Science.gov

Sample records for lateral flow assay

  1. Lateral flow strip assay

    SciTech Connect

    Miles, Robin R; Benett, William J; Coleman, Matthew A; Pearson, Francesca S; Nasarabadi, Shanavaz L

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  2. Lateral flow assays

    PubMed Central

    Koczula, Katarzyna M.

    2016-01-01

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. PMID:27365041

  3. A lateral electrophoretic flow diagnostic assay.

    PubMed

    Lin, Robert; Skandarajah, Arunan; Gerver, Rachel E; Neira, Hector D; Fletcher, Daniel A; Herr, Amy E

    2015-03-21

    Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a "lateral e-flow assay" and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings.

  4. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  5. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J. C.; Oliveira-Rodríguez, M.; Blanco-López, M. C.; García, J. A.

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies.

  6. Aptamer-phage reporters for ultrasensitive lateral flow assays

    PubMed Central

    Adhikari, Meena; Strych, Ulrich; Kim, Jinsu; Goux, Heather; Dhamane, Sagar; Poongavanam, Mohan-Vivekanandan; Hagström, Anna E. V.; Kourentzi, Katerina; Conrad, Jacinta C.; Willson, Richard C.

    2015-01-01

    We introduce the modification of bacteriophage particles with aptamers for the use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ~100 times lower than those of previously reported IgE assays. PMID:26456715

  7. Time-resolved luminescent lateral flow assay technology.

    PubMed

    Song, Xuedong; Knotts, Michael

    2008-09-26

    We here report a detection technology that integrates highly sensitive time-resolved luminescence technique into lateral flow assay platform to achieve excellent detection performance with low cost. We have developed very bright, surface-functionalized and mono-dispersed phosphorescent nanoparticles of long lifetime under ambient conditions. The phosphorescent nanoparticles have been used to conjugate with monoclonal antibody for C-reactive protein (CRP), an inflammatory biomarker. Lateral flow immunoassay devices have been developed using the conjugate for highly sensitive detection of CRP. The CRP assay can achieve a detection sensitivity of <0.2 ngmL(-1) in serum with a linear response from 0.2 to 200 ngmL(-1) CRP. We have also developed a low cost time-resolved luminescence reader for the lateral flow immunoassay (LFIA) devices. The reader does not use expensive band pass filter and still provide very low detection background and high detection sensitivity on solid substrates such as nitrocellulose membranes. The reader can detect less than 2.5 ng phosphorescent particles captured on a nitrocellulose membrane strip with more than three orders of magnitude linear detection dynamic range. The technology should find a number of applications, ranging from clinical diagnostics, detection of chemical and biological warfare agents, to food and environmental monitoring.

  8. A paper-based lateral flow assay for morphine.

    PubMed

    Teerinen, Tuija; Lappalainen, Timo; Erho, Tomi

    2014-09-01

    Morphine was used as a model analyte to examine the possibility of using cellulose, physically modified by papermaking and converting techniques, as a capillary matrix in a lateral flow type of diagnostic assay. This research was directed toward low-cost, disposable, and portable paper-based diagnostics, with the aim of addressing the analytical performance of paper as a substrate in the analysis for drugs of abuse. Antibody Fab fragments were used as sensing molecules, and gold nanoparticle detection was employed. Inkjet printing was used to pattern sensing biomolecules as detection zones on paper. To validate the usefulness of paper as a diagnostic platform, the principle of a direct sandwich assay, based on immunocomplex formation between morphine and the anti-morphine Fab fragment and detection of the formed immunocomplex by another Fab fragment, was implemented. Results were compared with that achieved by using nitrocellulose as a reference material. Possible interfering from the sample matrix on assay quality was investigated with spiked oral fluid samples. Under optimized conditions, a visually assessed limit of detection for the sandwich assay was 1 ng/mL, indicating that the paper-based test devices developed in this work can perform screening for drugs of abuse and can fulfill the requirement for a sensitive assay in diagnostically relevant ranges.

  9. Detection of Shiga Toxins by Lateral Flow Assay

    PubMed Central

    Ching, Kathryn H.; He, Xiaohua; Stanker, Larry H.; Lin, Alice V.; McGarvey, Jeffery A.; Hnasko, Robert

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) produce shiga toxins (Stxs) that can cause human disease and death. The contamination of food products with STEC represents a food safety problem that necessitates rapid and effective detection strategies to mitigate risk. In this manuscript, we report the development of a colorimetric lateral flow assay (LFA) for the rapid detection of Stxs in <10 min using a pair of monoclonal antibodies that bind epitopes common to Stx1 and six Stx2 variants. This LFA provides a rapid and sensitive test for the detection of Stxs directly from STEC culture supernatants or at risk food samples with a 0.1 ng/mL limit of detection (LOD) for Stx2a. This Stx LFA is applicable for use in the rapid evaluation of Stx production from cultured E. coli strains or as a tool to augment current methods as part of food safety testing. PMID:25855129

  10. Performance of the Cryptococcal Antigen Lateral Flow Assay in Non-HIV-Related Cryptococcosis.

    PubMed

    Jitmuang, Anupop; Panackal, Anil A; Williamson, Peter R; Bennett, John E; Dekker, John P; Zelazny, Adrian M

    2016-02-01

    The cryptococcal antigen lateral flow assay (CrAg LFA) was evaluated for the diagnosis of cryptococcosis in HIV-negative patients. The sensitivity was excellent, suggesting that this assay can replace conventional testing based on latex agglutination (LA). CrAg LFA and LA titers were correlated but were not directly comparable, with implications for conversion between assays.

  11. Sensitive Detection of Norovirus Using Phage Nanoparticle Reporters in Lateral-Flow Assay

    PubMed Central

    Hagström, Anna E. V.; Garvey, Gavin; Paterson, Andrew S.; Dhamane, Sagar; Adhikari, Meena; Estes, Mary K.; Strych, Ulrich; Kourentzi, Katerina; Atmar, Robert L.; Willson, Richard C.

    2015-01-01

    Noroviruses are recognized worldwide as the principal cause of acute, non-bacterial gastroenteritis, resulting in 19-21 million cases of disease every year in the United States. Noroviruses have a very low infectious dose, a short incubation period, high resistance to traditional disinfection techniques and multiple modes of transmission, making early, point-of-care detection essential for controlling the spread of the disease. The traditional diagnostic tools, electron microscopy, RT-PCR and ELISA require sophisticated and expensive instrumentation, and are considered too laborious and slow to be useful during severe outbreaks. In this paper we describe the development of a new, rapid and sensitive lateral-flow assay using labeled phage particles for the detection of the prototypical norovirus GI.1 (Norwalk), with a limit of detection of 107 virus-like particles per mL, one hundred-fold lower than a conventional gold nanoparticle lateral-flow assay using the same antibody pair. PMID:25978622

  12. A lateral flow assay (LFA) for the rapid detection of extraparenchymal neurocysticercosis using cerebrospinal fluid.

    PubMed

    Fleury, Agnes; Sastre, Patricia; Sciutto, Edda; Correia, Silvia; Monedero, Alejandro; Toledo, Andrea; Hernandez, Maricela; Harrison, Leslie J S; Parkhouse, R Michael E

    2016-10-27

    A lateral flow assay (LFA) for the diagnosis and monitoring of extraparenchymal neurocysticercosis, has been developed. The assay is based on the use of the monoclonal antibody HP10, and when applied to cerebrospinal fluid, correctly identified 34 cases of active extraparenchymal neurocysticercosis, but was negative with 26 samples from treated and cured neurocysticercosis patients and with 20 samples from unrelated neurological diseases. There was complete agreement between the HP10 Ag-ELISA results and the HP10-LFA. The HP10-LFA thus has utility for diagnosis and treatment of extraparenchymal neurocysticercosis, frequently a more dangerous form of the infection.

  13. Comparison of conventional lateral-flow assays and a new fluorescent immunoassay to detect influenza viruses.

    PubMed

    Leonardi, Gary P; Wilson, Adele M; Zuretti, Alejandro R

    2013-05-01

    Sofia, a novel, fluorescent lateral-flow immunoassay was compared with two conventional colorimetric assays, Quickvue Influenza A+B and Directigen FLU A+B, to identify influenza viral antigen from patient nasopharyngeal specimens. A total of 118 frozen original influenza-positive specimens and 57 prospective specimens were examined. Using rt-PCR as a referee assay, sensitivity values (%) for influenza A/B of 80.0/74.8, 73.3/59.3 and 73.3/40.7 were obtained using the Sofia, Quickvue and Directigen assays, respectively. All assays demonstrated reduced sensitivity for influenza B as compared with influenza A virus. With respect to the Sofia assay, the sensitivity of influenza B for the Directigen assay was significantly diminished. False positive results were not observed in the Sofia and Directigen assays. The Quickvue assay produced 3 false-positive results (2 influenza A and 1 influenza B) resulting in a specificity (%) of 96 and 98 for influenza A and B, respectively. Cross-reactivity to other respiratory viruses was not observed among immunoassays. A sensitivity rank (highest to low) of rt-PCR>culture>Sofia>Quickvue>Directigen was established using dilutions of influenza A and B. Sofia provides enhanced sensitivity and objective result interpretation over conventional colorimetric immunoassays.

  14. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection.

    PubMed

    Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin

    2016-08-03

    A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients' serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions.

  15. From Lateral Flow Devices to a Novel Nano-Color Microfluidic Assay

    PubMed Central

    Assadollahi, Saied; Reininger, Christiane; Palkovits, Roland; Pointl, Peter; Schalkhammer, Thomas

    2009-01-01

    Improving the performance of traditional diagnostic lateral flow assays combined with new manufacturing technologies is a primary goal in the research and development plans of diagnostic companies. Taking into consideration the components of lateral flow diagnostic test kits; innovation can include modification of labels, materials and device design. In recent years, Resonance-Enhanced Absorption (REA) of metal nano-particles has shown excellent applicability in bio-sensing for the detection of a variety of bio-molecular binding interactions. In a novel approach, we have now integrated REA-assays in a diagnostic microfluidic setup thus resolving the bottleneck of long incubation times inherent in previously existing REA-assays and simultaneously integrated automated fabrication techniques for diagnostics manufacture. Due to the roller-coating based technology and chemical resistance, we used PET-co-polyester as a substrate and a CO2 laser ablation system as a fast, highly precise and contactless alternative to classical micro-milling. It was possible to detect biological binding within three minutes – visible to the eye as colored text readout within the REA-fluidic device. A two-minute in-situ silver enhancement was able to enhance the resonant color additionally, if required. PMID:22454573

  16. Detection of Viruses By Counting Single Fluorescent Genetically Biotinylated Reporter Immunophage Using a Lateral Flow Assay

    PubMed Central

    Kim, Jinsu; Adhikari, Meena; Dhamane, Sagar; Hagström, Anna E. V.; Kourentzi, Katerina; Strych, Ulrich; Willson, Richard C.; Conrad, Jacinta C.

    2015-01-01

    We demonstrated a lateral flow immunoassay (LFA) for detection of viruses using fluorescently-labeled M13 bacteriophage as reporters and single-reporter counting as the readout. AviTag-biotinylated M13 phage were functionalized with antibodies using avidin-biotin conjugation and fluorescently labeled with AlexaFluor 555. Individual phage bound to target viruses (here MS2 as a model) captured on an LFA membrane strip were imaged using epi-fluorescence microscopy. Using automated image processing, we counted the number of bound phage in micrographs as a function of target concentration. The resultant assay was more sensitive than enzyme-linked immunosorbent assays and traditional colloidal-gold nanoparticle LFAs for direct detection of viruses. PMID:25581289

  17. Fluorescence-based lateral flow assays for rapid oral fluid roadside detection of cannabis use.

    PubMed

    Plouffe, Brian D; Murthy, Shashi K

    2017-02-01

    With the recent worldwide changes in the legalization of marijuana, there is a significant need for rapid, roadside screening test for driving under the influence of drugs. A robust, sensitive, lateral flow assay has been developed to detect recent use via oral-fluid testing for Δ(9) -tetrahydrocannabinol (THC). This proof-of-concept assay uses a fluorescent-based immunoassay detection of polymeric beads, conjugated to antibodies against native THC. The fluorescent technique allows for significantly lower limits of detection and higher precision determination of recent marijuana use without the use of urine or blood sampling-thus allowing for roadside identification. Detection levels of 0.01 ng/mL were distinguished from background and the lower limit of quantification was determined to approach 1 ng/mL.

  18. The cryptococcal antigen lateral flow assay: A point-of-care diagnostic at an opportune time.

    PubMed

    Tang, Michele W; Clemons, Karl V; Katzenstein, David A; Stevens, David A

    2016-08-01

    Cryptococcal meningitis is a devastating HIV-related opportunistic infection, affecting nearly 1 million individuals and causing over 500 000 deaths each year. The burden of disease is greatest in sub-Saharan Africa and Southeast Asia, where cryptococcal disease is the most common cause of meningitis. Rapid, accurate and affordable diagnosis of cryptococcal disease has been lacking in many of the most heavily affected areas. Here, we review a point-of-care assay for cryptococcal disease, the dipstick-formatted cryptococcal antigen lateral flow assay (LFA) (IMMY, Norman, OK). In comparison to culture, the assay is 99.5% sensitive and 98% specific. In comparison to other commercially available tests for cryptococcal antigen, the LFA has equal or superior sensitivity and specificity in CSF, plasma and serum samples. We discuss potential applications for the use of the assay in resource-limited settings, including what is likely to be an important role of the LFA in screening for early cryptococcal infection before clinical disease and in evaluating pre-emptive treatment.

  19. Lipopolysaccharide Specific Immunochromatography Based Lateral Flow Assay for Serogroup Specific Diagnosis of Leptospirosis in India

    PubMed Central

    Vanithamani, Shanmugam; Shanmughapriya, Santhanam; Narayanan, Ramasamy; Raja, Veerapandian; Kanagavel, Murugesan; Sivasankari, Karikalacholan; Natarajaseenivasan, Kalimuthusamy

    2015-01-01

    Background Leptospirosis is a re-emerging infectious disease that is under-recognized due to low-sensitivity and cumbersome serological tests. MAT is the gold standard test and it is the only serogroup specific test used till date. Rapid reliable alternative serogroup specific tests are needed for surveillance studies to identify locally circulating serogroups in the study area. Methods/Principal Findings In the present investigation the serological specificity of leptospiral lipopolysaccharides (LPS) was evaluated by enzyme linked immunosorbent assay (ELISA), dot blot assay and rapid immunochromatography based lateral flow assay (ICG-LFA). Sera samples from 120 MAT positive cases, 174 cases with febrile illness other than leptospirosis, and 121 seronegative healthy controls were evaluated for the diagnostic sensitivity and specificity of the developed assays. LPS was extracted from five locally predominant circulating serogroups including: Australis (27.5%), Autumnalis (11.7%), Ballum (25.8%), Grippotyphosa (12.5%), Pomona (10%) and were used as antigens in the diagnostics to detect IgM antibodies in patients’ sera. The sensitivity observed by IgM ELISA and dot blot assay using various leptospiral LPS was >90% for homologous sera. Except for Ballum LPS, no other LPS showed cross-reactivity to heterologous sera. An attempt was made to develop LPS based ICG-LFA for rapid and sensitive serogroup specific diagnostics of leptospirosis. The developed ICG-LFA showed sensitivity in the range between 93 and 100% for homologous sera. The Wilcoxon analysis showed LPS based ICG-LFA did not differ significantly from the gold standard MAT (P>0.05). Conclusion The application of single array of LPS for serogroup specific diagnosis is first of its kind. The developed assay could potentially be evaluated and employed for as MAT alternative. PMID:26340095

  20. Increasing Binding Efficiency via Reporter Shape and Flux in a Viral Nanoparticle Lateral-Flow Assay.

    PubMed

    Kim, Jinsu; Vu, Binh; Kourentzi, Katerina; Willson, Richard C; Conrad, Jacinta C

    2017-02-15

    To identify factors controlling the performance of reporter particles in a sensitive lateral-flow assay (LFA), we investigated the effect of the flux and shape of filamentous bacteriophage (phage) on the performance of phage LFAs. Phage of three different lengths and diameters were modified with biotin and AlexaFluor 555 as binding and read-out elements, respectively. The binding efficiencies of the functionalized phage were tested in a fibrous glass LFA membrane modified with avidin. The total binding rate, quantified using real-time particle counting and particle image velocimetry, decreased monotonically with the average bulk flux of phage through the membrane. At the pore scale, more phage bound in regions with faster local flow, confirming that both average and local flux increased binding. The number of bound phage increased with the aspect ratio of the phage and scaled with the phage surface area, consistent with a binding interaction controlled by the number of recognition elements on the surface. Together, these results indicate that increasing the likelihood that recognition elements on the surface of phage encounter the fibers enhances the assay binding efficiency and suggests one origin for the improved performance of nonspherical phage reporters.

  1. Point-of-care diagnosis and prognostication of cryptococcal meningitis with the cryptococcal antigen lateral flow assay on cerebrospinal fluid.

    PubMed

    Kabanda, Taseera; Siedner, Mark J; Klausner, Jeffrey D; Muzoora, Conrad; Boulware, David R

    2014-01-01

    The cryptococcal antigen (CRAG) lateral flow assay (LFA) had 100% sensitivity and specificity on cerebrospinal fluid samples. Pretreatment LFA titers correlated with quantitative cultures (R(2) = 0.7) and predicted 2- and 10-week mortality. The CRAG LFA is an accurate diagnostic assay for CSF and should be considered for point-of-care diagnosis of cryptococcal meningitis.

  2. Detection of mycobacterial DNA by a specific and simple lateral flow assay incorporating cadmium selenide quantum dots.

    PubMed

    Cimaglia, Fabio; Liandris, Emmanouil; Gazouli, Maria; Sechi, Leonardo; Chiesa, Maurizio; De Lorenzis, Enrico; Andreadou, Margarita; Taka, Styliani; Mataragka, Antonia; Ikonomopoulos, John

    2015-12-01

    Cadmium selenide quantum dots have been incorporated to a lateral flow assay for the specific and very simple detection of different mycobacterial DNA targets within only a few minutes, bypassing the complexity of conventional DNA hybridization assays. The method extends our previous work on protein detection using an identical procedure.

  3. Development and validation of a lateral flow assay for the detection of crustacean protein in processed foods.

    PubMed

    Koizumi, Daisuke; Shirota, Kazuya; Akita, Ryoko; Oda, Hiroshi; Akiyama, Hiroshi

    2014-05-01

    We developed and validated a novel lateral flow assay for the detection of crustacean protein in processed foods. This assay had high sensitivity; the visual detection limit for shrimp protein extract was 25μg/L, equivalent to 1μg/g protein in a food sample, and results could be obtained within 20min without sophisticated procedures or expensive equipment. Concordance between our assay and another validated quantitative enzyme-linked immunosorbent assay was 97% for commercially processed foods. This assay is rapid, simple, reliable, and highly correlated with validated enzyme-linked immunosorbent assays and is thus suitable for monitoring of food products, especially in food-processing facilities.

  4. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay

    PubMed Central

    Jauset-Rubio, Miriam; Svobodová, Markéta; Mairal, Teresa; McNeil, Calum; Keegan, Neil; Saeed, Ayman; Abbas, Mohammad Nooredeen; El-Shahawi, Mohammad S.; Bashammakh, Abdulaziz S.; Alyoubi, Abdulrahman O.; O´Sullivan, Ciara K.

    2016-01-01

    Sensitive, specific, rapid, inexpensive and easy-to-use nucleic acid tests for use at the point-of-need are critical for the emerging field of personalised medicine for which companion diagnostics are essential, as well as for application in low resource settings. Here we report on the development of a point-of-care nucleic acid lateral flow test for the direct detection of isothermally amplified DNA. The recombinase polymerase amplification method is modified slightly to use tailed primers, resulting in an amplicon with a duplex flanked by two single stranded DNA tails. This tailed amplicon facilitates detection via hybridisation to a surface immobilised oligonucleotide capture probe and a gold nanoparticle labelled reporter probe. A detection limit of 1 × 10−11 M (190 amol), equivalent to 8.67 × 105 copies of DNA was achieved, with the entire assay, both amplification and detection, being completed in less than 15 minutes at a constant temperature of 37 °C. The use of the tailed primers obviates the need for hapten labelling and consequent use of capture and reporter antibodies, whilst also avoiding the need for any post-amplification processing for the generation of single stranded DNA, thus presenting an assay that can facilely find application at the point of need. PMID:27886248

  5. Persistent Luminescence Strontium Aluminate Nanoparticles as Reporters in Lateral Flow Assays

    PubMed Central

    2015-01-01

    Demand for highly sensitive, robust diagnostics and environmental monitoring methods has led to extensive research in improving reporter technologies. Inorganic phosphorescent materials exhibiting persistent luminescence are commonly found in electroluminescent displays and glowing paints but are not widely used as reporters in diagnostic assays. Persistent luminescence nanoparticles (PLNPs) offer advantages over conventional photoluminescent probes, including the potential for enhanced sensitivity by collecting time-resolved measurements or images with decreased background autofluorescence while eliminating the need for expensive optical hardware, superior resistance to photobleaching, amenability to quantitation, and facile bioconjugation schemes. We isolated rare-earth doped strontium aluminate PLNPs from larger-particle commercial materials by wet milling and differential sedimentation and water-stabilized the particles by silica encapsulation using a modified Stöber process. Surface treatment with aldehyde silane followed by reductive amination with heterobifunctional amine-poly(ethylene glycol)-carboxyl allowed covalent attachment of proteins to the particles using standard carbodiimide chemistry. NeutrAvidin PLNPs were used in lateral flow assays (LFAs) with biotinylated lysozyme as a model analyte in buffer and monoclonal anti-lysozyme HyHEL-5 antibodies at the test line. Preliminary experiments revealed a limit of detection below 100 pg/mL using the NeutrAvidin PLNPs, which was approximately an order of magnitude more sensitive than colloidal gold. PMID:25247754

  6. Apolipoprotein E genotyping using PCR-GoldMag lateral flow assay and its clinical applications

    PubMed Central

    Lian, Ting; Hui, Wenli; Li, Xianying; Zhang, Chao; Zhu, Juanli; Li, Rui; Wan, Yinsheng; Cui, Yali

    2016-01-01

    A polymerase chain reaction-gold magnetic nanoparticles lateral flow assay (PCR-GoldMag LFA) has been developed via integrating multiplex amplification refractory mutation system PCR (multi-ARMS-PCR) with GoldMag-based LFA for the visual detection of single-nucleotide polymorphisms (SNPs). This assay was applied to genotype Apolipoprotein E (ApoE). ApoE genotyping is important due to the predictive value for the development of coronary artery disease and Alzheimer's disease. The method requires two steps: i) Simultaneous amplifications of the two polymorphic codons (ApoE 158 and 112), performed in separated reactions using multi-ARMS-PCR; and ii) detection of the wild-type and mutant PCR products via dual immunoreactions, which can be performed in ~5 min. Within two LFAs, anti-digoxin antibody-conjugated GoldMag probes bind digoxin-labeled wild-type PCR products, and anti-fluorescein isothiocyanate (FITC) antibody-conjugated GoldMag probes bind FITC-labeled mutant PCR products. All PCR products are biotin labeled and are detected by streptavidin-coated regions on the LFA strip, resulting in a red color. The current approach is capable of detecting the SNPs of ApoE in ~1.5 h, with a broad detection range from 10–1,000 ng of genomic DNA. Thus, the present protocol may facilitate simple, fast and cost-effective screening for important SNPs, as demonstrated by the evaluation of the prevalence of ApoE variants in a Han Chinese cohort. PMID:27665864

  7. Parallel, open-channel lateral flow (immuno) assay substrate based on capillary-channeled polymer films.

    PubMed

    Zhang, Lynn X; Jiang, Liuwei; Willett, Daniel R; Marcus, R Kenneth

    2016-02-07

    Presented here is a novel implementation of polypropylene capillary-channeled polymer (C-CP) films, functionalized for bioaffinity separations and implemented as a platform for lateral flow (immuno) assays. The parallel ∼80 μm × 80 μm channels pass test solutions down the 30 mm film length via spontaneous wicking action, setting up the possibility for immobilizing different capture agents in the respective channels. The base-film modification process is divided into two steps: ultraviolet light treatment to improve hydrophillicity of the polypropylene substrate and the physical adsorption of a functionalized lipid tethered ligand (LTL) as a selective capture agent. The entire modification procedure is performed under ambient conditions in an aqueous solution without extreme pH conditions. In this demonstration, physical adsorption of a biotinylated-LTL onto the UV-treated PP surface selectively captures Texas Red-labeled streptavidin (SAv-TR) in the presence of enhanced green fluorescence protein (EGFP), which passes without retention in less than 5 s. In addition to the fluorescence imaging of the protein solutes, matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to confirm the formation of the LTL-SAv conjugates on the channel surface as well as to demonstrate an alternative means of probing the capture step. The present effort sets the groundwork for further development of C-CP films as a parallel, multi-analyte LFA platform; a format that to-date has not been described.

  8. Quantitative lateral flow strip assays as User-Friendly Tools To Detect Biomarker Profiles For Leprosy

    PubMed Central

    van Hooij, Anouk; Tjon Kon Fat, Elisa M.; Richardus, Renate; van den Eeden, Susan J. F.; Wilson, Louis; de Dood, Claudia J.; Faber, Roel; Alam, Korshed; Richardus, Jan Hendrik; Corstjens, Paul L. A. M.; Geluk, Annemieke

    2016-01-01

    Leprosy is a debilitating, infectious disease caused by Mycobacterium leprae. Despite the availability of multidrug therapy, transmission is unremitting. Thus, early identification of M. leprae infection is essential to reduce transmission. The immune response to M. leprae is determined by host genetics, resulting in paucibacillary (PB) and multibacillary (MB) leprosy associated with dominant cellular or humoral immunity, respectively. This spectral pathology of leprosy compels detection of immunity to M. leprae to be based on multiple, diverse biomarkers. In this study we have applied quantitative user friendly lateral flow assays (LFAs) for four immune markers (anti-PGL-I antibodies, IL-10, CCL4 and IP-10) for whole blood samples from a longitudinal BCG vaccination field-trial in Bangladesh. Different biomarker profiles, in contrast to single markers, distinguished M. leprae infected from non-infected test groups, patients from household contacts (HHC) and endemic controls (EC), or MB from PB patients. The test protocol presented in this study merging detection of innate, adaptive cellular as well as humoral immunity, thus provides a convenient tool to measure specific biomarker profiles for M. leprae infection and leprosy utilizing a field-friendly technology. PMID:27682181

  9. Multisite validation of cryptococcal antigen lateral flow assay and quantification by laser thermal contrast.

    PubMed

    Boulware, David R; Rolfes, Melissa A; Rajasingham, Radha; von Hohenberg, Maximilian; Qin, Zhenpeng; Taseera, Kabanda; Schutz, Charlotte; Kwizera, Richard; Butler, Elissa K; Meintjes, Graeme; Muzoora, Conrad; Bischof, John C; Meya, David B

    2014-01-01

    Cryptococcal meningitis is common in sub-Saharan Africa. Given the need for data for a rapid, point-of-care cryptococcal antigen (CRAG) lateral flow immunochromatographic assay (LFA), we assessed diagnostic performance of cerebrospinal fluid (CSF) culture, CRAG latex agglutination, India ink microscopy, and CRAG LFA for 832 HIV-infected persons with suspected meningitis during 2006-2009 (n = 299) in Uganda and during 2010-2012 (n = 533) in Uganda and South Africa. CRAG LFA had the best performance (sensitivity 99.3%, specificity 99.1%). Culture sensitivity was dependent on CSF volume (82.4% for 10 μL, 94.2% for 100 μL). CRAG latex agglutination test sensitivity (97.0%-97.8%) and specificity (85.9%-100%) varied between manufacturers. India ink microscopy was 86% sensitive. Laser thermal contrast had 92% accuracy (R = 0.91, p<0.001) in quantifying CRAG titers from 1 LFA strip to within <1.5 dilutions of actual CRAG titers. CRAG LFA is a major advance for meningitis diagnostics in resource-limited settings.

  10. Sensitive biomolecule detection in lateral flow assay with a portable temperature-humidity control device.

    PubMed

    Choi, Jane Ru; Hu, Jie; Feng, Shangsheng; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-05-15

    Lateral flow assays (LFAs) have currently attracted broad interest for point-of-care (POC) diagnostics, but their application has been restricted by poor quantification and limited sensitivity. While the former has been currently solved to some extent by the development of handheld or smartphone-based readers, the latter has not been addressed fully, particularly the potential influences of environmental conditions (e.g., temperature and relative humidity (RH)), which have not yet received serious attention. The present study reports the use of a portable temperature-humidity control device to provide an optimum environmental requirement for sensitivity improvement in LFAs, followed by quantification by using a smartphone. We found that a RH beyond 60% with temperatures of 55-60°C and 37-40°C produced optimum nucleic acid hybridization and antigen-antibody interaction in LFAs, respectively representing a 10-fold and 3-fold signal enhancement over ambient conditions (25°C, 60% RH). We envision that in the future the portable device could be coupled with a fully integrated paper-based sample-to-answer biosensor for sensitive detection of various target analytes in POC settings.

  11. Aptamer Lateral Flow Assays for Ultrasensitive Detection of β-Conglutin Combining Recombinase Polymerase Amplification and Tailed Primers.

    PubMed

    Jauset-Rubio, Miriam; Svobodová, Markéta; Mairal, Teresa; McNeil, Calum; Keegan, Neil; El-Shahawi, Mohammad S; Bashammakh, Abdulaziz S; Alyoubi, Abdulrahman O; O'Sullivan, Ciara K

    2016-11-01

    In this work, different methodologies were evaluated in search of robust, simple, rapid, ultrasensitive, and user-friendly lateral flow aptamer assays. In one approach, we developed a competitive based lateral flow aptamer assay, in which β-conglutin immobilized on the test line of a nitrocellulose membrane and β-conglutin in the test sample compete for binding to AuNP labeled aptamer. The control line exploits an immobilized DNA probe complementary to the labeled aptamer, forcing displacement of the aptamer from the β-conglutin-aptamer complex. In a second approach, the competition for aptamer binding takes place off-strip, and following competition, aptamer bound to the immobilized β-conglutin is eluted and used as a template for isothermal recombinase polymerase amplification, exploiting tailed primers, resulting in an amplicon of a duplex flanked by single stranded DNA tails. The amplicon is rapidly and quantitatively detected using a nucleic acid lateral flow with an immobilized capture probe and a gold nanoparticle labeled reporter probe. The competitive lateral flow is completed in just 5 min, achieving a detection limit of 55 pM (1.1 fmol), and the combined competitive-amplification lateral flow requires just 30 min, with a detection limit of 9 fM (0.17 amol).

  12. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays.

    PubMed

    You, David J; Park, Tu San; Yoon, Jeong-Yeol

    2013-02-15

    Semi-quantitative thyr oid stimulating hormone (TSH) lateral flow immunochromatographic assays (LFA) are used to screen for serum TSH concentration >5 mIUL(-1) (hypothyroidism). The LFA format, however, is unable to measure TSH in the normal range or detect suppressed levels of TSH (<0.4 mIU L(-1); hyperthyroidism). In fact, it does not provide quantitative TSH values at all. Obtaining quantitative TSH results, especially in the low concentration range, has until now required the use of centralized clinical laboratories which require specimen transport, specialized equipment and personnel, and result in increased cost and delays in the timely reporting of important clinical results. We have conducted a series of experiments to develop and validate an optical system and image analysis algorithm based upon a cell phone platform. It is able to provide point-of-care quantitative TSH results with a high level of sensitivity and reproducibility comparable to that of a clinical laboratory-based third-generation TSH immunoassay. Our research approach uses the methodology of the optimized Rayleigh/Mie scatter detection by taking into consideration the optical characteristics of a nitrocellulose membrane and gold nanoparticles on an LFA for quantifying TSH levels. Using a miniature spectrometer, LED light source, and optical fibers on a rotating benchtop apparatus, the light intensity from different angles of incident light and angles of detection to the LFA were measured. The optimum angles were found that the minimized Mie scattering from nitrocellulose membrane, consequently maximizes the Rayleigh scatter detection from the gold nanoparticles in the LFA bands. Using the results from the benchtop apparatus, a cell-phone-based apparatus was designed which utilized the embedded flash in the cell phone camera as the light source, piped the light with an optical fiber from the flash through a collimating lens to illuminate the LFA. Quantification of TSH was performed in an i

  13. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in Hiv-positive adults

    PubMed Central

    Shah, Maunank; Hanrahan, Colleen; Wang, Zhuo Yu; Dendukuri, Nandini; Lawn, Stephen D; Denkinger, Claudia M; Steingart, Karen R

    2016-01-01

    Background Rapid detection of tuberculosis (TB) among people living with human immunodeficiency virus (HIV) is a global health priority. HIV-associated TB may have different clinical presentations and is challenging to diagnose. Conventional sputum tests have reduced sensitivity in HIV-positive individuals, who have higher rates of extrapulmonary TB compared with HIV-negative individuals. The lateral flow urine lipoarabinomannan assay (LF-LAM) is a new, commercially available point-of-care test that detects lipoarabinomannan (LAM), a lipopolysaccharide present in mycobacterial cell walls, in people with active TB disease. Objectives To assess the accuracy of LF-LAM for the diagnosis of active TB disease in HIV-positive adults who have signs and symptoms suggestive of TB (TB diagnosis).To assess the accuracy of LF-LAM as a screening test for active TB disease in HIV-positive adults irrespective of signs and symptoms suggestive of TB (TB screening). Search methods We searched the following databases without language restriction on 5 February 2015: the Cochrane Infectious Diseases Group Specialized Register; MEDLINE (PubMed,1966); EMBASE (OVID, from 1980); Science Citation Index Expanded (SCI-EXPANDED, from 1900), Conference Proceedings Citation Index-Science (CPCI-S, from 1900), and BIOSIS Previews (from 1926) (all three using the Web of Science platform; MEDION; LILACS (BIREME, from 1982); SCOPUS (from 1995); the metaRegister of Controlled Trials (mRCT); the search portal of the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP); and ProQuest Dissertations & Theses A&l (from 1861). Selection criteria Eligible study types included randomized controlled trials, cross-sectional studies, and cohort studies that determined LF-LAM accuracy for TB against a microbiological reference standard (culture or nucleic acid amplification test from any body site). A higher quality reference standard was one in which two or more specimen types were

  14. Effects of blood sample anticoagulants on lateral flow assays using luminescent photon-upconverting and Eu(III) nanoparticle reporters.

    PubMed

    Juntunen, Etvi; Arppe, Riikka; Kalliomäki, Laura; Salminen, Teppo; Talha, Sheikh M; Myyryläinen, Tiina; Soukka, Tero; Pettersson, Kim

    2016-01-01

    Many quantitative and semiquantitative lateral flow (LF) assays have been introduced for clinical analytes such as biomarkers for cancer or acute myocardial infarction (AMI). Various detection technologies involving quantitative analyzing devices have been reported to have sufficient analytical sensitivity and quantification capability for clinical point-of-care tests. Fluorescence-based detection technologies such as quantum dots, Eu(III) nanoparticles, and photon-upconverting nanoparticles (UCNPs) have been introduced as promising solutions for point-of-care devices because of their high detectability by optical sensors. Lateral flow assays can be used for various sample types, e.g., urine, saliva, cerebrospinal fluid, and blood. This study focuses on the properties of serum and plasma because of their relevance in cancer and AMI diagnostics. The limit of detection was compared in LF assays having Eu(III) nanoparticles or UCNPs as reporters and the antibody configurations for two different analytes (prostate-specific antigen and cardiac troponin I (cTnI)). The results indicate a significant effect of anticoagulants in venipuncture tubes. The samples in K3EDTA tubes resulted in significant interference by decreased reporter particle mobility, and thus the limit of detection was up to eightfold less sensitive compared to serum samples. Despite the matrix interference in the cTnI assay with UCNP reporters, limits of detection of 41 ng/L with serum and 66 ng/L with the Li-heparin sample were obtained.

  15. Development of enzyme-based bar code-style lateral-flow assay for hydrogen peroxide determination.

    PubMed

    Fung, Ka-Kei; Chan, Cangel Pui-Yee; Renneberg, Reinhard

    2009-02-16

    A unique approach of developing a bar code version of lateral-flow enzymatic-based assay for the semi-quantification of hydrogen peroxide is described. The proposed assay system is mainly composed of a goat anti-mouse IgG-horseradish peroxidase conjugate (Gt anti-M IgG-HRP)-coated nitrocellulose (NC) membrane and a peroxidase substrate pad. Unlike the bar code immunochromatographic assay which depends on the stepwise capture of analyte, the principle of enzyme-based bar code lateral-flow assay is based on the different reaction time on successive lines due to the delay in 3,3',5,5'-tetramethylbenzidine (TMB) release. Hydrogen peroxide (H(2)O(2)) acts as a limiting factor which controls the rate of the enzymatic conversion of TMB to blue color complex. The system expresses the concentration of H(2)O(2) in micromole range as three distinct ladder bars in 9 min therefore without the need of any reading device. The major advantages of this assay are its easily readable result, and also its simplicity and low-cost in production offers a cheaper alternative for testing those expensive biosensors might not be available to the third world countries. By incorporating with H(2)O(2)-generating oxidoreductases, the assay can be further extended to detect a variety of analytes with clinical and environmental importance. Glucose was chosen to be the model analyte where the proposed system gave signal response at between 5 microM and 100 microM.

  16. A novel nucleic lateral flow assay for screening of PHA-producing haloarchaea.

    PubMed

    Muangsuwan, Wannaporn; Ruangsuj, Pattarawan; Chaichanachaicharn, Pichai; Yasawong, Montri

    2015-09-01

    Polyhydroxyalkanoates (PHAs) are important for biodegradable plastic production, and prokaryotes play a very important role in PHA production. PHA synthase is a key enzyme for the polymerization of PHAs. There are four classes of PHA synthase. The phaC gene is necessary for the production of all classes of PHA synthase, whereas the phaE gene is necessary for the production of class III PHA synthase. This gene is a biomarker for microorganisms that contain class III PHA synthase, such as haloarchaea. Standard techniques for screening of PHA-producing haloarchaea require time for culturing and have poor specificity and sensitivity. Thus, the phaE biosensor was developed to overcome these issues. PCR and DNA lateral flow biosensor techniques were combined for construction of the phaE biosensor. The phaE biosensor has a high specificity for PHA-producing haloarchaea. The lowest amount of genomic DNA of Haloquadratum walsbyi DSM 16854 that the phaE gene could be detected by the biosensor was approximately 250 fg. The phaE biosensor can be applied for screening of PHA-producing haloarchaea from environmental samples. The phaE biosensor is easy to handle and dispose. For screening PHA-producing haloarchaea, the phaE biosensor requires less time and costs less than the standard methods.

  17. Tools for diagnosis, monitoring and screening of Schistosoma infections utilizing lateral-flow based assays and upconverting phosphor labels.

    PubMed

    Corstjens, Paul L A M; De Dood, Claudia J; Kornelis, Dieuwke; Fat, Elisa M Tjon Kon; Wilson, R Alan; Kariuki, Thomas M; Nyakundi, Ruth K; Loverde, Philip T; Abrams, William R; Tanke, Hans J; Van Lieshout, Lisette; Deelder, André M; Van Dam, Govert J

    2014-12-01

    The potential of various quantitative lateral flow (LF) based assays utilizing up-converting phosphor (UCP) reporters for the diagnosis of schistosomiasis is reviewed including recent developments. Active infections are demonstrated by screening for the presence of regurgitated worm antigens (genus specific polysaccharides), whereas anti-Schistosoma antibodies may indicate ongoing as well as past infections. The circulating anodic antigen (CAA) in serum or urine (and potentially also saliva) is identified as the marker that may allow detection of single-worm infections. Quantitation of antigen levels is a reliable method to study effects of drug administration, worm burden and anti-fecundity mechanisms. Moreover, the ratio of CAA and circulating cathodic antigen (CCA) is postulated to facilitate identification of either Schistosoma mansoni or Schistosoma haematobium infections. The UCP-LF assays allow simultaneous detection of multiple targets on a single strip, a valuable feature for antibody detection assays. Although antibody detection in endemic regions is not a useful tool to diagnose active infections, it gains potential when the ratio of different classes of antibody specific for the parasite/disease can be determined. The UCP-LF antibody assay format allows this type of multiplexing, including testing a linear array of up to 20 different targets. Multiple test spots would allow detection of specific antibodies, e.g. against different Schistosoma species or other pathogens as soil-transmitted helminths. Concluding, the different UCP-LF based assays for diagnosis of schistosomiasis provide a collection of tests with relatively low complexity and high sensitivity, covering the full range of diagnostics needed in control programmes for mapping, screening and monitoring.

  18. Tools for diagnosis, monitoring and screening of Schistosoma infections utilizing lateral-flow based assays and upconverting phosphor labels

    PubMed Central

    CORSTJENS, PAUL L. A. M.; DE DOOD, CLAUDIA J.; KORNELIS, DIEUWKE; FAT, ELISA M. TJON KON; WILSON, R. ALAN; KARIUKI, THOMAS M.; NYAKUNDI, RUTH K.; LOVERDE, PHILIP T.; ABRAMS, WILLIAM R.; TANKE, HANS J.; VAN LIESHOUT, LISETTE; DEELDER, ANDRÉ M.; VAN DAM, GOVERT J.

    2014-01-01

    SUMMARY The potential of various quantitative lateral flow (LF) based assays utilizing up-converting phosphor (UCP) reporters for the diagnosis of schistosomiasis is reviewed including recent developments. Active infections are demonstrated by screening for the presence of regurgitated worm antigens (genus specific polysaccharides), whereas anti-Schistosoma antibodies may indicate ongoing as well as past infections. The circulating anodic antigen (CAA) in serum or urine (and potentially also saliva) is identified as the marker that may allow detection of single-worm infections. Quantitation of antigen levels is a reliable method to study effects of drug administration, worm burden and anti-fecundity mechanisms. Moreover, the ratio of CAA and circulating cathodic antigen (CCA) is postulated to facilitate identification of either Schistosoma mansoni or Schistosoma haematobium infections. The UCP-LF assays allow simultaneous detection of multiple targets on a single strip, a valuable feature for antibody detection assays. Although antibody detection in endemic regions is not a useful tool to diagnose active infections, it gains potential when the ratio of different classes of antibody specific for the parasite/disease can be determined. The UCP-LF antibody assay format allows this type of multiplexing, including testing a linear array of up to 20 different targets. Multiple test spots would allow detection of specific antibodies, e.g. against different Schistosoma species or other pathogens as soil-transmitted helminths. Concluding, the different UCP-LF based assays for diagnosis of schistosomiasis provide a collection of tests with relatively low complexity and high sensitivity, covering the full range of diagnostics needed in control programmes for mapping, screening and monitoring. PMID:24932595

  19. Multiplex Flow Assays

    PubMed Central

    2016-01-01

    Lateral flow or dipstick assays (e.g., home pregnancy tests), where an analyte solution is drawn through a porous membrane and is detected by localization onto a capture probe residing at a specific site on the flow strip, are the most commonly and extensively used type of diagnostic assay. However, after over 30 years of use, these assays are constrained to measuring one or a few analytes at a time. Here, we describe a completely general method, in which any single-plex lateral flow assay is transformed into a multiplex assay capable of measuring an arbitrarily large number of analytes simultaneously. Instead of identifying the analyte by its localization onto a specific geometric location in the flow medium, the analyte-specific capture probe is identified by its association with a specific optically encoded region within the flow medium. The capture probes for nucleic acids, antigens, or antibodies are attached to highly porous agarose beads, which have been encoded using multiple lanthanide emitters to create a unique optical signature for each capture probe. The optically encoded capture probe-derivatized beads are placed in contact with the analyte-containing porous flow medium and the analytes are captured onto the encoded regions as the solution flows through the porous medium. To perform a multiplex diagnostic assay, a solution comprising multiple analytes is passed through the flow medium containing the capture probe-derivatized beads, and the captured analyte is treated with a suitable fluorescent reporter. We demonstrate this multiplex analysis technique by simultaneously measuring DNA samples, antigen–antibody pairs, and mixtures of multiple nucleic acids and antibodies. PMID:27819063

  20. Development of Lateral Flow Assay Based on Size-Controlled Gold Nanoparticles for Detection of Hepatitis B Surface Antigen

    PubMed Central

    Kim, Dong Seok; Kim, Yong Tae; Hong, Seok Bok; Kim, Jinwoon; Heo, Nam Su; Lee, Moon-Keun; Lee, Seok Jae; Kim, Byeong Il; Kim, In Soo; Huh, Yun Suk; Choi, Bong Gill

    2016-01-01

    In this study, we developed lateral flow assay (LFA) biosensors for the detection of hepatitis B surface antigens using well-controlled gold nanoparticles (AuNPs). To enhance colorimetric signals, a seeded growth method was used for the preparation of size-controlled AuNPs with a narrow size distribution. Different sizes of AuNPs in the range of 342–137.8 nm were conjugated with antibodies and then optimized for the efficient detection of LFA biosensors. The conjugation stability was investigated by UV-vis spectroscopy of AuNP dispersion at various pH values and concentrations of antibody. Based on optimized conjugation conditions, the use of 42.7 ± 0.8 nm AuNPs exhibited superior performance for the detection of LFAs relative to other sizes of AuNPs. PMID:27999291

  1. Staphylococcal enterotoxin B-specific electrochemiluminescence and lateral flow device assays cross-react with staphylococcal enterotoxin D.

    PubMed

    Tallent, Sandra M; Hait, Jennifer; Bennett, Reginald W

    2014-01-01

    Guam school children and faculty members experienced symptoms of vomiting, nausea, abdominal cramps, and diarrhea shortly after eating breakfast prepared by contracted caterers. The first illness was reported within an hour after breakfast, affecting 295 students and two faculty members. Local hospitals treated 130 people, and 61 were admitted for further treatment. Reported symptoms were consistent with staphylococcal food poisoning. Initial food testing using a lateral flow device and electrochemiluminescence method incorrectly implicated staphylococcal enterotoxin B as the causative agent, prompting partial activation of Guam's Emergency Response Center. Traditional ELISAs proved that the food poisoning agent was staphylococcal enterotoxin D. More specific and sensitive assays would have alleviated the issues and confusion that surrounded the reporting and investigation of this outbreak.

  2. Rapid detection of abrin in foods with an up-converting phosphor technology-based lateral flow assay

    PubMed Central

    Liu, Xiao; Zhao, Yong; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Zhang, Pingping; Qiu, Jingfu; Yang, Ruifu; Zhou, Lei

    2016-01-01

    Abrin is a natural plant toxin found in the seeds of Abrus precatorius. It may be used for food poisoning or bioterrorism, seriously endangering public health. In this study, a reliable method for the rapid detection of abrin in foods was developed, based on an up-converting phosphor technology-based lateral flow assay (abrin-UPT-LFA). Nine high-affinity monoclonal antibodies (mAbs) against abrin were prepared, and the optimum mAbs (mAb-6F4 and mAb-10E11) were selected for use in the assay in double-antibody-sandwich mode. The assay was confirmed to be specific for abrin, with a detection sensitivity of 0.1 ng mL−1 for standard abrin solutions. Good linearity was observed for abrin quantitation from 0.1 to 1000 ng mL−1 (r = 0.9983). During the analysis of various abrin-spiked food samples, the assay showed strong sample tolerance and a satisfactory limit of detection for abrin (0.5–10 ng g−1 for solid and powdered samples; 0.30–0.43 ng mL−1 for liquid samples). The analysis of suspected food samples, from sample treatment to result feed-back, could be completed by non-professionals within 20 min. Therefore, the abrin-UPT-LFA is a rapid, sensitive, and reliable method for the on-site detection of abrin in foods. PMID:27703269

  3. Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus.

    PubMed

    Oem, Jae Ku; Ferris, Nigel P; Lee, Kwang-Nyeong; Joo, Yi-Seok; Hyun, Bang-Hun; Park, Jong-Hyeon

    2009-11-01

    A simple lateral-flow assay (LFA) based on a monoclonal antibody (MAb 70-17) was developed for the detection of foot-and-mouth disease virus (FMDV) under nonlaboratory conditions. The LFA was evaluated with epithelial suspensions (n = 704) prepared from current and historical field samples which had been submitted to the Pirbright Laboratory (United Kingdom) and from negative samples (n = 100) collected from naïve animals in Korea. Four FMDV serotypes (type O, A, Asia 1, and C) were detected in the LFA, but not the remaining three FMDV serotypes (SAT 1, SAT 2, and SAT 3). The diagnostic sensitivity of the LFA for FMDV types O, A, C, and Asia 1 was similar, at approximately 87.3%, to that of 87.7% obtained with antigen enzyme-linked immunosorbent assay (Ag-ELISA). The diagnostic specificity of the LFA was 98.8%, compared to 100% for the Ag-ELISA. These results demonstrate that the LFA using the FMDV MAb 70-17 to detect FMDV is a supportive method for taking rapid measurements at the site of a suspected foot-and-mouth disease outbreak in Asia before diagnosing the disease in the laboratory, thereby offering the possibility of implementing control procedures more rapidly.

  4. Rapid Identification of OXA-48 and OXA-163 Subfamilies in Carbapenem-Resistant Gram-Negative Bacilli with a Novel Immunochromatographic Lateral Flow Assay.

    PubMed

    Pasteran, Fernando; Denorme, Laurence; Ote, Isabelle; Gomez, Sonia; De Belder, Denise; Glupczynski, Youri; Bogaerts, Pierre; Ghiglione, Barbara; Power, Pablo; Mertens, Pascal; Corso, Alejandra

    2016-11-01

    We assessed a novel immunochromatographic lateral flow assay for direct identification of OXA-48-like carbapenemases and accurate differentiation of allele variants with distinct substrate profiles (OXA-48 or OXA-163 subfamilies). The assay allowed rapid (less than 4 min) and reliable direct confirmation of OXA-163- and/or OXA-48-like enzymes (with 100% sensitivity and 100% specificity) from cultured colonies that were recovered from both solid medium and spiked blood culture bottles.

  5. Evaluation of an Immunochromatographic Lateral Flow Assay (OXA-48 K-SeT) for Rapid Detection of OXA-48-Like Carbapenemases in Enterobacteriaceae

    PubMed Central

    Shah, Rishita; Betts, Jonathan W.; Phee, Lynette M.; Momin, Muhd Haziq F. Abdul

    2015-01-01

    We evaluated an immunochromatographic lateral flow assay to detect OXA-48-like carbapenemases (OXA-48 K-SeT) in Enterobacteriaceae (n = 82). One hundred percent sensitivity and specificity were observed using bacteria recovered from both solid medium and spiked blood culture bottles, and the results were obtained in <10 min. PMID:26607983

  6. Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine.

    PubMed

    Hu, Li-Ming; Luo, Kai; Xia, Jun; Xu, Guo-Mao; Wu, Cheng-Hui; Han, Jiao-Jiao; Zhang, Gang-Gang; Liu, Miao; Lai, Wei-Hua

    2017-05-15

    Label selection is a critical factor for improving the sensitivity of lateral flow assay. Time-resolved fluorescent nanobeads, fluorescent submicrospheres, quantum dots, and colloidal gold-based lateral flow assay (TRFN-LFA, FM-LFA, QD-LFA, and CG-LFA) were first systematically compared for the quantitative detection of ractopamine in swine urine based on competitive format. The limits of detection (LOD) of TRFN-LFA, FM-LFA, QD-LFA, and CG-LFA were 7.2, 14.7, 23.6, and 40.1pg/mL in swine urine samples, respectively. The sensitivity of TRFN-LFA was highest. In the quantitative determination of ractopamine (RAC) in swine urine samples, TRFN-LFA exhibited a wide linear range of 5pg/mL to 2500pg/mL with a reliable coefficient of correlation (R(2)=0.9803). Relatively narrow linear ranges of 10-500pg/mL (FM-LFA) and 25-2500pg/mL (QD-LFA and CG-LFA) were acquired. Approximately 0.005µg of anti-RAC poly antibody (pAb) was used in each TRFN-LFA test strip, whereas 0.02, 0.054, and 0.15µg of pAb were used in each of the FM-LFA, QD-LFA, and CG-LFA test strips, respectively. In addition, TRFN-LFA required the least RAC-BSA antigens and exhibited the shortest detection time compared with the other lateral flow assays. Analysis of the RAC in swine urine samples showed that the result of TRFN-LFA was consistent with that of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a commercial enzyme-linked immunosorbent assay (ELISA) kit.

  7. Comparison of Lateral Flow Assay, Kidney Inhibition Swab, and Liquid Chromatography-Tandem Mass Spectrometry for the Detection of Penicillin G Residues in Sow Urine.

    PubMed

    Shelver, Weilin L; Chakrabarty, Shubhashis; Smith, David J

    2017-03-01

    Sows (n = 126) were administered penicillin G; urine, collected at slaughter, was screened by kidney inhibition swab (KIS; 4 h testing time) and then stored at -80 °C (∼1200 days) until analysis by lateral flow assay (LF, ∼5 min testing time) and tandem quadrupole LC-MS/MS (TQ) analysis. The stability of penicillin in urine during storage was verified using TQ analyses. Quantitative results were well-correlated (R(2) = 0.98) with only a ∼10% decrease in penicillin concentration during the 3-year storage period. KIS retesting of stored samples returned results consistent with the original analyses. Lateral flow assay results were highly correlated with the KIS and TQ results. A KIS positive sample, which was not confirmed by TQ or LF, was assayed by Triple-TOF LC-MS to determine the cause of the apparent false positive. This study suggests LF can be used to quickly and efficiently screen for penicillin G residues before slaughter.

  8. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    SciTech Connect

    Cary,; Bruce, R; Stubben, Christopher J

    2011-03-22

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  9. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay.

    PubMed

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-02-17

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 10(4) CFU mL(-1) or 10(5) CFU mL(-1) for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R(2)) of 0.916-0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥ 80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water.

  10. Development of a loop-mediated isothermal amplification assay combined with a lateral flow dipstick for rapid and simple detection of classical swine fever virus in the field.

    PubMed

    Chowdry, Vinay Kumar; Luo, Yuzi; Widén, Frederik; Qiu, Hua-Ji; Shan, Hu; Belák, Sándor; Liu, Lihong

    2014-03-01

    Classical swine fever (CSF) is a highly contagious viral disease and may cause heavy economic loss to farmers. The rapid, simple and accurate diagnosis of the disease at the frontline, for example on the farms of concern is crucial for disease control. This study describes the development and evaluation of a new loop-mediated isothermal amplification (LAMP) assay coupled with lateral flow dipstick (LFD) for the detection of classical swine fever virus (CSFV). This RT-LAMP-LFD assay combines the efficient one-step isothermal amplification of CSF viral RNA and the simplicity of the LFD to read the results within two to five minutes. Seven genotypes (1.1, 1.2, 1.3, 2.1, 2.2, 2.3 and 3.1), but not genotype 3.4, were successfully detected by the RT-LAMP-LFD assay, indicating that the method has a broad range of detection and can be applied in different geographical areas where CSFV strains belonging to these genotypes are present. The performance of this RT-LAMP-LFD assay was similar to that of the real-time RT-PCR. The analytical sensitivity was about 100copies per reaction when testing two genotypes (1.1 and 2.3). No cross-reactivity to non-CSFV pestiviruses was observed. This RT-LAMP-LFD assay can be a useful novel tool for the rapid, simple and economic diagnosis of classical swine fever in the field.

  11. Rapid Detection of Panton-Valentine Leukocidin in Staphylococcus aureus Cultures by Use of a Lateral Flow Assay Based on Monoclonal Antibodies

    PubMed Central

    Müller, Elke; Buechler, Joseph; Rejman, John; Stieber, Bettina; Akpaka, Patrick Eberechi; Bandt, Dirk; Burris, Rob; Coombs, Geoffrey; Hidalgo-Arroyo, G. Aida; Hughes, Peter; Kearns, Angela; Abós, Sonia Molinos; Pichon, Bruno; Skakni, Leila; Söderquist, Bo; Ehricht, Ralf

    2013-01-01

    Panton-Valentine leukocidin (PVL) is a virulence factor of Staphylococcus aureus, which is associated with skin and soft-tissue infections and necrotizing pneumonia. To develop a rapid phenotypic assay, recombinant PVL F component was used to generate monoclonal antibodies by phage display. These antibodies were spotted on protein microarrays and screened using different lukF-PV preparations and detection antibodies. This led to the identification of the optimal antibody combination that was then used to establish a lateral flow assay. This test was used to detect PVL in S. aureus cultures. The detection limit of the assay with purified native and recombinant antigens was determined to be around 1 ng/ml. Overnight cultures from various solid and liquid media proved suitable for PVL detection. Six hundred strains and clinical isolates from patients from America, Europe, Australia, Africa, and the Middle East were tested. Isolates were genotyped in parallel by DNA microarray hybridization for confirmation of PVL status and assignment to clonal complexes. The sensitivity, specificity, and positive and negative predictive values of the assay in this trial were 99.7, 98.3, 98.4, and 99.7%, respectively. A total of 302 clinical isolates and reference strains were PVL positive and were assigned to 21 different clonal complexes. In summary, the lateral flow test allows rapid and economical detection of PVL in a routine bacteriology laboratory. As the test utilizes cultures from standard media and does not require sophisticated equipment, it can be easily integrated into a laboratory's workflow and might contribute to timely therapy of PVL-associated infections. PMID:23175260

  12. Gold magnetic nanoparticle conjugate-based lateral flow assay for the detection of IgM class antibodies related to TORCH infections.

    PubMed

    Li, Xingxing; Zhang, Qinlu; Hou, Peng; Chen, Mingwei; Hui, Wenli; Vermorken, Alphons; Luo, Zhiyi; Li, Hong; Li, Qin; Cui, Yali

    2015-11-01

    In this study, a lateral flow immunochromatographic assay (LFIA) system for the detection of immunoglobulin M (IgM) antibodies, related to TORCH [(T)oxoplasmosis, (O)ther agents, (R)ubella (also known as German Measles), (C)ytomegalovirus, and (H)erpes simplex virus infections], based on gold magnetic nanoparticles, was established. Following modification with poly(methacrylic acid), the gold magnetic nanoparticles conjugated with an anti‑human IgM antibody (μ‑chain specific) to construct a probe. A lateral flow assay device was constructed based on these conjugates. IgM antibodies to four types of pathogens, notably toxoplasmosis, rubella virus, cytomegalovirus and herpes simplex virus type 2, were detected using this device. Compared with commercial colloidal gold‑based LFIA strips, our method exhibited higher sensitivity. No interference with triglycerides, hemoglobin and bilirubin occurred, and no cross‑reactivity was noted among the four pathogens. The gold magnetic nanoparticle‑LFIA strips were used to assess 41 seropositive and 121 seronegative serum samples. The sensitivity was 100% (162/162) and the specificity was 100% (162/162). This method cannot only be used for the detection of TORCH IgM-specific antibodies, but it can potentially be developed for use in the diagnosis of other acute or recently identified autoimmune diseases.

  13. Development and Evaluation of Up-Converting Phosphor Technology-Based Lateral Flow Assay for Quantitative Detection of NT-proBNP in Blood

    PubMed Central

    Hao, Qingfang; Zou, Deyong; Zhang, Xiaoli; Zhang, Liping; Li, Hongmei; Qiao, Yong; Zhao, Huansheng; Zhou, Lei

    2017-01-01

    A newly assay, up-converting phosphor technology-based lateral flow (UPT-LF) assay, was developed for rapid and quantitative detection of N-terminal fragment of B-type natriuretic peptide precursor (NT-proBNP), one of the most important serum molecular maker of heat failure, in plasma samples as a point of care testing (POCT) method for diagnosis of acute heart failure. Human plasma from 197 patients with acute heart failure and 200 healthy controls was assessed using the UPT-LF assay, in a comparison with a Roche Elecsys assay. The limit of detection of the UPT-LF assay, with a coefficient of variation (CV) of less than 15%, was 116 ng/L, which is lower than the clinical diagnosis cutoff (150 ng/mL). The linear range was 50–35,000 ng/L. The CVs were less than 10% for both UPT-LF and Roche Elecsys assays for plasma samples under different storages, demonstrating the good stability and reproducibility. There are certain linear correlations between the results of UPT-LF and Roche Elecsys assay for EDTA-K2 and heparin-anticoagulated plasma, as well as for serum samples. For UPT-LF assay, there is a significant correlation between the values derived from analysis of EDTA-K2 and heparin-anticoagulated plasma samples (R = 0.995). No statistically significant difference was found between serum and plasma samples for UPT-LF assay. Our results demonstrate that NT-proBNP levels in healthy adults are elevated with age and had a relationship with sex, and with the age increase the NT-proBNP levels of females are significantly higher than those of males (p<0.01). The UPT-LF assay has a high reproducibility, stability, sensitivity, specificity, and is consistent with Roche Elecsys assay, and therefore it could be used as a POCT method for the quantitative detection of NT-proBNP in blood for clinical diagnosis and research of acute heart failure. PMID:28151978

  14. Comprehensive laboratory evaluation of a specific lateral flow assay for the presumptive identification of abrin in suspicious white powders and environmental samples.

    PubMed

    Ramage, Jason G; Prentice, Kristin Willner; Morse, Stephen A; Carter, Andrew J; Datta, Shomik; Drumgoole, Rahsaan; Gargis, Shaw R; Griffin-Thomas, Latoya; Hastings, Rebecca; Masri, Heather P; Reed, Matthew S; Sharma, Shashi K; Singh, Ajay K; Swaney, Erin; Swanson, Tanya; Gauthier, Cheryl; Toney, Denise; Pohl, Jan; Shakamuri, Priyanka; Stuchlik, Olga; Elder, Ian A; Estacio, Peter L; Garber, Eric A E; Hojvat, Sally; Kellogg, Richard B; Kovacs, Gerald; Stanker, Larry; Weigel, Linda; Hodge, David R; Pillai, Segaran P

    2014-01-01

    Abrin is a heterodimeric toxin present in the seeds of the Abrus precatorius plant. The easily obtainable seeds can yield a highly toxic product that can be used in various types of biocrimes and terrorism-related activities, including "white-powder" letters. Although the vast majority of these threats are hoaxes, the lack of rapid and reliable detection assays for abrin, such as lateral flow assays (LFAs), can be an impediment to accurate and rapid hazard assessment. One of the complicating factors associated with LFAs is the use of antibodies of poor affinity and specificity that cross-react with near neighbors or that bind to plant lectins, which are capable of nonspecifically cross-linking the capture and detector antibodies. Because of the critical need to promote public safety and public health, we conducted a comprehensive laboratory evaluation of a commercial LFA for the rapid detection of abrin. This study was conducted using comprehensive inclusivity and exclusivity panels of abrin and near-neighbor plant materials, along with panels of lectins, related proteins, white powders, and environmental background material, to determine the sensitivity, specificity, limit of detection, dynamic range, and repeatability of the assay for the specific intended use of evaluating suspicious white powders and environmental samples for the presumptive presence of abrin.

  15. Development of a Novel Cocktail Enzyme-Linked Immunosorbent Assay and a Field-Applicable Lateral-Flow Rapid Test for Diagnosis of Contagious Bovine Pleuropneumonia

    PubMed Central

    Heller, Martin; Gicheru, Nimmo; Tjipura-Zaire, Georgina; Muriuki, Cecilia; Yu, Mingyan; Botelho, Ana; Naessens, Jan; Jores, Joerg

    2016-01-01

    Contagious bovine pleuropneumonia (CBPP) is a severe respiratory disease that is widespread in sub-Saharan Africa. It is caused by Mycoplasma mycoides subsp. mycoides, a bacterium belonging to the Mycoplasma mycoides cluster. In the absence of an efficient CBPP vaccine, improved and easy-to-use diagnostic assays for recurrent testing combined with isolation and treatment of positive animals represent an option for CBPP control in Africa. Here we describe the comprehensive screening of 17 immunogenic Mycoplasma mycoides subsp. mycoides proteins using well-characterized bovine sera for the development of a novel cocktail enzyme-linked immunosorbent assay (ELISA) for laboratory use. Two recombinant Mycoplasma immunogens, MSC_0136 and MSC_0636, were used to set up a standardized cocktail ELISA protocol. According to the results from more than 100 serum samples tested, the sensitivity and specificity of the novel cocktail ELISA were 85.6% and 96.4%, respectively, with an overall diagnostic accuracy comparable to that of the Office International des Epizooties (OIE)-prescribed serological assays. In addition, we provide a proof of principle for a field-applicable, easy-to-use commercially produced prototype lateral-flow test for rapid (<30-min) diagnosis of CBPP. PMID:27053669

  16. Comprehensive laboratory evaluation of a highly specific lateral flow assay for the presumptive identification of ricin in suspicious white powders and environmental samples.

