literature has described lateralization of insula activations during cognitive and affective processing. Evidence appears to support a role of the right-hemispheric insula in attentional orientation to salient stimulus, interoception, and physiological arousal, and a role of the left-hemispheric insula in cognitive and affective control, as well as perspective taking. In this study, in a large data set of healthy adults, we examined lateralization of the rsFC of the anterior insula (AI) by computing a laterality index (LI) of connectivity with 54 regions from the Automated Anatomic Labeling atlas. At a corrected threshold (p < 0.001), the AI is left lateralized in connectivity with the dorsomedial prefrontal cortex, superior frontal gyrus, inferior frontal cortex, and posterior orbital gyrus and right lateralized in connectivity with the postcentral gyrus, supramarginal gyrus, and superior parietal lobule. In gender differences, women, but not men, showed right-lateralized connectivity to the thalamus. Furthermore, in a subgroup of participants assessed by the tridimensional personality questionnaire, novelty seeking is correlated with the extent of left lateralization of AI connectivity to the pallidum and putamen in men and with the extent of right lateralization of AI connectivity to the parahippocampal gyrus in women. These findings support hemispheric functional differentiation of the AI.
Hyodo, Kazuki; Dan, Ippeita; Kyutoku, Yasushi; Suwabe, Kazuya; Byun, Kyeongho; Ochi, Genta; Kato, Morimasa; Soya, Hideaki
2016-01-15
Previous studies have shown that higher aerobic fitness is related to higher cognitive function and higher task-related prefrontal activation in older adults. However, a holistic picture of these factors has yet to be presented. As a typical age-related change of brain activation, less lateralized activity in the prefrontal cortex during cognitive tasks has been observed in various neuroimaging studies. Thus, this study aimed to reveal the relationship between aerobic fitness, cognitive function, and frontal lateralization. Sixty male older adults each performed a submaximal incremental exercise test to determine their oxygen intake (V·O2) at ventilatory threshold (VT) in order to index their aerobic fitness. They performed a color-word Stroop task while prefrontal activation was monitored using functional near infrared spectroscopy. As an index of cognitive function, Stroop interference time was analyzed. Partial correlation analyses revealed significant correlations among higher VT, shorter Stroop interference time and greater left-lateralized dorsolateral prefrontal cortex (DLPFC) activation when adjusting for education. Moreover, mediation analyses showed that left-lateralized DLPFC activation significantly mediated the association between VT and Stroop interference time. These results suggest that higher aerobic fitness is associated with cognitive function via lateralized frontal activation in older adults. Copyright © 2015 Elsevier Inc. All rights reserved.
Lateral distribution on charged particles in EAS
NASA Technical Reports Server (NTRS)
Dedenko, L. G.; Kulikov, G. V.; Solovjeva, V. I.; Sulakov, V. F.
1985-01-01
Lateral distribution of charged particles which allow for the finiteness of energy gamma-quanta, the inhomogeneity of the atmosphere and the experimental selection of EAS are needed to interpret experimental data. The effects of finiteness of energy of gamma-quanta which produce the partial electron-photon cascades were considered by substituting K R sub m instead of R sub m in NKG approximation where K was found to be 0.56 from comparison with the experimental data. New results on the lateral distribution of electrons in the partial cascades from gamma-quanta were obtained. It is shown that the coefficient K can be regarded as a constant. The last approximation of K was found to be most adequate when compared with the experimental data. The inhomogeneity of the atmosphere, muons and experimental selection are considered. The calculation of Ne are extended from 100,000 to 10 million for sea level and for Akeno level.
NASA Astrophysics Data System (ADS)
Zhang, Chendong; Li, Ming-Yang; Tersoff, Jerry; Han, Yimo; Su, Yushan; Li, Lain-Jong; Muller, David A.; Shih, Chih-Kang
2018-02-01
Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.
Stochastic scheduling on a repairable manufacturing system
NASA Astrophysics Data System (ADS)
Li, Wei; Cao, Jinhua
1995-08-01
In this paper, we consider some stochastic scheduling problems with a set of stochastic jobs on a manufacturing system with a single machine that is subject to multiple breakdowns and repairs. When the machine processing a job fails, the job processing must restart some time later when the machine is repaired. For this typical manufacturing system, we find the optimal policies that minimize the following objective functions: (1) the weighed sum of the completion times; (2) the weighed number of late jobs having constant due dates; (3) the weighted number of late jobs having random due dates exponentially distributed, which generalize some previous results.
Basic avionics module design for general aviation aircraft
NASA Technical Reports Server (NTRS)
Smyth, R. K.; Smyth, D. E.
1978-01-01
The design of an advanced digital avionics system (basic avionics module) for general aviation aircraft operated with a single pilot under IFR conditions is described. The microprocessor based system provided all avionic functions, including flight management, navigation, and lateral flight control. The mode selection was interactive with the pilot. The system used a navigation map data base to provide operation in the current and planned air traffic control environment. The system design included software design listings for some of the required modules. The distributed microcomputer uses the IEEE 488 bus for interconnecting the microcomputer and sensors.
Contributions to lateral balance control in ambulatory older adults.
Sparto, Patrick J; Newman, A B; Simonsick, E M; Caserotti, P; Strotmeyer, E S; Kritchevsky, S B; Yaffe, K; Rosano, C
2018-06-01
In older adults, impaired control of standing balance in the lateral direction is associated with the increased risk of falling. Assessing the factors that contribute to impaired standing balance control may identify areas to address to reduce falls risk. To investigate the contributions of physiological factors to standing lateral balance control. Two hundred twenty-two participants from the Pittsburgh site of the Health, Aging and Body Composition Study had lateral balance control assessed using a clinical sensory integration balance test (standing on level and foam surface with eyes open and closed) and a lateral center of pressure tracking test using visual feedback. The center of pressure was recorded from a force platform. Multiple linear regression models examined contributors of lateral control of balance performance, including concurrently measured tests of lower extremity sensation, knee extensor strength, executive function, and clinical balance tests. Models were adjusted for age, body mass index, and sex. Larger lateral sway during the sensory integration test performed on foam was associated with longer repeated chair stands time. During the lateral center of pressure tracking task, the error in tracking increased at higher frequencies; greater error was associated with worse executive function. The relationship between sway performance and physical and cognitive function differed between women and men. Contributors to control of lateral balance were task-dependent. Lateral standing performance on an unstable surface may be more dependent upon general lower extremity strength, whereas visual tracking performance may be more dependent upon cognitive factors. Lateral balance control in ambulatory older adults is associated with deficits in strength and executive function.
An optimization model to design and manage subsurface drip irrigation system for alfalfa
NASA Astrophysics Data System (ADS)
Kandelous, M.; Kamai, T.; Vrugt, J. A.; Simunek, J.; Hanson, B.; Hopmans, J. W.
2010-12-01
Subsurface drip irrigation (SDI) is one of the most efficient and cost-effective methods for watering alfalfa plants. Lateral installation depth and distance, emitter discharge, and irrigation time and frequency of SDI, in addition to soil and climatic conditions affect alfalfa’s root water uptake and yield. Here we use a multi-objective optimization approach to find optimal SDI strategies. Our approach uses the AMALGAM evolutionary search method, in combination with the HYDRUS-2D unsaturated flow model to maximize water uptake by alfalfa’s plant roots, and minimize loss of irrigation and drainage water to the atmosphere or groundwater. We use a variety of different objective functions to analyze SDI. These criteria include the lateral installation depth and distance, the lateral discharge, irrigation duration, and irrigation frequency. Our framework includes explicit recognition of the soil moisture status during the simulation period to make sure that the top soil is dry for harvesting during the growing season. Initial results show a wide spectrum of optimized SDI strategies for different root distributions, soil textures and climate conditions. The developed tool should be useful in helping farmers optimize their irrigation strategy and design.
Benoit, Roland G.; Szpunar, Karl K.; Schacter, Daniel L.
2014-01-01
Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode’s emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior. PMID:25368170
Benoit, Roland G; Szpunar, Karl K; Schacter, Daniel L
2014-11-18
Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode's emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior.
Venus ionosphere: photochemical and thermal diffusion control of ion composition.
Bauer, S J; Donahue, T M; Hartle, R E; Taylor, H A
1979-07-06
The major photochemical sources and sinks for ten of the ions measured by the ion mass spectrometer on the Pioneer Venus bus and orbiter spacecraft that are consistent with the neutral gas composition measured on the same spacecraft have been identified. The neutral gas temperature (Tn) as a function of solar zenith angle (chi) derived from measured ion distributions in photochemical equilibrium is given by Tn (K) = 323 cos(1/5)chi. Above 200 kilometers, the altitude behavior of ions is generally controlled by plasma diffusion, with important modifications for minor ions due to thermal diffusion resulting from the observed gradients of plasma temperatures. The dayside equilibrium distributions of ions are sometimes perturbed by plasma convection, while lateral transport of ions from the dayside seems to be a major source of the nightside ionosphere.
An fMRI study of sex differences in regional activation to a verbal and a spatial task.
Gur, R C; Alsop, D; Glahn, D; Petty, R; Swanson, C L; Maldjian, J A; Turetsky, B I; Detre, J A; Gee, J; Gur, R E
2000-09-01
Sex differences in cognitive performance have been documented, women performing better on some phonological tasks and men on spatial tasks. An earlier fMRI study suggested sex differences in distributed brain activation during phonological processing, with bilateral activation seen in women while men showed primarily left-lateralized activation. This blood oxygen level-dependent fMRI study examined sex differences (14 men, 13 women) in activation for a spatial task (judgment of line orientation) compared to a verbal-reasoning task (analogies) that does not typically show sex differences. Task difficulty was manipulated. Hypothesized ROI-based analysis documented the expected left-lateralized changes for the verbal task in the inferior parietal and planum temporal regions in both men and women, but only men showed right-lateralized increase for the spatial task in these regions. Image-based analysis revealed a distributed network of cortical regions activated by the tasks, which consisted of the lateral frontal, medial frontal, mid-temporal, occipitoparietal, and occipital regions. The activation was more left lateralized for the verbal and more right for the spatial tasks, but men also showed some left activation for the spatial task, which was not seen in women. Increased task difficulty produced more distributed activation for the verbal and more circumscribed activation for the spatial task. The results suggest that failure to activate the appropriate hemisphere in regions directly involved in task performance may explain certain sex differences in performance. They also extend, for a spatial task, the principle that bilateral activation in a distributed cognitive system underlies sex differences in performance. Copyright 2000 Academic Press.
Surface slip during large Owens Valley earthquakes
Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, Angela S.; Burgmann, R.
2016-01-01
The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ∼1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ∼0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ∼6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7–11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ∼7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ∼0.6 and 1.6 mm/yr (1σ) over the late Quaternary.
Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza
2017-02-01
Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Ishizaki, Azusa; Ishii, Keizo; Kanematsu, Nobuyuki; Kanai, Tatsuaki; Yonai, Shunsuke; Kase, Yuki; Takei, Yuka; Komori, Masataka
2009-06-01
Passive irradiation methods deliver an extra dose to normal tissues upstream of the target tumor, while in dynamic irradiation methods, interplay effects between dynamic beam delivery and target motion induced by breathing or respiration distort the dose distributions. To solve the problems of those two irradiation methods, the authors have developed a new method that laterally modulates the spread-out Bragg peak (SOBP) width. By reducing scanning in the depth direction, they expect to reduce the interplay effects. They have examined this new irradiation method experimentally. In this system, they used a cone-type filter that consisted of 400 cones in a grid of 20 cones by 20 cones. There were five kinds of cones with different SOBP widths arranged on the frame two dimensionally to realize lateral SOBP modulation. To reduce the number of steps of cones, they used a wheel-type filter to make minipeaks. The scanning intensity was modulated for each SOBP width with a pair of scanning magnets. In this experiment, a stepwise dose distribution and spherical dose distribution of 60 mm in diameter were formed. The nonflatness of the stepwise dose distribution was 5.7% and that of the spherical dose distribution was 3.8%. A 2 mm misalignment of the cone-type filter resulted in a nonflatness of more than 5%. Lateral SOBP modulation with a cone-type filter and a scanned carbon ion beam successfully formed conformal dose distribution with nonflatness of 3.8% for the spherical case. The cone-type filter had to be set to within 1 mm accuracy to maintain nonflatness within 5%. This method will be useful to treat targets moving during breathing and targets in proximity to important organs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. R.; Poenisch, F.; Lii, M.
2013-04-15
Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm{sup 2}/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateralmore » dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. Conclusions: We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.« less
Nielsen, Jared A.; Zielinski, Brandon A.; Ferguson, Michael A.; Lainhart, Janet E.; Anderson, Jeffrey S.
2013-01-01
Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed. PMID:23967180
Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S
2013-01-01
Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.
ERIC Educational Resources Information Center
de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud
2011-01-01
Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…
A smart dust biosensor powered by kinesin motors.
Fischer, Thorsten; Agarwal, Ashutosh; Hess, Henry
2009-03-01
Biosensors can be miniaturized by either injecting smaller volumes into micro- and nanofluidic devices or immersing increasingly sophisticated particles known as 'smart dust' into the sample. The term 'smart dust' originally referred to cubic-millimetre wireless semiconducting sensor devices that could invisibly monitor the environment in buildings and public spaces, but later it also came to include functional micrometre-sized porous silicon particles used to monitor yet smaller environments. The principal challenge in designing smart dust biosensors is integrating transport functions with energy supply into the device. Here, we report a hybrid microdevice that is powered by ATP and relies on antibody-functionalized microtubules and kinesin motors to transport the target analyte into a detection region. The transport step replaces the wash step in traditional double-antibody sandwich assays. Owing to their small size and autonomous function, we envision that large numbers of such smart dust biosensors could be inserted into organisms or distributed into the environment for remote sensing.
Postnatal brain development of the pulse type, weakly electric gymnotid fish Gymnotus omarorum.
Iribarne, Leticia; Castelló, María E
2014-01-01
Teleosts are a numerous and diverse group of fish showing great variation in body shape, ecological niches and behaviors, and a correspondent diversity in brain morphology, usually associated with their functional specialization. Weakly electric fish are a paradigmatic example of functional specialization, as these teleosts use self-generated electric fields to sense the nearby environment and communicate with conspecifics, enabling fish to better exploit particular ecological niches. We analyzed the development of the brain of the pulse type gymnotid Gymnotus omarorum, focusing on the brain regions involved directly or indirectly in electrosensory information processing. A morphometric analysis has been made of the whole brain and of brain regions of interest, based on volumetric data obtained from 3-D reconstructions to study the growth of the whole brain and the relative growth of brain regions, from late larvae to adulthood. In the smallest studied larvae some components of the electrosensory pathway appeared to be already organized and functional, as evidenced by tract-tracing and in vivo field potential recordings of electrosensory-evoked activity. From late larval to adult stages, rombencephalic brain regions (cerebellum and electrosensory lateral line lobe) showed a positive allometric growth, mesencephalic brain regions showed a negative allometric growth, and the telencephalon showed an isometric growth. In a first step towards elucidating the role of cell proliferation in the relative growth of the analyzed brain regions, we also studied the spatial distribution of proliferation zones by means of pulse type BrdU labeling revealed by immunohistochemistry. The brain of G. omarorum late larvae showed a widespread distribution of proliferating zones, most of which were located at the ventricular-cisternal lining. Interestingly, we also found extra ventricular-cisternal proliferation zones at in the rombencephalic cerebellum and electrosensory lateral line lobe. We discuss the role of extraventricular-cisternal proliferation in the relative growth of the latter brain regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Uncoupled Leftward Asymmetries for Planum Morphology and Functional Language Processing
ERIC Educational Resources Information Center
Eckert, Mark A.; Leonard, Christiana M.; Possing, Edward T.; Binder, Jeffrey R.
2006-01-01
Explanations for left hemisphere language laterality have often focused on hemispheric structural asymmetry of the planum temporale. We examined the association between an index of language laterality and brain morphology in 99 normal adults whose degree of laterality was established using a functional MRI single-word comprehension task. The index…
Height, education and later-life cognition in Latin America and the Caribbean.
Maurer, Jürgen
2010-07-01
Building on previous evidence from the U.S., this study investigates the relationship between anthropometric markers (height and knee height), early-life conditions, education, and cognitive function in later life among urban elderly from Latin America and the Caribbean. I document a positive association between height and later-life cognitive function, which is larger for women than for men. This sex difference increases when I address potential feedback effects from mid- and later-life circumstances on stature by using knee height as an instrument for height. Specifically, while the estimates for women remain largely unchanged, I only find a diminished and statistically insignificant association between instrumented height and later-life cognition for men. This finding suggests that at least part of the association between height and later-life cognition among men may stem from common third factors that are correlated with both height and later-life cognition, such as adverse occupational exposures or health events during mid- and later life. Extended models that also include education further diminish the association between height and later-life cognition. Education displays strong positive gradients with the employed measures of childhood circumstances - including height - which points to education as a potential pathway linking early-life conditions and later-life cognitive function. 2010 Elsevier B.V. All rights reserved.
Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation.
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-02-01
Cognitive load theory states that working memory is limited. This has implications for learning and suggests that reducing cognitive load (CL) could promote learning and skills acquisition. This study aims to explore the effect of repeated practice and simulator-integrated tutoring on CL in virtual reality (VR) mastoidectomy simulation. Prospective trial. Forty novice medical students performed 12 repeated virtual mastoidectomy procedures in the Visible Ear Simulator: 21 completed distributed practice with practice blocks spaced in time and 19 participants completed massed practice (all practices performed in 1 day). Participants were randomized for tutoring with the simulator-integrated tutor function. Cognitive load was estimated by measuring reaction time in a secondary task. Data were analyzed using linear mixed models for repeated measurements. The mean reaction time increased by 37% during the procedure compared with baseline, demonstrating that the procedure placed substantial cognitive demands. Repeated practice significantly lowered CL in the distributed practice group but not in massed practice group. In addition, CL was found to be further increased by 10.3% in the later and more complex stages of the procedure. The simulator-integrated tutor function did not have an impact on CL. Distributed practice decreased CL in repeated VR mastoidectomy training more consistently than was seen in massed practice. This suggests a possible effect of skills and memory consolidation occurring over time. To optimize technical skills learning, training should be organized as time-distributed practice rather than as a massed block of practice, which is common in skills-training courses. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
A program for the Bayesian Neural Network in the ROOT framework
NASA Astrophysics Data System (ADS)
Zhong, Jiahang; Huang, Run-Sheng; Lee, Shih-Chang
2011-12-01
We present a Bayesian Neural Network algorithm implemented in the TMVA package (Hoecker et al., 2007 [1]), within the ROOT framework (Brun and Rademakers, 1997 [2]). Comparing to the conventional utilization of Neural Network as discriminator, this new implementation has more advantages as a non-parametric regression tool, particularly for fitting probabilities. It provides functionalities including cost function selection, complexity control and uncertainty estimation. An example of such application in High Energy Physics is shown. The algorithm is available with ROOT release later than 5.29. Program summaryProgram title: TMVA-BNN Catalogue identifier: AEJX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD license No. of lines in distributed program, including test data, etc.: 5094 No. of bytes in distributed program, including test data, etc.: 1,320,987 Distribution format: tar.gz Programming language: C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system Operating system: Most UNIX/Linux systems. The application programs were thoroughly tested under Fedora and Scientific Linux CERN. Classification: 11.9 External routines: ROOT package version 5.29 or higher ( http://root.cern.ch) Nature of problem: Non-parametric fitting of multivariate distributions Solution method: An implementation of Neural Network following the Bayesian statistical interpretation. Uses Laplace approximation for the Bayesian marginalizations. Provides the functionalities of automatic complexity control and uncertainty estimation. Running time: Time consumption for the training depends substantially on the size of input sample, the NN topology, the number of training iterations, etc. For the example in this manuscript, about 7 min was used on a PC/Linux with 2.0 GHz processors.
Lou, William; Peck, Kyung K; Brennan, Nicole; Mallela, Arka; Holodny, Andrei
2017-07-05
An abundance of evidence points to the role of a presupplementary motor area (pre-SMA) in human language. This study explores the pre-SMA resting state connectivity network and the nature of its connections to known language areas. We tested the hypothesis that by seeding the pre-SMA, one would be able to establish language laterality to known cortical and subcortical language areas. We analyzed data from 30 right-handed healthy controls and performed the resting state functional MRI. A seed-based analysis using a manually drawn pre-SMA region of interest template was applied. Time-course signals in the pre-SMA region of interest were averaged and cross-correlated to every voxel in the brain. Results show that the pre-SMA has significant left-lateralized functional connectivity to the pars opercularis within Broca's area. Among cortical regions, pre-SMA functional connectivity is strongest to the pars opercularis In addition, pre-SMA connectivity was shown to exist to other cortical language-association regions, including Wernicke's Area, supramarginal gyri, angular gyri, and middle frontal gyri. Among subcortical areas, considerable left-lateralized functional connectivity occurs to the caudate and thalamus, whereas cerebellar subregions show right lateralization. The current study shows that the pre-SMA most strongly connects to the pars opercularis within Broca's area and that cortical connections to language areas are left lateralized among a sample of right-handed patients. We provide resting state functional MRI evidence that the functional connectivity of the pre-SMA is involved in semantic language processing and that this identification may be useful for establishing language laterality in preoperative neurosurgical planning.
Hirose, Satoshi; Kimura, Hiroko M.; Jimura, Koji; Kunimatsu, Akira; Abe, Osamu; Ohtomo, Kuni; Miyashita, Yasushi; Konishi, Seiki
2013-01-01
Episodic memory retrieval most often recruits multiple separate processes that are thought to involve different temporal regions. Previous studies suggest dissociable regions in the left lateral parietal cortex that are associated with the retrieval processes. Moreover, studies using resting-state functional connectivity (RSFC) have provided evidence for the temporo-parietal memory networks that may support the retrieval processes. In this functional MRI study, we tested functional significance of the memory networks by examining functional connectivity of brain activity during episodic retrieval in the temporal and parietal regions of the memory networks. Recency judgments, judgments of the temporal order of past events, can be achieved by at least two retrieval processes, relational and item-based. Neuroimaging results revealed several temporal and parietal activations associated with relational/item-based recency judgments. Significant RSFC was observed between one parahippocampal region and one left lateral parietal region associated with relational recency judgments, and between four lateral temporal regions and another left lateral parietal region associated with item-based recency judgments. Functional connectivity during task was found to be significant between the parahippocampal region and the parietal region in the RSFC network associated with relational recency judgments. However, out of the four tempo-parietal RSFC networks associated with item-based recency judgments, only one of them (between the left posterior lateral temporal region and the left lateral parietal region) showed significant functional connectivity during task. These results highlight the contrasting roles of the parahippocampal and the lateral temporal regions in recency judgments, and suggest that only a part of the tempo-parietal RSFC networks are recruited to support particular retrieval processes. PMID:24009657
NASA Astrophysics Data System (ADS)
Adams, T. E.
2016-12-01
Accurate and timely predictions of the lateral exent of floodwaters and water level depth in floodplain areas are critical globally. This paper demonstrates the coupling of hydrologic ensembles, derived from the use of numerical weather prediction (NWP) model forcings as input to a fully distributed hydrologic model. Resulting ensemble output from the distributed hydrologic model are used as upstream flow boundaries and lateral inflows to a 1-D hydrodynamic model. An example is presented for the Potomac River in the vicinity of Washington, DC (USA). The approach taken falls within the broader goals of the Hydrologic Ensemble Prediction EXperiment (HEPEX).
NASA Astrophysics Data System (ADS)
Guo, L.; Lin, H.; Nyquist, J.; Toran, L.; Mount, G.
2017-12-01
Linking subsurface structures to their functions in determining hydrologic processes, such as soil moisture dynamics, subsurface flow patterns, and discharge behaviours, is a key to understanding and modelling hydrological systems. Geophysical techniques provide a non-invasive approach to investigate this form-function dualism of subsurface hydrology at the field scale, because they are effective in visualizing subsurface structure and monitoring the distribution of water. In this study, we used time-lapse ground-penetrating radar (GPR) to compare the hydrologic responses of two contrasting soils in the Shale Hills Critical Zone Observatory. By integrating time-lapse GPR with artificial water injection, we observed distinct flow patterns in the two soils: 1) in the deep Rushtown soil (over 1.5 m depth to bedrock) located in a concave hillslope, a lateral preferential flow network extending as far as 2 m downslope was identified above a less permeable layer and via a series of connected macropores; whereas 2) in the shallow Weikert soil ( 0.3 m depth to saprock) located in a planar hillslope, vertical infiltration into the permeable fractured shale dominated the flow field, while the development of lateral preferential flow along the hillslope was restrained. At the Weikert soil site, the addition of brilliant blue dye to the water injection followed by in situ excavation supported GPR interpretation that only limited lateral preferential flow formed along the soil-saprock interface. Moreover, seasonally repeated GPR surveys indicated different patterns of profile moisture distribution in the two soils that in comparison with the dry season, a dense layer within the BC horizon in the deep Rushtown soil prevented vertical infiltration in the wet season, leading to the accumulation of soil moisture above this layer; whereas, in the shallow Weikert soil, water infiltrated into saprock in wet seasons, building up water storage within the fractured bedrock (i.e., the rock moisture). Results of this study demonstrated the strong interplay between soil structures and subsurface hydrologic behaviors, and time-lapse GPR is an effective method to establish such a relationship under the field conditions.
NASA Astrophysics Data System (ADS)
Klimchouk, Alexander; Auler, Augusto S.; Bezerra, Francisco H. R.; Cazarin, Caroline L.; Balsamo, Fabrizio; Dublyansky, Yuri
2016-01-01
This study is focused on speleogenesis of the Toca da Boa Vista (TBV) and Toca da Barriguda (TBR), the longest caves in South America occurring in the Neoproterozoic Salitre Formation in the São Francisco Craton, NE Brazil. We employ a multidisciplinary approach integrating detailed speleomorphogenetic, lithostratigraphic and geological structure studies in order to reveal the origin of the caves, their functional organization and geologic controls on their development. The caves developed in deep-seated confined conditions by rising flow. The overall fields of passages of TBV and TBR caves represent a speleogenetically exploited large NE-SW-trending fracture corridor associated with a major thrust. This corridor vertically extends across the Salitre Formation allowing the rise of deep fluids. In the overall ascending flow system, the formation of the cave pattern was controlled by a system of sub-parallel anticlines and troughs with NNE-SSW dominant orientation, and by vertical and lateral heterogeneities in fracture distribution. Three cave-stratigraphic stories reflect the actual hydrostratigraphy during the main phase of speleogenesis. Cavities at different stories are distinct in morphology and functioning. The gross tree-dimensional pattern of the system is effectively organized to conduct rising flow in deep-seated confined conditions. Cavities in the lower story developed as recharge components to the system. A laterally extensive conduit network in the middle story formed because the vertical flow from numerous recharge points has been redirected laterally along the highly conductive unit, occurring below the major seal - a scarcely fractured unit. Rift-like and shaft-like conduits in the upper story developed along fracture-controlled outflow paths, breaching the integrity of the major seal, and served as outlets for the cave system. The cave system represents a series of vertically organized, functionally largely independent clusters of cavities developed within individual ascending flow cells. Lateral integration of clusters occurred due to hydrodynamic interaction between the flow cells in course of speleogenetic evolution and change of boundary conditions. The main speleogenetic phase, during which the gross cave pattern has been established and the caves acquired most of their volume, was likely related to rise of deep fluids at about 520 Ma or associated with rifting and the Pangea break-up in Triassic-Cretaceous. This study highlights the importance of speleogenetic studies for interpreting porosity and permeability features in carbonate reservoirs.
Amesz, Sarah; Tessari, Alessia; Ottoboni, Giovanni; Marsden, Jon
2016-01-01
To explore the relationship between laterality recognition after stroke and impairments in attention, 3D object rotation and functional ability. Observational cross-sectional study. Acute care teaching hospital. Thirty-two acute and sub-acute people with stroke and 36 healthy, age-matched controls. Laterality recognition, attention and mental rotation of objects. Within the stroke group, the relationship between laterality recognition and functional ability, neglect, hemianopia and dyspraxia were further explored. People with stroke were significantly less accurate (69% vs 80%) and showed delayed reaction times (3.0 vs 1.9 seconds) when determining the laterality of a pictured hand. Deficits either in accuracy or reaction times were seen in 53% of people with stroke. The accuracy of laterality recognition was associated with reduced functional ability (R(2) = 0.21), less accurate mental rotation of objects (R(2) = 0.20) and dyspraxia (p = 0.03). Implicit motor imagery is affected in a significant number of patients after stroke with these deficits related to lesions to the motor networks as well as other deficits seen after stroke. This research provides new insights into how laterality recognition is related to a number of other deficits after stroke, including the mental rotation of 3D objects, attention and dyspraxia. Further research is required to determine if treatment programmes can improve deficits in laterality recognition and impact functional outcomes after stroke.
Characterizing the width of amphibian movements during postbreeding migration.
Coster, Stephanie S; Veysey Powell, Jessica S; Babbitt, Kimberly J
2014-06-01
Habitat linkages can help maintain connectivity of animal populations in developed landscapes. However, the lack of empirical data on the width of lateral movements (i.e., the zigzagging of individuals as they move from one point to point another) makes determining the width of such linkages challenging. We used radiotracking data from wood frogs (Lithobates sylvaticus) and spotted salamanders (Ambystoma maculatum) in a managed forest in Maine (U.S.A.) to characterize movement patterns of populations and thus inform planning for the width of wildlife corridors. For each individual, we calculated the polar coordinates of all locations, estimated the vector sum of the polar coordinates, and measured the distance from each location to the vector sum. By fitting a Gaussian distribution over a histogram of these distances, we created a population-level probability density function and estimated the 50th and 95th percentiles to determine the width of lateral movement as individuals progressed from the pond to upland habitat. For spotted salamanders 50% of lateral movements were ≤13 m wide and 95% of movements were ≤39 m wide. For wood frogs, 50% of lateral movements were ≤17 m wide and 95% of movements were ≤ 51 m wide. For both species, those individuals that traveled the farthest from the pond also displayed the greatest lateral movement. Our results serve as a foundation for spatially explicit conservation planning for pond-breeding amphibians in areas undergoing development. Our technique can also be applied to movement data from other taxa to aid in designing habitat linkages. © 2014 Society for Conservation Biology.
The Medial Paralemniscal Nucleus and Its Afferent Neuronal Connections in Rat
VARGA, TAMÁS; PALKOVITS, MIKLÓS; USDIN, TED BJÖRN; DOBOLYI, ARPÁD
2009-01-01
Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions. PMID:18770870
The medial paralemniscal nucleus and its afferent neuronal connections in rat.
Varga, Tamás; Palkovits, Miklós; Usdin, Ted Björn; Dobolyi, Arpád
2008-11-10
Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions. (c) 2008 Wiley-Liss, Inc.
Comparison of the King's and MiToS staging systems for ALS.
Fang, Ton; Al Khleifat, Ahmad; Stahl, Daniel R; Lazo La Torre, Claudia; Murphy, Caroline; Young, Carolyn; Shaw, Pamela J; Leigh, P Nigel; Al-Chalabi, Ammar
2017-05-01
To investigate and compare two ALS staging systems, King's clinical staging and Milano-Torino (MiToS) functional staging, using data from the LiCALS phase III clinical trial (EudraCT 2008-006891-31). Disease stage was derived retrospectively for each system from the ALS Functional Rating Scale-Revised subscores using standard methods. The two staging methods were then compared for timing of stages using box plots, correspondence using chi-square tests, agreement using a linearly weighted kappa coefficient and concordance using Spearman's rank correlation. For both systems, progressively higher stages occurred at progressively later proportions of the disease course, but the distribution differed between the two methods. King's stage 3 corresponded to MiToS stage 1 most frequently, with earlier King's stages 1 and 2 largely corresponding to MiToS stage 0 or 1. The Spearman correlation was 0.54. There was fair agreement between the two systems with kappa coefficient of 0.21. The distribution of timings shows that the two systems are complementary, with King's staging showing greatest resolution in early to mid-disease corresponding to clinical or disease burden, and MiToS staging having higher resolution for late disease, corresponding to functional involvement. We therefore propose using both staging systems when describing ALS.
High-Resolution 7T MR Imaging of the Motor Cortex in Amyotrophic Lateral Sclerosis.
Cosottini, M; Donatelli, G; Costagli, M; Caldarazzo Ienco, E; Frosini, D; Pesaresi, I; Biagi, L; Siciliano, G; Tosetti, M
2016-03-01
Amyotrophic lateral sclerosis is a progressive motor neuron disorder that involves degeneration of both upper and lower motor neurons. In patients with amyotrophic lateral sclerosis, pathologic studies and ex vivo high-resolution MR imaging at ultra-high field strength revealed the co-localization of iron and activated microglia distributed in the deep layers of the primary motor cortex. The aims of the study were to measure the cortical thickness and evaluate the distribution of iron-related signal changes in the primary motor cortex of patients with amyotrophic lateral sclerosis as possible in vivo biomarkers of upper motor neuron impairment. Twenty-two patients with definite amyotrophic lateral sclerosis and 14 healthy subjects underwent a high-resolution 2D multiecho gradient-recalled sequence targeted on the primary motor cortex by using a 7T scanner. Image analysis consisted of the visual evaluation and quantitative measurement of signal intensity and cortical thickness of the primary motor cortex in patients and controls. Qualitative and quantitative MR imaging parameters were correlated with electrophysiologic and laboratory data and with clinical scores. Ultra-high field MR imaging revealed atrophy and signal hypointensity in the deep layers of the primary motor cortex of patients with amyotrophic lateral sclerosis with a diagnostic accuracy of 71%. Signal hypointensity of the deep layers of the primary motor cortex correlated with upper motor neuron impairment (r = -0.47; P < .001) and with disease progression rate (r = -0.60; P = .009). The combined high spatial resolution and sensitivity to paramagnetic substances of 7T MR imaging demonstrate in vivo signal changes of the cerebral motor cortex that resemble the distribution of activated microglia within the cortex of patients with amyotrophic lateral sclerosis. Cortical thinning and signal hypointensity of the deep layers of the primary motor cortex could constitute a marker of upper motor neuron impairment in patients with amyotrophic lateral sclerosis. © 2016 by American Journal of Neuroradiology.
Central projections of the lateral line and eighth nerves in the bowfin, Amia calva.
McCormick, C A
1981-03-20
The first-order connections of the anterior and posterior lateral line nerves and of the eighth nerve were determined in the bowfin, Amia calva, using experimental degeneration and anterograde HRP transport techniques. The termination sites of these nerves define a dorsal lateralis cell column and a ventral octavus cell column. The anterior and posterior lateralis nerves distribute ipsilaterally to two medullary nuclei-nucleus medialis and nucleus caudalis. Nucleus medialis comprises the rostral two-thirds of the lateralis column and contains large, Purkinje-like cells dorsally and polygonal, granule, and fusiform cells ventrally. Nucleus caudalis is located posterior to nucleus medialis and consists of small, granule cells. Anterior lateralis fibers terminate ventrally to ventromedially in both nucleus medialis and nucleus caudalis. Posterior lateralis fibers terminate dorsally to dorsolaterally within these two nuclei. A sparse anterior lateralis input may also be present on the dendrites of one of the nuclei within the octavus cell column, nucleus magnocellularis. In contrast, the anterior and posterior rami of the eighth nerve each terminate within four medullary nuclei which comprise the octavus cell column: the anterior, magnocellular, descending, and posterior octavus nuclei. An eighth nerve projection to the medial reticular formation is also present. Some fibers of the lateralis and eighth nerves terminate within the ipsilateral eminentia granularis of the cerebellum. Lateralis fibers distribute to approximately the lateral half of this structure with posterior lateral line fibers terminating laterally and anterior lateral line fibers terminating medially. Eighth nerve fibers distribute to the medial half of the eminentia granularis.
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology
DeLong, Edward F.; Béjà, Oded; González, José M.; Pedrós-Alió, Carlos
2016-01-01
SUMMARY The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of “heterotrophic” bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes. PMID:27630250
RNAV STAR Procedural Adherence
NASA Technical Reports Server (NTRS)
Matthews, Bryan L.; Stewart, Michael J.
2017-01-01
Flight crews and air traffic controllers have reported many safety concerns regarding area navigation standard terminal arrival routes (RNAV STARs). However, our information sources to quantify these issues are limited to subjective reporting and time consuming case-by-case investigations. This work is a preliminary study into the objective performance of instrument procedures and provides a framework to track procedural concepts and assess design functionality. We created a tool and analysis methods for gauging aircraft adherence as it relates to RNAV STARs. This information is vital for comprehensive understanding of how our air traffic behaves. In this exploratory archival study, we mined the performance of 24 major US airports over the preceding three years. Overlaying radar track data on top of RNAV STAR routes provided a comparison between aircraft flight paths and the waypoint positions and altitude restrictions. NASA Ames Supercomputing resources were utilized to perform the data mining and processing. We assessed STARs by lateral transition path (full-lateral), vertical restrictions (full-lateralfull-vertical), and skipped waypoints (skips). In addition, we graphed aircraft altitudes relative to the altitude restrictions and their occurrence rates. Full-lateral adherence was generally greater than Full-lateralfull-vertical, but the difference between the rates was not always consistent. Full-lateralfull-vertical adherence medians of the 2016 procedures ranged from 0 in KDEN (Denver) to 21 in KMEM (Memphis). Waypoint skips ranged from 0 to nearly 100 for specific waypoints. Altitudes restrictions were sometimes missed by systematic amounts in 1000 ft. increments from the restriction, creating multi-modal distributions. Other times, altitude misses looked to be more normally distributed around the restriction. This tool may aid in providing acceptability metrics as well as risk assessment information.
Smith, Colin R; Vignos, Michael F; Lenhart, Rachel L; Kaiser, Jarred; Thelen, Darryl G
2016-02-01
The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial-lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and -23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.
Smith, Colin R.; Vignos, Michael F.; Lenhart, Rachel L.; Kaiser, Jarred; Thelen, Darryl G.
2016-01-01
The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement. PMID:26769446
Non-laser-based scanner for three-dimensional digitization of historical artifacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Daniel V.; Baldwin, Kevin C.; Duncan, Donald D
2007-05-20
A 3D scanner, based on incoherent illumination techniques, and associated data-processing algorithms are presented that can be used to scan objects at lateral resolutions ranging from 5 to100 {mu}m (or more) and depth resolutions of approximately 2 {mu}m.The scanner was designed with the specific intent to scan cuneiform tablets but can be utilized for other applications. Photometric stereo techniques are used to obtain both a surface normal map and a parameterized model of the object's bidirectional reflectance distribution function. The normal map is combined with height information,gathered by structured light techniques, to form a consistent 3D surface. Data from Lambertianmore » and specularly diffuse spherical objects are presented and used to quantify the accuracy of the techniques. Scans of a cuneiform tablet are also presented. All presented data are at a lateral resolution of 26.8 {mu}m as this is approximately the minimum resolution deemed necessary to accurately represent cuneiform.« less
25 years of neuroimaging in amyotrophic lateral sclerosis.
Foerster, Bradley R; Welsh, Robert C; Feldman, Eva L
2013-09-01
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques--such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy--allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development.
25 years of neuroimaging in amyotrophic lateral sclerosis
Foerster, Bradley R.; Welsh, Robert C.; Feldman, Eva L.
2014-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques—such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy—allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development. PMID:23917850
Single-Mode, Distributed Feedback Interband Cascade Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)
2016-01-01
Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.
Tian, Huiyu; Jia, Yuebin; Niu, Tiantian; Yu, Qianqian; Ding, Zhaojun
2014-05-01
The core regulators which are required for primary root growth and development also function in lateral root development or lateral root stem cell niche maintenance. The primary root systems and the lateral root systems are the two important root systems which are vital to the survival of plants. Though the molecular mechanism of the growth and development of both the primary root systems and the lateral root systems have been extensively studied individually in Arabidopsis, there are not so much evidence to show that if both root systems share common regulatory mechanisms. AP2 family transcription factors such as PLT1 (PLETHORA1) and PLT2, GRAS family transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX transcription factor WOX5 have been extensively studied and found to be essential for primary root growth and development. In this study, through the expression pattern analysis and mutant examinations, we found that these core regulators also function in lateral root development or lateral root stem cell niche maintenance.
How biological soil crusts became recognized as a functional unit: a selective history
Lange, Otto L.; Belnap, Jayne
2016-01-01
It is surprising that despite the world-wide distribution and general importance of biological soil crusts (biocrusts), scientific recognition and functional analysis of these communities is a relatively young field of science. In this chapter, we sketch the historical lines that led to the recognition of biocrusts as a community with important ecosystem functions. The idea of biocrusts as a functional ecological community has come from two main scientific branches: botany and soil science. For centuries, botanists have long recognized that multiple organisms colonize the soil surface in the open and often dry areas occurring between vascular plants. Much later, after the initial taxonomic and phyto-sociological descriptions were made, soil scientists and agronomists observed that these surface organisms interacted with soils in ways that changed the soil structure. In the 1970’s, research on these communities as ecological units that played an important functional role in drylands began in earnest, and these studies have continued to this day. Here, we trace the history of these studies from the distant past until 1990, when biocrusts became well-known to scientists and the public.
Visual Attention at Three Months as a Predictor of Cognitive Functioning at Two Years of Age.
ERIC Educational Resources Information Center
Lewis, Michael; Brooks-Gunn, Jeanne
1981-01-01
The predictive power of various cognitive skills at three months of age in terms of later cognitive functioning was examined. Visual habituation and recovery predicted later intellectual functioning at 24 months better than global intelligence or object permanence scores. Changes in cognitive functioning may be a transformation of skills.…
Crime and punishment: the economic burden of impunity
NASA Astrophysics Data System (ADS)
Gordon, M. B.; Iglesias, J. R.; Semeshenko, V.; Nadal, J. P.
2009-03-01
Crime is an economically relevant activity. It may represent a mechanism of wealth distribution but also a social and economic burden because of the interference with regular legal activities and the cost of the law enforcement system. Sometimes it may be less costly for the society to allow for some level of criminality. However, a drawback of such a policy is that it may lead to a high increase of criminal activity, that may become hard to reduce later on. Here we investigate the level of law enforcement required to keep crime within acceptable limits. A sharp phase transition is observed as a function of the probability of punishment. We also analyze other consequences of criminality as the growth of the economy, the inequality in the wealth distribution (the Gini coefficient) and other relevant quantities under different scenarios of criminal activity and probabilities of apprehension.
Study on typhoon characteristic based on bridge health monitoring system.
Wang, Xu; Chen, Bin; Sun, Dezhang; Wu, Yinqiang
2014-01-01
Through the wind velocity and direction monitoring system installed on Jiubao Bridge of Qiantang River, Hangzhou city, Zhejiang province, China, a full range of wind velocity and direction data was collected during typhoon HAIKUI in 2012. Based on these data, it was found that, at higher observed elevation, turbulence intensity is lower, and the variation tendency of longitudinal and lateral turbulence intensities with mean wind speeds is basically the same. Gust factor goes higher with increasing mean wind speed, and the change rate obviously decreases as wind speed goes down and an inconspicuous increase occurs when wind speed is high. The change of peak factor is inconspicuous with increasing time and mean wind speed. The probability density function (PDF) of fluctuating wind speed follows Gaussian distribution. Turbulence integral scale increases with mean wind speed, and its PDF does not follow Gaussian distribution. The power spectrum of observation fluctuating velocity is in accordance with Von Karman spectrum.
Lesicko, Alexandria M.H.; Hristova, Teodora S.; Maigler, Kathleen C.
2016-01-01
The lateral cortex of the inferior colliculus receives information from both auditory and somatosensory structures and is thought to play a role in multisensory integration. Previous studies in the rat have shown that this nucleus contains a series of distinct anatomical modules that stain for GAD-67 as well as other neurochemical markers. In the present study, we sought to better characterize these modules in the mouse inferior colliculus and determine whether the connectivity of other neural structures with the lateral cortex is spatially related to the distribution of these neurochemical modules. Staining for GAD-67 and other markers revealed a single modular network throughout the rostrocaudal extent of the mouse lateral cortex. Somatosensory inputs from the somatosensory cortex and dorsal column nuclei were found to terminate almost exclusively within these modular zones. However, projections from the auditory cortex and central nucleus of the inferior colliculus formed patches that interdigitate with the GAD-67-positive modules. These results suggest that the lateral cortex of the mouse inferior colliculus exhibits connectional as well as neurochemical modularity and may contain multiple segregated processing streams. This finding is discussed in the context of other brain structures in which neuroanatomical and connectional modularity have functional consequences. SIGNIFICANCE STATEMENT Many brain regions contain subnuclear microarchitectures, such as the matrix-striosome organization of the basal ganglia or the patch-interpatch organization of the visual cortex, that shed light on circuit complexities. In the present study, we demonstrate the presence of one such micro-organization in the rodent inferior colliculus. While this structure is typically viewed as an auditory integration center, its lateral cortex appears to be involved in multisensory operations and receives input from somatosensory brain regions. We show here that the lateral cortex can be further subdivided into multiple processing streams: modular regions, which are targeted by somatosensory inputs, and extramodular zones that receive auditory information. PMID:27798184
Altered Cortical Swallowing Processing in Patients with Functional Dysphagia: A Preliminary Study
Wollbrink, Andreas; Warnecke, Tobias; Winkels, Martin; Pantev, Christo; Dziewas, Rainer
2014-01-01
Objective Current neuroimaging research on functional disturbances provides growing evidence for objective neuronal correlates of allegedly psychogenic symptoms, thereby shifting the disease concept from a psychological towards a neurobiological model. Functional dysphagia is such a rare condition, whose pathogenetic mechanism is largely unknown. In the absence of any organic reason for a patient's persistent swallowing complaints, sensorimotor processing abnormalities involving central neural pathways constitute a potential etiology. Methods In this pilot study we measured cortical swallow-related activation in 5 patients diagnosed with functional dysphagia and a matched group of healthy subjects applying magnetoencephalography. Source localization of cortical activation was done with synthetic aperture magnetometry. To test for significant differences in cortical swallowing processing between groups, a non-parametric permutation test was afterwards performed on individual source localization maps. Results Swallowing task performance was comparable between groups. In relation to control subjects, in whom activation was symmetrically distributed in rostro-medial parts of the sensorimotor cortices of both hemispheres, patients showed prominent activation of the right insula, dorsolateral prefrontal cortex and lateral premotor, motor as well as inferolateral parietal cortex. Furthermore, activation was markedly reduced in the left medial primary sensory cortex as well as right medial sensorimotor cortex and adjacent supplementary motor area (p<0.01). Conclusions Functional dysphagia - a condition with assumed normal brain function - seems to be associated with distinctive changes of the swallow-related cortical activation pattern. Alterations may reflect exaggerated activation of a widely distributed vigilance, self-monitoring and salience rating network that interferes with down-stream deglutition sensorimotor control. PMID:24586948
Rombola, Angela M.; Rousseau, Celeste A.; Mercier, Lynne M.; Fitzpatrick, Garrett M.; Reier, Paul J.; Fuller, David D.; Lane, Michael A.
2015-01-01
Abstract Cervical spinal cord injury (cSCI) disrupts bulbospinal projections to motoneurons controlling the upper limbs, resulting in significant functional impairments. Ongoing clinical and experimental research has revealed several lines of evidence for functional neuroplasticity and recovery of upper extremity function after SCI. The underlying neural substrates, however, have not been thoroughly characterized. The goals of the present study were to map the intraspinal motor circuitry associated with a defined upper extremity muscle, and evaluate chronic changes in the distribution of this circuit following incomplete cSCI. Injured animals received a high cervical (C2) lateral hemisection (Hx), which compromises supraspinal input to ipsilateral spinal motoneurons controlling the upper extremities (forelimb) in the adult rat. A battery of behavioral tests was used to characterize the time course and extent of forelimb motor recovery over a 16 week period post-injury. A retrograde transneuronal tracer – pseudorabies virus – was used to define the motor and pre-motor circuitry controlling the extensor carpi radialis longus (ECRL) muscle in spinal intact and injured animals. In the spinal intact rat, labeling was observed unilaterally within the ECRL motoneuron pool and within spinal interneurons bilaterally distributed within the dorsal horn and intermediate gray matter. No changes in labeling were observed 16 weeks post-injury, despite a moderate degree of recovery of forelimb motor function. These results suggest that recovery of the forelimb function assessed following C2Hx injury does not involve recruitment of new interneurons into the ipsilateral ECRL motor pathway. However, the functional significance of these existing interneurons to motor recovery requires further exploration. PMID:25625912
Modeling the lateral load distribution for multiple concrete crossties and fastening systems.
DOT National Transportation Integrated Search
2017-01-31
The objective of this project was to further investigate the performance of concrete crosstie and : fastening system under vertical and lateral wheel load using finite element analysis, and explore : possible improvement for current track design stan...
Uniform structure of eukaryotic plasma membrane: lateral domains in plants.
Malínská, Kateŕina; Zažímalová, Eva
2011-03-01
Current models of the plasma membrane (PM) organization focus on the lateral heterogeneity of the membrane and its relation to the cell function. Increasing evidence in mammals and yeast supports the direct relationship between PM lateral microdomains and specific cell processes and functions (nutrient transport, signaling, protein and lipid sorting, endocytosis, pathogen entry etc.). However, for the present the functional significance of an enrichment of specific proteins and possibly lipids in plant PM domains as well as the underlying molecular mechanism driving the lateral PM segregation remain unaddressed. Here we summarize recent findings on the plant PM organization and its role in signaling pathways, with the special emphasis on auxin transport.
Laterally Coupled Quantum-Dot Distributed-Feedback Lasers
NASA Technical Reports Server (NTRS)
Qui, Yueming; Gogna, Pawan; Muller, Richard; Maker, paul; Wilson, Daniel; Stintz, Andreas; Lester, Luke
2003-01-01
InAs quantum-dot lasers that feature distributed feedback and lateral evanescent- wave coupling have been demonstrated in operation at a wavelength of 1.3 m. These lasers are prototypes of optical-communication oscillators that are required to be capable of stable single-frequency, single-spatial-mode operation. A laser of this type (see figure) includes an active layer that comprises multiple stacks of InAs quantum dots embedded within InGaAs quantum wells. Distributed feedback is provided by gratings formed on both sides of a ridge by electron lithography and reactive-ion etching on the surfaces of an AlGaAs/GaAs waveguide. The lateral evanescent-wave coupling between the gratings and the wave propagating in the waveguide is strong enough to ensure operation at a single frequency, and the waveguide is thick enough to sustain a stable single spatial mode. In tests, the lasers were found to emit continuous-wave radiation at temperatures up to about 90 C. Side modes were found to be suppressed by more than 30 dB.
Lateral distribution of muons in IceCube cosmic ray events
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.
2013-01-01
In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (>2GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations.
NASA Astrophysics Data System (ADS)
Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser
2016-12-01
As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in 2-D and 3-D environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterization of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with interstation horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies was evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identified the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface was evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements were observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterizing the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral boundaries of the anomalies with low electrical resistivity; and (4) superior imaging of the horizontal continuity of structures with low electrical resistivity. These advantages offer new opportunities for the MT method by making the results from a MT profile in a 3-D environment more convincing, supporting the possibility of high-resolution studies in 3-D areas without expending a large amount of economical and computational resources, and also offering better resolution of targets with high electrical resistivity.
Arabic morphology in the neural language system.
Boudelaa, Sami; Pulvermüller, Friedemann; Hauk, Olaf; Shtyrov, Yury; Marslen-Wilson, William
2010-05-01
There are two views about morphology, the aspect of language concerned with the internal structure of words. One view holds that morphology is a domain of knowledge with a specific type of neurocognitive representation supported by specific brain mechanisms lateralized to left fronto-temporal cortex. The alternate view characterizes morphological effects as being a by-product of the correlation between form and meaning and where no brain area is predicted to subserve morphological processing per se. Here we provided evidence from Arabic that morphemes do have specific memory traces, which differ as a function of their functional properties. In an MMN study, we showed that the abstract consonantal root, which conveys semantic meaning (similarly to monomorphemic content words in English), elicits an MMN starting from 160 msec after the deviation point, whereas the abstract vocalic word pattern, which plays a range of grammatical roles, elicits an MMN response starting from 250 msec after the deviation point. Topographically, the root MMN has a symmetric fronto-central distribution, whereas the word pattern MMN lateralizes significantly to the left, indicating stronger involvement of left peri-sylvian areas. In languages with rich morphologies, morphemic processing seems to be supported by distinct neural networks, thereby providing evidence for a specific neuronal basis for morphology as part of the cerebral language machinery.
Peterson, Daniel; Mahajan, Rajneesh; Crocetti, Deana; Mejia, Amanda; Mostofsky, Stewart
2014-01-01
Current theories of the neurobiological basis of Autism Spectrum Disorder (ASD) posit an altered pattern of connectivity in large-scale brain networks. Here we used Diffusion Tensor Imaging to investigate the microstructural properties of the white matter that mediates inter-regional connectivity in 36 high-functioning children with ASD (HF-ASD), as compared to 37 controls. By employing an atlas-based analysis using LDDMM registration, a widespread, but left-lateralized pattern of abnormalities was revealed. The Mean Diffusivity (MD) of water in the white matter of HF-ASD children was significantly elevated throughout the left hemisphere, particularly in the outer-zone cortical white matter. Across diagnostic groups there was a significant effect of age on left hemisphere MD, with a similar reduction in MD during childhood in both TD and HF-ASD children. The increased MD in children with HF-ASD suggests hypomyelination, and may reflect increased short-range cortico-cortical connections subsequent to early white matter overgrowth. These findings also highlight left hemispheric connectivity as relevant to the pathophysiology of ASD, and indicate that the spatial distribution of microstructural abnormalities in HF-ASD is widespread, and left-lateralized. This altered left-hemispheric connectivity may contribute to deficits in communication and praxis observed in ASD. PMID:25256103
Looe, Hui Khee; Harder, Dietrich; Poppe, Björn
2017-02-07
The lateral dose response function is a general characteristic of the volume effect of a detector used for photon dosimetry in a water phantom. It serves as the convolution kernel transforming the true absorbed dose to water profile, which would be produced within the undisturbed water phantom, into the detector-measured signal profile. The shape of the lateral dose response function characterizes (i) the volume averaging attributable to the detector's size and (ii) the disturbance of the secondary electron field associated with the deviation of the electron density of the detector material from the surrounding water. In previous work, the characteristic dependence of the shape of the lateral dose response function upon the electron density of the detector material was studied for 6 MV photons by Monte Carlo simulation of a wall-less voxel-sized detector (Looe et al 2015 Phys. Med. Biol. 60 6585-07). This study is here continued for 60 Co gamma rays and 15 MV photons in comparison with 6 MV photons. It is found (1) that throughout these photon spectra the shapes of the lateral dose response functions are retaining their characteristic dependence on the detector's electron density, and (2) that their energy-dependent changes are only moderate. This appears as a practical advantage because the lateral dose response function can then be treated as practically invariant across a clinical photon beam in spite of the known changes of the photon spectrum with increasing distance from the beam axis.
Colom, Roberto; Solomon, Jeffrey; Krueger, Frank; Forbes, Chad; Grafman, Jordan
2012-01-01
Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control, the broader functional networks that support high-level cognition and give rise to general intelligence remain to be well characterized. Here, we investigated the neural substrates of the general factor of intelligence (g) and executive function in 182 patients with focal brain damage using voxel-based lesion–symptom mapping. The Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System were used to derive measures of g and executive function, respectively. Impaired performance on these measures was associated with damage to a distributed network of left lateralized brain areas, including regions of frontal and parietal cortex and white matter association tracts, which bind these areas into a coordinated system. The observed findings support an integrative framework for understanding the architecture of general intelligence and executive function, supporting their reliance upon a shared fronto-parietal network for the integration and control of cognitive representations and making specific recommendations for the application of the Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System to the study of high-level cognition in health and disease. PMID:22396393
Optical Spectra of Extrasolar Giant Planets
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Hubeny, Ivan; Sudarsky, David; Burrows, Adam
2004-01-01
The flux distribution of a planet relative to its host star is a critical quantity for planning space observatories to detect and characterize extrasolar giant planets (EGP's). In this paper, we present optical planet-star contrasts of Jupiter-mass planets as a function of stellar type, orbital distance, and planetary cloud characteristics. As originally shown by Sudarsky et al. (2000, 2003), the phaseaveraged brightness of an EGP does not necessarily decrease monotonically with greater orbital distance because of changes in its albedo and absorption spectrum at lower temperatures. We apply our results to Eclipse, a 1.8-m optical telescope + coronograph to be proposed as a NASA Discovery mission later this year.
Joliot, M; Tzourio-Mazoyer, N; Mazoyer, B
2016-12-01
Asymmetry in intra-hemispheric intrinsic connectivity, and its association with handedness and hemispheric dominance for language, were investigated in a sample of 290 healthy volunteers enriched in left-handers (52.7%). From the resting-state FMRI data of each participant, we derived an intra-hemispheric intrinsic connectivity asymmetry (HICA) matrix as the difference between the left and right intra-hemispheric matrices of intrinsic correlation computed for each pair of the AICHA atlas ROIs. We defined a similarity measure between the HICA matrices of two individuals as the correlation coefficient of their corresponding elements, and computed for each individual an index of intra-hemispheric intrinsic connectivity asymmetry as the average similarity measure of his HICA matrix to those of the other subjects of the sample (HICAs). Gaussian-mixture modeling of the age-corrected HICAs sample distribution revealed that two types of HICA patterns were present, one (Typical_HICA) including 92.4% of the participants while the other (Atypical_HICA) included only 7.6% of them, mostly left-handers. In addition, we investigated the relationship between asymmetry in intra-hemispheric intrinsic connectivity and language hemispheric dominance, including a potential effect of handedness on this relationship, thanks to an FMRI acquisition during language production from which an hemispheric functional lateralization index for language (HFLI) and a type of hemispheric dominance for language, namely leftward, ambilateral, or rightward, were derived for each individual. There was a significant association between the types of language hemispheric dominance and of intra-hemispheric intrinsic connectivity asymmetry, occurrence of Atypical_HICAs individuals being very high in the group of individuals rightward-lateralized for language (80%), reduced in the ambilateral group (19%) and rare in individuals leftward-lateralized for language (less than 3%). Quantitatively, we found a significant positive linear relationship between the HICAs and HFLI indices, with an effect of handedness on the intercept but not on the slope of this relationship. These findings demonstrate that handedness and hemispheric dominance for language are significantly but independently associated with the asymmetry of intra-hemispheric intrinsic connectivity. These findings suggest that asymmetry in intra-hemispheric connectivity is a variable phenotype shaped in part by hemispheric lateralization for language, but possibly also depending on other lateralized functions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gender-related differences in lateralization of hippocampal activation and cognitive strategy.
Frings, Lars; Wagner, Kathrin; Unterrainer, Josef; Spreer, Joachim; Halsband, Ulrike; Schulze-Bonhage, Andreas
2006-03-20
Gender-related differences in brain activation patterns and their lateralization associated with cognitive functions have been reported in the field of language, emotion, and working memory. Differences have been hypothesized to be due to different cognitive strategies. The aim of the present study was to test whether lateralization of brain activation in the hippocampi during memory processing differs between the sexes. We acquired functional magnetic resonance imaging data from healthy female and male study participants performing a spatial memory task and quantitatively assessed the lateralization of hippocampal activation in each participant. Hippocampal activation was significantly more left lateralized in women, and more right lateralized in men. Correspondingly, women rated their strategy as being more verbal than men did.
Thermal residual stress evaluation based on phase-shift lateral shearing interferometry
NASA Astrophysics Data System (ADS)
Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan
2018-06-01
An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.
NASA Technical Reports Server (NTRS)
Murchie, Scott L.; Britt, Daniel T.; Head, James W.; Pratt, Stephen F.; Fisher, Paul C.
1991-01-01
Color ratio images created from multispectral observations of Phobos are analyzed in order to characterize the spectral properties of Phobos' surface, to assess their spatial distributions and relationships with geologic features, and to compare Phobos' surface materials with possible meteorite analogs. Data calibration and processing is briefly discussed, and the observed spectral properties of Phobos and their lateral variations are examined. Attention is then given to the color properties of different types of impact craters, the origin of lateral variations in surface color, the relation between the spatial distribution of color properties and independently identifiable geologic features, and the relevance of color variation spatial distribution to the origin of the grooves.
Interoperability Outlook in the Big Data Future
NASA Astrophysics Data System (ADS)
Kuo, K. S.; Ramachandran, R.
2015-12-01
The establishment of distributed active archive centers (DAACs) as data warehouses and the standardization of file format by NASA's Earth Observing System Data Information System (EOSDIS) had doubtlessly propelled interoperability of NASA Earth science data to unprecedented heights in the 1990s. However, we obviously still feel wanting two decades later. We believe the inadequate interoperability we experience is a result of the the current practice that data are first packaged into files before distribution and only the metadata of these files are cataloged into databases and become searchable. Data therefore cannot be efficiently filtered. Any extensive study thus requires downloading large volumes of data files to a local system for processing and analysis.The need to download data not only creates duplication and inefficiency but also further impedes interoperability, because the analysis has to be performed locally by individual researchers in individual institutions. Each institution or researcher often has its/his/her own preference in the choice of data management practice as well as programming languages. Analysis results (derived data) so produced are thus subject to the differences of these practices, which later form formidable barriers to interoperability. A number of Big Data technologies are currently being examined and tested to address Big Earth Data issues. These technologies share one common characteristics: exploiting compute and storage affinity to more efficiently analyze large volumes and great varieties of data. Distributed active "archive" centers are likely to evolve into distributed active "analysis" centers, which not only archive data but also provide analysis service right where the data reside. "Analysis" will become the more visible function of these centers. It is thus reasonable to expect interoperability to improve because analysis, in addition to data, becomes more centralized. Within a "distributed active analysis center" interoperability is almost guaranteed because data, analysis, and results all can be readily shared and reused. Effectively, with the establishment of "distributed active analysis centers", interoperation turns from a many-to-many problem into a less complicated few-to-few problem and becomes easier to solve.
Chan, V O; Moran, D E; Mwangi, I; Eustace, S J
2013-08-01
To determine the prevalence of chondromalacia isolated to the anterior margin of the lateral femoral condyle as a component of patellofemoral disease in patients with anterior knee pain and to correlate it with patient demographics, patellar shape, and patellofemoral alignment. Retrospective study over a 1-year period reviewing the MR knee examinations of all patients who were referred for assessment of anterior knee pain. Only patients with isolated lateral patellofemoral disease were included. Age, gender, distribution of lateral patellofemoral chondromalacia, and grade of cartilaginous defects were documented for each patient. Correlation between the distribution of lateral patellofemoral chondromalacia and patient demographics, patellar shape, and indices of patellar alignment (femoral sulcus angle and modified Q angle) was then ascertained. There were 50 patients (22 males, 28 females) with anterior knee pain and isolated patellofemoral disease. The majority of the patients (78 %) had co-existent disease with grade 1 chondromalacia. No significant correlation was found between patients with chondromalacia isolated to the anterior margin of the lateral femoral condyle and age, gender, patellar shape, or modified Q angle (p > 0.05). However, patients with chondromalacia isolated to the anterior margin of the lateral femoral condyle had a shallower femoral sulcus angle (mean 141.8°) compared to the patients with lateral patellar facet disease (mean 133.8°) (p = 0.002). A small percentage of patients with anterior knee pain have chondromalacia isolated to the anterior margin of the lateral femoral condyle. This was associated with a shallower femoral sulcus angle.
Variations in cerebral organization as a function of handedness, hand posture in writing, and sex.