    PubMed

    Hodge, David R; Prentice, Kristin Willner; Ramage, Jason G; Prezioso, Samantha; Gauthier, Cheryl; Swanson, Tanya; Hastings, Rebecca; Basavanna, Uma; Datta, Shomik; Sharma, Shashi K; Garber, Eric A E; Staab, Andrea; Pettit, Denise; Drumgoole, Rahsaan; Swaney, Erin; Estacio, Peter L; Elder, Ian A; Kovacs, Gerald; Morse, Brenda S; Kellogg, Richard B; Stanker, Larry; Morse, Stephen A; Pillai, Segaran P

    2013-12-01

    Ricin, a heterodimeric toxin that is present in the seeds of the Ricinus communis plant, is the biothreat agent most frequently encountered by law enforcement agencies in the United States. Even in untrained hands, the easily obtainable seeds can yield a highly toxic product that has been used in various types of threats, including "white-powder" letters. Although the vast majority of these threats are hoaxes, an impediment to accurate hazard assessments by first responders is the unreliability of rapid detection assays for ricin, such as lateral flow assays (LFAs). One of the complicating factors associated with LFAs is the incorporation of antibodies of poor specificity that cross-react with near-neighbors or with plant lectins that are capable of nonspecifically cross-linking the capture and detector antibodies. Because of the compelling and critical need to promote the interests of public safety and public health, the Department of Homeland Security conducted a comprehensive laboratory evaluation study of a commercial LFA for the rapid detection of ricin. This study was conducted using comprehensive inclusivity and exclusivity panels of ricin and near-neighbor plant materials, along with panels of lectins and "white-powders," to determine the specificity, sensitivity, limits of detection, dynamic range, and repeatability of the assay for the specific intended use of evaluating suspicious white powders and environmental samples in the field.

  17. Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Bacillus anthracis Spores in Suspicious White Powders and Environmental Samples

    PubMed Central

    Ramage, Jason G.; Prentice, Kristin W.; DePalma, Lindsay; Venkateswaran, Kodumudi S.; Chivukula, Sruti; Chapman, Carol; Bell, Melissa; Datta, Shomik; Singh, Ajay; Hoffmaster, Alex; Sarwar, Jawad; Parameswaran, Nishanth; Joshi, Mrinmayi; Thirunavkkarasu, Nagarajan; Krishnan, Viswanathan; Morse, Stephen; Avila, Julie R.; Sharma, Shashi; Estacio, Peter L.; Stanker, Larry; Hodge, David R.

    2016-01-01

    We conducted a comprehensive, multiphase laboratory evaluation of the Anthrax BioThreat Alert® test strip, a lateral flow immunoassay (LFA) for the rapid detection of Bacillus anthracis spores. The study, conducted at 2 sites, evaluated this assay for the detection of spores from the Ames and Sterne strains of B. anthracis, as well as those from an additional 22 strains. Phylogenetic near neighbors, environmental background organisms, white powders, and environmental samples were also tested. The Anthrax LFA demonstrated a limit of detection of about 106 spores/mL (ca. 1.5 × 105 spores/assay). In this study, overall sensitivity of the LFA was 99.3%, and the specificity was 98.6%. The results indicated that the specificity, sensitivity, limit of detection, dynamic range, and repeatability of the assay support its use in the field for the purpose of qualitatively evaluating suspicious white powders and environmental samples for the presumptive presence of B. anthracis spores. PMID:27661796

  18. Lateral Flow Assay Based on Paper-Hydrogel Hybrid Material for Sensitive Point-of-Care Detection of Dengue Virus.

    PubMed

    Choi, Jane Ru; Yong, Kar Wey; Tang, Ruihua; Gong, Yan; Wen, Ting; Yang, Hui; Li, Ang; Chia, Yook Chin; Pingguan-Murphy, Belinda; Xu, Feng

    2017-01-01

    Paper-based devices have been broadly used for the point-of-care detection of dengue viral nucleic acids due to their simplicity, cost-effectiveness, and readily observable colorimetric readout. However, their moderate sensitivity and functionality have limited their applications. Despite the above-mentioned advantages, paper substrates are lacking in their ability to control fluid flow, in contrast to the flow control enabled by polymer substrates (e.g., agarose) with readily tunable pore size and porosity. Herein, taking the benefits from both materials, the authors propose a strategy to create a hybrid substrate by incorporating agarose into the test strip to achieve flow control for optimal biomolecule interactions. As compared to the unmodified test strip, this strategy allows sensitive detection of targets with an approximately tenfold signal improvement. Additionally, the authors showcase the potential of functionality improvement by creating multiple test zones for semi-quantification of targets, suggesting that the number of visible test zones is directly proportional to the target concentration. The authors further demonstrate the potential of their proposed strategy for clinical assessment by applying it to their prototype sample-to-result test strip to sensitively and semi-quantitatively detect dengue viral RNA from the clinical blood samples. This proposed strategy holds significant promise for detecting various targets for diverse future applications.

  19. Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification.

    PubMed

    Cho, Il-Hoon; Bhunia, Arun; Irudayaraj, Joseph

    2015-08-03

    To date most LF-ICA format for pathogen detection is based on generating color signals from gold nanoparticle (AuNP) tracers that are perceivable by naked eye but often these methods exhibit sensitivity lower than those associated with the conventional enzyme-based immunological methods or mandated by the regulatory guidelines. By developing AuNP avidin-biotin constructs in which a number of enzymes can be labeled we report on an enhanced LF-ICA system to detect pathogens at very low levels. With this approach we show that as low as 100 CFU/mL of Escherichia coli O157:H7 can be detected, indicating that the limit of detection can be increased by about 1000-fold due to our signal amplification approach. In addition, extensive cross-reactivity experiments were conducted (19 different organisms were used) to test and successfully validate the specificity of the assay. Semi-quantitative analysis can be performed using signal intensities which were correlated with the target pathogen concentrations for calibration by image processing.

  20. Evaluation of lateral flow assay as a field test for investigation of brucellosis outbreak in an organized buffalo farm: A pilot study

    PubMed Central

    Shome, R.; Filia, G.; Padmashree, B. S.; Krithiga, N.; Sahay, Swati; Triveni, K.; Shome, B. R.; Mahajan, V.; Singh, Amarjit; Rahman, H.

    2015-01-01

    Aim: The aim was to evaluate lateral flow assay (LFA) as a field test for investigation of brucellosis outbreak in organized buffalo farm. Materials and Methods: A total of 153 serum samples were tested to detect the presence of brucella antibodies by LFA and three other serological tests i.e. rose bengal plate test (RBPT), protein G based indirect enzyme-linked immunoassay (iELISA), and competitive ELISA (cELISA). The performances of LFA and other serological tests were evaluated using OIE complaint cELISA as the gold standard. Results: Serological tests revealed 50% of the animals were seropositive for Brucella antibodies and correlated with clinical history of abortions, infertility, and productive failures. The newly developed assay showed 87.1% and 92.6% sensitivity and specificity, which was even higher than the specificity of RBPT. Conclusions: The investigation proved the potential usefulness of LFA for field diagnosis of brucellosis in the regions where laboratory facilities are limited. PMID:27047121

  1. LATERAL FLOW ASSAY FOR CRYPTOCOCCAL ANTIGEN: AN IMPORTANT ADVANCE TO IMPROVE THE CONTINUUM OF HIV CARE AND REDUCE CRYPTOCOCCAL MENINGITIS-RELATED MORTALITY

    PubMed Central

    VIDAL, Jose E.; BOULWARE, David R.

    2015-01-01

    SUMMARY AIDS-related cryptococcal meningitis continues to cause a substantial burden of death in low and middle income countries. The diagnostic use for detection of cryptococcal capsular polysaccharide antigen (CrAg) in serum and cerebrospinal fluid by latex agglutination test (CrAg-latex) or enzyme-linked immunoassay (EIA) has been available for over decades. Better diagnostics in asymptomatic and symptomatic phases of cryptococcosis are key components to reduce mortality. Recently, the cryptococcal antigen lateral flow assay (CrAg LFA) was included in the armamentarium for diagnosis. Unlike the other tests, the CrAg LFA is a dipstick immunochromatographic assay, in a format similar to the home pregnancy test, and requires little or no lab infrastructure. This test meets all of the World Health Organization ASSURED criteria (Affordable, Sensitive, Specific, User friendly, Rapid/robust, Equipment-free, and Delivered). CrAg LFA in serum, plasma, whole blood, or cerebrospinal fluid is useful for the diagnosis of disease caused by Cryptococcus species. The CrAg LFA has better analytical sensitivity for C. gattii than CrAg-latex or EIA. Prevention of cryptococcal disease is new application of CrAg LFA via screening of blood for subclinical infection in asymptomatic HIV-infected persons with CD4 counts < 100 cells/mL who are not receiving effective antiretroviral therapy. CrAg screening of leftover plasma specimens after CD4 testing can identify persons with asymptomatic infection who urgently require pre-emptive fluconazole, who will otherwise progress to symptomatic infection and/or die. PMID:26465368

  2. Multiplex diagnosis of viral infectious diseases (AIDS, hepatitis C, and hepatitis A) based on point of care lateral flow assay using engineered proteinticles.

    PubMed

    Lee, Jong-Hwan; Seo, Hyuk Seong; Kwon, Jung-Hyuk; Kim, Hee-Tae; Kwon, Koo Chul; Sim, Sang Jun; Cha, Young Joo; Lee, Jeewon

    2015-07-15

    Lateral flow assay (LFA) is an attractive method for rapid, simple, and cost-effective point of care diagnosis. For LFA-based multiplex diagnosis of three viral intractable diseases (acquired immune deficiency syndrome and hepatitis C and A), here we developed proteinticle-based 7 different 3D probes that display different viral antigens on their surface, which were synthesized in Escherichia coli by self-assembly of human ferritin heavy chain that was already engineered by genetically linking viral antigens to its C-terminus. Each of the three test lines on LFA strip contains the proteinticle probes to detect disease-specific anti-viral antibodies. Compared to peptide probes, the proteinticle probes were evidently more sensitive, and the proteinticle probe-based LFA successfully diagnosed all the 20 patient sera per each disease without a false negative signal, whereas the diagnostic sensitivities in the peptide probe-based LFAs were 65-90%. Duplex and triplex assays performed with randomly mixed patient sera gave only true positive signals for all the 20 serum mixtures without any false positive signals, indicating 100% sensitivity and 100% specificity. It seems that on the proteinticle surface the antigenic peptides have homogeneous orientation and conformation without inter-peptide clustering and hence lead to the enhanced diagnostic performance with solving the problems of traditional diagnostic probes. Although the multiplex diagnosis of three viral diseases above was demonstrated as proof-of-concept here, the proposed LFA system can be applied to multiplex point of care diagnosis of other intractable diseases.

  3. LATERAL FLOW ASSAY FOR CRYPTOCOCCAL ANTIGEN: AN IMPORTANT ADVANCE TO IMPROVE THE CONTINUUM OF HIV CARE AND REDUCE CRYPTOCOCCAL MENINGITIS-RELATED MORTALITY.

    PubMed

    Vidal, Jose E; Boulware, David R

    2015-09-01

    AIDS-related cryptococcal meningitis continues to cause a substantial burden of death in low and middle income countries. The diagnostic use for detection of cryptococcal capsular polysaccharide antigen (CrAg) in serum and cerebrospinal fluid by latex agglutination test (CrAg-latex) or enzyme-linked immunoassay (EIA) has been available for over decades. Better diagnostics in asymptomatic and symptomatic phases of cryptococcosis are key components to reduce mortality. Recently, the cryptococcal antigen lateral flow assay (CrAg LFA) was included in the armamentarium for diagnosis. Unlike the other tests, the CrAg LFA is a dipstick immunochromatographic assay, in a format similar to the home pregnancy test, and requires little or no lab infrastructure. This test meets all of the World Health Organization ASSURED criteria (Affordable, Sensitive, Specific, User friendly, Rapid/robust, Equipment-free, and Delivered). CrAg LFA in serum, plasma, whole blood, or cerebrospinal fluid is useful for the diagnosis of disease caused by Cryptococcus species. The CrAg LFA has better analytical sensitivity for C. gattii than CrAg-latex or EIA. Prevention of cryptococcal disease is new application of CrAg LFA via screening of blood for subclinical infection in asymptomatic HIV-infected persons with CD4 counts < 100 cells/mL who are not receiving effective antiretroviral therapy. CrAg screening of leftover plasma specimens after CD4 testing can identify persons with asymptomatic infection who urgently require pre-emptive fluconazole, who will otherwise progress to symptomatic infection and/or die.

  4. A novel lateral flow assay based on GoldMag nanoparticles and its clinical applications for genotyping of MTHFR C677T polymorphisms

    NASA Astrophysics Data System (ADS)

    Hui, Wenli; Zhang, Sinong; Zhang, Chao; Wan, Yinsheng; Zhu, Juanli; Zhao, Gang; Wu, Songdi; Xi, Dujuan; Zhang, Qinlu; Li, Ningning; Cui, Yali

    2016-02-01

    Current techniques for single nucleotide polymorphism (SNP) detection require tedious experimental procedures and expensive and sophisticated instruments. In this study, a visual genotyping method has been successfully established via combining ARMS-PCR with gold magnetic nanoparticle (GoldMag)-based lateral flow assay (LFA) and applied to the genotyping of methylenetetrahydrofolate reductase (MTHFR) C677T. C677T substitution of the gene MTHFR leads to an increased risk of diseases. The genotyping result is easily achievable by visual observation within 5 minutes after loading of the PCR products onto the LFA device. The system is able to accurately assess a broad detection range of initial starting genomic DNA amounts from 5 ng to 1200 ng per test sample. The limit of detection reaches 5 ng. Furthermore, our PCR-LFA system was applied to clinical trials for screening 1721 individuals for the C677T genotypes. The concordance rate of the genotyping results detected by PCR-LFA was up to 99.6% when compared with the sequencing results. Collectively, our PCR-LFA has been proven to be rapid, accurate, sensitive, and inexpensive. This new method is highly applicable for C677T SNP screening in laboratories and clinical practices. More promisingly, it could also be extended to the detection of SNPs of other genes.

  5. Rapid detection of Bombyx mori nucleopolyhedrovirus (BmNPV) by loop-mediated isothermal amplification assay combined with a lateral flow dipstick method.

    PubMed

    Zhou, Yang; Wu, Jiege; Lin, Feng; Chen, Naifu; Yuan, Shaofei; Ding, Lina; Gao, Li; Hang, Bangxing

    2015-12-01

    The Bombyx mori nucleopolyhedrovirus (BmNPV) is a principal pathogen of the domestic silkworm. The disease often breaks out in sericultural countries and due to its high infectivity; it is difficult to control, resulting in heavy economic loss. In order to develop a rapid, sensitive visual detection and simple-to-use novel technology for detection of BmNPV, a loop-mediated isothermal amplification (LAMP) assay combined with a lateral flow dipstick (LFD) method was described. In this study, a set of four primers and a labeled probe were designed specifically to recognize six distinct regions of the BmNPV gp41 gene, and the LAMP for the detection of BmNPV was developed by isothermal amplification at 61 °C for 45 min, followed by hybridization with an FITC-labeled DNA probe for 5 min and detected by LFD within 5 min. The detection limit of LAMP-LFD was 0.2 pg DNA extracted from silkworm infected with BmNPV and was 100 times more sensitive than conventional PCR. No product was generated from silkworm infected with other viruses. Furthermore, we applied the technique to detect BmNPV in the hemolymph and feces at different intervals post infection (pi). In conclusion, the novel LAMP-LFD setup presented here is simple, rapid, reliable, and has the potential for future use in the detection of BmNPV.

  6. Bisphenol A determination in baby bottles by chemiluminescence enzyme-linked immunosorbent assay, lateral flow immunoassay and liquid chromatography tandem mass spectrometry.

    PubMed

    Maiolini, Elisabetta; Ferri, Elida; Pitasi, Agata Laura; Montoya, Angel; Di Giovanni, Manuela; Errani, Ermanno; Girotti, Stefano

    2014-01-07

    Two immunoassays, a Lateral Flow ImmunoAssay (LFIA) based on colloidal gold nanoparticle labels and an indirect competitive chemiluminescence enzyme-linked immunosorbent assay (CL-ELISA), were developed and a high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was optimized to assess the possible release of bisphenol A (BPA, 4,4'-isopropylidenediphenol) from different plastic baby bottles treated with simulating solutions. Coating conjugate concentration, anti-BPA antibody dilution, incubation time of the primary and secondary antibodies, and tolerance to different organic solvents were optimized to obtain the best performance of the ELISA with chemiluminescent end-point detection. The influence of different buffers on LFIA performance was also evaluated. Both methods showed good repeatability (mean CV value around 13%) and sensitivity. Reproducibility tests for CL-ELISA gave a mean CV value of about 25%. The IC50 and Limit of Detection (LOD) values of CL-ELISA were 0.2 and 0.02 ng mL(-1), respectively. The LOD of LFIA was 0.1 μg mL(-1). A LC-MS/MS method was also optimized. The separation was performed in a C18 column with a triple-quadrupole mass spectrometer with electrospray ionisation interface. The method showed a good linearity in the range 2 to 500 ng mL(-1), with a regression coefficient of 0.998. In the simulating solutions the detection and quantification limits, calculated by the signal to noise level of 3 (S/N = 3), were 5.8 ng mL(-1) and 17.4 ng mL(-1), respectively. This limit of quantification was about 3 and 35 times lower than the permitted limits set by the official method CEN/TS 13130-13 (0.05 μg mL(-1)) and by the Directive 2004/19/EC (0.6 μg mL(-1)), respectively. The methods were applied to determine BPA release from baby bottles, performing repeated procedures according to EU and national regulations. The results demonstrated that no BPA migration from the tested plastic materials occurred with only one

  7. Lateral flow assay for rapid detection of white spot syndrome virus (WSSV) using a phage-displayed peptide as bio-recognition probe.

    PubMed

    Kulabhusan, Prabir Kumar; Rajwade, Jyutika M; Sahul Hameed, A S; Paknikar, Kishore M

    2017-03-27

    White spot disease caused by the white spot syndrome virus (WSSV) has a major socio-economic impact on shrimp farming in India. It has been realized that a field-usable diagnostic capable of rapid detection of WSSV can prevent huge economic losses in disease outbreaks. In this work, we explored the possibility of using a peptide as bio-recognition probe in a field-usable device for the detection of WSSV from infected shrimps and prawns. A commercially available random phage-display library was screened against rVP28 (a major structural protein of WSSV, expressed as a recombinant protein in Escherichia coli). A bacteriophage clone VP28-4L was obtained, and its binding to purified rVP28 protein as well as WSSV from infected shrimp Litopaeneus vannamei tissue was confirmed by ELISA and western blot. The apparent equilibrium dissociation constant (Kd,app) was calculated to be 810 nM. VP28-4L did not show cross-reactivity with any other shrimp viruses. A 12-mer peptide (pep28, with the sequence 'TFQAFDLSPFPS') displayed on the VP28-4L was synthesized, and its diagnostic potential was evaluated in a lateral flow assay (LFA). Visual detection of WSSV could be achieved using biotinylated-pep28 and streptavidin-conjugated gold nanoparticles. In LFA, 12.5 μg/mL of the virus could be detected from L. vannamei gill tissue homogenate within 20 min. Pep28 thus becomes an attractive candidate in bio-recognition of WSSV in field-usable diagnostic platforms benefitting the aquaculture sector.

  8. Rapid determination of phenylethanolamine A in biological samples by enzyme-linked immunosorbent assay and lateral-flow immunoassay.

    PubMed

    Li, Xiangmei; Wang, Wenjun; Wang, Limiao; Wang, Qi; Pei, Xingyao; Jiang, Haiyang

    2015-10-01

    Phenylethanolamine A (PA) is a β-adrenergic agonist, which was first used in animal husbandry as a growth promoter in China in 2010. In this study, a monoclonal-antibody (mAb)-based indirect competitive enzyme-linked immunosorbent assay (icELISA) and lateral-flow immunoassay (LFA) for the detection of PA in swine urine and pork were developed. The immunogen was prepared by linking PA hapten with carrier protein via a diazotization method. The IC50 value of the optimized icELISA was 0.44 ng mL(-1). The limits of detection of the icELISA for PA in swine urine and pork were 0.13 ng mL(-1) and 0.39 ng g(-1), respectively. The recoveries of PA from spiked swine urine and pork were in the range 82.0-107.4 % and 81.8-113.3%, respectively, with the coefficients of variation in the range 4.1-16.2% and 1.2-6.3%, respectively. The mAbs had negligible cross reactivity with 10 other β-agonists. In contrast, the LFA had a cut-off level of 5 ng mL(-1) (g) in swine urine and pork, and the results could be achieved within 5 min. Ten blind samples of swine urine were analyzed simultaneously by icELISA, LFA, and ultra-high-performance liquid chromatography-tandem mass spectrometry, and the results of the three methods agreed well. Therefore, the combination of two immunoassays provides an effective and rapid screening method for detection of PA residues in biological samples.

  9. Assessment of a new lateral flow immunochromatographic (LFIC) assay for the okadaic acid group of toxins using naturally contaminated bivalve shellfish from the Portuguese coast.

    PubMed

    Vale, P; Gomes, S S; Lameiras, J; Rodrigues, S M; Botelho, M J; Laycock, M V

    2009-02-01

    A new rapid assay for the okadaic acid group of toxins, based on lateral flow immunochromatographic (LFIC) test strips developed by Jellett Rapid Testing Ltd., was assessed on naturally contaminated bivalves from the Portuguese coast. One prototype was evaluated using samples harvested during 2005, extracted with 80% methanol, followed by dilution with the running buffer of a methanolic extract after alkaline hydrolysis for esters. The second prototype was assessed using samples harvested during 2006, extracted with 100% methanol and, after alkaline hydrolysis, the methanol was evaporated by a nitrogen stream followed by re-suspension with the running buffer. The first prototype failed to detect 20% of samples that were positive by LC-MS in the range 160-480 microg kg(-1), and were classified as negative or trace level by LFIC. The presence of methanol in the extracts made correct detection of toxins more difficult. The second prototype classified as positive all samples above 160 microg kg(-1), as confirmed by LC-MS. However, in the second prototype, matrix effects were a major drawback and led to 45% false positives, particularly for mussels, due to compounds in shellfish extracts interfering with the antibodies and reducing the test line intensity. Extraction with a higher percentage of methanol was thought responsible for these matrix effects. Regarding sample migration, both prototypes needed one hour before reading. In an attempt to speed-up sample preparation, a direct digestion of bivalve tissues with sodium hydroxide was evaluated. Low recoveries for esters were found by LC-MS with this hydrolysis technique compared to conventional hydrolysis of methanolic extracts. While prototype A was not sensitive enough, prototype B had too many false positives to be of use to the shellfish industry or in a monitoring program.

  10. Short communication: A novel method using immunomagnetic separation with a fluorescent nanobeads lateral flow assay for the rapid detection of low-concentration Escherichia coli O157:H7 in raw milk.

    PubMed

    Huang, Zhen; Cui, Xi; Xie, Quan-Yuan; Liu, Dao-Feng; Lai, Wei-Hua

    2016-12-01

    Escherichia coli O157:H7 is an important serotype of enterohemorrhagic E. coli that was first identified as a human pathogen in 1982. This pathogen causes several serious diseases. In this study, immunomagnetic separation was coupled with a fluorescent nanobeads lateral flow assay to establish a sensitive and rapid detection method for Escherichia coli O157:H7 in raw milk. The pathogen was captured from raw milk by immunomagnetic separation with immunomagnetic nanobeads and then detected using a fluorescent nanobeads lateral flow assay. A fluorescent line was formed in the test line of the test strip and quantitatively detected using a fluorescent reader. Screening times, which included immunomagnetic separation and the fluorescent nanobeads lateral flow assay, were 8, 7, 6, and 5h when 1, 5, 25, and 125 cfu of E. coli O157:H7, respectively, were inoculated into 25mL of raw milk. The established method could be widely applied to the rapid onsite detection of other pathogens to ensure food safety.

  11. Lateral flow immunoassay using magnetoresistive sensors

    NASA Astrophysics Data System (ADS)

    Taton, Kristin; Johnson, Diane; Guire, Patrick; Lange, Erik; Tondra, Mark

    2009-05-01

    Magnetic particles have been adapted for use as labels in biochemical lateral flow strip tests. Standard gold particle lateral flow assays are generally qualitative; however, with magnetic particles, quantitative results can be obtained by using electronic detection systems with giant magnetoresistive (GMR) sensors. As described here, these small integrated sensor chips can detect the presence of magnetic labels in capture spots whose volume is approximately 150 μm×150 μm×150 μm. The range of linear detection is better than two orders of magnitude; the total range is up to four orders of magnitude. The system was demonstrated with both indirect and sandwich enzyme-linked immunosorbent assays (ELISAs) for protein detection of rabbit IgG and interferon-γ, respectively, achieving detection of 12 pg/ml protein. Ultimately, the goal is for the detector to be fully integrated into the lateral flow strip backing to form a single consumable item that is interrogated by a handheld electronic reader.

  12. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    SciTech Connect

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  13. Enhanced performance of methamphetamine lateral flow cassettes using an electronic lateral flow reader.

    PubMed

    Smith, Jerome P; Sammons, Deborah L; Robertson, Shirley A; Snawder, John E

    2015-01-01

    Surface contamination from methamphetamine in meth labs continues to be a problem. We had previously developed a lateral flow assay cassette for field detection of methamphetamine contamination that is commercially available and has been used by a number of groups to assess contamination. This cassette uses the complete disappearance of the test line as an end point for detection of 50 ng/100 cm2 of methamphetamine contamination for surface sampling with cotton swabs. In the present study, we further evaluate the response of the cassettes using an electronic lateral flow reader to measure the intensities of the test and control lines. The cassettes were capable of detecting 0.25 ng/ml for calibration solutions. For 100 cm2 ceramic tiles that were spiked with methamphetamine and wiped with cotton-tipped wooden swabs wetted in assay/sampling buffer, 1 ng/tile was detected using the reader. Semi-quantitative results can be produced over the range 0-10 ng/ml for calibration solutions and 0-25 ng/tile for spiked tiles using either a 4-parameter logistic fit of test line intensity versus concentration or spiked mass or the ratio of the control line to the test line intensity fit to concentration or spiked mass. Recovery from the tiles was determined to be about 30% using the fitted curves. Comparison of the control line to the test line was also examined as a possible visual detection end point and it was found that the control line became more intense than the test line at 0.5 to 1 ng/ml for calibration solutions or 1 to 2 ng/tile for spiked tiles. Thus the lateral flow cassettes for methamphetamine have the potential to produce more sensitive semi-quantitative results if an electronic lateral flow reader is used and can be more sensitive for detection if the comparison of the control line to the test line is used as the visual end point.

  14. Enhanced performance of methamphetamine lateral flow cassettes using an electronic lateral flow reader

    PubMed Central

    Smith, Jerome P.; Sammons, Deborah L.; Robertson, Shirley A.; Snawder, John E.

    2015-01-01

    Surface contamination from methamphetamine in meth labs continues to be a problem. We had previously developed a lateral flow assay cassette for field detection of methamphetamine contamination that is commercially available and has been used by a number of groups to assess contamination. This cassette uses the complete disappearance of the test line as an end point for detection of 50 ng/100 cm2 of methamphetamine contamination for surface sampling with cotton swabs. In the present study, we further evaluate the response of the cassettes using an electronic lateral flow reader to measure the intensities of the test and control lines. The cassettes were capable of detecting 0.25 ng/ml for calibration solutions. For 100 cm2 ceramic tiles that were spiked with methamphetamine and wiped with cotton tipped wooden swabs wetted in assay/sampling buffer, 1 ng/tile was detected using the reader. Semi-quantitative results can be produced over the range 0–10 ng/ml for calibration solutions and 0–25 ng/tile for spiked tiles using either a 4-parameter logistic fit of test line intensity versus concentration or spiked mass or the ratio of the control line to the test line intensity fit to concentration or spiked mass. Recovery from the tiles was determined to be about 30% using the fitted curves. Comparison of the control line to the test line was also examined as a possible visual detection end point and it was found that the control line became more intense than the test line at 0.5 to 1 ng/ml for calibration solutions or 1 to 2 ng/tile for spiked tiles. Thus the lateral flow cassettes for methamphetamine have the potential to produce more sensitive semi-quantitative results if an electronic lateral flow reader is used and can be more sensitive for detection if the comparison of the control line to the test line is used as the visual end point. PMID:25379615

  15. Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography.

    PubMed

    Carter, Darren J; Cary, R Bruce

    2007-01-01

    Widely used nucleic acid assays are poorly suited for field deployment where access to laboratory instrumentation is limited or unavailable. The need for field deployable nucleic acid detection demands inexpensive, facile systems without sacrificing information capacity or sensitivity. Here we describe a novel microarray platform capable of rapid, sensitive nucleic acid detection without specialized instrumentation. The approach is based on a miniaturized lateral flow device that makes use of hybridization-mediated target capture. The miniaturization of lateral flow nucleic acid detection provides multiple advantages over traditional lateral flow devices. Ten-microliter sample volumes reduce reagent consumption and yield analyte detection times, excluding sample preparation and amplification, of <120 s while providing sub-femtomole sensitivity. Moreover, the use of microarray technology increases the potential information capacity of lateral flow. Coupled with a hybridization-based detection scheme, the lateral flow microarray (LFM) enables sequence-specific detection, opening the door to highly multiplexed implementations for broad-range assays well suited for point-of-care and other field applications. The LFM system is demonstrated using an isothermal amplification strategy for detection of Bacillus anthracis, the etiologic agent of anthrax. RNA from as few as two B. anthracis cells was detected without thermocycling hardware or fluorescence detection systems.

  16. Replacing antibodies with aptamers in lateral flow immunoassay.

    PubMed

    Chen, Ailiang; Yang, Shuming

    2015-09-15

    Aptamers have been identified against various targets as a type of chemical or nucleic acid ligand by systematic evolution of ligands by exponential enrichment (SELEX) with high sensitivity and specificity. Aptamers show remarkable advantages over antibodies due to the nucleic acid nature and target-induced structure-switching properties and are widely used to design various fluorescent, electrochemical, or colorimetric biosensors. However, the practical applications of aptamer-based sensing and diagnostics are still lagging behind those of antibody-based tests. Lateral flow immunoassay (LFIA) represents a well established and appropriate technology among rapid assays because of its low cost and user-friendliness. The antibody-based platform is utilized to detect numerous targets, but it is always hampered by the antibody preparation time, antibody stability, and effect of modification on the antibody. Seeking alternatives to antibodies is an area of active research and is of tremendous importance. Aptamers are receiving increasing attention in lateral flow applications because of a number of important potential performance advantages. We speculate that aptamer-based LFIA may be one of the first platforms for commercial use of aptamer-based diagnosis. This review first gives an introduction to aptamer including the selection process SELEX with its focus on aptamer advantages over antibodies, and then depicts LFIA with its focus on aptamer opportunities in LFIA over antibodies. Furthermore, we summarize the recent advances in the development of aptamer-based lateral flow biosensing assays with the aim to provide a general guide for the design of aptamer-based lateral flow biosensing assays.

  17. Robust detection of peak signals for lateral flow immunoassays

    NASA Astrophysics Data System (ADS)

    Kim, Jongwon; Kim, Jong Dae; Nahm, Kie Bong; Choi, Eui Yul; Lee, Geumyoung

    2011-02-01

    Template matching method is presented to identify the peaks from the scanned signals of lateral flow immunoassay strips. The template is composed of two pulses separated by the distance of the control and the target ligand line in the assay, and is convolved with the scanned signal to deliver the maximum at the center of the two peaks. The peak regions were identified with the predefined distances from the center. Glycosylated haemoglobin immunoassay strips and fluorescent strip readers from Boditechmed Inc. were tested to estimate the lot and reader variations of the concentration measurands. The results showed the robustness of the propose method.

  18. Flow cytometer measurement of binding assays

    DOEpatents

    Saunders, George C.

    1987-01-01

    A method of measuring the result of a binding assay that does not require separation of fluorescent smaller particles is disclosed. In a competitive binding assay the smaller fluorescent particles coated with antigen compete with antigen in the sample being analyzed for available binding sites on larger particles. In a sandwich assay, the smaller, fluorescent spheres coated with antibody attach themselves to molecules containing antigen that are attached to larger spheres coated with the same antibody. The separation of unattached, fluorescent smaller particles is made unnecessary by only counting the fluorescent events triggered by the laser of a flow cytometer when the event is caused by a particle with a light scatter measurement within a certain range corresponding to the presence of larger particles.

  19. Lateral flow colloidal gold-based immunoassay for pesticide.

    PubMed

    Wang, Shuo; Zhang, Can; Zhang, Yan

    2009-01-01

    In recent years, immunochromatographic lateral flow test strips are used as a popular diagnostic tool. There are two formats (noncompetitive and competitive) in gold-based immunoassay. Noncompetitive gold-based immunoassay also called sandwich assay is applied for the detection of large molecular mass. For small molecular mass such as pesticide, competitive format of lateral flow colloidal gold-based immunoassay is described in this chapter. The preparation of gold colloidal and the conjugation between antibody and gold colloidal are described. Hi-flow plus nitrocellulose membranes are separately coated with goat anti-rabbit IgG (control line) and hapten-OVA conjugate (test line). Thus, the degree of intensity of color of the test line is the reverse of the concentration of pesticide in the sample and the visual result is immediately observable. Colloidal gold-based immunoassay can also be applied for multianalysis in one test strip if the detected targets show different physico-chemical properties and their haptens show great differences in chemical structure.

  20. Multiplex lateral flow immunoassay for mycotoxin determination.

    PubMed

    Song, Suquan; Liu, Na; Zhao, Zhiyong; Njumbe Ediage, Emmanuel; Wu, Songling; Sun, Changpo; De Saeger, Sarah; Wu, Aibo

    2014-05-20

    A new lateral flow immunoassay (LFA) is proposed for qualitative and/or semiquantitative determination of aflatoxin B1 (AFB1), zearalenone (ZEA), deoxynivalenol (DON), and their analogues (AFs, ZEAs, DONs) in cereal samples. Each of the mycotoxin specific antibody was class specific and there was no cross reactivity to other groups of compounds. The visual limits of detection (vLOD) of the strip were 0.03, 1.6, and 10 μg/kg for AFB1, ZEA and DON, respectively. The calculated limits of detection (cLOD) were 0.05, 1, and 3 μg/kg, respectively. Meanwhile the cutoff values were achieved at 1, 50, and 60 μg/kg for AFB1, ZEA and DON, respectively. Recoveries ranged from 80% to 122% and RSD from 5% to 20%. Both the vLOD and cLOD for the three mycotoxins were lower than the EU maximum levels. Analysis of naturally contaminated maize samples resulted in a good agreement between the multiplex LFA and LC-MS/MS (100% for DONs and AFs, and 81% for ZEAs). Careful analysis of the results further explained the general overestimation of LFA compared to chromatographic methods for quantification of mycotoxins.

  1. An inexpensive, fast and sensitive quantitative lateral flow magneto-immunoassay for total prostate specific antigen.

    PubMed

    Barnett, Jacqueline M; Wraith, Patrick; Kiely, Janice; Persad, Raj; Hurley, Katrina; Hawkins, Peter; Luxton, Richard

    2014-09-01

    We describe the detection characteristics of a device the Resonant Coil Magnetometer (RCM) to quantify paramagnetic particles (PMPs) in immunochromatographic (lateral flow) assays. Lateral flow assays were developed using PMPs for the measurement of total prostate specific antigen (PSA) in serum samples. A detection limit of 0.8 ng/mL was achieved for total PSA using the RCM and is at clinically significant concentrations. Comparison of data obtained in a pilot study from the analysis of serum samples with commercially available immunoassays shows good agreement. The development of a quantitative magneto-immunoassay in lateral flow format for total PSA suggests the potential of the RCM to operate with many immunoassay formats. The RCM has the potential to be modified to quantify multiple analytes in this format. This research shows promise for the development of an inexpensive device capable of quantifying multiple analytes at the point-of-care using a magneto-immunoassay in lateral flow format.

  2. An Inexpensive, Fast and Sensitive Quantitative Lateral Flow Magneto-Immunoassay for Total Prostate Specific Antigen

    PubMed Central

    Barnett, Jacqueline M.; Wraith, Patrick; Kiely, Janice; Persad, Raj; Hurley, Katrina; Hawkins, Peter; Luxton, Richard

    2014-01-01

    We describe the detection characteristics of a device the Resonant Coil Magnetometer (RCM) to quantify paramagnetic particles (PMPs) in immunochromatographic (lateral flow) assays. Lateral flow assays were developed using PMPs for the measurement of total prostate specific antigen (PSA) in serum samples. A detection limit of 0.8 ng/mL was achieved for total PSA using the RCM and is at clinically significant concentrations. Comparison of data obtained in a pilot study from the analysis of serum samples with commercially available immunoassays shows good agreement. The development of a quantitative magneto-immunoassay in lateral flow format for total PSA suggests the potential of the RCM to operate with many immunoassay formats. The RCM has the potential to be modified to quantify multiple analytes in this format. This research shows promise for the development of an inexpensive device capable of quantifying multiple analytes at the point-of-care using a magneto-immunoassay in lateral flow format. PMID:25587419

  3. Automated Protein Assay Using Flow Injection Analysis

    NASA Astrophysics Data System (ADS)

    Wolfe, Carrie A. C.; Oates, Matthew R.; Hage, David S.

    1998-08-01

    The technique of flow injection analysis (FIA) is a common instrumental method used in detecting a variety of chemical and biological agents. This paper describes an undergraduate laboratory that uses FIA to perform a bicinchoninic acid (BCA) colorimetric assay for quantitating protein samples. The method requires less than 2 min per sample injection and gives a response over a broad range of protein concentrations. This method can be used in instrumental analysis labs to illustrate the principles and use of FIA, or as a means for introducing students to common methods employed in the analysis of biological agents.

  4. Improved flow cytometer measurement of binding assays

    DOEpatents

    Saunders, G.C.

    1984-05-30

    The invention relates to a method of measuring binding assays carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also a known quantity of smaller particles with a coating of binder reactant. The binding reactant is the same as the binding reactant present in the sample. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number and strength of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating. (LEW)

  5. Multiplex lateral-flow test strips fabricated by two-dimensional shaping.

    PubMed

    Fenton, Erin M; Mascarenas, Monica R; López, Gabriel P; Sibbett, Scott S

    2009-01-01

    We have fabricated paper- and nitrocellulose-based lateral-flow devices that are shaped in two dimensions by a computer-controlled knife. The resulting star, candelabra, and other structures are spotted with multiple bioassay reagents to produce multiplex lateral-flow assays. We have also fabricated laminar composites in which porous nitrocellulose media are sandwiched between vinyl and polyester plastic films. This minimizes evaporation, protects assay surfaces from contamination and dehydration, and eliminates the need for the conventional hard plastic cassette holders that are typically used to package commercial lateral-flow diagnostic strips. The reported fabrication method is novel, low-cost, and well-suited to (i) fabrication and adoption in resource-poor areas, (ii) prototype development, (iii) high-volume manufacturing, and (iii) improving rates of operator error.

  6. Evaluation of a Rapid Lateral Flow Point-of-Care Test for Detection of Cryptosporidium

    PubMed Central

    Fleece, Molly E.; Heptinstall, Jack; Khan, Shaila S.; Kabir, Mamum; Herbein, Joel; Haque, Rashidul; Petri, William A.

    2016-01-01

    A new rapid lateral flow fecal antigen detection test for Cryptosporidium was evaluated using diarrheal stool samples from a cohort of children in Bangladesh. The test had a sensitivity of 100% and a specificity of 94% when compared with enzyme-linked immunosorbent assay antigen detection. PMID:27573629

  7. Lateral flow based immunobiosensors for detection of food contaminants.

    PubMed

    Raeisossadati, Mohammad Javad; Danesh, Noor Mohammad; Borna, Fazlollah; Gholamzad, Mehrdad; Ramezani, Mohammad; Abnous, Khalil; Taghdisi, Seyed Mohammad

    2016-12-15

    Safety of food is of great concern these days due to various contaminations including toxins, infectious agents and chemical contaminants. Therefore, there is a need to develop promising and user's friendly method to monitor food safety. Lateral flow tests are new, simple and rapid alternative for detection of food-borne pathogens compared with traditional methods. In this review article, we surveyed application of lateral flow biosensors in detection of different food contaminants and labels used to enhance the efficiency of the system. Finally, the unique feature of multi-parametric analysis of analytes by lateral flow device has been reported, proving a lateral flow system is able to be designed in a way to detect multiple targets, simultaneously.

  8. Evaluation of lateral-flow Clostridium botulinum neurotoxin detection kits for food analysis.

    PubMed

    Sharma, Shashi K; Eblen, Brian S; Bull, Robert L; Burr, Donald H; Whiting, Richard C

    2005-07-01

    The suitability and sensitivity of two in vitro lateral-flow assays for detecting Clostridium botulinum neurotoxins (BoNTs) in an assortment of foods were evaluated. Toxin extraction and preparation methods for various liquid, solid, and high-fat-content foods were developed. The lateral-flow assays, one developed by the Naval Medical Research Center (Silver Spring, MD) and the other by Alexeter Technologies (Gaithersburg, MD), are based on the immunodetection of BoNT types A, B, and E. The assays were found to be rapid and easy to perform with minimum requirements for laboratory equipment or skills. They can readily detect 10 ng/ml of BoNT types A and B and 20 ng/ml of BoNT type E. Compared to other in vitro detection methods, these assays are less sensitive, and the assessment of a result is strictly qualitative. However, the assay was found to be simple to use and to require minimal training. The assays successfully detected BoNT types A, B, and E in a wide variety of foods, suggesting their potential usefulness as a preliminary screening system for triaging food samples with elevated BoNT levels in the event of a C. botulinum contamination event.

  9. Evaluation of Lateral-Flow Clostridium botulinum Neurotoxin Detection Kits for Food Analysis

    PubMed Central

    Sharma, Shashi K.; Eblen, Brian S.; Bull, Robert L.; Burr, Donald H.; Whiting, Richard C.

    2005-01-01

    The suitability and sensitivity of two in vitro lateral-flow assays for detecting Clostridium botulinum neurotoxins (BoNTs) in an assortment of foods were evaluated. Toxin extraction and preparation methods for various liquid, solid, and high-fat-content foods were developed. The lateral-flow assays, one developed by the Naval Medical Research Center (Silver Spring, MD) and the other by Alexeter Technologies (Gaithersburg, MD), are based on the immunodetection of BoNT types A, B, and E. The assays were found to be rapid and easy to perform with minimum requirements for laboratory equipment or skills. They can readily detect 10 ng/ml of BoNT types A and B and 20 ng/ml of BoNT type E. Compared to other in vitro detection methods, these assays are less sensitive, and the assessment of a result is strictly qualitative. However, the assay was found to be simple to use and to require minimal training. The assays successfully detected BoNT types A, B, and E in a wide variety of foods, suggesting their potential usefulness as a preliminary screening system for triaging food samples with elevated BoNT levels in the event of a C. botulinum contamination event. PMID:16000807

  10. Rapid Simultaneous Detection of Anti-protozoan Drugs Using a Lateral-Flow Immunoassay Format.

    PubMed

    Fitzgerald, Jenny; Leonard, Paul; Danaher, Martin; O'Kennedy, Richard

    2015-05-01

    This research describes the development of a multi-analyte lateral-flow immunoassay intended for the simultaneous detection of three anti-protozoan drugs (coccidiostats). These drugs, namely, halofuginone, toltrazuril and diclazuril, are used in the treatment of Eimeria spp. infections in cattle, pigs, chickens and turkeys. Coloured carboxylated microspheres were coated with each of the detection antibodies and employed in a lateral-flow assay format for detection of these residues in eggs. Using this approach, halofuginone was detectable at a limit of 10 ng/mL or greater, toltrazuril at 100 ng/mL and, similarly, diclazuril had a detection limit of 100 ng/mL, which is below the maximum allowed residue limit for all three as outlined by EU regulation. This simple cost-efficient assay and analysis method could pave the way for more efficient simultaneous monitoring of small-molecule residues in the future.

  11. Serotype sensitivity of a lateral flow immunoassay for cryptococcal antigen.

    PubMed

    Gates-Hollingsworth, Marcellene A; Kozel, Thomas R

    2013-04-01

    To meet the needs of a global community, an immunoassay for cryptococcal antigen (CrAg) must have high sensitivity for CrAg of all major serotypes. A new immunoassay for CrAg in lateral flow format was evaluated and found to have a high sensitivity for detection of serotypes A, B, C, and D.

  12. The effect of lateral interaction on traffic flow

    NASA Astrophysics Data System (ADS)

    Bouadi, M.; Jetto, K.; Benyoussef, A.; Kenz, A.

    2016-10-01

    We propose an extended cellular automaton model for traffic flow, taking into account lateral interactions with defects and between vehicles. The fundamental diagram for a given defects density on the road is studied. It is found that the plateau size increases linearly with the decreasing road width for little defects densities. Furthermore, the capacity increases linearly with the increasing road width. However, for a fixed road width, the capacity decreases exponentially with the increasing defects density. The lateral effects for non-mutual interactions between lanes and for the same maximal velocity is also investigated. It is found that the lateral effects on one lane are meaningful only when the density on the other lane is above the critical density. However, the lateral effects are always present if fast and slow lanes exist. Little differences have been found for the mutual interactions.

  13. A lateral flow immunoassay for the rapid detection of ochratoxin A in wine and grape must.

    PubMed

    Anfossi, Laura; Giovannoli, Cristina; Giraudi, Gianfranco; Biagioli, Flavia; Passini, Cinzia; Baggiani, Claudio

    2012-11-21

    A one-step lateral flow immunoassay was developed for semiquantitatively detecting ochratoxin A (OTA) in wines and grape musts. Matrix-matched calibration curves carried out in blank wines showed a detection limit of 1 μg L(-1) and IC(50) of 3.2 μg L(-1). Relative standard deviations for intra- and interday precision were in the 20-40% range. A simple treatment of samples, which only included dilution with sodium bicarbonate and polyethylene glycol (4% w/v) for red and white wines and the further addition of ethanol (12% v/v) for grape musts, was established. The developed assay allowed OTA detection in 5 min and proved to be accurate and sensitive enough to allow the correct attribution of samples as compliant or noncompliant according to EU legislation. Results agreeing with those of a reference chromatographic method were obtained on 38 wines and 16 musts. Although some lateral flow devices aimed at detecting OTA have been previously described, this is the first assay capable of measuring the toxin in wine and grape must, which represent a major source of OTA dietary intake. Analytical performances of the method are comparable to or better than previously reported assays showed. In addition, the assay, including sample treatments, is extremely simple and rapid and can be effectively regarded as a one-step assay usable virtually anywhere.

  14. Flow visualization of lateral jet injection into swirling crossflow

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Aoki, K.; Lilley, D. G.

    1985-01-01

    Flow visualization experiments have been conducted to characterize the time-mean flowfield of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally-buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the trajectory and spread pattern of the jet. Gross flowfield characterization was obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow. The flow visualization results agree well with the measurements obtained elsewhere with the six-orientation single hot-wire method.

  15. Rapid prototyping of electrochemical lateral flow devices: stencilled electrodes.

    PubMed

    Aller Pellitero, Miguel; Kitsara, Maria; Eibensteiner, Friedrich; del Campo, F Javier

    2016-04-21

    A straightforward and very cost effective method is proposed to prototype electrodes using pressure sensitive adhesives (PSA) and a simple cutting technique. Two cutting methods, namely blade cutting and CO2 laser ablation, are compared and their respective merits are discussed. The proposed method consists of turning the protective liner on the adhesive into a stencil to apply screen-printing pastes. After the electrodes have been printed, the liner is removed and the PSA can be used as a backing material for standard lateral flow membranes. We present the fabrication of band electrodes down to 250 μm wide, and their characterization using microscopy techniques and cyclic voltammetry. The prototyping approach presented here facilitates the development of new electrochemical devices even if very limited fabrication resources are available. Here we demonstrate the fabrication of a simple lateral-flow device capable of determining glucose in blood. The prototyping approach presented here is highly suitable for the development of novel electroanalytical tools.

  16. Silver and gold enhancement methods for lateral flow immunoassays.

    PubMed

    Rodríguez, Myriam Oliveira; Covián, Lucía Blanco; García, Agustín Costa; Blanco-López, Maria Carmen

    2016-01-01

    Sensitivity is the main concern at the development of rapid test by lateral flow immunoassays. On the other hand, low limits of detection are often required at medical diagnostics and other field of analysis. To overcome this drawback, several enhancement protocols have been described. In this paper, we have selected different silver enhancement methods and one dual gold conjugation, and we critically compared the amplification produced when applied to a gold-nanoparticle based lateral flow immunoassay for the detection of prostate specific antigen (PSA). The highest amplification was obtained by using an immersion method based on a solution of silver nitrate and hydroquinone/citrate buffer in proportion 1:1. Under these conditions, the system is capable of detecting PSA within 20 min at levels as low as 0.1 ng/mL, with a 3-fold sensitivity improvement.

  17. Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses.

    PubMed

    Li, Jia; Macdonald, Joanne

    2016-09-15

    Lateral flow biosensors are a leading technology in point-of-care diagnostics due to their simplicity, rapidness and low cost. Their primacy in this arena continues through technological breakthroughs such as multiplexing: the detection of more than one biomarker in a single assay. Multiplexing capacity is critical for improving diagnostic efficiency, enhancing the diagnostic precision for specific diseases and reducing diagnostic cost. Here we review, for the first time, the various types and strategies employed for creating multiplexed lateral flow biosensors. These are classified into four main categories in terms of specific application or multiplexing level, namely linear, parameter, spatial and conceptual. We describe the practical applications and implications for each approach and compare their advantages and disadvantages. Importantly, multiplexing is still subject to limitations of the traditional lateral flow biosensor, such as sensitivity and specificity. However, by pushing the limitations of the traditional medium into the multiplex arena, several technological breakthroughs are emerging with novel solutions that further expand the utility of lateral flow biosensing for point-of-care applications.

  18. Decreased intramuscular blood flow in patients with lateral epicondylitis.

    PubMed

    Oskarsson, E; Gustafsson, B-E; Pettersson, K; Aulin, K Piehl

    2007-06-01

    The purpose of this pilot study was to investigate intramuscular microcirculation in extensor carpi radialis brevis (ECRB) in patients with lateral epicondylitis. Ten patients with unilateral epicondylitis, mean duration of symptoms of 39 (12-96) months participated. The diagnosis was based on clinical examination and none was under treatment for the last 6 months. Isometric handgrip strength, 2-pinch grip strength and muscle strength during radial deviation and dorsal extension were determined. Functional perceived pain was evaluated by a modified behaviour rating scale and perceived pain during contraction by visual analogue scale. Intramuscular and skin blood flow was recorded by a laser-Doppler flowmetry system technique (LDF) during stable temperature condition. Intramuscular blood flow was significantly lower in the affected side, 22.7+/-9.8 perfusion units (PU), as compared with 35.2+/-11.9 PU in the control side (P=0.01). There was no difference in skin blood flow or temperature between the affected and the control side. A positive correlation was found between the duration of symptoms and the difference in intramuscular blood flow between the affected and the control arm (r=0.65, P=0.06). The present data indicate that decreased microcirculation and anaerobic metabolism in ECRB may contribute to the lateral epicondylitis symptoms.

  19. Development of a Nanobody-Based Lateral Flow Immunoassay for Detection of Human Norovirus

    PubMed Central

    Doerflinger, Sylvie Y.; Tabatabai, Julia; Schnitzler, Paul; Farah, Carlo; Rameil, Steffen; Sander, Peter; Koromyslova, Anna

    2016-01-01

    ABSTRACT Human noroviruses are the dominant cause of outbreaks of acute gastroenteritis. These viruses are usually detected by molecular methods, including reverse transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Human noroviruses are genetically and antigenically diverse, with two main genogroups that are further subdivided into over 40 different genotypes. During the past decade, genogroup 2 genotype 4 (GII.4) has dominated in most countries, but recently, viruses belonging to GII.17 have increased in prevalence in a number of countries. A number of commercially available ELISAs and lateral flow immunoassays were found to have lower sensitivities to the GII.17 viruses, indicating that the antibodies used in these methods may not have a high level of cross-reactivity. In this study, we developed a rapid Nanobody-based lateral flow immunoassay (Nano-immunochromatography [Nano-IC]) for the detection of human norovirus in clinical specimens. The Nano-IC assay detected virions from two GII.4 norovirus clusters, which included the current dominant strain and a novel variant strain. The Nano-IC method had a sensitivity of 80% and specificity of 86% for outbreak specimens. Norovirus virus-like particles (VLPs) representing four genotypes (GII.4, GII.10, GII.12, and GII.17) could be detected by this method, demonstrating the potential in clinical screening. However, further modifications to the Nano-IC method are needed in order to improve this sensitivity, which may be achieved by the addition of other broadly reactive Nanobodies to the system. IMPORTANCE We previously identified a Nanobody (termed Nano-85) that bound to a highly conserved region on the norovirus capsid. In this study, the Nanobody was biotinylated and gold conjugated for a lateral flow immunoassay (termed Nano-IC). We showed that the Nano-IC assay was capable of detecting at least four antigenically distinct GII genotypes, including the newly emerging GII.17. In the clinical

  20. Development of a Nanobody-Based Lateral Flow Immunoassay for Detection of Human Norovirus.

    PubMed

    Doerflinger, Sylvie Y; Tabatabai, Julia; Schnitzler, Paul; Farah, Carlo; Rameil, Steffen; Sander, Peter; Koromyslova, Anna; Hansman, Grant S

    2016-01-01

    Human noroviruses are the dominant cause of outbreaks of acute gastroenteritis. These viruses are usually detected by molecular methods, including reverse transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Human noroviruses are genetically and antigenically diverse, with two main genogroups that are further subdivided into over 40 different genotypes. During the past decade, genogroup 2 genotype 4 (GII.4) has dominated in most countries, but recently, viruses belonging to GII.17 have increased in prevalence in a number of countries. A number of commercially available ELISAs and lateral flow immunoassays were found to have lower sensitivities to the GII.17 viruses, indicating that the antibodies used in these methods may not have a high level of cross-reactivity. In this study, we developed a rapid Nanobody-based lateral flow immunoassay (Nano-immunochromatography [Nano-IC]) for the detection of human norovirus in clinical specimens. The Nano-IC assay detected virions from two GII.4 norovirus clusters, which included the current dominant strain and a novel variant strain. The Nano-IC method had a sensitivity of 80% and specificity of 86% for outbreak specimens. Norovirus virus-like particles (VLPs) representing four genotypes (GII.4, GII.10, GII.12, and GII.17) could be detected by this method, demonstrating the potential in clinical screening. However, further modifications to the Nano-IC method are needed in order to improve this sensitivity, which may be achieved by the addition of other broadly reactive Nanobodies to the system. IMPORTANCE We previously identified a Nanobody (termed Nano-85) that bound to a highly conserved region on the norovirus capsid. In this study, the Nanobody was biotinylated and gold conjugated for a lateral flow immunoassay (termed Nano-IC). We showed that the Nano-IC assay was capable of detecting at least four antigenically distinct GII genotypes, including the newly emerging GII.17. In the clinical setting, the

  1. Rapid and sensitive lateral flow immunoassay method for determining alpha fetoprotein in serum using europium (III) chelate microparticles-based lateral flow test strips.

    PubMed

    Liang, Rong-Liang; Xu, Xu-Ping; Liu, Tian-Cai; Zhou, Jian-Wei; Wang, Xian-Guo; Ren, Zhi-Qi; Hao, Fen; Wu, Ying-Song

    2015-09-03

    Alpha-fetoprotein (AFP), a primary marker for many diseases including various cancers, is important in clinical tumor diagnosis and antenatal screening. Most immunoassays provide high sensitivity and accuracy for determining AFP, but they are expensive, often complex, time-consuming procedures. A simple and rapid point-of-care system that integrates Eu (III) chelate microparticles with lateral flow immunoassay (LFIA) has been developed to determine AFP in serum with an assay time of 15 min. The approach is based on a sandwich immunoassay performed on lateral flow test strips. A fluorescence strip reader was used to measure the fluorescence peak heights of the test line (HT) and the control line (HC); the HT/HC ratio was used for quantitation. The Eu (III) chelate microparticles-based LFIA assay exhibited a wide linear range (1.0-1000 IU mL(-1)) for AFP with a low limit of detection (0.1 IU mL(-1)) based on 5ul of serum. Satisfactory specificity and accuracy were demonstrated and the intra- and inter-assay coefficients of variation (CV) for AFP were both <10%. Furthermore, in the analysis of human serum samples, excellent correlation (n = 284, r = 0.9860, p < 0.0001) was obtained between the proposed method and a commercially available CLIA kit. Results indicated that the Eu (III) chelate microparticles-based LFIA system provided a rapid, sensitive and reliable method for determining AFP in serum, indicating that it would be suitable for development in point-of-care testing.

  2. A new nonlinear Muskingum flood routing model incorporating lateral flow

    NASA Astrophysics Data System (ADS)

    Karahan, Halil; Gurarslan, Gurhan; Geem, Zong Woo

    2015-06-01

    A new nonlinear Muskingum flood routing model taking the contribution from lateral flow into consideration was developed in the present study. The cuckoo search algorithm, a quite novel and robust algorithm, was used in the calibration and verification of the model parameters. The success and the dependability of the proposed model were tested on five different sets of synthetic and real flood data. The optimal solutions for the test cases were determined by the currently proposed model rather than by different models taken from the literature, indicating that this model could be suitable for use in flood routing problems.

  3. New flow cytometric assays for monitoring cell-mediated cytotoxicity.

    PubMed

    Zaritskaya, Liubov; Shurin, Michael R; Sayers, Thomas J; Malyguine, Anatoli M

    2010-06-01

    The exact immunologic responses after vaccination that result in effective antitumor immunity have not yet been fully elucidated and the data from ex vivo T-cell assays have not yet defined adequate surrogate markers for clinical efficacy. A more detailed knowledge of the specific immune responses that correlate with positive clinical outcomes should help to develop better or novel strategies to effectively activate the immune system against tumors. Furthermore, clinically relevant material is often limited and, thus, precludes the ability to perform multiple assays. The two main assays currently used to monitor lymphocyte-mediated cytoxicity in cancer patients are the (51)Cr-release assay and IFN-gamma ELISpot assay. The former has a number of disadvantages, including low sensitivity, poor labeling and high spontaneous release of isotope from some tumor target cells. Additional problems with the (51)Cr-release assay include difficulty in obtaining autologous tumor targets, and biohazard and disposal problems for the isotope. The ELISpot assays do not directly measure cytotoxic activity and are, therefore, a surrogate marker of cyotoxic capacity of effector T cells. Furthermore, they do not assess cytotoxicity mediated by the production of the TNF family of death ligands by the cytotoxic cells. Therefore, assays that allow for the simultaneous measurement of several parameters may be more advantageous for clinical monitoring. In this respect, multifactor flow cytometry-based assays are a valid addition to the currently available immunologic monitoring assays. Use of these assays will enable detection and enumeration of tumor-specific cytotoxic T lymphocytes and their specific effector functions and any correlations with clinical responses. Comprehensive, multifactor analysis of effector cell responses after vaccination may help to detect factors that determine the success or failure of a vaccine and its immunological potency.

  4. Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples.

    PubMed

    Hossain, S M Zakir; Luckham, Roger E; McFadden, Meghan J; Brennan, John D

    2009-11-01

    A reagentless bioactive paper-based solid-phase biosensor was developed for detection of acetylcholinesterase (AChE) inhibitors, including organophosphate pesticides. The assay strip is composed of a paper support (1 x 10 cm), onto which AChE and a chromogenic substrate, indophenyl acetate (IPA), were entrapped using biocompatible sol-gel derived silica inks in two different zones (e.g., sensing and substrate zones). The assay protocol involves first introducing the sample to the sensing zone via lateral flow of a pesticide-containing solution. Following an incubation period, the opposite end of the paper support is placed into distilled deionized water (ddH(2)O) to allow lateral flow in the opposite direction to move paper-bound IPA to the sensing area to initiate enzyme catalyzed hydrolysis of the substrate, causing a yellow-to-blue color change. The modified sensor is able to detect pesticides without the use of any external reagents with excellent detection limits (bendiocarb approximately 1 nM; carbaryl approximately 10 nM; paraoxon approximately 1 nM; malathion approximately 10 nM) and rapid response times (approximately 5 min). The sensor strip showed negligible matrix effects in detection of pesticides in spiked milk and apple juice samples. Bioactive paper-based assays on pesticide residues collected from food samples showed good agreement with a conventional mass spectrometric assay method. The bioactive paper assay should, therefore, be suitable for rapid screening of trace levels of organophosphate and carbamate pesticides in environmental and food samples.

  5. Alkaline unwinding flow cytometry assay to measure nucleotide excision repair.

    PubMed

    Thyagarajan, Bharat; Anderson, Kristin E; Lessard, Christopher J; Veltri, Gregory; Jacobs, David R; Folsom, Aaron R; Gross, Myron D

    2007-03-01

    Nucleotide excision repair (NER), one of the DNA repair pathways, is the primary mechanism for repair of bulky adducts caused by physical and chemical agents, such as UV radiation, cisplatin and 4-nitroquinolones. Variations in DNA repair may be a significant risk factor for several cancers, but its measurement in epidemiological studies has been hindered by the high variability, complexity and laborious nature of currently available assays. An alkaline unwinding flow cytometric assay using UV-C radiation as a DNA-damaging agent was adapted for measurement of NER-mediated breaks. This assay was based on the principle of alkaline unwinding of strand breaks in double-stranded DNA to yield single-stranded DNA with the number of strand breaks being proportional to the amount of DNA damage. This assay measured 50,000 events per sample with several samples being analyzed per specimen, thereby providing very reliable measurements, which can be performed on a large-scale basis. Using area under the curve (AUC) to quantitate amount of NER-mediated breaks, this assay was able to detect increased NER-mediated breaks with increasing doses of UV-C radiation. The assay detected NER-mediated breaks in lymphocytes from normal donors and not in xeroderma pigmentosum lymphoblastoid cell lines indicating specificity for the detection of NER-mediated breaks. The assay measured NER-mediated breaks within G(1), S and G(2)/M phases of the cell cycle; thereby decreasing variability in measurements of NER-mediated breaks due to differences in cell cycle phases. Intraindividual variability for AUC after 120 min of repair was 15% with interindividual variability being approximately 43% for cells in the G(1) phase, indicating substantial between-subject variation and relatively low within-subject variation. Thus, the alkaline unwinding flow cytometry-based assay provides a high-throughput method for the specific measurement of NER-mediated breaks in lymphocytes.

  6. An Ultrasensitive Gold Nanoparticle-based Lateral Flow Test for the Detection of Active Botulinum Neurotoxin Type A.

    PubMed

    Liu, Jing; Gao, Shan; Kang, Lin; Ji, Bin; Xin, Wenwen; Kang, Jingjing; Li, Ping; Gao, Jie; Wang, Hanbin; Wang, Jinglin; Yang, Hao

    2017-12-01

    Botulism is a severe and potentially lethal paralytic disease caused by several botulinum neurotoxin-producing Clostridia spp. In China, the majority of the cases caused by botulism were from less-developed rural areas. Here, we designed specific substrate peptides and reconfigured gold nanoparticle-based lateral flow test strip (LFTS) to develop an endopeptidase-based lateral flow assay for the diagnosis of botulism. We performed this lateral flow assay on botulinum neurotoxin-spiked human serum samples. The as-prepared LFTS had excellent performance in the detection of botulinum neurotoxin using only 1 μL of simulated serum, and its sensitivity and specificity were comparable to that of mouse lethality assay. Moreover, the assay takes only half a day and does not require highly trained laboratory staff, specialized facility, or equipment. Finally, our LFTS can be potentially extended to other serotypes of BoNTs by designing specific substrate peptides against the different types of BoNTs. Overall, we demonstrate a strategy by which LFTS and endopeptidase activity assays can be integrated to achieve facile and economic diagnosis of botulism in resource-limited settings.

  7. MWCNTs based high sensitive lateral flow strip biosensor for rapid determination of aqueous mercury ions.

    PubMed

    Yao, Li; Teng, Jun; Zhu, Mengya; Zheng, Lei; Zhong, Youhao; Liu, Guodong; Xue, Feng; Chen, Wei

    2016-11-15

    Here, we describe a disposable multi-walled carbon nanotubes (MWCNTs) labeled nucleic acid lateral flow strip biosensor for rapid and sensitive detection of aqueous mercury ions (Hg(2+)). Unlike the conventional colloidal gold nanoparticle based strip biosensors, the carboxylated MWCNTs were selected as the labeling substrate because of its high specific surface area for immobilization of recognition probes, improved stability and enhanced detection sensitivity of the strip biosensor. Combining the sandwich-type of T-Hg(2+)-T recognition mechanism with the optical properties of MWCNTs on lateral flow strip, optical black bands were observed on the lateral flow strips. Parameters (such as membrane category, the MWCNTs concentration, the amount of MWCNT-DNA probe, and the volume of the test probe) that govern the sensitivity and reproducibility of the sensor were optimized. The response of the optimized biosensor was highly linear over the range of 0.05-1ppb target Hg(2+), and the detection threshold was estimated at 0.05 ppb within a 15-min assay time. The sensitivity was 10-fold higher than the conventional colloidal gold based strip biosensor. More importantly, the stability of the sensor was also greatly improved with the usage of MWCNTs as the labeling.

  8. Comparing nucleic acid lateral flow and electrochemical genosensing for the simultaneous detection of foodborne pathogens.