Levy, J; Reid, M
1978-06-01
During the past century, it has become increasingly apparent that there is a great deal of variation in the direction and degree of cerebral lateralization, a plurality of people having language and related functions strongly specialized to the left hemisphere and visuospatial functions strongly specialized to the right, with substantial minorities manifesting various deviations from this pattern. In particular, in 35%-50% of sinistrals and 1%-10% of dextrals, the right hemisphere is specialized for linguistic skills, and in some unknown fraction of the two handedness groups, verbal and/or spatial abilities are, to varying extents, bilateralized. Levy (1973) suggested that the hand posture adopted during writing might be an index of the lateral relationship between the dominant writing hand and the language hemisphere, a normal posture indicating contralateral language specialization, and an inverted posture indicating ipsilateral language specialization. In the present investigation, two tachistoscopic tests of cerebral lateralization, one measuring spatial functions and one measuring verbal function, were administered to 73 subjects classified by handedness, hand posture during writing, and sex. Among both dextral and sinistral subjects with a normal writing posture, language and spatial functions were specialized to the contralateral and ipsilateral hemispheres, respectively, and lateral differentiation of the brain was strong. The reverse was seen in subjects having an inverted writing posture. In all groups, females were less laterally differentiated than males. In 70 out of 73 subjects, the direction of cerebral laterization was accurately predicted by handedness and hand posture. The 3 subjects (2 females and 1 male) who failed to manifest the predicted relations were all left-handers having an inverted hand posture . In this group, lateral differentiation was so weak that the reliability of the tachistoscopic tests was reduced, and we attribute these three predictive failures to this cause. Thus, almost all of the variation in the lateral organization of the brain was accounted for by handedness, hand posture, and sex.
Bidet-Caulet, Aurélie; Buchanan, Kelly G; Viswanath, Humsini; Black, Jessica; Scabini, Donatella; Bonnet-Brilhault, Frédérique; Knight, Robert T
2015-11-01
There is growing evidence that auditory selective attention operates via distinct facilitatory and inhibitory mechanisms enabling selective enhancement and suppression of sound processing, respectively. The lateral prefrontal cortex (LPFC) plays a crucial role in the top-down control of selective attention. However, whether the LPFC controls facilitatory, inhibitory, or both attentional mechanisms is unclear. Facilitatory and inhibitory mechanisms were assessed, in patients with LPFC damage, by comparing event-related potentials (ERPs) to attended and ignored sounds with ERPs to these same sounds when attention was equally distributed to all sounds. In control subjects, we observed 2 late frontally distributed ERP components: a transient facilitatory component occurring from 150 to 250 ms after sound onset; and an inhibitory component onsetting at 250 ms. Only the facilitatory component was affected in patients with LPFC damage: this component was absent when attending to sounds delivered in the ear contralateral to the lesion, with the most prominent decreases observed over the damaged brain regions. These findings have 2 important implications: (i) they provide evidence for functionally distinct facilitatory and inhibitory mechanisms supporting late auditory selective attention; (ii) they show that the LPFC is involved in the control of the facilitatory mechanisms of auditory attention. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gutierrez-Sigut, Eva; Payne, Heather; MacSweeney, Mairéad
2015-01-01
Although there is consensus that the left hemisphere plays a critical role in language processing, some questions remain. Here we examine the influence of overt versus covert speech production on lateralization, the relationship between lateralization and behavioural measures of language performance and the strength of lateralization across the subcomponents of language. The present study used functional transcranial Doppler sonography (fTCD) to investigate lateralization of phonological and semantic fluency during both overt and covert word generation in right-handed adults. The laterality index (LI) was left lateralized in all conditions, and there was no difference in the strength of LI between overt and covert speech. This supports the validity of using overt speech in fTCD studies, another benefit of which is a reliable measure of speech production. PMID:24875468
The characteristics and distribution of dental anomalies in patients with cleft.
Wu, Ting-Ting; Chen, Philip K T; Lo, Lun-Jou; Cheng, Min-Chi; Ko, Ellen Wen-Ching
2011-01-01
Dental anomalies associated with different severities of cleft lip and palate have been rarely reported. This retrospective study investigates the characteristics of dental anomalies associated with different types of cleft, and compares the dental anomaly traits based on sex and severity of cleft. Cleft patients born in 1995 with qualified diagnostic records from 7 to 11 years were included for evaluation. Records were retrieved from database of Chang Gung Craniofacial Center, including panoramic radiographs and intraoral photographs. In total, 196 patients with complete records were included in the evaluation. This study compares the dental anomalies associated with each type of cleft. The frequency of dental anomalies in the maxillary incisor area in the cleft palate (CP) group (20%) was significantly lower than that in other groups. The frequency of missing maxillary lateral incisors (MLIs) increased as the cleft severity increased. Supernumerary teeth and missing lower incisors exhibited the opposite trend. No sexual dimorphism appeared in terms of the frequencies of peg laterals and missing MLIs. The distribution patterns of missing MLIs and peg laterals in males, but not in females, were consistent for the three types of unilateral clefts. Regarding the characteristics of dental anomalies among the three unilateral clefts, missing MLIs, supernumerary teeth, and missing lower incisors were found to be related to cleft severity. The maxillary lateral incisor was the most affected tooth in the cleft area. The frequency of missing MLIs and peg laterals was not sexual dimorphic, but the distribution pattern was different between the sexes.
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey
2016-04-01
Distribution of artificial radionuclides in the environment has long been used successfully for revealing migration pathways of their stable analogues. Migration of water in natural conjugated elementary landscapes characterizing the system of top-slope-resulting depression, has a specific structure and the radionuclide tracer is inevitably reflecting it by specific sorption and exchange processes. Other important issues are the concentration levels and the difference in characteristic time of chemical element dispersion. Modern biosphere has acquired its sustainable structure within a long period of time and is formed by basic macroelements allowing the water soluble portion of elements functioning as activators of chemical exchange. Water migration is controlled by gravitation, climate and relief while fixation depends upon the parameters of surfaces and chemical composition. The resulting structure depends on specificity and duration of the process. The long-term redistribution of chemical elements in terrestrial environment has led to a distinct geochemical structure of conjugated landscapes with a specific geometry of redistribution and accumulation of chemical elements. Migration of the newly born anthropogenic radionuclides followed natural pathways in biosphere. The initial deposition of the Chernobyl's radionuclides within the elementary landscape-geochemical system was even by condition of aerial deposition. But further exchange process is controlled by the strength of fixation and migration ability of the carriers. Therefore patterns of spatial distribution of artificial radionuclides in natural landscapes are considerably different as compared to those of the long-term forming the basic structure of chemical fields in biosphere. Our monitoring of Cs-137 radial and lateral distribution in the test plots characterizing natural undisturbed conjugated elementary landscapes performed in the period from 2005 until now has revealed a stable and specifically polycentric structure of radiocesium distribution believed to reflect the character of radial and lateral water body migration and a high sensitivity of water distribution to surface parameters. This leads to an unusual wavy type of Cs-137 distribution down, along and across all the slopes examined for surface Cs-137 activity at every measured point. The finding is believed to have an important practical outcome allowing much more detailed evaluation of micronutrients distribution and optimization of their application.
Load application for the contact mechanics analysis and wear prediction of total knee replacement.
Zhang, Jing; Chen, Zhenxian; Wang, Ling; Li, Dichen; Jin, Zhongmin
2017-05-01
Tibiofemoral contact forces in total knee replacement have been measured at the medial and lateral sites respectively using an instrumented prosthesis, and predicted from musculoskeletal multibody dynamics models with a reasonable accuracy. However, it is uncommon that the medial and lateral forces are applied separately to replace a total axial load according to the ISO standard in the majority of current finite element analyses. In this study, we quantified the different effects of applying the medial and lateral loads separately versus the traditional total axial load application on contact mechanics and wear prediction of a patient-specific knee prosthesis. The load application position played an important role under the medial-lateral load application. The loading set which produced the closest load distribution to the multibody dynamics model was used to predict the contact mechanics and wear for the prosthesis and compared with the total axial load application. The medial-lateral load distribution using the present method was found to be closer to the multibody dynamics prediction than the traditional total axial load application, and the maximum contact pressure and contact area were consistent with the corresponding load variation. The predicted total volumetric wear rate and area were similar between the two load applications. However, the split of the predicted wear volumes on the medial and the lateral sides was different. The lateral volumetric wear rate was 31.46% smaller than the medial from the traditional load application prediction, while from the medial-lateral load application, the lateral side was only 11.8% smaller than the medial. The medial-lateral load application could provide a new and more accurate method of load application for patient-specific preclinical contact mechanics and wear prediction of knee implants.
Beta Hebbian Learning as a New Method for Exploratory Projection Pursuit.
Quintián, Héctor; Corchado, Emilio
2017-09-01
In this research, a novel family of learning rules called Beta Hebbian Learning (BHL) is thoroughly investigated to extract information from high-dimensional datasets by projecting the data onto low-dimensional (typically two dimensional) subspaces, improving the existing exploratory methods by providing a clear representation of data's internal structure. BHL applies a family of learning rules derived from the Probability Density Function (PDF) of the residual based on the beta distribution. This family of rules may be called Hebbian in that all use a simple multiplication of the output of the neural network with some function of the residuals after feedback. The derived learning rules can be linked to an adaptive form of Exploratory Projection Pursuit and with artificial distributions, the networks perform as the theory suggests they should: the use of different learning rules derived from different PDFs allows the identification of "interesting" dimensions (as far from the Gaussian distribution as possible) in high-dimensional datasets. This novel algorithm, BHL, has been tested over seven artificial datasets to study the behavior of BHL parameters, and was later applied successfully over four real datasets, comparing its results, in terms of performance, with other well-known Exploratory and projection models such as Maximum Likelihood Hebbian Learning (MLHL), Locally-Linear Embedding (LLE), Curvilinear Component Analysis (CCA), Isomap and Neural Principal Component Analysis (Neural PCA).
Lawrence, Jane M; Stroman, Patrick W; Kollias, Spyros S
2008-03-01
We investigated noninvasively areas of the healthy human spinal cord that become active in response to vibration stimulation of different dermatomes using functional magnetic resonance imaging (fMRI). The objectives of this study were to: (1) examine the patterns of consistent activity in the spinal cord during vibration stimulation of the skin, and (2) investigate the rostrocaudal distribution of active pixels when stimulation was applied to different dermatomes. FMRI of the cervical and lumbar spinal cord of seven healthy human subjects was carried out during vibration stimulation of six different dermatomes. In separate experiments, vibratory stimulation (about 50 Hz) was applied to the right biceps, wrist, palm, patella, Achilles tendon and left palm. The segmental distribution of activity observed by fMRI corresponded well with known spinal cord neuroanatomy. The peak number of active pixels was observed at the expected level of the spinal cord with some activity in the adjacent segments. The rostrocaudal distribution of activity was observed to correspond to the dermatome being stimulated. Cross-sectional localization of activity was primarily in dorsal areas but also spread into ventral and intermediate areas of the gray matter and a distinct laterality ipsilateral to the stimulated limb was not observed. We demonstrated that fMRI can detect a dermatome-dependent pattern of spinal cord activity during vibratory stimulation and can be used as a passive stimulus for the noninvasive assessment of the functional integrity of the human spinal cord. Demonstration of cross-sectional selectivity of the activation awaits further methodological and experimental refinements.
NASA Astrophysics Data System (ADS)
Yin, Deshun; Qu, Pengfei
2018-02-01
Protein lateral diffusion is considered anomalous in the plasma membrane. And this diffusion is related to membrane microstructure. In order to better describe the property of protein lateral diffusion and find out the inner relationship between protein lateral diffusion and membrane microstructure, this article applies variable-order fractional mean square displacement (f-MSD) function for characterizing the anomalous diffusion. It is found that the variable order can reflect the evolution of diffusion ability. The results of numerical simulation demonstrate variable-order f-MSD function can predict the tendency of anomalous diffusion during the process of confined diffusion. It is also noted that protein lateral diffusion ability during the processes of confined and hop diffusion can be split into three parts. In addition, the comparative analyses reveal that the variable order is related to the confinement-domain size and microstructure of compartment boundary too.
Rehabilitation outcomes in children with cerebral palsy during a 2 year period
İçağasıoğlu, Afitap; Mesci, Erkan; Yumusakhuylu, Yasemin; Turgut, Selin Turan; Murat, Sadiye
2015-01-01
[Purpose] To observe motor and functional progress of children with cerebral palsy during 2 years. [Subjects and Methods] Pediatric cerebral palsy patients aged 3–15 years (n = 35/69) with 24-month follow-up at our outpatient cerebral palsy clinic were evaluated retrospectively. The distribution of cerebral palsy types was as follows: diplegia (n = 19), hemiplegia (n = 4), and quadriplegia (n = 12). Participants were divided into 3 groups according to their Gross Motor Functional Classification System scores (i.e., mild, moderate, and severe). All participants were evaluated initially and at the final assessment 2 years later. During this time, patients were treated 3 times/week. Changes in motor and functional abilities were assessed based on Gross Motor Function Measure-88 and Wee Functional Independence Measure. [Results] Significant improvements were observed in Gross Motor Function Measure-88 and Wee Functional Independence Measure results in all 35 patients at the end of 2 years. The Gross Motor Function Measure-88 scores correlated with Wee Functional Independence Measure Scores. Marked increases in motor and functional capabilities in mild and moderate cerebral palsy patients were observed in the subgroup assessments, but not in those with severe cerebral palsy. [Conclusion] Rehabilitation may greatly help mild and moderate cerebral palsy patients achieve their full potential. PMID:26644677
Gaznick, Natassia; Bechara, Antoine; Tranel, Daniel
2014-01-01
Patterns of smoking behavior vary between the sexes. There is evidence that decision making, which is one of the key "executive functions" necessary for making life-style modifications such as smoking cessation, is relatively lateralized to the right hemisphere in males and left hemisphere in females. In the current study, we examined whether the side of brain lesion has a differential effect on smoking behavior between the sexes. We hypothesized sex differences in smoking cessation based on lesion side. Participants were 49 males and 50 females who were smoking at the time of lesion onset. The outcome variable was abstinence from smoking (quit rate) at least one year post lesion. We found that in patients with left-hemisphere damage, quit rates were significantly higher in males than in females; however, in patients with right-hemisphere damage, quit rates were not statistically different. The findings support previous cognitive neuroscience literature showing that components of behavior responsible for maintaining addiction tend to be more strongly lateralized in males, whereas in females there is a more bilateral distribution. Our study provides further evidence for differences in lateralization of complex behavior between the sexes, which has significant implications for differences in treatment strategies between the sexes.
Moscicki, Michele K; Reddon, Adam R; Hurd, Peter L
2011-09-01
Cerebral lateralization, the partitioning of cognitive function preferentially into one hemisphere of the brain, is a trait ubiquitous among vertebrates. Some species exhibit population level lateralization, where the pattern of cerebral lateralization is the same for most members of that species; however, other species show only individual level lateralization, where each member of the species has a unique pattern of lateralized brain function. The pattern of cerebral lateralization within a population and an individual has been shown to differ based on the stimulus being processed. It has been hypothesized that sociality within a species, such as shoaling behaviour in fish, may have led to the development and persistence of population level lateralization. Here we assessed cerebral lateralization in convict cichlids (Amatitlania nigrofasciata), a species that does not shoal as adults but that shoals briefly as juveniles. We show that both male and female convict cichlids display population level lateralization when in a solitary environment but only females show population level lateralization when in a perceived social environment. We also show that the pattern of lateralization differs between these two tasks and that strength of lateralization in one task is not predictive of strength of lateralization in the other task. Copyright © 2011 Elsevier B.V. All rights reserved.
Sugár, István P; Zhai, Xiuhong; Boldyrev, Ivan A; Molotkovsky, Julian G; Brockman, Howard L; Brown, Rhoderick E
2010-01-01
Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA) each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.
Spielberg, Jeffrey M.; Miller, Gregory A.; Engels, Anna S.; Herrington, John D.; Sutton, Bradley P.; Banich, Marie T.; Heller, Wendy
2010-01-01
Motivation and executive function are both necessary for the completion of goal-directed behavior. Research investigating the manner in which these processes interact is beginning to emerge and has implicated middle frontal gyrus (MFG) as a site of interaction for relevant neural mechanisms. However, this research has focused on state motivation, and it has not examined functional lateralization. The present study examined the impact of trait levels of approach and avoidance motivation on neural processes associated with executive function. Functional magnetic resonance imaging was conducted while participants performed a color-word Stroop task. Analyses identified brain regions in which trait approach and avoidance motivation (measured by questionnaires) moderated activation associated with executive control. Approach was hypothesized to be associated with left-lateralized MFG activation, whereas avoidance was hypothesized to be associated with right-lateralized MFG activation. Results supported both hypotheses. Present findings implicate areas of middle frontal gyrus in top-down control to guide behavior in accordance with motivational goals. PMID:20728552
Spielberg, Jeffrey M; Miller, Gregory A; Engels, Anna S; Herrington, John D; Sutton, Bradley P; Banich, Marie T; Heller, Wendy
2011-01-01
Motivation and executive function are both necessary for the completion of goal-directed behavior. Research investigating the manner in which these processes interact is beginning to emerge and has implicated middle frontal gyrus (MFG) as a site of interaction for relevant neural mechanisms. However, this research has focused on state motivation, and it has not examined functional lateralization. The present study examined the impact of trait levels of approach and avoidance motivation on neural processes associated with executive function. Functional magnetic resonance imaging was conducted while participants performed a color-word Stroop task. Analyses identified brain regions in which trait approach and avoidance motivation (measured by questionnaires) moderated activation associated with executive control. Approach was hypothesized to be associated with left-lateralized MFG activation, whereas avoidance was hypothesized to be associated with right-lateralized MFG activation. Results supported both hypotheses. Present findings implicate areas of middle frontal gyrus in top-down control to guide behavior in accordance with motivational goals. Copyright © 2010 Elsevier Inc. All rights reserved.
Sasser, Tyler R.; Bierman, Karen L.; Heinrichs, Brenda
2016-01-01
164 four-year-old children (14% Latino American, 30% African American, 56% European American; 57% girls) in 22 Head Start classrooms were followed through third grade. Growth curve models were used to estimate the predictive associations between pre-kindergarten executive function (EF) skills and trajectories of academic skill development (math, literacy, overall academic functioning) and social-emotional adjustment at school (social competence, aggression), controlling for child sex, race, verbal IQ, and pre-kindergarten baseline scores. Direct developmental pathways were examined, along with indirect pathways, in which the association between preschool EF and elementary school adjustment was mediated by classroom learning behaviors. Preschool EF significantly predicted later math skills, academic functioning, and social competence, and marginally predicted later literacy skills. Preschool learning behaviors fully mediated the association between EF and later literacy skills and social competence, but did not mediate associations between EF and later math skills or academic functioning. Implications for developmental theory and early education are discussed. PMID:27231409
Blumstein, Daniel T; Chung, Lawrance K; Smith, Jennifer E
2013-05-22
Play has been defined as apparently functionless behaviour, yet since play is costly, models of adaptive evolution predict that it should have some beneficial function (or functions) that outweigh its costs. We provide strong evidence for a long-standing, but poorly supported hypothesis: that early social play is practice for later dominance relationships. We calculated the relative dominance rank by observing the directional outcome of playful interactions in juvenile and yearling yellow-bellied marmots (Marmota flaviventris) and found that these rank relationships were correlated with later dominance ranks calculated from agonistic interactions, however, the strength of this relationship attenuated over time. While play may have multiple functions, one of them may be to establish later dominance relationships in a minimally costly way.
Lateralization for Processing Facial Emotions in Gay Men, Heterosexual Men, and Heterosexual Women.
Rahman, Qazi; Yusuf, Sifat
2015-07-01
This study tested whether male sexual orientation and gender nonconformity influenced functional cerebral lateralization for the processing of facial emotions. We also tested for the effects of sex of poser and emotion displayed on putative differences. Thirty heterosexual men, 30 heterosexual women, and 40 gay men completed measures of demographic variables, recalled childhood gender nonconformity (CGN), IQ, and the Chimeric Faces Test (CFT). The CFT depicts vertically split chimeric faces, formed with one half showing a neutral expression and the other half showing an emotional expression and performance is measured using a "laterality quotient" (LQ) score. We found that heterosexual men were significantly more right-lateralized when viewing female faces compared to heterosexual women and gay men, who did not differ significantly from each other. Heterosexual women and gay men were more left-lateralized for processing female faces. There were no significant group differences in lateralization for male faces. These results remained when controlling for age and IQ scores. There was no significant effect of CGN on LQ scores. These data suggest that gay men are feminized in some aspects of functional cerebral lateralization for facial emotion. The results were discussed in relation to the selectivity of functional lateralization and putative brain mechanisms underlying sexual attraction towards opposite-sex and same-sex targets.
Liso, Rosalia; De Tullio, Mario C; Ciraci, Samantha; Balestrini, Raffaella; La Rocca, Nicoletta; Bruno, Leonardo; Chiappetta, Adriana; Bitonti, Maria Beatrice; Bonfante, Paola; Arrigoni, Oreste
2004-12-01
To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.
Financial derivative pricing under probability operator via Esscher transfomation
NASA Astrophysics Data System (ADS)
Achi, Godswill U.
2014-10-01
The problem of pricing contingent claims has been extensively studied for non-Gaussian models, and in particular, Black- Scholes formula has been derived for the NIG asset pricing model. This approach was first developed in insurance pricing9 where the original distortion function was defined in terms of the normal distribution. This approach was later studied6 where they compared the standard Black-Scholes contingent pricing and distortion based contingent pricing. So, in this paper, we aim at using distortion operators by Cauchy distribution under a simple transformation to price contingent claim. We also show that we can recuperate the Black-Sholes formula using the distribution. Similarly, in a financial market in which the asset price represented by a stochastic differential equation with respect to Brownian Motion, the price mechanism based on characteristic Esscher measure can generate approximate arbitrage free financial derivative prices. The price representation derived involves probability Esscher measure and Esscher Martingale measure and under a new complex valued measure φ (u) evaluated at the characteristic exponents φx(u) of Xt we recuperate the Black-Scholes formula for financial derivative prices.
Finite Element Aircraft Simulation of Turbulence
NASA Technical Reports Server (NTRS)
McFarland, R. E.
1997-01-01
A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.
Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.
Language Lateralization in Children Using Functional Transcranial Doppler Sonography
ERIC Educational Resources Information Center
Haag, Anja; Moeller, Nicola; Knake, Susanne; Hermsen, Anke; Oertel, Wolfgang H.; Rosenow, Felix; Hamer, Hajo M.
2010-01-01
Aim: Language lateralization with functional transcranial Doppler sonography (fTCD) and lexical word generation has been shown to have high concordance with the Wada test and functional magnetic resonance imaging in adults. We evaluated a nonlexical paradigm to determine language dominance in children. Method: In 23 right-handed children (12…
Watanabe, Shigeo; Kitamura, Taiko; Watanabe, Lisa; Sato, Hitoshi; Yamada, Jinzo
2003-03-01
The aim of this study is to clarify the fiber distribution of the nucleus reticularis magnocellularis (NRMC) and adjacent areas in the rat spinal cord. Biotinylated dextran amine was injected iontophoretically through a glass capillary into the areas, in which a single cell responded to noxious electrical stimulation of the sciatic nerve and to a pinch of the thigh skin with multiple spikes. Labeled fibers descended bilaterally through the ventral funiculi of the medulla oblongata and then through the ventral and lateral funiculi of the cervical cord with an ipsilateral predominance, and terminated in the spinal gray (laminae I-X). A single fiber sometimes ran through several laminae while bifurcating many short branches with axon varicosities and terminal buttons in one transverse section, that is, through laminae V, VII and X, through laminae V, IIl-IV and I-II, and through laminae VII to I-II. The present study showed that the wide distribution of a single fiber and a mass of fibers descending from the NRMC and adjacent areas might modulate not only somatic sensory and motor functions but also autonomic functions in the spinal cord.
Dumas, Louis; Chazaux, Marie; Peltier, Gilles; Johnson, Xenie; Alric, Jean
2016-09-01
Both the structure and the protein composition of thylakoid membranes have an impact on light harvesting and electron transfer in the photosynthetic chain. Thylakoid membranes form stacks and lamellae where photosystem II and photosystem I localize, respectively. Light-harvesting complexes II can be associated to either PSII or PSI depending on the redox state of the plastoquinone pool, and their distribution is governed by state transitions. Upon state transitions, the thylakoid ultrastructure and lateral distribution of proteins along the membrane are subject to significant rearrangements. In addition, quinone diffusion is limited to membrane microdomains and the cytochrome b 6 f complex localizes either to PSII-containing grana stacks or PSI-containing stroma lamellae. Here, we discuss possible similarities or differences between green algae and C3 plants on the functional consequences of such heterogeneities in the photosynthetic electron transport chain and propose a model in which quinones, accepting electrons either from PSII (linear flow) or NDH/PGR pathways (cyclic flow), represent a crucial control point. Our aim is to give an integrated description of these processes and discuss their potential roles in the balance between linear and cyclic electron flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz
Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton–electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that timemore » owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.« less
The investigation of CD4+T-cell functions in primary HIV infection with antiretroviral therapy
Sun, Yu; Fu, Yajing; Zhang, Zining; Tang, Tian; Liu, Jing; Ding, Haibo; Han, Xiaoxu; Xu, Junjie; Chu, Zhenxing; Shang, Hong; Jiang, Yongjun
2017-01-01
Abstract Human immunodeficiency virus (HIV) infection leads to reduced CD4+T-cell counts and immune dysfunction. Initiation of antiretroviral therapy (ART) in HIV primary infection has been recommended to achieve an optimal clinical outcome, but a comprehensive study on restoration of CD4+T-cell function in primary HIV-infected individuals with ART still needs to be eluciated. We investigated longitudinal changes in the CD4+T-cell counts, phenotypes, and functions in HIV-infected individuals with early ART (initiated within 6 months after HIV infection) or later ART (initiated more than 12 months after HIV infection). Patients from early ART and later ART groups had received ART for at least 1 year. Individuals with early ART had more CD4+T cells, a faster rate of CD4+T-cell recovery than those receiving later ART; the levels of CD4+T-cell activation and senescence were lower in early ART compared to those with later ART (P = .031; P = .016), but the activation was higher than normal controls (NC) (P = .001); thymic emigrant function was more upregulated in early ART than in later ART (P = .015), but still lower than NC (P = .027); proliferative capacity and interferon-γ secretion of CD4+T cells were significantly decreased in primary infection (P < .001; P = .029), and early ART restored these CD4+T-cell functions, there is no difference with NC, later ART could partially restore the functions of CD4+T cells, but it remained lower than that of NC (P = .005; P = .019). Early ART could better improve CD4+T-cell function. PMID:28700479
Early functional outcome after lateral UKA is sensitive to postoperative lower limb alignment.
van der List, J P; Chawla, H; Villa, J C; Zuiderbaan, H A; Pearle, A D
2017-03-01
The predictive role of patient-specific characteristics and radiographic parameters on medial unicompartmental knee arthroplasty (UKA) outcomes is well known, but knowledge of these predictors is lacking in lateral UKA. Therefore, purpose of this study was to assess the predictive role of these parameters on short-term functional outcomes of lateral UKA. In this retrospective cohort study, Western Ontario and McMaster Universities Arthritis Index scores were collected at 2-year follow-up (median 2.2 years, range 2.0-4.0 years) in 39 patients who underwent lateral UKA. Patient-specific characteristics included age, BMI and gender, while radiographic parameters included osteoarthritis severity of all three compartments and both preoperative and postoperative hip-knee-ankle alignment. BMI, gender, age and preoperative valgus alignment were not correlated with functional outcomes, while postoperative valgus alignment was correlated with functional outcomes (0.561; p = 0.001). Postoperative valgus of 3°-7° was correlated with better outcomes than more neutral (-2° to 3° valgus) alignment (96.7 vs. 85.6; p = 0.011). Postoperative alignment was a predictor when corrected for patient-specific characteristics (regression coefficient 4.1; p < 0.001) and radiological parameters (regression coefficient 3.8; p = 0.002). Postoperative valgus alignment of 3°-7° was correlated with the best short-term functional outcomes in lateral UKA surgery, while patient-specific parameters and preoperative alignment were not correlated with functional outcomes. Based on these findings, a surgeon should aim for valgus alignment of 3°-7° when performing lateral UKA surgery for optimal functional outcomes. Prognostic study, Level II.
Piai, Vitória; Rommers, Joost; Knight, Robert T
2017-09-09
Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested that alpha-beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear lead-in sentences that either constrain the final word ('He locked the door with the') or not ('She walked in here with the'). The last word is shown as a picture to be named. Previous studies have consistently found alpha-beta power decreases prior to picture onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However, the relative contribution of temporal versus frontal areas to alpha-beta power decreases is unknown. We recorded the electroencephalogram from patients with stroke lesions encompassing the left lateral-temporal and inferior-parietal regions or left-lateral frontal lobe and from matched controls. Individual participant analyses revealed a behavioural sentence context facilitation effect in all participants, except for in the two patients with extensive lesions to temporal and inferior parietal lobes. We replicated the alpha-beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical clustering analyses of all patients' lesion profiles, and behavioural and electrophysiological effects identified those two patients as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha-beta power decreases underlying context-driven word production. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Evaluation and implementation of triple‐channel radiochromic film dosimetry in brachytherapy
Bradley, David; Nisbet, Andrew
2014-01-01
The measurement of dose distributions in clinical brachytherapy, for the purpose of quality control, commissioning or dosimetric audit, is challenging and requires development. Radiochromic film dosimetry with a commercial flatbed scanner may be suitable, but careful methodologies are required to control various sources of uncertainty. Triple‐channel dosimetry has recently been utilized in external beam radiotherapy to improve the accuracy of film dosimetry, but its use in brachytherapy, with characteristic high maximum doses, steep dose gradients, and small scales, has been less well researched. We investigate the use of advanced film dosimetry techniques for brachytherapy dosimetry, evaluating uncertainties and assessing the mitigation afforded by triple‐channel dosimetry. We present results on postirradiation film darkening, lateral scanner effect, film surface perturbation, film active layer thickness, film curling, and examples of the measurement of clinical brachytherapy dose distributions. The lateral scanner effect in brachytherapy film dosimetry can be very significant, up to 23% dose increase at 14 Gy, at ± 9 cm lateral from the scanner axis for simple single‐channel dosimetry. Triple‐channel dosimetry mitigates the effect, but still limits the useable width of a typical scanner to less than 8 cm at high dose levels to give dose uncertainty to within 1%. Triple‐channel dosimetry separates dose and dose‐independent signal components, and effectively removes disturbances caused by film thickness variation and surface perturbations in the examples considered in this work. The use of reference dose films scanned simultaneously with brachytherapy test films is recommended to account for scanner variations from calibration conditions. Postirradiation darkening, which is a continual logarithmic function with time, must be taken into account between the reference and test films. Finally, films must be flat when scanned to avoid the Callier‐like effects and to provide reliable dosimetric results. We have demonstrated that radiochromic film dosimetry with GAFCHROMIC EBT3 film and a commercial flatbed scanner is a viable method for brachytherapy dose distribution measurement, and uncertainties may be reduced with triple‐channel dosimetry and specific film scan and evaluation methodologies. PACS numbers: 87.55.Qr, 87.56.bg, 87.55.km PMID:25207417
Lateral and vertical distribution of downstream migrating juvenile sea lamprey
Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen
2018-01-01
Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.
From nociception to pain perception: imaging the spinal and supraspinal pathways
Brooks, Jonathan; Tracey, Irene
2005-01-01
Functional imaging techniques have allowed researchers to look within the brain, and revealed the cortical representation of pain. Initial experiments, performed in the early 1990s, revolutionized pain research, as they demonstrated that pain was not processed in a single cortical area, but in several distributed brain regions. Over the last decade, the roles of these pain centres have been investigated and a clearer picture has emerged of the medial and lateral pain system. In this brief article, we review the imaging literature to date that has allowed these advances to be made, and examine the new frontiers for pain imaging research: imaging the brainstem and other structures involved in the descending control of pain; functional and anatomical connectivity studies of pain processing brain regions; imaging models of neuropathic pain-like states; and going beyond the brain to image spinal function. The ultimate goal of such research is to take these new techniques into the clinic, to investigate and provide new remedies for chronic pain sufferers. PMID:16011543
Attenuation - The Ugly Stepsister of Velocity in the Noise Correlation Family
NASA Astrophysics Data System (ADS)
Lawrence, J. F.; Prieto, G.; Denolle, M.; Seats, K. J.