    PubMed

    Ben Aissa, A; Jara, J J; Sebastián, R M; Vallribera, A; Campoy, S; Pividori, M I

    2017-02-15

    Due to the increasing need of rapid tests for application in low resource settings, WHO summarized their ideal features under the acronym ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, Delivered to those who need it). In this work, two different platforms for the rapid and simultaneous testing of the foodborne pathogens E. coli O157:H7 and Salmonella enterica, in detail a nucleic acid lateral flow and an electrochemical magneto-genosensor are presented and compared in terms of their analytical performance. The DNA of the bacteria was amplified by polymerase chain reaction using a quadruple-tagging set of primers specific for E. coli eaeA (151bp) and Salmonella enterica yfiR (375bp) genes. During the amplification, the amplicons were labelled at the same time with biotin/digoxigenin or biotin/fluorescein tags, respectively. The nucleic acid lateral flow assay was based on the use of streptavidin gold nanoparticles for the labelling of the tagged amplicon from E. coli and Salmonella. The visual readout was achieved when the gold-modified amplicons were captured by the specific antibodies. The features of this approach are discussed and compared with an electrochemical magneto-genosensor. Although nucleic acid lateral flow showed higher limit of detection, this strategy was able to clearly distinguish positive and negative samples of both bacteria being considered as a rapid and promising detection tool for bacteria screening.

  9. Graphene oxide and carboxylated graphene oxide: Viable two-dimensional nanolabels for lateral flow immunoassays.

    PubMed

    Yu, Li; Li, Peiwu; Ding, Xiaoxia; Zhang, Qi

    2017-04-01

    Graphene oxide (GO) and carboxylated GO were used as labels for lateral flow immunoassays, instead of the conventionally used colloidal gold and colored latex labels. A sensor is demonstrated that enables fast screening for aflatoxin B1 (AFB1) as a model analyte using the antibody-GO complex as the recognition element. The visual limit of detection and cut-off value for AFB1 are 0.3 and 1ng/mL, respectively. It is shown that GO and carboxylated GO are viable black labels for use in lateral flow assays, one typical advantage being the saving cost (compared to the use of colloidal gold). Qualitative results are achieved within 15min, and the analytical results were in good agreement with the reference LC MS/MS method. The method was successfully applied to the on-site determination of AFB1 in agricultural products. In our perception, it opens new possibilities for the screening of other toxins by lateral flow immunoassays using GO and carboxylated GO as labels.

  10. Lateral flow immunoassay for quantitative detection of ractopamine in swine urine.

    PubMed

    Ren, Mei Ling; Chen, Xue Lan; Li, Chao Hui; Xu, Bo; Liu, Wen Juan; Xu, Heng Yi; Xiong, Yong Hua

    2014-02-01

    A strip reader based lateral flow immunoassay (LFIA) was established for the rapid and quantitative detection of ractopamine (RAC) in swine urine. The ratio of the optical densities (ODs) of the test line (AT) to that of the control line (AC) was used to effectively minimize interference among strips and sample variations. The linear range for the quantitative detection of RAC was 0.2 ng/mL to 3.5 ng/mL with a median inhibitory concentration (IC50) of 0.59 ± 0.06 ng/mL. The limit of detection (LOD) of the LFIA was 0.13 ng/mL. The intra-assay recovery rates were 92.97%, 97.25%, and 107.41%, whereas the inter-assay rates were 80.07%, 108.17%, and 93.7%, respectively.

  11. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes.

    PubMed

    Parolo, Claudio; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2013-02-15

    The use of gold nanoparticles (AuNPs) as labeling carriers in combination with the enzymatic activity of the horseradish peroxidase (HRP) in order to achieve an improved optical lateral flow immunoassay (LFIA) performance is presented here. Briefly in a LFIA with an immune-sandwich format AuNPs are functionalized with a detection antibody already modified with HRP, obtaining an 'enhanced' label. Two different detection strategies have been tested: the first one following just the red color of the AuNPs and the second one using a substrate for the HRP (3 different substrates are evaluated), which produces a darker color that enhances the intensity of the previous red color of the unmodified AuNPs. In such very simple way it is gaining sensitivity (up to 1 order of magnitude) without losing the simplicity of the LFIA format, opening the way to other LFIA applications including their on-demand performance tuning according to the analytical scenario.

  12. Lateral Diffusion of Bedload Transport under Laminar Flow

    NASA Astrophysics Data System (ADS)

    Ortiz, C. P.; Houssais, M.; Purohit, P. K.; Durian, D. J.; Jerolmack, D. J.

    2014-12-01

    Lateral sediment transport is a key momentum-exchange mechanism to model equilibrium channel geometry and channel bar evolution. We study sediment transport from a statistical mechanical point of view akin to Furbish et al. 2012. This approach holds promise for linking grain-scale motion to macroscopic transport, but there are few data to definitively develop and test such models. We study an experimental model river, composed of monodisperse acrylic spheres dispersed in silicon oil, driven by a layer of fluid under steady shear. We choose to drive fluid flow in the laminar regime (Re < 1) to suppress fluid turbulence and isolate granular and bed structure controls. We use a refractive-index-matched laser scanning technique to observe the motion of particles at the surface of the bed as well as the particle dynamics below the surface. We study how the probability distribution of displacements varies as a function of distance from the bed surface and as a function of distance to the channel center. In the streamwise direction, in agreement with Furbish et al. 2012, we find that the dynamics can be decomposed into an advection and a diffusion term. In the lateral direction, we find a competition between diffusion and an elastic-like interaction with the bed. We study this lateral stochastic process and find a need to introduce two parameters to quantify this competition. The first parameter describes the tendency for particles to reside near the center of the channel and the second parameter describes the kinetic energy distribution of the particles. We study how the requisite averaging scales and ensemble sizes to achieve statistically convergent parameters, and we explore how these parameters depend on the driving rate.

  13. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis

    PubMed Central

    2014-01-01

    Background Nucleic acid amplification is the most sensitive and specific method to detect Plasmodium falciparum. However the polymerase chain reaction remains laboratory-based and has to be conducted by trained personnel. Furthermore, the power dependency for the thermocycling process and the costly equipment necessary for the read-out are difficult to cover in resource-limited settings. This study aims to develop and evaluate a combination of isothermal nucleic acid amplification and simple lateral flow dipstick detection of the malaria parasite for point-of-care testing. Methods A specific fragment of the 18S rRNA gene of P. falciparum was amplified in 10 min at a constant 38°C using the isothermal recombinase polymerase amplification (RPA) method. With a unique probe system added to the reaction solution, the amplification product can be visualized on a simple lateral flow strip without further labelling. The combination of these methods was tested for sensitivity and specificity with various Plasmodium and other protozoa/bacterial strains, as well as with human DNA. Additional investigations were conducted to analyse the temperature optimum, reaction speed and robustness of this assay. Results The lateral flow RPA (LF-RPA) assay exhibited a high sensitivity and specificity. Experiments confirmed a detection limit as low as 100 fg of genomic P. falciparum DNA, corresponding to a sensitivity of approximately four parasites per reaction. All investigated P. falciparum strains (n = 77) were positively tested while all of the total 11 non-Plasmodium samples, showed a negative test result. The enzymatic reaction can be conducted under a broad range of conditions from 30-45°C with high inhibitory concentration of known PCR inhibitors. A time to result of 15 min from start of the reaction to read-out was determined. Conclusions Combining the isothermal RPA and the lateral flow detection is an approach to improve molecular diagnostic for P. falciparum in

  14. Developing rapid, point-of-care, multiplex detection for use in lateral flow devices

    NASA Astrophysics Data System (ADS)

    Rao, R. S.; Albala, J. S.; Lane, S. L.; Matthews, D. L.; Fisher, A. M.; Lambert, J. L.; Coleman, M. A.

    2005-11-01

    Immunoassays have been widely used in commercial, scientific and medical research for detection and quantification of analytes in complex mixtures. There is however a need for a point-of-care, multiplex diagnostic assays capable of providing rapid and quantitative measurements of analytes present in samples that are sufficiently simple to carry out without use of a laboratory or individuals trained in chemical analysis. We are developing a fluorescent lateral flow immunoassay platform to perform simultaneous, multiplexed detection of analytes in a complex fluid mixture along with instrumentation to optically quantitate the analytes in the sample. Our prototype imaging system is based on conventional 16-bit CCD optics, which enables the development of a rugged diagnostic instrument that can be further scaled down for point-of-care applications. We have compared protein microarrays with lateral flow assays (LFAs) to determine the sensitivity of each system for the measurement of distinct proteins in complex samples. We are pursuing the LFA platform such that it can easily be scaled to meet the requirements of any given screening application, and be implemented for use in a medical or surgical setting.

  15. Establishing a cost-per-result of laboratory-based, reflex Cryptococcal antigenaemia screening (CrAg) in HIV+ patients with CD4 counts less than 100 cells/μl using a Lateral Flow Assay (LFA) at a typical busy CD4 laboratory in South Africa

    PubMed Central

    Cassim, Naseem; Schnippel, Kathryn; Coetzee, Lindi Marie

    2017-01-01

    Introduction Cryptococcal meningitis is a major cause of mortality and morbidity in countries with high HIV prevalence, primarily affecting patients whose CD4 are < = 100 cells/μl. Routine Cryptococcal Antigen (CrAg) screening is thus recommended in the South African HIV treatment guidelines for all patients with CD4 counts < = 100 cells/μl, followed by pre-emptive anti-fungal therapy where CrAg results are positive. A laboratory-based reflexed CrAg screening approach, using a Lateral Flow Assay (LFA) on remnant EDTA CD4 blood samples, was piloted at three CD4 laboratories. Objectives This study aimed to assess the cost-per-result of laboratory-based reflexed CrAg screening at one pilot CD4 referral laboratory. Methods CD4 test volumes from 2014 were extracted to estimate percentage of CD4 < = 100 cells/μl. Daily average volumes were derived, assuming 12 months per/year and 21.73 working days per/month. Costing analyses were undertaken using Microsoft Excel and Stata with a provider prospective. The cost-per-result was estimated using a bottom-up method, inclusive of test kits and consumables (reagents), laboratory equipment and technical effort costs. The ZAR/$ exchange of 14.696/$1 was used, where applicable. One-way sensitivity analyses on the cost-per-result were conducted for possible error rates (3%– 8%, reductions or increases in reagent costs as well as test volumes (ranging from -60% to +60%). Results The pilot CD4 laboratory performed 267000 CD4 tests in 2014; ~ 9.3% (27500) reported CD4< = 100 cells/μl, equivalent to 106 CrAg tests performed daily. A batch of 30-tests could be performed in 1.6 hours, including preparation and analysis time. A cost-per-result of $4.28 was reported, with reagents contributing $3.11 (72.8%), while technical effort and laboratory equipment overheads contributed $1.17 (27.2%) and $0.03 (<1%) respectively. One-way sensitivity analyses including increasing or decreasing test volumes by 60% revealed a cost-per-result range

  16. Rapid and Sensitive Lateral Flow Immunoassay Method for Procalcitonin (PCT) Based on Time-Resolved Immunochromatography

    PubMed Central

    Shao, Xiang-Yang; Wang, Cong-Rong; Xie, Chun-Mei; Wang, Xian-Guo; Liang, Rong-Liang; Xu, Wei-Wen

    2017-01-01

    Procalcitonin (PCT) is a current, frequently-used marker for severe bacterial infection. The aim of this study was to develop a cost-effective detection kit for rapid quantitative and on-site detection of PCT. To develop the new PCT quantitative detecting kit, a double-antibody sandwich immunofluorescent assay was employed based on time-resolved immunofluorescent assay (TRFIA) combined with lateral flow immunoassay (LFIA). The performance of the new developed kit was evaluated in the aspects of linearity, precision, accuracy, and specificity. Two-hundred thirty-four serum samples were enrolled to carry out the comparison test. The new PCT quantitative detecting kit exhibited a higher sensitivity (0.08 ng/mL). The inter-assay coefficient of variation (CV) and the intra-assay CV were 5.4%–7.7% and 5.7%–13.4%, respectively. The recovery rates ranged from 93% to 105%. Furthermore, a high correlation (n = 234, r = 0.977, p < 0.0001) and consistency (Kappa = 0.875) were obtained when compared with the PCT kit from Roche Elecsys BRAHMS. Thus, the new quantitative method for detecting PCT has been successfully established. The results indicated that the newly-developed system based on TRFIA combined with LFIA was suitable for rapid and on-site detection for PCT, which might be a useful platform for other biomarkers in point-of-care tests. PMID:28264502

  17. Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.

    PubMed

    Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo

    2014-01-01

    An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.

  18. Detection of 3-phenoxybenzoic acid in river water with a colloidal gold-based lateral flow immunoassay.

    PubMed

    Liu, Yuan; Wu, Aihua; Hu, Jing; Lin, Manman; Wen, Mengtang; Zhang, Xiao; Xu, Chongxin; Hu, Xiaodan; Zhong, Jianfeng; Jiao, Lingxia; Xie, Yajing; Zhang, Cunzhen; Yu, Xiangyang; Liang, Ying; Liu, Xianjin

    2015-08-15

    3-Phenoxybenzoic acid (3-PBA) is a general metabolite of synthetic pyrethroids. It could be used as a generic biomarker for multiple pyrethroids exposure for human or pyrethroid residues in the environment. In this study, monoclonal antibodies (mAbs) against 3-PBA were developed by using PBA-bovine serum albumin (BSA) as an immunogen. In the competitive enzyme-linked immunosorbent assay (ELISA) format, the I50 and I10 values of purified mAbs were 0.63 and 0.13 μg/ml, respectively, with a dynamic range between 0.19 and 2.04 μg/ml. Then, the colloidal gold (CG)-based lateral flow immunoassay was established based on the mAbs. The working concentration of coating antigen and CG-labeled antibodies and the blocking effects were investigated to get optimal assay performance. The cutoff value for the assay was 1 μg/ml 3-PBA, and the detection time was within 10 min. A total of 40 river water samples were spiked with 3-PBA at different levels and determined by the lateral flow immunoassay without any sample pretreatments. The negative false rate was 2.5%, and no positive false results were observed at these levels. This lateral flow immunoassay has the potential to be an on-site screening method for monitoring 3-PBA or pyrethroid residues in environmental samples.

  19. Optimization of a lateral flow immunoassay for the ultrasensitive detection of aflatoxin M1 in milk.

    PubMed

    Anfossi, Laura; Baggiani, Claudio; Giovannoli, Cristina; Biagioli, Flavia; D'Arco, Gilda; Giraudi, Gianfranco

    2013-04-15

    A high sensitive immunoassay-based lateral flow device for semi-quantitatively determine aflatoxin M1 (AFM1) in milk was developed. Investigation and optimization of the competitor design and of the gold-labelling strategy allowed the attainment of the ultra-sensitive assessment of AFM1 contamination at nanograms per litre level (LOD 20 ng L(-1), IC50 99 ng L(-1)), as requested by European regulations. A one order of magnitude detectability enhancement in comparison to previously reported gold colloid immunochromatographic assays for this toxin was obtained. Direct detection of the target toxin in milk could be obtained by acquiring images of the strips and correlating intensities of the coloured lines with analyte concentrations. The one-step assay can be completed in 17 min, including a very simple and rapid sample preparation, which allowed the application of the assay to milk samples which differ in fat and protein contents. Although imprecise (mean RSD about 30%), the method proved to be accurate and sensitive enough to allow the correct attribution of sample as compliant or non-compliant according to EU legislation in force. Agreeing results to those of a reference ELISA were obtained on 40 milk samples by matrix-matched calibration in pasteurized milk.

  20. Development of a lateral flow fluorescent microsphere immunoassay for the determination of sulfamethazine in milk.

    PubMed

    Chen, Rui; Li, Heng; Zhang, Han; Zhang, Suxia; Shi, Weimin; Shen, Jianzhong; Wang, Zhanhui

    2013-08-01

    The fluorescent microsphere has been increasingly used as detecting label in immunoassay because of its stable configuration, high fluorescence intensity, and photostability. In this paper, we developed a novel lateral flow fluorescent microsphere immunoassay (FMIA) for the determination of sulfamethazine (SMZ) in milk in a quantitative manner with high sensitivity, selectivity, and rapidity. A monoclonal antibody to SMZ was covalently conjugated with the carboxylate-modified fluorescent microsphere, which is polystyrene with a diameter of 200 nm. Quantitative detection of SMZ in milk was accomplished by recording the fluorescence intensity of microspheres captured on the test line after the milk samples were diluted five times. Under optimal conditions, the FMIA displays a rapid response for SMZ with a limit of detection of as low as 0.025 ng mL(-1) in buffer and 0.11 μg L(-1) in milk samples. The FMIA was then successfully applied on spiked milk samples and the recoveries ranged from 101.1 to 113.6% in the inter-batch assay with coefficient of variations of 6.0 to 14.3%. We demonstrate here that the fluorescent microsphere-based lateral flow immunoassay (LFIA) is capable of rapid, sensitive, and quantitative detection of SMZ in milk.

  1. Development of a lateral flow immunoassay for rapid diagnosis of potato blackleg caused by Dickeya species.

    PubMed

    Safenkova, Irina V; Zaitsev, Ilya A; Varitsev, Yuri A; Byzova, Nadezhda A; Drenova, Natalia V; Zherdev, Anatoly V; Dzantiev, Boris B

    2017-03-01

    Early detection of potato infections is essential for effective disease management. The aim of this study was to develop a lateral flow immunoassay (LFIA) for rapid detection of a serious potato disease, potato blackleg, caused by Dickeya dianthicola and Dickeya solani. Polyclonal antibodies specific to different strains of Dickeya were obtained from rabbits after immunization with bacterial cells of D. dianthicola and D. solani. Enzyme-linked immunosorbent assay testing with use of a wide range of bacterial species showed that the polyclonal antibodies detect closely related strains of D. dianthicola and D. solani. Cross-reactivity with widespread pathogenic bacteria (nine species) and saprophytes of healthy potato plants was not detected. The LFIA based on the obtained antibodies and gold nanoparticles with average diameter of 20 nm was developed. Under optimized conditions, the LFIA method enabled the analysis of potato extracts within 10 min, with a visual limit of detection of 1 × 10(5) CFU/ml for leaves and 4 × 10(5) CFU/ml for tubers. The assay was tested on potato stem and tuber extracts, and the results of the LFIA were confirmed in 92.1% of samples using the real-time polymerase chain reaction. The findings confirmed that the developed LFIA could be used for monitoring blackleg infection without the need for special equipment or skills. Graphical Abstract The developed lateral flow immunoassay is an efficient tool for rapid detection of a serious potato disease, potato blackleg, caused by Dickeya dianthicola and Dickeya solani.

  2. Unchannelized dam-break flows: Effects of the lateral spreading on the flow dynamics

    NASA Astrophysics Data System (ADS)

    Girolami, L.; Wachs, A.; Vinay, G.

    2013-04-01

    In this paper, we used a three-dimensional discrete-grain model (Grains3D) to explore the flow and deposit characteristics of unchannelized dam-break collapses. A series of numerical experiments was performed to predict the behaviour of different granular columns (characterized by different initial aspect ratio a, varying from 0.5 to 18). As observed previously in similar channelized dam-break flows and axisymmetric slumps, the phenomenology of the collapse depends strongly on a, revealing different flow regimes. Small collapsing heaps (a ≲ 3) develop shallow cascades that form deposits characterized by a tail extended by a rounded frontal region. Instead, tall avalanching columns (a ≳ 3) generate dense, fast-moving currents that form a circular final deposit that resembles to those obtained from axisymmetric columns. The conversion from vertical to horizontal momentum was observed to be more efficient in these flows. The aggrading inner tapering region of static grains developed during the flow increases the number of final cascades necessary to adjust the slope of the final deposit, extending the total flow duration from 3 τc in dam-break flows to 7 τc in unchannelized ones. Surprisingly, mean aggradation velocities measured at different locations were observed to be independent of the lateral position, depending primarily on the longitudinal distance from reservoir and the initial aspect ratio. Scaled deposit widths and runouts revealed different power-law dependences on a, exposing a non-isotropic behaviour which tends to form a smooth transition from channelized dam-break flows to axisymmetric slumps.

  3. Species Specific Bacterial Spore Detection Using Lateral-Flow Immunoassay with DPA-Triggered Tb Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2003-01-01

    A method of detecting bacterial spores incorporates (1) A method of lateral-flow immunoassay in combination with (2) A method based on the luminescence of Tb3+ ions to which molecules of dipicolinic acid (DPA) released from the spores have become bound. The present combination of lateral-flow immunoassay and DPA-triggered Tb luminescence was developed as a superior alternative to a prior lateral-flow immunoassay method in which detection involves the visual observation and/or measurement of red light scattered from colloidal gold nanoparticles. The advantage of the present combination method is that it affords both (1) High selectivity for spores of the species of bacteria that one seeks to detect (a characteristic of lateral-flow immunoassay in general) and (2) Detection sensitivity much greater (by virtue of the use of DPA-triggered Tb luminescence instead of gold nanoparticles) than that of the prior lateral-flow immunoassay method

  4. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens.

    PubMed

    Shan, Shan; Lai, Weihua; Xiong, Yonghua; Wei, Hua; Xu, Hengyi

    2015-01-28

    Food contaminated by foodborne pathogens causes diseases, affects individuals, and even kills those affected individuals. As such, rapid and sensitive detection methods should be developed to screen pathogens in food. One current detection method is lateral flow immunoassay, an efficient technique because of several advantages, including rapidity, simplicity, stability, portability, and sensitivity. This review presents the format and principle of lateral flow immunoassay strip and the development of conventional lateral flow immunoassay for detecting foodborne pathogens. Furthermore, novel strategies that can be applied to enhance the sensitivity of lateral flow immunoassay to detect foodborne pathogens are presented; these strategies include innovating new label application, designing new formats of lateral flow immunoassay, combining with other methods, and developing signal amplification systems. With these advancements, detection sensitivity and detection time can be greatly improved.

  5. Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection

    PubMed Central

    Carrio, Adrian; Sampedro, Carlos; Sanchez-Lopez, Jose Luis; Pimienta, Miguel; Campoy, Pascual

    2015-01-01

    Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results. PMID:26610513

  6. Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection.

    PubMed

    Carrio, Adrian; Sampedro, Carlos; Sanchez-Lopez, Jose Luis; Pimienta, Miguel; Campoy, Pascual

    2015-11-24

    Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results.

  7. Pretreatment-free lateral flow enzyme immunoassay for progesterone detection in whole cows' milk.

    PubMed

    Samsonova, J V; Safronova, V A; Osipov, A P

    2015-01-01

    New rapid method of lateral flow enzyme immunoassay (LFEIA) for progesterone detection in whole cows' milk was developed. The test system utilized horseradish peroxidase as a label along with the substrate solution containing 3,3',5,5'-tetramethylbenzidine and dextran sulfate to obtain an insoluble blue colored product of the enzyme reaction on a surface of analytical membrane (test and control lines). Several aspects of LFEIA were optimized: time of the signal detection, membrane materials and assay conditions. Resulting competitive LFEIA can be performed within 15 minutes with the limit of progesterone detection of 0.8 ng/ml. Progesterone concentration in whole milk samples was determined by LFEIA and enzyme-linked immunosorbent assay (ELISA). The results obtained were in good correlation (R=0.97, n=46). Thus new sensitive LFEIA can be successfully used for on-site monitoring of oestrus status of cows' reproductive system and for early none-pregnancy detection. The method is fast, easy to perform and needs no preliminary sample preparation.

  8. [Development of a lateral flow dipstick immunoassay for rapid detection of ginsenoside Re].

    PubMed

    Nan, Tie-Gui; Cao, Zhen; He, Li-Shan; Yuan, Yuan; Huang, Lu-Qi; Wang, Bao-Min

    2013-08-01

    A sensitive antibody-based lateral flow dipstick was developed for ginsenoside Re (GRe) detection. The stick consisted of a sample pad, a conjugate pad, membrane and an absorbent pad. The membrane was coated with two capture reagents, GRe-BSA conjugate and goat anti-mouse antibodies, forming a test line and a control line, respectively. The conjugate pad was saturated with colloidal gold particles coated with affinity purified monoclonal anti-GRe antibody. The visual detection limit was 200 microg x L(-1) of GRe and the reaction time was 10 min. The Panax ginseng roots were identified after these samples (10 mg) were extracted with 5 mL tap water for 30 min at room temperature, and the extracts were tested by the dipsticks and ELISA kit. The true and false P. ginseng could be distinguished with dipsticks. The dipstick could be used to detect the quality of the P. ginseng samples when the extract was diluted 100-folds. The results were compared with those obtained using an indirect competitive enzyme-linked immunosorbent assay (icELISA). The dipstick assay proved to be a sensitive and rapid tool for quality control of P. ginseng.

  9. Dual-Quantum-Dots-Labeled Lateral Flow Strip Rapidly Quantifies Procalcitonin and C-reactive Protein

    NASA Astrophysics Data System (ADS)

    Qi, XiaoPing; Huang, YunYe; Lin, ZhongShi; Xu, Liang; Yu, Hao

    2016-03-01

    In the article, a dual-quantum-dots-labeled (dual-QDs-labeled) lateral flow strip (LFS) method was developed for the simultaneous and rapid quantitative detection of procalcitonin (PCT) and C-reactive protein (CRP) in the blood. Two QD-antibody conjugates with different fluorescence emission spectra were produced and sprayed on the LFS to capture PCT and CRP in the blood. Furthermore, a double antibody sandwich method for PCT and, meanwhile, a competitive inhibition method for CRP were employed in the LFS. For PCT and CRP in serum assayed by the dual-QDs-labeled LFS, their detection sensitivities reached 0.1 and 1 ng/mL, respectively, and their linear quantitative detection ranges were from 0.3 to 200 ng/mL and from 50 to 250 μg/mL, respectively. There was little evidence that the PCT and CRP assays would be interfered with each other. The correlations for testing CRP and PCT in clinical samples were 99.75 and 97.02 %, respectively, between the dual-QDs-labeled LFS we developed and commercial methods. The rapid quantification of PCT and CRP on dual-QDs-labeled LFS is of great clinical value to distinguish inflammation, bacterial infection, or viral infection and to provide guidance for the use of antibiotics or other medicines.

  10. Rapid detection of Bacillus anthracis by γ phage amplification and lateral flow immunochromatography.

    PubMed

    Cox, Christopher R; Jensen, Kirk R; Mondesire, Roy R; Voorhees, Kent J

    2015-11-01

    New, rapid point-of-need diagnostic methods for Bacillus anthracis detection can enhance civil and military responses to accidental or deliberate dispersal of anthrax as a biological weapon. Current laboratory-based methods for clinical identification of B. anthracis require 12 to 120h, and are confirmed by plaque assay using the well-characterized γ typing phage, which requires an additional minimum of 24h for bacterial culture. To reduce testing time, the natural specificity of γ phage amplification was investigated in combination with lateral flow immunochromatography (LFI) for rapid, point-of-need B. anthracis detection. Phage-based LFI detection of B. anthracis Sterne was validated over a range of bacterial and phage concentrations with optimal detection achieved in as little as 2h from the onset of amplification with a threshold sensitivity of 2.5×10(4)cfu/mL. The novel use of γ phage amplification detected with a simple, inexpensive LFI assay provides a rapid, sensitive, highly accurate, and field-deployable method for diagnostic ID of B. anthracis in a fraction of the time required by conventional techniques, and without the need for extensive laboratory culture.

  11. Role of nonspecific binding: a comparison among flow through and flow over assays in nanoporous material

    NASA Astrophysics Data System (ADS)

    Bettotti, P.; Kumar, N.; Guider, R.; Froner, E.; Scarpa, M.

    2014-02-01

    In this article we describe the fabrication of free standing n-type porous silicon microcavity (MC) and their properties as liquid sensors. We have optimized the etching recipe to keep both large pore size and high quality factor (Q-factor). Thus the fabricated porous layers have pore size in the range of 40 to 110 nm and are thus compatible with mass transport across the porous layer. We found that MC with a Q-factor of 60 can measure down to 1.1*10-5 refractive index variations. Furthermore we analyze the role of non specific binding by comparing flow through versus flow over geometries. We compare these two approaches using different techniques and we show that flow over assay systematically overestimates the sensitivity of the device because of an inefficient rinse of the sample. Our work clearly indicates a limit in the reliability of measurements performed in flow over geometry unless specific controls are taken into account.

  12. Lateral Flow Field Behavior Downstream of Mixing Vanes In a Simulated Nuclear Fuel Rod Bundle

    SciTech Connect

    Conner, Michael E.; Smith, L. David III; Holloway, Mary V.; Beasley, Donald E.

    2004-07-01

    To assess the fuel assembly performance of PWR nuclear fuel assemblies, average subchannel flow values are used in design analyses. However, for this highly complex flow, it is known that local conditions around fuel rods vary dependent upon the location of the fuel rod in the fuel assembly and upon the support grid design that maintains the fuel rod pitch. To investigate the local flow in a simulated nuclear fuel rod bundle, a testing technique has been employed to measure the lateral flow field in a 5 x 5 rod bundle. Particle Image Velocimetry was used to measure the lateral flow field downstream of a support grid with mixing vanes for four unique subchannels in the 5 x 5 bundle. The dominant lateral flow structures for each subchannel are compared in this paper including the decay of these flow structures. (authors)

  13. Development of Dual Quantitative Lateral Flow Immunoassay for the Detection of Mycotoxins.

    PubMed

    Wang, Yuan-Kai; Yan, Ya-Xian; Sun, Jian-He

    2017-01-01

    Lateral flow immunoassays have been widely used in recent years for detection of toxins, heavy metals, and biomarkers. To improve the efficiency of individual lateral flow immunoassays, multiplex analytical strips play an important role in the detection of several important analytes. In this chapter, development of a dual lateral flow immunoassay is presented for detection of a variety of low molecular weight molecules. Various buffers, additives, and materials are introduced and evaluated. Depending on the analyte to be tested, the technique allows for selection of optimum buffers, additives, and other materials.

  14. Development of a barcode-style lateral flow immunoassay for the rapid semi-quantification of gliadin in foods.

    PubMed

    Yin, Hsin-Yi; Chu, Pei-Tzu; Tsai, Wen-Che; Wen, Hsiao-Wei

    2016-02-01

    In this work, a barcode-style lateral flow immunoassay is developed using two cut-off values (10 and 50 mg kg(-1) gliadin) to provide a semi-quantification for identifying "gluten-free" and "very low gluten" foods, based on the international Codex Alimentarius Standard. This developed assay exhibits favorable specificity in differentiating wheat from seven commonly used grains, with only a slight cross-reaction with barely. The intra-assay and inter-assay CV values of this assay were 1.5-1.7% and 2.5-4.5%, respectively, revealing high reproducibility. In the analysis of 48 food samples, the results of this assay closely agreed with those obtained using AOAC-approved ELISA or strip kits, as the Cohen's kappa coefficients for both comparisons exceeded 0.8. Thus, this developed assay can be used to quickly estimate the gliadin content in foods in order to protect people with wheat allergy or celiac disease from the accidental ingestion of gliadin.

  15. Integrating Vegetation, Soil and Topography to Assess the Impact of Lateral Flow on Plant Solute Uptake

    NASA Astrophysics Data System (ADS)

    Rebel, K. T.; Riha, S. J.; Stedinger, J. R.

    2005-05-01

    Simulation of solute uptake by vegetation in complex terrain typically fails to account for subsurface lateral movement of solutes. This study uses a spatially explicit plant-soil-water simulation model to investigate whether subsurface lateral flow at the sand-clay interface impacts tritium uptake by mixed forest vegetation. Ten hectares of a mixed pine - laurel oak forest on Coastal Plain soils periodically received irrigation with tritium-enriched water (activity ranged from 5,000 to 20,000 pCi/ml) over a three year time period. To simulate water and tritium fluxes we developed a spatially explicit water balance model. Tritium was completely mixed daily with water in each soil layer. Vertical flow of water was simulated using a capacitance model with lateral flow dependent on head development and the local slope of the impeding clay layer. The model was evaluated by comparing biweekly measurements of tritium activity (measured to 3 meter depth) and soil water content (measured to 2 meter depth) in 18 measurement clusters distributed over the catchment. We evaluated the importance of including subsurface flow in model simulations. Lateral flow was locally important (mean distance tritium traveled laterally was 1.35 m). However, after three years of simulation, the maximum predicted lateral movement of tritium did not exceed 70 meters. On the catchment scale, the average simulated amount of tritium taken up by vegetation was not impacted by lateral flow, but smaller scale spatial variability in tritium uptake increased with the inclusion of lateral flow. Simulated tritium uptake was most sensitive to changes in vegetation cover, and was less sensitive to differences in soil properties (e.g. field capacity, hydraulic conductivity and root distribution). When integrated over the study area, the simulation of solute uptake by a mixed forest in Coastal Pain soils was not sensitive to inclusion of subsurface lateral flow of water.

  16. An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus.

    PubMed

    Zhou, Weilu; Kong, Weijun; Dou, Xiaowen; Zhao, Ming; Ouyang, Zhen; Yang, Meihua

    2016-06-01

    An aptamer based lateral flow strip based on competitive format was developed for on-site rapid detection of ochratoxin A (OTA) in Astragalus membranaceus. Some crucial parameters that might influence the sensitive detection, such as the characterization of the colloidal gold, size and shape of gold nanoparticles (AuNPs), amount of AuNPs-aptamer conjugate, migration rate and the addition amount of methanol, were investigated to provide the optimum assay performance. To perform the test, 1g sample was extracted with 2.5mL of methanol-water (80:20, v/v) and diluted by 4-fold running buffer to eliminate the matrix and methanol interferences. Under optimized conditions, the aptamer-based assay showed a visual limit of detection (LOD) of 1ngmL(-1), and with no significant cross-reactivity with several homologous toxins. The whole detection could be completed within 15min without special equipment because of available visual results. One out of nine A. membranaceus samples was found to be positive of OTA, which was in a good agreement with those obtained from LC-MS/MS analysis. The results demonstrated that the aptamer-based lateral flow assay could be used as a rapid, reliable, cost-effective and robust on-site screening technique for mycotoxins at trace level in complex matrices without special instrumentation.

  17. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification.

    PubMed

    Wu, Wei; Zhao, Shiming; Mao, Yiping; Fang, Zhiyuan; Lu, Xuewen; Zeng, Lingwen

    2015-02-25

    Foodborne diseases caused by pathogens are one of the major problems in food safety. Convenient and sensitive point-of-care rapid diagnostic tests for food-borne pathogens have been a long-felt need of clinicians. Commonly used methods for pathogen detection rely on conventional culture-based tests, antibody-based assays and polymerase chain reaction (PCR)-based techniques. These methods are costly, laborious and time-consuming. Herein, we present a simple and sensitive aptamer based biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7). In this assay, two different aptamers specific for the outmembrane of E. coli O157:H7 were used. One of the aptamers was used for magnetic bead enrichment, and the other was used as a signal reporter for this pathogen, which was amplified by isothermal strand displacement amplification (SDA) and further detected by a lateral flow biosensor. Only the captured aptamers on cell membrane were amplified, limitations of conventional DNA amplification based method such as false-positive can be largely reduced. The generated signals (red bands on the test zone of a lateral flow strip) can be unambiguously read out by the naked eye. As low as 10 colony forming units (CFU) of E. coli O157:H7 were detected in this study. Without DNA extraction, the reduced handling and simpler equipment requirement render this assay a simple and rapid alternative to conventional methods.

  18. [Detection of fish protein in food products by lateral flow immunoassay].

    PubMed

    Shibahara, Yusuke; Ii, Toshihiro; Wang, Jun; Yamada, Shoichi; Shiomi, Kazuo

    2014-01-01

    The major fish allergen is parvalbumin, a sarcoplasmic protein. In this study, a novel lateral flow immunoassay for the detection of fish protein in food products was developed using a polyclonal antibody raised against Pacific mackerel Scomber japonicus parvalbumin. The proposed lateral flow immunoassay showed high reactivity to various fish parvalbumins, but the reactivity to bullfrog parvalbumin was very low. The detection limit of the immunoassay for fish parvalbumin was estimated to be 2.0 μg protein/g, which matches the sensitivity required in the current Japanese food labeling system. Furthermore, the lateral flow immunoassay could detect fish parvalbumin without being affected by food matrices and was applicable even to heat-denatured parvalbumin. These results showed that the lateral flow immunoassay developed in this study is specific to fish parvalbumin, and should be useful as a rapid detection method for fish protein in processed food products.

  19. Effects of anthropogenic water regulation and groundwater lateral flow on land processes

    NASA Astrophysics Data System (ADS)

    Zeng, Yujin; Xie, Zhenghui; Yu, Yan; Liu, Shuang; Wang, Linying; Zou, Jing; Qin, Peihua; Jia, Binghao

    2016-09-01

    Both anthropogenic water regulation and groundwater lateral flow essentially affect groundwater table patterns. Their relationship is close because lateral flow recharges the groundwater depletion cone, which is induced by over-exploitation. In this study, schemes describing groundwater lateral flow and human water regulation were developed and incorporated into the Community Land Model 4.5. To investigate the effects of human water regulation and groundwater lateral flow on land processes as well as the relationship between the two processes, three simulations using the model were conducted for the years 2003-2013 over the Heihe River Basin in northwestern China. Simulations showed that groundwater lateral flow driven by changes in water heads can essentially change the groundwater table pattern with the deeper water table appearing in the hillslope regions and shallower water table appearing in valley bottom regions and plains. Over the last decade, anthropogenic groundwater exploitation deepened the water table by approximately 2 m in the middle reaches of the Heihe River Basin and rapidly reduced the terrestrial water storage, while irrigation increased soil moisture by approximately 0.1 m3 m-3. The water stored in the mainstream of the Heihe River was also reduced by human surface water withdrawal. The latent heat flux was increased by 30 W m-2 over the irrigated region, with an identical decrease in sensible heat flux. The simulated groundwater lateral flow was shown to effectively recharge the groundwater depletion cone caused by over-exploitation. The offset rate is higher in plains than mountainous regions.

  20. Recommendations for the validation of flow cytometric testing during drug development: II assays.

    PubMed

    O'Hara, Denise M; Xu, Yuanxin; Liang, Zhiyan; Reddy, Manjula P; Wu, Dianna Y; Litwin, Virginia

    2011-01-05

    Flow cytometry-based assays serve as valuable tools for various aspects of the drug development process ranging from target discovery and characterization to evaluation of responses in a clinical setting. The integrity of the samples and the appropriate selection and characterization of the reagents used in these assays are in themselves challenging. These concerns taken together with the flow-based technology makes the validation of flow cytometry assays a challenging effort. Therefore, apart from summarizing the role of flow cytometry technology in various stages of drug development, this manuscript focuses on recommendations for the validation of methods applying flow cytometry. Information is also provided on the relevant validation parameters for different types of flow cytometry assays to guide the users of this platform. Together, the recommendations and the information on regulatory guidelines provided in this manuscript represent the consensus of all the authors and can assist the flow cytometry user in implementing the appropriate method validation strategies.

  1. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system.

    PubMed

    Wang, Dian-Bing; Tian, Bo; Zhang, Zhi-Ping; Deng, Jiao-Yu; Cui, Zong-Qiang; Yang, Rui-Fu; Wang, Xu-Ying; Wei, Hong-Ping; Zhang, Xian-En

    2013-04-15

    There is an urgent need for convenient, sensitive, and specific methods to detect the spores of Bacillus anthracis, the causative agent of anthrax, because of the bioterrorism threat posed by this bacterium. In this study, we firstly develop a super-paramagnetic lateral-flow immunological detection system for B. anthracis spores. This system involves the use of a portable magnetic assay reader, super-paramagnetic iron oxide particles, lateral-flow strips and two different monoclonal antibodies directed against B. anthracis spores. This detection system specifically recognises as few as 400 pure B. anthracis spores in 30 min. This system has a linear range of 4×10³-10⁶ CFU ml⁻¹ and reproducible detection limits of 200 spores mg⁻¹ milk powder and 130 spores mg⁻¹ soil for simulated samples. In addition, this approach shows no obvious cross-reaction with other related Bacillus spores, even at high concentrations, and has no significant dependence on the duration of the storage of the immunological strips. Therefore, this super-paramagnetic lateral-flow immunological detection system is a promising tool for the rapid and sensitive detection of Bacillus anthracis spores under field conditions.

  2. An automatic enzyme immunoassay based on a chemiluminescent lateral flow immunosensor.

    PubMed

    Joung, Hyou-Arm; Oh, Young Kyoung; Kim, Min-Gon

    2014-03-15

    Microfluidic integrated enzyme immunosorbent assay (EIA) sensors are efficient systems for point-of-care testing (POCT). However, such systems are not only relatively expensive but also require a complicated manufacturing process. Therefore, additional fluidic control systems are required for the implementation of EIAs in a lateral flow immunosensor (LFI) strip sensor. In this study, we describe a novel LFI for EIA, the use of which does not require additional steps such as mechanical fluidic control, washing, or injecting. The key concept relies on a delayed-release effect of chemiluminescence substrates (luminol enhancer and hydrogen peroxide generator) by an asymmetric polysulfone membrane (ASPM). When the ASPM was placed between the nitrocellulose (NC) membrane and the substrate pad, substrates encapsulated in the substrate pad were released after 5.3 ± 0.3 min. Using this delayed-release effect, we designed and implemented the chemiluminescent LFI-based automatic EIA system, which sequentially performed the immunoreaction, pH change, substrate release, hydrogen peroxide generation, and chemiluminescent reaction with only 1 sample injection. In a model study, implementation of the sensor was validated by measuring the high sensitivity C-reactive protein (hs-CRP) level in human serum.

  3. Rapid Detection of Escherichia coli O157 and Shiga Toxins by Lateral Flow Immunoassays

    PubMed Central

    Wang, Jinliang; Katani, Robab; Li, Lingling; Hegde, Narasimha; Roberts, Elisabeth L.; Kapur, Vivek; DebRoy, Chitrita

    2016-01-01

    Shiga toxin-producing Escherichia coli O157:H7 (STEC) cause food-borne illness that may be fatal. STEC strains enumerate two types of potent Shiga toxins (Stx1 and Stx2) that are responsible for causing diseases. It is important to detect the E. coli O157 and Shiga toxins in food to prevent outbreak of diseases. We describe the development of two multi-analyte antibody-based lateral flow immunoassays (LFIA); one for the detection of Stx1 and Stx2 and one for the detection of E. coli O157 that may be used simultaneously to detect pathogenic E. coli O157:H7. The LFIA strips were developed by conjugating nano colloidal gold particles with monoclonal antibodies against Stx1 and Stx2 and anti-lipid A antibodies to capture Shiga toxins and O157 antigen, respectively. Our results indicate that the LFIA for Stx is highly specific and detected Stx1 and Stx2 within three hours of induction of STEC with ciprofloxacin at 37 °C. The limit of detection for E. coli O157 LFIA was found to be 105 CFU/mL in ground beef spiked with the pathogen. The LFIAs are rapid, accurate and easy to use and do not require sophisticated equipment or trained personnel. Following the assay, colored bands on the membrane develop for end-point detection. The LFIAs may be used for screening STEC in food and the environment. PMID:27023604

  4. Variable parameter McCarthy-Muskingum routing method considering lateral flow

    NASA Astrophysics Data System (ADS)

    Yadav, Basant; Perumal, Muthiah; Bardossy, Andras

    2015-04-01

    The fully mass conservative variable parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price (2013) for routing floods in channels and rivers without considering lateral flow is extended herein for accounting uniformly distributed lateral flow contribution along the reach. The proposed procedure is applied for studying flood wave movement in a 24.2 km river stretch between Rottweil and Oberndorf gauging stations of Neckar River in Germany wherein significant lateral flow contribution by intermediate catchment rainfall prevails during flood wave movement. The geometrical elements of the cross-sectional information of the considered routing river stretch without considering lateral flow are estimated using the Robust Parameter Estimation (ROPE) algorithm that allows for arriving at the best performing set of bed width and side slope of a trapezoidal section. The performance of the VPMM method is evaluated using the Nash-Sutcliffe model efficiency criterion as the objective function to be maximized using the ROPE algorithm. The twenty-seven flood events in the calibration set are considered to identify the relationship between 'total rainfall' and 'total losses' as well as to optimize the geometric characteristics of the prismatic channel (width and slope of the trapezoidal section). Based on this analysis, a relationship between total rainfall and total loss of the intermediate catchment is obtained and then used to estimate the lateral flow in the reach. Assuming the lateral flow hydrograph is of the form of inflow hydrograph and using the total intervening catchment runoff estimated from the relationship, the uniformly distributed lateral flow rate qL at any instant of time is estimated for its use in the VPMM routing method. All the 27 flood events are simulated using this routing approach considering lateral flow along the reach. Many of these simulations are able to simulate the observed hydrographs very closely. The proposed approach

  5. Left-right organizer flow dynamics: how much cilia activity reliably yields laterality?

    PubMed

    Sampaio, Pedro; Ferreira, Rita R; Guerrero, Adán; Pintado, Petra; Tavares, Bárbara; Amaro, Joana; Smith, Andrew A; Montenegro-Johnson, Thomas; Smith, David J; Lopes, Susana S

    2014-06-23

    Internal organs are asymmetrically positioned inside the body. Embryonic motile cilia play an essential role in this process by generating a directional fluid flow inside the vertebrate left-right organizer. Detailed characterization of how fluid flow dynamics modulates laterality is lacking. We used zebrafish genetics to experimentally generate a range of flow dynamics. By following the development of each embryo, we show that fluid flow in the left-right organizer is asymmetric and provides a good predictor of organ laterality. This was tested in mosaic organizers composed of motile and immotile cilia generated by dnah7 knockdowns. In parallel, we used simulations of fluid dynamics to analyze our experimental data. These revealed that fluid flow generated by 30 or more cilia predicts 90% situs solitus, similar to experimental observations. We conclude that cilia number, dorsal anterior motile cilia clustering, and left flow are critical to situs solitus via robust asymmetric charon expression.

  6. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.

    PubMed

    Schwalbe, Margot A B; Sevey, Benjamin J; Webb, Jacqueline F

    2016-04-01

    The mechanosensory lateral line system of fishes detects water motions within a few body lengths of the source. Several types of artificial stimuli have been used to probe lateral line function in the laboratory, but few studies have investigated the role of flow sensing in benthic feeding teleosts. In this study, we used artificial flows emerging from a sandy substrate to assess the contribution of flow sensing to prey detection in the peacock cichlid, Aulonocara stuartgranti, which feeds on benthic invertebrates in Lake Malawi. Using a positive reinforcement protocol, we trained fish to respond to flows lacking the visual and chemical cues generated by tethered prey in prior studies with A. stuartgranti Fish successfully responded to artificial flows at all five rates presented (characterized using digital particle image velocimetry), and showed a range of flow-sensing behaviors, including an unconditioned bite response. Immediately after lateral line inactivation, fish rarely responded to flows and the loss of vital fluorescent staining of hair cells (with 4-di-2-ASP) verified lateral line inactivation. Within 2 days post-treatment, some aspects of flow-sensing behavior returned and after 7 days, flow-sensing behavior and hair cell fluorescence both returned to pre-treatment levels, which is consistent with the reported timing of hair cell regeneration in other vertebrates. The presentation of ecologically relevant water flows to assess flow-sensing behaviors and the use of a positive reinforcement protocol are methods that present new opportunities to study the role of flow sensing in the feeding ecology of benthic feeding fishes.

  7. Dual Immunomagnetic Nanobeads-Based Lateral Flow Test Strip for Simultaneous Quantitative Detection of Carcinoembryonic Antigen and Neuron Specific Enolase

    PubMed Central

    Lu, Wenting; Wang, Kan; Xiao, Kun; Qin, Weijian; Hou, Yafei; Xu, Hao; Yan, Xinyu; Chen, Yanrong; Cui, Daxiang; He, Jinghua

    2017-01-01

    A novel immunomagnetic nanobeads -based lateral flow test strip was developed for the simultaneous quantitative detection of neuron specific enolase (NSE) and carcinoembryonic antigen (CEA), which are sensitive and specific in the clinical diagnosis of small cell lung cancer. Using this nanoscale method, high saturation magnetization, carboxyl-modified magnetic nanobeads were successfully synthesized. To obtain the immunomagnetic probes, a covalent bioconjugation of the magnetic nanobeads with the antibody of NSE and CEA was carried out. The detection area contained test line 1 and test line 2 which captured the immune complexes sensitively and formed sandwich complexes. In this assay, cross-reactivity results were negative and both NSE and CEA were detected simultaneously with no obvious influence on each other. The magnetic signal intensity of the nitrocellulose membrane was measured by a magnetic assay reader. For quantitative analysis, the calculated limit of detection was 0.094 ng/mL for NSE and 0.045 ng/mL for CEA. One hundred thirty clinical samples were used to validate the test strip which exhibited high sensitivity and specificity. This dual lateral flow test strip not only provided an easy, rapid, simultaneous quantitative detection strategy for NSE and CEA, but may also be valuable in automated and portable diagnostic applications. PMID:28186176

  8. Variable parameter McCarthy-Muskingum flow transport model for compound channels accounting for distributed non-uniform lateral flow

    NASA Astrophysics Data System (ADS)

    Swain, Ratnakar; Sahoo, Bhabagrahi

    2015-11-01

    In this study, the fully volume conservative simplified hydrodynamic-based variable parameter McCarthy-Muskingum (VPMM) flow transport model advocated by Perumal and Price in 2013 is extended to exclusively incorporate the distributed non-uniform lateral flow in the routing scheme accounting for compound river channel flows. The revised VPMM formulation is exclusively derived from the combined form of the de Saint-Venant's continuity and momentum equations with the spatiotemporally distributed lateral flow which is solved using the finite difference box scheme. This revised model could address the earlier model limitations of: (i) non-accounting non-uniformly distributed lateral flow, (ii) ignoring floodplain flow, and (iii) non-consideration of catchment dynamics of lateral flow generation restricting its real-time application. The efficacy of the revised formulation is tested to simulate 16 years (1980-1995) river runoff from real-time storm events under scarce morpho-hydrological data conditions in a tropical monsoon-type 48 km Bolani-Gomlai reach of the Brahmani River in eastern India. The spatiotemporally distributed lateral flows generated in real-time is computed by water balance approach accounting for catchment characteristics of normalized network area function, land use land cover classes, and soil textural classes; and hydro-meteorological variables of precipitation, soil moisture, minimum and maximum temperatures, wind speed, relative humidity, and solar radiation. The multiple error measures used in this study and the simulation results reveal that the revised VPMM model has a greater practical utility in estimating the event-based and long-term meso-scale river runoff (both discharge and its stage) at any ungauged site, enhancing its application for real-time flood estimation.

  9. An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224.

    PubMed

    Gao, Xuefei; Xu, Li-Ping; Wu, Tingting; Wen, Yongqiang; Ma, Xinlei; Zhang, Xueji

    2016-01-01

    An enzyme-based dual-labeled nanoprobe is designed to fabricate a sensitive enzyme-amplified lateral flow biosensor for visual detection of mircoRNA-224 (miRNA-224). The recognition DNA probe (detection probe) and signal amplification enzyme (Horseradish peroxidase, HRP) are immobilized on gold nanoparticle (GNPs) surface, simultaneously. The capture DNA probes are immobilized on the test zone of the lateral flow biosensor. When miRNA-224 is present, the enzyme-based dual-labeled nanoprobes will be captured by forming the "sandwich structure" on the test zone of the lateral flow biosensor, enabling the visual detection for miRNA-224. Sensitivity is amplified by applying the 3,3,5,5-tetramethylbenzidine enzymatic substrate (TMB/H2O2 enzymatic substrate) onto the test zone. The enzymatic reactions between the HRP and the TMB/H2O2 enzymatic substrate will produce blue products, which deposit on the nanoprobe surface to enhance the visual effect and the corresponding response intensities of the test zone. This enzyme-amplified lateral flow biosensor shows a low limit of detection (LOD) (7.5 pM) toward miRNA-224 in the buffer solution, which is improved by 10-fold than that of the single-labeled lateral flow biosensor. This biosensor has been successfully used for the detection of the target miRNA-224 detection in A549 cell lysate.

  10. A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow

    PubMed Central

    Chambers, L. D.; Akanyeti, O.; Venturelli, R.; Ježov, J.; Brown, J.; Kruusmaa, M.; Fiorini, P.; Megill, W. M.

    2014-01-01

    For underwater vehicles to successfully detect and navigate turbulent flows, sensing the fluid interactions that occur is required. Fish possess a unique sensory organ called the lateral line. Sensory units called neuromasts are distributed over their body, and provide fish with flow-related information. In this study, a three-dimensional fish-shaped head, instrumented with pressure sensors, was used to investigate the pressure signals for relevant hydrodynamic stimuli to an artificial lateral line system. Unsteady wakes were sensed with the objective to detect the edges of the hydrodynamic trail and then explore and characterize the periodicity of the vorticity. The investigated wakes (Kármán vortex streets) were formed behind a range of cylinder diameter sizes (2.5, 4.5 and 10 cm) and flow velocities (9.9, 19.6 and 26.1 cm s−1). Results highlight that moving in the flow is advantageous to characterize the flow environment when compared with static analysis. The pressure difference from foremost to side sensors in the frontal plane provides us a useful measure of transition from steady to unsteady flow. The vortex shedding frequency (VSF) and its magnitude can be used to differentiate the source size and flow speed. Moreover, the distribution of the sensing array vertically as well as the laterally allows the Kármán vortex paired vortices to be detected in the pressure signal as twice the VSF. PMID:25079867

  11. Detection of circulating immune complexes by Raji cell assay: comparison of flow cytometric and radiometric methods

    SciTech Connect

    Kingsmore, S.F.; Crockard, A.D.; Fay, A.C.; McNeill, T.A.; Roberts, S.D.; Thompson, J.M.

    1988-01-01

    Several flow cytometric methods for the measurement of circulating immune complexes (CIC) have recently become available. We report a Raji cell flow cytometric assay (FCMA) that uses aggregated human globulin (AHG) as primary calibrator. Technical advantages of the Raji cell flow cytometric assay are discussed, and its clinical usefulness is evaluated in a method comparison study with the widely used Raji cell immunoradiometric assay. FCMA is more precise and has greater analytic sensitivity for AHG. Diagnostic sensitivity by the flow cytometric method is superior in systemic lupus erythematosus (SLE), rheumatoid arthritis, and vasculitis patients: however, diagnostic specificity is similar for both assays, but the reference interval of FCMA is narrower. Significant correlations were found between CIC levels obtained with both methods in SLE, rheumatoid arthritis, and vasculitis patients and in longitudinal studies of two patients with cerebral SLE. The Raji cell FCMA is recommended for measurement of CIC levels to clinical laboratories with access to a flow cytometer.

  12. Rapid detection of measles virus using reverse transcription loop-mediated isothermal amplification coupled with a disposable lateral flow device.

    PubMed

    Xu, Changping; Feng, Yan; Chen, Yin; Gao, Jian; Lu, Yiyu

    2016-06-01

    The measles virus (MeV) causes a highly contagious disease and efforts to reduce its spread are critical. A reverse transcription loop-mediated isothermal amplification assay coupled with a disposable lateral flow device (RT-LAMP-LFD) was developed for the rapid detection of MeV. The assay was performed in 40 min at an optimal temperature of 58 °C, with endpoint results visualized directly. A probe that was complementary to the RT-LAMP amplicon was designed to enhance assay specificity. Detection limit of the assay was 8.8 copies/μL synthetic RNA, which equals the sensitivity of real-time RT-PCR. Clinical specimens were used to validate the RT-LAMP-LFD in provincial Center for Disease Control and Prevention (CDC) (n = 245) and six municipal CDCs (n = 249). The results obtained using RT-LAMP-LFD and real-time RT-PCR were highly concordant. The RT-LAMP-LFD is rapid, stable, and does not require expensive equipment, which can be used for routine MeV monitoring in CDC laboratories.

  13. Experimental investigation of lateral forces induced by flow through model labyrinth glands

    NASA Technical Reports Server (NTRS)

    Leong, Y. M. M. S.; Brown, R. D.

    1984-01-01

    The lateral forces induced by flow through model labyrinth glands were investigated. Circumferential pressure distributions, lateral forces and stiffness coefficients data obtained are discussed. The force system is represented as a negative spring and a tangential force orthogonal to eccentricity. The magnitude of these forces are dependent on eccentricity, entry swirl, rotor peripheral velocity and seal size. A pressure equalization chamber at midgland tests should in significantly reduced forces and stiffness coefficients.

  14. Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals

    PubMed Central

    Bleckmann, Horst

    2011-01-01

    Summary The lateral line system of fish consists of superficial neuromasts, and neuromasts embedded in lateral line canals. Lateral line neuromasts allow fish to sense both minute water motions and pressure gradients, thereby enabling them to detect predators and prey or to recognize and discriminate stationary objects while passing them. With the aid of the lateral line, fish can also sense vortices caused by an upstream object or by undulatory swimming movements of fish. We show here that artificial lateral line canals equipped with optical flow sensors can be used to detect the water motions generated by a stationary vibrating sphere, the vortices caused by an upstream cylinder or the water (air) movements caused by a passing object. The hydrodynamic information retrieved from optical flow sensors can be used to calculate bulk flow velocity and thus the size of the cylinder that shed the vortices. Even a bilateral sensor platform equipped with only one artificial lateral line canal on each side is sufficient to determine the position of an upstream cylinder. PMID:21977440

  15. Lateral Mixing Mechanisms in Vertical and Horizontal Interconnected Subchannel Two-Phase Flows

    SciTech Connect

    Gencay, Sarman; Teyssedou, Alberto; Tye, Peter

    2002-05-15

    A lateral mixing model based on equal volume exchange between two laterally interconnected subchannels is presented. The following mixing mechanisms are taken into account in this model: (a) diversion cross flow, caused by the lateral pressure difference between adjacent subchannels; (b) turbulent void diffusion, which is governed by the lateral void fraction difference between the subchannels; (c) void drift, responsible for the tendency of the vapor phase to drift toward unobstructed regions; and (d) buoyancy drift, which takes into account the effect of gravity in horizontal flows. Experimental two-phase air-water data obtained using two test sections having different geometries and orientations are used to determine the diffusion coefficients required by the mixing model. Under the absence of diversion crossflow, i.e., negligible lateral pressure difference between the subchannels, it is observed that the diffusion coefficient increases with increasing average void fraction in the subchannels. Moreover, for vertical flows turbulent void diffusion seems to be considerably affected by the geometry of the subchannels. For horizontal flows under nonsymmetric inlet void fraction conditions, even though the interconnected subchannels have the same geometry, different turbulent void diffusion and void drift coefficients are required to satisfy the conditions of hydrodynamic equilibrium. In the present study this condition is achieved by introducing a new void drift coefficient expressed as a correction term applied to the turbulent void drift term.

  16. Magnetic lateral flow immunoassay test strip development - Considerations for proof of concept evaluation.

    PubMed

    Connolly, R; O' Kennedy, R

    2017-03-01

    Lateral flow immunoassays (LFIA) have grown to become the predominant test device format for the diagnostics and point-of-care industries. The demand for robust and reproducible LFIAs has been facilitated through scale-up production methods using specialized and automated instruments. However, the feasibility of a LFIA device can still be evaluated in a small-scale laboratory setting through controlled manual preparation methods. The advent of super-paramagnetic (SPMP) labels for use in lateral flow has heralded the possibility of highly sensitive and stable LFIAs. The methods used for the preparation of a magnetic LFIA prototype device using a reserved suite of laboratory equipment are described.

  17. Inhibition of recombinase polymerase amplification by background DNA: a lateral flow-based method for enriching target DNA.

    PubMed

    Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-02-03

    Recombinase polymerase amplification (RPA) may be used to detect a variety of pathogens, often after minimal sample preparation. However, previous work has shown that whole blood inhibits RPA. In this paper, we show that the concentrations of background DNA found in whole blood prevent the amplification of target DNA by RPA. First, using an HIV-1 RPA assay with known concentrations of nonspecific background DNA, we show that RPA tolerates more background DNA when higher HIV-1 target concentrations are present. Then, using three additional assays, we demonstrate that the maximum amount of background DNA that may be tolerated in RPA reactions depends on the DNA sequences used in the assay. We also show that changing the RPA reaction conditions, such as incubation time and primer concentration, has little effect on the ability of RPA to function when high concentrations of background DNA are present. Finally, we develop and characterize a lateral flow-based method for enriching the target DNA concentration relative to the background DNA concentration. This sample processing method enables RPA of 10(4) copies of HIV-1 DNA in a background of 0-14 μg of background DNA. Without lateral flow sample enrichment, the maximum amount of background DNA tolerated is 2 μg when 10(6) copies of HIV-1 DNA are present. This method requires no heating or other external equipment, may be integrated with upstream DNA extraction and purification processes, is compatible with the components of lysed blood, and has the potential to detect HIV-1 DNA in infant whole blood with high proviral loads.

  18. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect

    S. James

    2004-10-06

    This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the saturated zone (SZ) site-scale model domains, both as recharge (infiltration) at the upper boundary (water table), and as underflow at the lateral boundaries. Specifically, this work compiles information on the recharge boundary conditions supplied to the base-case and alternate SZ site-scale flow models taken from (1) distributed recharge from the 1997 (D'Agnese et al. 1997 [DIRS 100131]) or 2001 (D'Agnese et al. 2002 [DIRS 158876]) SZ regional-scale (Death Valley Regional Flow System [DVRFS]) model; (2) recharge below the area of the 1997 (Wu et al. 1997 [DIRS 156453]) or 2003 (BSC 2004 [DIRS 169861]) unsaturated zone (UZ) site-scale flow model; and (3) focused recharge along Fortymile Wash. In addition, this analysis includes extraction of the groundwater flow rates simulated by the 1997 and 2001 DVRFS models coincident with the lateral boundaries of the SZ site-scale flow models. The fluxes from the 1997 DVRFS were used to calibrate the base-case SZ site-scale flow model. The 2001 DVRFS fluxes are used in the alternate SZ site-scale flow model.

  19. Integrated assessment of lateral flow, density effects and dispersion in aquifer storage and recovery

    NASA Astrophysics Data System (ADS)

    Ward, James D.; Simmons, Craig T.; Dillon, Peter J.; Pavelic, Paul

    2009-05-01

    SummaryAquifer storage and recovery (ASR) involves the injection of freshwater into an aquifer for later recovery and use. This paper investigates three major factors leading to reduction in performance of ASR systems in brackish or saline aquifers: lateral flow, density-driven flow and dispersive mixing. Previous analyses of aquifer storage and recovery (ASR) have considered at most two of the above processes, but never all three together, and none have considered lateral flow and density effects together. In this analysis, four dimensionless parameters are defined to give an approximate characterisation of lateral flow, dispersive mixing, mixed convection (density effects during pumping) and free convection (density effects during storage). An extensive set of numerical models spanning a wide parameter range is then used to develop a predictive framework using the dimensionless numbers. If the sum of the four dimensionless numbers (denoted RASR) exceeds 10, the ASR operation is likely to fail with no recoverable freshwater, while if RASR < 0.1, the ASR operation is likely to provide at least some recovery of freshwater. The predictive framework is tested using limited data available from ASR field sites, broadly lending support to the framework. This study has several important implications. Firstly, the lack of completeness of field data sets in the literature must be rectified if we are to properly characterise mixed-convective flow processes in ASR operations. Once data are available, the dimensionless numbers can be used to identify suitable ASR sites and the desirable operational conditions that maximise recovery efficiencies.

  20. Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein.

    PubMed

    Sinawang, Prima Dewi; Rai, Varun; Ionescu, Rodica E; Marks, Robert S

    2016-03-15

    An Electrochemical Lateral Flow Immunosensor (ELFI) is developed combining screen-printed gold electrodes (SPGE) enabling quantification together with the convenience of a lateral flow test strip. A cellulose glassy fiber paper conjugate pad retains the marker immunoelectroactive nanobeads which will bind to the target analyte of interest. The specific immunorecognition event continues to occur along the lateral flow bed until reaching the SPGE-capture antibodies at the end of the cellulosic lateral flow strip. The rationale of the immunoassay consists in the analyte antigen NS1 protein being captured selectively and specifically by the dengue NS1 antibody conjugated onto the immunonanobeads thus forming an immunocomplex. With the aid of a running buffer, the immunocomplexes flow and reach the immuno-conjugated electrode surface and form specific sandwich-type detection due to specific, molecular recognition, while unbound beads move along past the electrodes. The successful sandwich immunocomplex formation is then recorded electrochemically. Specific detection of NS1 is translated into an electrochemical signal contributed by a redox label present on the bead-immobilized detection dengue NS1 antibody while a proportional increase of faradic current is observed with increase in analyte NS1 protein concentration. The first generation ELFI prototype is simply assembled in a cassette and successfully demonstrates wide linear range over a concentration range of 1-25 ng/mL with an ultrasensitive detection limit of 0.5 ng/mL for the qualitative and quantitative detection of analyte dengue NS1 protein.

  1. Rapid Detection of Listeria by Bacteriophage Amplification and SERS-Lateral Flow Immunochromatography

    PubMed Central

    Stambach, Nicholas R.; Carr, Stephanie A.; Cox, Christopher R.; Voorhees, Kent J.