2012-12-01
Noise correlation functions and noise transfer functions have shown in practice to preserve the relative amplitude information, despite the challenge to reliably resolve it compared to phase information. Yet amplitude contains important information about wavefield interactions with the subsurface structure, including focusing/defocusing and seismic attenuation. To focus on the anelastic effects, or attenuation, we measure amplitude decay with increased station separation (distance). We present numerical results showing that the noise correlation functions (NCFs) preserve the relative amplitude information and properly retrieve seismic attenuation for sufficient noise source distribution and appropriate processing. Attenuation is only preserved through the relative decay of distinct waves from multiple simultaneous source locations. With appropriate whitening (and no time domain normalization), the coherency preserves correlation amplitudes proportional to the relative decay expected with all the inter-station spacing. We present new attenuation results for the United States, and particularly the Yellowstone region that illustrate lateral variations that strongly correlate with known geological features such as sedimentary basins, crustal blocks and active volcanism.
Lateral eye-movement responses to visual stimuli.
Wilbur, M P; Roberts-Wilbur, J
1985-08-01
The association of left lateral eye-movement with emotionality or arousal of affect and of right lateral eye-movement with cognitive/interpretive operations and functions was investigated. Participants were junior and senior students enrolled in an undergraduate course in developmental psychology. There were 37 women and 13 men, ranging from 19 to 45 yr. of age. Using videotaped lateral eye-movements of 50 participants' responses to 15 visually presented stimuli (precategorized as neutral, emotional, or intellectual), content and statistical analyses supported the association between left lateral eye-movement and emotional arousal and between right lateral eye-movement and cognitive functions. Precategorized visual stimuli included items such as a ball (neutral), gun (emotional), and calculator (intellectual). The findings are congruent with existing lateral eye-movement literature and also are additive by using visual stimuli that do not require the explicit response or implicit processing of verbal questioning.
How brain asymmetry relates to performance – a large-scale dichotic listening study
Hirnstein, Marco; Hugdahl, Kenneth; Hausmann, Markus
2014-01-01
All major mental functions including language, spatial and emotional processing are lateralized but how strongly and to which hemisphere is subject to inter- and intraindividual variation. Relatively little, however, is known about how the degree and direction of lateralization affect how well the functions are carried out, i.e., how lateralization and task performance are related. The present study therefore examined the relationship between lateralization and performance in a dichotic listening task for which we had data available from 1839 participants. In this task, consonant-vowel syllables are presented simultaneously to the left and right ear, such that each ear receives a different syllable. When asked which of the two they heard best, participants typically report more syllables from the right ear, which is a marker of left-hemispheric speech dominance. We calculated the degree of lateralization (based on the difference between correct left and right ear reports) and correlated it with overall response accuracy (left plus right ear reports). In addition, we used reference models to control for statistical interdependency between left and right ear reports. The results revealed a u-shaped relationship between degree of lateralization and overall accuracy: the stronger the left or right ear advantage, the better the overall accuracy. This u-shaped asymmetry-performance relationship consistently emerged in males, females, right-/non-right-handers, and different age groups. Taken together, the present study demonstrates that performance on lateralized language functions depends on how strongly these functions are lateralized. The present study further stresses the importance of controlling for statistical interdependency when examining asymmetry-performance relationships in general. PMID:24427151
Effects of Breast Cancer Chemotherapy Agents on Brain Activity in Rats: Functional Imaging Studies
2011-04-29
and in a small region of the striatum. Visual stimulation produced bilateral activation of the superior colliculus, lateral geniculate and a small...pattern was seen in the lateral geniculate . These results demonstrate the feasibility of using brain activation by parametric sensory stimulation as...both the right and left lateral geniculate functional ROIs (25% and 29%, respectively). There were smaller but not statistically significant decreases
Wilson, Robert L.; Frisz, Jessica F.; Hanafin, William P.; Carpenter, Kevin J.; Hutcheon, Ian D.; Weber, Peter K.; Kraft, Mary L.
2014-01-01
The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein’s activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests of whether specific proteins co-localize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein co-localization with specific lipid species. PMID:22284327
Savopoulos, Priscilla; Lindell, Annukka K
2018-02-15
Over 100 years ago Lombroso [(1876/2006). Criminal man. Durham: Duke University Press] proposed a biological basis for criminality. Based on inspection of criminals' skulls he theorized that an imbalance of the cerebral hemispheres was amongst 18 distinguishing features of the criminal brain. Specifically, criminals were less lateralized than noncriminals. As the advent of neuroscientific techniques makes more fine-grained inspection of differences in brain structure and function possible, we review criminals' and noncriminals' structural, functional, and behavioural lateralization to evaluate the merits of Lombroso's thesis and investigate the evidence for the biological underpinning of criminal behaviour. Although the body of research is presently small, it appears consistent with Lombroso's proposal: criminal psychopaths' brains show atypical structural asymmetries, with reduced right hemisphere grey and white matter volumes, and abnormal interhemispheric connectivity. Functional asymmetries are also atypical, with criminal psychopaths showing a less lateralized cortical response than noncriminals across verbal, visuo-spatial, and emotional tasks. Finally, the incidence of non-right-handedness is higher in criminal than non-criminal populations, consistent with reduced cortical lateralization. Thus despite Lombroso's comparatively primitive and inferential research methods, his conclusion that criminals' lateralization differs from that of noncriminals is borne out by the neuroscientific research. How atypical cortical asymmetries predispose criminal behaviour remains to be determined.
Role of BMP receptor traffic in synaptic growth defects in an ALS model.
Deshpande, Mugdha; Feiger, Zachary; Shilton, Amanda K; Luo, Christina C; Silverman, Ethan; Rodal, Avital A
2016-10-01
TAR DNA-binding protein 43 (TDP-43) is genetically and functionally linked to amyotrophic lateral sclerosis (ALS) and regulates transcription, splicing, and transport of thousands of RNA targets that function in diverse cellular pathways. In ALS, pathologically altered TDP-43 is believed to lead to disease by toxic gain-of-function effects on RNA metabolism, as well as by sequestering endogenous TDP-43 and causing its loss of function. However, it is unclear which of the numerous cellular processes disrupted downstream of TDP-43 dysfunction lead to neurodegeneration. Here we found that both loss and gain of function of TDP-43 in Drosophila cause a reduction of synaptic growth-promoting bone morphogenic protein (BMP) signaling at the neuromuscular junction (NMJ). Further, we observed a shift of BMP receptors from early to recycling endosomes and increased mobility of BMP receptor-containing compartments at the NMJ. Inhibition of the recycling endosome GTPase Rab11 partially rescued TDP-43-induced defects in BMP receptor dynamics and distribution and suppressed BMP signaling, synaptic growth, and larval crawling defects. Our results indicate that defects in receptor traffic lead to neuronal dysfunction downstream of TDP-43 misregulation and that rerouting receptor traffic may be a viable strategy for rescuing neurological impairment. © 2016 Deshpande, Feiger, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Improving Long-term Post-wildfire hydrologic simulations using ParFlow
NASA Astrophysics Data System (ADS)
Lopez, S. R.; Kinoshita, A. M.
2015-12-01
Wildfires alter the natural hydrologic processes within a watershed. After vegetation is burned, the combustion of organic material and debris settles into the soil creating a hydrophobic layer beneath the soil surface with varying degree of thickness and depth. Vegetation regrowth rates vary as a function of radiative exposure, burn severity, and precipitation patterns. Hydrologic models used by the Burned Area Emergency Response (BAER) teams use input data and model calibration constraints that are generally either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models estimate runoff measurements at the watershed outlet; however, do not provide a distributed hydrologic simulation at each point within the watershed. This work uses ParFlow, a three-dimensional, distributed hydrologic model to (1) correlate burn severity with hydrophobicity, (2) evaluate vegetation recovery rate on water components, and (3) improve flood prediction for managers to help with resource allocation and management operations in burned watersheds. ParFlow is applied to Devil Canyon (43 km2) in San Bernardino, California, which was 97% burned in the 2003 Old Fire. The model set-up uses a 30m-cell size resolution over a 6.7 km by 6.4 km lateral extent. The subsurface reaches 30 m and is assigned a variable cell thickness. Variable subsurface thickness allows users to explicitly consider the degree of recovery throughout the stages of regrowth. Burn severity maps from remotely sensed imagery are used to assign initial hydrophobic layer parameters and thickness. Vegetation regrowth is represented with satellite an Enhanced Vegetation Index. Pre and post-fire hydrologic response is evaluated using runoff measurements at the watershed outlet, and using water component (overland flow, lateral flow, baseflow) measurements.
Morin, Lawrence P; Hefton, Sara; Studholme, Keith M
2011-11-03
The suprachiasmatic nucleus (SCN) has several structural characteristics and cell phenotypes shared across species. Here, we describe a novel feature of SCN anatomy that is seen in both hamster and mouse. Frozen sections through the SCN were obtained from fixed brains and stained for the presence of immunoreactivity to neuronal nuclear protein (NeuN-IR) using a mouse monoclonal antibody which is known to exclusively identify neurons. NeuN-IR did not identify all SCN neurons as medial NeuN-IR neurons were generally not present. In the hamster, NeuN-IR cells are present rostrally, scattered in the dorsal half of the nucleus. More caudally, the NeuN-IR cells are largely, but not exclusively, scattered inside the lateral and dorsolateral border. At mid- to mid-caudal SCN levels, a dense group of NeuN-IR cells extends from the dorsolateral border ventromedially to encompass the central subnucleus of the SCN (SCNce). The pattern is similar in the mouse SCN. NeuN-IR does not co-localize with either cholecystokinin- or vasoactive intestinal polypeptide, but does with vasopressin-IR in the caudal SCN. In the hamster SCNce, numerous cells contain both calbindin- and NeuN-IR. The distribution of NeuN-IR cells in the SCN is unique, especially with regard to its generally lateral location through the length of the nucleus. The distribution of NeuN-IR cells is not consistent with most schemas representing SCN organization or with terminology referring to its widely accepted subdivisions. NeuN has recently been identified as Fox-3 protein. Its function in the SCN is not known, nor is it known why a large proportion of SCN cells do not contain NeuN-IR. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Gonzalo-Ruiz, A.; Alonso, A.; Sanz, J. M.; Llinas, R. R.
1992-01-01
The presence and distribution of dopaminergic neurons and terminals in the hypothalamus of the rat were studied by tyrosine hydroxylase (TH) immunohistochemistry. Strongly labelled TH-immunoreactive neurons were seen in the dorsomedial hypothalamic nucleus, periventricular region, zona incerta, arcuate nucleus, and supramammillary nucleus. A few TH-positive neurons were also identified in the dorsal and ventral premammillary nucleus, as well as the lateral hypothalamic area. TH-immunoreactive fibres and terminals were unevenly distributed in the mammillary nuclei; small, weakly labelled terminals were scattered in the medial mammillary nucleus, while large, strongly labelled, varicose terminals were densely concentrated in the internal part of the lateral mammillary nucleus. A few dorsoventrally oriented TH-positive axon bundles were also identified in the lateral mammillary nucleus. A dopaminergic projection to the mammillary nuclei from the supramammillary nucleus and lateral hypothalamic area was identified by double labelling with retrograde transport of wheat germ agglutinin-horseradish peroxidase and TH-immunohistochemistry. The lateral mammillary nucleus receives a weak dopaminergic projection from the medial, and stronger projections from the lateral, caudal supramammillary nucleus. The double-labelled neurons in the lateral supramammillary nucleus appear to encapsulate the caudal end of the mammillary nuclei. The medial mammillary nucleus receives a very light dopaminergic projection from the caudal lateral hypothalamic area. These results suggest that the supramammillary nucleus is the principal source of the dopaminergic input to the mammillary nuclei, establishing a local TH-pathway in the mammillary complex. The supramammillary cell groups are able to modulate the limbic system through its dopaminergic input to the mammillary nuclei as well as through its extensive dopaminergic projection to the lateral septal nucleus.
ERIC Educational Resources Information Center
Dirks, Melanie A.; Boyle, Michael H.; Georgiades, Katholiki
2011-01-01
We examined whether associations between symptoms of attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), depression, and anxiety assessed in a sample of 2,026 youth aged 6 to 16 years and socioeconomic functioning measured 18 years later varied as a function of whether parents or teachers had rated symptomatology.…
Schofield, Brett R; Mellott, Jeffrey G; Motts, Susan D
2014-01-01
Experiments in several species have identified direct projections to the medial geniculate nucleus (MG) from cells in subcollicular auditory nuclei. Moreover, many cochlear nucleus cells that project to the MG send collateral projections to the inferior colliculus (IC) (Schofield et al., 2014). We conducted three experiments to characterize projections to the MG from the superior olivary and the lateral lemniscal regions in guinea pigs. For experiment 1, we made large injections of retrograde tracer into the MG. Labeled cells were most numerous in the superior paraolivary nucleus, ventral nucleus of the trapezoid body, lateral superior olivary nucleus, ventral nucleus of the lateral lemniscus, ventrolateral tegmental nucleus, paralemniscal region and sagulum. Additional sources include other periolivary nuclei and the medial superior olivary nucleus. The projections are bilateral with an ipsilateral dominance (66%). For experiment 2, we injected tracer into individual MG subdivisions. The results show that the subcollicular projections terminate primarily in the medial MG, with the dorsal MG a secondary target. The variety of projecting nuclei suggest a range of functions, including monaural and binaural aspects of hearing. These direct projections could provide the thalamus with some of the earliest (i.e., fastest) information regarding acoustic stimuli. For experiment 3, we made large injections of different retrograde tracers into one MG and the homolateral IC to identify cells that project to both targets. Such cells were numerous and distributed across many of the nuclei listed above, mostly ipsilateral to the injections. The prominence of the collateral projections suggests that the same information is delivered to both the IC and the MG, or perhaps that a common signal is being delivered as a preparatory indicator or temporal reference point. The results are discussed from functional and evolutionary perspectives.
Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation
Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad; Rostrup, Egill; Hoffmann, Michael B.; Ashina, Messoud
2015-01-01
Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented) attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks. PMID:25985078
Schofield, Brett R.; Mellott, Jeffrey G.; Motts, Susan D.
2014-01-01
Experiments in several species have identified direct projections to the medial geniculate nucleus (MG) from cells in subcollicular auditory nuclei. Moreover, many cochlear nucleus cells that project to the MG send collateral projections to the inferior colliculus (IC) (Schofield et al., 2014). We conducted three experiments to characterize projections to the MG from the superior olivary and the lateral lemniscal regions in guinea pigs. For experiment 1, we made large injections of retrograde tracer into the MG. Labeled cells were most numerous in the superior paraolivary nucleus, ventral nucleus of the trapezoid body, lateral superior olivary nucleus, ventral nucleus of the lateral lemniscus, ventrolateral tegmental nucleus, paralemniscal region and sagulum. Additional sources include other periolivary nuclei and the medial superior olivary nucleus. The projections are bilateral with an ipsilateral dominance (66%). For experiment 2, we injected tracer into individual MG subdivisions. The results show that the subcollicular projections terminate primarily in the medial MG, with the dorsal MG a secondary target. The variety of projecting nuclei suggest a range of functions, including monaural and binaural aspects of hearing. These direct projections could provide the thalamus with some of the earliest (i.e., fastest) information regarding acoustic stimuli. For experiment 3, we made large injections of different retrograde tracers into one MG and the homolateral IC to identify cells that project to both targets. Such cells were numerous and distributed across many of the nuclei listed above, mostly ipsilateral to the injections. The prominence of the collateral projections suggests that the same information is delivered to both the IC and the MG, or perhaps that a common signal is being delivered as a preparatory indicator or temporal reference point. The results are discussed from functional and evolutionary perspectives. PMID:25100950
De Guibert, Clément; Maumet, Camille; Jannin, Pierre; Ferré, Jean-Christophe; Tréguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud
2011-01-01
Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting structural language (n=21), to a matched group of typically-developing children using a panel of four language tasks neither requiring reading nor metalinguistic skills, including two auditory lexico-semantic tasks (category fluency and responsive naming) and two visual phonological tasks based on picture naming. Data processing involved normalizing the data with respect to a matched pairs pediatric template, groups and between-groups analysis, and laterality indexes assessment within regions of interest using single and combined task analysis. Children with specific language impairment exhibited a significant lack of left lateralization in all core language regions (inferior frontal gyrus-opercularis, inferior frontal gyrus-triangularis, supramarginal gyrus, superior temporal gyrus), across single or combined task analysis, but no difference of lateralization for the rest of the brain. Between-group comparisons revealed a left hypoactivation of Wernicke’s area at the posterior superior temporal/supramarginal junction during the responsive naming task, and a right hyperactivation encompassing the anterior insula with adjacent inferior frontal gyrus and the head of the caudate nucleus during the first phonological task. This study thus provides evidence that this specific subtype of specific language impairment is associated with atypical lateralization and functioning of core language areas. PMID:21719430
Friedli, Lucia; Rosenzweig, Ephron S.; Barraud, Quentin; Schubert, Martin; Dominici, Nadia; Awai, Lea; Nielson, Jessica L.; Musienko, Pavel; Nout-Lomas, Yvette; Zhong, Hui; Zdunowski, Sharon; Roy, Roland R.; Strand, Sarah C.; van den Brand, Rubia; Havton, Leif A.; Beattie, Michael S.; Bresnahan, Jacqueline C.; Bézard, Erwan; Bloch, Jocelyne; Edgerton, V. Reggie; Ferguson, Adam R.; Curt, Armin; Tuszynski, Mark H.; Courtine, Grégoire
2017-01-01
Experimental and clinical studies suggest that primate species exhibit greater recovery after lateralized compared to symmetrical spinal cord injuries. Although this observation has major implications for designing clinical trials and translational therapies, advantages in recovery of nonhuman primates over other species has not been shown statistically to date, nor have the associated repair mechanisms been identified. We monitored recovery in more than 400 quadriplegic patients and found that that functional gains increased with the laterality of spinal cord damage. Electrophysiological analyses suggested that corticospinal tract reorganization contributes to the greater recovery after lateralized compared with symmetrical injuries. To investigate underlying mechanisms, we modeled lateralized injuries in rats and monkeys using a lateral hemisection, and compared anatomical and functional outcomes with patients who suffered similar lesions. Standardized assessments revealed that monkeys and humans showed greater recovery of locomotion and hand function than rats. Recovery correlated with the formation of corticospinal detour circuits below the injury, which were extensive in monkeys, but nearly absent in rats. Our results uncover pronounced inter-species differences in the nature and extent of spinal cord repair mechanisms, likely resulting from fundamental differences in the anatomical and functional characteristics of the motor systems in primates versus rodents. Although rodents remain essential for advancing regenerative therapies, the unique response of the primate corticospinal tract after injury re-emphasizes the importance of primate models for designing clinically relevant treatments. PMID:26311729
Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C
2017-06-01
Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.
A new perspective on loneliness in later life.
Rane-Szostak, D; Herth, K A
1995-01-01
Loneliness in later life remains a serious problem despite extensive research across the life span. Unfortunately, most studies of loneliness that include older adults focus on individuals who are already lonely; findings suggest interventions dependent upon external factors such as socialization and functional status. Such interventions are not always feasible for older adults, who may have experienced social and functional losses. Nurses must adopt a new perspective in examining loneliness in later life. This new perspective should include a more positive approach that focuses on older adults who are not lonely even though they may have experienced decreased socialization or physical function. Identification of strategies employed by these older individuals may be used to help many elders avoid loneliness and help others cope with the related losses so frequent in later life.
Blumstein, Daniel T.; Chung, Lawrance K.; Smith, Jennifer E.
2013-01-01
Play has been defined as apparently functionless behaviour, yet since play is costly, models of adaptive evolution predict that it should have some beneficial function (or functions) that outweigh its costs. We provide strong evidence for a long-standing, but poorly supported hypothesis: that early social play is practice for later dominance relationships. We calculated the relative dominance rank by observing the directional outcome of playful interactions in juvenile and yearling yellow-bellied marmots (Marmota flaviventris) and found that these rank relationships were correlated with later dominance ranks calculated from agonistic interactions, however, the strength of this relationship attenuated over time. While play may have multiple functions, one of them may be to establish later dominance relationships in a minimally costly way. PMID:23536602
Coping strategies among patients with newly diagnosed amyotrophic lateral sclerosis.
Jakobsson Larsson, Birgitta; Nordin, Karin; Askmark, Håkan; Nygren, Ingela
2014-11-01
To prospectively identify different coping strategies among newly diagnosed amyotrophic lateral sclerosis patients and whether they change over time and to determine whether physical function, psychological well-being, age and gender correlated with the use of different coping strategies. Amyotrophic lateral sclerosis is a fatal disease with impact on both physical function and psychological well-being. Different coping strategies are used to manage symptoms and disease progression, but knowledge about coping in newly diagnosed amyotrophic lateral sclerosis patients is scarce. This was a prospective study with a longitudinal and descriptive design. A total of 33 patients were included and evaluation was made at two time points, one to three months and six months after diagnosis. Patients were asked to complete the Motor Neuron Disease Coping Scale and the Hospital Anxiety and Depression Scale. Physical function was estimated using the revised Amyotrophic Lateral Sclerosis Functional Rating Scale. The most commonly used strategies were support and independence. Avoidance/venting and information seeking were seldom used at both time points. The use of information seeking decreased between the two time points. Men did not differ from women, but patients ≤64 years used positive action more often than older patients. Amyotrophic Lateral Sclerosis Functional Rating Scale was positively correlated with positive action at time point 1, but not at time point 2. Patients' psychological well-being was correlated with the use of different coping strategies. Support and independence were the most used coping strategies, and the use of different strategies changed over time. Psychological well-being was correlated with different coping strategies in newly diagnosed amyotrophic lateral sclerosis patients. The knowledge about coping strategies in early stage of the disease may help the nurses to improve and develop the care and support for these patients. © 2014 John Wiley & Sons Ltd.
Temporal lobe stimulation reveals anatomic distinction between auditory naming processes.
Hamberger, M J; Seidel, W T; Goodman, R R; Perrine, K; McKhann, G M
2003-05-13
Language errors induced by cortical stimulation can provide insight into function(s) supported by the area stimulated. The authors observed that some stimulation-induced errors during auditory description naming were characterized by tip-of-the-tongue responses or paraphasic errors, suggesting expressive difficulty, whereas others were qualitatively different, suggesting receptive difficulty. They hypothesized that these two response types reflected disruption at different stages of auditory verbal processing and that these "subprocesses" might be supported by anatomically distinct cortical areas. To explore the topographic distribution of error types in auditory verbal processing. Twenty-one patients requiring left temporal lobe surgery underwent preresection language mapping using direct cortical stimulation. Auditory naming was tested at temporal sites extending from 1 cm from the anterior tip to the parietal operculum. Errors were dichotomized as either "expressive" or "receptive." The topographic distribution of error types was explored. Sites associated with the two error types were topographically distinct from one another. Most receptive sites were located in the middle portion of the superior temporal gyrus (STG), whereas most expressive sites fell outside this region, scattered along lateral temporal and temporoparietal cortex. Results raise clinical questions regarding the inclusion of the STG in temporal lobe epilepsy surgery and suggest that more detailed cortical mapping might enable better prediction of postoperative language decline. From a theoretical perspective, results carry implications regarding the understanding of structure-function relations underlying temporal lobe mediation of auditory language processing.
Comparison of the King’s and MiToS staging systems for ALS
Fang, Ton; Al Khleifat, Ahmad; Stahl, Daniel R; Lazo La Torre, Claudia; Murphy, Caroline; Young, Carolyn; Shaw, Pamela J; Leigh, P Nigel; Al-Chalabi, Ammar
2017-01-01
Abstract Objective: To investigate and compare two ALS staging systems, King’s clinical staging and Milano-Torino (MiToS) functional staging, using data from the LiCALS phase III clinical trial (EudraCT 2008-006891-31). Methods: Disease stage was derived retrospectively for each system from the ALS Functional Rating Scale-Revised subscores using standard methods. The two staging methods were then compared for timing of stages using box plots, correspondence using chi-square tests, agreement using a linearly weighted kappa coefficient and concordance using Spearman’s rank correlation. Results: For both systems, progressively higher stages occurred at progressively later proportions of the disease course, but the distribution differed between the two methods. King’s stage 3 corresponded to MiToS stage 1 most frequently, with earlier King’s stages 1 and 2 largely corresponding to MiToS stage 0 or 1. The Spearman correlation was 0.54. There was fair agreement between the two systems with kappa coefficient of 0.21. Conclusion: The distribution of timings shows that the two systems are complementary, with King’s staging showing greatest resolution in early to mid-disease corresponding to clinical or disease burden, and MiToS staging having higher resolution for late disease, corresponding to functional involvement. We therefore propose using both staging systems when describing ALS. PMID:28054828
Single Body Parts are Processed by Individual Neurons in the Mouse Dorsolateral Striatum
Coffey, Kevin R.; Nader, Miles; West, Mark O.
2016-01-01
Interest in the dorsolateral striatum (DLS) has generated numerous scientific studies of its neuropathologies, as well as its roles in normal sensorimotor integration and learning. Studies are informed by knowledge of DLS functional organization, the guiding principle being its somatotopic afferent projections from primary somatosensory (S1) and motor (M1) cortices. The potential to connect behaviorally relevant function to detailed structure is elevated by mouse models, which have access to extensive genetic neuroscience tool kits. Remaining to be demonstrated, however, is whether the correspondence between S1/M1 corticostriatal terminal distributions and the physiological properties of DLS neurons demonstrated in rats and non-human primates exists in mice. Given that the terminal distribution of S1/M1 projections to the DLS in mice is similar to that in rats, we studied whether firing rates (FRs) of DLS neurons in awake, behaving mice are related to activity of individual body parts. MSNs exhibited robust, selective increases in FR during movement or somatosensory stimulation of single body parts. Properties of MSNs, including baseline FRs, locations, responsiveness to stimulation, and proportions of responsive neurons were similar to properties observed in rats. Future studies can be informed by the present demonstration that the mouse lateral striatum functions as a somatic sensorimotor sector of the striatum and appears to be a homolog of the primate putamen, as demonstrated in rats (Carelli and West, 1991). PMID:26827625
Ralston, David K.; Geyer, W. Rockwell; Warner, John C.
2012-01-01
Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.
NASA Astrophysics Data System (ADS)
Hao, Y.
2017-12-01
The study of root biomass distribution provides a good insight into the role of the root system, their structure and function at the ecosystem level. Therefore, many studies of root distribution and root dynamics e have been carried out. In the sub-tropical area of South China, monsoon evergreen broad-leaved forest is one of the most characteristic and most valuable zonal vegetation with stand age of 400 years in Dinghushan, where we choose the 4 typical communities (Com.1 Pinus massoniana community; Com.2 Pinus massoniana + Castanopsis chinensis + Schima superba community; Com.3 Castanopsis fissa community; Com.4 Cryptocarya concinna + Castanopsis chinensis + Cryptocarya chinensis + Schima superba community) to study the species diversity and roots distribution. Root systems of representative communities were examined systemically with regard to their structure, underground stratification and biomass distribution, by the method of root biological measure and ecological technique, Excavation of skeleton roots and observation of fine roots were carried out. The conclusions mainly including: The root biomass was increased with the species diversity and evenness of the communities improved in lower sub-tropical evergreen broad-leaved forest in course of succession. The main reason is that the diversity increase resulted in the great increase of total individuals. The individual number is 93 in Com.1 and increase to 7024 in Com.4, and the number of species and total population of individual were fast increased 32 and 2680 after 25 years when man-made needle forest was founded. In a set of successional stages, the amount of tree roots linearly increased in communities series. In monsoon evergreen broad-leaved forest, the total tree root biomass amounted to 115.70 ton/ha, Needle and broad-leaved mixed forest dominated by coniferous 50.61ton/ ha, Broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes 64.20 ton/ha. Root biomass of community in later successional stage tended to distribute in the upper soil layers with the succession process, and this trend became slower in the later successional stage of the forest. 35% of total root biomass distributed in 0-10 cm layer in Com.2 but it increase to 61% in Com.4. Furthermore, more diversity of the vegetation has more clearly layers roots.
Harris, TiAnni
2018-01-01
Abstract Sex, stimulus material, and attention condition have previously been related to global advantage (GA; faster responses to global targets than to local targets) on the one hand and lateralization during global–local processing on the other hand. It is presumed that the lateralization of brain functions is either related to the inhibitory influence of the dominant on the nondominant hemisphere or reduced excitation between hemispheres. However, a direct relationship between the GA and lateralization and interhemispheric connectivity has not been previously established. In this study, 58 participants (29 men, 29 naturally cycling women) completed a Navon paradigm, modulating attention condition (divided vs. focused) and stimulus material (letters vs. shapes) during functional magnetic resonance imaging. The size of the GA effect, lateralization indices, interhemispheric connectivity, and sex hormone levels were assessed. In summary, this study suggests that interhemispheric connectivity during global–local processing is affected by sex and material. Furthermore, the relationship between interhemispheric connectivity, lateralization, and behavior was modulated by sex and sex hormones. Results suggest (1) differential roles of interhemispheric connectivity for lateralization in men and women and (2) differential roles of lateralization for behavior in men and women. Importantly, the classic assumption that a more negative connectivity leads to stronger lateralization, which in turn leads to a stronger GA effect, was observed in men, whereas the opposite pattern was found in women. The relationship between connectivity and lateralization was mediated through testosterone levels, whereas the relationship between lateralization and behavior was mediated through progesterone levels. Results are discussed in light of differential functions of inhibitory and excitatory interhemispheric processes in men and women. PMID:29226703
Effects of rewiring strategies on information spreading in complex dynamic networks
NASA Astrophysics Data System (ADS)
Ally, Abdulla F.; Zhang, Ning
2018-04-01
Recent advances in networks and communication services have attracted much interest to understand information spreading in social networks. Consequently, numerous studies have been devoted to provide effective and accurate models for mimicking information spreading. However, knowledge on how to spread information faster and more widely remains a contentious issue. Yet, most existing works are based on static networks which limit the reality of dynamism of entities that participate in information spreading. Using the SIR epidemic model, this study explores and compares effects of two rewiring models (Fermi-Dirac and Linear functions) on information spreading in scale free and small world networks. Our results show that for all the rewiring strategies, the spreading influence replenishes with time but stabilizes in a steady state at later time-steps. This means that information spreading takes-off during the initial spreading steps, after which the spreading prevalence settles toward its equilibrium, with majority of the population having recovered and thus, no longer affecting the spreading. Meanwhile, rewiring strategy based on Fermi-Dirac distribution function in one way or another impedes the spreading process, however, the structure of the networks mimic the spreading, even with a low spreading rate. The worst case can be when the spreading rate is extremely small. The results emphasize that despite a big role of such networks in mimicking the spreading, the role of the parameters cannot be simply ignored. Apparently, the probability of giant degree neighbors being informed grows much faster with the rewiring strategy of linear function compared to that of Fermi-Dirac distribution function. Clearly, rewiring model based on linear function generates the fastest spreading across the networks. Therefore, if we are interested in speeding up the spreading process in stochastic modeling, linear function may play a pivotal role.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Jackisch, Conrad; Blume, Theresa; Haßler, Sibylle; Allroggen, Niklas; Tronicke, Jens
2013-04-01
The CAOS Research Unit recently proposed a hierarchical classification scheme to subdivide a catchment into what we vaguely name classes of functional entities that puts the gradients driving mass and energy flows and their controls on top of the hierarchy and the arrangement of landscape attributes controlling flow resistances along these driving gradients (for instance soil types and apparent preferential pathways) at the second level. We name these functional entities lead topology classes, to highlight that they are characterized by a spatially ordered arrangement of landscape elements along a superordinate driving gradient. Our idea is that these lead topology classes have a distinct way how their structural and textural architecture controls the interplay of storage dynamics and integral response behavior that is typical for all members of a class, but is dissimilar between different classes. This implies that we might gain exemplary understanding of the typical dynamic behavior of the class, when thoroughly studying a few class members. We propose that the main integral catchment functions mass export and drainage, mass redistribution and storage, energy exchange with the atmosphere, as well as energy redistribution and storage - result from spatially organized interactions of processes within lead topologies that operate at different scale levels and partly dominate during different conditions. We distinguish: 1) Lead topologies controlling the land surface energy balance during radiation driven conditions at the plot/pedon scale level. In this case energy fluxes dominate and deplete a vertical temperature gradient that is build up by depleting a gradient in radiation fluxes. Water is a facilitator in this concert due to the high specific heat of vaporization. Slow vertical water fluxes in soil dominate, which are driven by vertical gradients in atmospheric water potential, chemical potential in the plant and in soil hydraulic potentials. 2) Lead topologies controlling fast drainage and generation stream flow during rainfall events at the hillslope scale level: Fast vertical and lateral mass fluxes dominate. They are driven by vertical and lateral gradients in pressure heads which build up by depleting the kinetic energy/velocity gradient of rainfall when it hits the ground or of vertical subsurface flows that "hit" a layer of low permeability. 3) Lead topologies controlling slow drainage and its supply, and thus creating memory at the catchment scale level: These are the groundwater system and the stream including the riparian zone. Permanent lateral water flows dominate that are driven by permanently active lateral gradients in pressure heads. Event scale stream flow generation and energy exchange with the atmospheric boundary layer are organized by the first two types of lead topologies, and their dominance changes with prevailing type of boundary conditions. We furthermore propose that lead topologies at the plot and the hillslope scale levels can be further subdivided into least functional entities we name call classes of elementary functional units. These classes of elementary functional units co-evolved being exposed to similar superordinate vertical gradients in a self-reinforcing manner. Being located either at the hilltop (sediment source area), midslope (sediment transport area) or hillfoot/riparian zone (sediment deposit area) they experienced similar weathering processes (past water, energy and nutrient flows), causing formation of similar soil texture in different horizons. This implies, depending on hillslope position and aspect, formation of distinct niches (with respect to water, nutrient and sun light availability) and thus "similar filters" to select distinct natural communities of animal and vegetation species. This in turn implies similarity with respect to formation of biotic flow networks (ant-, worm-, mole- and whole burrow systems, as well as root systems), which feeds back on vertical and lateral water/mass and thermal energy flows and so on. The idea is that members of EFU classes interact within lead topologies along a hierarchy of driving potential gradients and that these interactions are mediated by a hierarchy of connected flow networks like macropores, root networks or lateral pipe systems. We hypothesize that members of a functional unit class are similar with respect to the time invariant controls of the vertical gradients (soil hydraulic potentials, soil temperature, plant water potential) and the flow resistances in vertical direction (plant and soil albedo, soil hydraulic and thermal conductivity, vertical macropore networks). This implies that members of an EFU class behave functionally similar at least with respect to vertical flows of water and heat: we may gain exemplary understanding of the typical dynamic behavior of the class, by thoroughly studying a few class members. In the following we will thus use the term "elementary functional units, EFUs" and "elementary functional unit class, EFU class" as synonyms. We propose that a thorough understanding of the behavior of a few representatives of the most important EFU classes and of their interactions within a hierarchy of lead topology classes is sufficient for understanding and distributed modeling of event scale stream flow production under rainfall driven conditions and energy exchange with the atmosphere under radiation driven conditions. Good and not surprising news is that lead topologies controlling stream flow contribution, are an interconnected, ordered arrangement of the lead topologies that control energy exchange. We suggests that a combination of the related model approaches which simplified but physical based approaches to simulate dynamics in the saturated zone, riparian zone and the river network results in a structurally more adequate model framework for catchments of organized complexity. The feasibility of this concept is currently tested in the Attert catchment by setting up pseudo replica of field experiments and a distributed monitoring network in several members of first guess EFUs and superordinate lead topology classes. We combine geophysical and soil physical survey, artificial tracer tests and analysis of stable isotopes and ecological survey with distributed sensor clusters that permanently monitor meteorological variables, soil moisture and matric potential, piezometric heads etc. Within the proposed study we will present first results especially from the sensor clusters and geophysical survey. By using geostatistical methods we will work out to which extend members within a candidate EFU class are similar with respect to subsurface structures like depth to bedrock and soil properties as well as with respect to soil moisture/storage dynamics. Secondly, we will work out whether structurally similar hillslopes produce a similar event scale stream flow contribution, which of course is dependent on the degree of similarity of a) the rainfall forcing they receive and b) of their wetness state. To this end we will perform virtual experiments with the physically based model CATFLOW by perturbing behavioral model structures. These have been shown to portray system behavior and its architecture in a sense that they reproduce distributed observations of soil moisture and subsurface storm flow and represent the observed structural and textural signatures of soils, flow networks and vegetation.
Pretty, Steven P; Martel, Daniel R; Laing, Andrew C
2017-12-01
Hip fracture incidence rates are influenced by body mass index (BMI) and sex, likely through mechanistic pathways that influence dynamics of the pelvis-femur system during fall-related impacts. The goal of this study was to extend our understanding of these impact dynamics by investigating the effects of BMI, sex, and local muscle activation on pressure distribution over the hip region during lateral impacts. Twenty participants underwent "pelvis-release experiments" (which simulate a lateral fall onto the hip), including muscle-'relaxed' and 'contracted' trials. Males and low-BMI individuals exhibited 44 and 55% greater peak pressure, as well as 66 and 56% lower peripheral hip force, compared to females and high-BMI individuals, respectively. Local muscle activation increased peak force by 10%, contact area by 17%, and peripheral hip force by 11% compared to relaxed trials. In summary, males and low-BMI individuals exhibited more concentrated loading over the greater trochanter. Muscle activation increased peak force, but this force was distributed over a larger area, preventing increased localized loading over the greater trochanter. These findings suggest potential value in incorporating sex, gender, and muscle activation-specific force distributions as inputs into computational tissue-level models, and have implications for the design of personalized protective devices including wearable hip protectors.
Angelis, Nikolaos; Spyratos, Dionisios; Domvri, Kalliopi; Dimakopoulou, Konstantina; Samoli, Evangelia; Kalamaras, Georgios; Karakatsani, Anna; Grivas, Georgios; Katsouyanni, Klea; Papakosta, Despina
2017-06-01
The study of short-term effects of environmental ozone exposure on nasal airflow, lung function, and airway inflammation. Ninety one children-47 underwent rhinomanometry-were included. The study was carried out during the 2013 to 2014 academic year. Activity questionnaires and personal O3 samplers were distributed and 1 week later, respiratory measurements were performed. Daily measurements of outdoor ozone were also considered. A 10 μg/m increase in weekly personal ozone exposure concentrations was associated with a non-statistically significant 12.7% decrease in nasal inspiratory airflow (29.4% during the high ozone period). When the outdoor exposure of the same and the previous day were taken into account the corresponding figures were 13.48% and 43.58% (P = 0.02). There is an indication for increased risk of nasal obstruction during exposure to high ozone.
SPATIAL NEGLECT AND ATTENTION NETWORKS
Corbetta, Maurizio; Shulman, Gordon L.
2013-01-01
Unilateral spatial neglect is a common neurological syndrome following predominantly right hemisphere injuries to ventral fronto-parietal cortex. We propose that neglect reflects deficits in the coding of saliency, control of spatial attention, and representation within an egocentric frame of reference, in conjunction with non-spatial deficits of reorienting, target detection, and arousal/vigilance. In contrast to theories that link spatial neglect to structural damage of specific brain regions, we argue that neglect is better explained by the physiological dysfunction of distributed cortical networks. The ventral lesions in right parietal, temporal, and frontal cortex that cause neglect directly impair non-spatial functions and hypoactivate the right hemisphere, inducing abnormalities in task-evoked activity and functional connectivity of a dorsal frontal-parietal network that controls spatial attention. The anatomy and right hemisphere dominance of neglect follows from the anatomy and laterality of the ventral regions that interact with the dorsal attention network. PMID:21692662
Identification of neutral tumor evolution across cancer types
Barnes, Chris P; Graham, Trevor A; Sottoriva, Andrea
2016-01-01
Despite extraordinary efforts to profile cancer genomes, interpreting the vast amount of genomic data in the light of cancer evolution remains challenging. Here we demonstrate that neutral tumor evolution results in a power-law distribution of the mutant allele frequencies reported by next-generation sequencing of tumor bulk samples. We find that the neutral power-law fits with high precision 323 of 904 cancers from 14 types, selected from different cohorts. In malignancies identified as neutral, all clonal selection occurred prior to the onset of cancer growth and not in later-arising subclones, resulting in numerous passenger mutations that are responsible for intra-tumor heterogeneity. Reanalyzing cancer sequencing data within the neutral framework allowed the measurement, in each patient, of both the in vivo mutation rate and the order and timing of mutations. This result provides a new way to interpret existing cancer genomic data and to discriminate between functional and non-functional intra-tumor heterogeneity. PMID:26780609
Therapeutic Effects of Caloric Stimulation and Optokinetic Stimulation on Hemispatial Neglect
Moon, SY; Lee, BH
2006-01-01
Hemispatial neglect refers to a cognitive disorder in which patients with unilateral brain injury cannot recognize or respond to stimuli located in the contralesional hemispace. Hemispatial neglect in stroke patients is an important predictor for poor functional outcome. Therefore, there is a need for effective treatment for this condition. A number of interventions for hemispatial neglect have been proposed, although an approach resulting in persistent improvement is not available. Of these interventions, our review is focused on caloric stimulation and optokinetic stimulation. These lateralized or direction-specific stimulations of peripheral sensory systems can temporarily improve hemispatial neglect. According to recent functional MRI and PET studies, this improvement might result from the partial (re)activation of a distributed, multisensory vestibular network in the lesioned hemisphere, which is a part of a system that codes ego-centered space. However, much remain unknown regarding exact signal timing and directional selectivity of the network. PMID:20396481
Evolution of the Quasar Luminosity Function: Implications for EoR-21cm
NASA Astrophysics Data System (ADS)
Kulkarni, Girish; Choudhury, Tirthankar Roy; Puchwein, Ewald; Haehnelt, Martin G.
2018-05-01
We present predictions for the spatial distribution of 21 cm brightness temperature fluctuations from high-dynamic-range simulations for AGN-dominated reionization histories that have been tested against available Lyα and CMB data. We model AGN by extrapolating the observed Mbh-σ relation to high redshifts and assign them ionizing emissivities consistent with recent UV luminosity function measurements. AGN-dominated reionization histories increase the variance of the 21 cm emission by a factor of up to ten compared to similar reionization histories dominated by faint galaxies, to values close to 100 mK2 at scales accessible to experiments (k <~ 1 cMpc-1h). This is lower than the sensitivity reached by ongoing experiments by only a factor of about two or less. AGN dominated reionization should be easily detectable by LOFAR (and later HERA and SKA1) at their design sensitivity.
Cortical topography of intracortical inhibition influences the speed of decision making.
Wilimzig, Claudia; Ragert, Patrick; Dinse, Hubert R
2012-02-21
The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes.
Cortical topography of intracortical inhibition influences the speed of decision making
Wilimzig, Claudia; Ragert, Patrick; Dinse, Hubert R.
2012-01-01
The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes. PMID:22315409
2009-01-01
SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY...This document and trademark( s ) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic...documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. Limited Electronic Distribution Rights
Speech coding and compression using wavelets and lateral inhibitory networks
NASA Astrophysics Data System (ADS)
Ricart, Richard
1990-12-01
The purpose of this thesis is to introduce the concept of lateral inhibition as a generalized technique for compressing time/frequency representations of electromagnetic and acoustical signals, particularly speech. This requires at least a rudimentary treatment of the theory of frames- which generalizes most commonly known time/frequency distributions -the biology of hearing, and digital signal processing. As such, this material, along with the interrelationships of the disparate subjects, is presented in a tutorial style. This may leave the mathematician longing for more rigor, the neurophysiological psychologist longing for more substantive support of the hypotheses presented, and the engineer longing for a reprieve from the theoretical barrage. Despite the problems that arise when trying to appeal to too wide an audience, this thesis should be a cogent analysis of the compression of time/frequency distributions via lateral inhibitory networks.
Differential equation of exospheric lateral transport and its application to terrestrial hydrogen
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1973-01-01
The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.
Sex Differences in Cerebral Laterality of Language and Visuospatial Processing
ERIC Educational Resources Information Center
Clements, A. M.; Rimrodt, S. L.; Abel, J. R.; Blankner, J. G.; Mostofsky, S. H.; Pekar, J. J.; Denckla, M. B.; Cutting, L. E.
2006-01-01
Sex differences on language and visuospatial tasks are of great interest, with differences in hemispheric laterality hypothesized to exist between males and females. Some functional imaging studies examining sex differences have shown that males are more left lateralized on language tasks and females are more right lateralized on visuospatial…
Universality of Electron Distributions in Extensive Air Showers
NASA Astrophysics Data System (ADS)
Śmiałkowski, Andrzej; Giller, Maria
2018-02-01
Based on extensive air shower simulations, it is shown that electron distributions with respect to two angles determining the electron direction at a given shower age, for a fixed electron energy and lateral distance, are universal. This means that the distributions do not depend on the primary particle energy or mass (thus, neither on the interaction model), shower zenith angle, or shower to shower fluctuations, if they are taken at the same shower age. Together with previous work showing the universality of the distributions of the electron energy, lateral distance (integrated over angles), and angle (integrated over lateral distance) for fixed electron energy, this paper completes a full universal description of the electron states at various shower ages. Analytical parametrizations of the full electron states are given. It is also shown that some distributions can be described by a number of variables smaller than five, with the new ones being products of old ones raised to some power. The accuracy of the present parametrization is sufficiently good to apply to showers with a primary energy uncertainty of 14% (as is the case at the Pierre Auger Observatory). The shower fluctuations in the chosen bins of the multidimensional variable space are about 6%, determining the minimum uncertainty needed for the parametrization of the universal distributions. An analytical way of estimating the effect of the geomagnetic field is given. Thanks to the universality of the electron distribution in any shower, a new method of shower reconstruction can be worked out from the data from observatories using the fluorescence technique. The light fluxes (both fluorescence and Cherenkov) for any shower age can be exactly predicted for a shower with any primary energy and shower maximum depth, so that the two quantities can be obtained by best fitting the predictions to the measurements.
Rosenlund, Signe; Broeng, Leif; Overgaard, Søren; Jensen, Carsten; Holsgaard-Larsen, Anders
2016-11-01
The lateral and the posterior approach are the most commonly used procedures for total hip arthroplasty. Due to the detachment of the hip abductors, lateral approach is claimed to cause reduced hip muscle strength and altered gait pattern. However, this has not been investigated in a randomised controlled trial. The aim was to compare the efficacy of total hip arthroplasty performed by lateral or posterior approach on gait function and hip muscle strength up to 12months post-operatively. We hypothesised that posterior approach would be superior to lateral approach. Forty-seven patients with primary hip osteoarthritis were randomised to total hip arthroplasty with either posterior or lateral approach and evaluated pre-operatively, 3 and 12months post-operatively using 3-dimensional gait analyses as objective measures of gait function, including Gait Deviation Index, temporo-spatial parameters and range of motion. Isometric maximal hip muscle strength in abduction, flexion and extension was also tested. Post-operatively, no between-group difference in gait function was observed. However, both hip abductor and flexor muscle strength improved more in the posterior approach group: -0.20(Nm/kg)[95%CI:-0.4 to 0.0] and -0.20(Nm/kg)[95%CI:-0.4 to 0.0], respectively. Contrary to our first hypothesis, the overall gait function in the posterior approach group did not improve more than in the lateral approach group. However, in agreement with our second hypothesis, patients in the posterior approach group improved more in hip abductor and flexor muscle strength at 12months. Further investigation of the effect of reduced maximal hip muscle strength on functional capacity is needed. ClinicalTrials.gov. No.: NCT01616667. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas
2017-03-01
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.
Best, Christoph; Lange, Elena; Buchholz, Hans-Georg; Schreckenberger, Mathias; Reuss, Stefan; Dieterich, Marianne
2014-11-01
Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.
NASA Technical Reports Server (NTRS)
Delp, P.; Crossman, E. R. F. W.; Szostak, H.
1972-01-01
The automobile-driver describing function for lateral position control was estimated for three subjects from frequency response analysis of straight road test results. The measurement procedure employed an instrumented full size sedan with known steering response characteristics, and equipped with a lateral lane position measuring device based on video detection of white stripe lane markings. Forcing functions were inserted through a servo driven double steering wheel coupling the driver to the steering system proper. Random appearing, Gaussian, and transient time functions were used. The quasi-linear models fitted to the random appearing input frequency response characterized the driver as compensating for lateral position error in a proportional, derivative, and integral manner. Similar parameters were fitted to the Gabor transformed frequency response of the driver to transient functions. A fourth term corresponding to response to lateral acceleration was determined by matching the time response histories of the model to the experimental results. The time histories show evidence of pulse-like nonlinear behavior during extended response to step transients which appear as high frequency remnant power.
Hemispheric lateralization of verbal and spatial working memory during adolescence
Nagel, Bonnie J.; Herting, Megan M.; Maxwell, Emily C.; Bruno, Richard; Fair, Damien
2013-01-01
Adult functional magnetic resonance imaging (fMRI) literature suggests that a left-right hemispheric dissociation may exist between verbal and spatial working memory (WM), respectively. However, investigation of this type has been obscured by incomparable verbal and spatial WM tasks and/or visual inspection at arbitrary thresholds as means to assess lateralization. Furthermore, it is unclear whether this hemispheric lateralization is present during adolescence, a time in which WM skills are improving, and whether there is a developmental association with laterality of brain functioning. This study used comparable verbal and spatial WM n-back tasks during fMRI and a bootstrap analysis approach to calculate lateralization indices (LI) across several thresholds to examine the potential of a left-right WM hemispheric dissociation in healthy adolescents. We found significant left hemispheric lateralization for verbal WM, most notably in the frontal and parietal lobes, as well as right hemisphere lateralization for spatial WM, seen in frontal and temporal cortices. Although no significant relationships were observed between LI and age or LI and performance, significant age-related patterns of brain activity were demonstrated during both verbal and spatial WM. Specifically, increased adolescent age was associated with less activity in the default mode brain network during verbal WM. In contrast, increased adolescent age was associated with greater activity in task-positive posterior parietal cortex during spatial working memory. Our findings highlight the importance of utilizing non-biased statistical methods and comparable tasks for determining patterns of functional lateralization. Our findings also suggest that, while a left-right hemispheric dissociation of verbal and spatial WM is apparent by early adolescence, age-related changes in functional activation during WM are also present. PMID:23511846
Experimental investigation of lateral forces induced by flow through model labyrinth glands
NASA Technical Reports Server (NTRS)
Leong, Y. M. M. S.; Brown, R. D.
1984-01-01
The lateral forces induced by flow through model labyrinth glands were investigated. Circumferential pressure distributions, lateral forces and stiffness coefficients data obtained are discussed. The force system is represented as a negative spring and a tangential force orthogonal to eccentricity. The magnitude of these forces are dependent on eccentricity, entry swirl, rotor peripheral velocity and seal size. A pressure equalization chamber at midgland tests should in significantly reduced forces and stiffness coefficients.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Sun, Jinyan; Sun, Bailei; Luo, Qingming; Gong, Hui
2014-05-01
Near-infrared spectroscopy (NIRS) is a developing and promising functional brain imaging technology. Developing data analysis methods to effectively extract meaningful information from collected data is the major bottleneck in popularizing this technology. In this study, we measured hemodynamic activity of the prefrontal cortex (PFC) during a color-word matching Stroop task using NIRS. Hemispheric lateralization was examined by employing traditional activation and novel NIRS-based connectivity analyses simultaneously. Wavelet transform coherence was used to assess intrahemispheric functional connectivity. Spearman correlation analysis was used to examine the relationship between behavioral performance and activation/functional connectivity, respectively. In agreement with activation analysis, functional connectivity analysis revealed leftward lateralization for the Stroop effect and correlation with behavioral performance. However, functional connectivity was more sensitive than activation for identifying hemispheric lateralization. Granger causality was used to evaluate the effective connectivity between hemispheres. The results showed increased information flow from the left to the right hemispheres for the incongruent versus the neutral task, indicating a leading role of the left PFC. This study demonstrates that the NIRS-based connectivity can reveal the functional architecture of the brain more comprehensively than traditional activation, helping to better utilize the advantages of NIRS.
Herbert, Sharonne D; Harvey, Elizabeth A; Lugo-Candelas, Claudia I; Breaux, Rosanna P
2013-07-01
The present study examined the role of early fathering in subsequent trajectories of social emotional and academic functioning of preschool children with behavior problems. Participants were 128 preschool-aged children (73 boys, 55 girls) with behavior problems whose biological fathers took part in a longitudinal study. Children were 3 years of age at the beginning of the study and were assessed annually for 3 years. Early paternal depressive symptoms predicted many aspects of children's outcome 3 years later, including externalizing and internalizing problems, social skills deficits, and lower cognitive and academic functioning, and predicted changes in children's externalizing, internalizing, and social problems across the preschool years. Paternal socioeconomic status (SES) also consistently predicted children's later functioning across these domains. Furthermore, self-reported paternal attention-deficit hyperactivity disorder (ADHD) symptoms and laxness, as well as observed frequent commands were associated with later externalizing problems in children. Paternal depressive symptoms and laxness mediated the relation between paternal ADHD symptoms and child functioning. Results suggest that aspects of early father functioning play an important role in the psychosocial, cognitive, and academic development of preschool-aged children with behavior problems.
Herbert, Sharonne D.; Harvey, Elizabeth A.; Lugo-Candelas, Claudia I.; Breaux, Rosanna P.
2015-01-01
Objective The present study examined the role of early fathering in subsequent trajectories of social emotional and academic functioning of preschool children with behavior problems. Method Participants were 128 preschool-aged children (73 boys, 55 girls) with behavior problems whose biological fathers took part in a longitudinal study. Children were 3 years of age at the beginning of the study and were assessed annually for 3 years. Results Early paternal depressive symptoms predicted many aspects of children’s outcome 3 years later, including externalizing and internalizing problems, social skills deficits, and lower cognitive and academic functioning, and predicted changes in children’s externalizing, internalizing, and social problems across the preschool years. Paternal socioeconomic status (SES) also consistently predicted children’s later functioning across these domains. Furthermore, self-reported paternal attention deficit hyperactivity disorder (ADHD) symptoms and laxness, as well as observed frequent commands were associated with later externalizing problems in children. Paternal depressive symptoms and laxness mediated the relation between paternal ADHD symptoms and child functioning. Conclusions Results suggest that aspects of early father functioning play an important role in the psychosocial, cognitive, and academic development of preschool-aged children with behavior problems. PMID:23269560
The lateral line receptor array of cyprinids from different habitats.
Schmitz, Anke; Bleckmann, Horst; Mogdans, Joachim
2014-04-01
The lateral line system of teleost fishes consists of an array of superficial and canal neuromasts (CN). Number and distribution of neuromasts and the morphology of the lateral line canals vary across species. We investigated the morphology of the lateral line system in four diurnal European cyprinids, the limnophilic bitterling (Rhodeus sericeus), the indifferent gudgeon (Gobio gobio), and ide (Leuciscus idus), and the rheophilic minnow (Phoxinus phoxinus). All fish had lateral line canals on head and trunk. The total number of both, CN and superficial neuromasts (SN), was comparable in minnow and ide but was greater than in gudgeon and bitterling. The ratio of SNs to CNs for the head was comparable in minnow and bitterling but was greater in gudgeon and ide. The SN-to-CN ratio for the trunk was greatest in bitterling. Polarization of hair cells in CNs was in the direction of the canal. Polarization of hair cells in SNs depended on body area. In cephalic SNs, hair cell polarization was dorso-ventral or rostro-caudal. In trunk SNs, it was rostro-caudal on lateral line scales and dorso-ventral on other trunk scales. On the caudal fin, hair cell polarization was rostro-caudal. The data show that, in the four species studied here, number, distribution, and orientation of CNs and SNs cannot be unequivocally related to habitat. Copyright © 2013 Wiley Periodicals, Inc.
2007-02-20
above hypothesis, we must examine the seams of the operation. They are force structuring, distribution management , logistics intelligence, and customer...Iron Mountains, which is exactly what happened. Distribution Management ALOC distribution management problems included an ineffective theater tracking...deployments later the problems remained the same. Force structure and distribution management issues, the use of manual “non-standard” requisition
Choi, Eunhee; Tang, Fengyan; Kim, Sung-Geun; Turk, Phillip
2016-10-01
This study examined the longitudinal relationships between functional health in later years and three types of productive activities: volunteering, full-time, and part-time work. Using the data from five waves (2000-2008) of the Health and Retirement Study, we applied multivariate latent growth curve modeling to examine the longitudinal relationships among individuals 50 or over. Functional health was measured by limitations in activities of daily living. Individuals who volunteered, worked either full time or part time exhibited a slower decline in functional health than nonparticipants. Significant associations were also found between initial functional health and longitudinal changes in productive activity participation. This study provides additional support for the benefits of productive activities later in life; engagement in volunteering and employment are indeed associated with better functional health in middle and old age. © The Author(s) 2016.
Properties of 10 (18)-10 (19)eV EAS at far core distance
NASA Technical Reports Server (NTRS)
Teshima, M.; Nagano, M.; Hara, T.; Hatano, Y.; Hayashida, N.; He, C. X.; Honda, M.; Ishikawa, F.; Kamata, K.; Matsubara, Y.
1985-01-01
The properties of 10 to the 18th power - 10 to the 19th power eV EAS showers such as the electron lateral distribution, the muon lateral distribution ( 1Gev), the ratio of muon density to a electron density, the shower front structure and the transition effects in scintillator of 5cm thickness are investigated with the Akeno 4 sq km/20sq km array at far core distances between 500m and 3000m. The fluctuation of densities and arrival time increase rapidly at core distances greater than 2km.
Statistical analysis of landing contact conditions for three lifting body research vehicles
NASA Technical Reports Server (NTRS)
Larson, R. R.
1972-01-01
The landing contact conditions for the HL-10, M2-F2/F3, and the X-24A lifting body vehicles are analyzed statistically for 81 landings. The landing contact parameters analyzed are true airspeed, peak normal acceleration at the center of gravity, roll angle, and roll velocity. Ground measurement parameters analyzed are lateral and longitudinal distance from intended touchdown, lateral distance from touchdown to full stop, and rollout distance. The results are presented in the form of histograms for frequency distributions and cumulative frequency distribution probability curves with a Pearson Type 3 curve fit for extrapolation purposes.
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.
2012-04-01
We observe a correlation between the slope of radio lateral distributions and the mean muon pseudorapidity of 59 individual cosmic-ray-air-shower events. The radio lateral distributions are measured with LOPES, a digital radio interferometer colocated with the multidetector-air-shower array KASCADE-Grande, which includes a muon-tracking detector. The result proves experimentally that radio measurements are sensitive to the longitudinal development of cosmic-ray air showers. This is one of the main prerequisites for using radio arrays for ultra-high-energy particle physics and astrophysics.
Stuck, B A; Frey, S; Freiburg, C; Hörmann, K; Zahnert, T; Hummel, T
2006-06-01
For chemosensory event-related potentials (ERP) significant effects of age and sex have been demonstrated. The aim of the present study was to assess the effects of stimulus concentration, side of stimulation, and sex on the topographical distribution of chemosensory ERP in a large group of subjects stratified for different age groups. In addition, psychophysical measures of both olfactory and trigeminal function should be assessed in greater detail compared to previous work. A total of 95 healthy subjects participated in the study. Olfactory functions were tested using the 'Sniffin' Sticks' comprising tests of odor identification, odor discrimination, and odor threshold. Trigeminal sensitivity was assessed on a psychophysical level using a lateralization paradigm. ERP to the olfactory stimulant H2S and the trigeminal irritant CO2 were recorded; stimuli were presented in different concentrations to the left and right nostril. Olfactory thresholds exhibited an age-related increase while the outcome of psychophysical trigeminal tests was not significantly affected by age. In contrast, there was no significant main effect of the factor 'sex' for olfactory tests, while women scored higher than men in the trigeminal task. ERP to olfactory and trigeminal stimuli exhibited a relationship to stimulus concentration, age, and sex with youngest women showing largest amplitudes and shortest latencies. There was no significant main effect of left- or right-sided stimulation on ERP. Measures of olfactory function were found to correlate with parameters of olfactory ERP even when controlling for the subject's age. In addition, correlations between scores in the lateralization task and parameters of the trigeminal ERP were found. Based on electrophysiological data obtained in a large sample size the present results established an age-related loss of olfactory and trigeminal function, which appears to be almost linear. Further, the present results emphasize that responses to chemosensory stimuli are related to sex, while the side of stimulation does not play a major role in the presently used paradigm. Finally, these data establish the lateralization paradigm as a psychophysical tool to investigate intranasal trigeminal function. The present results obtained in a representative group of healthy subjects establishes a comprehensive set of data, which will serve as reference for future work in this area of research.
O'Grady, Christopher; Omisade, Antonina; Sadler, R Mark
2016-10-01
This report describes the findings of language functional magnetic resonance imaging (fMRI) in a left-handed Urdu and English speaker with right hemisphere-originating epilepsy and unclear language dominance. fMRI is a reliable method for determining hemispheric language dominance in presurgical planning. However, the effects of bilingualism on language activation depend on many factors including age of acquisition and proficiency in the tested language, and morphological properties of the language itself. This case demonstrates that completing fMRI in both spoken languages and interpreting the results within the context of a neuropsychological assessment are essential in arriving at accurate conclusions about language distribution in bilingual patients.
Laboratory Testing Protocols for Heparin-Induced Thrombocytopenia (HIT) Testing.
Lau, Kun Kan Edwin; Mohammed, Soma; Pasalic, Leonardo; Favaloro, Emmanuel J
2017-01-01
Heparin-induced thrombocytopenia (HIT) represents a significant high morbidity complication of heparin therapy. The clinicopathological diagnosis of HIT remains challenging for many reasons; thus, laboratory testing represents an important component of an accurate diagnosis. Although there are many assays available to assess HIT, these essentially fall into two categories-(a) immunological assays, and (b) functional assays. The current chapter presents protocols for several HIT assays, being those that are most commonly performed in laboratory practice and have the widest geographic distribution. These comprise a manual lateral flow-based system (STiC), a fully automated latex immunoturbidimetric assay, a fully automated chemiluminescent assay (CLIA), light transmission aggregation (LTA), and whole blood aggregation (Multiplate).
The application of digital signal processing techniques to a teleoperator radar system
NASA Technical Reports Server (NTRS)
Pujol, A.
1982-01-01
A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.
Vehicle safety telemetry for automated highways
NASA Technical Reports Server (NTRS)
Hansen, G. R.
1977-01-01
The emphasis in current, automatic vehicle testing and diagnosis is primarily centered on the proper operation of the engine. Lateral and longitudinal guidance technologies, including speed control and headway sensing for collision avoidance, are reviewed. The principal guidance technique remains the buried wire. Speed control and headway sensing, even though they show the same basic elements in braking and fuel systems, are proceeding independently. The applications of on-board electronic and microprocessor techniques were investigated; each application (emission control, spark advance, or anti-slip braking) is being treated as an independent problem is proposed. A unified bus system of distributed processors for accomplishing the various functions and testing required for vehicles equipped to use automated highways.
Goodin, Peter; Lamp, Gemma; Vidyasagar, Rishma; McArdle, David; Seitz, Rüdiger J; Carey, Leeanne M
2018-01-01
One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC) data was extracted from four seed regions, i.e. primary (S1) and secondary (S2) somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI) were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2), and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group) and contra-lesional S2 (both groups). We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other networks in stroke survivors with impaired touch sensation. Hemisphere of lesion was associated with different patterns of altered functional connectivity within the somatosensory network and with related function was associated with different patterns of altered functional connectivity within the somatosensory network and with related functional networks.