    2015-01-01

    A rapid Listeria detection method was developed utilizing A511 bacteriophage amplification combined with surface-enhanced Raman spectroscopy (SERS) and lateral flow immunochromatography (LFI). Anti-A511 antibodies were covalently linked to SERS nanoparticles and printed onto nitrocellulose membranes. Antibody-conjugated SERS nanoparticles were used as quantifiable reporters. In the presence of A511, phage-SERS nanoparticle complexes were arrested and concentrated as a visible test line, which was interrogated quantitatively by Raman spectroscopy. An increase in SERS intensity correlated to an increase in captured phage-reporter complexes. SERS limit of detection was 6 × 106 pfu·mL−1, offering detection below that obtainable by the naked eye (LOD 6 × 107 pfu·mL−1). Phage amplification experiments were carried out at a multiplicity of infection (MOI) of 0.1 with 4 different starting phage concentrations monitored over time using SERS-LFI and validated by spot titer assay. Detection of L. monocytogenes concentrations of 1 × 107 colony forming units (cfu)·mL−1, 5 × 106 cfu·mL−1, 5 × 105 cfu·mL−1 and 5 × 104 cfu·mL−1 was achieved in 2, 2, 6, and 8 h, respectively. Similar experiments were conducted at a constant starting phage concentration (5 × 105 pfu·mL−1) with MOIs of 1, 2.5, and 5 and were detected in 2, 4, and 5 h, respectively. PMID:26694448

  2. Blood coagulation screening using a paper-based microfluidic lateral flow device.

    PubMed

    Li, H; Han, D; Pauletti, G M; Steckl, A J

    2014-10-21

    A simple approach to the evaluation of blood coagulation using a microfluidic paper-based lateral flow assay (LFA) device for point-of-care (POC) and self-monitoring screening is reported. The device utilizes whole blood, without the need for prior separation of plasma from red blood cells (RBC). Experiments were performed using animal (rabbit) blood treated with trisodium citrate to prevent coagulation. CaCl2 solutions of varying concentrations are added to citrated blood, producing Ca(2+) ions to re-establish the coagulation cascade and mimic different blood coagulation abilities in vitro. Blood samples are dispensed into a paper-based LFA device consisting of sample pad, analytical membrane and wicking pad. The porous nature of the cellulose membrane separates the aqueous plasma component from the large blood cells. Since the viscosity of blood changes with its coagulation ability, the distance RBCs travel in the membrane in a given time can be related to the blood clotting time. The distance of the RBC front is found to decrease linearly with increasing CaCl2 concentration, with a travel rate decreasing from 3.25 mm min(-1) for no added CaCl2 to 2.2 mm min(-1) for 500 mM solution. Compared to conventional plasma clotting analyzers, the LFA device is much simpler and it provides a significantly larger linear range of measurement. Using the red colour of RBCs as a visible marker, this approach can be utilized to produce a simple and clear indicator of whether the blood condition is within the appropriate range for the patient's condition.

  3. Development of a Prototype Lateral Flow Immunoassay (LFI) for the Rapid Diagnosis of Melioidosis

    PubMed Central

    Houghton, Raymond L.; Reed, Dana E.; Hubbard, Mark A.; Dillon, Michael J.; Chen, Hongjing; Currie, Bart J.; Mayo, Mark; Sarovich, Derek S.; Theobald, Vanessa; Limmathurotsakul, Direk; Wongsuvan, Gumphol; Chantratita, Narisara; Peacock, Sharon J.; Hoffmaster, Alex R.; Duval, Brea; Brett, Paul J.; Burtnick, Mary N.; AuCoin, David P.

    2014-01-01

    Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the “gold standard” for the diagnosis of melioidosis; results can take 3–7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD) to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS) and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb), an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI); the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml). The analytical reactivity (inclusivity) of the AMD LFI was 98.7% (76/77) when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity) testing determined that 97.2% of B. pseudomallei near neighbor species (35/36) were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation. PMID:24651568

  4. Rapid fluorescent lateral-flow immunoassay for hepatitis B virus genotyping.

    PubMed

    Song, Liu-Wei; Wang, Ying-Bin; Fang, Lin-Lin; Wu, Yong; Yang, Lin; Chen, Jie-Yu; Ge, Sheng-Xiang; Zhang, Jing; Xiong, You-Zheng; Deng, Xiu-Mei; Min, Xiao-Ping; Zhang, Jun; Chen, Pei-Jer; Yuan, Quan; Xia, Ning-Shao

    2015-01-01

    Hepatitis B virus (HBV) genotyping plays an important role in the clinical management of chronic hepatitis B (CHB) patients. However, the current nucleic acid based techniques are expensive, time-consuming, and inconvenient. Here, we developed a novel DNA-independent HBV genotyping tool based on a one-step fluorescent lateral flow immunoassay (LFIA). Epitope-targeting immunization and screening techniques were used to develop HBV genotype specific monoclonal antibodies (mAbs). These mAbs were used to develop a multitest LFIA with a matched scanning luminoscope for HBV genotyping (named the GT-LFIA). The performance of this novel assay was carefully evaluated in well-characterized clinical cohorts. The GT-LFIA, which can specifically differentiate HBV genotypes A, B, C, and D in a pretreatment-free single test, was successfully developed using four genotype specific mAbs. The detection limits of the GT-LFIA for HBV genotypes A, B, C, and D were 2.5-10.0 IU HBV surface antigen/mL, respectively. Among the sera from 456 CHB patients, 439 (96.3%; 95% confidence interval (CI), 94.1-97.8%) were genotype-differentiable by the GT-LFIA and 437 (99.5%; 95% CI, 98.4-99.9%) were consistent with viral genome sequencing. In the 21 patients receiving nucleos(t)ide analogue therapy, for end-of-treatment specimens that were HBV DNA undetectable and were not applicable for DNA-dependent genotyping, the GT-LFIA presented genotyping results that were consistent with those obtained in pretreatment specimens by viral genome sequencing and the GT-LFIA. In conclusion, the novel GT-LFIA is a convenient, fast, and reliable tool for differential HBV genotyping, especially in patients with low or undetectable HBV DNA levels.

  5. Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis.

    PubMed

    Houghton, Raymond L; Reed, Dana E; Hubbard, Mark A; Dillon, Michael J; Chen, Hongjing; Currie, Bart J; Mayo, Mark; Sarovich, Derek S; Theobald, Vanessa; Limmathurotsakul, Direk; Wongsuvan, Gumphol; Chantratita, Narisara; Peacock, Sharon J; Hoffmaster, Alex R; Duval, Brea; Brett, Paul J; Burtnick, Mary N; Aucoin, David P

    2014-03-01

    Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the "gold standard" for the diagnosis of melioidosis; results can take 3-7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD) to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS) and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb), an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI); the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml). The analytical reactivity (inclusivity) of the AMD LFI was 98.7% (76/77) when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity) testing determined that 97.2% of B. pseudomallei near neighbor species (35/36) were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation.

  6. Field-Usable Lateral Flow Immunoassay for the Rapid Detection of White Spot Syndrome Virus (WSSV)

    PubMed Central

    Kulabhusan, Prabir Kumar; Rajwade, Jyutika M.; Sugumar, Vimal; Taju, Gani; Sahul Hameed, A. S.

    2017-01-01

    Background White spot disease (WSD), a major threat to sustainable aquaculture worldwide, is caused by White spot syndrome virus (WSSV). The diagnosis of WSD relies heavily on molecular detection of the virus by one-step PCR. These procedures are neither field-usable nor rapid enough considering the speed at which the virus spreads. Thus, development of a rapid, reliable and field-usable diagnostic method for the detection of WSSV infection is imperative to prevent huge economic losses. Methods/Principal Findings Here, we report on the development of a lateral flow immunoassay (LFIA) employing gold nanoparticles conjugated to a polyclonal antibody against VP28 (envelope protein of WSSV). The LFIA detected WSSV in ~20 min and showed no cross-reactivity with other shrimp viruses, viz. Monodon Baculovirus (MBV), Hepatopancreatic parvovirus (HPV) and Infectious Hypodermal and Hematopoietic Necrosis virus (IHHNV). The limit of detection (LOD) of the assay, as determined by real-time PCR, was 103 copies of WSSV. In a time course infectivity experiment, ~104 WSSV particles were injected in Litopenaeus vannamei. The LFIA could rapidly (~ 20 min) detect the virus in different tissues after 3 h (hemolymph), 6 h (gill tissue) and 12 h (head soft tissue, eye stalk, and pleopod) of infection. Based on these findings, a validation study was performed using 75 field samples collected from different geographical locations in India. The LFIA results obtained were compared with the conventional “gold standard test”, viz. one-step PCR. The analysis of results in 2x2 matrix indicated very high sensitivity (100%) and specificity (96.77%) of LFIA. Similarly, Cohen’s kappa coefficient of 0.983 suggested "very good agreement” between the developed LFIA and the conventional one-step PCR. Conclusion The LFIA developed for the rapid detection of WSSV has an excellent potential for use in the field and could prove to be a boon to the aquaculture industry. PMID:28046005

  7. Effect of lateral mobility of fluorescent probes in lipid mixing assays of cell fusion.

    PubMed Central

    Huang, S K; Cheng, M; Hui, S W

    1990-01-01

    Monolayers of human erythrocytes, immobilized on a cover slip, were induced to fuse by polyethylene glycol (mol wt 8,000). The mobility of fluorescent probes, 1-oleoyl-2-[12-[(7-nitro-2,1,3-benzoxadizol-4-yl)amino]dodecanoyl] phosphatidyl-choline (C12-NBD-PC), from labeled cells to unlabeled cells was monitored by video-enhanced fluorescence microscopy. A dequenching curve was obtained from the measurement of fluorescence intensities of pairs of fused cells over time. The dequenching curve and the curve obtained from macroscopic measurements of a cell monolayer (described in the preceding article) were compared and discussed. The slow probe transfer rate between a pair of fused cells was explained by a diffusion model based on membrane area conservation and the geometry of the fusion lumen. An equivalent lumen between two fused cells, thought to be the main rate limitation of probe mobility after fusion, was calculated to be approximately 130 nm in diameter. Lumens of 75 nm in diameter were observed by electron microscopy. Thus, the rate of macroscopic fluorescence dequenching depends not only upon the fusion efficiency, but also upon the number of simultaneous fusion partners, the geometry of their contact points, and the lateral mobility of the fluorescent probes through these points. The relative fusion efficiency can be derived only from the saturation dequenching values. Images FIGURE 3 FIGURE 5 FIGURE 7 PMID:2291938

  8. Continuous enrichment of circulating tumor cells using a microfluidic lateral flow filtration chip.

    PubMed

    Lee, Sung-Woo; Hyun, Kyung-A; Kim, Seung-Il; Kang, Ji-Yoon; Jung, Hyo-Il

    2015-01-16

    The isolation and characterization of circulating tumor cells (CTC) is of great importance in cancer diagnosis and prognosis. Highly sensitive detection of CTCs can be very difficult because they are extremely rare (i.e., 1-5 CTCs per 10(9) erythrocytes) in blood. Recently, various devices have been developed that exploit biochemical (affinity-based) and physical (size or density) methods. Antibody-based isolation has its own limitations, as the expression level of the epitopes for an antibody varies due to the heterogeneity of cancer cells. Harsh conditions associated with physical methods can cause the deformation and damage of CTCs during the isolation process. Here, we propose a microfluidic lateral flow filtration (μ-LaFF) chip in which lateral flow was combined with vertical flow into the filter to capture the CTCs gently. The CTCs experienced weak shear flow owing to the lateral flow and traveled alongside the filter channel until finally being captured. The vertical flow in the filter held the captured cells tightly and served as an exit for uncaptured hematological cells (white and red blood cells). From our μ-LaFF chip we obtained a high capture efficiency (95%) and purity (99%), minimizing any damage to the CTCs. Our μ-LaFF technology is expected to be useful in the diagnosis and prognosis of various cancers.

  9. Large-scale clinical validation of a lateral flow immunoassay for detection of cryptococcal antigen in serum and cerebrospinal fluid specimens.

    PubMed

    Suwantarat, Nuntra; Dalton, Justin B; Lee, Richard; Green, Rachel; Memon, Warda; Carroll, Karen C; Riedel, Stefan; Zhang, Sean X

    2015-05-01

    We compared a lateral flow immunoassay (LFA) to a currently used enzyme immunoassay for detection of cryptococcal antigen in 396 sera and 651 cerebrospinal fluid specimens. We found 97% concordance between the 2 assays. The LFA detected an additional 22 positives. Overall, the LFA had sensitivity of 100% and specificity of 99.6% for the diagnosis of cryptococcosis. The LFA is rapid, accurate, and easy to perform, and it is suitable for routine patient care testing.

  10. Lateral Migration and Rotational Motion of Elliptic Particles in Planar Poiseuille Flow

    NASA Technical Reports Server (NTRS)

    Qi, Dewei; Luo, Li-Shi; Aravamuthan, Raja; Strieder, William; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Simulations of elliptic particulate suspensions in the planar Poiseuille flow are performed by using the lattice Boltzmann equation. Effects of the multi-particle on the lateral migration and rotational motion of both neutrally and non-neutrally buoyant elliptic particles are investigated. Low and intermediate total particle volume fraction f(sub a) = 13%, 15%, and 40% are considered in this work.

  11. A silicon dioxide modified magnetic nanoparticles-labeled lateral flow strips for HBs antigen.

    PubMed

    Zhang, Xueqing; Jiang, Lin; Zhang, Chunlei; Li, Ding; Wang, Can; Gao, Feng; Cui, Daxiang

    2011-12-01

    Herein we reported a new type of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for detection of HBs antigen in sera. The SiO2 wrapped Fe3O4 nanocomposites were prepared and characterized by HR-TEM, FTIR and magnetometer. As-prepared nanocomposites were used to label anti-HBV surface monoclonal antibody, the lateral flow strips were constructed, and 100 specimens of sera were collected and tested. Results showed that the prepared SiO2 wrapped Fe3O4 nanocomposites were shell/core structure, well dispersed, with the size of 25 nm in diameter, the thickness of the shell was about 3 nm, their magnetic saturation intensity was 44.3 meu g(-1). Clinical sera specimens test results showed that the prepared lateral flow strips were with the detection limitation of 5 pg/mL by naked eye observation, and 0.1 pg/mL by CCD reader or MAR Analyzer, specificity was 100%. In conclusion, one kind of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for ultrasensitive detection of HBs antigen was successfully developed, its ease of use, sensitiveness and low-cost make it well-suited for population-based on-the-site hepatitis B screening.

  12. Ultrasensitive detection of microbial cells using magnetic focus enhanced lateral flow sensors.

    PubMed

    Ren, Wen; Cho, Il-Hoon; Zhou, Zhongwu; Irudayaraj, Joseph

    2016-04-07

    We report on an improved lateral flow immunoassay (LFIA) sensor with a magnetic focus for ultrasensitive naked-eye detection of pathogenic microorganisms at a near single cell limit without any pre-enrichment steps, by allowing the magnetic probes to focus the labelled pathogens to the target zone of the LF strip.

  13. The performance characteristics of lateral flow devices with 2 strains of highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test for avian influenza. Because of the low analytic sensitivity of LFD tests at low virus concentrations, targeted sampling of sick and dead birds has been proposed in order to increase detection pr...

  14. Lateral flow immunoassay for the rapid detection of citrus tristeza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A lateral flow methodology was developed using gold nanoparticles for rapid detection of Citrus tristeza virus (CTV). The test strip was based on a sandwich immunoassay and could be accomplished within 10 minutes. A sample was considered negative for CTV when only the control line appeared; whereas,...

  15. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward

    1985-01-01

    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  16. Evaluation of a new nanoparticle-based lateral-flow immunoassay for the exclusion of heparin-induced thrombocytopenia (HIT).

    PubMed

    Sachs, Ulrich J; von Hesberg, Jakob; Santoso, Sentot; Bein, Gregor; Bakchoul, Tamam

    2011-12-01

    Heparin-induced thrombocytopenia (HIT) is an adverse complication of heparin caused by HIT antibodies (abs) that recognise platelet factor 4-heparin (PF4/hep) complexes. Several laboratory tests are available for the confirmation and/or refutation of HIT. A reliable and rapid single-sample test is still pending. It was the objective of this study to evaluate a new lateral-flow immunoassay based on nanoparticle technology. A cohort of 452 surgical and medical patients suspected of having HIT was evaluated. All samples were tested in two IgG-specific ELISAs, in a particle gel immunoassay (PaGIA) and in a newly developed lateral-flow immunoassay (LFI-HIT) as well as in a functional test (HIPA). Clinical pre-test probability was determined using 4T's score. Platelet-activating antibodies were present in 34/452 patients, all of whom had intermediate to high clinical probability. PF4/hep abs were detected in 79, 87, 86, and 63 sera using the four different immunoassays. The negative predictive values (NPV) were 100% for both ELISA tests and LFI-HIT but only 99.2% for PaGIA. There were less false positives (n=29) in the LFI-HIT compared to any other test. Additionally, significantly less time was required to perform LFI-HIT than to perform the other immunoassays. In conclusion, a newly developed lateral-flow assay, LFI-HIT, was capable of identifying all HIT patients in a cohort in a short period of time. Beside an NPV of 100%, the rate of false-positive signals is significantly lower with LFI-HIT than with other immunoassay(s). These performance characteristics suggest a high potency in reducing the risk and costs in patients suspected of having HIT.

  17. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    PubMed

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  18. Development of Multiple Cross Displacement Amplification Label-Based Gold Nanoparticles Lateral Flow Biosensor for Detection of Shigella spp.

    PubMed

    Wang, Yi; Wang, Yan; Xu, Jianguo; Ye, Changyun

    2016-01-01

    Shigella spp., the etiological agent of shigellosis or "bacillary dysentery," are responsible for considerable morbidity and mortality in excess of a million deaths globally per year. Although PCR-based techniques (such as PCR-based dipstick biosensors) have been used for the molecular diagnosis of infectious disease, these assays were restricted due to the need for a sophisticated thermal cycling apparatus to denature target templates. To facilitate simple and rapid detection of target pathogens, we successfully devised an inexpensive, reliable and nearly instrument-free molecular technique, which incorporates multiple cross displacement amplification (MCDA) combined with a newly designed lateral flow biosensor (LFB) for visual, sensitive and specific detection of Shigella. The MCDA-LFB assay was conducted at 65°C for only 20 min during the amplification stage, and then products were directly analyzed on the biosensor, alleviating the use of special reagents, electrophoresis equipment and amplicon detection instruments. The entire process, including specimen processing (35 min), amplification (20) and detection (2-5 min), can be finished within 1 h. The MCDA-LFB assay demonstrated high specificity for Shigella detection. The analytical sensitivity of the assay was 10 fg of genomic templates per reaction in pure culture and 5.86 CFU per tube in human fecal samples, which was consistent with MCDA by colorimetric indicator, gel electrophoresis, real time turbidity and fluorescence detection. Hence, the simplicity, rapidity and nearly instrument-free platform of the MCDA-LFB assay make it practical for 'on-site' diagnosis, point-of-care testing and more. Moreover, the proof-of-concept approach can be reconfigured to detect a wide variety of target sequences by re-designing the specific MCDA primers.

  19. Development of Multiple Cross Displacement Amplification Label-Based Gold Nanoparticles Lateral Flow Biosensor for Detection of Shigella spp.

    PubMed Central

    Wang, Yi; Wang, Yan; Xu, Jianguo; Ye, Changyun

    2016-01-01

    Shigella spp., the etiological agent of shigellosis or “bacillary dysentery,” are responsible for considerable morbidity and mortality in excess of a million deaths globally per year. Although PCR-based techniques (such as PCR-based dipstick biosensors) have been used for the molecular diagnosis of infectious disease, these assays were restricted due to the need for a sophisticated thermal cycling apparatus to denature target templates. To facilitate simple and rapid detection of target pathogens, we successfully devised an inexpensive, reliable and nearly instrument-free molecular technique, which incorporates multiple cross displacement amplification (MCDA) combined with a newly designed lateral flow biosensor (LFB) for visual, sensitive and specific detection of Shigella. The MCDA-LFB assay was conducted at 65°C for only 20 min during the amplification stage, and then products were directly analyzed on the biosensor, alleviating the use of special reagents, electrophoresis equipment and amplicon detection instruments. The entire process, including specimen processing (35 min), amplification (20) and detection (2–5 min), can be finished within 1 h. The MCDA-LFB assay demonstrated high specificity for Shigella detection. The analytical sensitivity of the assay was 10 fg of genomic templates per reaction in pure culture and 5.86 CFU per tube in human fecal samples, which was consistent with MCDA by colorimetric indicator, gel electrophoresis, real time turbidity and fluorescence detection. Hence, the simplicity, rapidity and nearly instrument-free platform of the MCDA-LFB assay make it practical for ‘on-site’ diagnosis, point-of-care testing and more. Moreover, the proof-of-concept approach can be reconfigured to detect a wide variety of target sequences by re-designing the specific MCDA primers. PMID:27917160

  20. Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles.

    PubMed

    Siyahhan, Bercan; Knobloch, Verena; de Zélicourt, Diane; Asgari, Mahdi; Schmid Daners, Marianne; Poulikakos, Dimos; Kurtcuoglu, Vartan

    2014-05-06

    While there is growing experimental evidence that cerebrospinal fluid (CSF) flow induced by the beating of ependymal cilia is an important factor for neuronal guidance, the respective contribution of vascular pulsation-driven macroscale oscillatory CSF flow remains unclear. This work uses computational fluid dynamics to elucidate the interplay between macroscale and cilia-induced CSF flows and their relative impact on near-wall dynamics. Physiological macroscale CSF dynamics are simulated in the ventricular space using subject-specific anatomy, wall motion and choroid plexus pulsations derived from magnetic resonance imaging. Near-wall flow is quantified in two subdomains selected from the right lateral ventricle, for which dynamic boundary conditions are extracted from the macroscale simulations. When cilia are neglected, CSF pulsation leads to periodic flow reversals along the ventricular surface, resulting in close to zero time-averaged force on the ventricle wall. The cilia promote more aligned wall shear stresses that are on average two orders of magnitude larger compared with those produced by macroscopic pulsatile flow. These findings indicate that CSF flow-mediated neuronal guidance is likely to be dominated by the action of the ependymal cilia in the lateral ventricles, whereas CSF dynamics in the centre regions of the ventricles is driven predominantly by wall motion and choroid plexus pulsation.

  1. Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Listeria monocytogenes.

    PubMed

    Wang, Yi; Li, Hui; Wang, Yan; Li, Hua; Luo, Lijuan; Xu, Jianguo; Ye, Changyun

    2017-01-01

    Listeria monocytogenes, one of most problematic foodborne pathogens, is responsible for listeriosis in both humans and animals and mainly transmitted through the food chain. In this report, we propose a simple, rapid, and nearly instrument-free molecular technique using multiple cross displacement amplification (MCDA) label-based gold nanoparticles lateral flow biosensor (LFB) for specific, sensitive, and visual detection of L. monocytogenes. The MCDA-LFB method was carried out at a constant temperature (61°C) for only 20 min during the reaction stage, and then the amplification mixtures were directly detected by using LFB, eliminating the use of an electrophoresis instrument, special reagents, or amplicon analysis equipment. The whole procedure, from sample processing to result indicating, was finished within 1 h. The analytical specificity of MCDA-LFB method was successfully determined by distinguishing the target bacterium from other pathogens. The analytical sensitivity of the MCDA-LFB assay was 10 fg of genomic templates per reaction in pure culture, which was in complete accordance with MCDA by gel electrophoresis, real-time turbidity, and colorimetric indicator. The assay was also successfully applied to detecting L. monocytogenes in pork samples. Therefore, the rapidity, simplicity, and nearly equipment-free platform of the MCDA-LFB technique make it possible for food control, clinical diagnosis, and more. The proof-of-concept assay can be reconfigured to detect various target sequences by redesigning the specific MCDA primers.

  2. Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Listeria monocytogenes

    PubMed Central

    Wang, Yi; Li, Hui; Wang, Yan; Li, Hua; Luo, Lijuan; Xu, Jianguo; Ye, Changyun

    2017-01-01

    Listeria monocytogenes, one of most problematic foodborne pathogens, is responsible for listeriosis in both humans and animals and mainly transmitted through the food chain. In this report, we propose a simple, rapid, and nearly instrument-free molecular technique using multiple cross displacement amplification (MCDA) label-based gold nanoparticles lateral flow biosensor (LFB) for specific, sensitive, and visual detection of L. monocytogenes. The MCDA-LFB method was carried out at a constant temperature (61°C) for only 20 min during the reaction stage, and then the amplification mixtures were directly detected by using LFB, eliminating the use of an electrophoresis instrument, special reagents, or amplicon analysis equipment. The whole procedure, from sample processing to result indicating, was finished within 1 h. The analytical specificity of MCDA-LFB method was successfully determined by distinguishing the target bacterium from other pathogens. The analytical sensitivity of the MCDA-LFB assay was 10 fg of genomic templates per reaction in pure culture, which was in complete accordance with MCDA by gel electrophoresis, real-time turbidity, and colorimetric indicator. The assay was also successfully applied to detecting L. monocytogenes in pork samples. Therefore, the rapidity, simplicity, and nearly equipment-free platform of the MCDA-LFB technique make it possible for food control, clinical diagnosis, and more. The proof-of-concept assay can be reconfigured to detect various target sequences by redesigning the specific MCDA primers. PMID:28138243

  3. Continuous-flow automation of the Lactobacillus casei serum folate assay.

    PubMed Central

    Tennant, G B

    1977-01-01

    A method is described for the continuous-flow automation of the serum folate assay using Lactobacillus casei. The total incubation period is approximately four hours. The growth response of the organism to folate is estimated by measuring the rate of reduction of 2,3,5-triphenyl tetrazolium chloride (TTC). A simple continuous culture apparatus is used to grow the inoculum. Supplementation of the assay medium is necessary to obtain parallel results. A statistical assessment shows a favourable comparison with the whole-serum tube assay using a chloramphenicol resistant strain of L. casei. The method is less sensitive to inhibitory substances than the tube assay. PMID:415069

  4. In vivo lateral blood flow velocity measurement using speckle size estimation.

    PubMed

    Xu, Tiantian; Hozan, Mohsen; Bashford, Gregory R

    2014-05-01

    In previous studies, we proposed blood measurement using speckle size estimation, which estimates the lateral component of blood flow within a single image frame based on the observation that the speckle pattern corresponding to blood reflectors (typically red blood cells) stretches (i.e., is "smeared") if blood flow is in the same direction as the electronically controlled transducer line selection in a 2-D image. In this observational study, the clinical viability of ultrasound blood flow velocity measurement using speckle size estimation was investigated and compared with that of conventional spectral Doppler of carotid artery blood flow data collected from human patients in vivo. Ten patients (six male, four female) were recruited. Right carotid artery blood flow data were collected in an interleaved fashion (alternating Doppler and B-mode A-lines) with an Antares Ultrasound Imaging System and transferred to a PC via the Axius Ultrasound Research Interface. The scanning velocity was 77 cm/s, and a 4-s interval of flow data were collected from each subject to cover three to five complete cardiac cycles. Conventional spectral Doppler data were collected simultaneously to compare with estimates made by speckle size estimation. The results indicate that the peak systolic velocities measured with the two methods are comparable (within ±10%) if the scan velocity is greater than or equal to the flow velocity. When scan velocity is slower than peak systolic velocity, the speckle stretch method asymptotes to the scan velocity. Thus, the speckle stretch method is able to accurately measure pure lateral flow, which conventional Doppler cannot do. In addition, an initial comparison of the speckle size estimation and color Doppler methods with respect to computational complexity and data acquisition time indicated potential time savings in blood flow velocity estimation using speckle size estimation. Further studies are needed for calculation of the speckle stretch method

  5. Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification.

    PubMed

    Fang, Zhiyuan; Wu, Wei; Lu, Xuewen; Zeng, Lingwen

    2014-06-15

    Convenient and sensitive point-of-care rapid diagnostic tests for food-borne pathogens have been a long-felt need of clinicians. Traditional approaches such as culture-based methods have good sensitivity and specificity, but they tend to be tedious and time-consuming. Herein we present a simple and sensitive aptamer based biosensor for rapid detection of Salmonella enteritidis (S. enteritidis). One of the aptamers specific for the outmembrane of S. enteritidis was used for magnetic bead enrichments. Another aptamer against S. enteritidis was used as a reporter for this pathogen, which was amplified by isothermal strand displacement amplification (SDA) and further detected by a lateral flow biosensor. As low as 10(1) colony forming unit (CFU) of S. enteritidis was detected in this study. Without DNA extraction, the reduced handling and simpler equipment requirement render this assay a simple and rapid alternative to conventional methods.

  6. Continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay.

    PubMed

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-08-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of a quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear correlations between amplified luminescence and initial ATP concentration were observed. When performing four cycles of continuous-flow ATP amplification, the gradient of amplification was 1.87(N). Whereas the lower quantifiable level was 500 pM without amplification, values as low as 50 pM ATP could be measured after amplification. The sensitivity thus increased 10-fold, with further improvements expected with additional amplification cycles. The continuous-flow system thus effectively increased the sensitivity of the quantitative bioluminescence assay.

  7. Flow systems exploiting in-line prior assays.

    PubMed

    Grassi, Viviane; Dias, Ana Cristi B; Zagatto, Elias A G

    2004-12-15

    An expert sequential injection system involving a prior assay is proposed for spectrophotometric determination of phosphate and eventually zinc in soil extracts. The result of phosphate determination is the basis for a concentration-oriented decision regarding to the need or not for zinc determination. Zinc was only determined if a threshold value (peak height corresponding to 5.0mgl(-1)P) was surpassed. The methods involved formation of molybdenum blue and the Rhodamine 6G/ammonium thiocyanate/Zn(2+) ternary complex. Variations in the threshold value were < 2% during 4h operating periods, false responses were not verified, and the analytical time was reduced in about 30%. Precise results (R.S.D. <3%P and < 1% Zn) in agreement with spectrophotometry and flame atomic absorption spectrometry were obtained. The innovation permits faster information processing, as well as a reduction in the number of measurements, number of analytical steps, laboratorial time, and consumption of sample and reagents, thus waste generation.

  8. An experimental study of the lateral migration of a droplet in a creeping flow

    NASA Astrophysics Data System (ADS)

    Hiller, W.; Kowalewski, T. A.

    1986-01-01

    The distribution of droplets in a plane Hagen-Poiseuille flow of dilute suspensions has been measured by a special LDA technique. This method assumes a well defined relation between the velocity of the droplets and their lateral position in the channel. The measurements have shown that the droplet distribution is non-uniform and depends on the viscosity ratio between the droplets and the carrier liquid. The results have been compared with a theory by Chan and Leal describing the lateral migration of suspended droplets.

  9. Chemical and isotopic characteristics of thermal fluids in the Long Valley caldera lateral flow system, California

    SciTech Connect

    Shevenell, L.; Goff, F.; Grigsby, C.O.; Janik, C.J.; Trujillo, P.E. Jr.; Counce, D.

    1987-01-01

    Chemical and isotopic data of thermal waters in Long Valley caldera have been used to identify both the origins and characteristics of the fluids and to evaluate mixing and boiling processes occurring within the lateral flow system of the caldera. Recharge to the Long Valley geothermal system occurs in the western part of the caldera with the water being heated at depth and flowing laterally eastward in the subsurface. The lateral flow system was recently intersected by the Shady Rest Continental Scientific Drilling Program (CSDP) corehole at 335 m (1100 ft) with fluids in this 202/sup 0/C zone being more concentrated than non-boiled fluids to the east. As the Na-K-HCO/sub 3/-Cl thermal fluids flow eastward, they are increasingly mixed with isotopically depleted, dilute groundwaters similar to cold waters east of Lake Crowley. Near surface boiling of Casa Diablo well fluids at 100/sup 0/C forms waters with the compositions of Colton and Casa Diablo hot springs. Waters to the east of the Casa Diablo area are mixtures of meteoric water and boiled thermal fluids with a composition close to that of Colton Hot Spring. There is no correlation between /sup 3/H and /sup 36/Cl in thermal fluids or between these components and conservative species, and it appears that cold fluids involved in mixing must be relatively old waters, low in both meteoric /sup 3/H and /sup 36/Cl.

  10. An improved flow cytometry assay to monitor phagosome acidification.

    PubMed

    Colas, Chloé; Menezes, Shinelle; Gutiérrez-Martínez, Enric; Péan, Claire B; Dionne, Marc S; Guermonprez, Pierre

    2014-10-01

    Phago-lysosome formation is important for cell-autonomous immunity to intracellular pathogens, antigen presentation and metabolism. A hallmark feature of phago-lysosomal compartments is that they undergo progressive luminal acidification controlled by the activation of vacuolar V-ATPase. Acidification is required for many enzymatic processes taking place in phago-lysosomes, like proteolysis, and supports the microbicidal activity of macrophages. Here we present a new quantitative methodology to assess phagosome acidification by flow cytometry based on the use of bi-fluorescent particles. This method relies on the use of UV polystyrene beads labelled with the acid sensor pHrodo-succinimidyl ester (pHrodo(TM) SE red) and enables us to dissociate particle association with phagocytes from their engulfment in acidified compartments. This methodology is well suited to monitor the acidification of phagosomes formed in vivo after fluorescent bead administration.

  11. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira.

    PubMed

    Nurul Najian, A B; Engku Nur Syafirah, E A R; Ismail, Nabilah; Mohamed, Maizan; Yean, Chan Yean

    2016-01-15

    In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10(-1) genomic equivalent ml(-1). An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device.

  12. Occurrence and Relevance of Vertical and Lateral Preferential Flow Pathways across Land-uses and Landscapes

    NASA Astrophysics Data System (ADS)

    Weiler, M.

    2014-12-01

    There seems to be less and less doubt that preferential flow pathways in soils have a profound impact on hydrology by enhancing infiltration rates, reducing the filter function of soils or by enhancing fast subsurface flow in hillslopes. Soil hydrological or catchment models have been developed including the different kind of preferential flow pathways like earthworm like macropores (e.g. earthworm channels), pipes, roots, etc. and they have been successfully applied to make predictions at a range of spatial scales. One of the biggest issue using hydrological models including preferential flow routines is the parameterization. What are the landscape features influencing the occurrence and quantity of specific preferential flow features? Will certain macropres be more probable to occur under forest than under grassland soils? In this study, I will highlight several studies looking at the effect of land-use and landscape features on preferential flow properties and parameters. Several field experiments studied on the one side the properties among topographic locations or vegetation cover, but also at the hydrological functions and hence the relevance of preferential flow pathways. In the second part the soil hydrological model ROGER is introduced, which will further evaluate and predict the relevance of vertical and lateral preferential flow pathways at the plot, hillslope and catchment scale.

  13. A highly sensitive europium nanoparticle-based lateral flow immunoassay for detection of chloramphenicol residue.

    PubMed

    Xia, Xiaohu; Xu, Ye; Ke, Rongqin; Zhang, Heng; Zou, Mingqiang; Yang, Wei; Li, Qingge

    2013-09-01

    A europium nanoparticle-based lateral flow immunoassay for highly sensitive detection of chloramphenicol residue was developed. The detection result could be either qualitatively resolved with naked eye or quantitatively analyzed with the assistance of a digital camera. In the qualitative mode, the limit of detection (LOD) was found to be 0.25 ng/mL. In the quantitative mode, the half-maximal inhibition concentration (IC50) was determined to be 0.45 ng/mL and the LOD can reach an ultralow level of 0.03 ng/mL, which is ~100 times lower than that of the conventional colloidal gold-based lateral flow immunoassay. Potential application of the established method was demonstrated by analyzing representative cow milk samples.

  14. Lateral flow immunoassay with the signal enhanced by gold nanoparticle aggregates based on polyamidoamine dendrimer.

    PubMed

    Shen, Guangyu; Xu, Hui; Gurung, Anant S; Yang, Yunhui; Liu, Guodong

    2013-01-01

    In order to amplify the signal in a gold nanoparticle-based lateral flow immunoassay, a simple and sensitive method utilizing gold nanoparticle aggregates as a colored reagent formed with a polyamidoamine dendrimer was developed. The results were compared with that achieved by employing the individual nanoparticles used in the conventional lateral flow immunoassay. Under the optimized experimental conditions, a detection limit of 0.1 ng mL⁻¹ for rabbit immunoglobulin G was achieved, which is almost 20-fold lower than that of the traditional method using individual gold nanoparticles. We believe that this simple, practical bioassay platform will be of interest for use in areas such as disease diagnostics, pathogen detection, and quality monitoring of food and water.

  15. Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity.

    PubMed

    Park, Jong-Min; Jung, Ha-Wook; Chang, Young Wook; Kim, Hyung-Seok; Kang, Min-Jung; Pyun, Jae-Chul

    2015-01-01

    A lateral flow immunoassay (LF-immunoassay) with an enhanced sensitivity and thermostability was developed by using Pt nanoparticles with a peroxidase activity. The Pt nanoparticles were synthesized by citrate reduction method, and the peroxidase activity of Pt nanoparticles was optimized by adjusting reaction conditions. The peroxidase activity was estimated by using Michaelis-Menten kinetics model with TMB as a chromogenic substrate. The kinetics parameters of KM and Vmax were calculated and compared with horseradish peroxidase (HRP). The thermal stability of the Pt nanoparticles was compared with horseradish peroxidase (HRP) according to the storage temperature and long-term storage period. The feasibility of lateral flow immunoassay with a chemiluminescent signal band was demonstrated by the detection of human chorionic gonadotropin (hCG) as a model analyte, and the sensitivity was determined to be improved by as much as 1000-fold compared to the conventional rapid test based on colored gold-colloids.

  16. [Microleakage of root canal fillings with GuttaFlow and Resilon compared with lateral condensation].

    PubMed

    Kqiku, Lumnije; Miletic, Ivana; Gruber, Hans Jürgen; Anic, Ivica; Städtler, Peter

    2010-05-01

    Epiphany/Resilon and GuttaFlow are newly developed methods for obturation of the root canal system. Epiphany/Resilon is a thermoplastic, synthetic polymer-based root canal filling material which enables the bonding to the dentin root canal wall during root canal obturation. GuttaFlow is a cold flowable filling system for the obturation of root canals, combining sealer and gutta-percha in one product. The purpose of this study was to assess the leakage of the Epiphany/Resilon or GuttaFlow root canal filling compared with lateral condensation of gutta-percha. For this study were used 45 human extracted teeth, chemo mechanically prepared, divided into three groups and obturated with gutta-percha/AH Plus, Epiphany/Resilon and GuttaFlow. For dye penetration all teeth were centrifuged for three minutes at 30 g in 2% methylene blue and dissolved in 65% nitric acid for 3 days. The extracted methylene blue was determined with Photometer. Root Canal fillings with Epiphany/Resilon showed less dye penetration than lateral condensation of gutta-percha and GuttaFlow. Epiphany/Resilon is ideally suited as a root canal filling material.

  17. Mass flow rate of granular material in silos with lateral exit holes

    NASA Astrophysics Data System (ADS)

    Medina, Abraham; Serrano, Armando; Sanchez, Florencio

    2014-11-01

    In this work we have analyzed experimentally the mass flow rate, m', of the lateral outflow of cohesionless granular material through circular orifices of diameter D and rectangular and triangular slots of hydraulic diameter DH made in vertical walls of bins. Experiments were made in order to determine also the influence of the wall thickness of the bin, w. Geometrical and physical arguments, are given to get a general correlation for m' embracing both quantities, D (DH) and w. The angle of repose is also an important factor characterizing these flows.

  18. Enhancing the lateral-flow immunoassay for detection of proteins using an aqueous two-phase micellar system.

    PubMed

    Mashayekhi, Foad; Le, Alexander M; Nafisi, Parsa M; Wu, Benjamin M; Kamei, Daniel T

    2012-10-01

    The lateral-flow (immuno)assay (LFA) has been widely investigated for the detection of molecular, macromolecular, and particle targets at the point-of-need due to its ease of use, rapid processing, and minimal power and laboratory equipment requirements. However, for some analytes, such as certain proteins, the detection limit of LFA is inferior to lab-based assays, such as the enzyme-linked immunosorbent assay, and needs to be improved. One solution for improving the detection limit of LFA is to concentrate the target protein in a solution prior to the detection step. In this study, a novel approach was used in the context of an aqueous two-phase micellar system comprised of the nonionic surfactant Triton X-114 to concentrate a model protein, namely transferrin, prior to LFA. Proteins have been shown to partition, or distribute, fairly evenly between the two phases of an aqueous two-phase system, which in turn results in their limited concentration in one of the two phases. Therefore, larger colloidal gold particles decorated with antibodies for transferrin were used in the concentration step to bind to transferrin and aid its partitioning into the top, micelle-poor phase. By manipulating the volume ratio of the two coexisting micellar phases and combining the concentration step with LFA, the transferrin detection limit of LFA was improved by tenfold from 0.5 to 0.05 μg/mL in a predictive manner. In addition to enhancing the sensitivity of LFA, this universal concentration method could also be used to improve other detection assays.

  19. Numerical study on characteristics of supercavitating flow around the variable-lateral-force cavitator

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Gao, Ye; Shi, Xiao-tao

    2017-03-01

    A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow around the cavitator was investigated numerically using the mixture multiphase flow model. It is verified that the forces of pitching, yawing, drag and lift, as well as the supercavity size of the underwater vehicle can be effectively regulated through the movements of the control element of the variable-lateral-force cavitator in the radial and circumferential directions. In addition, if the control element on either side protrudes to a height of 5% of the diameter of the front cavitator, an amount of forces of pitching and yawing equivalent to 30% of the drag force will be produced, and the supercavity section appears concave inwards simultaneously. It is also found that both the drag force and lift force of the variable-lateral-force cavitator decline as the angle of attack increases.

  20. Influence of Lateral Flow on the Predisposition of Aspen Mortality during Drought

    NASA Astrophysics Data System (ADS)

    Tai, X.; Mackay, D. S.; Anderegg, W.; Sperry, J. S.

    2014-12-01

    Lateral subsurface flow can be critical to understanding the spatial soil moisture availability to plants, and when, where, and how drought are influencing individual plants. The concentration of intensive aspen damage in certain hillslopes with higher temperature and lower soil moisture suggests that soil augmentation/reduction from lateral redistribution could help explain the survivability of some aspen through its influence on soil water availability during drought. It remains unclear how lateral water redistribution helps to limit hydraulic impairment of aspen located in different topographic positions during a drought event. This study employed an integrated ecohydrology model, TREES, combining plant-water balance and canopy physiology, to examine the potential effects of lateral flow on hydraulic and metabolic performance of aspen, by exposing trees to a set of soil water conditions associated with different levels of water stress. Sap flux, soil moisture, meteorological and plant hydraulic data from aspen trees in Colorado that died (SAD) and those that lived were used to parameterize the model. Our goal was to quantify the extent to which lateral flow explained sudden aspen dieback. The results indicate that the predisposition of tree mortality is related to the level of soil water augmentation. A reduction of 30% soil water content could introduce 21.55% increase in the loss of hydraulic conductivity (PLC), 23.6% loss in canopy transpiration, 21.7% loss in GPP. It would also cause the frequency of greater than 50% PLC to increase from 42.1% of the time to 51% of the time, and the frequency of hitting the 88% PLC pressure to increase from 11% to 14% of the time. On the other hand, an augment of 30% soil water content could introduce 20.2% reduction in PLC, 16.4% gain in canopy transpiration, 16.5% gain in GPP. The frequency of greater than 50% PLC is reduced to 31% of the time and the frequency of hitting the 88% PLC pressure is reduced to 6% of the time

  1. A Rapid Lateral Flow Immunoassay for the Detection of Tyrosine Phosphatase-Like Protein IA-2 Autoantibodies in Human Serum

    PubMed Central

    Kikkas, Ingrid; Mallone, Roberto; Larger, Etienne; Volland, Hervé; Morel, Nathalie

    2014-01-01

    Type 1 diabetes (T1D) results from the destruction of pancreatic insulin-producing beta cells and is strongly associated with the presence of islet autoantibodies. Autoantibodies to tyrosine phosphatase-like protein IA-2 (IA-2As) are considered to be highly predictive markers of T1D. We developed a novel lateral flow immunoassay (LFIA) based on a bridging format for the rapid detection of IA-2As in human serum samples. In this assay, one site of the IA-2As is bound to HA-tagged-IA-2, which is subsequently captured on the anti-HA-Tag antibody-coated test line on the strip. The other site of the IA-2As is bound to biotinylated IA-2, allowing the complex to be visualized using colloidal gold nanoparticle-conjugated streptavidin. For this study, 35 serum samples from T1D patients and 44 control sera from non-diabetic individuals were analyzed with our novel assay and the results were correlated with two IA-2A ELISAs. Among the 35 serum samples from T1D patients, the IA-2A LFIA, the in-house IA-2A ELISA and the commercial IA-2A ELISA identified as positive 21, 29 and 30 IA-2A-positive sera, respectively. The major advantages of the IA-2A LFIA are its rapidity and simplicity. PMID:25047039

  2. Tracking the amphibian pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans using a highly specific monoclonal antibody and lateral-flow technology.

    PubMed

    Dillon, Michael J; Bowkett, Andrew E; Bungard, Michael J; Beckman, Katie M; O'Brien, Michelle F; Bates, Kieran; Fisher, Matthew C; Stevens, Jamie R; Thornton, Christopher R

    2017-03-01

    The fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a lethal epizootic disease of amphibians. Rapid identification of the pathogen and biosecurity is essential to prevent its spread, but current laboratory-based tests are time-consuming and require specialist equipment. Here, we describe the generation of an IgM monoclonal antibody (mAb), 5C4, specific to Bd as well as the related salamander and newt pathogen Batrachochytrium salamandrivorans (Bsal). The mAb, which binds to a glycoprotein antigen present on the surface of zoospores, sporangia and zoosporangia, was used to develop a lateral-flow assay (LFA) for rapid (15 min) detection of the pathogens. The LFA detects known lineages of Bd and also Bsal, as well as the closely related fungus Homolaphlyctis polyrhiza, but does not detect a wide range of related and unrelated fungi and oomycetes likely to be present in amphibian habitats. When combined with a simple swabbing procedure, the LFA was 100% accurate in detecting the water-soluble 5C4 antigen present in skin, foot and pelvic samples from frogs, newts and salamanders naturally infected with Bd or Bsal. Our results demonstrate the potential of the portable LFA as a rapid qualitative assay for tracking these amphibian pathogens and as an adjunct test to nucleic acid-based detection methods.

  3. A rapid lateral flow immunoassay for the detection of tyrosine phosphatase-like protein IA-2 autoantibodies in human serum.

    PubMed

    Kikkas, Ingrid; Mallone, Roberto; Larger, Etienne; Volland, Hervé; Morel, Nathalie

    2014-01-01

    Type 1 diabetes (T1D) results from the destruction of pancreatic insulin-producing beta cells and is strongly associated with the presence of islet autoantibodies. Autoantibodies to tyrosine phosphatase-like protein IA-2 (IA-2As) are considered to be highly predictive markers of T1D. We developed a novel lateral flow immunoassay (LFIA) based on a bridging format for the rapid detection of IA-2As in human serum samples. In this assay, one site of the IA-2As is bound to HA-tagged-IA-2, which is subsequently captured on the anti-HA-Tag antibody-coated test line on the strip. The other site of the IA-2As is bound to biotinylated IA-2, allowing the complex to be visualized using colloidal gold nanoparticle-conjugated streptavidin. For this study, 35 serum samples from T1D patients and 44 control sera from non-diabetic individuals were analyzed with our novel assay and the results were correlated with two IA-2A ELISAs. Among the 35 serum samples from T1D patients, the IA-2A LFIA, the in-house IA-2A ELISA and the commercial IA-2A ELISA identified as positive 21, 29 and 30 IA-2A-positive sera, respectively. The major advantages of the IA-2A LFIA are its rapidity and simplicity.

  4. Design and application of a fish-shaped lateral line probe for flow measurement.

    PubMed

    Tuhtan, J A; Fuentes-Pérez, J F; Strokina, N; Toming, G; Musall, M; Noack, M; Kämäräinen, J K; Kruusmaa, M

    2016-04-01

    We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone.

  5. Design and application of a fish-shaped lateral line probe for flow measurement

    NASA Astrophysics Data System (ADS)

    Tuhtan, J. A.; Fuentes-Pérez, J. F.; Strokina, N.; Toming, G.; Musall, M.; Noack, M.; Kämäräinen, J. K.; Kruusmaa, M.

    2016-04-01

    We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone.

  6. Bead-Based Assays for Biodetection: From Flow-Cytometry to Microfluidics

    SciTech Connect

    Ozanich, Richard M.; Antolick, Kathryn C.; Bruckner-Lea, Cindy J.; Bunch, Kyle J.; Dockendorff, Brian P.; Grate, Jay W.; Nash, Michael A.; Tyler, Abby J.

    2009-05-04

    ABSTRACT The potential for the use of biological agents by terrorists is a real threat. Two approaches for detection of biological species will be described: 1) The use of microbead arrays for multiplexed flow cytometry detection of cytokines and botulinum neurotoxin simulant, and 2) a microfluidic platform for capture and separation of different size superparamagnetic nanoparticles followed by on-chip fluorescence detection of the sandwich complex. The methods and automated fluidic systems used for trapping functionalized microbeads will be described. This approach allows sample, assay reagents, and wash solutions to be perfused over a micro-column of beads, resulting in faster and more sensitive assays. The automated fluidic approach resulted in up to five-fold improvements in assay sensitivity/speed as compared to identical assays performed in a typical manual batch mode. A second approach for implementing multiplexed bead-based assays without using flow cytometry detection is currently under development. The goal of the microfluidic-based approach is to achieve rapid (<20 minutes), multiplexed (> 3 bioagents) detection using a simple and low-cost, integrated microfluidic/optical detection platform. Using fiber-optic guided laser-induced fluorescence, assay detection limits were shown to be in the 100’s of picomolar range (10’s of micrograms per liter) for botulinum neurotoxin simulant without any optimization of the microfluidic device or optical detection approach. Video taping magnetic nanoparticle capture and release was used to improve understanding of the process and revealed interesting behavior.

  7. Rapid and sensitive detection of Candidatus Liberibacter asiaticus by loop mediated isothermal amplification combined with a lateral flow dipstick

    PubMed Central

    2014-01-01

    Background Citrus Huanglongbing (HLB) is the most devastating bacterial citrus disease worldwide. Three Candidatus Liberibacter species are associated with different forms of the disease: Candidatus Liberibacter asiaticus, Candidatus Liberibacter americanus and Candidatus Liberibacter africanus. Amongst them, Candidatus Liberibacter asiaticus is the most widespread and economically important. These Gram-negative bacterial plant pathogens are phloem-limited and vectored by citrus psyllids. The current management strategy of HLB is based on early and accurate detection of Candidatus Liberibacter asiaticus in both citrus plants and vector insects. Nowadays, real time PCR is the method of choice for this task, mainly because of its sensitivity and reliability. However, this methodology has several drawbacks, namely high equipment costs, the need for highly trained personnel, the time required to conduct the whole process, and the difficulty in carrying out the detection reactions in field conditions. Results A recent DNA amplification technique known as Loop Mediated Isothermal Amplification (LAMP) was adapted for the detection of Candidatus Liberibacter asiaticus. This methodology was combined with a Lateral Flow Dipstick (LFD) device for visual detection of the resulting amplicons, eliminating the need for gel electrophoresis. The assay was highly specific for the targeted bacterium. No cross-reaction was observed with DNA from any of the other phytopathogenic bacteria or fungi assayed. By serially diluting purified DNA from an infected plant, the sensitivity of the assay was found to be 10 picograms. This sensitivity level was proven to be similar to the values obtained running a real time PCR in parallel. This methodology was able to detect Candidatus Liberibacter asiaticus from different kinds of samples including infected citrus plants and psyllids. Conclusions Our results indicate that the methodology here reported constitutes a step forward in the development

  8. Rapid detection of methicillin-resistant Staphylococcus aureus in pork using a nucleic acid-based lateral flow immunoassay.

    PubMed

    Zhang, Hongwei; Ma, Luyao; Ma, Lina; Hua, Marti Z; Wang, Shuo; Lu, Xiaonan

    2017-02-21

    Methicillin-resistant Staphylococcus aureus (MRSA) is considered as one of the leading causes of food poisonings worldwide. Due to the high prevalence and extensive challenges in clinical treatment, a rapid and accurate detection method is required to differentiate MRSA from other S. aureus isolated from foods. Since the methicillin resistance of S. aureus is due to the acquisition of the mecA gene from staphylococcal chromosome cassette, the presence of the mecA gene is interpreted as a marker for the identification of MRSA. In this study, a low-cost lateral flow immunoassay (LFI) strip was used to detect the mecA amplicons subsequent to polymerase chain reaction (PCR). The specificity of this PCR-LFI assay was tested between MRSA and methicillin-susceptive S. aureus. Both the test line and control line were shown up on the LFI strip for MRSA, whereas only the control line developed for methicillin-susceptive S. aureus. The detection limit of PCR-LFI assay was 20fg for genomic DNA (100 times more sensitive than gel electrophoresis) and 2×10(0)CFU per 100g of pork products after enrichment at 37°C for 48h. The total detection time of using LFI was 3min, which was faster than the conventional electrophoresis (~45min). With the performance of PCR-LFI, 7 out of 42 S. aureus isolates were identified to be MRSA from imported pork products, which was consistent to the standardized minimum inhibitory concentration assay. This mecA-based PCR-LFI strip can be used for rapid and accurate detection of MRSA isolated from commercial pork products.

  9. Micro segmented-flow in biochemical and cell-based assays.

    PubMed

    Clausell-Tormos, Jenifer; Merten, Christoph A

    2012-01-01

    Micro-segmented flow (e.g. in microfluidic channels, capillaries or a length of tubing) has become a promising technique in modern biology. Compared to conventional formats such as microtiter plates, sample volumes can be reduced about 1000-fold, thus allowing a massive reduction of assay costs and the use of samples available in low quantities, only (e.g. primary cells). Furthermore, assays can be highly parallelized and performed at superb spatio-temporal resolution. Here, we review the state-of-the-art in micro-segmented flow as applied in biochemical, cell- and multicellular organisms-based assays. We discuss likely future applications such as single cell / single organism proteomics and transcriptomics and point out the specific advantages and limitations compared to emulsion-based (droplet-based) approaches.

  10. Laterality of Stance during Optic Flow Stimulation in Male and Female Young Adults

    PubMed Central

    Persiani, Michela; Piras, Alessandro; Squatrito, Salvatore; Raffi, Milena

    2015-01-01

    During self-motion, the spatial and temporal properties of the optic flow input directly influence the body sway. Men and women have anatomical and biomechanical differences that influence the postural control during visual stimulation. Given that recent findings suggest a peculiar role of each leg in the postural control of the two genders, we investigated whether the body sway during optic flow perturbances is lateralized and whether anteroposterior and mediolateral components of specific center of pressure (COP) parameters of the right and left legs differ, reexamining a previous experiment (Raffi et al. (2014)) performed with two, side-by-side, force plates. Experiments were performed on 24 right-handed and right-footed young subjects. We analyzed five measures related to the COP of each foot and global data: anteroposterior and mediolateral range of oscillation, anteroposterior and mediolateral COP velocity, and sway area. Results showed that men consistently had larger COP parameters than women. The values of the COP parameters were correlated between the two feet only in the mediolateral axis of women. These findings suggest that optic flow stimulation causes asymmetry in postural balance and different lateralization of postural controls in men and women. PMID:26539509

  11. Honeybees' Speed Depends on Dorsal as Well as Lateral, Ventral and Frontal Optic Flows

    PubMed Central

    Portelli, Geoffrey; Ruffier, Franck; Roubieu, Frédéric L.; Franceschini, Nicolas

    2011-01-01

    Flying insects use the optic flow to navigate safely in unfamiliar environments, especially by adjusting their speed and their clearance from surrounding objects. It has not yet been established, however, which specific parts of the optical flow field insects use to control their speed. With a view to answering this question, freely flying honeybees were trained to fly along a specially designed tunnel including two successive tapering parts: the first part was tapered in the vertical plane and the second one, in the horizontal plane. The honeybees were found to adjust their speed on the basis of the optic flow they perceived not only in the lateral and ventral parts of their visual field, but also in the dorsal part. More specifically, the honeybees' speed varied monotonically, depending on the minimum cross-section of the tunnel, regardless of whether the narrowing occurred in the horizontal or vertical plane. The honeybees' speed decreased or increased whenever the minimum cross-section decreased or increased. In other words, the larger sum of the two opposite optic flows in the horizontal and vertical planes was kept practically constant thanks to the speed control performed by the honeybees upon encountering a narrowing of the tunnel. The previously described ALIS (“AutopiLot using an Insect-based vision System”) model nicely matches the present behavioral findings. The ALIS model is based on a feedback control scheme that explains how honeybees may keep their speed proportional to the minimum local cross-section of a tunnel, based solely on optic flow processing, without any need for speedometers or rangefinders. The present behavioral findings suggest how flying insects may succeed in adjusting their speed in their complex foraging environments, while at the same time adjusting their distance not only from lateral and ventral objects but also from those located in their dorsal visual field. PMID:21589861

  12. Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.

    PubMed

    Portelli, Geoffrey; Ruffier, Franck; Roubieu, Frédéric L; Franceschini, Nicolas

    2011-05-12

    Flying insects use the optic flow to navigate safely in unfamiliar environments, especially by adjusting their speed and their clearance from surrounding objects. It has not yet been established, however, which specific parts of the optical flow field insects use to control their speed. With a view to answering this question, freely flying honeybees were trained to fly along a specially designed tunnel including two successive tapering parts: the first part was tapered in the vertical plane and the second one, in the horizontal plane. The honeybees were found to adjust their speed on the basis of the optic flow they perceived not only in the lateral and ventral parts of their visual field, but also in the dorsal part. More specifically, the honeybees' speed varied monotonically, depending on the minimum cross-section of the tunnel, regardless of whether the narrowing occurred in the horizontal or vertical plane. The honeybees' speed decreased or increased whenever the minimum cross-section decreased or increased. In other words, the larger sum of the two opposite optic flows in the horizontal and vertical planes was kept practically constant thanks to the speed control performed by the honeybees upon encountering a narrowing of the tunnel. The previously described ALIS ("AutopiLot using an Insect-based vision System") model nicely matches the present behavioral findings. The ALIS model is based on a feedback control scheme that explains how honeybees may keep their speed proportional to the minimum local cross-section of a tunnel, based solely on optic flow processing, without any need for speedometers or rangefinders. The present behavioral findings suggest how flying insects may succeed in adjusting their speed in their complex foraging environments, while at the same time adjusting their distance not only from lateral and ventral objects but also from those located in their dorsal visual field.

  13. Limits of the potential flow model for obstacle detection using a lateral line

    NASA Astrophysics Data System (ADS)

    Maertens, Audrey; Weymouth, Gabriel; Triantafyllou, Michael

    2012-11-01

    Fish have a particular sensory system called lateral line through which they measure flow velocity and pressure gradient. Behavioral studies have shown that fish can detect and identify obstacles while gliding using this sensory system alone. Despite a widespread interest of the community in understanding and reproducing this capability, a realistic approach is still missing. Indeed, due to computational constraints, most attempts to date have used potential flow models. The present work aims at revealing the limits of the potential flow model in the case of a vehicle gliding by a cylinder. The understanding thus gained can be used to account for viscous effects in a computationally-efficient fashion. An improvement of the boundary data immersion method provides accurate pressure predictions at the Reynolds numbers considered (500 < Re < 10000). It is shown how a potential flow-based obstacle detection algorithm fails at locating the cylinder at these Reynolds numbers. It is also shown that a panel method accounting for dynamically changing displacement thickness leads to accurate pressure prediction. This is a first step toward real-time pressure predictions for viscous flows which is needed for efficient obstacle detection and identification algorithms.

  14. Lateral Flow across Multi-parallel Columns and Their Implications on Large-Scale Evapotranspiration Modeling

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zhu, J.

    2011-12-01

    Evapotranspiration (ET, i.e., evaporation and plant transpiration) is an important component in hydrological cycle, especially for semi-arid and arid environments. The representation of soil hydrologic processes and parameters at scales different from the scale at which observations and measurements are made is a major challenge. Large scale evapotranspiration is often quantified through simulation of multiple columns of independent one-dimensional local scale vertical flow. The soil column used in each simulation is considered homogeneous for the purpose of modeling over short depths. A main limitation is that this purely one-dimensional modeling approach does not consider interaction between columns. Lateral flows might be significant for long and narrow tubes and heterogeneous hydraulic properties and plant characteristics. This study is to quantify the significance of lateral flow and examine whether using this one-dimensional modeling approach may introduce unacceptable errors for large scale evapotranspiration simulations using a three-dimensional modeling appraoch. Instead of using convenient parallel column models of independent hydrologic processes, this study simulates three-dimensional transpiration and evaporation in multiple columns which allow lateral interactions. Specifically, we examined the impact of plant rooting density, depth, pattern and other characteristics on the accuracy of this commonly used one-dimensional approximation of hydrological processes. In addition, the influence of spatial variability of hydraulic properties on the validity of the one-dimensional approach and the difference of wetting and drying processes are discussed. The results provide applicable guidance for applications of one-dimensional approach to simulate large scale evapotranspiration in a heterogeneous landscape.

  15. Photoluminescent lateral-flow immunoassay revealed by graphene oxide: highly sensitive paper-based pathogen detection.

    PubMed

    Morales-Narváez, Eden; Naghdi, Tina; Zor, Erhan; Merkoçi, Arben

    2015-08-18

    A paper-based lateral flow immunoassay for pathogen detection that avoids the use of secondary antibodies and is revealed by the photoluminescence quenching ability of graphene oxide is reported. Escherichia coli has been selected as a model pathogen. The proposed device is able to display a highly specific and sensitive performance with a limit of detection of 10 CFU mL(-1) in standard buffer and 100 CFU mL(-1) in bottled water and milk. This low-cost disposable and easy-to-use device will prove valuable for portable and automated diagnostics applications.

  16. A glass fiber sheet-based electroosmotic lateral flow immunoassay for point-of-care testing.

    PubMed

    Oyama, Yuriko; Osaki, Toshihisa; Kamiya, Koki; Kawano, Ryuji; Honjoh, Tsutomu; Shibata, Haruki; Ide, Toru; Takeuchi, Shoji

    2012-12-21

    We have developed a quantitative immunoassay chip targeting point-of-care testing. To implement a lateral flow immunoassay, a glass fiber sheet was chosen as the material for the microfluidic channel in which the negative charge on the fiber surfaces efficiently generates the electroosmotic flow (EOF). The EOF, in turn, allows controllable bound/free separation of antigen/antibody interactions on the chip and enables precise determination of the antigen concentration. In addition, the defined size of the porous matrix was suitable for the filtration of undesired large particles. We confirmed the linear relationship between the concentration of analyte and the resulting fluorescence intensity from the immunoassay of two model analytes, C-reactive protein (CRP) and insulin, demonstrating that analyte concentration was quantitatively determined within the developed chip in 20 min. The limits of detection were 8.5 ng mL(-1) and 17 ng mL(-1) for CRP and insulin, respectively.

  17. Imaging lateral groundwater flow in the shallow subsurface using stochastic temperature fields

    NASA Astrophysics Data System (ADS)

    Fairley, Jerry P.; Nicholson, Kirsten N.

    2006-04-01

    Although temperature has often been used as an indication of vertical groundwater movement, its usefulness for identifying horizontal fluid flow has been limited by the difficulty of obtaining sufficient data to draw defensible conclusions. Here we use stochastic simulation to develop a high-resolution image of fluid temperatures in the shallow subsurface at Borax Lake, Oregon. The temperature field inferred from the geostatistical simulations clearly shows geothermal fluids discharging from a group of fault-controlled hydrothermal springs, moving laterally through the subsurface, and mixing with shallow subsurface flow originating from nearby Borax Lake. This interpretation of the data is supported by independent geochemical and isotopic evidence, which show a simple mixing trend between Borax Lake water and discharge from the thermal springs. It is generally agreed that stochastic simulation can be a useful tool for extracting information from complex and/or noisy data and, although not appropriate in all situations, geostatistical analysis may provide good definition of flow paths in the shallow subsurface. Although stochastic imaging techniques are well known in problems involving transport of species, e.g. delineation of contaminant plumes from soil gas survey data, we are unaware of previous applications to the transport of thermal energy for the purpose of inferring shallow groundwater flow.

  18. Touch at a distance sensing: lateral-line inspired MEMS flow sensors.

    PubMed

    Prakash Kottapalli, Ajay Giri; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael

    2014-11-07

    Evolution bestowed the blind cavefish with a resourcefully designed lateral-line of sensors that play an essential role in many important tasks including object detection and avoidance, energy-efficient maneuvering, rheotaxis etc. Biologists identified the two types of vital sensors on the fish bodies called the superficial neuromasts and the canal neuromasts that are responsible for flow sensing and pressure-gradient sensing, respectively. In this work, we present the design, fabrication and experimental characterization of biomimetic polymer artificial superficial neuromast micro-sensor arrays. These biomimetic micro-sensors demonstrated a high sensitivity of 0.9 mV/(m s(-1)) and 0.022 V/(m s(-1)) and threshold velocity detection limits of 0.1 m s(-1) and 0.015 m s(-1) in determining air and water flows respectively. Experimental results demonstrate that the biological canal inspired polymer encapsulation on the array of artificial superficial neuromast sensors is capable of filtering steady-state flows that could otherwise significantly mask the relevant oscillatory flow signals of high importance.

  19. Flow-induced differential lateral migration of deformable particles by inner/outer viscosity ratio

    NASA Astrophysics Data System (ADS)

    Chen, Yeng-Long; Wang, Shih-Hao; Yeh, Wei-Ting

    2016-11-01

    We investigate the practicality of flow-driven separation of deformable particles (DP) such as cells, droplets, and capsules in microfluidic flow. We use lattice Boltzmann-immersed boundary method to model the hydrodynamic coupling between DP and the fluid. We find that whether a DP migrates towards the wall or to the center at steady state depends strongly on particle Reynolds number Re, capillary numbers Ca, and viscosity ratio λ. The lateral steady state position d* and velocity is determined by the competition between the inertia- and deformation-driven forces. In the deformation-dominated regime (Ca >> Re), DP migrates towards the channel centerline and flow faster for sufficiently small λ. In the inertia-dominated regime (Ca<flow slower for small λ. For sufficiently large λ, DP migrates towards the wall as the inertia-driven lift effects increase and the particle velocity decreases. In the intermediate regime (Ca Re), we find that d* has non-monotonic dependence on λ, leading to complicated dependence of particle velocity. We find that the non-monotonic trend is a consequence of inertia-deformation coupling, and only occurs if the inertia- and deformation-driven lift effects are comparable. This result could provide be further utilized for separating soft particles with different internal fluid property. MOST Taiwan, NCTS.

  20. [Fluoroimmunoassay and Magnetic Lateral Flow Immunoassay for the Detection of Ractopamine].

    PubMed

    Wang, Song-bai; Zhang, Yan; Wei, Yan-li; An, Wen-ting; Wang, Yu; Shuang, Shao-min

    2015-11-01

    A fluoroimmunoassay based on quantum dots (QDs) and a lateral flow immunoassay system based on the magnetic beads (MB) were constructed to detect ractopamine (RAG) in urine samples. The monoclonal antibody (Ab1) against RAC was conjugated with QDs or MB as detector reagent, respectively. They apply a competitive format using an immobilized RAC conjugate and free RAC present in samples. That is to say, the concentration of RAC in the sample was negative related to the fluorescense intensity of QDs or the color density of MB. Results showed that the limit of detection (LOD) of fluorescence immunoassay method is 1 ng · mL⁻¹ and analysis time is 4 h, while the visual LOD was 10 ng · mL⁻¹ and analysis time was 15 min in magnetic lateral flow immunoassay system (MFLIS). Taken into consideration of the advantages and disadvantages of the two methods, it was suitable for the trace detection of RAC using fluoroimmunoassay while it was appropriate for point-of-care tesing of RAC by MFLIS.

  1. Measurement of Separase Proteolytic Activity in Single Living Cells by a Fluorogenic Flow Cytometry Assay

    PubMed Central

    Haaß, Wiltrud; Kleiner, Helga; Müller, Martin C.; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang

    2015-01-01

    ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML). Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110)-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110) as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90–180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic activity in leukemic

  2. Rapid parallel flow cytometry assays of active GTPases using effector beads.

    PubMed

    Buranda, Tione; BasuRay, Soumik; Swanson, Scarlett; Agola, Jacob; Bondu, Virginie; Wandinger-Ness, Angela

    2013-11-15

    We describe a rapid assay for measuring the cellular activity of small guanine triphosphatases (GTPases) in response to a specific stimulus. Effector-functionalized beads are used to quantify in parallel multiple GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus.

  3. Lateral flow in the middle crust - Analogue experiments from the Svecofennian orogen

    NASA Astrophysics Data System (ADS)

    Nikkilä, Kaisa; Koyi, Hemin; Korja, Annakaisa; Eklund, Olav

    2013-04-01

    The exposed Svecofennian crust (50-65 km) has been suggested to have thickened in continental accretion between Archean and Paleoproterozoic terranes, probably at a high convergence rate. It is likely that this thickened orogen experienced lateral spreading during its final stages. This post-orogenic event has reshaped the collisional framework and modified its bulk appearance. In this study, we have used scaled analogue centrifuge modeling to simulate extensional lateral flow at the Archean- Paleoproterozoic boundary zone during final stages of the Svecofennian orogeny. The analogue models simulate both the evolution of a mechanical boundary between two rheologically different tectonic blocks, and the role of pre-existing weaknesses at moderate angles (representing the old stacking structures). In models the upper layer is brittle, the middle layer is ductile, and the lower layer is more viscous. The layers represent upper, middle and lower crust, respectively. The Proterozoic layers have lower viscosity values than the Archean layers at similar depths. The materials are based on the plastilina modelling putty, which is mixed with acid oil, silicone, sweetener and/or barium sulphate to get the appropriate composition for each layer. Both the Archean and the Paleoproterozoic blocks have a low-viscous middle crust. The three layered models are extended unilaterally. The model results show that during extension the rheologically different layers deform and spread at different rates during the tectonic collapse. This results in 1) vertical rotation of the Archean and Proterozoic boundary; 2) the pre-existed faults become listric and discontinuous; and 3) the upward flow of the low viscosity middle layer to fill the newly-formed gaps between the upper layer blocks. The experiments show geometrically similar crustal-scale structures to those observed in the deep seismic reflection profiles (FIRE). Thus it is possible that lateral flow has taken place in the core of the

  4. A novel double antibody sandwich-lateral flow immunoassay for the rapid and simple detection of hepatitis C virus.

    PubMed

    Xiang, Tingxiu; Jiang, Zheng; Zheng, Jian; Lo, Chaoyu; Tsou, Harry; Ren, Guosheng; Zhang, Jun; Huang, Ailong; Lai, Guoqi

    2012-11-01

    The objective of this study was to screen for antigens of the hepatitis C virus (HCV) to establish a new double antibody sandwich-lateral flow immunoassay (DAS-LFIA) method for testing the presence of anti-HCV antibodies in human serum or plasma. A series of different recombinant HCV proteins in Escherichia coli cells were constructed, expressed, purified and the new DAS-LFIA strip was developed. The sensitivity and specificity of new the DAS-LFIA strip were evaluated by detecting 23 HCV-positive sera, a set of quality control references for anti-HCV detection that contain known amounts of anti-HCV antibodies, and 8 HCV-negative sera. A total of 300 clinical serum samples was examined by both the new DAS-LFIA strip and enzyme-linked immunosorbent assay (ELISA). Data were analyzed using SPSS 11.5 software. The sensitivity and specificity of the new DAS-LFIA strip were 100%. The lowest test line of the HCV DAS-LFIA strips was 2 NCU/ml. Additionally, the concordance between the new DAS-LFIA strip and ELISA methods was 94.33%. In conclusion, our new testing method is rapid, simple, sensitive and specifically detects the presence of anti-HCV antibodies in human serum or plasma. Therefore, it may be used for monitoring HCV.

  5. Development and Validation of a Lateral Flow Immunoassay Test Kit for Dual Detection of Casein and β-Lactoglobulin Residues.

    PubMed

    Masiri, Jongkit; Barrios-Lopez, Brianda; Benoit, Lora; Tamayo, Joshua; Day, Jeffrey; Nadala, Cesar; Sung, Shao-Lei; Samadpour, Mansour

    2016-03-01

    Allergies to cow's milk are very common and can present as life-threatening anaphylaxis. Consequently, food labeling legislation mandates that foods containing milk residues, including casein and/or β-lactoglobulin, provide an indication of such on the product label. Because contamination with either component independent of the other can occur during food manufacturing, effective allergen management measures for containment of milk residues necessitates the use of dual screening methods. To assist the food industry in improving food safety practices, we have developed a rapid lateral flow immunoassay test kit that reliably reports both residues down to 0.01 μg per swab and 0.1 ppm of protein for foods. The assay utilizes both sandwich and competitive format test lines and is specific for bovine milk residues. Selectivity testing using a panel of matrices with potentially interfering substances, including commonly used sanitizing agents, indicated reduction in the limit of detection by one-to fourfold. With food, residues were easily detected in all cow's milk-based foods tested, but goat and sheep milk residues were not detected. Specificity analysis revealed no cross-reactivity with common commodities, with the exception of kidney beans when present at high concentrations (> 1%). The development of a highly sensitive and rapid test method capable of detecting trace amounts of casein and/or β-lactoglobulin should aid food manufacturers and regulatory agencies in monitoring for milk allergens in environmental and food samples.

  6. Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen.

    PubMed

    Liu, Fangming; Zhang, Honglian; Wu, Zhenhua; Dong, Haidao; Zhou, Lin; Yang, Dawei; Ge, Yuqing; Jia, Chunping; Liu, Huiying; Jin, Qinghui; Zhao, Jianlong; Zhang, Qiqing; Mao, Hongju

    2016-12-01

    Carcinoembryonic antigen (CEA) is an important biomarker in cancer diagnosis. Here, we present an efficient, selective lateral-flow immunoassay (LFIA) based on magnetic nanoparticles (MNPs) for in situ sensitive and accurate point-of-care detection of CEA. Signal amplification mechanism involved linking of detection MNPs with signal MNPs through biotin-modified single-stranded DNA (ssDNA) and streptavidin. To verify the effectiveness of this modified LFIA system, the sensitivity and specificity were evaluated. Sensitivity evaluation showed a broad detection range of 0.25-1000ng/ml for CEA protein by the modified LFIA, and the limit of detection (LOD) of the modified LFIA was 0.25ng/ml, thus producing significant increase in detection threshold compared with the traditional LFIA. The modified LFIA could selectively recognize CEA in presence of several interfering proteins. In addition, this newly developed assay was applied for quantitative detection of CEA in human serum specimens collected from 10 randomly selected patients. The modified LFIA system detected minimum 0.27ng/ml of CEA concentration in serum samples. The results were consistent with the clinical data obtained using commercial electrochemiluminescence immunoassay (ECLIA) (p<0.01). In conclusion, the MNPs based LFIA system not only demonstrated enhanced signal to noise ratio, it also detected CEA with higher sensitivity and selectivity, and thus has great potential to be commercially applied as a sensitive tumor marker filtration system.

  7. Developmental validation of RSID-saliva: a lateral flow immunochromatographic strip test for the forensic detection of saliva.

    PubMed

    Old, Jennifer B; Schweers, Brett A; Boonlayangoor, Pravat W; Reich, Karl A

    2009-07-01

    Current methods for forensic identification of saliva generally assay for the enzymatic activity of alpha-amylase, an enzyme long associated with human saliva. Here, we describe the Rapid Stain IDentification (RSID-Saliva), a lateral flow immunochromatographic strip test that uses two antisalivary amylase monoclonal antibodies to detect the presence of salivary amylase, rather than the activity of the enzyme. We demonstrate that RSID-Saliva is accurate, reproducible, and highly sensitive for human saliva; RSID-Saliva detects less than 1 microL of saliva. The sensitivity of RSID-Saliva allows investigators to sample a fraction of a questioned stain while retaining the majority for DNA-STR analysis. We demonstrate that RSID-Saliva identifies saliva from a variety of materials (e.g., cans, bottles, envelopes, and cigarette-butts) and it does not cross-react with blood, semen, urine, or vaginal fluid. RSID-Saliva is a useful forensic test for determining which evidentiary items contain saliva and thus may yield a DNA profile.

  8. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on "Road Closure".

    PubMed

    Wang, Dian-Bing; Tian, Bo; Zhang, Zhi-Ping; Wang, Xu-Ying; Fleming, Joy; Bi, Li-Jun; Yang, Rui-Fu; Zhang, Xian-En

    2015-05-15

    Detection of Bacillus anthracis in the field, whether as a natural infection or as a biothreat remains challenging. Here we have developed a new lateral-flow immunochromatographic assay (LFIA) for B. anthracis spore detection based on the fact that conjugates of B. anthracis spores and super-paramagnetic particles labeled with antibodies will block the pores of chromatographic strips and form retention lines on the strips, instead of the conventionally reported test lines and control lines in classic LFIA. As a result, this new LFIA can simultaneously realize optical, magnetic and naked-eye detection by analyzing signals from the retention lines. As few as 500-700 pure B. anthracis spores can be recognized with CV values less than 8.31% within 5 min of chromatography and a total time of 20 min. For powdery sample tests, this LFIA can endure interference from 25% (w/v) milk, 10% (w/v) baking soda and 10% (w/v) starch without any sample pre-treatment, and has a corresponding detection limit of 6×10(4) spores/g milk powder, 2×10(5) spores/g starch and 5×10(5) spores/g baking soda. Compared with existing methods, this new approach is very competitive in terms of sensitivity, specificity, cost and ease of operation. This proof-of-concept study can also be extended for detection of many other large-sized analytes.

  9. Heat Transfer to Anode of Arc as Function of Transverse Magnetic Field and Lateral Gas Flow Velocity

    NASA Astrophysics Data System (ADS)

    Zama, Yoshiyuki; Shiino, Toru; Ishii, Yoko; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas tungsten arc welding has useful joining technology because of high-energy and high-current characteristics. It can be flexible from the transverse magnetic field and lateral gas flow velocity. In this case, the weld defect occurs. In this research, the heat transfer to the anode of the arc as a function of the transverse magnetic field and lateral gas flow velocity is elucidated. That magnetic flux density and lateral gas velocity were varied from 0 to 3 mT and 0 to 50?m?s -1, respectively. The axial plasma gas argon flow rates were 3?slm. A transverse magnetic field is applied to the arc using Helmholtz coil. The anode is used by a water-cooled copper plate, and the heat transfer is measured by temperature of cooled water. As a result, the arc is deflected by the Lorentz force and lateral gas convection. Thus, the heat transfer to the anode of the arc decreases with increasing the transverse magnetic field and lateral gas flow velocity. In addition, the heat transfer to the anode changes with different attachments modes. The lateral gas flow causes a convective heat loss from the arc to the chamber walls.

  10. Detection of influenza virus using a lateral flow immunoassay for amplified DNA by a microfluidic RT-PCR chip.

    PubMed

    Nagatani, Naoki; Yamanaka, Keiichiro; Ushijima, Hiromi; Koketsu, Ritsuko; Sasaki, Tadahiro; Ikuta, Kazuyoshi; Saito, Masato; Miyahara, Toshiro; Tamiya, Eiichi

    2012-08-07

    Influenza virus RNA was amplified by a continuous-flow polydimethylsiloxane microfluidic RT-PCR chip within 15-20 min. The amplified influenza virus RNA was observed with the naked eye, as the red color at the test line, using a lateral flow immunoassay within 1 min.

  11. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow

    USGS Publications Warehouse

    Kurylyk, Barret; Masaki, Masaki; Quinton, William L.; McKenzie, Jeffrey M.; Voss, Clifford I.

    2016-01-01

    Recent climate change has reduced the spatial extent and thickness of permafrost in many discontinuous permafrost regions. Rapid permafrost thaw is producing distinct landscape changes in the Taiga Plains of the Northwest Territories, Canada. As permafrost bodies underlying forested peat plateaus shrink, the landscape slowly transitions into unforested wetlands. The expansion of wetlands has enhanced the hydrologic connectivity of many watersheds via new surface and near-surface flow paths, and increased streamflow has been observed. Furthermore, the decrease in forested peat plateaus results in a net loss of boreal forest and associated ecosystems. This study investigates fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012. Measured climate data are first used to drive surface energy balance simulations for the wetland and peat plateau. Near-surface soil temperatures simulated in the surface energy balance model are then applied as the upper boundary condition to a three-dimensional model of subsurface water flow and coupled energy transport with freeze-thaw. Simulation results demonstrate that lateral heat transfer, which is not considered in many permafrost models, can influence permafrost thaw rates. Furthermore, the simulations indicate that landscape evolution arising from permafrost thaw acts as a positive feedback mechanism that increases the energy absorbed at the land surface and produces additional permafrost thaw. The modeling results also demonstrate that flow rates in local groundwater flow systems may be enhanced by the degradation of isolated permafrost bodies.

  12. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow

    NASA Astrophysics Data System (ADS)

    Kurylyk, Barret L.; Hayashi, Masaki; Quinton, William L.; McKenzie, Jeffrey M.; Voss, Clifford I.

    2016-02-01

    Recent climate change has reduced the spatial extent and thickness of permafrost in many discontinuous permafrost regions. Rapid permafrost thaw is producing distinct landscape changes in the Taiga Plains of the Northwest Territories, Canada. As permafrost bodies underlying forested peat plateaus shrink, the landscape slowly transitions into unforested wetlands. The expansion of wetlands has enhanced the hydrologic connectivity of many watersheds via new surface and near-surface flow paths, and increased streamflow has been observed. Furthermore, the decrease in forested peat plateaus results in a net loss of boreal forest and associated ecosystems. This study investigates fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012. Measured climate data are first used to drive surface energy balance simulations for the wetland and peat plateau. Near-surface soil temperatures simulated in the surface energy balance model are then applied as the upper boundary condition to a three-dimensional model of subsurface water flow and coupled energy transport with freeze-thaw. Simulation results demonstrate that lateral heat transfer, which is not considered in many permafrost models, can influence permafrost thaw rates. Furthermore, the simulations indicate that landscape evolution arising from permafrost thaw acts as a positive feedback mechanism that increases the energy absorbed at the land surface and produces additional permafrost thaw. The modeling results also demonstrate that flow rates in local groundwater flow systems may be enhanced by the degradation of isolated permafrost bodies.

  13. Development of Lateral Flow Immunoassay for Antigen Detection in Human Angiostrongylus cantonensis Infection

    PubMed Central

    Chen, Mu-Xin; Chen, Jia-Xu; Chen, Shao-Hong; Huang, Da-Na; Ai, Lin; Zhang, Ren-Li

    2016-01-01

    Angiostrongyliasis is difficult to be diagnosed for the reason that no ideal method can be used. Serologic tests require specific equipment and are not always available in poverty-stricken zone and are time-consuming. A lateral flow immunoassay (LFIA) may be useful for angiostrongyliasis control. We established a LFIA for the diagnosis of angiostrongyliasis based on 2 monoclonal antibodies (mAbs) against antigens of Angiostrongylus cantonensis adults. The sensitivity and specificity were 91.1% and 100% in LFIA, while those of commercial ELISA kit was 97.8% and 86.3%, respectively. Youden index was 0.91 in LFIA and 0.84 in commercial ELISA kit. LFIA showed detection limit of 1 ng/ml of A. cantonensis ES antigens. This LFIA was simple, rapid, highly sensitive and specific, which opened an alternative approach for the diagnosis of human angiostrongyliasis. PMID:27417097

  14. Development of Lateral Flow Immunoassay for Antigen Detection in Human Angiostrongylus cantonensis Infection.

    PubMed

    Chen, Mu-Xin; Chen, Jia-Xu; Chen, Shao-Hong; Huang, Da-Na; Ai, Lin; Zhang, Ren-Li

    2016-06-01

    Angiostrongyliasis is difficult to be diagnosed for the reason that no ideal method can be used. Serologic tests require specific equipment and are not always available in poverty-stricken zone and are time-consuming. A lateral flow immunoassay (LFIA) may be useful for angiostrongyliasis control. We established a LFIA for the diagnosis of angiostrongyliasis based on 2 monoclonal antibodies (mAbs) against antigens of Angiostrongylus cantonensis adults. The sensitivity and specificity were 91.1% and 100% in LFIA, while those of commercial ELISA kit was 97.8% and 86.3%, respectively. Youden index was 0.91 in LFIA and 0.84 in commercial ELISA kit. LFIA showed detection limit of 1 ng/ml of A. cantonensis ES antigens. This LFIA was simple, rapid, highly sensitive and specific, which opened an alternative approach for the diagnosis of human angiostrongyliasis.

  15. LATERAL HEAT FLOW INFRARED THERMOGRAPHY FOR THICKNESS INDEPENDENT DETERMINATION OF THERMAL DIFFUSIVITY IN CFRP

    SciTech Connect

    Tralshawala, Nilesh; Howard, Don; Knight, Bryon; Plotnikov, Yuri; Ringermacher, Harry

    2008-02-28

    In conventional infrared thermography, determination of thermal diffusivity requires thickness information. Recently GE has been experimenting with the use of lateral heat flow to determine thermal diffusivity without thickness information. This work builds on previous work at NASA Langley and Wayne State University but we incorporate thermal time of flight (tof) analysis rather than curve fitting to obtain quantitative information. We have developed appropriate theoretical models and a tof based data analysis framework to experimentally determine all components of thermal diffusivity from the time-temperature measurements. Initial validation was carried out using finite difference simulations. Experimental validation was done using anisotropic carbon fiber reinforced polymer (CFRP) composites. We found that in the CFRP samples used, the in-plane component of diffusivity is about eight times larger than the through-thickness component.

  16. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification.

    PubMed

    Ying, Na; Ju, Chuanjing; Li, Zhongyi; Liu, Wensen; Wan, Jiayu

    2017-03-01

    In this study, a new lateral flow nucleic acid biosensor (LFNAB) using hybridization chain reaction (HCR) for signal amplification was developed for visual detection of nucleic acids with high sensitivity and low cost. A "sandwich-type" detection strategy was employed in our design. The sandwich system of capture probe (CP)/target DNA/reporter probe (RP)-HCR complexes was fabricated as the sensing platform. As the initiator strand, reporter probe propagated a chain reaction of hybridization events between the two hairpin probes modified with biotin, and determined whether long nicked DNA polymers were formed. The biotin-labeled double-strand DNA polymers then introduced numerous Streptavidin (SA)-labeled gold nanoparticles (AuNPs) on the lateral flow device. The CP/target DNA/RP-HCR complexes were captured on the test zone by the specific reaction between anti-Fam monoclonal antibody (anti-Fam mAb) on the test zone and Fam of the complexes. The accumulation of AuNPs on the test zone of the biosensor enabled the visual detection of specific sequences. The detection limit of specific DNA was as low as 1.76pM, which was about 2 orders lower than that of the LFNAB without HCR amplification. And the detection limit of Salmonella was 3×10(3)cfumL(-1). In conclusion, this visual detection system, HCR-LFNAB, is suitable for non-specialist personnel and point-of-care (POC) diagnosis in low-resource settings.

  17. Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test.

    PubMed

    Wang, Yao; Deng, Ruiguang; Zhang, Gaiping; Li, Qingmei; Yang, Jifei; Sun, Yaning; Li, Zhixi; Hu, Xiaofei

    2015-03-04

    A rapid immunochromatographic lateral flow test strip in a sandwich format was developed with the colloidal gold-labeled mouse antiglycinin monoclonal antibody (mAb) and rabbit antiglycinin polyclonal antibody (pAb) to specifically identify glycinin, a soybean allergen. The test strip is composed of a sample pad, a conjugate reagent pad, an absorbent pad, and a test membrane containing a control line and a test line. This test strip has high sensitivity, and results can be obtained within 10 min without sophisticated procedures. The limit of detection (LOD) of the test strip was calculated to be 0.69 mg/kg using an optical density scanner that measures relative optical density. The assay showed high specificity for glycinin, with no cross-reactions with other soybean proteins or other food allergens. The recoveries of the lateral flow test strip in detecting glycinin in powdered milk samples ranged between 80.5 and 89.9% with relative standard deviations of less than 5.29% (intra-assay) and 6.72% (interassay). Therefore, the test strip is useful as a quantitative, semiquantitative, or qualitative detection method for glycinin in powdered milk. In addition, the test strip can be used to detect glycinin in other processed foods and may be a valuable tool in identifying effective approaches for reducing the impact of glycinin.

  18. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.

    PubMed

    Liao, James C

    2006-10-01

    The ability to detect water flow using the hair cells of the lateral line system is a unique feature found in anamniotic aquatic vertebrates. Fishes use their lateral line to locate prey, escape from predators and form cohesive schooling patterns. Despite the prevalence of complex flows in nature, almost nothing is known about the function of the lateral line and its relationship to other sensory modalities for freely swimming fishes in turbulent flows. Past studies indicate that under certain conditions the lateral line is not needed to swim steadily in uniform flow. This paper examines how the lateral line and vision affect body kinematics and hydrodynamic habitat selection of rainbow trout (Oncorhynchus mykiss) exposed to vortices generated behind a cylinder. Trout Kármán gaiting (i.e. exploiting vortices to hold station in a vortex street) with a pharmacologically blocked lateral line display altered kinematics; body wavelength and wave speed increase compared to control animals. When visual cues are withheld by performing experiments in the dark, almost all Kármán gait kinematics measured for fish with and without a functional lateral line are the same. The lateral line, rather than vision, plays a larger role in affecting body kinematics when trout hold station in a vortex street. Trout show a preference to Kármán gait in the light but not in the dark, which may be attributed to physiological state rather than hydrodynamic or sensorimotor reasons. In the dark, trout both with and without a functional lateral line hold station near the downstream suction region of the cylinder wake (i.e. entraining) and avoid the vortex street. Vision therefore plays a larger role in the preference to associate with a turbulent vortex street. Trout in the light with a blocked lateral line show individual variation in their preference to Kármán gait or entrain. In the dark, entraining trout with an intact lateral line will alternate between right and left sides of the

  19. Effects of Soluble Surfactant on Lateral Migration of a Bubble in a Shear Flow

    NASA Astrophysics Data System (ADS)

    Muradoglu, Metin; Tryggvason, Gretar

    2014-11-01

    Motivated by the recent experimental study of Takagi et al. (2008), direct numerical simulations are performed to examine effects of soluble surfactant on the lateral migration of a deformable bubble in a pressure-driven channel flow. The interfacial and bulk surfactant concentration evolution equations are solved fully coupled with the incompressible Navier-Stokes equations. A non-linear equation of state is used to relate interfacial surface tension to surfactant concentration at the interface. A multiscale method is developed to handle the mass exchange between the interface and bulk fluid at high Peclet numbers, using a boundary-layer approximation next to the bubble and a relatively coarse grid for the rest of the flow. It is found that the surfactant induced Marangoni stresses can dominate over the shear-induced lift force and thus alter the behavior of the bubble completely, i.e., the contaminated bubble drifts away from the channel wall and stabilizes at the center of the channel in contrast with the corresponding clean bubble that drifts toward the wall and stabilizes near the wall. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant 112M181 and Turkish Academy of Sciences (TUBA).

  20. Acoustic programming in step-split-flow lateral-transport thin fractionation.

    PubMed

    Ratier, Claire; Hoyos, Mauricio

    2010-02-15

    We propose a new separation scheme for micrometer-sized particles combining acoustic forces and gravitational field in split-flow lateral-transport thin (SPLITT)-like fractionation channels. Acoustic forces are generated by ultrasonic standing waves set up in the channel thickness. We report on the separation of latex particles of two different sizes in a preliminary experiment using this proposed hydrodynamic acoustic sorter, HAS. Total binary separation of 5 and 10 microm diameter particles has been achieved. Numerical simulations of trajectories of particles flowing through a step-SPLITT under the conditions which combine acoustic standing waves and gravity show a very good agreement with the experiment. Calculations in order to compare separations obtained by the acoustic programming s-SPLITT fractionation and the conventional SPLITT fractionation show that the improvement in separation time is around 1 order of magnitude and could still be improved; this is the major finding of this work. This separation technique can be extended to biomimetic particles and blood cells.

  1. Serological detection of Helicobacter pylori by a flow microsphere immunofluorescence assay.

    PubMed Central

    Best, L M; Veldhuyzen van Zanten, S J; Bezanson, G S; Haldane, D J; Malatjalian, D A

    1992-01-01

    A flow cytometric immunofluorescence assay (FMIA) for the detection of immunoglobulin G antibodies to Helicobacter pylori was developed. A multicomponent antigen was prepared and used to coat carboxylated polystyrene microspheres for reaction with patient sera followed by fluorescein isothiocyanate-labelled goat anti-human immunoglobulin G. The reacted microspheres were collected with a flow cytometer, and fluorescence was quantitated relative to the cutoff value provided by pooled sera from patients in whom H. pylori could not be demonstrated by culture or histology. Serum samples from 28 H. pylori-positive patients and 27 H. pylori-negative patients were tested by FMIA. Additionally, an in-house enzyme-linked immunosorbent assay (ELISA) employing the same antigen preparation and a commercially available ELISA were used to assay the patient population. Both the FMIA and in-house ELISA were 100% sensitive and 89% specific with positive and negative predictive values of 90 and 100% and no equivocal results. The commercial ELISA was 96% sensitive and 89% specific with positive and negative predictive values of 90 and 96% and five equivocal results. FMIA provides a rapid, inexpensive, and easily performed means for serodiagnosis of H. pylori. Images PMID:1400995

  2. Immune Monitoring in Cancer Vaccine Clinical Trials: Critical Issues of Functional Flow Cytometry-Based Assays

    PubMed Central

    Urbani, Francesca; Proietti, Enrico

    2013-01-01

    The development of immune monitoring assays is essential to determine the immune responses against tumor-specific antigens (TSAs) and tumor-associated antigens (TAAs) and their possible correlation with clinical outcome in cancer patients receiving immunotherapies. Despite the wide range of techniques used, to date these assays have not shown consistent results among clinical trials and failed to define surrogate markers of clinical efficacy to antitumor vaccines. Multiparameter flow cytometry- (FCM-) based assays combining different phenotypic and functional markers have been developed in the past decade for informative and longitudinal analysis of polyfunctional T-cells. These technologies were designed to address the complexity and functional heterogeneity of cancer biology and cellular immunity and to define biomarkers predicting clinical response to anticancer treatment. So far, there is still a lack of standardization of some of these immunological tests. The aim of this review is to overview the latest technologies for immune monitoring and to highlight critical steps involved in some of the FCM-based cellular immune assays. In particular, our laboratory is focused on melanoma vaccine research and thus our main goal was the validation of a functional multiparameter test (FMT) combining different functional and lineage markers to be applied in clinical trials involving patients with melanoma. PMID:24195078

  3. A Flow Cytometric Clonogenic Assay Reveals the Single-Cell Potency of Doxorubicin.

    PubMed

    Maass, Katie F; Kulkarni, Chethana; Quadir, Mohiuddin A; Hammond, Paula T; Betts, Alison M; Wittrup, Karl Dane

    2015-12-01

    Standard cell proliferation assays use bulk media drug concentration to ascertain the potency of chemotherapeutic drugs; however, the relevant quantity is clearly the amount of drug actually taken up by the cell. To address this discrepancy, we have developed a flow cytometric clonogenic assay to correlate the amount of drug in a single cell with the cell's ability to proliferate using a cell tracing dye and doxorubicin, a naturally fluorescent chemotherapeutic drug. By varying doxorubicin concentration in the media, length of treatment time, and treatment with verapamil, an efflux pump inhibitor, we introduced 10(5) -10(10) doxorubicin molecules per cell; then used a dye-dilution assay to simultaneously assess the number of cell divisions. We find that a cell's ability to proliferate is a surprisingly conserved function of the number of intracellular doxorubicin molecules, resulting in single-cell IC50 values of 4-12 million intracellular doxorubicin molecules. The developed assay is a straightforward method for understanding a drug's single-cell potency and can be used for any fluorescent or fluorescently labeled drug, including nanoparticles or antibody-drug conjugates.

  4. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.

    PubMed

    DeVries, Levi; Lagor, Francis D; Lei, Hong; Tan, Xiaobo; Paley, Derek A

    2015-03-25

    Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure approximate pressure gradients, whereas superficial neuromasts measure local flow velocities. By employing an artificial lateral line, the performance of underwater sensing and navigation strategies is improved in dark, cluttered, or murky environments where traditional sensing modalities may be hindered. This paper presents estimation and control strategies enabling an airfoil-shaped unmanned underwater vehicle to assimilate measurements from a bio-inspired, multi-modal artificial lateral line and estimate flow properties for feedback control. We utilize potential flow theory to model the fluid flow past a foil in a uniform flow and in the presence of an upstream obstacle. We derive theoretically justified nonlinear estimation strategies to estimate the free stream flowspeed, angle of attack, and the relative position of an upstream obstacle. The feedback control strategy uses the estimated flow properties to execute bio-inspired behaviors including rheotaxis (the tendency of fish to orient upstream) and station-holding (the tendency of fish to position behind an upstream obstacle). A robotic prototype outfitted with a multi-modal artificial lateral line composed of ionic polymer metal composite and embedded pressure sensors experimentally demonstrates the distributed flow sensing and closed-loop control strategies.

  5. High Throughput Flow Cytometry Bead-based Multiplex Assay for Identification of Rho GTPase Inhibitors

    PubMed Central

    Surviladze, Zurab; Young, Susan M; Sklar, Larry A

    2015-01-01

    Summary Rho family GTPases and their effector proteins regulate a wide range of cell signaling pathways. In normal physiological conditions their activity is tightly controlled and it is not surprising that their aberrant activation contributes to tumorigenesis or other diseases. For this reason, the identification of small, cell permeable molecules capable of inhibition of Rho GTPases can be extraordinarily useful, particularly if they are specific and act reversibly. Herein we describe a flow cytometric assay, which allows us to measure the activity of six small GTPases simultaneously. GST-tagged small GTPases are bound to six glutathione bead sets each set having a different intensity of red fluorescence at a fixed wavelength. The coated bead sets were washed, combined, and dispensed into 384-well plates with test compounds, and fluorescent-GTP binding was used as the read-out. This multiplex bead-based assay was successfully used for to identify both general and selective inhibitors of Rho family GTPases. PMID:22144280

  6. Lateral flow immunoassay with upconverting nanoparticle-based detection for indirect measurement of interferon response by the level of MxA.

    PubMed

    Juntunen, Etvi; Salminen, Teppo; Talha, Sheikh M; Martiskainen, Iida; Soukka, Tero; Pettersson, Kim; Waris, Matti

    2017-04-01

    Myxovirus resistance protein A (MxA) is a biomarker of interferon-induced gene expression state involved in many viral infections and some autoimmune disorders. It has a variety of potential utilities in clinical diagnostics, including distinguishing between bacterial and viral infections. Currently, MxA-assays are used for monitoring of IFN-β therapy in multiple sclerosis (MS) patients. As a proof-of-concept for rapid quantitative measurement of interferon response, a lateral flow immunoassay (LFIA) with upconverting nanoparticle (UCNP) reporters was developed and evaluated with clinical whole blood samples to assess the potential for a rapid and user-friendly quantitative assay for MxA, since the currently available rapid test for MxA (FebriDX) produces only qualitative result. The high detection sensitivity enabled by the UCNP reporter technology allowed the sample pre-treatment with dilution of whole blood into lysis buffer at a detectable analyte concentration. The assay can be done within 2 hr and the results correlate with the reference MxA-ELISA, which requires an overnight incubation. With 36 samples, R(2) for linear regression was 0.86. The assay detected 96% of the IFN-β responders with 89% specificity using a cut-off level of 100 μg/L for an elevated MxA-concentration. J. Med. Virol. 89:598-605, 2017. © 2016 Wiley Periodicals, Inc.

  7. Functional assay of antiplatelet drugs based on margination of platelets in flowing blood

    PubMed Central

    Eichinger, Colin D.; Fogelson, Aaron L.; Hlady, Vladimir

    2016-01-01

    A novel functional assay of antiplatelet drug efficacy was designed by utilizing the phenomena of platelet margination in flowing blood and transient platelet contacts with surface-immobilized platelet agonists. Flow margination enhances transient contacts of platelets with the walls of flow chambers covered with surface-immobilized proteins. Depending on the type and the surface density of the immobilized agonists, such transient interactions could “prime” the marginated platelet subpopulation for enhanced activation and adhesion downstream. By creating an upstream surface patch with an immobilized platelet agonist, platelet flow margination was used to test how effective antiplatelet drugs are in suppressing downstream platelet activation and adhesion. The platelet adhesion downstream was measured by a so-called “capture” patch region close to the distal end of the flow chamber. Platelet adhesion downstream was found to be dose-dependent on the upstream surface coverage of the “priming” patch, with immobilized fibrinogen acting as a platelet agonist. Several antiplatelet agents (acetylsalicylic acid, eptifibatide, and tirofiban) were evaluated for their efficacy in attenuating downstream adhesion after upstream platelet priming. The activation of the platelet population was found to be dependent on both the extent of the upstream agonist stimulus and the antiplatelet drug concentration. Such a relationship provides an opportunity to measure the efficacy of specific antiplatelet agents against the type and concentration of upstream platelet agonists. PMID:27030476

  8. Detecting individual extracellular vesicles using a multicolor in situ proximity ligation assay with flow cytometric readout

    PubMed Central

    Löf, Liza; Ebai, Tonge; Dubois, Louise; Wik, Lotta; Ronquist, K. Göran; Nolander, Olivia; Lundin, Emma; Söderberg, Ola; Landegren, Ulf; Kamali-Moghaddam, Masood

    2016-01-01

    Flow cytometry is a powerful method for quantitative and qualitative analysis of individual cells. However, flow cytometric analysis of extracellular vesicles (EVs), and the proteins present on their surfaces has been hampered by the small size of the EVs – in particular for the smallest EVs, which can be as little as 40 nm in diameter, the limited number of antigens present, and their low refractive index. We addressed these limitations for detection and characterization of EV by flow cytometry through the use of multiplex and multicolor in situ proximity ligation assays (in situ PLA), allowing each detected EV to be easily recorded over background noise using a conventional flow cytometer. By targeting sets of proteins on the surface that are specific for distinct classes of EVs, the method allows for selective recognition of populations of EVs in samples containing more than one type of EVs. The method presented herein opens up for analyses of EVs using flow cytometry for their characterization and quantification. PMID:27681459

  9. Ambient temperature detection of PCR amplicons with a novel sequence-specific nucleic acid lateral flow biosensor.

    PubMed

    Ang, Geik Yong; Yu, Choo Yee; Yean, Chan Yean

    2012-01-01

    In the field of diagnostics, molecular amplification targeting unique genetic signature sequences has been widely used for rapid identification of infectious agents, which significantly aids physicians in determining the choice of treatment as well as providing important epidemiological data for surveillance and disease control assessment. We report the development of a rapid nucleic acid lateral flow biosensor (NALFB) in a dry-reagent strip format for the sequence-specific detection of single-stranded polymerase chain reaction (PCR) amplicons at ambient temperature (22-25°C). The NALFB was developed in combination with a linear-after-the-exponential PCR assay and the applicability of this biosensor was demonstrated through detection of the cholera toxin gene from diarrheal-causing toxigenic Vibrio cholerae. Amplification using the advanced asymmetric PCR boosts the production of fluorescein-labeled single-stranded amplicons, allowing capture probes immobilized on the NALFB to hybridize specifically with complementary targets in situ on the strip. Subsequent visual formation of red lines is achieved through the binding of conjugated gold nanoparticles to the fluorescein label of the captured amplicons. The visual detection limit observed with synthetic target DNA was 0.3 ng and 1 pg with pure genomic DNA. Evaluation of the NALFB with 164 strains of V. cholerae and non-V. cholerae bacteria recorded 100% for both sensitivity and specificity. The whole procedure of the low-cost NALFB, which is performed at ambient temperature, eliminates the need for preheated buffers or additional equipment, greatly simplifying the protocol for sequence-specific PCR amplicon analysis.

  10. Development and initial evaluation of a lateral flow dipstick test for antigen detection of Entamoeba histolytica in stool sample.

    PubMed

    Saidin, Syazwan; Yunus, Muhammad Hafiznur; Othman, Nurulhasanah; Lim, Yvonne Ai-Lian; Mohamed, Zeehaida; Zakaria, Nik Zairi; Noordin, Rahmah

    2017-03-24

    Entamoeba histolytica infection remains a public health concern in developing countries. Early diagnosis of amoebiasis can avoid disease complications, thus this study was aimed at developing a test that can rapidly detect the parasite antigens in stool samples. Rabbits were individually immunized with recombinant pyruvate phosphate dikinase (rPPDK) and E. histolytica excretory-secretory antigens to produce polyclonal antibodies. A rapid dipstick test was produced using anti-rPPDK PAb lined on the dipstick as capture reagent and anti-EhESA PAb conjugated to colloidal gold as the detector reagent. Using E. histolytica-spiked in stool sample of a healthy individual, the detection limit of the dipstick test was found to be 1000 cells ml(-1). Meanwhile when rPPDK was spiked in the stool sample, the minimum concentration detected by the dipstick test was 0.1 μg ml(-1). The performances of the dipstick, commercial Techlab E. histolytica II enzyme-linked immunosorbent assays (ELISA) and real-time PCR were compared using 70 stool samples from patients infected with Entamoeba species (n = 45) and other intestinal pathogens (n = 25). When compared to real-time PCR, the diagnostic sensitivity of the dipstick for detection of E. histolytica was 65.4% (n = 17/26); while the diagnostic specificity when tested with stool samples containing other intestinal pathogens was 92% (23/25). In contrast, Techlab E. histolytica II ELISA detected 19.2% (5/26) of the E. histolytica-positive samples as compared to real-time PCR. The lateral flow dipstick test produced in this study enabled rapid detection of E. histolytica, thus it showed good potential to be further developed into a diagnostic tool for intestinal amoebiasis.

  11. Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X.

    PubMed

    Safenkova, Irina; Zherdev, Anatoly; Dzantiev, Boris

    2012-06-01

    Key factors influencing the analyte detection limit of the sandwich immunochromatographic assay (ICA), namely, the size of gold nanoparticles, the antibody concentration, the conjugation pH, and characteristics of membranes, are discussed. The impacts of these factors were quantitatively characterized and compared for the first time using the same antigen (potato virus X). The antibody-colloidal gold conjugates synthesized at pH 9.0-9.5 (the pH was examined in the range from 7.5 to 10.0) and at an antibody concentration of 15 μg/mL (the concentration was tested from 10 to 100 μg/mL) demonstrated maximum binding with the analyte. The relationship between the size of gold nanoparticles and the ICA detection limit was determined. The detection limit decreases from 80 to 3 ng/mL (for antibodies with K (D) = 1.0 × 10(-9) M, data were obtained using a BIAcore X instrument) for a series of particles with a diameter from 6.4 to 33.4 nm (electron microscopy and dynamic light scattering data). In the case of larger particles (52 nm in diameter), the detection limit increases and reaches 9 ng/mL. A 10 mM phosphate buffer, pH 8, and a 50 mM phosphate buffer, pH 7, were the conditions of choice for the deposition of reactants. Taking into account these facts, we developed a lateral-flow test system for the rapid (10 min) detection of potato virus X in plant leaves. The ICA provided a visual detection limit of 3 ng/mL. In the case of the instrumental processing, potato virus X can be determined in the concentration range from 3 to 300 ng/mL with a detection limit 2 ng/mL.

  12. Detection of single-nucleotide polymorphisms in Plasmodium falciparum by PCR primer extension and lateral flow immunoassay.

    PubMed

    Moers, A P H A; Hallett, R L; Burrow, R; Schallig, H D F H; Sutherland, C J; van Amerongen, A

    2015-01-01

    The resistance of Plasmodium falciparum to some antimalarial drugs is linked to single-nucleotide polymorphisms (SNPs). Currently, there are no methods for the identification of resistant parasites that are sufficiently simple, cheap, and fast enough to be performed at point-of-care, i.e., in local hospitals where drugs are prescribed. Primer extension methods (PEXT) were developed to identify 4 SNPs in P. falciparum positioned at amino acids 86, 184, and 1246 of the P. falciparum multidrug resistance 1 gene (pfmdr1) and amino acid 76 of the chloroquine resistance transporter gene (pfcrt). The PEXT products were visualized by a nucleic acid lateral flow immunoassay (NALFIA) with carbon nanoparticles as the detection labels. PCR-PEXT-NALFIAs showed good correlation to the reference methods, quantitative PCR (qPCR) or direct amplicon sequence analysis, in an initial open-label evaluation with 17 field samples. The tests were further evaluated in a blind study design in a set of 150 patient isolates. High specificities of 98 to 100% were found for all 4 PCR-PEXT genotyping assays. The sensitivities ranged from 75% to 100% when all PEXT-positive tests were considered. A number of samples with a low parasite density were successfully characterized by the reference methods but failed to generate a result in the PCR-PEXT-NALFIA, particularly those samples with microscopy-negative subpatent infections. This proof-of principle study validates the use of PCR-PEXT-NALFIA for the detection of resistance-associated mutations in P. falciparum, particularly for microscopy-positive infections. Although it requires a standard thermal cycler, the procedure is cheap and rapid and thus a potentially valuable tool for point-of-care detection in developing countries.

  13. Detection of Single-Nucleotide Polymorphisms in Plasmodium falciparum by PCR Primer Extension and Lateral Flow Immunoassay

    PubMed Central

    Moers, A. P. H. A.; Hallett, R. L.; Burrow, R.; Schallig, H. D. F. H.; Sutherland, C. J.

    2014-01-01

    The resistance of Plasmodium falciparum to some antimalarial drugs is linked to single-nucleotide polymorphisms (SNPs). Currently, there are no methods for the identification of resistant parasites that are sufficiently simple, cheap, and fast enough to be performed at point-of-care, i.e., in local hospitals where drugs are prescribed. Primer extension methods (PEXT) were developed to identify 4 SNPs in P. falciparum positioned at amino acids 86, 184, and 1246 of the P. falciparum multidrug resistance 1 gene (pfmdr1) and amino acid 76 of the chloroquine resistance transporter gene (pfcrt). The PEXT products were visualized by a nucleic acid lateral flow immunoassay (NALFIA) with carbon nanoparticles as the detection labels. PCR-PEXT-NALFIAs showed good correlation to the reference methods, quantitative PCR (qPCR) or direct amplicon sequence analysis, in an initial open-label evaluation with 17 field samples. The tests were further evaluated in a blind study design in a set of 150 patient isolates. High specificities of 98 to 100% were found for all 4 PCR-PEXT genotyping assays. The sensitivities ranged from 75% to 100% when all PEXT-positive tests were considered. A number of samples with a low parasite density were successfully characterized by the reference methods but failed to generate a result in the PCR-PEXT-NALFIA, particularly those samples with microscopy-negative subpatent infections. This proof-of principle study validates the use of PCR-PEXT-NALFIA for the detection of resistance-associated mutations in P. falciparum, particularly for microscopy-positive infections. Although it requires a standard thermal cycler, the procedure is cheap and rapid and thus a potentially valuable tool for point-of-care detection in developing countries. PMID:25367901

  14. Effects of different extraction buffers on peanut protein detectability and lateral flow device (LFD) performance.

    PubMed

    Rudolf, J; Ansari, P; Kern, C; Ludwig, T; Baumgartner, S

    2012-01-01

    The accidental uptake of peanuts can cause severe health reactions in allergic individuals. Reliable determination of traces of peanuts in food products is required to support correct labelling and therefore minimise consumers' risk. The immunoanalytical detectability of potentially allergenic peanut proteins is dependent on previous heat treatment, the extraction capacity of the applied buffer and the specificity of the antibody. In this study a lateral flow device (LFD) for the detection of peanut protein was developed and the capacity of 30 different buffers to extract proteins from mildly and strongly roasted peanut samples as well as their influence on the test strip performance were investigated. Most of the tested buffers showed good extraction capacity for putative Ara h 1 from mildly roasted peanuts. Protein extraction from dark-roasted samples required denaturing additives, which were proven to be incompatible with LFD performance. High-pH buffers increased the protein yield but inhibited signal generation on the test strip. Overall, the best results were achieved using neutral phosphate buffers but equal detectability of differently altered proteins due to food processing cannot be assured yet for immunoanalytical methods.

  15. Signal-Amplified Lateral Flow Test Strip for Visual Detection of Cu2+

    PubMed Central

    Xue, Juanjuan; Dong, Jinbo; Cai, Jia; Hua, Xiude; Wang, Minghua; Zhang, Cunzheng; Liu, Fengquan

    2017-01-01

    A signal-amplified lateral flow test strip (SA-LFTS) for the detection of Cu2+ in aqueous solution was constructed based on Cu+-catalyzed click chemistry and hybridization of single-stranded DNA (ssDNA). Alkyne and azide modified ssDNA acted as specific elements for Cu2+ recognition, and a chemical ligation product formed through Cu+-catalyzed alkyne–azide cycloaddition. Hybridization of ssDNA-labeled gold nanoparticles resulted in high sensitivity, and the output signal could be observed directly by the naked eye. Using the developed SA-LFTS under optimal conditions, Cu2+ could be detected rapidly with limit of detections of 5 nM and 4.2 nM by visual observation and quantitative analysis, respectively. The sensitivity (i.e. the visual limit of detection) of the SA-LFTS was 80-times higher than that of traditional LFTS. The SA-LFTS was applied to the determination of Cu2+ in municipal water and river water samples with the results showing good recovery and accuracy. The developed test strip is promising for point-of-care applications and detection of Cu2+ in the field. PMID:28072878

  16. Development of a Lateral Flow Immunoassay for the Rapid Diagnosis of Invasive Candidiasis

    PubMed Central

    He, Zheng-Xin; Shi, Lan-Chun; Ran, Xiang-Yang; Li, Wei; Wang, Xian-Ling; Wang, Fu-Kun

    2016-01-01

    Early and accurate diagnosis of invasive candidiasis (IC) is very important. In this study, a lateral flow immunoassay (LFIA) was developed to detect antibody against Candida albicans enolase (Eno). Colloidal gold particle labeled mouse anti human IgG (1.0 mg/L) was used as the detector reagent. Recombinant enolase (rEno, 1.0 mg/L) and goat anti IgG (1.0 mg/L) were immobilized in test and control lines, respectively, of a nitrocellulose membrane, acting as the capture reagents. The LFIA was used to detect anti Eno in 38 sera from clinically proven IC patients, as well as in 50 healthy control subjects. Compared with an indirect ELISA designed as a reference test, the specificity and sensitivity of the LFIA were 98.2 and 84.8%, respectively. Excellent agreement between the results obtained by ELISA and the LFIA (κ = 0.851) was observed in this study. In addition, the agreement between the blood culture results and LFIA test is strong (κ = 0.658). The data presented in the study indicate that the LFIA test is a suitable tool for the serological surveillance of IC in the field or in poorly equipped laboratories. PMID:27679622

  17. Development of a Lateral Flow Immunoassay for the Rapid Diagnosis of Invasive Candidiasis.

    PubMed

    He, Zheng-Xin; Shi, Lan-Chun; Ran, Xiang-Yang; Li, Wei; Wang, Xian-Ling; Wang, Fu-Kun

    2016-01-01

    Early and accurate diagnosis of invasive candidiasis (IC) is very important. In this study, a lateral flow immunoassay (LFIA) was developed to detect antibody against Candida albicans enolase (Eno). Colloidal gold particle labeled mouse anti human IgG (1.0 mg/L) was used as the detector reagent. Recombinant enolase (rEno, 1.0 mg/L) and goat anti IgG (1.0 mg/L) were immobilized in test and control lines, respectively, of a nitrocellulose membrane, acting as the capture reagents. The LFIA was used to detect anti Eno in 38 sera from clinically proven IC patients, as well as in 50 healthy control subjects. Compared with an indirect ELISA designed as a reference test, the specificity and sensitivity of the LFIA were 98.2 and 84.8%, respectively. Excellent agreement between the results obtained by ELISA and the LFIA (κ = 0.851) was observed in this study. In addition, the agreement between the blood culture results and LFIA test is strong (κ = 0.658). The data presented in the study indicate that the LFIA test is a suitable tool for the serological surveillance of IC in the field or in poorly equipped laboratories.

  18. Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin.

    PubMed

    Qu, Huihua; Zhang, Yue; Qu, Baoping; Kong, Hui; Qin, Gaofeng; Liu, Shuchen; Cheng, Jinjun; Wang, Qingguo; Zhao, Yan

    2016-07-15

    In this study, a rapid (within 10min) quantitative lateral-flow immunoassay using a quantum dots (QDs)-antibody probe was developed for the analysis of puerarin (PUE) in water and biological samples. The competitive immunoassay was based on anti-PUE monoclonal antibody conjugated with QDs (detection reagent). Secondary antibody was immobilized on one end of a nitrocellulose membrane (control line) and PUE-bovine serum albumin conjugate was immobilized on the other end (test line). In the quantitative experiment, the detection results were scanned using a membrane strip reader and a detection curve (regression equation: y=-0.11ln(x)+0.979, R(2)=0.9816) representing the averages of the scanned data was obtained. This curve was linear from 1 to 10μg/mL. The IC50 value was 75.58ng/mL and the qualitative detection limit of PUE was 5.8ng/mL. The recovery of PUE added to phosphate-buffered saline and biological samples was in the range of 97.38-116.56%. To our knowledge, this is the first report of the quantitative detection of a natural product by QDs-based immunochromatography, which represents a powerful tool for rapidly screening PUE in plant materials and other biological samples.

  19. Development of a Rainbow Lateral Flow Immunoassay for the Simultaneous Detection of Four Mycotoxins.

    PubMed

    Foubert, Astrid; Beloglazova, Natalia V; Gordienko, Anna; Tessier, Mickael D; Drijvers, Emile; Hens, Zeger; De Saeger, Sarah

    2016-12-12

    A multiplex lateral flow immunoassay (LFIA) for the determination of the mycotoxins deoxynivalenol, zearalenone, and T2/HT2-toxin in barley was developed with luminescent quantum dots (QDs) as label. The synthesized QDs were hydrophilized by two strategies, that is, coating with an amphiphilic polymer or silica. The water-soluble QDs were compared with regard to their bioconjugation with monoclonal antibody (mAb) and were tested on a LFIA. Silica-coated QDs that contained epoxy groups were most promising. Therefore, green, orange, and red epoxy-functionalized silica-coated QDs were conjugated with anti-ZEN, anti-DON, and anti-T2 mAb, respectively. The LFIA was developed in accordance with the European Commission legal limits with cutoff limits of 1000, 80, and 80 μg/kg for deoxynivalenol, zearalenone, and T2/HT2-toxin, respectively. The LFIA gave a fast result (15 min) with a low false-negative rate (<5%), and the results were easy to interpret without any sophisticated equipment.

  20. Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement.

    PubMed

    Anfossi, L; Di Nardo, F; Giovannoli, C; Passini, C; Baggiani, C

    2013-12-01

    Silver nucleation on gold has been exploited for signal amplification and has found application in several qualitative and quantitative bio-sensing techniques, thanks to the simplicity of the method and the high sensitivity achieved. Very recently, this technique has been tentatively applied to improve the performance of gold-based immunoassays. In this work, the exploitation of the signal amplification due to silver deposition on gold nanoparticles has been first applied to a competitive lateral flow immunoassay (LFIA). The signal enhancement due to silver allowed us to strongly reduce the amount of the competitor and of specific antibodies employed to build an LF device for measuring ochratoxin A (OTA), thus permitting the attainment of a highly sensitive assessment of OTA contamination, with a sensitivity gain of more than 10-fold compared to the gold-based LFIA that used the same immunoreagents and to all previously reported LFIA for measuring OTA. In addition, a less sensitive "quantitative" LFIA could be established, by suitably tuning competitor and antibody amounts, which was characterized by reproducible and accurate OTA determinations (RSD% 6-12%, recovery% 82-117%). The quantitative system allowed a reliable OTA quantification in wines and grape musts at the microgram per liter level requested by the European legislation, as demonstrated by a highly results obtained through the quantitative silver-enhanced LFIA and a reference HPLC-FLD on 30 samples.

  1. Development of a Smartphone-based reading system for lateral flow immunoassay.

    PubMed

    Lee, Sangdae; Kim, Giyoung; Moon, Jihea

    2014-11-01

    This study was conducted to develop and evaluate the performance of the Smartphone-based reading system for the lateral flow immunoassay (LFIA). Smartphone-based reading system consists of a Samsung Galaxy S2 Smartphone, Smartphone application, and a LFIA reader. LFIA reader is composed of the close-up lens with a focal length up to 30 mm, white LED light, lithium polymer battery, and main body. The Smartphone application for image acquisition and data analysis was developed on the Android platform. The standard curve was obtained by plotting the measured P(T)/P(c) or A(T)/A(c) ratio versus Salmonella standard concentration. The mean, standard deviation (SD), recovery, and relative standard deviation (RSD) were also calculated using additional experimental results. These data were compared with that obtained from the benchtop LFIA reader. The LOD in both systems was observed with 10(6) CFU/mL. The results show high accuracy and good reproducibility with a RSD less than 10% in the range of 10(6) to 10(9) CFU/mL. Due to the simple structure, good sensitivity, and high accuracy of the Smartphone-based reading system, this system can be substituted for the benchtop LFIA reader for point-of-care medical diagnostics.

  2. A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay.

    PubMed

    Shi, Lei; Wu, Feng; Wen, Yiming; Zhao, Fang; Xiang, Junjian; Ma, Lan

    2015-01-01

    A novel strip test system combining immunomagnetic separation with lateral flow immunoassay (LFIA) was established for the accurate detection of Listeria monocytogenes. In this system, a pair of matched monoclonal antibodies was used to construct a sandwich immunoassay, in which superparamagnetic particles were coupled with one of the antibodies as a labeled antibody to capture the target bacteria, while the other antibody was immobilized on the detection zone. After a 20-min reaction, the strips were analyzed by a novel instrument which could detect the magnetic signal of the immunocomplex in a magnetic field. Sensitivity evaluation showed that the limit of detection (LOD) of the superparamagnetic LFIA system for L. monocytogenes was 10(4) CFU/mL, which was at least one log lower than conventional LFIA. No cross-reaction was observed when Salmonella, Escherichia coli O157:H7, or three types of harmless Listeria strains were tested. Further evaluation with actual food samples indicated that the superparamagnetic LFIA system showed 100 % concordance with real-time PCR. Therefore, this novel superparamagnetic LFIA system could be used as a rapid, sensitive, and specific method for the detection of L. monocytogenes.

  3. Dynamic topography, gravity and the role of lateral viscosity variations from inversion of global mantle flow

    NASA Astrophysics Data System (ADS)

    Yang, Ting; Gurnis, Michael

    2016-11-01

    Lateral viscosity variations (LVVs) in the mantle influence geodynamic processes and their surface expressions. With the observed long-wavelength geoid, free-air anomaly, gravity gradient in three directions and discrete, high-accuracy residual topography, we invert for depth- and temperature-dependent and tectonically regionalized mantle viscosity with a mantle flow model. The inversions suggest that long-wavelength gravitational and topographic signals are mainly controlled by the radial viscosity profile; the pre-Cambrian lithosphere viscosity is slightly (˜ one order of magnitude) higher than that of oceanic and Phanerozoic lithosphere; plate margins are substantially weaker than plate interiors; and viscosity has only a weak apparent, dependence on temperature, suggesting either a balancing between factors or a smoothing of actual higher amplitude, but short wavelength, LVVs. The predicted large-scale lithospheric stress regime (compression or extension) is consistent with the world stress map (thrust or normal faulting). Both recent compiled high-accuracy residual topography and the predicted dynamic topography yield ˜1 km amplitude long-wavelength dynamic topography, inconsistent with recent studies suggesting amplitudes of ˜100 to ˜500 m. Such studies use a constant, positive admittance (transfer function between topography and gravity), in contrast to the evidence which shows that the earth has a spatially and wavelength-dependent admittance, with large, negative admittances between ˜4000 and ˜104 km wavelengths.

  4. Single cell kinase signaling assay using pinched flow coupled droplet microfluidics.

    PubMed

    Ramji, Ramesh; Wang, Ming; Bhagat, Ali Asgar S; Tan Shao Weng, Daniel; Thakor, Nitish V; Teck Lim, Chwee; Chen, Chia-Hung

    2014-05-01

    Droplet-based microfluidics has shown potential in high throughput single cell assays by encapsulating individual cells in water-in-oil emulsions. Ordering cells in a micro-channel is necessary to encapsulate individual cells into droplets further enhancing the assay efficiency. This is typically limited due to the difficulty of preparing high-density cell solutions and maintaining them without cell aggregation in long channels (>5 cm). In this study, we developed a short pinched flow channel (5 mm) to separate cell aggregates and to form a uniform cell distribution in a droplet-generating platform that encapsulated single cells with >55% encapsulation efficiency beating Poisson encapsulation statistics. Using this platform and commercially available Sox substrates (8-hydroxy-5-(N,N-dimethylsulfonamido)-2-methylquinoline), we have demonstrated a high throughput dynamic single cell signaling assay to measure the activity of receptor tyrosine kinases (RTKs) in lung cancer cells triggered by cell surface ligand binding. The phosphorylation of the substrates resulted in fluorescent emission, showing a sigmoidal increase over a 12 h period. The result exhibited a heterogeneous signaling rate in individual cells and showed various levels of drug resistance when treated with the tyrosine kinase inhibitor, gefitinib.

  5. Early events in macrophage killing of Aspergillus fumigatus conidia: new flow cytometric viability assay.

    PubMed

    Marr, K A; Koudadoust, M; Black, M; Balajee, S A

    2001-11-01

    Detailed investigations of macrophage phagocytosis and killing of Aspergillus fumigatus conidia have been limited by technical difficulties in quantifying fungal uptake and viability. In order to study early events in cell pathogen ingestion and killing, we developed a new flow cytometry assay that utilizes the fungus-specific viability dye FUN-1. Metabolically active A. fumigatus conidia accumulate orange fluorescence in vacuoles, while dormant or dead conidia stain green. After incubation within THP-1 cells, recovered conidia are costained with propidium iodide (PI) to discriminate between dormant and dead cells. Flow cytometric measurements of FUN-1 metabolism and PI uptake provide indicators of conidial viability, dormancy, and death. Conidial phagocytosis and killing are also assessed by measurement of green and orange FUN-1 fluorescence within the THP-1 cell population. Compared to previously described methods, this assay has less error introduced by membrane permeability changes and serial dilution of filamentous fungal forms. Results suggest that the THP-1 cells kill conidia rapidly (within 6 h) after exposure. Conidia that are preexposed to human serum are ingested and killed more quickly than are nonopsonized conidia.

  6. Bead-based assays for biodetection: from flow-cytometry to microfluidics

    NASA Astrophysics Data System (ADS)

    Ozanich, Richard M., Jr.; Antolick, Kathryn; Bruckner-Lea, Cynthia J.; Bunch, Kyle J.; Dockendorff, Brian P.; Grate, Jay W.; Nash, Michael A.; Tyler, Abby; Warner, Cynthia L.; Warner, Marvin G.

    2009-05-01

    The potential for the use of biological agents by terrorists is a real threat. Two approaches for antibody-based detection of biological species are described in this paper: 1) The use of microbead arrays for multiplexed flow cytometry detection of cytokines and botulinum neurotoxin simulant, and 2) a microfluidic platform for capture and separation of different size superparamagnetic nanoparticles followed by on-chip fluorescence detection of the sandwich complex. These approaches both involve the use of automated fluidic systems for trapping antibody-functionalized microbeads, which allows sample, assay reagents, and wash solutions to be perfused over a micro-column of beads, resulting in faster and more sensitive immunoassays. The automated fluidic approach resulted in up to five-fold improvements in immunoassay sensitivity/speed as compared to identical immunoassays performed in a typical manual batch mode. A second approach for implementing multiplexed bead-based immunoassays without using flow cytometry detection is currently under development. The goal of the microfluidic-based approach is to achieve rapid (<20 minutes), multiplexed (>= 3 bioagents) detection using a simple and low-cost, integrated microfluidic/optical detection platform. Using fiber-optic guided laser-induced fluorescence, assay detection limits were shown to be in the 100's of picomolar range (10's of micrograms per liter) for botulinum neurotoxin simulant without any optimization of the microfluidic device or optical detection approach.