Bai, Zhibiao; Gao, Shichang; Hu, Zhenming; Liang, Anlin
2018-03-20
The present study was performed to compare the clinical efficacy of lateral plate and lateral and medial double-plating fixation of distal femoral fractures and explore the indication of lateral and medial double-plating fixation of the distal femoral fractures. From March 2006 to April 2014, 48 and 12 cases of distal femoral fractures were treated with lateral plate (single plate) and lateral and medial plates (double plates), respectively. During the surgery, after setting the lateral plate for the distal femoral fractures, if the varus stress test of the knee was positive and the lateral collateral ligament rupture was excluded, lateral and medial double-plating fixation was used for the stability of the fragments. All the patients were followed up at an average period of 15.9 months. The average operation time, the intraoperative hemorrhage and the fracture union time of the two groups were compared. One year after operation, knee function was evaluated by the Kolmert's standard. There was no significant difference in the average operation time, intraoperative hemorrhage, fracture healing time and excellent and good rates of postoperative knee function between two groups. Positive Varus stress test during operation can be an indication for lateral and medial double-plating fixation of distal femoral fractures.
Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits
Safavi, Shervin; Dwarakanath, Abhilash; Kapoor, Vishal; Werner, Joachim; Hatsopoulos, Nicholas G.; Logothetis, Nikos K.; Panagiotaropoulos, Theofanis I.
2018-01-01
Correlated fluctuations of single neuron discharges, on a mesoscopic scale, decrease as a function of lateral distance in early sensory cortices, reflecting a rapid spatial decay of lateral connection probability and excitation. However, spatial periodicities in horizontal connectivity and associational input as well as an enhanced probability of lateral excitatory connections in the association cortex could theoretically result in nonmonotonic correlation structures. Here, we show such a spatially nonmonotonic correlation structure, characterized by significantly positive long-range correlations, in the inferior convexity of the macaque prefrontal cortex. This functional connectivity kernel was more pronounced during wakefulness than anesthesia and could be largely attributed to the spatial pattern of correlated variability between functionally similar neurons during structured visual stimulation. These results suggest that the spatial decay of lateral functional connectivity is not a common organizational principle of neocortical microcircuits. A nonmonotonic correlation structure could reflect a critical topological feature of prefrontal microcircuits, facilitating their role in integrative processes. PMID:29588415
Condylar motion in children with primary dentition during lateral excursion.
Yamasaki, Youichi; Hayasaki, Haruaki; Nishi, Megumi; Nakata, Shiho; Nakata, Minoru
2002-07-01
Normal development of primary and mixed dentition is indispensable for establishing a healthy mandibular function of the permanent dentition. Because condylar movements are crucial for mandibular function, extensive studies have been reported. However, most of these studies have dealt with mandibular functions in adults, and there is less known about children with primary dentition. The purpose of this study was to clarify the condylar movements during lateral excursions in children with primary dentition and compare these movements with those of adults from the viewpoint of functional development. With use of an optoelectronic recording system with six degrees of freedom, the lateral excursions of 24 children and 20 young women, with sound dentition, were recorded at 100 Hz. The results show that the balancing side condyle of the children had a significantly smaller vertical excursion and a significantly larger anteroposterior excursion than that of adults, indicating the shallower and more anteriorly directed movements of the entire mandible during lateral excursions in children with primary dentition.
Comparison of fMRI paradigms assessing visuospatial processing: Robustness and reproducibility
Herholz, Peer; Zimmermann, Kristin M.; Westermann, Stefan; Frässle, Stefan; Jansen, Andreas
2017-01-01
The development of brain imaging techniques, in particular functional magnetic resonance imaging (fMRI), made it possible to non-invasively study the hemispheric lateralization of cognitive brain functions in large cohorts. Comprehensive models of hemispheric lateralization are, however, still missing and should not only account for the hemispheric specialization of individual brain functions, but also for the interactions among different lateralized cognitive processes (e.g., language and visuospatial processing). This calls for robust and reliable paradigms to study hemispheric lateralization for various cognitive functions. While numerous reliable imaging paradigms have been developed for language, which represents the most prominent left-lateralized brain function, the reliability of imaging paradigms investigating typically right-lateralized brain functions, such as visuospatial processing, has received comparatively less attention. In the present study, we aimed to establish an fMRI paradigm that robustly and reliably identifies right-hemispheric activation evoked by visuospatial processing in individual subjects. In a first study, we therefore compared three frequently used paradigms for assessing visuospatial processing and evaluated their utility to robustly detect right-lateralized brain activity on a single-subject level. In a second study, we then assessed the test-retest reliability of the so-called Landmark task–the paradigm that yielded the most robust results in study 1. At the single-voxel level, we found poor reliability of the brain activation underlying visuospatial attention. This suggests that poor signal-to-noise ratios can become a limiting factor for test-retest reliability. This represents a common detriment of fMRI paradigms investigating visuospatial attention in general and therefore highlights the need for careful considerations of both the possibilities and limitations of the respective fMRI paradigm–in particular, when being interested in effects at the single-voxel level. Notably, however, when focusing on the reliability of measures of hemispheric lateralization (which was the main goal of study 2), we show that hemispheric dominance (quantified by the lateralization index, LI, with |LI| >0.4) of the evoked activation could be robustly determined in more than 62% and, if considering only two categories (i.e., left, right), in more than 93% of our subjects. Furthermore, the reliability of the lateralization strength (LI) was “fair” to “good”. In conclusion, our results suggest that the degree of right-hemispheric dominance during visuospatial processing can be reliably determined using the Landmark task, both at the group and single-subject level, while at the same time stressing the need for future refinements of experimental paradigms and more sophisticated fMRI data acquisition techniques. PMID:29059201
Lateralization of magnetic compass orientation in a migratory bird
NASA Astrophysics Data System (ADS)
Wiltschko, Wolfgang; Traudt, Joachim; Güntürkün, Onur; Prior, Helmut; Wiltschko, Roswitha
2002-10-01
Lateralization of brain functions, once believed to be a human characteristic, has now been found to be widespread among vertebrates. In birds, asymmetries of visual functions are well studied, with each hemisphere being specialized for different tasks. Here we report lateralized functions of the birds' visual system associated with magnetoperception, resulting in an extreme asymmetry of sensing the direction of the magnetic field. We found that captive migrants tested in cages with the magnetic field as the only available orientation cue were well oriented in their appropriate migratory direction when using their right eye only, but failed to show a significant directional preference when using their left eye. This implies that magnetoreception for compass orientation, assumed to take place in the eyes alongside the visual processes, is strongly lateralized, with a marked dominance of the right eye/left brain hemisphere.
Lee, Rico S C; Hermens, Daniel F; Redoblado-Hodge, M Antoinette; Naismith, Sharon L; Porter, Melanie A; Kaur, Manreena; White, Django; Scott, Elizabeth M; Hickie, Ian B
2013-01-01
Clinical symptoms and neuropsychological deficits are longitudinally associated with functional outcome in chronic psychiatric cohorts. The current study extended these findings to young and early-course psychiatric outpatients, with the aim of identifying cognitive markers that predict later socio-occupational functioning. At baseline, 183 young psychiatric outpatients were assessed. Ninety-three returned for follow-up (M = 21.6 years old; SD = 4.5) with an average re-assessment interval of 21.6 months (SD = 7.0), and primary diagnoses of major depressive disorder (n = 34), bipolar disorder (n = 29), or psychosis (n = 30). The primary outcome measure was cross-validated with various other functional measures and structural equation modelling was used to map out the interrelationships between predictors and later functional outcome. Good socio-occupational functioning at follow-up was associated with better quality of life, less disability, current employment and being in a romantic relationship. The final structural equation model explained 47.5% of the variability in functional outcome at follow-up, with baseline neuropsychological functioning (a composite of memory, working memory and attentional switching) the best independent predictor of later functional outcome. Notably, depressive and negative symptoms were only associated with functioning cross-sectionally. Diagnosis at follow-up was not associated with functional outcome. Neuropsychological functioning was the single best predictor of later socio-occupational outcome among young psychiatric outpatients. Therefore, framing psychiatric disorders along a neuropsychological continuum is likely to be more useful in predicting functional trajectory than traditional symptom-based classification systems. The current findings also have implications for early intervention utilising cognitive remediation approaches.
NASA Astrophysics Data System (ADS)
Liu, Y.-S.; Kuo, B.-Y.
2009-04-01
Taiwan is located in the convergent plate boundary zone where the Philippine Sea plate has obliquely collided on the Asian continental margin, initiating the arc-continent collision and subsequent mountain-building in Taiwan. Receiver function has been a powerful tool to image seismic velocity discontinuity structure in the crust and upper mantle which can help illuminate the deep dynamic process of active Taiwan orogeny. In this study, we adopt backprojection migration processing of teleseismic receiver functions to investigate the crust and upper mantle discontinuities beneath southern Taiwan, using the data from Southern Taiwan Transect Seismic Array (STTA), broadband stations of Central Weather Bureau (CWB), Broadband Array in Taiwan for Seismology (BATS), and Taiwan Integrated Geodynamics Research (TAIGER). This composite east-west trending linear array has the aperture of about 150 km with the station spacing of ~5-10 km. Superior to the common midpoint (CMP) stack approach, the migration can properly image the dipping, curved, or laterally-varying topography of discontinuous interfaces which very likely exist under the complicated tectonic setting of Taiwan. We first conduct synthetic experiments to test the depth and lateral resolution of migration images based on the WKBJ synthetic waveforms calculated from available source and receiver distributions. We will next construct the 2-D migration image under the array to reveal the topographic variation of the Moho and lithosphere discontinuities beneath southern Taiwan.
Consedine, Nathan S; Magai, Carol; Conway, Francine
2004-06-01
It is an axiom of social gerontology that populations of older individuals become increasingly differentiated as they age. Adaptations to physical and social losses and the increased dependency that typically accompany greater age are likely to be similarly heterogeneous, with different individuals adjusting to the aging process in widely diverse ways. In this paper we consider how individuals with diverse emotional and regulatory profiles, different levels of religiosity, and varied patterns of social relatedness fare as they age. Specifically, we examine the relation between ethnicity and patterns of socioemotional adaptation in a large, ethnically diverse sample (N = 1118) of community-dwelling older adults. Cluster analysis was applied to 11 measures of socioemotional functioning. Ten qualitatively different profiles were extracted and then related to a measure of physical resiliency. Consistent with ethnographic and psychological theory, individuals from different ethnic backgrounds were unevenly distributed across the clusters. Resilient participants of African descent (African Americans, Jamaicans, Trinidadians, Barbadians) were more likely to manifest patterns of adaptation characterized by religious beliefs, while resilient US-born Whites and Immigrant Whites were more likely to be resilient as a result of non-religious social connectedness. Taken together, although these data underscore the diversity of adaptation to later life, we suggest that patterns of successful adaptation vary systematically across ethnic groups. Implications for the continued study of ethnicity in aging and directions for future research are given.
Boettner, Benjamin; Van Aelst, Linda
2007-01-01
Epithelial morphogenesis is characterized by an exquisite control of cell shape and position. Progression through dorsal closure in Drosophila gastrulation depends on the ability of Rap1 GTPase to signal through the adherens junctional multidomain protein Canoe. Here, we provide genetic evidence that epithelial Rap activation and Canoe effector usage are conferred by the Drosophila PDZ-GEF (dPDZ-GEF) exchange factor. We demonstrate that dPDZ-GEF/Rap/Canoe signaling modulates cell shape and apicolateral cell constriction in embryonic and wing disc epithelia. In dPDZ-GEF mutant embryos with strong dorsal closure defects, cells in the lateral ectoderm fail to properly elongate. Postembryonic dPDZ-GEF mutant cells generated in mosaic tissue display a striking extension of lateral cell perimeters in the proximity of junctional complexes, suggesting a loss of normal cell contractility. Furthermore, our data indicate that dPDZ-GEF signaling is linked to myosin II function. Both dPDZ-GEF and cno show strong genetic interactions with the myosin II-encoding gene, and myosin II distribution is severely perturbed in epithelia of both mutants. These findings provide the first insight into the molecular machinery targeted by Rap signaling to modulate epithelial plasticity. We propose that dPDZ-GEF-dependent signaling functions as a rheostat linking Rap activity to the regulation of cell shape in epithelial morphogenesis at different developmental stages. PMID:17846121
Different Cortical Dynamics in Face and Body Perception: An MEG study
Meeren, Hanneke K. M.; de Gelder, Beatrice; Ahlfors, Seppo P.; Hämäläinen, Matti S.; Hadjikhani, Nouchine
2013-01-01
Evidence from functional neuroimaging indicates that visual perception of human faces and bodies is carried out by distributed networks of face and body-sensitive areas in the occipito-temporal cortex. However, the dynamics of activity in these areas, needed to understand their respective functional roles, are still largely unknown. We monitored brain activity with millisecond time resolution by recording magnetoencephalographic (MEG) responses while participants viewed photographs of faces, bodies, and control stimuli. The cortical activity underlying the evoked responses was estimated with anatomically-constrained noise-normalised minimum-norm estimate and statistically analysed with spatiotemporal cluster analysis. Our findings point to distinct spatiotemporal organization of the neural systems for face and body perception. Face-selective cortical currents were found at early latencies (120–200 ms) in a widespread occipito-temporal network including the ventral temporal cortex (VTC). In contrast, early body-related responses were confined to the lateral occipito-temporal cortex (LOTC). These were followed by strong sustained body-selective responses in the orbitofrontal cortex from 200–700 ms, and in the lateral temporal cortex and VTC after 500 ms latency. Our data suggest that the VTC region has a key role in the early processing of faces, but not of bodies. Instead, the LOTC, which includes the extra-striate body area (EBA), appears the dominant area for early body perception, whereas the VTC contributes to late and post-perceptual processing. PMID:24039712
Etiological aspect of left-handedness in adolescents.
Dragović, Milan; Milenković, Sanja; Kocijancić, Dusica; Zlatko, Sram
2013-01-01
Lateralization of brain functions such as language and manual dominance (hand preferences and fine motor control) are most likely under genetic control. However, this does not preclude the effect of various environmental factors on functional brain lateralization. A strong association of non-right-handedness (left- and mixed-handedness) with various neurodevelopmental conditions (e.g. schizophrenia, autism, Rett syndrome) implies that in some cases, non-right-handedness may be acquired rather than inherited (i.e., pathologically determined). The aim of the study was: (a) re-investigation of several known risk factors for left-handedness (age of mother and/or father, twin pregnancies, and birth order), and (b) examination of hitherto uninvestigated factors (type of birth, Apgar score, maternal smoking during pregnancy). Putative, causative environmental agents for this shift in manual distributions are explored in a sample of 1031 high school students (404 males and 627 females) from Belgrade. Both pre-existing (age of parents, twin pregnancy, and birth order) and new (Apgar score, maternal smoking, type of birth) putative agents are examined. We found that maternal smoking and low Apgar score (2-6) can significantly increase risk for left-handedness (p=0.046 and p=0.042, respectively).The remaining factors showed no significant association with left-handedness in adolescents. Our study clearly demonstrates that left-handedness may be related to maternal smoking during pregnancy and a low Apgar score on birth.
Kim, Renaid B.; Irvin, Cameron W.; Tilva, Keval R.; Mitchell, Cassie S.
2016-01-01
Numerous sub-cellular through system-level disturbances have been identified in over 1300 articles examining the superoxide dismutase-1 guanine 93 to alanine (SOD1-G93A) transgenic mouse amyotrophic lateral sclerosis (ALS) pathophysiology. Manual assessment of such a broad literature base is daunting. We performed a comprehensive informatics-based systematic review or ‘field analysis’ to agnostically compute and map the current state of the field. Text mining of recaptured articles was used to quantify published data topic breadth and frequency. We constructed a nine-category pathophysiological function-based ontology to systematically organize and quantify the field's primary data. Results demonstrated that the distribution of primary research belonging to each category is: systemic measures an motor function, 59%; inflammation, 46%; cellular energetics, 37%; proteomics, 31%; neural excitability, 22%; apoptosis, 20%; oxidative stress, 18%; aberrant cellular chemistry, 14%; axonal transport, 10%. We constructed a SOD1-G93A field map that visually illustrates and categorizes the 85% most frequently assessed sub-topics. Finally, we present the literature-cited significance of frequently published terms and uncover thinly investigated areas. In conclusion, most articles individually examine at least two categories, which is indicative of the numerous underlying pathophysiological interrelationships. An essential future path is examination of cross-category pathophysiological interrelationships and their co-correspondence to homeostatic regulation and disease progression. PMID:25998063
Prieur, Jacques; Barbu, Stéphanie; Blois-Heulin, Catherine; Pika, Simone
2017-12-01
Relationships between humans' manual laterality in non-communicative and communicative functions are still poorly understood. Recently, studies showed that chimpanzees' manual laterality is influenced by functional, interactional and individual factors and their mutual intertwinement. However, what about manual laterality in species living in stable social groups? We tackled this question by studying three groups of captive gorillas (N=35) and analysed their most frequent manual signals: three manipulators and 16 gesture types. Our multifactorial investigation showed that conspecific-directed gestures were overall more right-lateralized than conspecific-directed manipulators. Furthermore, it revealed a difference between conspecific- and human-directed gestural laterality for signallers living in one of the study groups. Our results support the hypothesis that gestural laterality is a relevant marker of language left-brain specialisation. We suggest that components of communication and of manipulation (not only of an object but also of a conspecific) do not share the same lateralised cerebral system in some primate species. Copyright © 2017 Elsevier Inc. All rights reserved.
Engel, Fabian; Farrell, Kaitlin J; McCullough, Ian M; Scordo, Facundo; Denfeld, Blaize A; Dugan, Hilary A; de Eyto, Elvira; Hanson, Paul C; McClure, Ryan P; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C; Weyhenmeyer, Gesa A
2018-03-26
The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO 2 ) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO 2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO 2 production by mineralization as well as CO 2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of [Formula: see text] to [Formula: see text] Pg C yr -1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO 2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO 2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.
NASA Astrophysics Data System (ADS)
Engel, Fabian; Farrell, Kaitlin J.; McCullough, Ian M.; Scordo, Facundo; Denfeld, Blaize A.; Dugan, Hilary A.; de Eyto, Elvira; Hanson, Paul C.; McClure, Ryan P.; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C.; Weyhenmeyer, Gesa A.
2018-04-01
The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of {0.70}_{-0.31}^{+0.27} to {1.52}_{-0.90}^{+1.09} Pg C yr-1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.
On the parametrization of lateral dose profiles in proton radiation therapy.
Bellinzona, V E; Ciocca, M; Embriaco, A; Fontana, A; Mairani, A; Mori, M; Parodi, K
2015-07-01
The accurate evaluation of the lateral dose profile is an important issue in the field of proton radiation therapy. The beam spread, due to Multiple Coulomb Scattering (MCS), is described by the Molière's theory. To take into account also the contribution of nuclear interactions, modern Treatment Planning Systems (TPSs) generally approximate the dose profiles by a sum of Gaussian functions. In this paper we have compared different parametrizations for the lateral dose profile of protons in water for therapeutical energies: the goal is to improve the performances of the actual treatment planning. We have simulated typical dose profiles at the CNAO (Centro Nazionale di Adroterapia Oncologica) beamline with the FLUKA code and validated them with data taken at CNAO considering different energies and depths. We then performed best fits of the lateral dose profiles for different functions using ROOT and MINUIT. The accuracy of the best fits was analyzed by evaluating the reduced χ(2), the number of free parameters of the functions and the calculation time. The best results were obtained with the triple Gaussian and double Gaussian Lorentz-Cauchy functions which have 6 parameters, but good results were also obtained with the so called Gauss-Rutherford function which has only 4 parameters. The comparison of the studied functions with accurate and validated Monte Carlo calculations and with experimental data from CNAO lead us to propose an original parametrization, the Gauss-Rutherford function, to describe the lateral dose profiles of proton beams. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Coding of visual object features and feature conjunctions in the human brain.
Martinovic, Jasna; Gruber, Thomas; Müller, Matthias M
2008-01-01
Object recognition is achieved through neural mechanisms reliant on the activity of distributed coordinated neural assemblies. In the initial steps of this process, an object's features are thought to be coded very rapidly in distinct neural assemblies. These features play different functional roles in the recognition process--while colour facilitates recognition, additional contours and edges delay it. Here, we selectively varied the amount and role of object features in an entry-level categorization paradigm and related them to the electrical activity of the human brain. We found that early synchronizations (approx. 100 ms) increased quantitatively when more image features had to be coded, without reflecting their qualitative contribution to the recognition process. Later activity (approx. 200-400 ms) was modulated by the representational role of object features. These findings demonstrate that although early synchronizations may be sufficient for relatively crude discrimination of objects in visual scenes, they cannot support entry-level categorization. This was subserved by later processes of object model selection, which utilized the representational value of object features such as colour or edges to select the appropriate model and achieve identification.
Sengur, Abdulkadir; Akbulut, Yaman; Guo, Yanhui; Bajaj, Varun
2017-12-01
Electromyogram (EMG) signals contain useful information of the neuromuscular diseases like amyotrophic lateral sclerosis (ALS). ALS is a well-known brain disease, which can progressively degenerate the motor neurons. In this paper, we propose a deep learning based method for efficient classification of ALS and normal EMG signals. Spectrogram, continuous wavelet transform (CWT), and smoothed pseudo Wigner-Ville distribution (SPWVD) have been employed for time-frequency (T-F) representation of EMG signals. A convolutional neural network is employed to classify these features. In it, Two convolution layers, two pooling layer, a fully connected layer and a lost function layer is considered in CNN architecture. The CNN architecture is trained with the reinforcement sample learning strategy. The efficiency of the proposed implementation is tested on publicly available EMG dataset. The dataset contains 89 ALS and 133 normal EMG signals with 24 kHz sampling frequency. Experimental results show 96.80% accuracy. The obtained results are also compared with other methods, which show the superiority of the proposed method.
Khan, Mohammad R; Dudhia, Jayesh; David, Frederic H; De Godoy, Roberta; Mehra, Vedika; Hughes, Gillian; Dakin, Stephanie G; Carr, Andrew J; Goodship, Allen E; Smith, Roger K W
2018-06-19
Intra-synovial tendon injuries display poor healing, which often results in reduced functionality and pain. A lack of effective therapeutic options has led to experimental approaches to augment natural tendon repair with autologous mesenchymal stem cells (MSCs) although the effects of the intra-synovial environment on the distribution, engraftment and functionality of implanted MSCs is not known. This study utilised a novel sheep model which, although in an anatomically different location, more accurately mimics the mechanical and synovial environment of the human rotator cuff, to determine the effects of intra-synovial implantation of MSCs. A lesion was made in the lateral border of the lateral branch of the ovine deep digital flexor tendon within the digital sheath and 2 weeks later 5 million autologous bone marrow MSCs were injected under ultrasound guidance into the digital sheath. Tendons were recovered post mortem at 1 day, and 1-2, 4, 12 and 24 weeks after MSC injection. For the 1-day and 1-2-week groups, MSCs labelled with fluorescent-conjugated magnetic iron-oxide nanoparticles (MIONs) were tracked with MRI, histology and flow cytometry. The 4, 12 and 24-week groups were implanted with non-labelled cells and compared with saline-injected controls for healing. The MSCs displayed no reduced viability in vitro to an uptake of 20.0 ± 4.6 pg MIONs per cell, which was detectable by MRI at minimal density of ~ 3 × 10 4 cells. Treated limbs indicated cellular distribution throughout the tendon synovial sheath but restricted to the synovial tissues, with no MSCs detected in the tendon or surgical lesion. The lesion was associated with negligible morbidity with minimal inflammation post surgery. Evaluation of both treated and control lesions showed no evidence of healing of the lesion at 4, 12 and 24 weeks on gross and histological examination. Unlike other laboratory animal models of tendon injury, this novel model mimics the failed tendon healing seen clinically intra-synovially. Importantly, however, implanted stem cells exhibited homing to synovium niches where they survived for at least 14 days. This phenomenon could be utilised in the development of novel physical or biological approaches to enhance localisation of cells in augmenting intra-synovial tendon repair.
Burles, Ford; Slone, Edward; Iaria, Giuseppe
2017-04-01
The retrosplenial complex is a region within the posterior cingulate cortex implicated in spatial navigation. Here, we investigated the functional specialization of this large and anatomically heterogeneous region using fMRI and resting-state functional connectivity combined with a spatial task with distinct phases of spatial 'updating' (i.e., integrating and maintaining object locations in memory during spatial displacement) and 'orienting' (i.e., recalling unseen locations from current position in space). Both spatial 'updating' and 'orienting' produced bilateral activity in the retrosplenial complex, among other areas. However, spatial 'updating' produced slightly greater activity in ventro-lateral portions, of the retrosplenial complex, whereas spatial 'orienting' produced greater activity in a more dorsal and medial portion of it (both regions localized along the parieto-occipital fissure). At rest, both ventro-lateral and dorso-medial subregions of the retrosplenial complex were functionally connected to the hippocampus and parahippocampus, regions both involved in spatial orientation and navigation. However, the ventro-lateral subregion of the retrosplenial complex displayed more positive functional connectivity with ventral occipital and temporal object recognition regions, whereas the dorso-medial subregion activity was more correlated to dorsal activity and frontal activity, as well as negatively correlated with more ventral parietal structures. These findings provide evidence for a dorso-medial to ventro-lateral functional specialization within the human retrosplenial complex that may shed more light on the complex neural mechanisms underlying spatial orientation and navigation in humans.
Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R
2010-01-05
Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.
3D reconstructions of quail-chick chimeras provide a new fate map of the avian scapula.
Shearman, Rebecca M; Tulenko, Frank J; Burke, Ann C
2011-07-01
Limbed vertebrates have functionally integrated postcranial axial and appendicular systems derived from two distinct populations of embryonic mesoderm. The axial skeletal elements arise from the paraxial somites, the appendicular skeleton and sternum arise from the somatic lateral plate mesoderm, and all of the muscles for both systems arise from the somites. Recent studies in amniotes demonstrate that the scapula has a mixed mesodermal origin. Here we determine the relative contribution of somitic and lateral plate mesoderm to the avian scapula from quail-chick chimeras. We generate 3D reconstructions of the grafted tissue in the host revealing a very different distribution of somitic cells in the scapula than previously reported. This novel 3D visualization of the cryptic border between somitic and lateral plate populations reveals the dynamics of musculoskeletal morphogenesis and demonstrates the importance of 3D visualization of chimera data. Reconstructions of chimeras make clear three significant contrasts with existing models of scapular development. First, the majority of the avian scapula is lateral plate derived and the somitic contribution to the scapular blade is significantly smaller than in previous models. Second, the segmentation of the somitic component of the blade is partially lost; and third, there are striking differences in growth rates between different tissues derived from the same somites that contribute to the structures of the cervical thoracic transition, including the scapula. These data call for the reassessment of theories on the development, homology, and evolution of the vertebrate scapula. Copyright © 2011 Elsevier Inc. All rights reserved.
Mesic, Ivana; Guzman, Yomayra F; Guedea, Anita L; Jovasevic, Vladimir; Corcoran, Kevin A; Leaderbrand, Katherine; Nishimori, Katsuhiko; Contractor, Anis; Radulovic, Jelena
2015-09-01
Social interactions in vertebrates are complex phenomena based on affective and cognitive processes. Multiple brain regions and neurotransmitter systems are involved in the expression of social behaviors, but their individual roles in specific aspects of social interactions are not well understood. Here we investigated how Gq-protein-coupled metabotropic glutamate receptor 5 (mGluR5) and oxytocin receptor (Oxtr) affect social affiliation and social memory. We used conditional genetic approaches in which the genes coding for these receptors were knocked out in the lateral septum by infusion of recombinant adeno-associated viral vectors containing Cre recombinase (AAV-Cre). Social behavior was assessed 2 weeks later using a three-chamber paradigm for sociability and preference for social novelty. Septal deletion of mGluR5 abolished sociability while leaving preference for social novelty intact. In contrast, deletion of Oxtr did not affect sociability but significantly impaired preference for social novelty. Nonsocial behaviors or memories, including novel object recognition or fear conditioning, were not affected by these genetic manipulations. Immunohistochemical analyses of the distribution of mGluR5 and Oxtr revealed non-overlapping localization of these receptors within the lateral septum, suggesting that not only different neurotransmitters but also different neuronal types contribute to sociability versus preference for social novelty. Our findings identify highly specialized roles of lateral septal mGluR5 and Oxtr in the the regulation of discrete social behaviors, and suggest that deficits in social interactions, which accompany many mental illnesses, would benefit from comprehensive treatments targeting different components of social functioning.
Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.
2014-01-01
ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. PMID:25205583
Mesic, Ivana; Guzman, Yomayra F; Guedea, Anita L; Jovasevic, Vladimir; Corcoran, Kevin A; Leaderbrand, Katherine; Nishimori, Katsuhiko; Contractor, Anis; Radulovic, Jelena
2015-01-01
Social interactions in vertebrates are complex phenomena based on affective and cognitive processes. Multiple brain regions and neurotransmitter systems are involved in the expression of social behaviors, but their individual roles in specific aspects of social interactions are not well understood. Here we investigated how Gq-protein-coupled metabotropic glutamate receptor 5 (mGluR5) and oxytocin receptor (Oxtr) affect social affiliation and social memory. We used conditional genetic approaches in which the genes coding for these receptors were knocked out in the lateral septum by infusion of recombinant adeno-associated viral vectors containing Cre recombinase (AAV-Cre). Social behavior was assessed 2 weeks later using a three-chamber paradigm for sociability and preference for social novelty. Septal deletion of mGluR5 abolished sociability while leaving preference for social novelty intact. In contrast, deletion of Oxtr did not affect sociability but significantly impaired preference for social novelty. Nonsocial behaviors or memories, including novel object recognition or fear conditioning, were not affected by these genetic manipulations. Immunohistochemical analyses of the distribution of mGluR5 and Oxtr revealed non-overlapping localization of these receptors within the lateral septum, suggesting that not only different neurotransmitters but also different neuronal types contribute to sociability versus preference for social novelty. Our findings identify highly specialized roles of lateral septal mGluR5 and Oxtr in the the regulation of discrete social behaviors, and suggest that deficits in social interactions, which accompany many mental illnesses, would benefit from comprehensive treatments targeting different components of social functioning. PMID:25824423
Age-Related Differences in Bilateral Asymmetry in Cycling Performance
ERIC Educational Resources Information Center
Liu, Ting; Jensen, Jody L.
2012-01-01
Bilateral asymmetry, a form of limb laterality in the context of moving two limbs, emerges in childhood. Children and adults show lateral preference in tasks that involve the upper and lower limbs. The importance of research in limb laterality is the insight it could provide about lateralized functions of the cerebral hemispheres. Analyzing…
[Rupture of lateral ligaments of the ankle joint: MR imaging before and after functional therapy].
Grebe, P; Kreitner, K F; Roeder, W; Kersjes, W; Hennes, R; Runkel, M
1995-09-01
Documentation via MRI of the healing of ruptured lateral collateral ankle ligaments after functional therapy. 35 patients with ankle sprain were examined by MRI and stress radiographs, 13 were operated afterwards, 22 patients underwent a functional conservative therapy and were examined by MRI and stress radiographs and second time after three months. MRI reports were correct in 12 of 13 operated cases. After conservative therapy we did not find any disrupted ankle ligament. MRI showed intact ligaments thickened by scar. MRI is able to show injuries of the lateral collateral ankle ligaments and demonstrates the healing by scar after conservative therapy.
Magnetotail Structure and its Internal Particle Dynamics During Northward IMF
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; Raeder, J.; El-Alaoui, M.; Peroomian, V.