  7. Flow cytometric assay for analysis of cytotoxic effects of potential drugs on human peripheral blood leukocytes

    NASA Astrophysics Data System (ADS)

    Nieschke, Kathleen; Mittag, Anja; Golab, Karolina; Bocsi, Jozsef; Pierzchalski, Arkadiusz; Kamysz, Wojciech; Tarnok, Attila

    2014-03-01

    Toxicity test of new chemicals belongs to the first steps in the drug screening, using different cultured cell lines. However, primary human cells represent the human organism better than cultured tumor derived cell lines. We developed a very gentle toxicity assay for isolation and incubation of human peripheral blood leukocytes (PBL) and tested it using different bioactive oligopeptides (OP). Effects of different PBL isolation methods (red blood cell lysis; Histopaque isolation among others), different incubation tubes (e.g. FACS tubes), anticoagulants and blood sources on PBL viability were tested using propidium iodide-exclusion as viability measure (incubation time: 60 min, 36°C) and flow cytometry. Toxicity concentration and time-depended effects (10-60 min, 36 °C, 0-100 μg /ml of OP) on human PBL were analyzed. Erythrocyte lysis by hypotonic shock (dH2O) was the fastest PBL isolation method with highest viability (>85%) compared to NH4Cl-Lysis (49%). Density gradient centrifugation led to neutrophil granulocyte cell loss. Heparin anticoagulation resulted in higher viability than EDTA. Conical 1.5 mL and 2 mL micro-reaction tubes (both polypropylene (PP)) had the highest viability (99% and 97%) compared to other tubes, i.e. three types of 5.0 mL round-bottom tubes PP (opaque-60%), PP (blue-62%), Polystyrene (PS-64%). Viability of PBL did not differ between venous and capillary blood. A gentle reproducible preparation and analytical toxicity-assay for human PBL was developed and evaluated. Using our assay toxicity, time-course, dose-dependence and aggregate formation by OP could be clearly differentiated and quantified. This novel assay enables for rapid and cost effective multiparametric toxicological screening and pharmacological testing on primary human PBL and can be adapted to high-throughput-screening.°z

  8. Modeling performance of a two-dimensional capsule in a microchannel flow: long-term lateral migration.

    PubMed

    Li, Hua; Ma, Gang

    2010-08-01

    The long-term lateral migration of a two-dimensional elastic capsule in a microchannel is studied numerically in this paper. The numerical method combines a finite volume technique for solving the fluid problem with a front tracking technique for capturing and tracking the capsule membrane. The capsule is modeled as a liquid medium enclosed by a thin membrane which has linear elastic properties. The capsule, whose initial shape is circle and which starts from a near-center position or a near-wall position, experiences tilting and membrane tank-treading, and migrates laterally when moving along the surrounding flow. The lateral migration demonstrates the existence of lift effect of surrounding flow on moving capsule. Before capsule approaches to the microchannel centerline closely, lower membrane dilation modulus and lower viscosity ratio tend to result in faster lateral migration. The initial position also influences the performance behavior of capsule, despite the lateral migration of capsule is a quasisteady process. Small difference in capsule behavior when capsule is not near to the microchannel centerline might lead to significant difference in capsule behavior when capsule approaches closely to the centerline. When capsules are near to microchannel wall, the effect of the wall on capsule behavior might dominate, leading to relatively faster lateral migration. When capsules are not far from microchannel centerline, the effect of the nonlinearity of Poiseuille flow might dominate, resulting in relatively slower lateral movement. When capsules are located closely to the centerline, they behave differently, where the reason still remains poorly understood and it will be one of our future studies. The comparison between the capsule behavior from the present simulation and that by the migration law proposed by Coupier [Phys. Fluids 20, 111702 (2008)] shows that the behavioral agreement for near-wall capsule is better than that for near-center capsule, and the best

  9. CdSe/ZnS Quantum Dot-Labeled Lateral Flow Strips for Rapid and Quantitative Detection of Gastric Cancer Carbohydrate Antigen 72-4

    NASA Astrophysics Data System (ADS)

    Yan, Xinyu; Wang, Kan; Lu, Wenting; Qin, Weijian; Cui, Daxiang; He, Jinghua

    2016-03-01

    Carbohydrate antigen 72-4 (CA72-4) is an important biomarker associated closely with diagnosis and prognosis of early gastric cancer. How to realize quick, sensitive, specific, and quantitative detection of CA72-4 in clinical specimens has become a great requirement. Herein, we reported a CdSe/ZnS quantum dot-labeled lateral flow test strip combined with a charge-coupled device (CCD)-based reader was developed for rapid, sensitive, and quantitative detection of CA72-4. Two mouse monoclonal antibodies (mAbs) against CA72-4 were employed. One of them was coated as a test line, while another mAb was labeled with quantum dots and coated onto conjugate pad. The goat anti-mouse IgG was immobilized as a control line. After sample was added, a sandwich structure was formed with CA72-4 and these two mAbs. The fluorescent signal from quantum dots (QD)-labeled mAb in sandwich structure was related to the amount of detected CA72-4. A CCD-based reader was used to realize quantitative detection of CA72-4. Results showed that developed QD-labeled lateral flow strips to detect CA72-4 biomarker with the sensitivity of 2 IU/mL and 10 min detection time. One hundred sera samples from clinical patients with gastric cancer and healthy people were used to confirm specificity of this strip method; results showed that established strip method own 100 % reproducibility and 100 % specificity compared with Roche electrochemiluminescence assay results. In conclusion, CdSe/ZnS quantum dot-labeled lateral flow strips for detection of CA72-4 could realize rapid, sensitive, and specific detection of clinical samples and could own great potential in clinical translation in near future.

  10. High sensitive gold-nanoparticle based lateral flow Immunodevice for Cd2+ detection in drinking waters.

    PubMed

    López Marzo, Adaris M; Pons, Josefina; Blake, Diane A; Merkoçi, Arben

    2013-09-15

    In this work for first time a lateral flow immunosensor device (LFID) for Cd(2+) determination in drinking and tap waters using the Cd-EDTA-BSA-AuNP conjugate as signal producer tool is introduced. The principle of working is based on competitive reaction between the Cd-EDTA-BSA-AuNP conjugate deposited on the conjugation pad strip and the Cd-EDTA complex formed in the analysis sample for the same binding sites of the 2A81G5 monoclonal antibody, specific to Cd-EDTA but not Cd(2+) free, which is immobilized onto the test line. The device has a large response range within 0.4-2000ppb, being the linear response between 0.4 and 10ppb. The quantification and detection limits of 0.4 and 0.1ppb, respectively, represent the lowest ones reported so far for paper based metal sensors. The obtained detection limit is 50 times lower than the maximum contamination level required for drinking water. Here we also show a new option for increasing the sensibility in the LFDs with competitive format, through the decreasing in concentrations of the Cd-EDTA-BSA-AuNP conjugate deposited in the conjugation strip and the mAbs deposited in the test and control zones until to reach optimized concentrations. It is an important result take into account that the increase in sensibility is one of the challenges in the field of LFD sensors, where are focused many of the ongoing researches. In addition, a specificity study of the device for several metal interferences, where potential metal interferences are masked with the use of the EDTA and OVA optimized concentrations, is presented too.

  11. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow.

    PubMed

    Potter, Thomas L; Bosch, David D; Strickland, Timothy C

    2015-10-15

    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, and agrichemical and sediment losses from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess long-term environmental benefits of conservation tillage data may be needed that quantify both surface and subsurface contaminant fluxes. This study focused on the herbicide fluometuron (N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl]-urea) and its soil degradate DMF (N-methyl-N'-[3-(trifluoromethyl) phenyl]-urea). Both compounds are classed as "leachable". They were measured for 10 years in surface runoff and lateral subsurface flow from paired fields located on a hill slope in the Atlantic Coastal Plain region of the southeastern USA. One group of fields was conventionally tilled incorporating all crop residues into soil prior to planting. The second was strip tilled, a common conservation tillage practice. Seven fluometuron applications were made to cotton (Gossypium hirsutum) produced in rotation with peanut (Arachis hypogea). Combined fluometuron and DMF surface and subsurface losses from the conventionally tilled fields were equivalent to 1.2% and 0.13% of fluometuron applied and 0.31% and 0.32% from the strip tilled fields. Annual surface runoff losses were significantly greater from the conventionally tilled fields while the strip tilled fields had significantly greater annual subsurface losses. Results demonstrated that shifting from conventional to conservation tillage management of farm fields in this landscape will reduce surface runoff losses of herbicides like fluometuron but subsurface losses will likely increase. The same trends can be expected in landscapes with similar soil and hydrologic properties. This should be considered when planning implementation of programs that promote conservation tillage use.

  12. Improving lateral-flow immunoassay (LFIA) diagnostics via biomarker enrichment for mHealth.

    PubMed

    Lai, James J; Stayton, Patrick S

    2015-01-01

    Optical detection technologies based on mobile devices can be utilized to enable many mHealth applications, including a reader for lateral-flow immunoassay (LFIA). However, an intrinsic challenge associated with LFIA for clinical diagnostics is the limitation in sensitivity. Therefore, rapid and simple specimen processing strategies can directly enable more sensitive LFIA by purifying and concentrating biomarkers. Here, a binary reagent system is presented for concentrating analytes from a larger volume specimen to improve the malaria LFIA's limit of detection (LOD). The biomarker enrichment process utilizes temperature-responsive gold-streptavidin conjugates, biotinylated antibodies, and temperature-responsive magnetic nanoparticles. The temperature-responsive gold colloids were synthesized by modifying the citrate-stabilized gold colloids with a diblock copolymer, containing a thermally responsive poly(N-isopropylacrylamide) (pNIPAAm) segment and a gold-binding block composed of NIPAAm-co-N,N-dimethylaminoethylacrylamide. The gold-streptavidin conjugates were synthesized by conjugating temperature-responsive gold colloids with streptavidin via covalent linkages using carbodiimide chemistry chemistry. The gold conjugates formed half-sandwiches, gold labeled biomarker, by complexing with biotinylated antibodies that were bound to Plasmodium falciparum histidine-rich protein 2 (PfHRP2), a malaria antigen. When a thermal stimulus was applied in conjunction with a magnetic field, the half-sandwiches and temperature-responsive magnetic nanoparticles that were both decorated with pNIPAAm formed large aggregates that were efficiently magnetically separated from human plasma. The binary reagent system was applied to a large volume (500 μL) specimen for concentrating biomarker 50-fold into a small volume and applied directly to an off-the-shelf malaria LFIA to improve the signal-to-noise ratio.

  13. Rapid Molecular Detection of Multidrug-Resistant Tuberculosis by PCR-Nucleic Acid Lateral Flow Immunoassay.

    PubMed

    Kamphee, Hatairat; Chaiprasert, Angkana; Prammananan, Therdsak; Wiriyachaiporn, Natpapas; Kanchanatavee, Airin; Dharakul, Tararaj

    2015-01-01

    Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB) are limited by complexity and cost, hindering their widespread application. The objective of this proof of concept study was to develop a simple Nucleic Acid Lateral Flow (NALF) immunoassay as a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular detection of MDR-TB. The NALF device was designed using antibodies for the indirect detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot region of the rpoB gene (rifampicin resistance), while semi-nested PCR was optimized for the S315T mutation detection in the katG gene (isoniazid resistance). The amplification process additionally targeted a conserved region of the genes as Mycobacterium tuberculosis (Mtb) DNA control. The optimized conditions were validated with the H37Rv wild-type (WT) Mtb isolate and Mtb isolates with known mutations (MT) within the rpoB and katG genes. Results indicate the correct identification of WT (drug susceptible) and MT (drug resistant) Mtb isolates, with the least limit of detection (LOD) being 104 genomic copies per PCR reaction. NALF is a simple, rapid and low-cost device suitable for low resource settings where conventional PCR is already employed on a regular basis. Moreover, the use of antibody-based NALF to target primer-labels, without the requirement for DNA hybridization, renders the device generic, which could easily be adapted for the molecular diagnosis of other infectious and non-infectious diseases requiring nucleic acid detection.

  14. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid.

    PubMed

    Hansen, Jessica; Slechta, E Susan; Gates-Hollingsworth, Marcellene A; Neary, Brandon; Barker, Adam P; Bauman, Sean; Kozel, Thomas R; Hanson, Kimberly E

    2013-01-01

    Cryptococcosis is a systemic infection caused by the pathogenic yeasts Cryptococcus neoformans and C. gattii. Detection of cryptococcal capsular antigen (CrAg) in serum and cerebrospinal fluid (CSF) plays an important diagnostic role. We prospectively compared the new Immuno-Mycologics Inc. (IMMY) lateral flow assay (LFA) and enzyme immunoassay (EIA) to our current CrAg test (Premier EIA; Meridian Bioscience Inc.). Discordant samples were retested with the latex-Cryptococcus antigen test (IMMY) and using serotype-specific monoclonal antibodies (MAbs). A total of 589 serum and 411 CSF specimens were tested in parallel. Qualitative agreement across assays was 97.7%. In all, 56 (41 serum and 15 CSF) samples were positive and 921 (527 serum and 394 CSF) samples were negative by all three assays. The 23 discrepant specimens were all Meridian EIA negative. Of 23 discordant specimens, 20 (87.0%) were positive by both the IMMY LFA and EIA, 2 were LFA positive only, and 1 was EIA positive only. Eleven discrepant specimens had adequate volume for latex agglutination (LA) testing; 8 were LA positive, and 3 were LA negative. LA-negative samples (2 CSF samples and 1 serum) had low IMMY LFA/EIA titers (≤1:10). Serotype-specific MAb analysis of the LA-positive samples suggested that these specimens contained CrAg epitopes similar to those of serotype C strains. In conclusion, the IMMY assays showed excellent overall concordance with the Meridian EIA. Assay performance differences were related to issues of analytic sensitivity and possible serotype bias. Incomplete access to patient-level data combined with low specimen volumes limited our ability to fully resolve discrepant results.

  15. Extended Result Reading Window in Lateral Flow Tests Detecting Exposure to Onchocerca volvulus: A New Technology to Improve Epidemiological Surveillance Tools

    PubMed Central

    Golden, Allison; Steel, Cathy; Yokobe, Lindsay; Jackson, Emily; Barney, Rebecca; Kubofcik, Joseph; Peck, Roger; Unnasch, Thomas R.; Nutman, Thomas B.; de los Santos, Tala; Domingo, Gonzalo J.

    2013-01-01

    Onchocerciasis is a neglected tropical disease caused by infection with the parasite Onchocerca volvulus (Ov). An estimated 180 million people are at risk for Ov infection, and 37 million people are infected, mostly in Africa. A lateral flow-based assay to detect human IgG4 antibodies to the Ov-specific antigen Ov-16 was developed as a rapid tool to detect exposure to Ov. The test, when performed on 449 sera specimens from patients with microfiladermia and Ov-negative patients, has a sensitivity of 89.1% (95% confidence interval: 86.2%–92.0%), and specificity of 97% (95% confidence interval: 95.4%–98.6%). Because the intended use of the test is for surveillance, it is highly desirable to have a stable, long-lasting result. An extended read window is thus desirable for a high-volume, busy workflow and facilitates post-surveillance quality assurance. The main restriction on achieving an extended read window for this assay was the erythrocyte lysis that can alter the signal-to-noise ratio, especially in those with low IgG4 levels (weak positives). We describe a test housing that incorporates a user-independent feature driven by assay fluid and an expanding wick that detaches the blood separation membrane from the nitrocellulose used in the assay, but before hemolysis occurs. We demonstrated material functionality at extreme operational conditions (37°C, 80% relative humidity) and a read window of a minimum of 70 days. The fluid-driven assay device performs equally as well with whole blood as with plasma, as demonstrated with 100 spiked clinical specimens (with a correlation coefficient of 0.96). We show a novel, inexpensive, and simple approach to actuating the detachment of the blood separation membrane from the nitrocellulose test with no impact on the performance characteristics of the test. PMID:23935960

  16. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: toward multiple, parallel analyses.

    PubMed

    Sahore, Vishal; Fritsch, Ingrid

    2014-10-07

    A proof-of-concept superparamagnetic microbead-enzyme complex was integrated with microfluidics pumped by redox-magneto-hydrodynamics (MHD) to take advantage of the magnet (0.56 T) beneath the chip and the uniform flat flow profile, as a first step toward developing multiple, parallel chemical analyses on a chip without the need for independent channels. The superparamagnetic beads were derivatized with alkaline phosphatase (a common enzyme label for biochemical assays) and magnetically immobilized at three different locations on the chip with one directly on the path to the detector and the other two locations adjacent to, but off the path, by a distance >5 times the detector diameter. Electroactive p-aminophenol, enzymatically generated at the bead-enzyme complex from its electroinactive precursor p-aminophenyl phosphate in a solution containing a redox species [Ru(NH3)6](3+/2+) for pumping and Tris buffer, was transported by redox-MHD and detected with square wave voltammetry at a 312 μm diameter gold microdisk stationed 2 mm downstream from the bead-complex on the flow path. Oppositely biased pumping electrodes, consisting of 2.5 cm long gold bands and separated by 5.6 mm, flanked the active flow region containing the bead-enzyme complex and detection site. The signal from adjacent paths was only 20% of that for the direct path and ≤8% when pumping electrodes were inactive.

  17. A CCD-based reader combined with CdS quantum dot-labeled lateral flow strips for ultrasensitive quantitative detection of CagA

    NASA Astrophysics Data System (ADS)

    Gui, Chen; Wang, Kan; Li, Chao; Dai, Xuan; Cui, Daxiang

    2014-02-01

    Immunochromatographic assays are widely used to detect many analytes. CagA is proved to be associated closely with initiation of gastric carcinoma. Here, we reported that a charge-coupled device (CCD)-based test strip reader combined with CdS quantum dot-labeled lateral flow strips for quantitative detection of CagA was developed, which used 365-nm ultraviolet LED as the excitation light source, and captured the test strip images through an acquisition module. Then, the captured image was transferred to the computer and was processed by a software system. A revised weighted threshold histogram equalization (WTHE) image processing algorithm was applied to analyze the result. CdS quantum dot-labeled lateral flow strips for detection of CagA were prepared. One hundred sera samples from clinical patients with gastric cancer and healthy people were prepared for detection, which demonstrated that the device could realize rapid, stable, and point-of-care detection, with a sensitivity of 20 pg/mL.

  18. A fast and sensitive immunoassay of avian influenza virus based on label-free quantum dot probe and lateral flow test strip.

    PubMed

    Li, Xuepu; Lu, Donglian; Sheng, Zonghai; Chen, Kun; Guo, Xuebo; Jin, Meilin; Han, Heyou

    2012-10-15

    A novel fluorescence immunoassay method for fast and ultrasensitive detection of avian influenza virus (AIV) was developed. The immunoassay method which integrated lateral flow test strip technique with fluorescence immunoassay used the label-free and high luminescent quantum dots (QDs) as signal output. By the sandwich immunoreaction performed on lateral flow test strip, the gold nanoparticle (NP) labels were captured in the test zone and further dissolved to release a large number of gold ions as a signal transduction bridge that was detected by the QDs-based fluorescence quenching method. Under the optimal conditions, the relative fluorescence intensity of QDs was linear over the range of 0.27-12 ng mL(-1) AIV, and the limit of detection was estimated to be 0.09 ng mL(-1) which was 100-fold greater than enzyme-linked immunosorbent assay (ELISA). The sensitive and specific response was also coupled with high reproducibility in the proposed method. A series of six parallel measurements produced reproducible fluorescent signals with a relative standard deviation of 4.7%. The proposed method can be used to directly detect clinical sample without any pretreatment, and showed high efficiency (90.0%), sensitivity (100.0%) and specificity (88.2%) compared with virus isolation (gold method). The new method shows great promise for rapid, sensitive, and quantitative detection of AIV in-field or point-of-care diagnosis.

  19. FRET and Flow Cytometry Assays to Measure Proteopathic Seeding Activity in Biological Samples.

    PubMed

    Furman, Jennifer L; Diamond, Marc I

    2017-01-01

    Transcellular propagation of protein aggregates-or seeds-is increasingly implicated as a mechanism for disease progression in many neurodegenerative disorders, including Alzheimer's disease and the related tauopathies. While neuropathology generally originates in one discrete brain region, pathology progresses as disease severity advances, often along discrete neural networks. The stereotypical spread of tau pathology suggests that cell-to-cell transfer of toxic protein aggregates could underlie disease progression, and recent studies implicate seeding as a proximal marker of disease, as compared to standard histological and biochemical analyses. Commonly used metrics for protein aggregation detection, however, lack sensitivity, are not quantitative, and/or undergo subjective classification. Here, we describe a FRET and flow cytometry cell-based assay that allows for rapid and quantitative detection of protein aggregates from human and rodent biological specimens.

  20. Uncertainty Analysis of the Variable Parameter McCarthy-Muskingum (VPMM) Method with Presence of Lateral Flow

    NASA Astrophysics Data System (ADS)

    Yadav, B.; Bardossy, A.; Perumal, M.

    2014-12-01

    Uncertainty analysis of the estimate of a hydrological model is a required exercise for the risk management linked to the variable of interest. This study subjects the Variable Parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price (2013) to uncertainty analysis. The VPMM method has been developed based on the assumption that there exists no lateral flow in the river stretch where it is employed for routing. But in this study this method is applied for the study of flood wave movement in a 24.2 km stretch between Rottweil and Oberndorf of Neckar River in Germany in the presence of lateral inflow. The study also proposes a general procedure for simulating flood events with the consideration of lateral flow in the reach. The cross sectioned information of the considered river stretch is estimated by the Robust Parameter Estimation (ROPE) algorithm. ROPE algorithm is used to get the best performing parameters set of bed width (Trapezoidal section) and side slope. As the evaluation of VPMM is done with the help of Nash-Sutcliffe efficiency criterion, this study uses it as an objective function to check the performance of the method with different data sets obtained using the ROPE algorithm. The uncertainty associated with parameter K and due to the presence of lateral flow is checked by the Jackknife method. All the 26 flood events observed from the Neckar catchment from 1999 to 2004 have been used for the analysis of the VPMM method. When inflow and outflow hydrographs for lateral flow estimation are used, performance of the VPMM method as per N-S efficiency criterion can be up to 97.061 %. By the analysis of all 27 available flood events, a relationship between total rainfall and total loss is obtained, and the value of loss obtained from the developed relationship can be used to simulate outflow hydrograph with the maximum N-S efficiency of 93.812 %.

  1. Online assay of bone specific alkaline phosphatase with a flow injection-bead injection system.

    PubMed

    Hartwell, Supaporn Kradtap; Somprayoon, Duangporn; Kongtawelert, Prachya; Ongchai, Siriwan; Arppornchayanon, Olarn; Ganranoo, Lucksagoon; Lapanantnoppakhun, Somchai; Grudpan, Kate

    2007-09-26

    Alkaline phosphatase (ALP) has been used as one of the biomarkers for bone resorption and liver diseases. Normally, total alkaline phosphatase is quantified along with other symptoms to determine the releasing source of the alkaline phosphatase. A semi-automated flow injection-bead injection system was proposed to conveniently and selectively assay bone alkaline phosphatase (BALP) based on its specific binding to wheat germ coated beads. Amount of BALP in serum was determined from the intensity of the yellow product produced from bound BALP on the retained beads and its substrate pNPP. The used beads were discarded and the fresh ones were introduced for the next analysis. The reaction cell was designed to be opened and closed using a computer controlled solenoid valve for a precise incubation time. The performance of the proposed system was evaluated by using it to assay BALP in human serum. The results were compared to those obtained by using a commercial ELISA kit. The system is proposed to be an easy and cost effective system for quantification of BALP as an alternative to batch wise wheat germ specific binding technique.

  2. A novel quantitative kinase assay using bacterial surface display and flow cytometry.

    PubMed

    Henriques, Sónia Troeira; Thorstholm, Louise; Huang, Yen-Hua; Getz, Jennifer A; Daugherty, Patrick S; Craik, David J

    2013-01-01

    The inhibition of tyrosine kinases is a successful approach for the treatment of cancers and the discovery of kinase inhibitor drugs is the focus of numerous academic and pharmaceutical laboratories. With this goal in mind, several strategies have been developed to measure kinase activity and to screen novel tyrosine kinase inhibitors. Nevertheless, a general non-radioactive and inexpensive approach, easy to implement and adapt to a range of applications, is still missing. Herein, using Bcr-Abl tyrosine kinase, an oncogenic target and a model protein for cancer studies, we describe a novel cost-effective high-throughput screening kinase assay. In this approach, named the BacKin assay, substrates displayed on a Bacterial cell surface are incubated with Kinase and their phosphorylation is examined and quantified by flow cytometry. This approach has several advantages over existing approaches, as using bacteria (i.e. Escherichia coli) to display peptide substrates provides a self renewing solid support that does not require laborious chemical strategies. Here we show that the BacKin approach can be used for kinetic and mechanistic studies, as well as a platform to characterize and identify small-molecule or peptide-based kinase inhibitors with potential applications in drug development.

  3. Utility of a Lateral Flow Immunoassay (LFI) to Detect Burkholderia pseudomallei in Soil Samples

    PubMed Central

    Rongkard, Patpong; Hantrakun, Viriya; Dittrich, Sabine; Srilohasin, Prapaporn; Amornchai, Premjit; Langla, Sayan; Lim, Cherry; Day, Nicholas P. J.; AuCoin, David; Wuthiekanun, Vanaporn

    2016-01-01

    Background Culture is the gold standard for the detection of environmental B. pseudomallei. In general, soil specimens are cultured in enrichment broth for 2 days, and then the culture broth is streaked on an agar plate and incubated further for 7 days. However, identifying B. pseudomallei on the agar plates among other soil microbes requires expertise and experience. Here, we evaluate a lateral flow immunoassay (LFI) developed to detect B. pseudomallei capsular polysaccharide (CPS) in clinical samples as a tool to detect B. pseudomallei in environmental samples. Methodology/Principal Findings First, we determined the limit of detection (LOD) of LFI for enrichment broth of the soil specimens. Soil specimens (10 grams/specimen) culture negative for B. pseudomallei were spiked with B. pseudomallei ranging from 10 to 105 CFU, and incubated in 10 ml of enrichment broth in air at 40°C. Then, on day 2, 4 and 7 of incubation, 50 μL of the upper layer of the broth were tested on the LFI, and colony counts to determine quantity of B. pseudomallei in the broth were performed. We found that all five soil specimens inoculated at 10 CFU were negative by LFI on day 2, but four of those five specimens were LFI positive on day 7. The LOD of the LFI was estimated to be roughly 3.8x106 CFU/ml, and culture broth on day 7 was selected as the optimal sample for LFI testing. Second, we evaluated the utility of the LFI by testing 105 soil samples from Northeast Thailand. All samples were also tested by standard culture and quantitative PCR (qPCR) targeting orf2. Of 105 soil samples, 35 (33%) were LFI positive, 25 (24%) were culture positive for B. pseudomallei, and 79 (75%) were qPCR positive. Of 11 LFI positive but standard culture negative specimens, six were confirmed by having the enrichment broth on day 7 culture positive for B. pseudomallei, and an additional three by qPCR. The LFI had 97% (30/31) sensitivity to detect soil specimens culture positive for B. pseudomallei

  4. Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: From cyclic steps to humpback dunes

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Winsemann, Jutta

    2013-10-01

    The preservation of bedforms related to supercritical flows and hydraulic jumps is commonly considered to be rare in the geologic record, although these bedforms are known from a variety of depositional environments. This field-based study presents a detailed analysis of the sedimentary facies and stacking pattern of deposits of cyclic steps, chutes-and-pools, antidunes and humpback dunes from three-dimensional outcrops. The well exposed Middle Pleistocene successions from northern Germany comprise glacilacustrine ice-contact subaqueous fan and glacial lake-outburst flood deposits. The studied successions give new insights into the depositional architecture of bedforms related to supercritical flows and may serve as an analogue for other high-energy depositional environments such as fluvial settings, coarse-grained deltas or turbidite systems. Deposits of cyclic steps occur within the glacial lake-outburst flood succession and are characterised by lenticular scours infilled by gently to steeply dipping backsets. Cyclic steps formed due to acceleration and flow thinning when the glacial lake-outburst flood spilled over a push-moraine ridge. These bedforms are commonly laterally and vertically truncated and alternate with deposits of chutes-and-pools and antidunes. The subaqueous fan successions are dominated by laterally extensive sinusoidal waveforms, which are interpreted as deposits of aggrading stationary antidunes, which require quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by downflow divergent cross-stratification, displaying differentiation into topsets, foresets and bottomsets, and are interpreted as deposited at the transition from subcritical to supercritical flow conditions or vice versa. Gradual lateral and vertical transitions between humpback dunes and antidune deposits are very common. The absence of planar-parallel stratification in all studied successions

  5. Evaluation of a multi-endpoint assay in rats, combining the bone-marrow micronucleus test, the Comet assay and the flow-cytometric peripheral blood micronucleus test.

    PubMed

    Bowen, Damian E; Whitwell, James H; Lillford, Lucinda; Henderson, Debbie; Kidd, Darren; Mc Garry, Sarah; Pearce, Gareth; Beevers, Carol; Kirkland, David J

    2011-05-18

    With the publication of revised draft ICH guidelines (Draft ICH S2), there is scope and potential to establish a combined multi-end point in vivo assay to alleviate the need for multiple in vivo assays, thereby reducing time, cost and use of animals. Presented here are the results of an evaluation trial in which the bone-marrow and peripheral blood (via MicroFlow(®) flow cytometry) micronucleus tests (looking at potential chromosome breakage and whole chromosome loss) in developing erythrocytes or young reticulocytes were combined with the Comet assay (measuring DNA strand-breakage), in stomach, liver and blood lymphocytes. This allowed a variety of potential target tissues (site of contact, site of metabolism and peripheral distribution) to be assessed for DNA damage. This combination approach was performed with minimal changes to the standard and regulatory recommended sampling times for the stand-alone assays. A series of eight in vivo genotoxins (2-acetylaminofluorene, benzo[a]pyrene, carbendazim, cyclophosphamide, dimethylnitrosamine, ethyl methanesulfonate, ethyl nitrosourea and mitomycin C), which are known to act via different modes of action (direct- and indirect-acting clastogens, alkylating agents, gene mutagens, cross-linking and aneugenic compounds) were tested. Male rats were dosed at 0, 24 and 45 h, and bone marrow and peripheral blood (micronucleus endpoint), liver, whole blood and stomach (Comet endpoint) were sampled at three hours after the last dose. Comet and micronucleus responses were as expected based on available data for conventional (acute) stand-alone assays. All compounds were detected as genotoxic in at least one of the endpoints. The importance of evaluating both endpoints was highlighted by the uniquely positive responses for certain chemicals (benzo[a]pyrene and 2-acetylaminofluorene) with the Comet endpoint and certain other chemicals (carbendazim and mitomycin C) with the micronucleus endpoint. The data generated from these

  6. Au@Ag SERRS tags coupled to a lateral flow immunoassay for the sensitive detection of pneumolysin.

    PubMed

    Blanco-Covián, Lucía; Montes-García, Verónica; Girard, Alexandre; Fernández-Abedul, M Teresa; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Faulds, Karen; Graham, Duncan; Blanco-López, M Carmen

    2017-02-02

    Establishing a definitive diagnosis of pneumonia using conventional tests is difficult and expensive. Lateral flow immunoassays (LFIAs) are an advantageous point of care (POC) test option, but they have some limitations in terms of detection and quantification. In this work we have developed a lateral flow immunoassay for the ultrasensitive detection of penumolysin employing plasmonic Surface-Enhanced Resonance Raman Scattering (SERRS) tag as labelled probe. The combination of Au@Ag core-shell nanoparticles as plasmonic platform and Rhodamine B Isothiocyanate as Raman reporter has allowed us to fabricate a SERRS tag with high efficiency and reliability. The limit of detection of the SERRS-based LFIA was 1 pg mL(-1). This could be a strong foundation for a pneumonia diagnosis test based on pneumolysin detection.

  7. A low-cost flow cytometric assay for the detection and quantification of apoptosis using an anionic halogenated fluorescein dye.

    PubMed

    Meyer, Mervin; Essack, Magbubah; Kanyanda, Stonard; Rees, Jasper

    2008-09-01

    We describe here a technical improvement of an established colorimetric method used to detect and measure the occurrence of apoptosis in mammalian cells during in vitro cell culture. This assay uses an anionic halogenated fluorescein dye that is taken up by apoptotic cells at the stage of phosphatidylserine externalization. We demonstrate that apoptotic cells stained with this dye can be detected by flow cytometric analysis. Furthermore, we show that the modified method compares well with the standard annexin-V-based apoptosis assay and that it is significantly more cost-effective than the annexin-V assay.

  8. Development of a lateral flow immunoassay for rapid field detection of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae).

    PubMed

    Valles, Steven M; Strong, Charles A; Callcott, Anne-Marie A

    2016-07-01

    The red imported fire ant, Solenopsis invicta, is an aggressive, highly invasive pest ant species from South America that has been introduced into North America, Asia, and Australia. Quarantine efforts have been imposed in the USA to minimize further spread of the ant. To aid the quarantine efforts, there remains an acute need for a rapid, field portable method for the identification of these ants. In this report, we describe two novel monoclonal antibodies that specifically bind the S. invicta venom protein 2 produced by S. invicta. Using these monoclonal antibodies we developed a lateral flow immunoassay that provides a rapid and portable method for the identification of S. invicta ants. The lateral flow immunoassay was validated against purified S. invicta venom protein 2 and 33 unique ant species (representing 15 % of the total species and 42 % of the Myrmicinae genera found in Florida), and only S. invicta and the S. invicta/richteri hybrid produced a positive result. These monoclonal antibodies were selective to S. invicta venom protein 2 and did not bind to proteins from congeners (i.e., S. geminata or S. richteri) known to produce a S. invicta venom protein 2 ortholog. This S. invicta lateral flow immunoassay provides a new tool for regulatory agencies in the USA to enforce quarantine protocols and limit the spread of this invasive ant. Graphical Abstract Field method to detect and identify the red imported fire ant, Solenopsis invicta.

  9. Rapid Multiplexed Flow Cytometric Assay for Botulinum Neurotoxin Detection Using an Automated Fluidic Microbead-Trapping Flow Cell for Enhanced Sensitivity

    SciTech Connect

    Ozanich, Richard M.; Bruckner-Lea, Cindy J.; Warner, Marvin G.; Miller, Keith D.; Antolick, Kathryn C.; Marks, James D.; Lou, Jianlong; Grate, Jay W.

    2009-07-15

    A bead-based sandwich immunoassay for botulinum neurotoxin serotype A (BoNT/A) has been developed and demonstrated using a recombinant 50 kDa fragment (BoNT/A-HC-fragment) of the BoNT/A heavy chain (BoNT/A-HC) as a structurally valid simulant. Three different anti-BoNT/A antibodies were attached to three different fluorescent dye encoded flow cytometry beads for multiplexing. The assay was conducted in two formats: a manual microcentrifuge tube format and an automated fluidic system format. Flow cytometry detection was used for both formats. The fluidic system used a novel microbead-trapping flow cell to capture antibody-coupled beads with subsequent sequential perfusion of sample, wash, dye-labeled reporter antibody, and final wash solutions. After the reaction period, the beads were collected for analysis by flow cytometry. Sandwich assays performed on the fluidic system gave median fluorescence intensity signals on the flow cytometer that were 2-4 times higher than assays performed manually in the same amount of time. Limits of detection were estimated at 1 pM (~50 pg/mL for BoNT/A-HC-fragment) for the 15 minute fluidic assay.

  10. A summary of lateral-stability derivatives calculated for wing plan forms in supersonic flow

    NASA Technical Reports Server (NTRS)

    Jones, Arthur L; Alksne, Alberta

    1951-01-01

    A compilation of theoretical values of the lateral-stability derivatives for wings at supersonic speeds is presented in the form of design charts. The wing plan forms for which this compilation has been prepared include a rectangular, two trapezoidal, two triangular, a fully-tapered swept-back, a sweptback hexagonal, an unswept hexagonal, and a notched triangular plan form. A full set of results, that is, values for all nine of the lateral-stability derivatives for wings, was available for the first six of these plan forms only. The reasons for the incompleteness of the results available for other plan forms are discussed.

  11. Sound transmission loss through metamaterial plate with lateral local resonators in the presence of external mean flow.

    PubMed

    Wang, Ting; Sheng, Meiping; Qin, Qinghua

    2017-02-01

    In the context of sound incident upon a metamaterial plate, explicit formulas for sound transmission loss (STL) are derived in the presence of external mean flow. Metamaterial plate, consisting of homogeneous plate and lateral local resonators (LLRs), is homogenized by using effective medium method to obtain the effective mass density and facilitate the calculation of STL. Results show that (a) vigorously oscillating LLRs lead to higher STL compared with bare plate, (b) increasing Mach number of the external mean flow helps obtain higher STL below the coincidence frequency but decreases STL above the coincidence frequency due to the added mass effect of light fluid loading and aerodynamic damping effect, (c) the coincidence frequency shifts to higher frequency range for the refracted effect of the external mean flow. However, effects of the flow on STL within negative mass density range can be neglected because of the lateral local resonance occurring. Moreover, hysteretic damping from metamaterial can only smooth the transmission curves by lowering higher peaks and filling dips. Effects of incident angles on STL are also examined. It is demonstrated that increasing elevation angle can improve the sound insulation, while the azimuth angle does not.

  12. Prospective evaluation of a rapid nanoparticle-based lateral flow immunoassay (STic Expert(®) HIT) for the diagnosis of heparin-induced thrombocytopenia.

    PubMed

    Leroux, Dorothée; Hezard, Nathalie; Lebreton, Aurélien; Bauters, Anne; Suchon, Pierre; de Maistre, Emmanuel; Biron, Christine; Huisse, Marie-Genevieve; Ternisien, Catherine; Voisin, Sophie; Gruel, Yves; Pouplard, Claire

    2014-09-01

    A rapid lateral flow immunoassay (LFIA) (STic Expert(®) HIT), recently developed for the diagnosis of heparin-induced thrombocytopenia (HIT), was evaluated in a prospective multicentre cohort of 334 consecutive patients. The risk of HIT was estimated by the 4Ts score as low, intermediate and high in 28·7%, 61·7% and 9·6% of patients, respectively. Definite HIT was diagnosed in 40 patients (12·0%) with positive results on both enzyme-linked immunosorbent assay (Asserachrom(®) HPIA IgG) and serotonin release assay. The inter-reader reproducibility of results obtained was excellent (kappa ratio > 0·9). The negative predictive value of LFIA with plasma samples was 99·6% with a negative likelihood ratio (LR) of 0·03, and was comparable to those of the particle gel immunoassay (H/PF4-PaGIA(®) ) performed in 124 cases. Positive predictive value and positive LR were 44·4% and 5·87, respectively, and the results were similar for serum samples. The probability of HIT in intermediate risk patients decreased from 11·2% to 0·4% when the LFIA result was negative and increased to 42·5% when it was positive. In conclusion, the STic Expert(®) HIT combined with the 4Ts score is a reliable tool to rule out the diagnosis of HIT.

  13. A novel colloidal gold-based lateral flow immunoassay for rapid simultaneous detection of cyromazine and melamine in foods of animal origin.

    PubMed

    Le, Tao; Yan, Peifeng; Xu, Jian; Hao, Youjing

    2013-06-01

    A rapid and sensitive lateral flow immunoassay (LFIA) based on competitive format was developed and validated for simultaneous detection of cyromazine (CA) and melamine (MA) in foods of animal origin. With this method, the cut-off value for the two test lines were achieved at 25 ng/g, which was lower than the maximum residue levels (MRLs) established for CA and MA. At three fortified levels (50, 100, and 150 ng/g), the recoveries for CA and MA ranged from 73.9% to 104.2% with the relative standard deviation (RSD) less than 11.9%, based on within day and interday analysis. The lower detection limit for CA and MA in matrix sample were 0.22 ng/ml and 0.26 ng/ml, respectively, which were lower than those of published literatures. A parallel analysis of CA and MA in real samples conducted by HPLC showed comparable results to those obtained from LFIA. The results of LFIA were in good agreement with those of high performance liquid chromatography (HPLC) in the analysis of CA and MA in foods of animal origin, demonstrating the practical applicability of the developed assay in real samples. Overall, to our knowledge, this is the first report of quantitative or semi-quantitative simultaneous detection for CA and MA by immunochromatographic assay.

  14. Rapid diagnosis of Theileria annulata by recombinase polymerase amplification combined with a lateral flow strip (LF-RPA) in epidemic regions.

    PubMed

    Yin, Fangyuan; Liu, Junlong; Liu, Aihong; Li, Youquan; Luo, Jianxun; Guan, Guiquan; Yin, Hong

    2017-04-15

    Rapid and accurate diagnosis of Theileria annulata infection contributes to the formulation of strategies to eradicate this parasite. A simple and efficient diagnostic tool, recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip, was used in detection of Theileria and compared to other methods that require expensive instruments and skilled personnel. Herein, we established and optimized an LF-RPA method to detect the cytochrome b gene of T. annulata mitochondrial DNA from experimentally infected and field-collected blood samples. This method has many unparalleled characteristics, including that it is rapid (clear detection in 5min at constant temperature), sensitive (the limitation of detection is at least 2pg genomic DNA), and specific (no cross-reaction with other piroplasms that infect cattle). The LF-RPA assay was evaluated via testing 17 field blood samples and comparing the results of that of a PCR, showing 100% agreement, which demonstrates the ability of the LF-RPA assay to detect T. annulata infections in small number of samples (n=17). Taken together, the results indicate that this method could be used as an ideal diagnostic tool for detecting T. annulata in endemic regions with limited to fewer and local resources and could also be a potential technique for the surveillance and control of blood protozoa.

  15. Loop-Mediated Isothermal Amplification Label-Based Gold Nanoparticles Lateral Flow Biosensor for Detection of Enterococcus faecalis and Staphylococcus aureus.

    PubMed

    Wang, Yi; Li, Hui; Wang, Yan; Zhang, Lu; Xu, Jianguo; Ye, Changyun

    2017-01-01

    The report describes a simple, rapid and sensitive assay for visual and multiplex detection of Enterococcus faecalis and Staphylococcus aureus based on multiple loop-mediated isothermal amplification (mLAMP) and lateral flow biosensor (LFB). Detection and differentiation of the Ef0027 gene (E. faecalis-specific gene) and nuc gene (S. aureus-specific gene) were determined using fluorescein (FITC)-and digoxin-modified primers in the mLAMP process. In the presence of biotin- and FITC-/digoxin-modified primers, the mLAMP yielded numerous biotin- and FITC-/digoxin-attached duplex products, which were detected by LFB through biotin/streptavidin interaction (biotin on the duplex and streptavidin on the gold nanoparticle) and immunoreactions (FITC/digoxin on the duplex and anti-FITC/digoxin on the LFB test line). The accumulation of gold nanoparticles generated a characteristic red line, enabling visual and multiplex detection of target pathogens without instrumentation. The limit of detection (LoD), analytical specificity and feasibility of LAMP-LFB technique were successfully examined in pure culture and blood samples. The entire procedure, including specimen (blood samples) processing (30 min), isothermal reaction (40 min) and result reporting (within 2 min), could be completed within 75 min. Thus, this assay offers a simple, rapid, sensitive and specific test for multiplex detection of E. faecalis and S. aureus strains. Furthermore, the LAMP-LFB strategy is a universal technique, which can be extended to detect various target sequences by re-designing the specific LAMP primers.

  16. Comparative sperm chromatin structure assay measurements on epiillumination and orthogonal axes flow cytometers

    SciTech Connect

    Evenson, D.; Jost, L.; Gandour, D.; Gandour, D.; Rhodes, L.

    1995-04-01

    The sperm chromatin structure assay (SCSA) measures the susceptibility of sperm nuclear DNA to acid-induced denaturation in situ, and was developed on two Ortho flow cytometers, an FC200 and a cytofluorograf 30 (BDIS), both having orthogonal axes of fluorochrome excitation, emission, and sample flow. Sperm cells are first treated with a pH 1.4 buffer to denature DNA in situ and then stained with the metachromatic dye acridine orange (AO). The metachromatic fluorescence measured reflects relative amounts of denatured (red fluorescence) and native (green fluorescence) DNA present per cell. The extent of DNA denaturation is quantified by the calculated parameter alpha t [{alpha}{sub t} = red/(red + green) fluorescence]. Alpha t variables important for correlations with fertility and toxicant-induced chromatin damage include mean (X{alpha}{sub t}), standard deviation (SD{alpha}{sub t}), and cells outside the main population (COMP{alpha}{sub t}). This study showed that the SCSA can be successfully run on two epiillumination-type instruments, an Ortho ICP22A and Skatron Argus {trademark}, and two additional orthogonal axes instruments, a Becton Dickinson FACScan {trademark} and a Coulter Elite {trademark}. Epiillumination instruments produced a different fluorescence distribution than orthogonal instruments, but the resulting {alpha}{sub t} values showed strong conformity and interpretation of results was the same. SCSA values obtained on the Coultier Elite {trademark} were most similar to the Cytofluorograf 30; the FACScan {trademark} green fluorescence distribution was narrower and allowed resolution of cell doublets. Neither orthogonal instrument has the ability to directly calculate {alpha}{sub t} values. Listmode data from these instruments were transferred to an off-line personal computer (PC) for calculation of {alpha}{sub t} values using LIST-VIEW {trademark} software. 28 refs., 5 figs., 2 tabs.

  17. Mesoscopic lateral S/N/S weak links: Josephson effects and Josephson-like vortex flow

    NASA Astrophysics Data System (ADS)

    Carapella, G.; Sabatino, P.; Gombos, M.

    2017-02-01

    We report an experimental and numerical study of magneto-transport properties of mesoscopic lateral S/N/S superconducting weak links where the N region is made of the same material as the S banks, though with strongly reduced critical temperature. Magnetoresistance oscillations and clear dc and ac Josephson effects are observed. Experimental results are analyzed in the framework of the time-dependent Ginzburg-Landau model for mesoscopic type II superconductors with an inhomogeneous critical temperature. The analysis suggests that dissipative branches of the current-voltage curve of the weak link in the presence of a magnetic field are accounted for by moving ‘Josephson-like’ vortices. These relatively fast excitations are anisotropic as per the ordinary Josephson vortex in tunnel junctions, but have a normal core like the ordinary Abrikosov vortex in plain superconducting strips. Moreover, unlike the vortex in tunneling junctions, in the lateral S/N/S weak link, the extension of the moving vortex is larger than the extension of the static one. Further, we report in some detail on the lateral proximity effect, and the deviations from the ideality of the current-phase relation of this kind of lateral weak link in the Josephson regime.

  18. Resolving the lateral component of blood flow velocity based on ultrasound speckle size change with scan direction and speed.

    PubMed

    Xu, Tiantian; Bashford, Gregory R

    2009-01-01

    Conventional blood flow velocity measurement using ultrasound is capable of resolving the axial component (i.e., that aligned with the ultrasound propagation direction) of the blood flow velocity vector. However, these Doppler-based methods are incapable of detecting blood flow in the direction normal to the ultrasound beam. In addition, these methods require repeated pulse-echo interrogation at the same spatial location. In this paper, we introduce a method which estimates the lateral component of blood flow within a single image frame using the observation that the speckle pattern corresponding to the blood reflectors (typically red blood cells) stretches (i.e., is "smeared") if the blood is moving in the same direction as the electronically-controlled transducer line selection in a 2D image. The situation is analogous to the observed elongation of a subject photographed with a moving camera. Here, we develop a relationship between speckle size, scan speed, and blood flow velocity. Experiments were performed with a blood flow phantom and high-frequency transducer of a commercially available ultrasound machine. Data was captured through an interface allowing access to the raw beam formed data. Blood flow with velocities ranging from 15 to 40 cm/s were investigated in this paper. Results show that there is a linear relationship between the reciprocal of the stretch factor and blood flow velocity. Two scan speeds were used in our experiments. When the scan velocity is 64.8 cm/s, compared with the theoretical model, fitting results based on experimental data gave us a linear relationship with average flow estimation error of 1.74+/-1.48 cm/s. When the scan velocity is 37.4 cm/s, the average estimation error is 0.65+/-0.45 cm/s.

  19. Flow Cytometry-based Assay for the Monitoring of NK Cell Functions.

    PubMed

    Tognarelli, Sara; Jacobs, Benedikt; Staiger, Nina; Ullrich, Evelyn

    2016-10-30

    Natural killer (NK) cells are an important part of the human tumor immune surveillance system. NK cells are able to distinguish between healthy and virus-infected or malignantly transformed cells due to a set of germline encoded inhibitory and activating receptors. Upon virus or tumor cell recognition a variety of different NK cell functions are initiated including cytotoxicity against the target cell as well as cytokine and chemokine production leading to the activation of other immune cells. It has been demonstrated that accurate NK cell functions are crucial for the treatment outcome of different virus infections and malignant diseases. Here a simple and reliable method is described to analyze different NK cell functions using a flow cytometry-based assay. NK cell functions can be evaluated not only for the whole NK cell population, but also for different NK cell subsets. This technique enables scientists to easily study NK cell functions in healthy donors or patients in order to reveal their impact on different malignancies and to further discover new therapeutic strategies.

  20. A novel flow-based procedure for automation of respirometric assays in soils.

    PubMed

    Silva, Claudineia R; Oliveira, Eliezer; Zagatto, Elias A G; Henriquez, Camelia

    2016-09-01

    A flow-based strategy involving a gas-diffusion sampling probe was proposed for evaluating the respiration rate in soils. The amount of CO2 collected after a pre-defined time interval was proportional to the free CO2 released by the soil ecosystem. The 500-mL incubation flasks typically used for soil respirometric assays were adapted and a special cover was designed for connecting a tubular gas diffusion membrane, a fan, and a septum for adding the CO2(g) standards required for calibration. The method relied on the pH-dependent absorbance variations resulting from the CO2 collection. A 1.3mmolL(-1) bromothymol blue solution (pH 7.0) acted as both acceptor and carrier streams. In order to widen the dynamical working range to 0.003-0.2mmol CO2, two analytical curves were obtained, each related to a different time interval for the CO2 collection. Kinetic curves related to CO2 release by the soil samples were straightforwardly attained. Repeatability and detection limit were estimated as 2.0% and 0.001mmol CO2 (n=10), and accuracy was assessed in relation to a recommended titrimetric procedure.

  1. Immunological Tools: Engaging Students in the Use and Analysis of Flow Cytometry and Enzyme-linked Immunosorbent Assay (ELISA)

    ERIC Educational Resources Information Center

    Ott, Laura E.; Carson, Susan

    2014-01-01

    Flow cytometry and enzyme-linked immunosorbent assay (ELISA) are commonly used techniques associated with clinical and research applications within the immunology and medical fields. The use of these techniques is becoming increasingly valuable in many life science and engineering disciplines as well. Herein, we report the development and…

  2. Programmable flow system for automation of oxygen radical absorbance capacity assay using pyrogallol red for estimation of antioxidant reactivity.

    PubMed

    Ramos, Inês I; Gregório, Bruno J R; Barreiros, Luísa; Magalhães, Luís M; Tóth, Ildikó V; Reis, Salette; Lima, José L F C; Segundo, Marcela A

    2016-04-01

    An automated oxygen radical absorbance capacity (ORAC) method based on programmable flow injection analysis was developed for the assessment of antioxidant reactivity. The method relies on real time spectrophotometric monitoring (540 nm) of pyrogallol red (PGR) bleaching mediated by peroxyl radicals in the presence of antioxidant compounds within the first minute of reaction, providing information about their initial reactivity against this type of radicals. The ORAC-PGR assay under programmable flow format affords a strict control of reaction conditions namely reagent mixing, temperature and reaction timing, which are critical parameters for in situ generation of peroxyl radical from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). The influence of reagent concentrations and programmable flow conditions on reaction development was studied, with application of 37.5 µM of PGR and 125 mM of AAPH in the flow cell, guaranteeing first order kinetics towards peroxyl radicals and pseudo-zero order towards PGR. Peroxyl-scavenging reactivity of antioxidants, bioactive compounds and phenolic-rich beverages was estimated employing the proposed methodology. Recovery assays using synthetic saliva provided values of 90 ± 5% for reduced glutathione. Detection limit calculated using the standard antioxidant compound Trolox was 8 μM. RSD values were <3.4 and <4.9%, for intra and inter-assay precision, respectively. Compared to previous batch automated ORAC assays, the developed system also accounted for high sampling frequency (29 h(-1)), low operating costs and low generation of waste.

  3. Breakdown of Burton Prim Slichter approach and lateral solute segregation in radially converging flows

    NASA Astrophysics Data System (ADS)

    Priede, J.; Gerbeth, G.

    2005-11-01

    A theoretical study is presented of the effect of a radially converging melt flow, which is directed away from the solidification front, on the radial solute segregation in simple solidification models. We show that the classical Burton-Prim-Slichter (BPS) solution describing the effect of a diverging flow on the solute incorporation into the solidifying material breaks down for the flows converging along the solidification front. The breakdown is caused by a divergence of the integral defining the effective boundary layer thickness which is the basic concept of the BPS theory. Although such a divergence can formally be avoided by restricting the axial extension of the melt to a layer of finite height, radially uniform solute distributions are possible only for weak melt flows with an axial velocity away from the solidification front comparable to the growth rate. There is a critical melt velocity for each growth rate at which the solution passes through a singularity and becomes physically inconsistent for stronger melt flows. To resolve these inconsistencies we consider a solidification front presented by a disk of finite radius R0 subject to a strong converging melt flow and obtain an analytic solution showing that the radial solute concentration depends on the radius r as ˜ln(R0/r) and ˜ln(R0/r) close to the rim and at large distances from it. The logarithmic increase of concentration is limited in the vicinity of the symmetry axis by the diffusion becoming effective at a distance comparable to the characteristic thickness of the solute boundary layer. The converging flow causes a solute pile-up forming a logarithmic concentration peak at the symmetry axis which might be an undesirable feature for crystal growth processes.

  4. Ethacrynic acid rapidly and selectively abolishes blood flow in vessels supplying the lateral wall of the cochlea.

    PubMed

    Ding, Dalian; McFadden, Sandra L; Woo, Jenifer M; Salvi, Richard J

    2002-11-01

    The mechanisms underlying the ototoxicity of ethacrynic acid (EA) are not fully understood. Previous studies have focused on morphologic and enzymatic changes in the stria vascularis. The current experiment shows that one of the earliest effects of EA is ischemia, resulting from impaired blood flow in vessels supplying the lateral wall of the cochlea. Inner ear microcirculation, endocochlear potentials, compound action potentials (CAP), cochlear microphonics (CM) and summating potentials (SP) were monitored over time in chinchillas following a single injection of EA (40 mg/kg i.v.). At all times after EA injection, blood vessels supplying the spiral lamina, modiolus, and vestibular end organs appeared normal. In contrast, lateral wall (spiral ligament and stria vascularis) vessels were poorly stained with eosin 2 min after EA injection, and devoid of red blood cells at 30 min post EA. Decline, but not recovery, of CAP, CM and SP followed the microcirculation changes in the lateral wall. Reperfusion was delayed in stria vascularis arterioles relative to other lateral wall vessels. The ischemia-reperfusion caused by EA would be expected to generate large quantities of free radicals, which may trigger or contribute to the cellular, enzymatic, and functional pathologies that have been described in detail previously.

  5. Using an aqueous two-phase polymer-salt system to rapidly concentrate viruses for improving the detection limit of the lateral-flow immunoassay.

    PubMed

    Jue, Erik; Yamanishi, Cameron D; Chiu, Ricky Y T; Wu, Benjamin M; Kamei, Daniel T

    2014-12-01

    The development of point-of-need (PON) diagnostics for viruses has the potential to prevent pandemics and protects against biological warfare threats. Here we discuss the approach of using aqueous two-phase systems (ATPSs) to concentrate biomolecules prior to the lateral-flow immunoassay (LFA) for improved viral detection. In this paper, we developed a rapid PON detection assay as an extension to our previous proof-of-concept studies which used a micellar ATPS. We present our investigation of a more rapid polymer-salt ATPS that can drastically improve the assay time, and show that the phase containing the concentrated biomolecule can be extracted prior to macroscopic phase separation equilibrium without affecting the measured biomolecule concentration in that phase. We could therefore significantly decrease the time of the diagnostic assay with an early extraction time of just 30 min. Using this rapid ATPS, the model virus bacteriophage M13 was concentrated between approximately 2 and 10-fold by altering the volume ratio between the two phases. As the extracted virus-rich phase contained a high salt concentration which destabilized the colloidal gold indicator used in LFA, we decorated the gold nanoprobes with polyethylene glycol (PEG) to provide steric stabilization, and used these nanoprobes to demonstrate a 10-fold improvement in the LFA detection limit. Lastly, a MATLAB script was used to quantify the LFA results with and without the pre-concentration step. This approach of combining a rapid ATPS with LFA has great potential for PON applications, especially as greater concentration-fold improvements can be achieved by further varying the volume ratio. Biotechnol. Bioeng. 2014;111: 2499-2507. © 2014 Wiley Periodicals, Inc.

  6. Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection.

    PubMed

    Tu, Po-An; Shiu, Jia-Shian; Lee, Shu-Hwae; Pang, Victor Fei; Wang, De-Chi; Wang, Pei-Hwa

    2017-05-01

    Caprine arthritis-encephalitis (CAE) in goats is a complex disease syndrome caused by a lentivirus. This persistent viral infection results in arthritis in adult goats and encephalitis in lambs. The prognosis for the encephalitic form is normally poor, and this form of the disease has caused substantial economic losses for goat farmers. Hence, a more efficient detection platform based on recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) was developed in the present study for detecting the proviral DNA of caprine arthritis-encephalitis virus (CAEV). Under the optimal incubation conditions, specifically, 30min at 37°C for RPA followed by 5min at room temperature for LFD, the assay was found to be sensitive to a lower limit of 80pg of total DNA and 10 copies of plasmid DNA. Furthermore, there was no cross-reaction with other tested viruses, including goat pox virus and bovine leukemia virus. Given its simplicity and portability, this RPA-LFD protocol can serve as an alternative tool to ELISA for the primary screening of CAEV, one that is suitable for both laboratory and field application. When the RPA-LFD was applied in parallel with serological ELISA for the detection of CAEV in field samples, the RPA-LFD assay exhibited a higher sensitivity than the traditional method, and 82% of the 200 samples collected in Taiwan were found to be positive. To our knowledge, this is the first report providing evidence to support the use of an RPA-LFD assay as a specific and sensitive platform for detecting CAEV proviral DNA in goats in a faster manner, one that is also applicable for on-site utilization at farms and that should be useful in both eradication programs and epidemiological studies.

  7. Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Kaoui, B.; Ristow, G. H.; Cantat, I.; Misbah, C.; Zimmermann, W.

    2008-02-01

    The migration of a suspended vesicle in an unbounded Poiseuille flow is investigated numerically in the low Reynolds number limit. We consider the situation without viscosity contrast between the interior of the vesicle and the exterior. Using the boundary integral method we solve the corresponding hydrodynamic flow equations and track explicitly the vesicle dynamics in two dimensions. We find that the interplay between the nonlinear character of the Poiseuille flow and the vesicle deformation causes a cross-streamline migration of vesicles toward the center of the Poiseuille flow. This is in a marked contrast with a result [L. G. Leal, Annu. Rev. Fluid Mech. 12, 435 (1980)] according to which the droplet moves away from the center (provided there is no viscosity contrast between the internal and the external fluids). The migration velocity is found to increase with the local capillary number (defined by the time scale of the vesicle relaxation toward its equilibrium shape times the local shear rate), but reaches a plateau above a certain value of the capillary number. This plateau value increases with the curvature of the parabolic flow profile. We present scaling laws for the migration velocity.

  8. Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow.

    PubMed

    Kaoui, B; Ristow, G H; Cantat, I; Misbah, C; Zimmermann, W

    2008-02-01

    The migration of a suspended vesicle in an unbounded Poiseuille flow is investigated numerically in the low Reynolds number limit. We consider the situation without viscosity contrast between the interior of the vesicle and the exterior. Using the boundary integral method we solve the corresponding hydrodynamic flow equations and track explicitly the vesicle dynamics in two dimensions. We find that the interplay between the nonlinear character of the Poiseuille flow and the vesicle deformation causes a cross-streamline migration of vesicles toward the center of the Poiseuille flow. This is in a marked contrast with a result [L. G. Leal, Annu. Rev. Fluid Mech. 12, 435 (1980)] according to which the droplet moves away from the center (provided there is no viscosity contrast between the internal and the external fluids). The migration velocity is found to increase with the local capillary number (defined by the time scale of the vesicle relaxation toward its equilibrium shape times the local shear rate), but reaches a plateau above a certain value of the capillary number. This plateau value increases with the curvature of the parabolic flow profile. We present scaling laws for the migration velocity.

  9. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk.

    PubMed

    Chen, Yiqiang; Chen, Qian; Han, Miaomiao; Liu, Jiangyang; Zhao, Peng; He, Lidong; Zhang, Yuan; Niu, Yiming; Yang, Wenjun; Zhang, Liying

    2016-05-15

    In this study, we developed a novel near-infrared fluorescence based multiplex lateral flow immunoassay by conjugating a near-infrared label to broad-specificity monoclonal antibody/receptor as detection complexes. Different antigens were dispensed onto separate test zones of nitrocellulose membrane to serve as capture reagents. This assay format allowed the simultaneous detection of four families of antibiotics (β-lactams, tetracyclines, quinolones and sulfonamides) in milk within 20 min. Qualitative and quantitative analysis of target antibiotics were realized by imaging the fluorescence intensity of the near-infrared label captured on respective test lines. For qualitative analysis, the cut-off values of β-lactams, tetracyclines, quinolones and sulfonamides were determined to be 8 ng/mL, 2 ng/mL, 4 ng/mL and 8 ng/mL respectively, which were much lower than the conventional gold nanoparticle based lateral flow immunoassay. For quantitative analysis, the detection ranges were 0.26-3.56 ng/mL for β-lactams, 0.04-0.98 ng/mL for tetracyclines, 0.08-2.0 ng/mL for quinolones, and 0.1-3.98 ng/mL for sulfonamides, with linear correlation coefficients higher than 0.97. The mean spiked recoveries ranged from 93.7% to 108.2% with coefficient of variations less than 16.3%. These results demonstrated that this novel immunoassay is a promising approach for rapidly screening the four families of antibiotic residues in milk.

  10. Lateral migration of a microdroplet under optical forces in a uniform flow

    SciTech Connect

    Cho, Hyunjun; Chang, Cheong Bong; Jung, Jin Ho; Sung, Hyung Jin

    2014-12-15

    The behavior of a microdroplet in a uniform flow and subjected to a vertical optical force applied by a loosely focused Gaussian laser beam was studied numerically. The lattice Boltzmann method was applied to obtain the two-phase flow field, and the dynamic ray tracing method was adopted to calculate the optical force. The optical forces acting on the spherical droplets agreed well with the analytical values. The numerically predicted droplet migration distances agreed well with the experimentally obtained values. Simulations of the various flow and optical parameters showed that the droplet migration distance nondimensionalized by the droplet radius is proportional to the S number (z{sub d}/r{sub p} = 0.377S), which is the ratio of the optical force to the viscous drag. The effect of the surface tension was also examined. These results indicated that the surface tension influenced the droplet migration distance to a lesser degree than the flow and optical parameters. The results of the present work hold for the refractive indices of the mean fluid and the droplet being 1.33 and 1.59, respectively.

  11. Quantification of mucosal mononuclear cells in tissues with a fluorescent bead-based polychromatic flow cytometry assay.

    PubMed

    Reeves, R Keith; Evans, Tristan I; Gillis, Jacqueline; Wong, Fay E; Connole, Michelle; Carville, Angela; Johnson, R Paul

    2011-03-31

    Since the vast majority of infections occur at mucosal surfaces, accurate characterization of mucosal immune cells is critically important for understanding transmission and control of infectious diseases. Standard flow cytometric analysis of cells obtained from mucosal tissues can provide valuable information on the phenotype of mucosal leukocytes and their relative abundance, but does not provide absolute cell counts of mucosal cell populations. We developed a bead-based flow cytometry assay to determine the absolute numbers of multiple mononuclear cell types in colorectal biopsies of rhesus macaques. Using 10-color flow cytometry panels and pan-fluorescent beads, cells were enumerated in biopsy specimens by adding a constant ratio of beads per mg of tissue and then calculating cell numbers/mg of tissue based on cell-to-bead ratios determined at the time of sample acquisition. Testing in duplicate specimens showed the assay to be highly reproducible (Spearman R=0.9476, P<0.0001). Using this assay, we report enumeration of total CD45(+) leukocytes, CD4(+) and CD8(+) T cells, B cells, NK cells, CD14(+) monocytes, and myeloid and plasmacytoid dendritic cells in colorectal biopsies, with cell numbers in normal rhesus macaques varying from medians of 4486 cells/mg (T cells) to 3 cells/mg (plasmacytoid dendritic cells). This assay represents a significant advancement in rapid, accurate quantification of mononuclear cell populations in mucosal tissues and could be applied to provide absolute counts of a variety of different cell populations in diverse tissues.

  12. Development of a lateral flow immunoassay strip for rapid detection of CagA antigen of Helicobacter pylori.

    PubMed

    Karakus, Cebrail

    2015-01-01

    About half of the world populations are known to be infected with Helicobacter pylori. The CagA antigen secreting strains provoke severe mucosal damages and act as a risk factor for the development of peptic ulceration and gastric cancer. A lateral flow immunoassay (LFIA) strip was developed based on sandwich format for rapid detection of CagA antigen of H. pylori using gold conjugated monoclonal antibody. This LFIA strip will provide a good aid in the diagnosis of CagA-secreting H. pylori within 10 min instead of time consuming, expensive and laborious invasive approaches.

  13. Demonstration and properties of a planar heterojunction bipolar transistor with lateral current flow

    NASA Astrophysics Data System (ADS)

    Thornton, Robert L.; Mosby, William J.; Chung, Harlan F.

    1989-10-01

    The authors present fabrication techniques and device performance for a novel transistor structure, the lateral heterojunction bipolar transistor. The lateral heterojunctions are formed by impurity-induced disordering of a GaAs base layer sandwiched between two AlGaAs layers. These transistor structures exhibit current gains of 14 for base widths of 0.74 micron. Transistor action in this device occurs parallel to the surface of the device structure. The active base region of the structure is completely submerged, resulting in a reduction of surface recombination as a mechanism for gain reduction in the device. Impurity-induced disordering is used to widen the bandgap of the alloy in the emitter and collector, resulting in an improvement of the emitter injection efficiency. Since the device is based entirely on a surface diffusion process, the device is completely planar and has no steps involving etching of the III-V alloy material. These advantages lead this device to be considered as a candidate for optoelectronic integration applications. The transistor device functions as a buried heterostructure laser, with a threshold current as low as 6 mA for a 1.4-micron stripe.

  14. Flow cytometry-based analysis of artemisinin-resistant Plasmodium falciparum in the ring-stage survival assay.

    PubMed

    Amaratunga, Chanaki; Neal, Aaron T; Fairhurst, Rick M

    2014-08-01

    The ring-stage survival assay (RSA) is a powerful tool for phenotyping artemisinin-resistant Plasmodium falciparum but requires experienced microscopists to count viable parasites among 10,000 erythrocytes in Giemsa-stained thin blood smears. Here we describe a rapid flow cytometric assay that accurately counts viable parasites among 250,000 erythrocytes in suspension. This method performs as well as light microscopy and can be used to standardize the collection of RSA data between research groups in laboratory and field settings.

  15. Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows.

    PubMed

    Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2012-11-01

    Lateral migration and equilibrium shape and position of a single red blood cell (RBC) in bounded two-dimensional Poiseuille flows are investigated by using an immersed boundary method. An elastic spring model is applied to simulate the skeleton structure of a RBC membrane. We focus on studying the properties of lateral migration of a single RBC in Poiseuille flows by varying the initial position, the initial angle, the swelling ratio (s), the membrane bending stiffness of RBC (k{b}), the maximum velocity of fluid flow (u{max}), and the degree of confinement. The combined effect of the deformability, the degree of confinement, and the shear gradient of the Poiseuille flow make the RBCs migrate toward a certain cross-sectional equilibrium position, which lies either on the center line of the channel or off center line. For s>0.8, the speed of the migration at the beginning decreases as one increases the swelling ratio s. But for s<0.8, the speed of the migration at the beginning is an increasing function of the swelling ratio s. Two motions of oscillation and vacillating breathing (swing) of RBCs are observed. The distance Y{d} between the cell mass center of the equilibrium position and the center line of the channel increases with increasing the Reynolds number Re and reaches a peak, then decreases with increasing Re. The peak of Re is a decreasing function of the swelling ratio (s<1.0). The cell membrane energy of the equilibrium position is an increasing function as Re increases. The slipper-shaped cell is more stable than the parachute-shaped one in the sense that the energy stored in the former is lower than that in the latter. For a given Re, the bigger the swelling ratio (s<1.0), the lower the cell membrane energy.

  16. Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2012-11-01

    Lateral migration and equilibrium shape and position of a single red blood cell (RBC) in bounded two-dimensional Poiseuille flows are investigated by using an immersed boundary method. An elastic spring model is applied to simulate the skeleton structure of a RBC membrane. We focus on studying the properties of lateral migration of a single RBC in Poiseuille flows by varying the initial position, the initial angle, the swelling ratio (s*), the membrane bending stiffness of RBC (kb), the maximum velocity of fluid flow (umax), and the degree of confinement. The combined effect of the deformability, the degree of confinement, and the shear gradient of the Poiseuille flow make the RBCs migrate toward a certain cross-sectional equilibrium position, which lies either on the center line of the channel or off center line. For s*>0.8, the speed of the migration at the beginning decreases as one increases the swelling ratio s*. But for s*<0.8, the speed of the migration at the beginning is an increasing function of the swelling ratio s*. Two motions of oscillation and vacillating breathing (swing) of RBCs are observed. The distance Yd between the cell mass center of the equilibrium position and the center line of the channel increases with increasing the Reynolds number Re and reaches a peak, then decreases with increasing Re. The peak of Re is a decreasing function of the swelling ratio (s*<1.0). The cell membrane energy of the equilibrium position is an increasing function as Re increases. The slipper-shaped cell is more stable than the parachute-shaped one in the sense that the energy stored in the former is lower than that in the latter. For a given Re, the bigger the swelling ratio (s*<1.0), the lower the cell membrane energy.

  17. Lateral Flow of Carbon From U.S. Agricultural Lands: Carbon Uptake, Consumption, and Respiration

    NASA Astrophysics Data System (ADS)

    Sabesan, A.; West, T. O.; Roddy, A. B.; Marland, G.; Bhaduri, B. L.

    2005-12-01

    Net carbon exchange between biomass and the atmosphere can be estimated and modeled on a regional basis to understand the effects of land-use change on the carbon cycle and on net CO2 emissions to the atmosphere. However, within ecosystems that are managed to produce commodities for consumption (i.e., agriculture and forest lands), carbon can be transported laterally when crops or timber are harvested, in addition to being transported vertically between plants and the atmosphere. The spatial and temporal domain over which carbon uptake, transport, and release occur has implications for regional carbon studies. For example, carbon may be taken up by crops in one region, but released through human consumption in another region. Estimates of lateral transport and release of carbon may therefore contribute another dimension to bottom-up carbon modeling, and may also be used as input for comparison to top-down atmospheric modeling. Our research to date has focused on the uptake, consumption, and respiration of CO2 associated with agricultural crops and related food commodities. We estimate a net uptake of 495 Tg C on U.S. croplands in 2000. This uptake occurs primarily in the Midwestern U.S. Human respiration of CO2 contributed about 31 Tg C and livestock emitted about 77 Tg C as CO2 and CH4 in 2000. Estimates of CO2 from food wastes in municipal landfills and from human excrement in wastewater treatment plants are currently being developed. The spatial distribution of CO2 uptake and release are mapped, respectively, at the county level and at 1km resolution that is commensurate with Landscan USA population data.

  18. Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering.

    PubMed

    Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Liu, Xiaohui

    2011-07-01

    In this paper, a mathematical model for sandwich-type lateral flow immunoassay is developed via short available time series. A nonlinear dynamic stochastic model is considered that consists of the biochemical reaction system equations and the observation equation. After specifying the model structure, we apply the extended Kalman filter (EKF) algorithm for identifying both the states and parameters of the nonlinear state-space model. It is shown that the EKF algorithm can accurately identify the parameters and also predict the system states in the nonlinear dynamic stochastic model through an iterative procedure by using a small number of observations. The identified mathematical model provides a powerful tool for testing the system hypotheses and also for inspecting the effects from various design parameters in both rapid and inexpensive way. Furthermore, by means of the established model, the dynamic changes in the concentration of antigens and antibodies can be predicted, thereby making it possible for us to analyze, optimize, and design the properties of lateral flow immunoassay devices.

  19. A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models.

    PubMed

    Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Liu, Xiaohui

    2012-01-01

    In this paper, a hybrid extended Kalman filter (EKF) and switching particle swarm optimization (SPSO) algorithm is proposed for jointly estimating both the parameters and states of the lateral flow immunoassay model through available short time-series measurement. Our proposed method generalizes the well-known EKF algorithm by imposing physical constraints on the system states. Note that the state constraints are encountered very often in practice that give rise to considerable difficulties in system analysis and design. The main purpose of this paper is to handle the dynamic modeling problem with state constraints by combining the extended Kalman filtering and constrained optimization algorithms via the maximization probability method. More specifically, a recently developed SPSO algorithm is used to cope with the constrained optimization problem by converting it into an unconstrained optimization one through adding a penalty term to the objective function. The proposed algorithm is then employed to simultaneously identify the parameters and states of a lateral flow immunoassay model. It is shown that the proposed algorithm gives much improved performance over the traditional EKF method.

  20. Strategy for Accurate Detection of Escherichia Coli O157:H7 in Ground Pork Using a Lateral Flow Immunoassay.

    PubMed

    Cheng, Song; Chen, Ming-Hui; Zhang, Gang-Gang; Yu, Zhi-Biao; Liu, Dao-Feng; Xiong, Yong-Hua; Wei, Hua; Lai, Wei-Hua

    2017-04-02

    Escherichia coli O157:H7 is known to cause serious diseases including hemorrhagic colitis and hemolytic uremic syndrome. A gold nanoparticle lateral flow immunoassay (Au-LFIA) was used to detect Escherichia coli O157:H7 in ground pork samples. False-positive results were detected using Au-LFIA; a Citrobacterfreundii strain was isolated from the ground pork samples and identified by using CHROmagar(TM) plates, API 20E, and 16S RNA sequencing. Since C.freundii showed cross-reactivity with E. coli O157:H7 when Au-LFIA test strips were used, a novel method combining modified enrichment with a lateral flow immunoassay for accurate and convenient detection of E. coli O157:H7 in ground pork was developed in this study to minimize these false positives. MacConkey broth was optimized for E. coli O157:H7 enrichment and C.freundii inhibition by the addition of 5 mg/L potassium tellurite and 0.10 mg/L cefixime. Using the proposed modified enrichment procedure, the false-positive rate of ground pork samples spiked with 100 CFU/g C.freundii decreased to 5%.

  1. Temporal Entropy Generation in the Viscous Layers of Laterally-converging Duct Flows

    SciTech Connect

    Donald M. McEligot; Robert S. Brodkey; Helmut Eckelmann

    2008-12-01

    Since insight into entropy generation is a key to increasing efficiency and thereby reducing fuel consumption and/or waste and -- for wall-bounded flows -- most entropy is generated in the viscous layer, we examine the transient behavior of its dominant contributor there for a non-canonical flow. New measurements in oil flow are presented for the effects of favorable streamwise mean pressure gradients on temporal entropy generation rates and, in the process, on key Reynolds-stress-producing events such as sweep front passage and on the deceleration/outflow phase of the overall bursting process. Two extremes have been considered: (1) a high pressure gradient, nearing "laminarization," and (2), for comparison, a low pressure gradient corresponding to many earlier experiments. In both cases, the peak temporal entropy generation rate occurs shortly after passage of the ejection/sweep interface. Whether sweep and ejection rates appear to decrease or increase with the pressure gradient depends on the feature examined and the manner of sampling. When compared using wall coordinates for velocities, distances and time, the trends and magnitudes of the transient behaviors are mostly the same. The main effects of the higher pressure gradient are (1) changes in the time lag between detections -- representing modification of the shape of the sweep front and the sweep angle with the wall, (2) modification of the magnitude of an instantaneous Reynolds shear stress with wall distance and (3) enlarging the sweeps and ejections. Results new for both low and high pressure gradients are the temporal behaviors of the dominant contribution to entropy generation; it is found to be much more sensitive to distance from the wall than to streamwise pressure gradient.

  2. Exploiting green analytical procedures for acidity and iron assays employing flow analysis with simple natural reagent extracts.

    PubMed

    Grudpan, Kate; Hartwell, Supaporn Kradtap; Wongwilai, Wasin; Grudpan, Supara; Lapanantnoppakhun, Somchai

    2011-06-15

    Green analytical methods employing flow analysis with simple natural reagent extracts have been exploited. Various formats of flow based analysis systems including a single line FIA, a simple lab on chip with webcam camera detector, and a newly developed simple lab on chip system with reflective absorption detection and the simple extracts from some available local plants including butterfly pea flower, orchid flower, and beet root were investigated and shown to be useful as alternative self indicator reagents for acidity assay. Various tea drinks were explored to be used for chromogenic reagents in iron determination. The benefit of a flow based system, which allows standards and samples to go through the analysis process in exactly the same conditions, makes it possible to employ simple natural extracts with minimal or no pretreatment or purification. The combinations of non-synthetic natural reagents with minimal processed extracts and the low volume requirement flow based systems create some unique green chemical analyses.

  3. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater.

    PubMed

    Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-01-01

    Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen's' reports and fish community monitorings.

  4. Development and evaluation of a flow cytometry microsphere assay to detect anti-histone antibody in dogs.

    PubMed

    Paul, Shoma; Wilkerson, Melinda J; Shuman, Wilma; Harkin, Kenneth R

    2005-09-15

    Anti-nuclear antibody (ANA) is one of the diagnostic parameters that support a diagnosis of autoimmune disorders in humans, dogs, and horses, particularly the condition systemic lupus erythematosus (SLE). The most commonly used method for detecting ANA in canine serum is the indirect immunofluorescence antibody assay (IFA) that detects dog IgG with reactivity towards mammalian cell nuclei. Interpretation of the IFA results is very subjective and dependent on the source of tissue/cellular substrate. We have developed a flow cytometry based assay to detect canine serum antibodies specific to histones. Histones were chosen as the target antigen because these nuclear proteins are the most common nuclear substrate for ANA in dogs with SLE. Microsphere beads were coated with histones and incubated with canine sera. Bound anti-histone antibodies were detected by FITC-conjugated rabbit F(ab')2 anti-dog IgG. Sera from four groups of dogs (47 dogs total) were tested for anti-histone antibodies and compared with the traditional IFA assay. The groups included 15 healthy dogs, 15 dogs with noninflammatory diseases, 9 dogs with polyarthritis and positive ANA, and 8 German shepherds with perianal fistulas. The microsphere assay results indicated that only one dog in the noninflammatory group and four out of nine dogs in the polyarthritis group had mean fluorescent intensity values above our established cut-off (defined as 2 S.D. above the mean of healthy controls). There was moderate agreement between the anti-histone assay and the traditional ANA (kappa statistic=0.54). Absorption of ANA positive serum with total histones dramatically diminished the fluorescent signal detected by flow cytometry and the speckled nuclear pattern observed by IFA, whereas preabsorption did not change the diffuse nuclear staining pattern. These findings indicate that the anti-histone assay will not replace the ANA test and that other nuclear proteins, such as ribonucleoproteins may contribute to the

  5. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome

    PubMed Central

    Coustan-Smith, Elaine; Ribeiro, Raul C.; Stow, Patricia; Zhou, Yinmei; Pui, Ching-Hon; Rivera, Gaston K.; Pedrosa, Francisco; Campana, Dario

    2006-01-01

    Bone marrow normal lymphoid progenitors (CD19+, CD10+, and/or CD34+) are exquisitely sensitive to corticosteroids and other antileukemic drugs. We hypothesized that, in patients with B-lineage acute lymphoblastic leukemia (ALL), cells with this phenotype detected early in treatment should be leukemic rather than normal. We therefore developed a simple and inexpensive flow cytometric assay for such cells and prospectively applied it to bone marrow samples collected on day 19 from 380 children with B-lineage ALL. In 211 patients (55.5%), these cells represented 0.01% or more of the mononuclear cells; results correlated remarkably well with those of more complex flow cytometric and molecular minimal residual disease (MRD) evaluations. Among 84 uniformly treated children, the 10-year incidence of relapse or remission failure was 28.8% ± 7.1% (SE) for the 42 patients with 0.01% or more leukemic cells on day 19 detected by the simplified assay versus 4.8% ± 3.3% for the 42 patients with lower levels (P = .003). These assay results were the strongest predictor of outcome, even after adjustment for competing clinicobiologic variables. Thus, this new assay would enable most treatment centers to identify a high proportion of children with ALL who have an excellent early treatment response and a high likelihood of cure. (Blood. 2006;108:97-102) PMID:16537802

  6. Size-differentiated lateral migration of bubbles in Couette flow of two-dimensional foam

    NASA Astrophysics Data System (ADS)

    Mohammadigoushki, Hadi; Feng, James J.

    2012-11-01

    In this Talk, we report experiments on lateral migration of bubbles in a two-dimensional foam sheared in a narrow-gap Couette device. A larger bubble in an otherwise monodisperse bubble raft migrates toward the center of the gap as long as the bubble size ratio and the shear rate are each above a threshold. The migration speed is roughly two orders of magnitude higher than that of a single bubble, and increases with the shear rate and the size ratio. The bubble also deforms much more than an isolated one at the same shear rate. Modifying the Chan-Leal solution for the migration of a single submerged bubble or drop, we derive a formula that successfully predicts all the migration trajectories recorded in the experiment. The threshold for migration corresponds to the wall repulsion force overcoming the capillary force in the 2D foam. The size-differentiated bubble migration provides an explanation for previously observed size segregation in sheared 3D polydisperse foams.

  7. Size-Differentiated Lateral Migration of Bubbles in Couette Flow of Two-Dimensional Foam

    NASA Astrophysics Data System (ADS)

    Mohammadigoushki, Hadi; Feng, James J.

    2012-08-01

    We report experiments on lateral migration of bubbles in a two-dimensional foam sheared in a narrow-gap Couette device. A larger bubble in an otherwise monodisperse bubble raft migrates toward the center of the gap as long as the bubble size ratio and the shear rate are each above a threshold. The migration speed is roughly two orders of magnitude higher than that of a single bubble, and increases with the shear rate and the size ratio. The bubble also deforms much more than an isolated one at the same shear rate. Modifying the Chan-Leal solution for the migration of a single submerged bubble or drop, we derive a formula that successfully predicts all the migration trajectories recorded in the experiment. The threshold for migration corresponds to the wall repulsion force overcoming the capillary force in the two-dimensional foam. The size-differentiated bubble migration provides an explanation for previously observed size segregation in sheared three-dimensional polydisperse foams.

  8. Changes in tongue pressure, pulmonary function, and salivary flow in patients with amyotrophic lateral sclerosis.

    PubMed

    Easterling, Caryn; Antinoja, Jodi; Cashin, Susan; Barkhaus, Paul E

    2013-06-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving nerve cells that control voluntary muscle movement (Rowland LP, Shneider NA, N Engl J Med 344(22):1688-1700, 2001). The aim of this study were to determine the pattern of neurodegenerative change in (1) isometric tongue strength (ITS) and spontaneous saliva swallow (SSS) pressure, (2) saliva weight, and (3) forced vital capacity (FVC) in patients with ALS who present with primary spinal versus primary bulbar symptoms. Twenty-three consecutive patients (age = 48-80 years, mean = 59.5 years) were enrolled. Data were collected over three visits (12-week interval) for each group: 9 patients with bulbar symptoms and 14 with spinal symptoms. A significant difference was noted in SSS and ITS in the group with bulbar symptoms from Trial 1 to II and from Trial II to III. SSS and ITS showed a significant difference when comparing Trial I to III but not when comparing Trial I to II for the spinal symptom group, indicating that this group experienced a slower decline in SSS. Saliva production did not show a significant change in the bulbar symptom group but did in the spinal group. FVC was significantly different when comparing Trial I to III and Trial II to III for both groups. FVC, SSS, and ITS may be complimentary measures used as a gauge of an ALS patient's ability to efficiently take oral nutrition and to support required alterations in diet consistency.

  9. An Aqueous Two-Phase System for the Concentration and Extraction of Proteins from the Interface for Detection Using the Lateral-Flow Immunoassay

    PubMed Central

    Chiu, Ricky Y. T.; Thach, Alison V.; Wu, Chloe M.; Wu, Benjamin M.; Kamei, Daniel T.

    2015-01-01

    The paper-based immunoassay for point-of-care diagnostics is widely used due to its low cost and portability over traditional lab-based assays. Lateral-flow immunoassay (LFA) is the most well-established paper-based assay since it is rapid and easy to use. However, the disadvantage of LFA is its lack of sensitivity in some cases where a large sample volume is required, limiting its use as a diagnostic tool. To improve the sensitivity of LFA, we previously reported on the concentration of analytes into one of the two bulk phases of an aqueous two-phase system (ATPS) prior to detection. In this study, we preserved the advantages of LFA while significantly improving upon our previous proof-of-concept studies by employing a novel approach of concentrating gold nanoparticles, a common LFA colorimetric indicator. By conjugating specific antibodies and polymers to the surfaces of the particles, these gold nanoprobes (GNPs) were able to capture target proteins in the sample and subsequently be concentrated within 10 min at the interface of an ATPS solution comprised of polyethylene glycol, potassium phosphate, and phosphate-buffered saline. These GNPs were then extracted and applied directly to LFA. By combining this prior ATPS interface extraction with LFA, the detection limit of LFA for a model protein was improved by 100-fold from 1 ng/μL to 0.01 ng/μL. Additionally, we examined the behavior of the ATPS system in fetal bovine serum and synthetic urine to more closely approach real-world applications. Despite using more complex matrices, ATPS interface extraction still improved the detection limit by 100-fold within 15 to 25 min, demonstrating the system’s potential to be applied to patient samples. PMID:26556593

  10. Loop-Mediated Isothermal Amplification Label-Based Gold Nanoparticles Lateral Flow Biosensor for Detection of Enterococcus faecalis and Staphylococcus aureus

    PubMed Central

    Wang, Yi; Li, Hui; Wang, Yan; Zhang, Lu; Xu, Jianguo; Ye, Changyun

    2017-01-01

    The report describes a simple, rapid and sensitive assay for visual and multiplex detection of Enterococcus faecalis and Staphylococcus aureus based on multiple loop-mediated isothermal amplification (mLAMP) and lateral flow biosensor (LFB). Detection and differentiation of the Ef0027 gene (E. faecalis-specific gene) and nuc gene (S. aureus-specific gene) were determined using fluorescein (FITC)-and digoxin-modified primers in the mLAMP process. In the presence of biotin- and FITC-/digoxin-modified primers, the mLAMP yielded numerous biotin- and FITC-/digoxin-attached duplex products, which were detected by LFB through biotin/streptavidin interaction (biotin on the duplex and streptavidin on the gold nanoparticle) and immunoreactions (FITC/digoxin on the duplex and anti-FITC/digoxin on the LFB test line). The accumulation of gold nanoparticles generated a characteristic red line, enabling visual and multiplex detection of target pathogens without instrumentation. The limit of detection (LoD), analytical specificity and feasibility of LAMP-LFB technique were successfully examined in pure culture and blood samples. The entire procedure, including specimen (blood samples) processing (30 min), isothermal reaction (40 min) and result reporting (within 2 min), could be completed within 75 min. Thus, this assay offers a simple, rapid, sensitive and specific test for multiplex detection of E. faecalis and S. aureus strains. Furthermore, the LAMP-LFB strategy is a universal technique, which can be extended to detect various target sequences by re-designing the specific LAMP primers. PMID:28239371

  11. An Aqueous Two-Phase System for the Concentration and Extraction of Proteins from the Interface for Detection Using the Lateral-Flow Immunoassay.

    PubMed

    Chiu, Ricky Y T; Thach, Alison V; Wu, Chloe M; Wu, Benjamin M; Kamei, Daniel T

    2015-01-01

    The paper-based immunoassay for point-of-care diagnostics is widely used due to its low cost and portability over traditional lab-based assays. Lateral-flow immunoassay (LFA) is the most well-established paper-based assay since it is rapid and easy to use. However, the disadvantage of LFA is its lack of sensitivity in some cases where a large sample volume is required, limiting its use as a diagnostic tool. To improve the sensitivity of LFA, we previously reported on the concentration of analytes into one of the two bulk phases of an aqueous two-phase system (ATPS) prior to detection. In this study, we preserved the advantages of LFA while significantly improving upon our previous proof-of-concept studies by employing a novel approach of concentrating gold nanoparticles, a common LFA colorimetric indicator. By conjugating specific antibodies and polymers to the surfaces of the particles, these gold nanoprobes (GNPs) were able to capture target proteins in the sample and subsequently be concentrated within 10 min at the interface of an ATPS solution comprised of polyethylene glycol, potassium phosphate, and phosphate-buffered saline. These GNPs were then extracted and applied directly to LFA. By combining this prior ATPS interface extraction with LFA, the detection limit of LFA for a model protein was improved by 100-fold from 1 ng/μL to 0.01 ng/μL. Additionally, we examined the behavior of the ATPS system in fetal bovine serum and synthetic urine to more closely approach real-world applications. Despite using more complex matrices, ATPS interface extraction still improved the detection limit by 100-fold within 15 to 25 min, demonstrating the system's potential to be applied to patient samples.

  12. Three-dimensional modeling of the lateral flow of the plume material under the continental lithosphere of Africa

    NASA Astrophysics Data System (ADS)

    Lin, S.; Kuo, B.

    2002-12-01

    Spreading of a giant plume head beneath the continental lithosphere, has been proposed to explain the extensive Cenozoic magmatism in east Africa (e.g., Ebinger and Sleep, 1998). Previous models using kinematic flow with simple geometry and constant rheology show that the progression of the lateral flow of the impinging plume material guided by the anti-valley along the lithosphere-asthenosphere interface agrees with the age of the magmatic activities. Here we revisit this problem with a 3-D, variable-viscosity numerical modeling approach to explore the combined effects of the temperature- and water-content rheology and the topography of the lithosphere's base. We examine the single-plume hypothesis by investigating how the buoyant plume material migrates from east Africa to the north and west and how far it could reach, with a more detailed modeling on rheology and geometry against geological constraints. The problem is characterized as a multi-component viscous flow model involving advection of the interfaces between continent, asthenosphere and plume head material. We design models for the continental lithosphere with different slopes and depths on the base and monitor the propagation of the plume head material along the channel.

  13. Degradation of Kidney and Psoas Muscle Proteins as Indicators of Post-Mortem Interval in a Rat Model, with Use of Lateral Flow Technology

    PubMed Central

    Lee, Dong-Gi; Yang, Kyeong Eun; Hwang, Jeong Won; Kang, Hwan-Soo; Lee, Seung-Yeul; Choi, Seoyeon; Shin, Joonchul; Jang, Ik-Soon; An, Hyun Joo; Chung, Heesun; Jung, Hyo-Il; Choi, Jong-Soon

    2016-01-01

    We investigated potential protein markers of post-mortem interval (PMI) using rat kidney and psoas muscle. Tissue samples were taken at 12 h intervals for up to 96 h after death by suffocation. Expression levels of eight soluble proteins were analyzed by Western blotting. Degradation patterns of selected proteins were clearly divided into three groups: short-term, mid-term, and long-term PMI markers based on the half maximum intensity of intact protein expression. In kidney, glycogen synthase (GS) and glycogen synthase kinase-3β were degraded completely within 48 h making them short-term PMI markers. AMP-activated protein kinase α, caspase 3 and GS were short-term PMI markers in psoas muscle. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was a mid-term PMI marker in both tissues. Expression levels of the typical long-term PMI markers, p53 and β-catenin, were constant for at least 96 h post-mortem in both tissues. The degradation patterns of GS and caspase-3 were verified by immunohistochemistry in both tissues. GAPDH was chosen as a test PMI protein to perform a lateral flow assay (LFA). The presence of recombinant GAPDH was clearly detected in LFA and quantified in a concentration-dependent manner. These results suggest that LFA might be used to estimate PMI at a crime scene. PMID:27552165

  14. Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency.

    PubMed

    Nauen, Ralf; Wölfel, Katharina; Lueke, Bettina; Myridakis, Antonis; Tsakireli, Dimitra; Roditakis, Emmanouil; Tsagkarakou, Anastasia; Stephanou, Euripides; Vontas, John

    2015-06-01

    Cotton whitefly, Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) is a major sucking pest in many agricultural and horticultural cropping systems globally. The frequent use of insecticides of different mode of action classes resulted in populations resisting treatments used to keep numbers under economic damage thresholds. Recently it was shown that resistance to neonicotinoids such as imidacloprid is linked to the over-expression of CYP6CM1, a cytochrome P450 monooxygenase detoxifying imidacloprid and other neonicotinoid insecticides when recombinantly expressed in insect cells. However over-expression of CYP6CM1 is also known to confer cross-resistance to pymetrozine, an insecticide not belonging to the chemical class of neonicotinoids. In addition we were able to demonstrate by LC-MS/MS analysis the metabolisation of pyriproxyfen by recombinantly expressed CYP6CM1. Based on our results CYP6CM1 is one of the most versatile detoxification enzymes yet identified in a pest of agricultural importance, as it detoxifies a diverse range of chemical classes used to control whiteflies. Therefore we developed a field-diagnostic antibody-based lateral flow assay which detects CYP6CM1 protein at levels providing resistance to neonicotinoids and other insecticides. The ELISA based test kit can be used as a diagnostic tool to support resistance management strategies based on the alternation of different modes of action of insecticides.

  15. Development and Validation of a Lateral Flow Immunoassay for the Rapid Screening of Okadaic Acid and All Dinophysis Toxins from Shellfish Extracts.

    PubMed

    Jawaid, Waqass; Meneely, Julie P; Campbell, Katrina; Melville, Karrie; Holmes, Stephen J; Rice, Jennifer; Elliott, Christopher T

    2015-09-30

    A single-step lateral flow immunoassay was developed and validated to detect okadaic acid (OA) and dinophysis toxins (DTXs), which cause diarrhetic shellfish poisoning. The performance characteristics of the test were investigated, in comparison to reference methods (liquid chromatography tandem mass spectrometry and/or bioassay), using both spiked and naturally contaminated shellfish. A portable reader was used to generate a qualitative result, indicating the absence or presence of OA-group toxins, at concentrations relevant to the maximum permitted level (MPL). Sample homogenates could be screened in 20 min (including extraction and assay time) for the presence of free toxins (OA, DTX1, DTX2). DTX3 detection could be included with the addition of a hydrolysis procedure. No matrix effects were observed from the species evaluated (mussels, scallops, oysters, and clams). Results from naturally contaminated samples (n = 72) indicated no false compliant results and no false noncompliant results at <50% MPL. Thus, the development of a new low-cost but highly effective tool for monitoring a range of important phycotoxins has been demonstrated.

  16. Lateral Flow Rapid Test for Accurate and Early Diagnosis of Scrub Typhus: A Febrile Illness of Historically Military Importance in the Pacific Rim.

    PubMed

    Chao, Chien-Chung; Zhangm, Zhiwen; Weissenberger, Giulia; Chen, Hua-Wei; Ching, Wei-Mei

    2017-03-01

    Scrub typhus (ST) is an infection caused by Orientia tsutsugamushi. Historically, ST was ranked as the second most important arthropod-borne medical problem only behind malaria during World War II and the Vietnam War. The disease occurs mainly in Southeast Asia and has been shown to emerge and reemerge in new areas, implying the increased risk for U.S. military and civilian personnel deployed to these regions. ST can effectively be treated by doxycycline provided the diagnosis is made early, before the development of severe complications. Scrub Typhus Detect is a lateral flow rapid test based on a mixture of recombinant 56-kDa antigens with broad reactivity. The performance of this prototype product was evaluated against indirect immunofluorescence assay, the serological gold standard. Using 249 prospectively collected samples from Thailand, the sensitivity and specificity for IgM was found to be 100% and 92%, respectively, suggesting a high potential of this product for clinical use. This product will provide a user friendly, rapid, and accurate diagnosis of ST for clinicians to provide timely and accurate treatments of deployed personnel.

  17. Lateral migration of flexible fibers in Poiseuille flow between two parallel planar solid walls.

    PubMed

    Słowicka, Agnieszka M; Wajnryb, Eligiusz; Ekiel-Jeżewska, Maria L

    2013-03-01

    Dynamics of non-Brownian flexible fibers in Poiseuille flow between two parallel planar solid walls is evaluated from the Stokes equations which are solved numerically by the multipole method. Fibers migrate towards a critical distance from the wall zc, which depends significantly on the fiber length N and bending stiffness A. This effect can be used to sort fibers. Three types of accumulation are found, depending on a shear-to-bending parameter Γ. In the first type, stiff fibers deform only a little and accumulate close to the wall, where their tendency to drift away from the channel is balanced by the repulsive hydrodynamic interaction with the wall. In the second type, flexible fibers deform significantly and accumulate far from the wall. In both types, the fiber shapes at the accumulation positions are repeatable, while in the third type, they are very compact and non-repeatable. The difference between the second and third accumulation types is a special case of the difference between the regular and irregular modes for the dynamics of migrating fibers. At the regular mode, far from walls, the fiber tumbling frequency satisfies Jeffery's expression, with the local shear rate and the aspect ratio close to N.

  18. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater

    PubMed Central

    Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-01-01

    Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen’s’ reports and fish community monitorings. PMID:26814998

  19. Recognition of DAF and αvβ3 by inactivated Hantaviruses, towards the development of HTS flow cytometry assays

    PubMed Central

    Buranda, Tione; Wu, Yang; Perez, Dominique; Jett, Stephen D.; BonduHawkins, Virginie; Ye, Chunyan; Edwards, Bruce; Hall, Pamela; Larson, Richard S.; Lopez, Gabriel P.; Sklar, Larry A.; Hjelle, Brian

    2010-01-01

    Hantaviruses cause two severe diseases in humans: hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardio-pulmonary syndrome (HCPS). The lack of vaccines or specific drugs to prevent or treat HFRS and HCPS, and the requirement for conducting experiments in a biosafety level 3 laboratory (BSL-3) limit the ability to probe the mechanism of infection and disease pathogenesis. In this study we have developed a generalizable spectroscopic assay to quantify saturable fluorophore sites solubilized in envelope membranes of Sin Nombre virus (SNV) particles. We then use flow cytometry and live cell confocal fluorescence microscopy imaging to show that UV-killed SNV bind to the cognate receptors of live virions, namely, decay accelerating factor (CD55/DAF) expressed on Tanoue B cells and αvβ3 integrins expressed on Vero E6 cells. SNV binding to DAF is multivalent and of high affinity (Kd ≈ 26pM). Self-exchange competition binding assays between fluorescently labeled SNV and unlabeled SNV are used to evaluate an infectious unit-to-particle ratio of ∼1:14000. We have configured the assay for measuring the binding of fluorescently labeled SNV to Tanoue B suspension cells using a high throughput flow cytometer. In this way, we establish a proof of principle high throughput screening assay for binding inhibition. This is a first step towards the development of HTS format assays for small molecule inhibitors of viral-cell interactions, as well as dissecting the mechanism of infection in a BSL-2 environment. PMID:20363206

  20. Isotopic evidence for lateral flow and diffusive transport, but not sublimation, in a sloped seasonal snowpack, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Evans, Samantha L.; Flores, Alejandro N.; Heilig, Achim; Kohn, Matthew J.; Marshall, Hans-Peter; McNamara, James P.

    2016-04-01

    Oxygen and hydrogen isotopes in snow were measured in weekly profiles during the growth and decline of a sloped subalpine snowpack, southern Idaho, 2011-2012. Isotopic steps (10‰, δ18O; 80‰, δD) were preserved relative to physical markers throughout the season, albeit with some diffusive smoothing. Melting stripped off upper layers without shifting isotopes within the snowpack. Meltwater is in isotopic equilibrium with snow at the top but not with snow at each respective collection height. Transport of meltwater occurred primarily along pipes and lateral flow paths allowing the snowpack to melt initially in reverse stratigraphic order. Isotope diffusivities are ~2 orders of magnitude faster than estimated from experiments but can be explained by higher temperature and porosity. A better understanding of how snowmelt isotopes change during meltout improves hydrograph separation methods, whereas constraints on isotope diffusivities under warm conditions improve models of ice core records in low-latitude settings.

  1. Evaluation of a new lateral flow test for detection of Streptococcus pneumoniae and Legionella pneumophila urinary antigen.

    PubMed

    Jørgensen, Charlotte S; Uldum, Søren A; Sørensen, Jesper F; Skovsted, Ian C; Otte, Sanne; Elverdal, Pernille L

    2015-09-01

    Pneumonia is a major cause of morbidity and mortality worldwide. Early diagnosis of the etiologic agent is important in order to choose the correct antibiotic treatment. In this study we evaluated the first commercial combined test for the agents of pneumococcal pneumonia and Legionnaires' disease based on urinary antigen detection, the ImmuView® Streptococcus pneumoniae and Legionella pneumophila Urinary Antigen Test. In this evaluation, the new test had a significantly higher sensitivity than the BinaxNOW® lateral flow tests and the Binax® EIA test. This identifies the ImmuView® S. pneumoniae and L. pneumophila Urinary Antigen Test as a fast and sensitive point of care test for identification of the infectious agent in a major group of patients with pneumonia.

  2. Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay.

    PubMed

    Liu, Cheng-Che; Yeung, Chun-Yan; Chen, Po-Hao; Yeh, Ming-Kung; Hou, Shao-Yi

    2013-12-01

    An ultrasensitive, simple, and fast lateral flow immunoassay for Salmonella detection using gold nanoparticles conjugated with a DNA probe, which is complementary to the 16S ribosomal RNA and DNA of Salmonella, has been developed. The detection limit is 5 fmol for the synthetic single-stranded DNA. For the Salmonella cultured samples, the nucleic acids from 10(7) bacteria were rapidly detected in 30 min. After silver enhancement, the detection limit was as low as 10(4) cells which is lower than 10(5) bacteria cells, the human infective dose of food-borne Salmonella. Furthermore, the probes used in this study are specific to Salmonella compared to several other Enterobacteriaceae. This approach would be a useful tool for microbial detection regarding food safety or clinical diagnosis. It is also suitable for large-scale screening in developing countries because it is low-cost, sensitive, specific and convenient.

  3. Flow-through, viral co-infection assay for resource-limited settings.

    PubMed

    Cretich, Marina; Torrisi, Marcello; Daminelli, Serena; Gagni, Paola; Plavisch, Lauren; Chiari, Marcella

    2015-01-01

    Here we present a new and rapid immunofiltration assay for simultaneous detection of HIV p24 and hepatitis B virus antigens. The assay platform is composed of a 13 mm nitrocellulose filter spotted with capturing bioprobes and inserted in a Swinnex(®) syringe filter holder. Samples and reagents are flown through the nitrocellulose filter by manual pressure on the syringe. A colorimetric detection allows for naked eye results interpretation. The assay provides sensitivity in the picomolar range in just 5 min, even using low volumes of sample in complex matrix. Probe deposition by spotting allows for flexible combinations of different capturing agents and multiple diagnoses; furthermore, the very simple and inexpensive set-up makes the syringe-based immunoassay on paper microarray a suitable diagnostic system for resource-limited settings.

  4. Measurement of urinary N-telopeptides and serum C-telopeptides from type I collagen using a lateral flow-based immunoassay.

    PubMed

    Lee, Kyoung Min; Lee, Min Ho; Chung, Chin Youb; Seong, Woo Kyeong; Lee, Sang Dae; Park, Moon Seok

    2012-12-24

    Measuring bone turnover markers could detect early stages of osteoporosis and early responses to anti-osteoporotic treatments. Currently, commonly used bone turnover markers, N-telopeptides (NTx) and C-telopeptides (CTx), are measured using ELISA tests, which demands time and increases cost. Bone turnover markers need to be measured more easily for general use. Lateral flow-based immunoassay would be an appropriate method for this context. This study was performed to investigate the precision of a newly developed lateral flow-based immunoassay for measuring the urinary NTx and serum CTx, and their correlations with ELISA measurements. Urine NTx and serum CTx concentrations were determined by photoscan of newly developed strips, using a lateral flow-based immunoassay for 36 subjects (mean age 66.2 years, SD 7.5 years; four males and 32 females). Repeated measurement of urinary NTx and serum CTx were performed three times, using this technology for a precision test. The correlation of the lateral flow-based immunoassay with the ELISA measurements was analyzed. Precision of the newly developed lateral flow based immunoassay was 0.974 (ICC, 95% confidence interval, 0.955 to 0.986) and 0.995 (ICC, 95% confidence interval, 0.991 to 0.997) for urinary NTx and serum CTx, respectively. The correlation of lateral flow based immunoassay with ELISA was 0.913 for urinary NTx and 0.872 for serum CTx. These results suggest that measuring the urinary NTx and serum CTx, using a lateral flow-based immunoassay, is a relevant method for point-of-care testing and screening of bone resorption markers.

  5. An interference-free and rapid electrochemical lateral-flow immunoassay for one-step ultrasensitive detection with serum.

    PubMed

    Akanda, Md Rajibul; Joung, Hyou-Arm; Tamilavan, Vellaiappillai; Park, Seonhwa; Kim, Sinyoung; Hyun, Myung Ho; Kim, Min-Gon; Yang, Haesik

    2014-03-21

    Point-of-care testing (POCT) of biomarkers in clinical samples is of great importance for rapid and cost-effective diagnosis. However, it is extremely challenging to develop an electrochemical POCT technique retaining both ultrasensitivity and simplicity. We report an interference-free electrochemical lateral-flow immunoassay that enables one-step ultrasensitive detection with serum. The electrochemical-chemical-chemical (ECC) redox cycling combined with an enzymatic reaction of an enzyme label is used to obtain high signal amplification. The ECC redox cycling involving Ru(NH3)6(3+), enzyme product, and tris(3-carboxyethyl)phosphine (TCEP) depends on pH, because the formal potentials of an enzyme product and TCEP increase with decreasing pH although that of Ru(NH3)6(3+) is pH-independent. With consideration of the pH dependence of ECC redox cycling, a noble combination of enzyme label, substrate, and product [β-galactosidase, 4-amino-1-naphthyl β-D-galactopyranoside, and 4-amino-1-naphthol, respectively] is introduced to ensure fast and selective ECC redox cycling of the enzyme product along with a low background level. The selective ECC redox cycling at a low applied potential (0.05 V vs. Ag/AgCl) minimizes the interference effect of electroactive species (L-ascorbic acid, acetaminophen, and uric acid) in serum. A detection limit of 0.1 pg mL(-1) for troponin I is obtained only 11 min after serum dropping without the use of an additional solution. Moreover, the lateral-flow immunoassay is applicable to the analysis of real clinical samples.

  6. Chemiluminescence lateral flow immunoassay cartridge with integrated amorphous silicon photosensors array for human serum albumin detection in urine samples.

    PubMed

    Zangheri, Martina; Di Nardo, Fabio; Mirasoli, Mara; Anfossi, Laura; Nascetti, Augusto; Caputo, Domenico; De Cesare, Giampiero; Guardigli, Massimo; Baggiani, Claudio; Roda, Aldo

    2016-12-01

    A novel and disposable cartridge for chemiluminescent (CL)-lateral flow immunoassay (LFIA) with integrated amorphous silicon (a-Si:H) photosensors array was developed and applied to quantitatively detect human serum albumin (HSA) in urine samples. The presented analytical method is based on an indirect competitive immunoassay using horseradish peroxidase (HRP) as a tracer, which is detected by adding the luminol/enhancer/hydrogen peroxide CL cocktail. The system comprises an array of a-Si:H photosensors deposited on a glass substrate, on which a PDMS cartridge that houses the LFIA strip and the reagents necessary for the CL immunoassay was optically coupled to obtain an integrated analytical device controlled by a portable read-out electronics. The method is simple and fast with a detection limit of 2.5 mg L(-1) for HSA in urine and a dynamic range up to 850 mg L(-1), which is suitable for measuring physiological levels of HSA in urine samples and their variation in different diseases (micro- and macroalbuminuria). The use of CL detection allowed accurate and objective analyte quantification in a dynamic range that extends from femtomoles to picomoles. The analytical performances of this integrated device were found to be comparable with those obtained using a charge-coupled device (CCD) as a reference off-chip detector. These results demonstrate that integrating the a-Si:H photosensors array with CL-LFIA technique provides compact, sensitive and low-cost systems for CL-based bioassays with a wide range of applications for in-field and point-of-care bioanalyses. Graphical Abstract A novel integrated portable device was developed for direct quantitative detection of human serum albumin (HSA) in urine samples, exploiting a chemiluminescence lateral flow immunoassay (LFIA). The device comprises a cartridge that holds the LFIA strip and all the reagents necessary for the analysis, an array of amorphous silicon photosensors, and a custom read-out electronics.

  7. A new flow-cytometry-based opsonophagocytosis assay for the rapid measurement of functional antibody levels against Group B Streptococcus.

    PubMed

    Fabbrini, Monica; Sammicheli, Chiara; Margarit, Immaculada; Maione, Domenico; Grandi, Guido; Giuliani, Marzia Monica; Mori, Elena; Nuti, Sandra

    2012-04-30

    Opsonophagocytosis is the primary mechanism for the clearance of Group B Streptococcus (GBS) by the host, and levels of opsonic antibodies may correlate with protection in preclinical models. A killing-based opsonophagocytosis assay (OPA), can be used to determine the functional activity of vaccine-induced GBS-specific antibodies. The assay, which measures the number of bacterial colonies surviving phagocytic killing in the presence of specific antibodies and complement, is rather expensive, time-consuming and poorly standardized. Here we describe a rapid, sensitive and reproducible fluorescent OPA assay (fOPA) based on flow cytometry analysis (FACS), which allows internalized bacteria to be distinguished from those associated to the plasma membrane of phagocytic cells. Fixed GBS were labeled with pHrodo™, a fluorescent dye which dramatically increases the emitted fluorescence at the acidic conditions present in the phagocytic endosomal compartment. Labeled bacteria were incubated with HL-60 cells differentiated to phagocytes, antibodies and complement, and then analyzed by FACS. A further improvement to our method, allowing to reduce assay variability, consisted on a step of selection of effector cells among the HL-60 population. Analysis of sera from mice immunized with different GBS vaccines revealed comparable sensitivity and specificity with the traditional killing OPA assay (kOPA), and a good correlation between the fluorescent signal of bacteria internalized by HL-60 phagocytes and killing. Remarkably, the pHrodo-based approach reduced the variability observed with other fOPA assays. The obtained data indicate the proposed fOPA as a reliable and useful tool for functional antibody assessment.

  8. Development and validation of the first high performance-lateral flow immunoassay (HP-LFIA) for the rapid screening of domoic acid from shellfish extracts.

    PubMed

    Jawaid, Waqass; Meneely, Julie; Campbell, Katrina; Hooper, Mark; Melville, Karrie; Holmes, Stephen; Rice, Jennifer; Elliott, Christopher

    2013-11-15

    A lateral flow immunoassay (LFIA) has been developed and fully validated to detect the primary amnesic shellfish poisoning (ASP) toxin, domoic acid (DA). The performance characteristics of two versions of the test were investigated using spiked and naturally contaminated shellfish (mussels, scallops, oysters, clams, and cockles). The tests provide a qualitative result, to indicate the absence or presence of DA in extracts of shellfish tissues, at concentrations that are relevant to regulatory limits. The new rapid assay (LFIA version 2) was designed to overcome the performance limitations identified in the first version of the assay. The improved test uses an electronic reader to remove the subjective nature of the generated results, and the positive cut-off for screening of DA in shellfish was increased from 10 ppm (version 1) to 17.5 ppm (version 2). A simple extraction and test procedure was employed, which required minimal equipment and materials; results were available 15 min after sample preparation. Stability of the aqueous extracts at room temperature (22 °C) at four time points (up to 245 min after extraction) and across a range of DA concentrations was 100.3±1.3% and 98.8±2.4% for pre- and post-buffered extracts, respectively. The assay can be used both within laboratory settings and in remote locations. The accuracy of the new assay, to indicate negative results at or below 10 ppm DA, and positive results at or above 17.5 ppm, was 99.5% (n=216 tests). Validation data were obtained from a 2-day, randomised, blind study consisting of multiple LFIA lots (n=3), readers (n=3) and operators (n=3), carrying out multiple extractions of mussel tissue (n=3) at each concentration (0, 10, 17.5, and 20 ppm). No matrix effects were observed on the performance of the assay with different species (mussels, scallops, oysters, clams, and cockles). There was no impact on accuracy or interference from other phycotoxins, glutamic acid or glutamine with various strip

  9. A flow cytometry-based assay for quantifying non-plaque forming strains of yellow fever virus.

    PubMed

    Hammarlund, Erika; Amanna, Ian J; Dubois, Melissa E; Barron, Alex; Engelmann, Flora; Messaoudi, Ilhem; Slifka, Mark K

    2012-01-01

    Primary clinical isolates of yellow fever virus can be difficult to quantitate by standard in vitro methods because they may not form discernable plaques or induce a measurable cytopathic effect (CPE) on cell monolayers. In our hands, the Dakar strain of yellow fever virus (YFV-Dakar) could not be measured by plaque assay (PA), focus-forming assay (FFA), or by measurement of CPE. For these reasons, we developed a YFV-specific monoclonal antibody (3A8.B6) and used it to optimize a highly sensitive flow cytometry-based tissue culture limiting dilution assay (TC-LDA) to measure levels of infectious virus. The TC-LDA was performed by incubating serial dilutions of virus in replicate wells of C6/36 cells and stained intracellularly for virus with MAb 3A8.B6. Using this approach, we could reproducibly quantitate YFV-Dakar in tissue culture supernatants as well as from the serum of viremic rhesus macaques experimentally infected with YFV-Dakar. Moreover, the TC-LDA approach was >10-fold more sensitive than standard plaque assay for quantitating typical plaque-forming strains of YFV including YFV-17D and YFV-FNV (French neurotropic vaccine). Together, these results indicate that the TC-LDA technique is effective for quantitating both plaque-forming and non-plaque-forming strains of yellow fever virus, and this methodology may be readily adapted for the study and quantitation of other non-plaque-forming viruses.

  10. Evaluation of T and B lymphocyte function in clinical practice using a flow cytometry based proliferation assay.

    PubMed

    Marits, Per; Wikström, Ann-Charlotte; Popadic, Dusan; Winqvist, Ola; Thunberg, Sarah

    2014-08-01

    The golden standard for functional evaluation of immunodeficiencies is the incorporation of [(3)H]-thymidine in a proliferation assay stimulated with mitogens. Recently developed whole blood proliferation assays have the advantage of parallel lymphocyte lineage analysis and in addition provide a non-radioactive alternative. Here we evaluate the Flow-cytometric Assay for Specific Cell-mediated Immune-response in Activated whole blood (FASCIA) in a comparison with [(3)H]-thymidine incorporation in four patients with severe combined immunodeficiency. The threshold for the minimum number of lymphocytes required for reliable responses in FASCIA is determined together with reference values from 100 healthy donors when stimulated with mitogens as well as antigen specific stimuli. Finally, responses against PWM and SEA+SEB stimuli are conducted with clinically relevant immunomodulatory compounds. We conclude that FASCIA is a rapid, stable and sensitive functional whole blood assay that requires small amounts of whole blood that can be used for reliable assessment of lymphocyte reactivity in patients.

  11. Groundwater flow system in the valley of Toluca, Mexico: an assay of natural radionuclide specific activities.

    PubMed

    Segovia, N; Tamez, E; Peña, P; Carrillo, J; Acosta, E; Armienta, M A; Iturbe, J L

    1999-03-01

    Natural radionuclides and physicochemical parameters have been evaluated in groundwater samples from boreholes belonging to the drinking water supply system of the Toluca City, Mexico. The results obtained for radon and radium, together with the physicochemical parameters of the studied samples, indicate a fast and efficient recharge pattern. The presence of a local and a regional groundwater flows was also observed. The local flow belongs to shallower water, recognized by its low radon content and dissolved ions, as compared with the regional, deeper groundwater flow with a longer residence time.

  12. Flow cytometry assays of respiratory burst in Atlantic salmon (Salmo salar L.) and in Atlantic cod (Gadus morhua L.) leucocytes.

    PubMed

    Kalgraff, Cathrine A K; Wergeland, Heidrun I; Pettersen, Eirin Fausa

    2011-09-01

    The oxidation of dihydrorhodamine 123 (DHR) to the fluorescent rhodamine 123 (RHO) was detected using flow cytometry. This assay for detection of respiratory burst activity was established in peripheral blood leucocytes (PBL) and head kidney leucocytes (HKL) of Atlantic salmon and Atlantic cod. The leucocytes were stimulated by phorbol 12-myristate 13-acetate (PMA). For cod cells 10 times lower concentration of PMA had to be used compared to salmon cells, as higher concentrations were toxic and resulted in considerable cell death. The cells found to be RHO-positive were monocytes/macrophages and neutrophils based on the scatter dot plots, but for salmon also some small cells were found to have high fluorescence intensity both in the flow cytometry analyses and by fluorescence microscopy of cytospin preparations. The nature of these cells is not known. For cod leucocytes, such cells were not obvious. The instrument settings are a bit more demanding for cod, as cod cells die more easily compared to salmon cells. In both assays the limit between negative and positive cells has to be carefully considered. The presented flow cytometry protocols for measurements of respiratory burst in salmon and cod leucocytes can be applied in various studies where respiratory burst functions are involved, such as to verify if it is activated or suppressed in connection with infections and immunostimulation.

  13. A CCD-based reader combined quantum dots-labeled lateral flow strips for ultrasensitive quantitative detection of anti-HBs antibody.

    PubMed

    Zhang, Xueqing; Li, Ding; Wang, Can; Zhi, Xiao; Zhang, Chunlei; Wang, Kan; Cui, Daxiang

    2012-06-01

    Herein we reported a CCD-based reader combined quantum dots-labeled lateral flow strips for ultrasensitive quantitative detection of anti-HBs antibody. The CdTe quantum dots were prepared, then were used to label Hepatitis B Virus surface antigen, and then were fabricated into lateral flow strips. The as-prepared lateral flow strips were used to test different concentration of anti-HBV surface antibodies. The CCD-based reader was designed and fabricated, the quantitative analysis software was compiled, and resultant CCD-based reader system was used for quantitative analysis of examined anti-HBs antibodies on the strips. Results showed that the quantum dots-labeled lateral flow strips could detect the anti-HBs antibody with the limitation concentration of 200 pg/mL, the CCD-based reader system could detect anti-HBs antibody with the sensitivity of 2 pg/mL. In conclusion, the prepared CCD-based reader combined quantum dots-labeled lateral flow strips can be used for quantitative detection of anti-HBs antibody in sera with the sensitivity of 2 pg/mL, and has great potential in applications such as ultrasensitive detection of HBV antigens or antibodies, and other tumor biomarkers in near future.

  14. Ecohydrologic Investigations of Shallow Lateral Subsurface Flow in Tropical Soils using Time-Lapse Surface Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Mojica, A.; Abebe, N. A.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project

    2010-12-01

    flow velocities over 1 m/h, presumably due to the existing downslope macroporosity network. These observations are being used to estimate macroporosity network properties and constrain hydrologic model parameters in different land uses. These results show that these non-invasive tests are a useful tool to determine the distribution of downslope lateral flow generated from pit and surface-applied saline solutions. ERT experimental results from a hillslope-scale experiment in central Panama, showing change in electrical conductivity from 30-minutes to 330-minutes after continuous injection of salinity contrast at x=0.

  15. Colony-forming cell assay for human hematopoietic progenitor cells harvested by a novel continuous-flow cell separation method.

    PubMed

    Shiono, Hiroyuki; Chen, Hong Miao; Okada, Tadashi; Ito, Yoichiro

    2007-06-01

    In order to prove the functional potentiality of cells separated according to their densities by a novel continuous-flow cell separation method, the colony-forming cell (CFC) assay was performed on the harvested cells from peripheral blood and umbilical cord blood. The number of colony-forming unit-granulocyte, erythroid, macrophage, megakaryocyte (CFU-GEMM), which are considered to be stem cells, was approximately 3% of colonies developed from the peripheral blood and approximately 4% of colonies from the umbilical cord blood. It appears that this new method could allow us for harvesting of hematopoietic progenitor cells without losing their native ability to proliferate.

  16. Hemoculture and Direct Sputum Detection of mecA-Mediated Methicillin-Resistant Staphylococcus aureus by Loop-Mediated Isothermal Amplification in Combination With a Lateral-Flow Dipstick.

    PubMed

    Nawattanapaiboon, Kawin; Prombun, Photchanathorn; Santanirand, Pitak; Vongsakulyanon, Apirom; Srikhirin, Toemsak; Sutapun, Boonsong; Kiatpathomchai, Wansika

    2016-09-01

    This study reports loop-mediated isothermal amplification (LAMP) for rapid detection of methicillin-resistant Staphylococcus aureus from direct clinical specimens. Four primers including outer and inner primers were specifically designed on the two target sequences-femB to identify S. aureus and mecA to identify antibiotic-resistant gene. Reference strains including various species of gram-positive/gram-negative isolates were used to evaluate and optimize LAMP assays. The optimum LAMP condition was found at 63°C within 70 min assay time (include hybridization with FITC probe for 5 min and further 5 min for reading the results on the lateral flow dipstick). The detection limits of LAMP for mecA was 10 pg of total DNA or 100 CFU/ml. The LAMP assays were applied to a total of 155 samples of direct DNA extraction from sputum and hemoculture bottles. The sensitivity of LAMP for mecA detection in sputum and hemoculture bottles was 93.3% (28/30) and 100% (52/52), respectively. In conclusion, LAMP assay is an alternative technique for rapid detection of MRSA infection with a technical simplicity and cost-effective method in a routine diagnostic laboratory.

  17. Paper-based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip

    NASA Astrophysics Data System (ADS)

    González-Guerrero, Maria José; del Campo, F. Javier; Esquivel, Juan Pablo; Giroud, Fabien; Minteer, Shelley D.; Sabaté, Neus

    2016-09-01

    This work presents a first approach towards the development of a cost-effective enzymatic paper-based glucose/O2 microfluidic fuel cell in which fluid transport is based on capillary action. A first fuel cell configuration consists of a Y-shaped paper device with the fuel and the oxidant flowing in parallel over carbon paper electrodes modified with bioelectrocatalytic enzymes. The anode consists of a ferrocenium-based polyethyleneimine polymer linked to glucose oxidase (GOx/Fc-C6-LPEI), while the cathode contains a mixture of laccase, anthracene-modified multiwall carbon nanotubes, and tetrabutylammonium bromide-modified Nafion (MWCNTs/laccase/TBAB-Nafion). Subsequently, the Y-shaped configuration is improved to use a single solution containing both, the anolyte and the catholyte. Thus, the electrolytes pHs of the fuel and the oxidant solutions are adapted to an intermediate pH of 5.5. Finally, the fuel cell is run with this single solution obtaining a maximum open circuit of 0.55 ± 0.04 V and a maximum current and power density of 225 ± 17 μA cm-2 and 24 ± 5 μW cm-2, respectively. Hence, a power source closer to a commercial application (similar to conventional lateral flow test strips) is developed and successfully operated. This system can be used to supply the energy required to power microelectronics demanding low power consumption.

  18. Flow-Through Assay for Detection of Antibodies Using Protein-A Colloidal Gold Conjugate as a Probe.

    PubMed

    Chennuru, Sreedevi; Pavuluri, Panduranga Rao

    2015-01-01

    Flow-through assay (FTA) is a rapid, simple-to-perform, cost-effective, and user-friendly diagnostic test for monitoring infections in non-laboratory settings. It is mostly applied for antibody detection. FTA employing protein-A colloidal gold conjugate to detect antibodies against porcine cysticerci using cyst fluid and whole cyst antigens of Taenia solium metacestode is described here. Antibodies in the serum are captured by an antigen spotted onto a nitrocellulose membrane mounted on a flow-through device that serves as the antigen capture matrix. The bound antibodies are visualized by the addition of protein-A colloidal gold conjugate, which imparts a pink color. The test can be completed within 3 min at room temperature without any instrumentation. The sensitivity and specificity of the FTA are in agreement with ELISA.

  19. Flow-through synthesis on Teflon-patterned paper to produce peptide arrays for cell-based assays.

    PubMed

    Deiss, Frédérique; Matochko, Wadim L; Govindasamy, Natasha; Lin, Edith Y; Derda, Ratmir

    2014-06-16

    A simple method is described for the patterned deposition of Teflon on paper to create an integrated platform for parallel organic synthesis and cell-based assays. Solvent-repelling barriers made of Teflon-impregnated paper confine organic solvents to specific zones of the patterned array and allow for 96 parallel flow-through syntheses on paper. The confinement and flow-through mixing significantly improves the peptide yield and simplifies the automation of this synthesis. The synthesis of 100 peptides ranging from 7 to 14 amino acids in length gave over 60% purity for the majority of the peptides (>95% yield per coupling/deprotection cycle). The resulting peptide arrays were used in cell-based screening to identify 14 potent bioactive peptides that support the adhesion or proliferation of breast cancer cells in a 3D environment. In the future, this technology could be used for the screening of more complex phenotypic responses, such as cell migration or differentiation.

  20. Lateral flow devices

    DOEpatents

    Mazumdar, Debapriya; Liu, Juewen; Lu, Yi

    2010-09-21

    An analytical test for an analyte comprises (a) a base, having a reaction area and a visualization area, (b) a capture species, on the base in the visualization area, comprising nucleic acid, and (c) analysis chemistry reagents, on the base in the reaction area. The analysis chemistry reagents comprise (i) a substrate comprising nucleic acid and a first label, and (ii) a reactor comprising nucleic acid. The analysis chemistry reagents can react with a sample comprising the analyte and water, to produce a visualization species comprising nucleic acid and the first label, and the capture species can bind the visualization species.

  1. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B

    NASA Astrophysics Data System (ADS)

    Hwang, Joonki; Lee, Sangyeop; Choo, Jaebum

    2016-06-01

    A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as determined with the SERS-based LFA strip, was estimated to be 0.001 ng mL-1. This value is approximately three orders of magnitude more sensitive than that achieved with the corresponding ELISA-based method. The proposed SERS-based LFA strip sensor shows significant potential for the rapid and sensitive detection of target markers in a simplified manner.A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as

  2. A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais.

    PubMed

    Peyrard, X; Liger, L; Guillemain, C; Gouy, V

    2016-01-01

    Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.

  3. Development of a Modular Assay for Detailed Immunophenotyping of Peripheral Human Whole Blood Samples by Multicolor Flow Cytometry

    PubMed Central

    Rühle, Paul F.; Fietkau, Rainer; Gaipl, Udo S.; Frey, Benjamin

    2016-01-01

    The monitoring of immune cells gained great significance in prognosis and prediction of therapy responses. For analyzing blood samples, the multicolor flow cytometry has become the method of choice as it combines high specificity on single cell level with multiple parameters and high throughput. Here, we present a modular assay for the detailed immunophenotyping of blood (DIoB) that was optimized for an easy and direct application in whole blood samples. The DIoB assay characterizes 34 immune cell subsets that circulate the peripheral blood including all major immune cells such as T cells, B cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), neutrophils, eosinophils, and basophils. In addition, it evaluates their functional state and a few non-leukocytes that also have been associated with the outcome of cancer therapy. This DIoB assay allows a longitudinal and close-meshed monitoring of a detailed immune status in patients requiring only 2.0 mL of peripheral blood and it is not restricted to peripheral blood mononuclear cells. It is currently applied for the immune monitoring of patients with glioblastoma multiforme (IMMO-GLIO-01 trial, NCT02022384), pancreatic cancer (CONKO-007 trial, NCT01827553), and head and neck cancer (DIREKHT trial, NCT02528955) and might pave the way for immune biomarker identification for prediction and prognosis of therapy outcome. PMID:27529227

  4. Flow Cytometry and Transplantation-Based Quantitative Assays for Satellite Cell Self-Renewal and Differentiation.

    PubMed

    Arpke, Robert W; Kyba, Michael

    2016-01-01

    In response to muscle damage, satellite cells proliferate and undertake both differentiation and self-renewal, generating new functional muscle tissue and repopulating this new muscle with stem cells for future injury responses. For many questions relating to the physiological regulation of satellite cells, quantitative readouts of self-renewal and differentiation can be very useful. There is a particular need for a quantitative assay for satellite cell self-renewal that does not rely solely upon sectioning, staining and counting cells in sections. In this chapter, we provide detailed methods for quantifying the self-renewal and differentiation potential of a given population of satellite cells using an assay involving transplantation into injured, regenerating muscle together with specific markers for donor cell identity and state of differentiation. In particular, using the Pax7-ZsGreen transgene as a marker of satellite cell state, self-renewal can be quantified by FACS on transplanted muscle to actually count the total number of resident satellite cells at time points following transplantation.

  5. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids

    PubMed Central

    Oliveira-Rodríguez, Myriam; López-Cobo, Sheila; Reyburn, Hugh T.; Costa-García, Agustín; López-Martín, Soraya; Yáñez-Mó, María; Cernuda-Morollón, Eva; Paschen, Annette; Valés-Gómez, Mar; Blanco-López, Maria Carmen

    2016-01-01

    Exosomes are cell-secreted nanovesicles (40–200 nm) that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA) for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×105 exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition. PMID:27527605

  6. Commercial lateral flow devices for rapid detection of peanut (Arachis hypogaea) and hazelnut (Corylus avellana) cross-contamination in the industrial production of cookies.

    PubMed

    Röder, Martin; Vieths, Stefan; Holzhauser, Thomas

    2009-09-01

    Lateral flow devices (LFDs) are qualitative immunochromatographic tests for the rapid and specific detection of target analytes. We investigated commercially available LFDs for their ability to detect potentially allergenic peanut and hazelnut in raw cookie dough and chocolate, two important food matrices in the industrial production of cookies. Each three commercial LFDs for the detection of hazelnut and peanut were performed according to the manufacturers' instructions. All LFDs had comparably satisfactory specificity that was investigated with a variety of characteristic foods and food ingredients used in the production of cookies. In concordance with hazelnut-specific enzyme-linked immunosorbent assays (ELISAs), walnut was the most cross-reactive food for hazelnut-specific LFD. The sensitivity was verified in raw cookie doughs and chocolates that were either spiked with peanut or hazelnut between 1 and 25 mg/kg, respectively. Two hazelnut-specific LFDs detected hazelnut at a level of 3.5 mg/kg in both matrices, whereas the third LFD detected hazelnut at a level of 3.9 mg/kg in dough and 12.5 mg/kg in chocolate. Two peanut-specific LFDs detected peanut at a level of 1 mg/kg in both matrices. The third LFD detected peanut at a level of 14.2 mg/kg in chocolate and 4 mg/kg in dough. In conclusion, specific and sensitive LFD were identified for each hazelnut and peanut, having a level of sensitivity that is comparable to commercial ELISA for the investigated matrices. Such sensitive, specific, and rapid tests are useful analytical tools for allergen screening and sanitation in the industrial manufacture of foods.

  7. Evaluation of a rapid lateral flow immunoassay for the detection of cryptococcal antigen for the early diagnosis of cryptococcosis in HIV patients in Colombia.

    PubMed

    Escandón, Patricia; Lizarazo, Jairo; Agudelo, Clara Ines; Chiller, Tom; Castañeda, Elizabeth

    2013-10-01

    A previous study carried out in a tertiary care hospital in Colombia demonstrated the usefulness of the Cryptococcus capsular antigen detection by latex (CrAg Latex) in the early diagnosis of cryptococcosis in HIV-infected patients with low CD4 + levels. The aim of this study was to establish the performance of a new rapid lateral flow assay (CrAg LFA) in preserved sera of those HIV-infected patients collected between 2001 and 2006. A total of 421 sera from 297 patients with a confirmed diagnosis of HIV were tested with CrAg LFA and results compared with those obtained with CrAg Latex. All patients provided informed consent for specimen collection. A concordance of 100% was found between positive results obtained by both methods. However, 13 sera that were negative by CrAg Latex, were positive by CrAg LFA (3.1%). In these positive patients, median of CD4 + levels was 67 cells/μl (8-608 cells/μl), while median of viral load was 118,965 copies/ml (50-500,000 copies/ml). Patients who were negative for cryptococcosis had a median of 177 cells/μl in CD4 + levels (4-2516 cells/μl) and a median of 62,318 copies/ml in viral loads (25-50,000 copies/ml). A significant statistical difference was found when comparing CD4 + levels and viral load in patients positive for cryptococcosis and those that were proven to be negative (P < 0.0001). The use of Point-of-Care Tests (POCT) like CrAg LFA play an important role in the diagnosis of infectious diseases, especially in resource limited settings, where it will be a useful means to diagnose cryptococcosis early in HIV patients.