1998-01-01
This study uses Global magnetohydrodynamic (MHD) simulations driven by solar wind data along with Geotail observations of the magnetotail to investigate the magnetotail's response to changes in the interplanetary magnetic field (IMF); observed events used in the study occurred on March 29, 1993 and February 9, 1995. For events from February 9, 1995, we also use the time-dependent MHD magnetic and electric fields and the large-scale kinetic (LSK) technique to examine changes in the Geotail ion velocity distributions. Our MHD simulation shows that on March 29, 1993, during a long period of steady northward IMF, the tail was strongly squeezed and twisted around the Sun-Earth axis in response to variations in the IMF B(sub y) component. The mixed (magnetotail and magnetosheath) plasma observed by Geotail results from the spacecraft's close proximity to the magnetopause and its frequent crossings of this boundary. In our second example (February 9, 1995) the IMF was also steady and northward, and in addition had a significant B(sub y) component. Again the magnetotail was twisted, but not as strongly as on March 29, 1993. The Geotail spacecraft, located approximately 30 R(sub E) downtail, observed highly structured ion distribution functions. Using the time-dependent LSK technique, we investigate the ion sources and acceleration mechanisms affecting the Geotail distribution functions during this interval. At 1325 UT most ions are found to enter the magnetosphere on the dusk side earthward of Geotail with a secondary source on the dawn side in the low latitude boundary layer (LLBL). A small percentage come from the ionosphere. By 1347 UT the majority of the ions come from the dawn side LLBL. The distribution functions measured during the later time interval are much warmer, mainly because particles reaching the spacecraft from the dawn side are affected by nonadiabatic scattering and acceleration in the neutral sheet.
Magnetotail Structure and its Internal Particle Dynamics During Northward IMF
NASA Technical Reports Server (NTRS)
Ashour-Abdalia, M.; El-Alaoui, M.; Peroomian, V.
1998-01-01
This study uses Global magnetohydrodynamic (MHD) simulations driven by solar wind data along with Geotail observations of the magnetotail to investigate the magnetotail's response to changes in the interplanetary magnetic field (IMF); observed events used in the study occurred on March 29, 1993 and February 9, 1995. For events from February 9, 1995, we also use the time-dependent MHD magnetic and electric fields and the large-scale kinetic (LSK) technique to examine changes in the Geotail ion velocity distributions. Our MHD simulation shows that on March 29, 1993, during a long period of steady northward IMF, the tail was strongly squeezed and twisted around the Sun-Earth axis in response to variations in the IMF B(sub y) component. The mixed (magnetotail and magnetosheath) plasma observed by Geotail results from the spacecraft's close proximity to the magnetopause and its frequent crossings of this boundary. In our second example (February 9, 1995) the IMF was also steady and northward, and in addition had a significant B(sub y) component. Again the magnetotail was twisted, but not as strongly as on March 29, 1993. The Geotail spacecraft, located approximately 30 R(sub E) downtail, observed highly structured ion distribution functions. Using the time-dependent LSK technique, we investigate the ion sources and acceleration mechanisms affecting the Geotail distribution functions during this interval. At 1325 UT most ions are found to enter the magnetosphere on the dusk side earthward of Geotail with a secondary source on the dawn side in the low latitude boundary layer (LLBL). A small percentage come from the ionosphere. By 1347 UT the majority of the ions come from the dawn side LLBL. The distribution functions measured during the later time interval are much warmer, mainly because particles reaching the spacecraft from the dawnside are affected by nonadiabatic scattering and acceleration in the neutral sheet.
Lateralization of the Huggins pitch
NASA Astrophysics Data System (ADS)
Zhang, Peter Xinya; Hartmann, William M.
2004-05-01
The lateralization of the Huggins pitch (HP) was measured using a direct estimation method. The background noise was initially N0 or Nπ, and then the laterality of the entire stimulus was varied with a frequency-independent interaural delay, ranging from -1 to +1 ms. Two versions of the HP boundary region were used, stepped phase and linear phase. When presented in isolation, without the broadband background, the stepped boundary can be lateralized on its own but the linear boundary cannot. Nevertheless, the lateralizations of both forms of HP were found to be almost identical functions both of the interaural delay and of the boundary frequency over a two-octave range. In a third experiment, the same listeners lateralized sine tones in quiet as a function of interaural delay. Good agreement was found between lateralizations of the HP and of the corresponding sine tones. The lateralization judgments depended on the boundary frequency according to the expected hyperbolic law except when the frequency-independent delay was zero. For the latter case, the dependence on boundary frequency was much slower than hyperbolic. [Work supported by the NIDCD grant DC 00181.
Chechlacz, Magdalena; Gillebert, Celine R; Vangkilde, Signe A; Petersen, Anders; Humphreys, Glyn W
2015-07-29
Visuospatial attention allows us to select and act upon a subset of behaviorally relevant visual stimuli while ignoring distraction. Bundesen's theory of visual attention (TVA) (Bundesen, 1990) offers a quantitative analysis of the different facets of attention within a unitary model and provides a powerful analytic framework for understanding individual differences in attentional functions. Visuospatial attention is contingent upon large networks, distributed across both hemispheres, consisting of several cortical areas interconnected by long-association frontoparietal pathways, including three branches of the superior longitudinal fasciculus (SLF I-III) and the inferior fronto-occipital fasciculus (IFOF). Here we examine whether structural variability within human frontoparietal networks mediates differences in attention abilities as assessed by the TVA. Structural measures were based on spherical deconvolution and tractography-derived indices of tract volume and hindrance-modulated orientational anisotropy (HMOA). Individual differences in visual short-term memory (VSTM) were linked to variability in the microstructure (HMOA) of SLF II, SLF III, and IFOF within the right hemisphere. Moreover, VSTM and speed of information processing were linked to hemispheric lateralization within the IFOF. Differences in spatial bias were mediated by both variability in microstructure and volume of the right SLF II. Our data indicate that the microstructural and macrostrucutral organization of white matter pathways differentially contributes to both the anatomical lateralization of frontoparietal attentional networks and to individual differences in attentional functions. We conclude that individual differences in VSTM capacity, processing speed, and spatial bias, as assessed by TVA, link to variability in structural organization within frontoparietal pathways. Copyright © 2015 Chechlacz et al.
Belser, U C; Hannam, A G
1985-03-01
The effect of four different occlusal situations (group function, canine guidance, working side occlusal interference, and hyperbalancing occlusal interference) on EMG activity in jaw elevator muscles and related mandibular movement was investigated on 12 subjects. With a computer-based system, EMG and displacement signals were collected simultaneously during specific functional (unilateral chewing) and parafunctional tasks (mandibular gliding movements and various tooth clenching efforts) and analyzed quantitatively. When a naturally acquired group function was temporarily and artificially changed into a dominant canine guidance, a significant general reduction of elevator muscle activity was observed when subjects exerted full isometric tooth-clenching efforts in a lateral mandibular position. The original muscular coordination pattern (relative contraction from muscle to muscle) remained unaltered during this test. With respect to unilateral chewing, no significant alterations in the activity or coordination of the muscles occurred when an artificial canine guidance was introduced. Introduction of a hyperbalancing occlusal contact caused significant alterations in muscle activity and coordination during maximal tooth clenching in a lateral mandibular position. A marked shift of temporal muscle EMG activity toward the side of the interference and unchanged bilateral activity of the two masseter muscles were observed. The results suggest that canine-protected occlusions do not significantly alter muscle activity during mastication but significantly reduce muscle activity during parafunctional clenching. They also suggest that non-working side contacts dramatically alter the distribution of muscle activity during parafunctional clenching, and that this redistribution may affect the nature of reaction forces at the temporomandibular joints.
Alcoholism and dampened temporal limbic activation to emotional faces.
Marinkovic, Ksenija; Oscar-Berman, Marlene; Urban, Trinity; O'Reilly, Cara E; Howard, Julie A; Sawyer, Kayle; Harris, Gordon J
2009-11-01
Excessive chronic drinking is accompanied by a broad spectrum of emotional changes ranging from apathy and emotional flatness to deficits in comprehending emotional information, but their neural bases are poorly understood. Emotional abnormalities associated with alcoholism were examined with functional magnetic resonance imaging in abstinent long-term alcoholic men in comparison to healthy demographically matched controls. Participants were presented with emotionally valenced words and photographs of faces during deep (semantic) and shallow (perceptual) encoding tasks followed by recognition. Overall, faces evoked stronger activation than words, with the expected material-specific laterality (left hemisphere for words, and right for faces) and depth of processing effects. However, whereas control participants showed stronger activation in the amygdala and hippocampus when viewing faces with emotional (relative to neutral) expressions, the alcoholics responded in an undifferentiated manner to all facial expressions. In the alcoholic participants, amygdala activity was inversely correlated with an increase in lateral prefrontal activity as a function of their behavioral deficits. Prefrontal modulation of emotional function as a compensation for the blunted amygdala activity during a socially relevant face appraisal task is in agreement with a distributed network engagement during emotional face processing. Deficient activation of amygdala and hippocampus may underlie impaired processing of emotional faces associated with long-term alcoholism and may be a part of the wide array of behavioral problems including disinhibition, concurring with previously documented interpersonal difficulties in this population. Furthermore, the results suggest that alcoholics may rely on prefrontal rather than temporal limbic areas in order to compensate for reduced limbic responsivity and to maintain behavioral adequacy when faced with emotionally or socially challenging situations.
Uhrig, R Glen; Kerk, David; Moorhead, Greg B
2013-12-01
Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.
Belowground competition for nutrients and water is considered a key factor affecting spatial organization and productivity of individual stems within forest stands, yet there are almost no data describing the lateral extent and overlap of competing root systems. We quantified th...
Orthodontic intrusion of maxillary incisors: a 3D finite element method study
Saga, Armando Yukio; Maruo, Hiroshi; Argenta, Marco André; Maruo, Ivan Toshio; Tanaka, Orlando Motohiro
2016-01-01
Objective: In orthodontic treatment, intrusion movement of maxillary incisors is often necessary. Therefore, the objective of this investigation is to evaluate the initial distribution patterns and magnitude of compressive stress in the periodontal ligament (PDL) in a simulation of orthodontic intrusion of maxillary incisors, considering the points of force application. Methods: Anatomic 3D models reconstructed from cone-beam computed tomography scans were used to simulate maxillary incisors intrusion loading. The points of force application selected were: centered between central incisors brackets (LOAD 1); bilaterally between the brackets of central and lateral incisors (LOAD 2); bilaterally distal to the brackets of lateral incisors (LOAD 3); bilaterally 7 mm distal to the center of brackets of lateral incisors (LOAD 4). Results and Conclusions: Stress concentrated at the PDL apex region, irrespective of the point of orthodontic force application. The four load models showed distinct contour plots and compressive stress values over the midsagittal reference line. The contour plots of central and lateral incisors were not similar in the same load model. LOAD 3 resulted in more balanced compressive stress distribution. PMID:27007765
Depedrini, J S; Campos, R
2007-12-01
The present study has analysed 30 pampas fox brains (Pseudalopex gymnocercus), injected with latex, aiming to systematize and describe the distribution and vascularization territories of the middle cerebral artery. After being originated from the rostral branch of the internal carotid artery this vessel formed the following collateral branches: rostral choroidal artery, rostral and caudal central branches and cortical branches. Before crossing the lateral rhinal sulcus, the common trunk of the middle cerebral artery frequently bifurcated in a rostral and a caudal branch. In a smaller amount, the common trunk did not show any bifurcation, ramifying in arborescence. The vascular territory of the pampas fox middle cerebral artery included the lateral cerebral fossa, the lateral third of the olfactory trigone, the two rostral thirds of the piriform lobe, the lateral olfactory tract and most of the convex surface of the cerebral hemisphere, except for the more rostromedial areas of the frontal lobe bordering the endomarginal sulcus in the parietal and occipital lobes as well as the transverse fissure at the caudal pole of the cerebral hemisphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupp, J.A.
Porosity preservation in the reservoir rocks within the Harrodsburg Limestone pool of the Newtonville Consolidated field, Spencer County, Indiana, is a function of both primary facies distribution and inhibited pore-filling sparry calcite cementation. Reservoir facies of the Harrodsburg mark the initial shallow-water phase in an overall shoaling-upward, prograding ramp succession beginning with deep basinal clastic sequences of shales and turbidites (early middle Mississippian) and culminating with sabkha and shallow marine carbonate deposits (middle middle Mississippian). Grainstones composed of bryozoans and pelmatozoan bioclasts were deposited oN the lower shoreface of a southwestward-deepening ramp in southern Indiana. Lateral distribution of coarse-grained, well-winnowed,more » southwestward and downdip-trending carbonate sequences was controlled by the undulatory and digitate nature of the ramp. Primary intragranular and minor intergranual porosity was preserved as early marine phreatic cementation created a rigid framework of grains resistant to further solution compaction. Fine-grained euhedral dolomite within proximal wackestones and mudstones formed as the product of a paleohydrologic system composed of plumes of fresh water that extended down through grainstone bodies and formed a periperhal zone of mixed meteoric and marine phreatic waters. Later coarse sparry calcite cement within peripheral grainstones resulted from burial cementation. Lack of significant water-filled porosity off the depositional structure indicates that the early presence of hydrocarbons within the primary pore system inhibited further cementation.« less
Roudier, François; Gissot, Lionel; Beaudoin, Frédéric; Haslam, Richard; Michaelson, Louise; Marion, Jessica; Molino, Diana; Lima, Amparo; Bach, Liên; Morin, Halima; Tellier, Frédérique; Palauqui, Jean-Christophe; Bellec, Yannick; Renne, Charlotte; Miquel, Martine; DaCosta, Marco; Vignard, Julien; Rochat, Christine; Markham, Jonathan E.; Moreau, Patrick; Napier, Johnathan; Faure, Jean-Denis
2010-01-01
Very-long-chain fatty acids (VLCFAs) are essential for many aspects of plant development and necessary for the synthesis of seed storage triacylglycerols, epicuticular waxes, and sphingolipids. Identification of the acetyl-CoA carboxylase PASTICCINO3 and the 3-hydroxy acyl-CoA dehydratase PASTICCINO2 revealed that VLCFAs are important for cell proliferation and tissue patterning. Here, we show that the immunophilin PASTICCINO1 (PAS1) is also required for VLCFA synthesis. Impairment of PAS1 function results in reduction of VLCFA levels that particularly affects the composition of sphingolipids, known to be important for cell polarity in animals. Moreover, PAS1 associates with several enzymes of the VLCFA elongase complex in the endoplasmic reticulum. The pas1 mutants are deficient in lateral root formation and are characterized by an abnormal patterning of the embryo apex, which leads to defective cotyledon organogenesis. Our data indicate that in both tissues, defective organogenesis is associated with the mistargeting of the auxin efflux carrier PIN FORMED1 in specific cells, resulting in local alteration of polar auxin distribution. Furthermore, we show that exogenous VLCFAs rescue lateral root organogenesis and polar auxin distribution, indicating their direct involvement in these processes. Based on these data, we propose that PAS1 acts as a molecular scaffold for the fatty acid elongase complex in the endoplasmic reticulum and that the resulting VLCFAs are required for polar auxin transport and tissue patterning during plant development. PMID:20145257
CHEN, LIJIE; HU, MIN; ZHANG, LIHAI; LIU, SANXIA; LUO, JINCHAO; DENG, TIANZHENG; TAO, YE
2012-01-01
Understanding the microanatomy of the facial nerve is vital to functional restoration of facial nerve injury. This study aimed to locate the spatial orientation of five branches in the extratemporal trunk of the rat facial nerve (ETFN). Fifteen adult Sprague-Dawley albino rats were divided randomly into five groups corresponding to the five facial nerves. Fluoro-Gold™ (FG) was applied to one branch in all three rats in each group. The trunk of the facial nerve was cut at three points for fluorescence detection. Staining results showed that each branch of the facial motor nerve had a topographical orientation in the distal part of the ETFN. The temporal branch was located in the medial and acroscopic quadrant of the nerve trunk. The zygomatic branch was located in the lateral and acroscopic quadrant. The buccal branch occupied the upper half of the nerve trunk, whereas the mandibular branch occupied the lower half. The cervical branch presented a square-shaped distribution in the lateral nerve trunk. In the middle part of the ETFN, the topographical orientation remained clear, but the FG-labeled zone was extended to some extent. In the stylomastoid foramen region, all branches diffused, thereby blurring the orientation. In conclusion, each branch of the facial motor nerve had a topographical orientation and distribution in the crotch and middle part of the ETFN, but the branches diffused near the stylomastoid foramen. PMID:23226737
Erdoğan, Serkan; Villar Arias, Silvia; Pérez, William
2016-02-01
The aim of this study was to compare the anatomical and functional characteristics of the lingual papilla among the Camelidae. For this purpose, tongues of alpaca, guanaco, and llama were used. Numerous long and thin filiform papillae were located in the median groove and none were detected on the rest of the dorsal surface of the lingual apex in alpaca. Secondary papillae originated from the base of some filiform papillae on the ventral surface of alpaca tongue. The bases of some filiform papillae of the lateral surface of the lingual apex were inserted into conspicuous grooves in guanaco and tips of filiform papillae on the dorsal surface of the lingual body were ended by bifurcated apex. On the dorsal surface of the lingual apex of llama, there were no filiform papillae but there were numerous filiform papillae on both the lateral margins of the ventral surface of the lingual apex. Fungiform papillae were distributed randomly on dorsal lingual surface and ventral margins of the tongues of all camelid species. Lenticular papillae were located on the lingual torus and varied in size and topographical distribution for each species. Circumvallate papillae had irregular surfaces in llama and alpaca, and smooth surface in guanaco. In conclusion, llama and alpaca tongues were more similar to each other, and tongues of all camelid species displayed more similarities to those of Bactrian and dromedary camels in comparison with other herbivores and ruminants. © 2015 Wiley Periodicals, Inc.
Results on three predictions for July 2012 federal elections in Mexico based on past regularities.
Hernández-Saldaña, H
2013-01-01
The Presidential Election in Mexico of July 2012 has been the third time that PREP, Previous Electoral Results Program works. PREP gives voting outcomes based in electoral certificates of each polling station that arrive to capture centers. In previous ones, some statistical regularities had been observed, three of them were selected to make predictions and were published in arXiv:1207.0078 [physics.soc-ph]. Using the database made public in July 2012, two of the predictions were completely fulfilled, while, the third one was measured and confirmed using the database obtained upon request to the electoral authorities. The first two predictions confirmed by actual measures are: (ii) The Partido Revolucionario Institucional, PRI, is a sprinter and has a better performance in polling stations arriving late to capture centers during the process. (iii) Distribution of vote of this party is well described by a smooth function named a Daisy model. A Gamma distribution, but compatible with a Daisy model, fits the distribution as well. The third prediction confirms that errare humanum est, since the error distributions of all the self-consistency variables appeared as a central power law with lateral lobes as in 2000 and 2006 electoral processes. The three measured regularities appeared no matter the political environment.
Results on Three Predictions for July 2012 Federal Elections in Mexico Based on Past Regularities
Hernández-Saldaña, H.
2013-01-01
The Presidential Election in Mexico of July 2012 has been the third time that PREP, Previous Electoral Results Program works. PREP gives voting outcomes based in electoral certificates of each polling station that arrive to capture centers. In previous ones, some statistical regularities had been observed, three of them were selected to make predictions and were published in arXiv:1207.0078 [physics.soc-ph]. Using the database made public in July 2012, two of the predictions were completely fulfilled, while, the third one was measured and confirmed using the database obtained upon request to the electoral authorities. The first two predictions confirmed by actual measures are: (ii) The Partido Revolucionario Institucional, PRI, is a sprinter and has a better performance in polling stations arriving late to capture centers during the process. (iii) Distribution of vote of this party is well described by a smooth function named a Daisy model. A Gamma distribution, but compatible with a Daisy model, fits the distribution as well. The third prediction confirms that errare humanum est, since the error distributions of all the self-consistency variables appeared as a central power law with lateral lobes as in 2000 and 2006 electoral processes. The three measured regularities appeared no matter the political environment. PMID:24386103
Understanding Proto-Insurgencies
2007-01-01
SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY...This document and trademark( s ) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic...documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. Limited Electronic Distribution Rights This
Knaus, Tracey A; Silver, Andrew M; Kennedy, Meaghan; Lindgren, Kristen A; Dominick, Kelli C; Siegel, Jeremy; Tager-Flusberg, Helen
2010-02-01
Language and communication deficits are among the core features of autism spectrum disorder (ASD). Reduced or reversed asymmetry of language has been found in a number of disorders, including ASD. Studies of healthy adults have found an association between language laterality and anatomical measures but this has not been systematically investigated in ASD. The goal of this study was to examine differences in gray matter volume of perisylvian language regions, connections between language regions, and language abilities in individuals with typical left lateralized language compared to those with atypical (bilateral or right) asymmetry of language functions. Fourteen adolescent boys with ASD and 20 typically developing adolescent boys participated, including equal numbers of left- and right-handed individuals in each group. Participants with typical left lateralized language activation had smaller frontal language region volume and higher fractional anisotropy of the arcuate fasciculus compared to the group with atypical language laterality, across both ASD and control participants. The group with typical language asymmetry included the most right-handed controls and fewest left-handers with ASD. Atypical language laterality was more prevalent in the ASD than control group. These findings support an association between laterality of language function and language region anatomy. They also suggest anatomical differences may be more associated with variation in language laterality than specifically with ASD. Language laterality therefore may provide a novel way of subdividing samples, resulting in more homogenous groups for research into genetic and neurocognitive foundations of developmental disorders. Copyright 2009 Elsevier Inc. All rights reserved.
Temperament, Executive Control, and ADHD across Early Development
Rabinovitz, Beth B.; O’Neill, Sarah; Rajendran, Khushmand; Halperin, Jeffrey M.
2015-01-01
Research examining factors linking early temperament and later ADHD is limited by cross-sectional approaches and having the same informant rate both temperament and psychopathology. We used multi-informant/multi-method longitudinal data to test the hypothesis that negative emotionality during preschool is positively associated with ADHD symptom severity in middle childhood, but developing executive control mediates this relation. Children (N=161) with and without ADHD were evaluated three times: Parent and teacher temperament ratings and NEPSY Visual Attention at ages 3–4 years; WISC-IV Working Memory Index and NEPSY Response Set at age 6 years; and ADHD symptoms using the Kiddie-SADS at age 7 years. Parent and teacher ratings of preschoolers’ temperament were combined to form an Anger/Frustration composite. Similarly, an Executive Functioning composite was derived from age 6 measures. Bootstrapping was used to determine whether age 6 Executive Functioning mediated the relation between early Anger/Frustration and later ADHD symptom severity, while controlling for early executive functioning. Preschoolers’ Anger/Frustration was significantly associated with later ADHD symptoms, with this relation partially mediated by age 6 Executive Functioning. Developing executive control mediates the relation between early Anger/Frustration and later ADHD symptom severity, suggesting that Anger/Frustration influences ADHD symptom severity through its impact on developing executive control. Early interventions targeting the harmful influences of negative emotionality or enhancing executive functioning may diminish later ADHD severity. PMID:26854505
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA
The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less
Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA; ...
2015-09-15
The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less
Lateral electrochemical etching of III-nitride materials for microfabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jung
Conductivity-selective lateral etching of III-nitride materials is described. Methods and structures for making vertical cavity surface emitting lasers with distributed Bragg reflectors via electrochemical etching are described. Layer-selective, lateral electrochemical etching of multi-layer stacks is employed to form semiconductor/air DBR structures adjacent active multiple quantum well regions of the lasers. The electrochemical etching techniques are suitable for high-volume production of lasers and other III-nitride devices, such as lasers, HEMT transistors, power transistors, MEMs structures, and LEDs.
Detection of SiO2 nanoparticles in lung tissue by ToF-SIMS imaging and fluorescence microscopy.
Veith, Lothar; Vennemann, Antje; Breitenstein, Daniel; Engelhard, Carsten; Wiemann, Martin; Hagenhoff, Birgit
2017-07-10
The direct detection of nanoparticles in tissues at high spatial resolution is a current goal in nanotoxicology. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is widely used for the direct detection of inorganic and organic substances with high spatial resolution but its capability to detect nanoparticles in tissue sections is still insufficiently explored. To estimate the applicability of this technique for nanotoxicological questions, comparative studies with established techniques on the detection of nanoparticles can offer additional insights. Here, we compare ToF-SIMS imaging data with sub-micrometer spatial resolution to fluorescence microscopy imaging data to explore the usefulness of ToF-SIMS for the detection of nanoparticles in tissues. SiO 2 nanoparticles with a mean diameter of 25 nm, core-labelled with fluorescein isothiocyanate, were intratracheally instilled into rat lungs. Subsequently, imaging of lung cryosections was performed with ToF-SIMS and fluorescence microscopy. Nanoparticles were successfully detected with ToF-SIMS in 3D microanalysis mode based on the lateral distribution of SiO 3 - (m/z 75.96), which was co-localized with the distribution pattern that was obtained from nanoparticle fluorescence. In addition, the lateral distribution of protein (CN - , m/z 26.00) and phosphate based signals (PO 3 - , m/z 78.96) originating from the tissue material could be related to the SiO 3 - lateral distribution. In conclusion, ToF-SIMS is suitable to directly detect and laterally resolve SiO 2 nanomaterials in biological tissue at sufficient intensity levels. At the same time, information about the chemical environment of the nanoparticles in the lung tissue sections is obtained.
The Seasonal Evolution of Sea Ice Floe Size Distribution
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. “The Seasonal Evolution of Sea Ice Floe Size Distribution... seasonally in the southern Beaufort and Chukchi Seas region. OBJECTIVES The objective of this work was to determine the seasonal evolution of the...summer melt season using (4). The technique allows for the direct observation of lateral melt and the 3 calculation of changes in floe perimeter, and
NASA Astrophysics Data System (ADS)
Li, Cong; Jing, Hui; Wang, Rongrong; Chen, Nan
2018-05-01
This paper presents a robust control schema for vehicle lateral motion regulation under unreliable communication links via controller area network (CAN). The communication links between the system plant and the controller are assumed to be imperfect and therefore the data packet dropouts occur frequently. The paper takes the form of parallel distributed compensation and treats the dropouts as random binary numbers that form Bernoulli distribution. Both of the tire cornering stiffness uncertainty and external disturbances are considered to enhance the robustness of the controller. In addition, a robust H∞ static output-feedback control approach is proposed to realize the lateral motion control with relative low cost sensors. The stochastic stability of the closed-loop system and conservation of the guaranteed H∞ performance are investigated. Simulation results based on CarSim platform using a high-fidelity and full-car model verify the effectiveness of the proposed control approach.
Garduño-Montes de Oca, Edgar Uriel; Mata-López, Rosario; León-Règagnon, Virginia
2016-01-01
Two new species of Parapharyngodon collected from the intestine of the Mexican boulder spiny lizard Sceloporus pyrocephalus are described. This study increases to 49 the number of valid species assigned to Parapharyngodon worldwide, 11 of them distributed in Mexico. Males of the two new species share the presence of four pairs of caudal papillae, an anterior echinate cloacal lip and the presence of lateral alae; however, both differ from each other in lateral alae extension and echinate cloacal anterior lip morphology. Females of both species have a prebulbar uterus and eggs shell punctuate with pores, characteristics shared with few other species of Parapharyngodon. Both new species differ from other congeneric species in the papillar arrangement, the anterior cloacal lip morphology, the lateral alae extension and total length/spicule ratio. A taxonomic key for the species of Parapharyngodon distributed in Mexico is provided.
Garduño-Montes de Oca, Edgar Uriel; Mata-López, Rosario; León-Règagnon, Virginia
2016-01-01
Abstract Two new species of Parapharyngodon collected from the intestine of the Mexican boulder spiny lizard Sceloporus pyrocephalus are described. This study increases to 49 the number of valid species assigned to Parapharyngodon worldwide, 11 of them distributed in Mexico. Males of the two new species share the presence of four pairs of caudal papillae, an anterior echinate cloacal lip and the presence of lateral alae; however, both differ from each other in lateral alae extension and echinate cloacal anterior lip morphology. Females of both species have a prebulbar uterus and eggs shell punctuate with pores, characteristics shared with few other species of Parapharyngodon. Both new species differ from other congeneric species in the papillar arrangement, the anterior cloacal lip morphology, the lateral alae extension and total length/spicule ratio. A taxonomic key for the species of Parapharyngodon distributed in Mexico is provided. PMID:27006602
NASA Astrophysics Data System (ADS)
Papatryfonos, Konstantinos; Saladukha, Dzianis; Merghem, Kamel; Joshi, Siddharth; Lelarge, Francois; Bouchoule, Sophie; Kazazis, Dimitrios; Guilet, Stephane; Le Gratiet, Luc; Ochalski, Tomasz J.; Huyet, Guillaume; Martinez, Anthony; Ramdane, Abderrahim
2017-02-01
Single-mode diode lasers on an InP(001) substrate have been developed using InAs/In0.53Ga0.47As quantum dash (Qdash) active regions and etched lateral Bragg gratings. The lasers have been designed to operate at wavelengths near 2 μm and exhibit a threshold current of 65 mA for a 600 μm long cavity, and a room temperature continuous wave output power per facet >5 mW. Using our novel growth approach based on the low ternary In0.53Ga0.47As barriers, we also demonstrate ridge-waveguide lasers emitting up to 2.1 μm and underline the possibilities for further pushing the emission wavelength out towards longer wavelengths with this material system. By introducing experimentally the concept of high-duty-cycle lateral Bragg gratings, a side mode suppression ratio of >37 dB has been achieved, owing to an appreciably increased grating coupling coefficient of κ ˜ 40 cm-1. These laterally coupled distributed feedback (LC-DFB) lasers combine the advantage of high and well-controlled coupling coefficients achieved in conventional DFB lasers, with the regrowth-free fabrication process of lateral gratings, and exhibit substantially lower optical losses compared to the conventional metal-based LC-DFB lasers.
Fukatsu, Kazumi; Bannai, Hiroko; Inoue, Takafumi; Mikoshiba, Katsuhiko
2010-09-01
Inositol 1,4,5-trisphosphate receptor type 1 (IP(3) R1) is an intracellular Ca(2+) release channel that plays crucial roles in the functions of Purkinje cells. The dynamics of IP(3) R1 on the endoplasmic reticulum membrane and the distribution of IP(3) R1 in neurons are thought to be important for the spatial regulation of Ca(2+) release. In this study, we analyzed the lateral diffusion of IP(3) R1 in Purkinje cells in cerebellar slice cultures using fluorescence recovery after photobleaching. In the dendrites of Purkinje cells, IP(3) R1 showed lateral diffusion with an effective diffusion constant of approximately 0.30 μm(2) /s, and the diffusion of IP(3) R1 was negatively regulated by actin filaments. We found that actin filaments were also involved in the regulation of IP(3) R1 diffusion in the spine of Purkinje cells. Glutamate or quisqualic acid stimulation, which activates glutamate receptors and leads to a Ca(2+) transient in Purkinje cells, decreased the diffusion of IP(3) R1 and increased the density of actin in spines. These findings indicate that the neuronal activity-dependent augmentation of actin contributes to the stabilization of IP(3) R1 in spines. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.
Boyd, Eric S.; Barkay, Tamar
2012-01-01
Mercuric mercury (Hg[II]) is a highly toxic and mobile element that is likely to have had a pronounced and adverse effect on biology since Earth’s oxygenation ∼2.4 billion years ago due to its high affinity for protein sulfhydryl groups, which upon binding destabilize protein structure and decrease enzyme activity, resulting in a decreased organismal fitness. The central enzyme in the microbial mercury detoxification system is the mercuric reductase (MerA) protein, which catalyzes the reduction of Hg(II) to volatile Hg(0). In addition to MerA, mer operons encode for proteins involved in regulation, Hg binding, and organomercury degradation. Mer-mediated approaches have had broad applications in the bioremediation of mercury-contaminated environments and industrial waste streams. Here, we examine the composition of 272 individual mer operons and quantitatively map the distribution of mer-encoded functions on both taxonomic SSU rRNA gene and MerA phylogenies. The results indicate an origin and early evolution of MerA among thermophilic bacteria and an overall increase in the complexity of mer operons through evolutionary time, suggesting continual gene recruitment and evolution leading to an improved efficiency and functional potential of the Mer detoxification system. Consistent with a positive relationship between the evolutionary history and topology of MerA and SSU rRNA gene phylogenies (Mantel R = 0.81, p < 0.01), the distribution of the majority of mer functions, when mapped on these phylograms, indicates an overall tendency to inherit mer-encoded functions through vertical descent. However, individual mer functions display evidence of a variable degree of vertical inheritance, with several genes exhibiting strong evidence for acquisition via lateral gene transfer and/or gene loss. Collectively, these data suggest that (i) mer has evolved from a simple system in geothermal environments to a widely distributed and more complex and efficient detoxification system, and (ii) merA is a suitable biomarker for examining the functional diversity of Hg detoxification and for predicting the composition of mer operons in natural environments. PMID:23087676
Merkul'eva, N S; Makarov, F N
2008-10-01
The distribution of the enzyme cytochrome oxidase (CO) in continuous series of parasagittal sections from field 17 and frontal sections of the dorsal nucleus of the lateral geniculate body (LGB) from normal kittens and adult cats was studied. In all cats apart from neonates, layer IV showed regularly alternating areas with above-background levels of CO activity ("spots"). There was a significant increase in the contrast of the "spots" from days 13 to 21, which was followed by a significant decrease from days 48 to 93. These changes coincided with ontogenetic changes in the level of visual system plasticity. There were no differences in CO activity between layers A and A1 of the dorsal nucleus of the LGB. It is suggested that the non-uniform distribution of the level of functional activity of neurons in field 17 reflects the formation of columnar cortical structures during the critical period of postnatal ontogenesis.
Mastalerz, Maria; Drobniak, A.
2007-01-01
Arsenic, cadmium, lead, and zinc contents and distributions are discussed in two major Pennsylvanian coal beds in Indiana: the Danville Coal Member and the Springfield Coal Member. Arsenic contents of the Danville and Springfield coals show similar ranges from 0.5 to 43??ppm for the Danville Coal and 1 to 50??ppm for the Springfield Coal, with an average of 12.7??ppm for the Danville and 9.4??ppm for the Springfield Coal. Cadmium concentrations do not exceed 9??ppm, with an average of 0.4 for Danville and 0.7??ppm for the Springfield. Average Pb contents are 21.3 and 6.3??ppm, whereas Zn contents are 101 and 54??ppm for the Danville and the Springfield, respectively. The distribution of these elements varies both laterally and vertically within the coals, as functions of their mineral associations and the time of their emplacement. ?? 2006 Elsevier B.V. All rights reserved.
Vagne, Quentin; Turner, Matthew S.; Sens, Pierre
2015-01-01
The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles. PMID:26656912
Early-Life Characteristics, Psychiatric History, and Cognition Trajectories in Later Life
ERIC Educational Resources Information Center
Brown, Maria Teresa
2010-01-01
Purpose of the Study: Although considerable attention has been paid to the relationship between later-life depression and cognitive function, the relationship between a history of psychiatric problems and cognitive function is not very well documented. Few studies of relationships between childhood health, childhood disadvantage, and cognitive…
Schizotypal Personality Traits and Atypical Lateralization in Motor and Language Functions
ERIC Educational Resources Information Center
Asai, Tomohisa; Sugimori, Eriko; Tanno, Yoshihiko
2009-01-01
Atypical cerebral lateralization in motor and language functions in regard to schizotypal personality traits in healthy populations, as well as among schizophrenic patients, has attracted attention because these traits may represent a risk factor for schizophrenia. Although the relationship between handedness and schizotypal personality has been…
Genotyping of presenilin-1 polymorphism in amyotrophic lateral sclerosis.
Panas, M; Karadima, G; Kalfakis, N; Psarrou, O; Floroskoufi, P; Kladi, A; Petersen, M B; Vassilopoulos, D
2000-12-01
The mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis are not fully understood. Recent studies suggest that apoptosis is involved in the abnormal neural death that occurs in this devastating disease. Presenilin-1, a transmembrane protein, seems to be implicated in apoptosis. To determine whether presenilin-1 intron 8 polymorphism has an influence in the course of amyotrophic lateral sclerosis, we examined this polymorphism genotypes in a large group of patients (n = 72) with amyotrophic lateral sclerosis and in a random sample of 213 healthy individuals. The results showed a significant difference in genotype (P < 0.04) and allele (P < 0.03) distribution between patients controls. These results suggest a possible intervention of presenilin-1 in the pathogenesis of amyotrophic lateral sclerosis.
Distant touch hydrodynamic imaging with an artificial lateral line.
Yang, Yingchen; Chen, Jack; Engel, Jonathan; Pandya, Saunvit; Chen, Nannan; Tucker, Craig; Coombs, Sheryl; Jones, Douglas L; Liu, Chang
2006-12-12
Nearly all underwater vehicles and surface ships today use sonar and vision for imaging and navigation. However, sonar and vision systems face various limitations, e.g., sonar blind zones, dark or murky environments, etc. Evolved over millions of years, fish use the lateral line, a distributed linear array of flow sensing organs, for underwater hydrodynamic imaging and information extraction. We demonstrate here a proof-of-concept artificial lateral line system. It enables a distant touch hydrodynamic imaging capability to critically augment sonar and vision systems. We show that the artificial lateral line can successfully perform dipole source localization and hydrodynamic wake detection. The development of the artificial lateral line is aimed at fundamentally enhancing human ability to detect, navigate, and survive in the underwater environment.
Matthews, M A; Hoffmann, K D; Hernandez, T V
1989-01-01
Ulex europaeus agglutinin I (UEA-I) is a plant lectin with an affinity for L-fucosyl residues in the chains of lactoseries oligosaccharides associated with medium- and smaller-diameter dorsal root ganglion neurons and their axonal processes. These enter Lissauer's tract and terminate within the superficial laminae of the spinal cord overlapping projections known to have a nociceptive function. This implies that the surface coatings of neuronal membranes may have a relationship with functional modalities. The present investigation further examined this concept by studying a neuronal projection with a nociceptive function to determine whether fucosyl-lactoseries residues were incorporated in its primary afferent terminals. Transganglionic transport of horseradish peroxidase (HRP) following injection into tooth pulp chambers was employed to demonstrate dental pulp terminals in the trigeminal spinal complex, while peroxidase and fluorescent tags were used concomitantly to stain for UEA-I. Double immunolabeling for substance P (SP) and gamma-aminobutyric acid (GABA) using peroxidase and colloidal gold allowed a comparison of the distribution of a known excitatory nociceptive transmitter with that of UEA-I binding in specific subnuclei. Synaptic interrelationships between UEA-I positive dental pulp primary afferent inputs and specific inhibitory terminals were also examined. SP immunoreactivity occurred in laminae I and outer lamina II (IIo) of subnucleus caudalis (Vc) and in the ventrolateral and lateral marginal region of the caudal half of subnucleus interpolaris (Vi), including the periobex area in which Vi is slightly overlapped on its lateral aspect by cellular elements of Vc. The adjacent interstitial nucleus (IN) also showed an intense immunoreactivity for this peptide antibody. UEA-I binding displayed a similar distribution pattern in both Vc and Vi, but extended into lamina IIi and the superficial part of Lamina III in Vc. Dental pulp terminals were found to have a comparable distribution; however, many extended into the dorsal portion of the caudal half of Vi and the ventromedial quadrant of rostral Vi. Electron-microscopic analysis showed that transganglionically labeled dental pulp terminals contained ovoid, complex membrane-bound vacuoles laden with transported HRP. The preterminal axon and synaptic membranes of those dental pulp terminals located in zones of Vc and Vi displaying an affinity for UEA-I were usually characterized by a patchy, electron-dense coating of the peroxidase tag. SP was demonstrated ultrastructurally with Protein-A colloidal gold (3-nm particles), whereas GABA immunoreactivity was revealed by the avidin-biotin-peroxidase method.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Reiss, Martin; Chifflard, Peter
2016-04-01
Runoff generation processes in low mountain ranges in middle Europe are strongly influenced by lateral fluxes of soil water caused by periglacial cover beds. Less attention has been paid to the stratification of soils in hydrologic research as a major trigger of lateral slope water paths (REISS & CHIFFLARD 2014) although especially in the low mountain ranges in Middle Europe subsurface stormflow generation is strongly influenced by the periglacial cover beds (MOLDENHAUER et al. 2013) which are a typical example for stratified soils and almost widespread everywhere in the low mountain ranges. By contrast in soil science the Substrate-Oriented-Soil-Evolution-Model (LORZ et al. 2011) underlines the importance of stratified soils and lithological discontinuities (LD) as a key element controlling ecological processes and depth functions of soil properties. Whereas depth distributions of e.g. trace elements in the soil matrix at the point scale have been already detected, investigations of dissolved trace metal concentrations in the soil pore water and their depth distribution depending on soil stratification are scarce. Based on a typical depth distribution of trace metal concentrations in soil pore water depending on lithological discontinuities these depth functions may indicate zones of preferential transport. Additionally, there is still a missing link of investigations at different scales regarding the impacts of the geochemical barriers and the pronounced depth distributions on the chemical composition of the subsurface stormflow and consequently the hillslope runoff. Therefore, we validated the hypotheses that LDs act as geochemical barriers for their vertical distribution at the point and hillslope scale and that this typical depth functions of trace elements can be used to identify sources of subsurface stormflow at the catchment scale. To address these objectives, our research and sampling design is based on a multi-scale approach combining experimental research at the point and hillslope scale in a small forested catchment (0.24 square kilometer) in Central-Germany called "Krofdorfer Forst". The study area is totally covered by beech forest and characterized as a typically sloped terrain of the mid-latitudes with periglacial cover beds. The catchment is devoid of any riparian zone and is characterized by steep hillslopes that issue directly into the receiving creek. At the point scale the impacts of LDs on the depth distribution of metals (Cr, Mn, Fe, Ni, Cu, Zn, Ar, Se, Cd, Pb) and alkaline earths (Na, Mg, K, Ca) were investigated. Soil water samples were captured at several soil profiles along a hillslope (upper, middle, foot slope) by soil solution access tubes which are installed in different depths depending on the LDs ranging from 10 cm to 110 cm. Soil water samples were taken since October 2012 in an irregular interval. In a complementary effort the temporal variability of the same geochemical parameters mentioned above were investigated in a high temporal resolution in the catchment runoff by using an automatic water sampler. All water samples were filtered and analyzed by using an ICP-MS. First results show that especially manganese is a very suitable element to identify chemical depth functions in soil pore water at the point scale. For this element the LDs act as geochemical barrier. Further elements have to be considered under different aspects since their depth distribution depends not on the lithological discontinuities. At the catchment scale the temporal variability of manganese concentration during different rainfall-runoff events can be used to detect sources of subsurface stormflow. References Reiss, M. & Chifflard, P. (2014): Short Report: Identifying sources of subsurface flow - A theoretical framework assessing the hydrological implications of lithological discontinuities. In: Open Journal of Modern Hydrology 4(3):91-94 Moldenhauer, K.-M., Heller, K., Chifflard, P., Hübner, R. & Kleber, A. (2013): Influence of Cover Beds on Slope Hydrology. In: Kleber, A. & Terhorst, B. (eds.): Mid-Latitude Slope Deposits (Cover Beds). Elsevier, pp. 127-152 Lorz, C., Heller, K. & Kleber, A. (2011): Stratification of the Regolith Continuum - A Key Property for Processes and Functions of Landscapes. In: Zeitschrift für Geomorphologie 55:277-292
Rockwell, Thomas K.; Lindvall, Scott; Dawson, Tim; Langridge, Rob; Lettis, William; Klinger, Yann
2002-01-01
Surveys of multiple tree lines within groves of poplar trees, planted in straight lines across the fault prior to the earthquake, show surprisingly large lateral variations. In one grove, slip increases by nearly 1.8 m, or 35% of the maximum measured value, over a lateral distance of nearly 100 m. This and other observations along the 1999 ruptures suggest that the lateral variability of slip observed from displaced geomorphic features in many earthquakes of the past may represent a combination of (1) actual differences in slip at the surface and (2) the difficulty in recognizing distributed nonbrittle deformation.
Hirt, B; Penkova, Z H; Eckhard, A; Liu, W; Rask-Andersen, H; Müller, M; Löwenheim, H
2010-07-28
Aquaporins are membrane water channel proteins that have also been identified in the cochlea. Auditory function critically depends on the homeostasis of the cochlear fluids perilymph and endolymph. In particular, the ion and water regulation of the endolymph is essential for sensory transduction. Within the cochlear duct the lateral wall epithelium has been proposed to secrete endolymph by an aquaporin-mediated flow of water across its epithelial tight junction barrier. This study identifies interspecies differences in the cellular distribution of aquaporin 5 (AQP5) in the cochlear lateral wall of mice, rats, gerbils and guinea pigs. In addition the cellular expression pattern of AQP5 is described in the human cochlea. Developmental changes in rats demonstrate longitudinal and radial gradients along the cochlear duct. During early postnatal development a pancochlear expression is detected. However a regression to the apical quadrant and limitation to outer sulcus cells (OSCs) is observed in the adult. This developmental loss of AQP5 expression in the basal cochlear segments coincides with a morphological loss of contact between OSCs and the endolymph. At the subcellular level, AQP5 exhibits polarized expression in the apical plasma membrane of the OSCs. Complementary, the basolateral membrane in the root processes of the OSCs exhibits AQP4 expression. This differential localization of AQP5 and AQP4 in the apical and basolateral membranes of the same epithelial cell type suggests a direct aquaporin-mediated transcellular water shunt between the perilymph and endolymph in the OSCs of the cochlear lateral wall. In the human cochlea these findings may have pathophysiological implications attributed to a dysfunctional water regulation by AQP5 such as endolymphatic hydrops (i.e. in Meniere's disease) or sensorineural hearing loss (i.e. in Sjögren's syndrome). Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Hendry, Gordon J.; Rafferty, Danny; Barn, Ruth; Gardner-Medwin, Janet; Turner, Debbie E.; Woodburn, James
2013-01-01
Purpose The objective of this study was to compare disease activity, impairments, disability, foot function and gait characteristics between a well described cohort of juvenile idiopathic arthritis (JIA) patients and normal healthy controls using a 7-segment foot model and three-dimensional gait analysis. Methods Fourteen patients with JIA (mean (standard deviation) age of 12.4 years (3.2)) and a history of foot disease and 10 healthy children (mean (standard deviation) age of 12.5 years (3.4)) underwent three-dimensional gait analysis and plantar pressure analysis to measure biomechanical foot function. Localised disease impact and foot-specific disease activity were determined using the juvenile arthritis foot disability index, rear- and forefoot deformity scores, and clinical and musculoskeletal ultrasound examinations respectively. Mean differences between groups with associated 95% confidence intervals were calculated using the t distribution. Results Mild-to-moderate foot impairments and disability but low levels of disease activity were detected in the JIA group. In comparison with healthy subjects, minor trends towards increased midfoot dorsiflexion and reduced lateral forefoot abduction within a 3–5° range were observed in patients with JIA. The magnitude and timing of remaining kinematic, kinetic and plantar pressure distribution variables during the stance phase were similar for both groups. Conclusion In children and adolescents with JIA, foot function as determined by a multi-segment foot model did not differ from that of normal age- and gender-matched subjects despite moderate foot impairments and disability scores. These findings may indicate that tight control of active foot disease may prevent joint destruction and associated structural and functional impairments. PMID:23142184
Martinek, Johannes
2014-01-01
Distribution of the electrical field is very important to activate muscle and nerve cells properly. One therapeutic method to treat Recurrent Laryngeal Neuropathy (RLN) in horses can be performed by Functional Electrical Stimulation (FES). Current method to optimize the stimulation effect is to use implanted quadripolar electrodes to the musculus cricoarythenoideus dorsalis (CAD) and testing electrode configuration until best possible optimum is reached. For better understanding and finding of maximum possible activation of CAD a simulation model of the actual entire setting is currently in development. Therefore the geometric model is built from CT-data of a dissected larynx containing the quadripolar electrodes as well as fiducials for later data registration. The geometric model is the basis for a finite difference method containing of voxels with corresponding electrical conductivity of the different types of tissue due to threshold segmentation of the CT-data. Model validation can be done by the measurement of the 3D electrical potential distribution of a larynx positioned in an electrolytic tray. Finally, measured and calculated results have to be compared as well as further investigated. Preliminary results show, that changes of electrode as well as conductivity configuration leads to significant different voltage distributions and can be well presented by equipotential lines superimposed CT-slices – a Matlab graphical user interface visualizes the results in freely selectable slices of the 3D geometry. Voltage distribution along theoretically estimated fiber paths could be calculated as well as visualized. For further calculation of nerve or denervated muscle fiber activation and its optimization, real fiber paths have to be defined and referenced to the potential- and the CT-data. PMID:26913137
Comparison of laterality index of upper and lower limb movement using brain activated fMRI
NASA Astrophysics Data System (ADS)
Harirchian, Mohammad Hossein; Oghabian, Mohammad Ali; Rezvanizadeh, Alireza; Bolandzadeh, Niousha
2008-03-01
Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions such as motor functions. This asymmetry maybe altered in some clinical conditions such as Multiple Sclerosis (MS). The aim of this study was to delineate the laterality differences for upper and lower limbs in healthy subjects to compare this pattern with subjects suffering from MS in advance. Hence 9 Male healthy subjects underwent fMRI assessment, while they were asked to move their limbs in a predetermined pattern. The results showed that hands movement activates the brain with a significant lateralization in pre-motor cortex in comparison with lower limb. Also, dominant hands activate brain more lateralized than the non-dominant hand. In addition, Left basal ganglia were observed to be activated regardless of the hand used, While, These patterns of Brain activation was not detected in lower limbs. We hypothesize that this difference might be attributed to this point that hand is usually responsible for precise and fine voluntary movements, whereas lower limb joints are mainly responsible for locomotion, a function integrating voluntary and automatic bilateral movements.
Hippocampal functional connectivity and episodic memory in early childhood
Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L.; Redcay, Elizabeth
2016-01-01
Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4-and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. PMID:26900967
Ding, Zhongxiang; Zhang, Han; Lv, Xiao-Fei; Xie, Fei; Liu, Lizhi; Qiu, Shijun; Li, Li; Shen, Dinggang
2018-01-01
Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Hippocampal functional connectivity and episodic memory in early childhood.
Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L; Redcay, Elizabeth
2016-06-01
Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Autobiographical Memory and Depression in the Later Age: The Bump Is a Turning Point
ERIC Educational Resources Information Center
Gidron, Yori; Alon, Shirly
2007-01-01
This preliminary study integrated previous findings of the distribution of autobiographical memories in the later age according to their age of occurrence, with the overgeneral memory bias predictive of depression. Twenty-five non-demented, Israeli participants between 65-89 years of age provided autobiographical memories to 4 groups of word cues…
Cerebral cortical blood flow maps are reorganized in MAOB-deficient mice
Scremin, Oscar U.; Holschneider, Daniel P.; Chen, Kevin; Li, Mingen G.; Shih, Jean C.
2014-01-01
Cerebral cortical blood flow (CBF) was measured autoradiographically in conscious mice without the monoamine oxidase B (MAOB) gene (KO, n = 11) and the corresponding wild-type animals (WILD, n = 11). Subgroups of animals of each genotype received a continuous intravenous infusion over 30 min of phenylethylamine (PEA), an endogenous substrate of MAOB, (8 nmol g−1 min−1 in normal saline at a volume rate of 0.11 μl g−1 min−1) or saline at the same volume rate. Maps of relative CBF distribution showed predominance of midline motor and sensory area CBF in KO mice over WILD mice that received saline. PEA enhanced CBF in lateral frontal and piriform cortex in both KO and WILD mice. These changes may reflect a differential activation due to chronic and acute PEA elevations on motor and olfactory function, as well as on the anxiogenic effects of this amine. In addition to its effects on regional CBF distribution, PEA decreased CBF globally in KO mice (range −31% to −41% decrease from control levels) with a lesser effect in WILD mice. It is concluded that MAOB may normally regulate CBF distribution and its response to blood PEA. PMID:10095040
Financial derivative pricing under probability operator via Esscher transfomation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achi, Godswill U., E-mail: achigods@yahoo.com
2014-10-24
The problem of pricing contingent claims has been extensively studied for non-Gaussian models, and in particular, Black- Scholes formula has been derived for the NIG asset pricing model. This approach was first developed in insurance pricing{sup 9} where the original distortion function was defined in terms of the normal distribution. This approach was later studied6 where they compared the standard Black-Scholes contingent pricing and distortion based contingent pricing. So, in this paper, we aim at using distortion operators by Cauchy distribution under a simple transformation to price contingent claim. We also show that we can recuperate the Black-Sholes formula usingmore » the distribution. Similarly, in a financial market in which the asset price represented by a stochastic differential equation with respect to Brownian Motion, the price mechanism based on characteristic Esscher measure can generate approximate arbitrage free financial derivative prices. The price representation derived involves probability Esscher measure and Esscher Martingale measure and under a new complex valued measure φ (u) evaluated at the characteristic exponents φ{sub x}(u) of X{sub t} we recuperate the Black-Scholes formula for financial derivative prices.« less
The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.
Su, Jie; Feng, Liping; Zhang, Yan; Liu, Zhengtang
2016-06-22
Using first-principles calculations within density functional theory, we systematically studied the effect of BN-MoS2 heterostructure on the Schottky barriers of metal-MoS2 contacts. Two types of FETs are designed according to the area of the BN-MoS2 heterostructure. Results show that the vertical and lateral Schottky barriers in all the studied contacts, irrespective of the work function of the metal, are significantly reduced or even vanish when the BN-MoS2 heterostructure substitutes the monolayer MoS2. Only the n-type lateral Schottky barrier of Au/BN-MoS2 contact relates to the area of the BN-MoS2 heterostructure. Notably, the Pt-MoS2 contact with n-type character is transformed into a p-type contact upon substituting the monolayer MoS2 by a BN-MoS2 heterostructure. These changes of the contact natures are ascribed to the variation of Fermi level pinning, work function and charge distribution. Analysis demonstrates that the Fermi level pinning effects are significantly weakened for metal/BN-MoS2 contacts because no gap states dominated by MoS2 are formed, in contrast to those of metal-MoS2 contacts. Although additional BN layers reduce the interlayer interaction and the work function of the metal, the Schottky barriers of metal/BN-MoS2 contacts still do not obey the Schottky-Mott rule. Moreover, different from metal-MoS2 contacts, the charges transfer from electrodes to the monolayer MoS2, resulting in an increment of the work function of these metals in metal/BN-MoS2 contacts. These findings may prove to be instrumental in the future design of new MoS2-based FETs with ohmic contact or p-type character.
Kornrumpf, Benthe; Dimigen, Olaf; Sommer, Werner
2017-06-01
Visuospatial attention is an important mechanism in reading that governs the uptake of information from foveal and parafoveal regions of the visual field. However, the spatiotemporal dynamics of how attention is allocated during eye fixations are not completely understood. The current study explored the use of EEG alpha-band oscillations to investigate the spatial distribution of attention during reading. We reanalyzed two data sets, focusing on the lateralization of alpha activity at posterior scalp sites. In each experiment, participants read short lists of German nouns in two paradigms: either by freely moving their eyes (saccadic reading) or by fixating the screen center while the text moved passively from right to left at the same average speed (RSVP paradigm). In both paradigms, upcoming words were either visible or masked, and foveal processing load was manipulated by varying the words' lexical frequencies. Posterior alpha lateralization revealed a sustained rightward bias of attention during saccadic reading, but not in the RSVP paradigm. Interestingly, alpha lateralization was not influenced by word frequency (foveal load) or preview during the preceding fixation. Hence, alpha did not reflect transient attention shifts within a given fixation. However, in both experiments, we found that in the saccadic reading condition a stronger alpha lateralization shortly before a saccade predicted shorter fixations on the subsequently fixated word. These results indicate that alpha lateralization can serve as a measure of attention deployment and its link to oculomotor behavior in reading. © 2017 Society for Psychophysiological Research.
Considering a Cadre Augmented Army
2008-01-01
S ) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT...ACMaxD i ACDep t S AC D i t = = ∑ The force allocation datasheet will include the default initial conditions for the distribution of...This document and trademark( s ) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic
Cerebral Lateralization and Aggression.
ERIC Educational Resources Information Center
Hillbrand, Marc; And Others
1994-01-01
A resurgence of interest in the relationship between cerebral lateralization (the functional asymmetry of the cerebral cortex) and aggression has occurred. Most recent studies have found that individuals with abnormal patterns of lateralization are overrepresented among violent individuals. Intervening variables (such as drug and alcohol abuse)…
Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime
NASA Astrophysics Data System (ADS)
Becker, G. A.; Tietze, S.; Keppler, S.; Reislöhner, J.; Bin, J. H.; Bock, L.; Brack, F.-E.; Hein, J.; Hellwing, M.; Hilz, P.; Hornung, M.; Kessler, A.; Kraft, S. D.; Kuschel, S.; Liebetrau, H.; Ma, W.; Polz, J.; Schlenvoigt, H.-P.; Schorcht, F.; Schwab, M. B.; Seidel, A.; Zeil, K.; Schramm, U.; Zepf, M.; Schreiber, J.; Rykovanov, S.; Kaluza, M. C.
2018-05-01
The spatial distribution of protons accelerated from submicron-thick plastic foil targets using multi-terawatt, frequency-doubled laser pulses with ultra-high temporal contrast has been investigated experimentally. A very stable, ring-like beam profile of the accelerated protons, oriented around the target’s normal direction has been observed. The ring’s opening angle has been found to decrease with increasing foil thicknesses. Two-dimensional particle-in-cell simulations reproduce our results indicating that the ring is formed during the expansion of the proton density distribution into the vacuum as described by the mechanism of target-normal sheath acceleration. Here—in addition to the longitudinal electric fields responsible for the forward acceleration of the protons—a lateral charge separation leads to transverse field components accelerating the protons in the lateral direction.
Liu, Zhi; Deng, Xiaofeng; Cao, Yong; Zhao, Yuanli; Zhao, Jizong; Wang, Shuo
2017-01-01
For cerebral arteriovenous malformations (AVMs) involving language areas, right-sided language lateralization on functional magnetic resonance imaging (fMRI) has been reported, which is regarded as language cortex reorganization. The authors attempted to study if this right-sided language lateralization affects postoperative language outcome. Clinical and imaging data of 43 right-handed AVM patients who underwent preoperative fMRI were retrospectively reviewed. All lesions involved the language cortex, with the Broca area involved in 13 patients and the Wernicke area involved in 30 patients. Lateralization indices (LI) of BOLD signal activations were calculated to determine language lateralization. All patients underwent craniotomy and total resection. Western aphasia battery (WAB) was used to evaluate language functions preoperatively, 1-2 weeks after surgery and 6-30 months after surgery. On preoperative fMRI, right-sided lateralization was observed in 18 patients (41.9%, R Group), including 3 with rightsided lateralization in the Broca area alone, 14 in the Wernicke area alone, and 1 in both areas. The other 25 patients were non-rightsided lateralized (NR Group). One week after surgery, 7 patients in the R Group (38.9%) and 11 patients in the NR Group (44.0%) had language function deterioration, and no significant difference was found (p=0.983). At long-term follow-up, 3 patients in the R Group (16.7%) and 4 patients in the NR Group (16.0%) still had aphasia, and no significant difference was observed (p=1.000). Although right-sided lateralization on fMRI might suggest language cortex reorganization, it is not a factor predicting better postoperative language outcome for AVM patients.
Perception and Lateralization of Spoken Emotion by Youths with High-Functioning Forms of Autism
ERIC Educational Resources Information Center
Baker, Kimberly F.; Montgomery, Allen A.; Abramson, Ruth
2010-01-01
The perception and the cerebral lateralization of spoken emotions were investigated in children and adolescents with high-functioning forms of autism (HFFA), and age-matched typically developing controls (TDC). A dichotic listening task using nonsense passages was used to investigate the recognition of four emotions: happiness, sadness, anger, and…
Gender and rapid alterations of hemispheric dominance during planning.
Schuepbach, Daniel; Skotchko, Tatjana; Duschek, Stefan; Theodoridou, Anastasia; Grimm, Simone; Boeker, Heinz; Seifritz, Erich
2012-01-01
Mental planning and carrying out a plan provoke specific cerebral hemodynamic responses. Gender aspects of hemispheric laterality using rapid cerebral hemodynamics have not been reported. Here, we applied functional transcranial Doppler sonography to examine lateralization of cerebral hemodynamics of the middle cerebral arteries of 28 subjects (14 women and 14 men) performing a standard planning task. There were easy and difficult problems, and mental planning without motor activity was separated from movement execution. Difficult mental planning elicited lateralization to the right hemisphere after 2 or more seconds, a feature that was not observed during movement execution. In females, there was a dominance to the left hemisphere during movement execution. Optimized problem solving yielded an increased laterality change to the right during mental planning. Gender-related hemispheric dominance appears to be condition-dependent, and change of laterality to the right may play a role in optimized performance. Results are of relevance when considering laterality from a perspective of performance enhancement of higher cognitive functions, and also of psychiatric disorders with cognitive dysfunctions and abnormal lateralization patterns such as schizophrenia. Copyright © 2012 S. Karger AG, Basel.
Hemispheric differences in processing of vocalizations depend on early experience.
Phan, Mimi L; Vicario, David S
2010-02-02
An intriguing phenomenon in the neurobiology of language is lateralization: the dominant role of one hemisphere in a particular function. Lateralization is not exclusive to language because lateral differences are observed in other sensory modalities, behaviors, and animal species. Despite much scientific attention, the function of lateralization, its possible dependence on experience, and the functional implications of such dependence have yet to be clearly determined. We have explored the role of early experience in the development of lateralized sensory processing in the brain, using the songbird model of vocal learning. By controlling exposure to natural vocalizations (through isolation, song tutoring, and muting), we manipulated the postnatal auditory environment of developing zebra finches, and then assessed effects on hemispheric specialization for communication sounds in adulthood. Using bilateral multielectrode recordings from a forebrain auditory area known to selectively process species-specific vocalizations, we found that auditory responses to species-typical songs and long calls, in both male and female birds, were stronger in the right hemisphere than in the left, and that right-side responses adapted more rapidly to stimulus repetition. We describe specific instances, particularly in males, where these lateral differences show an influence of auditory experience with song and/or the bird's own voice during development.
Levitation and lateral forces between a point magnetic dipole and a superconducting sphere
NASA Astrophysics Data System (ADS)
H, M. Al-Khateeb; M, K. Alqadi; F, Y. Alzoubi; B, Albiss; M, K. Hasan (Qaseer; N, Y. Ayoub
2016-05-01
The dipole-dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.
Single body parts are processed by individual neurons in the mouse dorsolateral striatum.
Coffey, Kevin R; Nader, Miles; West, Mark O
2016-04-01
Interest in the dorsolateral striatum (DLS) has generated numerous scientific studies of its neuropathologies, as well as its roles in normal sensorimotor integration and learning. Studies are informed by knowledge of DLS functional organization, the guiding principle being its somatotopic afferent projections from primary somatosensory (S1) and motor (M1) cortices. The potential to connect behaviorally relevant function to detailed structure is elevated by mouse models, which have access to extensive genetic neuroscience tool kits. Remaining to be demonstrated, however, is whether the correspondence between S1/M1 corticostriatal terminal distributions and the physiological properties of DLS neurons demonstrated in rats and non-human primates exists in mice. Given that the terminal distribution of S1/M1 projections to the DLS in mice is similar to that in rats, we studied whether firing rates (FRs) of DLS neurons in awake, behaving mice are related to activity of individual body parts. MSNs exhibited robust, selective increases in FR during movement or somatosensory stimulation of single body parts. Properties of MSNs, including baseline FRs, locations, responsiveness to stimulation, and proportions of responsive neurons were similar to properties observed in rats. Future studies can be informed by the present demonstration that the mouse lateral striatum functions as a somatic sensorimotor sector of the striatum and appears to be a homolog of the primate putamen, as demonstrated in rats (Carelli and West, 1991). Copyright © 2016 Elsevier B.V. All rights reserved.