  8. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids.

    PubMed

    Oliveira-Rodríguez, Myriam; López-Cobo, Sheila; Reyburn, Hugh T; Costa-García, Agustín; López-Martín, Soraya; Yáñez-Mó, María; Cernuda-Morollón, Eva; Paschen, Annette; Valés-Gómez, Mar; Blanco-López, Maria Carmen

    2016-01-01

    Exosomes are cell-secreted nanovesicles (40-200 nm) that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA) for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×10(5) exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition.

  9. A new immunoassay of serum antibodies against Peste des petits ruminants virus using quantum dots and a lateral-flow test strip.

    PubMed

    Cheng, Si; Sun, Jie; Yang, Junxing; Lv, Jianqiang; Wu, Feng; Lin, Yanxing; Liao, Lishan; Ye, Yiyou; Cao, Chenfu; Fang, Liurong; Hua, Qunyi

    2017-01-01

    A fast and ultrasensitive test-strip system combining quantum dots (QDs) with a lateral-flow immunoassay strip (LFIAS) was established for detection of Peste des petits ruminants virus (PPRV) antibody. The highly luminescent water-soluble carboxyl-functionalized QDs were used as the signal output and were conjugated to streptococcal protein G (SPG), which was capable of binding to immunoglobulin G (IgG) from many species through an amide bond to capture the target PPRV IgGs. The PPRV N protein, which was immobilized on the detection zone of the test strip, was expressed by transfecting recombinant Bacmid-PPRV-N with Lipofect into Sf9 insect cells. When exposed to PPRV IgG, QD-SPG bound to PPRV N protein, resulting in the formation of a complex that subsequently produced a bright fluorescent band in response to 365 nm ultraviolet excitation. Sensitivity evaluation showed that the QD-LFIAS limit of detection (LOD) for PPRV antibody was superior to competitive enzyme-linked immunosorbent assay (c-ELISA) and the immunochromatographic strip. No cross reaction was observed when the positive sera of bluetongue virus, canine distemper virus, goat pox virus, and foot-and-mouth disease virus were tested. Further evaluation using field samples indicated that the diagnostic specificity and sensitivity of the QD-LFIAS was 99.47 and 97.67 %, respectively, with excellent agreement between QD-LFIAS and c-ELISA. The simple analysis step and objective results that can be obtained within 15 min indicate that this new method shows great promise for rapid, sensitive detection of PPRV IgG for onsite, point-of-care diagnosis and post vaccination evaluation (PVE). Graphical Abstract Ultrasensitive fluorescent QD immunochromotography in combination with recombinant PPRV N protein could be used to detect PPRV antibody in serum.

  10. Rapid and sensitive detection of shrimp yellow head virus by loop-mediated isothermal amplification combined with a lateral flow dipstick.

    PubMed

    Khunthong, Sasiwarat; Jaroenram, Wansadaj; Arunrut, Narong; Suebsing, Rungkarn; Mungsantisuk, Idsada; Kiatpathomchai, Wansika

    2013-03-01

    Yellow head virus (YHV) is a highly virulent pathogen that has caused severe mortality in cultivated shrimp (Penaeus monodon and Penaeus vannamei) in Thailand. There are several technologies that are applied to detect YHV for further control of the disease. RT-PCR is currently widely used in the laboratory, but it has some disadvantages related to cost, time-consuming and complexity. An alternative assay combines RT with loop-mediated isothermal amplification (LAMP) that not only provides high specificity, sensitivity and rapidity, but is also cheaper and more suitable for field applications in shrimp aquaculture than the RT-PCR. RT-LAMP is performed under isothermal conditions with a set of four to six primers designed to recognize six to eight distinct target sequences, and it has been combined with a chromatographic lateral-flow dipstick (LFD) to detect LAMP amplified product, which avoids the use of gel electrophoresis. In this study, RT-LAMP for the detection of YHV was developed by isothermal amplification at 65 °C for 45 min, followed by hybridization with an FITC-labeled DNA probe for 5 min and detected by LFD within 5 min (time required approximately 55 min, excluding RNA extraction and preparation time). The detection limit of RT-LAMP-LFD was 0.1 pg RNA extracted from shrimp infected with YHV equivalent to the nested RT-PCR, and no cross reaction was observed with other common shrimp viral pathogens. The LAMP method described in this study showed a rapid, high sensitivity and specificity and it is recommended as user-friendly for diagnosis of YHV in the field.

  11. Multiple Cross Displacement Amplification Combined with Gold Nanoparticle-Based Lateral Flow Biosensor for Detection of Vibrio parahaemolyticus

    PubMed Central

    Wang, Yi; Li, Hui; Li, Dongxun; Li, Kewei; Wang, Yan; Xu, Jianguo; Ye, Changyun

    2016-01-01

    Vibrio parahaemolyticus (V. parahaemolyticus) is a marine seafood-borne pathogen causing severe illnesses in humans and aquatic animals. In the present study, multiple cross displacement amplification was combined with a lateral flow biosensor (MCDA-LFB) to detect the toxR gene of V. parahaemolyticus in DNA extracts from pure cultures and spiked oyster homogenates. Amplification was carried out at a constant temperature (62°C) for only 30 min, and amplification products were directly applied to the biosensor. The entire process, including oyster homogenate processing (30 min), isothermal amplification (30 min) and results indicating (∼2 min), could be completed within 65 min. Amplification product was detectable from as little as 10 fg of pure V. parahaemolyticus DNA and from approximately 4.2 × 102 CFU in 1 mL of oyster homogenate. No cross-reaction with other Vibrio species and with non-Vibrio species was observed. Therefore, the MCDA-LFB method established in the current report is suitable for the rapid screening of V. parahaemolyticus in clinical, food, and environmental samples. PMID:28066368

  12. Multiple Cross Displacement Amplification Combined with Gold Nanoparticle-Based Lateral Flow Biosensor for Detection of Vibrio parahaemolyticus.

    PubMed

    Wang, Yi; Li, Hui; Li, Dongxun; Li, Kewei; Wang, Yan; Xu, Jianguo; Ye, Changyun

    2016-01-01

    Vibrio parahaemolyticus (V. parahaemolyticus) is a marine seafood-borne pathogen causing severe illnesses in humans and aquatic animals. In the present study, multiple cross displacement amplification was combined with a lateral flow biosensor (MCDA-LFB) to detect the toxR gene of V. parahaemolyticus in DNA extracts from pure cultures and spiked oyster homogenates. Amplification was carried out at a constant temperature (62°C) for only 30 min, and amplification products were directly applied to the biosensor. The entire process, including oyster homogenate processing (30 min), isothermal amplification (30 min) and results indicating (∼2 min), could be completed within 65 min. Amplification product was detectable from as little as 10 fg of pure V. parahaemolyticus DNA and from approximately 4.2 × 10(2) CFU in 1 mL of oyster homogenate. No cross-reaction with other Vibrio species and with non-Vibrio species was observed. Therefore, the MCDA-LFB method established in the current report is suitable for the rapid screening of V. parahaemolyticus in clinical, food, and environmental samples.

  13. Contactless Measurement of Magnetic Nanoparticles on Lateral Flow Strips Using Tunneling Magnetoresistance (TMR) Sensors in Differential Configuration.

    PubMed

    Lei, Huaming; Wang, Kan; Ji, Xiaojun; Cui, Daxiang

    2016-12-14

    Magnetic nanoparticles (MNPs) are commonly used in biomedical detection due to their capability to bind with some specific antibodies. Quantification of biological entities could be realized by measuring the magnetic response of MNPs after the binding process. This paper presents a contactless scanning prototype based on tunneling magnetoresistance (TMR) sensors for quantification of MNPs present in lateral flow strips (LFSs). The sensing unit of the prototype composes of two active TMR elements, which are parallel and closely arranged to form a differential sensing configuration in a perpendicular magnetic field. Geometrical parameters of the configuration are optimized according to theoretical analysis of the stray magnetic field produced by the test line (T-line) while strips being scanned. A brief description of our prototype and the sample preparation is presented. Experimental results show that the prototype exhibits the performance of high sensitivity and strong anti-interference ability. Meanwhile, the detection speed has been improved compared with existing similar techniques. The proposed prototype demonstrates a good sensitivity for detecting samples containing human chorionic gonadotropin (hCG) at a concentration of 25 mIU/mL. The T-line produced by the sample with low concentration is almost beyond the visual limit and produces a maximum stray magnetic field some 0.247 mOe at the sensor in the x direction.

  14. Rapid simultaneous quantification of zearalenone and fumonisin B1 in corn and wheat by lateral flow dual immunoassay.

    PubMed

    Wang, Yuan-Kai; Yan, Ya-Xian; Ji, Wen-Hui; Wang, Heng-An; Li, Shu-Qing; Zou, Qi; Sun, Jian-He

    2013-05-29

    A lateral flow dual immunoassay (LFDIA) was developed for rapid quantitative detection of zearalenone (ZEN) and fumonisin B1 (FB1) in corn and wheat samples on a single test strip. Two test lines and the control line on the nitrocellulose membrane were coated with ZEN and FB1 conjugates and goat anti-mouse IgG, respectively. Colloidal gold nanoparticles were conjugated with monoclonal antibodies against ZEN or FB1. The intensity of the test lines was analyzed by a photometric strip reader to determine the concentrations of ZEN and FB1 based on the calibration curves of known concentrations versus intensity readings. Test parameters such as types of buffers, ratio of the two gold-labeled antibodies, and dilution of the sample extracts and the gold-labeled antibodies were optimized. The detection limit was 0.35 and 5.23 ng/mL for ZEN and FB1, respectively, and the corresponding detection ranges were 0.94-7.52 and 9.34-100.45 ng/mL, respectively. Spiked and natural samples were analyzed using both LFDIA and liquid chromatography-tandem mass spectrometry. The two methods had a good correlation (R(2) = 0.96). The dual quantitative LFDIA is sensitive, rapid, and easy-to-use for on-site testing of a large number of samples.

  15. A fast and sensitive quantitative lateral flow immunoassay for Cry1Ab based on a novel signal amplification conjugate.

    PubMed

    Chen, Chunxiang; Wu, Jian

    2012-01-01

    A novel lateral flow immunoassay (LFIA) signal amplification strategy for the detection of Cry1Ab based on amplification via a polylysine (PL) chain and biotin-streptavidin system (BSAS) is described. In this system, multiple fluorescence dyes (FL) were directly coated on the surface of PL and conjugated with antibody via the BSAS for construction of novel signal amplification (FLPL-BSAS-mAb1) conjugates, in which FL, PL and BSAS were employed to improve the sensitivity of LFIA. Compared with conventional LFIA, the sensitivity of FLPL-BSAS-mAb1-based LFIA was increased by approximately 100-fold. Quantified linearity was achieved in the value range of 0-1,000 pg/mL. The limit of detection (LOD) was reached 10 pg/mL after optimization of reaction conditions. To our knowledge, this represents one of the most sensitive LFIA for Cry1Ab yet reported. Furthermore, the detection time for this method was about 10 min. Therefore, it should be an attractive alternative compared to conventional immunoassays in routine control for Cry1Ab.

  16. Comparison of a lateral flow milk progesterone test with enzyme immunoassay as an aid for reproductive status determination in cows.

    PubMed

    Waldmann, A; Raud, A

    2016-03-12

    The lateral flow test (LFT) is an immunochromatographic method that utilises an immunostrip for non-laboratory diagnostic purposes. The present study evaluated a milk progesterone LFT against the enzyme immunoassay (EIA) to confirm oestrus and a non-pregnancy diagnosis. In total, 277 milk samples from 70 cows were analysed, collected on the day of artificial insemination and at 19 days, 21 days and 24 days post insemination. The level of accuracy of the LFT compared with the EIA was 95.0 per cent for milk samples containing <2 ng/ml progesterone and 97.0 per cent for milk samples containing >10 ng/ml progesterone. The validation of oestrus by the LFT was 98.6 per cent accurate using 2 ng/ml progesterone as the EIA estimate for oestrus. The test performance for a non-pregnancy diagnosis was subject to the day of milk sampling, showing the highest accuracy on day 24 post insemination for both tests. When optimised for maximum specificity, and compared with rectal palpation, the LFT had a sensitivity and specificity for non-pregnancy diagnosis on day 24 post insemination of 75.0 per cent and 100.0 per cent, respectively, with an overall accuracy of 84.4 per cent. The corresponding characteristics for the quantitative EIA were 85.0 per cent, 100.0 per cent and 90.6 per cent, respectively. The LFT results compared favourably with the quantitative milk progesterone EIA.

  17. Evaluation of a modified lateral flow immunoassay for detection of high-sensitivity cardiac troponin I and myoglobin.

    PubMed

    Zhu, Jimin; Zou, Nengli; Mao, Hongju; Wang, Ping; Zhu, Danian; Ji, Huoyan; Cong, Hui; Sun, Changjiang; Wang, Huimin; Zhang, Feng; Qian, Juying; Jin, Qinghui; Zhao, Jianlong

    2013-04-15

    We prospectively evaluated the use of lateral flow immunoassay (LFIA) test modified with nanoparticles for combined detection of high-sensitivity cardiac troponin I (hs-cTnI) and myoglobin with the aim of excluding acute myocardial infarction (AMI). Specimens from 173 patients with symptoms suggestive of AMI were collected to measure hs-cTnI and myoglobin using an electrochemiluminescence immunoassay (ECLI) and the LFIA test modified with nanoparticles, and a comparison was performed between the modified method and a commercial LFIA test for detection of the two proteins. The accuracy of the modified LFIA test was also evaluated. Consistent agreement was observed in the quantitative comparison of 173 clinical samples using the modified LFIA and ECLI, and the modified method was more sensitive than the commercial LFIA test. The accuracy of the modified LFIA was <12% for both hs-cTnI and myoglobin. Thus, the new approach has great potential to improve LFIAs test, demonstrating its usefulness for simple screening applications and for sensitivity and quantitative immunoassays for diagnosis ofAMI.

  18. Contactless Measurement of Magnetic Nanoparticles on Lateral Flow Strips Using Tunneling Magnetoresistance (TMR) Sensors in Differential Configuration

    PubMed Central

    Lei, Huaming; Wang, Kan; Ji, Xiaojun; Cui, Daxiang

    2016-01-01

    Magnetic nanoparticles (MNPs) are commonly used in biomedical detection due to their capability to bind with some specific antibodies. Quantification of biological entities could be realized by measuring the magnetic response of MNPs after the binding process. This paper presents a contactless scanning prototype based on tunneling magnetoresistance (TMR) sensors for quantification of MNPs present in lateral flow strips (LFSs). The sensing unit of the prototype composes of two active TMR elements, which are parallel and closely arranged to form a differential sensing configuration in a perpendicular magnetic field. Geometrical parameters of the configuration are optimized according to theoretical analysis of the stray magnetic field produced by the test line (T-line) while strips being scanned. A brief description of our prototype and the sample preparation is presented. Experimental results show that the prototype exhibits the performance of high sensitivity and strong anti-interference ability. Meanwhile, the detection speed has been improved compared with existing similar techniques. The proposed prototype demonstrates a good sensitivity for detecting samples containing human chorionic gonadotropin (hCG) at a concentration of 25 mIU/mL. The T-line produced by the sample with low concentration is almost beyond the visual limit and produces a maximum stray magnetic field some 0.247 mOe at the sensor in the x direction. PMID:27983659

  19. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection.

    PubMed

    Zangheri, Martina; Cevenini, Luca; Anfossi, Laura; Baggiani, Claudio; Simoni, Patrizia; Di Nardo, Fabio; Roda, Aldo

    2015-02-15

    We have developed a simple and accurate biosensor based on a chemiluminescent (CL)-lateral flow immunoassay (LFIA) method integrated in a smartphone to quantitatively detect salivary cortisol. The biosensor is based on a direct competitive immunoassay using peroxidase-cortisol conjugate, detected by adding the chemiluminescent substrate luminol/enhancer/hydrogen peroxide. The smartphone camera is used as light detector, for image acquisition and data handling via a specific application. We 3D-printed simple accessories to adapt the smartphone. The system comprises a cartridge, which houses the LFIA strip, and a smartphone adaptor with a plano-convex lens and a cartridge-insertion slot. This provides a mini-darkbox and aligned optical interface between the camera and the LFIA membrane for acquiring CL signals. The method is simple and fast, with a detection limit of 0.3 ng/mL. It provides quantitative analysis in the range of 0.3-60 ng/mL, which is adequate for detecting salivary cortisol in the clinically accepted range. It could thus find application in the growing area of home-self-diagnostic device technology for clinical biomarker monitoring, overcoming the current difficulties in achieving sensitive and quantitative information with conventional systems taking the advantage of smartphone connectivity and the enhanced performance of the included camera.

  20. Recovery of viral RNA and infectious foot-and-mouth disease virus from positive lateral-flow devices.

    PubMed

    Fowler, Veronica L; Bankowski, Bartlomiej M; Armson, Bryony; Di Nardo, Antonello; Valdazo-Gonzalez, Begoña; Reid, Scott M; Barnett, Paul V; Wadsworth, Jemma; Ferris, Nigel P; Mioulet, Valérie; King, Donald P

    2014-01-01

    Foot-and-mouth disease Virus (FMDV) is an economically important, highly contagious picornavirus that affects both wild and domesticated cloven hooved animals. In developing countries, the effective laboratory diagnosis of foot-and-mouth disease (FMD) is often hindered by inadequate sample preservation due to difficulties in the transportation and storage of clinical material. These factors can compromise the ability to detect and characterise FMD virus in countries where the disease is endemic. Furthermore, the high cost of sending infectious virus material and the biosecurity risk it presents emphasises the need for a thermo-stable, non-infectious mode of transporting diagnostic samples. This paper investigates the potential of using FMDV lateral-flow devices (LFDs) for dry transportation of clinical samples for subsequent nucleic acid amplification, sequencing and recovery of infectious virus by electroporation. FMDV positive samples (epithelial suspensions and cell culture isolates) representing four FMDV serotypes were applied to antigen LFDs: after which it was possible to recover viral RNA that could be detected using real-time RT-PCR. Using this nucleic acid, it was also possible to recover VP1 sequences and also successfully utilise protocols for amplification of complete FMD virus genomes. It was not possible to recover infectious FMDV directly from the LFDs, however following electroporation into BHK-21 cells and subsequent cell passage, infectious virus could be recovered. Therefore, these results support the use of the antigen LFD for the dry, non-hazardous transportation of samples from FMD endemic countries to international reference laboratories.

  1. Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers.

    PubMed

    Panferov, Vasily G; Safenkova, Irina V; Varitsev, Yury A; Drenova, Natalia V; Kornev, Konstantin P; Zherdev, Anatoly V; Dzantiev, Boris B

    2016-05-15

    Ralstonia solanacearum is a dangerous and economically important pathogen of potatoes and other agricultural crops. Therefore, rapid and sensitive methods for its routine diagnostics are necessary. The aim of this study was to develop a rapid control method for R. solanacearum with a low limit of detection (LOD) based on a lateral flow immunoassay (LFIA) with silver enhancement. To minimize the LOD, the membrane type, antibody amount for conjugation with gold nanoparticles, conjugate concentration and antibody concentration in the analytical zone were optimized. Silver enhancement was used to decrease the LOD of the LFIA. For silver enhancement, release fiberglass membranes with pre-absorbed silver lactate and hydroquinone were placed on the analytical zone, and a drop of silver lactate was added. The LFIA with silver enhancement was found to be 10-fold more sensitive (LOD 2×10(2) CFU/mL; 20 min) in comparison with the common analysis (LOD 2×10(3) CFU/mL; 10 min). The specificity of the developed LFIA was studied using different strains of R. solanacearum (54 samples) and other widespread bacterial pathogens (18 samples). The LFIA detected all tested strains, whereas non-specific reactions were not observed. The developed tests were used for the control of bacteria in extracts of infected and non-infected potato tubers, and the quantitative analysis results (based on the densitometry of line colouration) were confirmed by ELISA with a correlation coefficient equal to 0.965.

  2. Silver nanoparticle enhanced Raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium

    NASA Astrophysics Data System (ADS)

    Liang, Jiajie; Liu, Hongwu; Lan, Caifeng; Fu, Qiangqiang; Huang, Caihong; Luo, Zhi; Jiang, Tianjiu; Tang, Yong

    2014-12-01

    We report a simple and ultra-sensitive surface enhanced Raman scattering (SERS) strip sensor based on silver nanoparticles (AgNPs) and lateral flow immunoassays (LFIAs). LFIAs are inexpensive, simple, portable and robust, thus making them commonplace in medicine, agriculture and food safety. However, their applications are limited due to the low signal intensity of the color-formation reaction based on the label accumulation. SERS is a powerful molecular spectroscopy technique for ultra-detection, which is based on the enhancement of the inelastic scattering from molecules located near nanostructured metallic surfaces when the molecules are illuminated and the surface plasmons are excited. Because of the rapidity and robustness of LFIAs and the high sensitivity of SERS, we introduce SERS into LFIAs (SERS-LFIA). Our SERS-LFIA demonstrates fast, excellent performance and is suitable for the semiquantitative examination of ultratrace analytes (Cr3+), with the limit of the detection (LOD) as low as 10-5 ng mL-1, which is 105-fold more highly sensitive than those previously used to detect Cr3+ within 15 min.

  3. Laboratory validation of a lateral flow device for the detection of CyHV-3 antigens in gill swabs.

    PubMed

    Vrancken, R; Boutier, M; Ronsmans, M; Reschner, A; Leclipteux, T; Lieffrig, F; Collard, A; Mélard, C; Wera, S; Neyts, J; Goris, N; Vanderplasschen, A

    2013-11-01

    Cyprinid herpesvirus-3 (CyHV-3) induces the highly contagious koi herpesvirus disease (KHVD) and may result in significant economic losses to the ornamental and food-producing carp industry. Suspicion of KHVD is triggered by clinical signs and confirmed using laboratory techniques. The latter are labour- and time-consuming, require specialised equipment and trained personnel. For rapid, on-site detection of CyHV-3, a lateral flow device (LFD) was developed using two monoclonal antibodies directed towards the viral glycoprotein ORF65. The LFD was highly specific with analytical and diagnostic specificities of 100%. Analytical sensitivity ranged between 1.25×10(2) and 2.40×10(4) plaque forming units per ml for isolates originating from geographically distinct regions. In experimentally infected carp, CyHV-3 was detected as early as 4-5 days post infection. Diagnostic sensitivities of 52.6% and 72.2% relative to PCR were recorded, depending on the viral isolate used. When onset of mortality was taken as reference, diagnostic sensitivities increased to 67.0% and 93.3%. The diagnostic sensitivity for freshly found-dead animals was 100%, irrespective of the virus isolate used. Given the high specificity and ease-of-use for on-site detection of CyHV-3, the LFD was regarded fit for purpose as a first-line diagnostic tool for the identification of acute CyHV-3 infections in KHVD affected (koi) carp.

  4. Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples.

    PubMed

    Vanparys, Caroline; Depiereux, Sophie; Nadzialek, Stéphanie; Robbens, Johan; Blust, Ronny; Kestemont, Patrick; De Coen, Wim

    2010-09-15

    In vitro estrogenicity screens are believed to provide a first prioritization step in hazard characterization of endocrine disrupting chemicals. When applied to complex environmental matrices or mixture samples, they have been indicated valuable in estimating the overall estrogen-mimicking load. In this study, the performance of an adapted format of the classical E-screen or MCF-7 cell proliferation assay was profoundly evaluated to rank pure compounds as well as influents and effluents of sewage treatment plants (STPs) according to estrogenic activity. In this adapted format, flow cytometric cell cycle analysis was used to allow evaluation of the MCF-7 cell proliferative effects after only 24 h of exposure. With an average EC(50) value of 2 pM and CV of 22%, this assay appears as a sensitive and reproducible system for evaluation of estrogenic activity. Moreover, estrogenic responses of 17 pure compounds corresponded well, qualitatively and quantitatively, with other in vitro and in vivo estrogenicity screens, such as the classical E-screen (R(2)=0.98), the estrogen receptor (ER) binding (R(2)=0.84) and the ER transcription activation assay (R(2)=0.87). To evaluate the applicability of this assay for complex samples, influents and effluents of 10 STPs covering different treatment processes, were compared and ranked according to estrogenic removal efficiencies. Activated sludge treatment with phosphorus and nitrogen removal appeared most effective in eliminating estrogenic activity, followed by activated sludge, lagoon and filter bed. This is well in agreement with previous findings based on chemical analysis or biological activity screens. Moreover, ER blocking experiments indicated that cell proliferative responses were mainly ER mediated, illustrating that the complexity of the end point, cell proliferation, compared to other ER screens, does not hamper the interpretation of the results. Therefore, this study, among other E-screen studies, supports the use of

  5. Optimized automated data analysis for the cytokinesis‐block micronucleus assay using imaging flow cytometry for high throughput radiation biodosimetry

    PubMed Central

    Rodrigues, M. A.; Probst, C. E.; Beaton‐Green, L. A.

    2016-01-01

    Abstract The cytokinesis‐block micronucleus (CBMN) assay is a well‐established technique that can be employed in triage radiation biodosimetry to estimate whole body doses of radiation to potentially exposed individuals through quantitation of the frequency of micronuclei (MN) in binucleated lymphocyte cells (BNCs). The assay has been partially automated using traditional microscope‐based methods and most recently has been modified for application on the ImageStreamX (ISX) imaging flow cytometer. This modification has allowed for a similar number of BNCs to be automatically scored as compared to traditional microscopy in a much shorter time period. However, the MN frequency measured was much lower than both manual and automated slide‐based methods of performing the assay. This work describes the optimized analysis template which implements newly developed functions in the IDEAS® data analysis software for the ISX that enhances specificity for BNCs and increases the frequency of scored MN. A new dose response calibration curve is presented in which the average rate of MN per BNC is of similar magnitude to those presented in the literature using automated CBMN slide scoring methods. In addition, dose estimates were generated for nine irradiated, blinded samples and were found to be within ±0.5 Gy of the delivered dose. Results demonstrate that the improved identification accuracy for MN and BNCs in the ISX‐based version of the CBMN assay will translate to increased accuracy when estimating unknown radiation doses received by exposed individuals following large‐scale radiological or nuclear emergencies. © 2016 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC PMID:27272602

  6. A Simplified, Sensitive Phagocytic Assay for Malaria Cultures Facilitated by Flow Cytometry of Differentially-Stained Cell Populations

    PubMed Central

    Chan, Chuu Ling; Rénia, Laurent; Tan, Kevin S. W.

    2012-01-01

    Background Phagocytosis of infected and uninfected erythrocytes is an important feature of malaria infections. Flow cytometry is a useful tool for studying phagocytic uptake of malaria-infected erythrocytes in vitro. However, current approaches are limited by the inability to discriminate between infected and uninfected erythrocytes and a failure to stain the early developmental ring stages of infected erythrocytes. The majority of infected erythrocytes in circulation are of the ring stage and these are therefore important targets to study. Methodology/Principal Findings In vitro P. falciparum cultures comprising infected and uninfected erythrocytes were labeled and exposed to cells derived from the human monocytic THP-1 cell line. Phagocytosis was assayed by flow cytometry. Dual labeling of Plasmodium DNA and erythrocyte cytoplasm with dihydroethidium and CellTrace™ Violet respectively allowed, for the first time, the detection and enumeration of phagocytes with ingested erythrocytes from both early ring- and late schizont-stage P, falciparum cultures. The sensitivity of the method was tested using varying conditions including phagocyte type (monocytes versus macrophages), parasite stage (rings versus schizonts), and negative (incubation with cytochalasin D) and positive (incubation with immune sera) effectors of phagocytosis. The current assay clearly demonstrated uptake of infected and uninfected erythrocytes exposed to phagocytes; the extent of which was dependent on the conditions mentioned. Conclusions We describe a simple, sensitive and rapid method for quantifying phagocytosis of P. falciparum-infected erythrocytes, by flow cytometry. This approach can be applied for studying parasite-phagocyte interactions under a variety of conditions. The investigation of phagocytosis of P. falciparum-infected erythrocytes can extend from looking solely at late-staged infected erythrocytes to include early-staged ones as well. It does away with the need to purify

  7. Evaluating 6 ricin field detection assays.

    PubMed

    Slotved, Hans-Christian; Sparding, Nadja; Tanassi, Julia Tanas; Steenhard, Nina R; Heegaard, Niels H H

    2014-01-01

    This study presents data showing the performance of 6 commercial detection assays against ricin around concentrations specified as detection limits by the producers. A 2-fold dilution series of 20 ng/ml ricin was prepared and used for testing the lateral-flow kits: BADD, Pro Strips™, ENVI, RAID DX, Ricin BioThreat Alert, and IMASS™ device. Three of the 6 tested field assays (IMASS™ device, ENVI assay, and the BioThreat Alert assay) were able to detect ricin, although differences in the measured detection limits compared to the official detection limits and false-negative results were observed. We were not able to get the BADD, Pro Strips™, and RAID assays to function in our laboratory. We conclude that when purchasing a field responder assay, there is large variation in the specificity of the assays, and a number of in-house tests must be performed to ensure functionality.

  8. A flow cytometry-based assay for measuring invasion of red blood cells by Plasmodium falciparum.

    PubMed

    Bei, Amy K; Desimone, Tiffany M; Badiane, Aida S; Ahouidi, Ambroise D; Dieye, Tandakha; Ndiaye, Daouda; Sarr, Ousmane; Ndir, Omar; Mboup, Souleymane; Duraisingh, Manoj T

    2010-04-01

    Variability in the ability of the malaria parasite Plasmodium falciparum to invade human erythrocytes is postulated to be an important determinant of disease severity. Both the parasite multiplication rate and erythrocyte selectivity are important parameters that underlie such variable invasion. We have established a flow cytometry-based method for simultaneously calculating both the parasitemia and the number of multiply-infected erythrocytes. Staining with the DNA-specific dye SYBR Green I allows quantitation of parasite invasion at the ring stage of parasite development. We discuss in vitro and in vivo applications and limitations of this method in relation to the study of parasite invasion.

  9. Flow Cytometric Assays for Interrogating LAGLIDADG Homing Endonuclease DNA-Binding and Cleavage Properties

    PubMed Central

    Baxter, Sarah K.; Lambert, Abigail R.; Scharenberg, Andrew M.; Jarjour, Jordan

    2014-01-01

    A fast, easy, and scalable method to assess the properties of site-specific nucleases is crucial to understanding their in cellulo behavior in genome engineering or population-level gene drive applications. Here we describe an analytical platform that enables high-throughput, semiquantitative interrogation of the DNA-binding and catalytic properties of LAGLIDADG homing endonucleases (LHEs). Using this platform, natural or engineered LHEs are expressed on the surface of Saccharomyces cerevisiae yeast where they can be rapidly evaluated against synthetic DNA target sequences using flow cytometry. PMID:23423888

  10. Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor based on Quantum Dots and a Lateral Flow Test Strip

    SciTech Connect

    Li, Zhaohui; Wang, Ying; Wang, Jun; Tang, Zhiwen; Pounds, Joel G.; Lin, Yuehe

    2010-08-15

    A portable fluorescence biosensor with rapid and ultrasensitive response for trace protein has been built up with quantum dots and lateral flow test strip. The superior signal brightness and high photostability of quantum dots are combined with the promising advantages of lateral flow test strip and resulted in high sensitivity, selectivity and speedy for protein detection. Nitrated ceruloplasmin, a significant biomarker for cardiovascular disease, lung cancer and stress response to smoking, was used as model protein to demonstrate the good performances of this proposed Qdot-based lateral flow test strip. Quantitative detection of nitrated ceruloplasmin was realized by recording the fluorescence intensity of quantum dots captured on the test line. Under optimal conditions, this portable fluorescence biosensor displays rapid responses for nitrated ceruloplasmin in wide dynamic range with a detection limit of 0.1ng/mL (S/N=3). Furthermore, the biosensor was successfully utilized for spiked human plasma sample detection with the concentration as low as 1ng/mL. The results demonstrate that the quantum dot-based lateral flow test strip is capable for rapid, sensitive, and quantitative detection of nitrated ceruloplasmin and hold a great promise for point-of-care and in field analysis of other protein biomarkers.

  11. Detection of H5 and H7 highly pathogenic avian influenza virus with lateral flow devices: performance with healthy, sick and dead chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid detection of highly pathogenic avian influenza virus (HPAIV) in the field is critical for effective disease control and to differentiate it from other diseases, such as Newcastle disease. Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test fo...

  12. A novel flow cytometry-based assay for the quantification of antibody-dependent pneumococcal agglutination

    PubMed Central

    van der Gaast—de Jongh, Christa E.; Diavatopoulos, Dimitri A.; de Jonge, Marien I.

    2017-01-01

    The respiratory pathogen Streptococcus pneumoniae is a major cause of diseases such as otitis media, pneumonia, sepsis and meningitis. The first step towards infection is colonization of the nasopharynx. Recently, it was shown that agglutinating antibodies play an important role in the prevention of mucosal colonization with S. pneumoniae. Here, we present a novel method to quantify antibody-dependent pneumococcal agglutination in a high-throughput manner using flow cytometry. We found that the concentration of agglutinating antibodies against pneumococcal capsule are directly correlated with changes in the size and complexity of bacterial aggregates, as measured by flow cytometry and confirmed by light microscopy. Using the increase in size, we determined the agglutination index. The cutoff value was set by measuring a series of non-agglutinating antibodies. With this method, we show that not only anti-polysaccharide capsule antibodies are able to induce agglutination but that also anti-PspA protein antibodies have agglutinating capabilities. In conclusion, we have described and validated a novel method to quantify pneumococcal agglutination, which can be used to screen sera from murine or human vaccination studies, in a high-throughput manner. PMID:28288168

  13. Sequential injection kinetic flow assay for monitoring glycerol in a sugar fermentation process by Saccharomyces cerevisiae.

    PubMed

    Domínguez, Karina B Hueso; Tóth, Ildikó V; Souto, M Renata S; Mendes, Filipa; De María, Cándido García; Vasconcelos, Isabel; Rangel, António O S S

    2010-03-01

    A sequential injection system to monitor glycerol in a Saccharomyces cerevisiae fermentation process was developed. The method relies on the rate of formation of nicotinamide adenine dinucleotide in its reduced form (NADH, measured spectrophotometrically at 340 nm) from the reaction of glycerol with NAD(+) cofactor, catalysed by the enzyme glycerol dehydrogenase present in solution. This procedure enables the determination of glycerol between 0.046 and 0.46 g/l, (corresponding to yeast fermentation samples with concentrations up to 50 g/l) with good repeatability (relative standard deviation for n = 10 lower than 2.2% for three different samples) at a sampling frequency of 25/h. The detection and quantification limits using a miniaturised spectrophotometer were 0.13 and 0.44 mM, respectively. Reagent consumption was of 0.45 mumol NAD(+) and 1.8 microg enzyme per assay, and the waste production was 2.8 ml per determination. Results obtained for samples were in agreement with those obtained with a high-performance liquid chromatography method.

  14. Development of an isothermal recombinase polymerase amplification assay for rapid detection of pseudorabies virus.

    PubMed

    Yang, Yang; Qin, Xiaodong; Zhang, Wei; Li, Zhiyong; Zhang, Shuaijun; Li, Yanmin; Zhang, Zhidong

    2017-03-22

    Recombinase polymerase amplification assays using real-time fluorescent detection (real-time RPA assay) and lateral flow dipstick (RPA LFD assay) were developed targeting the gD gene of pseudorabies virus (PRV). Both assays were performed at 39 °C within 20 min. The sensitivity of the real-time RPA assay and the RPA LFD assay was 100 copies per reaction and 160 copies per reaction, respectively. Both assays did not detect DNAs from other virus or PRV negative samples. Therefore, the developed RPA assays provide a rapid, simple, sensitive and specific alternative tool for detection of PRV.

  15. Co- and counter-current spontaneous imbibition into groups of capillary tubes with lateral connections permitting cross-flow.

    PubMed

    Unsal, E; Mason, G; Ruth, D W; Morrow, N R

    2007-11-01

    A model for co- and counter-current imbibition through independent capillaries has already been developed and experiments conducted to verify the theory [E. Unsal, G. Mason, N.R. Morrow, D.W. Ruth, J. Colloid Interface Sci. 306 (2007) 105]. In this paper, the work is extended to capillaries which are connected laterally and in which cross-flow can take place. The fundamental pore geometry is a rod in an angled round-bottomed slot with a gap between the rod and a capping glass plate. The surfaces of the slot, rod and plate form capillaries and interconnecting passages which have non-axisymmetric cross-sections. Depending on the gap size either (i) a large single meniscus, (ii) two menisci one on each side of the rod, or (iii) three menisci, one between the rod and the glass additional to the ones on each side can be formed. A viscous refined oil was applied to one end of the capillaries and co-current and counter-current spontaneous imbibition experiments were performed. The opposite end was left open to the atmosphere for co-current experiments. When the gap between the rod and the plate was large, the imbibing oil advanced into the tubes with the meniscus in the largest capillary always lagging behind the two menisci in the other two smaller capillaries. For counter-current imbibition experiments the open end was sealed and connected to a sensitive pressure transducer. In some experiments, the oil imbibed into the smaller capillaries and expelled air as a series of bubbles from the end of the largest capillary. In other experiments, the oil was allowed to imbibe part way into the tubes before counter-current imbibition was started. The meniscus curvatures of the capillaries have been calculated using the Mayer and Stowe-Princen method for different cell slot angles and gap sizes using a value of zero for the contact angle. These values have been compared with actual values by measuring the capillary rise in the tubes; agreement was very close. A model for co

  16. Standardizing flow cytometric assays in long-term population-based studies

    NASA Astrophysics Data System (ADS)

    Melzer, Susanne; Bocsi, Jozsef; Tárnok, Attila

    2015-03-01

    Quantification of leukocyte subpopulations and characterization of antigen-expression pattern on the cellular surface can play an important role in diagnostics. The state of cellular immunology on the single-cell level was analyzed by polychromatic flow cytometry in a recent comparative study within the average Leipzig population (LIFE - Leipzig Research Centre for Civilization Diseases). Data of 1699 subjects were recorded over a long-time period of three years (in a total of 1126 days). To ensure compatibility of such huge data sets, quality-controls on many levels (stability of instrumentation, low intra-laboratory variance and reader independent data analysis) are essential. The LIFE study aims to analyze various cytometric pattern to reveal the relationship between the life-style, the environmental effects and the individual health. We therefore present here a multi-step quality control procedure for long-term comparative studies.

  17. Performance of Galactomannan Antigen, Beta-d-Glucan, and Aspergillus-Lateral-Flow Device for the Diagnosis of Invasive Aspergillosis.

    PubMed

    Metan, Gökhan; Keklik, Muzaffer; Dinç, Gökçen; Pala, Çiğdem; Yıldırım, Afra; Saraymen, Berkay; Köker, Mustafa Yavuz; Kaynar, Leylagül; Eser, Bülent; Çetin, Mustafa

    2017-03-01

    Aspergillus lateral-flow device (LFD) was recently introduced as a practical tool for the diagnosis of invasive aspergillosis (IA). We investigated the performance of Aspergillus-LFD as a point-of-care test for the diagnosis of IA. Serum samples were collected twice weekly from patients who received intensive chemotherapy for acute leukemia, or recepients of allogeneic stem cell transplantation. Aspergillus galactomannan (GM) antigen, 1,3-beta-d-glucan and Aspergillus-LFD tests were carried out according to manufacturers' recommendations. GM testing was repeated with a modified procedure which was proven to increase the sensitivity. Aspergillus-LFD was performed without applying any pretreatment procedure to allow the kit to fit as a point-of-care test. Fungal infections were categorized according to European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) criteria. A total of 75 neutropenia episodes in 64 patients were prospectively followed between February 2012 and January 2013. Probable IA was diagnosed in 11 patients, probable pulmonary fungal disease was diagnosed in one patient, and rhinocerebral aspergillosis was diagnosed in one patient. Fungemia was detected in two patients. Aspergillus-LFD was positive in serum of a patient with probable IA and in the bronchoalveolar lavage fluid of an other patient with probable IA. Aspergillus-LFD was false positive in serum of two patients. Although there was no radiological finding of IA or documented fungemia, fever resolved after empirical caspofungin therapy in one of these patients. The sensitivity of Aspergillus-LFD as a point-of-care test without any pretreatment of serum sample is low.

  18. Development of a multiplex lateral flow strip test for foot-and-mouth disease virus detection using monoclonal antibodies.

    PubMed

    Yang, Ming; Caterer, Nigel R; Xu, Wanhong; Goolia, Melissa

    2015-09-01

    Foot-and-mouth disease (FMD) is one of the world's most highly contagious animal diseases with tremendous economic consequences. A rapid and specific test for FMD diagnosis at the site of a suspected outbreak is crucial for the implementation of control measures. This project developed a multiplex lateral flow immunochromatographic strip test (multiplex-LFI) for the rapid detection and serotyping of FMD viruses. The monoclonal antibodies (mAbs) against serotypes O, A, and Asia 1 were used as capture mAbs. The mAbs were conjugated with fluorescein, rhodamine or biotin for serotype O, A and Asia 1, respectively. The detection mAbs which consisted of a serotype-independent mAb in combination with one serotype A-specific mAb and one Asia 1-specific mAb, were each colloidal gold-conjugated. The strips used in this study contained one control line and three test lines, which corresponded to one of the three serotypes, O, A or Asia 1. The newly developed multiplex-LFI strip test specifically identified serotype O (n=46), A (n=45) and Asia 1 (n=17) in all tested field isolates. The sensitivity of this strip test was comparable to the double antibody sandwich ELISA for serotypes O and A, but lower than the ELISA for serotype Asia 1. The multiplex-LFI strip test identified all tissue suspensions from animals that were experimentally inoculated with serotypes O, A or Asia 1. FMD viruses were detected in 38% and 50% of the swab samples from the lesion areas of experimentally inoculated sheep for serotypes O and A, respectively. The capability of the multiplex-LFI strip tests to produce rapid results with high specificity for FMD viruses of multiple serotypes makes this test a valuable tool to detect FMD viruses at outbreak sites.

  19. Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinesterase: biomarker of exposure to organophosphorus agents.

    PubMed

    Du, Dan; Wang, Jun; Wang, Limin; Lu, Donglai; Lin, Yuehe

    2012-02-07

    An integrated lateral flow test strip with an electrochemical sensor (LFTSES) device with rapid, selective, and sensitive response for quantification of exposure to organophosphorus (OP) pesticides and nerve agents has been developed. The principle of this approach is based on parallel measurements of postexposure and baseline acetylcholinesterase (AChE) enzyme activity, where reactivation of the phosphorylated AChE is exploited to enable measurement of the total amount of AChE (including inhibited and active) which is used as a baseline for calculation of AChE inhibition. Quantitative measurement of phosphorylated adduct (OP-AChE) was realized by subtracting the active AChE from the total amount of AChE. The proposed LFTSES device integrates immunochromatographic test strip technology with electrochemical measurement using a disposable screen printed electrode which is located under the test zone. It shows a linear response between AChE enzyme activity and enzyme concentration from 0.05 to 10 nM, with a detection limit of 0.02 nM. On the basis of this reactivation approach, the LFTSES device has been successfully applied for in vitro red blood cells inhibition studies using chlorpyrifos oxon as a model OP agent. This approach not only eliminates the difficulty in screening of low-dose OP exposure because of individual variation of normal AChE values but also avoids the problem in overlapping substrate specificity with cholinesterases and avoids potential interference from other electroactive species in biological samples. It is baseline free and thus provides a rapid, sensitive, selective, and inexpensive tool for in-field and point-of-care assessment of exposures to OP pesticides and nerve agents.

  20. The effusive-explosive transitions at Rokatenda 2012-2013: unloading by extrusion of degassed magma with lateral gas flow

    NASA Astrophysics Data System (ADS)

    Primulyana, Sofyan; Bani, Philipson; Harris, Andrew

    2017-02-01

    Between October 2012 and August 2013, Rokatenda, one of the most poorly understood volcanoes in Indonesia, entered a phase of intense eruptive activity which involved extrusion of viscous lava, gas discharge and explosive activity. During the 10-month-long eruption, a lava volume of 2-5 × 106 m3 was extruded at mean output rate of 0.3 m3 s-1, with 2 to 3-month-long high extrusion rate phases being terminated by explosive events. Extrusion built a lava dome attaining a maximum height of ˜80 m above the crater rim, with a basal width of about 250 m. The composition of the 2012-2013 lava dome is comparable to that of the 1980 lava dome, both being andesite-trachydacite. Mineralogically, the 2012-2013 lava dome is mainly composed of plagioclase, pyroxene and an undetermined opaque mineral. Halogens released during eruption are consistent with the extrusion being fed, at least in the first eruption phase, by a degassed magma. This resulted in the formation of a dense, viscous plug in the conduit that led to a lateral gas flow, with gasses escaping around the plug to form multiple craters surrounding the dome. During the course of the eruptive activity, degassed magma was progressively forced out of the vent to unload deeper magma and force the system into an explosive phase. Such a scenario has occurred in the past at Rokatenda and is likely to be repeated in the future and creates an activity pattern that may be used to characterize such systems.

  1. Integrated Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Exposure to Organophosphorus Agents

    SciTech Connect

    Du, Dan; Wang, Jun; Wang, Limin; Lu, Donglai; Lin, Yuehe

    2012-02-08

    An integrated lateral flow test strip with electrochemical sensor (LFTSES) device with rapid, selective and sensitive response for quantification of exposure to organophosphorus (OP) pesticides and nerve agents has been developed. The principle of this approach is based on parallel measurements of post-exposure and baseline acetylcholinesterase (AChE) enzyme activity, where reactivation of the phosphorylated AChE is exploited to enable measurement of total amount of AChE (including inhibited and active) which is used as a baseline for calculation of AChE inhibition. Quantitative measurement of phosphorylated adduct (OP-AChE) was realized by subtracting the active AChE from the total amount of AChE. The proposed LFTSES device integrates immunochromatographic test strip technology with electrochemical measurement using a disposable screen printed electrode which is located under the test zone. It shows linear response between AChE enzyme activity and enzyme concentration from 0.05 to 10 nM, with detection limit of 0.02 nM. Based on this reactivation approach, the LFTSES device has been successfully applied for in vitro red blood cells inhibition studies using chlorpyrifos oxon as a model OP agent. This approach not only eliminates the difficulty in screening of low-dose OP exposure because of individual variation of normal AChE values, but also avoids the problem in overlapping substrate specificity with cholinesterases and avoids potential interference from other electroactive species in biological samples. It is baseline free and thus provides a rapid, sensitive, selective and inexpensive tool for in-field and point-of-care assessment of exposures to OP pesticides and nerve agents.

  2. Dual FITC lateral flow immunoassay for sensitive detection of Escherichia coli O157:H7 in food samples.

    PubMed

    Song, Chunmei; Liu, Jinxin; Li, Jianwu; Liu, Qing

    2016-11-15

    A pattern of signal amplification lateral flow immunoassay (LFIA) for pathogen detection, which used fluorescein isothiocyanate (FITC) labeled antigen and antibody for dual FITC-LFIA was developed. Escherichia coli O157:H7 (E.coli O157:H7) was selected as the model analyte. In the signal amplification LFIA method, FITC was mixed with sample culture medium, with the presence of E.coli O157:H7 in the samples, the bacteria could emit a yellow-green fluorescence after incubation, creating a fluorescent antigen probe. This antigen probe was added to LFIA, which already contained E.coli O157:H7 monoclonal antibodies-FITC (McAb-E.coli O157:H7-FITC) dispersed in the conjugate pad. Another E.coli O157:H7 McAb was the test line, and goat anti-mouse IgG antibody was the control line in nitrocellulose (NC) membrane. The visual limit of detection (LOD) of the strip for qualitative detection was 10(5) CFU/mL while the LOD for semi-quantitative detection could down to 10(4) CFU/mL by using scanning reader. Signal amplification LFIA was perfectly applied to the detection of food samples with E.coli O157:H7. The LOD was substantially improved to 1 CFU/mL of the original bacterial content after pre-incubation of the bread, milk and jelly samples in broth for 10, 8 and 8h respectively. The results of this method was more sensitive by 10-fold than the conventional colloidal gold (CG) based strips and comparable to the traditional ELISA. This simple, low-cost and easy to be popularized method served as a significant step towards the development of monitoring food-borne pathogens in food-safety testing.

  3. Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer-metal composite flow sensors

    NASA Astrophysics Data System (ADS)

    Abdulsadda, Ahmad T.; Tan, Xiaobo

    2013-04-01

    Motivated by the lateral line system of fish, arrays of flow sensors have been proposed as a new sensing modality for underwater robots. Existing studies on such artificial lateral lines (ALLs) have been mostly focused on the localization of a fixed underwater vibrating sphere (dipole source). In this paper we examine the problem of tracking a moving dipole source using an ALL system. Based on an analytical model for the moving dipole-generated flow field, we formulate a nonlinear estimation problem that aims to minimize the error between the measured and model-predicted magnitudes of flow velocities at the sensor sites, which is subsequently solved with the Gauss-Newton scheme. A sliding discrete Fourier transform (SDFT) algorithm is proposed to efficiently compute the evolving signal magnitudes based on the flow velocity measurements. Simulation indicates that it is adequate and more computationally efficient to use only the signal magnitudes corresponding to the dipole vibration frequency. Finally, experiments conducted with an artificial lateral line consisting of six ionic polymer-metal composite (IPMC) flow sensors demonstrate that the proposed scheme is able to simultaneously locate the moving dipole and estimate its vibration amplitude and traveling speed with small errors.

  4. Immune cell dysfunctions in breast cancer patients detected through whole blood multi-parametric flow cytometry assay

    PubMed Central

    Verronèse, E.; Delgado, A.; Valladeau-Guilemond, J.; Garin, G.; Guillemaut, S.; Tredan, O.; Ray-Coquard, I.; Bachelot, T.; N'Kodia, A.; Bardin-Dit-Courageot, C.; Rigal, C.; Pérol, D.; Caux, C.; Ménétrier-Caux, C.

    2016-01-01

    ABSTRACT Monitoring functional competence of immune cell populations in clinical routine represents a major challenge. We developed a whole-blood assay to monitor functional competence of peripheral innate immune cells including NK cells, dendritic and monocyte cell subsets through their ability to produce specific cytokines after short-term stimulation, detected through intra-cytoplasmic staining and multi-parametric flow-cytometry. A PMA/ionomycin T cell activation assay complemented this analysis. Comparing cohorts of healthy women and breast cancer (BC) patients at different stages, we identified significant functional alteration of circulating immune cells during BC progression prior to initiation of treatment. Of upmost importance, as early as the localized primary tumor (PT) stage, we observed functional alterations in several innate immune populations and T cells i.e. (i) reduced TNFα production by BDCA-1+ DC and non-classical monocytes in response to Type-I IFN, (ii) a strong drop in IFNγ production by NK cells in response to either Type-I IFN or TLR7/8 ligand, and (iii) a coordinated impairment of cytokine (IL-2, IFNγ, IL-21) production by T cell subpopulations. Overall, these alterations are further accentuated according to the stage of the disease in first-line metastatic patients. Finally, whereas we did not detect functional modification of DC subsets in response to TLR7/8 ligand, we highlighted increased IL-12p40 production by monocytes specifically at first relapse (FR). Our results reinforce the importance of monitoring both innate and adaptive immunity to better evaluate dysfunctions in cancer patients and suggest that our whole-blood assay will be useful to monitor response to treatment, particularly for immunotherapeutic strategies. PMID:27141361

  5. Hypoxia/Reoxygenation-Induced Mutations in Mammalian Cells Detected by the Flow Cytometry Mutation Assay and Characterized by Mutant Spectrum

    PubMed Central

    Keysar, Stephen B.; Trncic, Nadira; LaRue, Susan M.; Fox, Michael H.

    2010-01-01

    Under hypoxic conditions, cells are more resistant to cell killing by ionizing radiation by a factor of 2.5 to 3, potentially compromising the efficacy of radiotherapy. It has been shown recently that hypoxic conditions alone are sufficient to generate mutations in vitro and in vivo, likely due to the creation of reactive oxygen species (ROS) and a decrease in mismatch and homologous recombination DNA repair activity. These factors are known precursors to the onset of genetic instability and poor prognosis. We have previously characterized the flow cytometry mutation assay and its sensitivity to detect significant mutant fractions induced by genotoxic agents that are not detected by other mammalian assays. Here we measure the mutant fraction induced by hypoxia. CHO AL cells cultured at <0.1% O2 for 24 h generated a significant mutant fraction of 120 × 10−5 and had growth kinetics and survival characteristics similar to those obtained with other mutagens. We investigated the role of ROS by treating cells with the radical scavenger DMSO, which significantly reduced hypoxia toxicity and mutagenesis. Single cells were sorted from the mutant population, and the resulting clonal populations were stained for five antigens encoded by genes found along chromosome 11 to generate mutant spectra. The mutations were primarily large deletions, similar to those in background mutants, but the frequency was higher. We have demonstrated that hypoxic conditions alone are sufficient to generate mutations in mammalian cells in culture and that the spectrum of mutations is similar to background mutations. PMID:20041756

  6. Receptor-mediated cell attachment and detachment kinetics. II. Experimental model studies with the radial-flow detachment assay.

    PubMed Central

    Cozens-Roberts, C; Quinn, J A; Lauffenburger, D A

    1990-01-01

    Quantitative information regarding the kinetics of receptor-mediated cell adhesion to a ligand-coated surface are crucial for understanding the role of certain key parameters in many physiological and biotechnology-related processes. Here, we use the probabilistic attachment and detachment models developed in the preceding paper to interpret transient data from well-defined experiments. These data are obtained with a simple model cell system that consists of receptor-coated latex beads (prototype cells) and a Radial-Flow Detachment Assay (RFDA) using a ligand-coated glass disc. The receptors and ligands used in this work are complementary antibodies. The beads enable us to examine transient behavior with particles that possess fairly uniform properties that can be varied systematically, and the RFDA is designed for direct observation of adhesion to the ligand-coated glass surface over a range of shear stresses. Our experiments focus on the effects of surface shear stress, receptor density, and ligand density. These data provide a crucial test of the probabilistic framework. We show that these data can be explained with the probabilistic analyses, whereas they cannot be readily interpreted on the basis of a deterministic analysis. In addition, we examine transient data on cell adhesion reported from other assays, demonstrating the consistency of these data with the predictions of the probabilistic models. Images FIGURE 2 PMID:2174272

  7. Flow screen-printed amperometric detection of p-nitrophenol in alkaline phosphatase-based assays.

    PubMed

    Fanjul-Bolado, Pablo; González-García, María Begoña; Costa-García, Agustín

    2006-08-01

    p-Nitrophenyl phosphate is one of the most widely used substrates for alkaline phosphatase in ELISAs because its yellow, water-soluble product, p-nitrophenol, absorbs strongly at 405 nm. p-Nitrophenol is also electroactive; an oxidative peak at 0.97 V (vs. an Ag pseudoreference electrode) is obtained when a bare screen-printed carbon electrode is used. When an amperometric detector was coupled to a flow-injection analysis system the detection limit achieved for p-nitrophenol was 2x10(-8) mol L(-1), almost two orders of magnitude lower than that obtained by measuring the absorbance of the compound. By use of this electrochemical detection method, measurement of 7x10(-14) mol L(-1) alkaline phosphatase was achieved after incubation for 20 min. The feasibility of coupling immunoassay to screen-printed carbon electrode amperometric detection has been demonstrated by performing an ELISA for detection of pneumolysin, a toxin produced by Streptococcus pneumoniae, which causes respiratory infections. The method is simple, reproducible, and much more sensitive than traditional spectrophotometry.

  8. Flow cytometric assay for quantifying opsonophagocytosis and killing of Staphylococcus aureus by peripheral blood leukocytes.

    PubMed Central

    Martin, E; Bhakdi, S

    1992-01-01

    We describe a novel flow cytometric method for quantifying opsonophagocytosis and killing of Staphylococcus aureus in cell-rich plasma obtained after dextran sedimentation of erythrocytes. To analyze opsonophagocytosis, phagocytes were labeled with a phycoerythrin-conjugated monoclonal antibody and were incubated with viable staphylococci containing carboxyfluorescein as a vital fluorescent dye. Phagocytosing cells assumed a dual, orange-green fluorescence. The relative numbers of bacteria associating with phagocytes could be determined by quantifying the decrease of free green fluorescent particles. A parallel incubation of fluorescent bacteria with unlabeled cell-rich plasma was performed to assess phagocytic killing. Blood cells were lysed with 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate. This detergent spared viable bacteria, and residual green fluorescent particles were counted. The decrease in the number of these particles relative to the controls yielded the degree of killing. At bacteria-to-phagocyte ratios of 1:1 and 10:1, approximately 36 and 75% of the phagocytes participated in opsonophagocytosis, respectively. Over 90% of the staphylococci were phagocyte associated after 30 to 60 min. Killing rates were on the order of 66% +/- 12% and 80% +/- 7% after 1 and 2 h of incubation, respectively. These numbers, which were confirmed by colony countings, were significantly lower than those reported in the majority of past reports. PMID:1400987

  9. A Novel Stopped-Flow Assay for Quantitating Carbonic-Anhydrase Activity and Assessing Red-Blood-Cell Hemolysis

    PubMed Central

    Zhao, Pan; Geyer, R. Ryan; Boron, Walter F.

    2017-01-01

    We report a novel carbonic-anhydrase (CA) assay and its use for quantitating red-blood-cell (RBC) lysis during stopped-flow (SF) experiments. We combine two saline solutions, one containing HEPES/pH 7.03 and the other, ~1% CO2/44 mM HCO3-/pH 8.41, to generate an out-of-equilibrium CO2/HCO3- solution containing ~0.5% CO2/22 HCO3-/pH ~7.25 (10°C) in the SF reaction cell. CA catalyzes relaxation of extracellular pH to ~7.50: HCO3- + H+ → CO2 + H2O. Proof-of-concept studies (no intact RBCs) show that the pH-relaxation rate constant (kΔpH)—measured via pyranine fluorescence—rises linearly with increases in [bovine CAII] or [murine-RBC lysate]. The y-intercept (no CA) was kΔpH = 0.0183 s−1. Combining increasing amounts of murine-RBC lysate with ostensibly intact RBCs (pre-SF hemolysis ≅0.4%)—fixing total [hemoglobin] at 2.5 μM in the reaction cell to simulate hemolysis from ostensibly 0 to 100%—causes kΔpH to increase linearly. This y-intercept (0% lysate/100% ostensibly intact RBCs) was kΔpH = 0.0820 s−1, and the maximal kΔpH (100% lysate/0% intact RBCs) was 1.304 s−1. Thus, mean percent hemolysis in the reaction cell was ~4.9%. Phenol-red absorbance assays yield indistinguishable results. The increase from 0.4 to 4.9% presumably reflects mechanical RBC disruption during rapid mixing. In all fluorescence studies, the CA blocker acetazolamide reduces kΔpH to near-uncatalyzed values, implying that all CA activity is extracellular. Our lysis assay is simple, sensitive, and precise, and will be valuable for correcting for effects of lysis in physiological SF experiments. The underlying CA assay, applied to blood plasma, tissue-culture media, and organ perfusates could assess lysis in a variety of applications.

  10. Long-term effects of triethylenemelamine exposure on mouse testis cells and sperm chromatin structure assayed by flow cytometry

    SciTech Connect

    Evenson, D.P.; Baer, R.K.; Jost, L.K. )

    1989-01-01

    The toxic and potentially mutagenic actions of triethylenemelamine (TEM) on mouse body and testis weights, testicular cell kinetics, sperm production, sperm head morphology, and sperm chromatin structure were assessed in two experiments. The first experiment examined effects of four dose levels of TEM, assayed 1, 4, or 10 wk after toxic exposure. In the second study, effects from five dosage levels were measured at 1, 4, and 10 wk, and the highest dosage level was evaluated over 44 wk. TEM produced an expected dose related loss of spermatogenic activity and subsequent recovery as determined by dual-parameter (DNA, RNA) flow cytometry (FCM) measurements of testicular cells. Both testicular weights and caudal sperm reserves remained generally below controls after 44 wk recovery following exposure to the highest dosage. Chromatin structure alterations, defined as increased susceptibility to DNA denaturation in situ, and sperm head morphology were highly correlated with dose and with each other. Sperm head morphology and sperm chromatic structure remained abnormal at 44 wk for the 1.0 mg/kg TEM dosage, suggesting that the abnormalities, present long after the initial toxic response, may be a result of mutation. This study demonstrates that flow cytometry provides a unique, rapid, and efficient means to measure effects of reproductive toxins and potential mutagens.

  11. Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms.

    PubMed

    Kinahan, David J; Kearney, Sinéad M; Dimov, Nikolay; Glynn, Macdara T; Ducrée, Jens

    2014-07-07

    The centrifugal "lab-on-a-disc" concept has proven to have great potential for process integration of bioanalytical assays, in particular where ease-of-use, ruggedness, portability, fast turn-around time and cost efficiency are of paramount importance. Yet, as all liquids residing on the disc are exposed to the same centrifugal field, an inherent challenge of these systems remains the automation of multi-step, multi-liquid sample processing and subsequent detection. In order to orchestrate the underlying bioanalytical protocols, an ample palette of rotationally and externally actuated valving schemes has been developed. While excelling with the level of flow control, externally actuated valves require interaction with peripheral instrumentation, thus compromising the conceptual simplicity of the centrifugal platform. In turn, for rotationally controlled schemes, such as common capillary burst valves, typical manufacturing tolerances tend to limit the number of consecutive laboratory unit operations (LUOs) that can be automated on a single disc. In this paper, a major advancement on recently established dissolvable film (DF) valving is presented; for the very first time, a liquid handling sequence can be controlled in response to completion of preceding liquid transfer event, i.e. completely independent of external stimulus or changes in speed of disc rotation. The basic, event-triggered valve configuration is further adapted to leverage conditional, large-scale process integration. First, we demonstrate a fluidic network on a disc encompassing 10 discrete valving steps including logical relationships such as an AND-conditional as well as serial and parallel flow control. Then we present a disc which is capable of implementing common laboratory unit operations such as metering and selective routing of flows. Finally, as a pilot study, these functions are integrated on a single disc to automate a common, multi-step lab protocol for the extraction of total RNA from

  12. Flow cytometry assay for intracellular detection of Infectious Pancreatic Necrosis virus (IPNV) in Atlantic salmon (Salmo salar L.) leucocytes.

    PubMed

    Rønneseth, Anita; Pettersen, Eirin Fausa; Wergeland, Heidrun I

    2012-12-01

    Infectious Pancreatic Necrosis virus (IPNV) is traditionally detected in adherent leucocytes using immunofluorescence labelled specific antibodies, PCR or by further cultivation of infected cell material in cell lines. We present a flow cytometry (FCM) assay for detection of intracellular IPNV in salmon leucocytes, where each single cell is analysed for presence of virus. The method is established using in vitro challenge of salmon leucocytes and CHSE-214 cells. For detection of intracellular virus antigen the Cytofix/Cytoperm kit from BD is optimal compared with paraformaldehyde or acetone/methanol for cell permeabilisation. This is combined with labelling procedures allowing both internal virus antigen labelling and external antibody labelling of cell markers to identify B-cells and neutrophils. The secondary antibodies were Alexa Fluor 647 for the internal labelling and RPE for the external labelling of bound cell subtype specific antibodies. The presences of virus within cells are also demonstrated by confocal and light microscopy of infected cells. IPNV is successfully detected in blood and head kidney leucocyte samples. IPNV is found both in B-cells and neutrophils as well as in other types of leucocytes that could not be identified due to lack of cell-specific antibodies. Serial samples from cultivation of in vitro infected leucocytes and CHSE-214 cells analysed by flow cytometry showed that number of infected cells increased with increasing number of days. The flow cytometry protocol for detection of intracellular IPNV is verified using CHSE-214 cells persistently infected with IPNV. These analyses are compared with virus titre and virus infected naive CHSE-214 cells. The detection of IPNV in persistently infected cells indicates that carrier fish can be analysed, as such cells are considered to have virus titres similar to carriers.

  13. Comparison of a multiplex flow cytometric assay with enzyme-linked immunosorbent assay for auantitation of antibodies to tetanus, diphtheria, and Haemophilus influenzae Type b.

    PubMed

    Pickering, Jerry W; Martins, Thomas B; Schroder, M Carl; Hill, Harry R

    2002-07-01

    We developed a multiplexed indirect immunofluorescence assay for antibodies to Haemophilus influenza type b (Hib) polysaccharide and the toxoids of Clostridium tetani (Tet) and Corynebacterium diphtheriae (Dip) based on the Luminex multiple-analyte profiling system. A pooled serum standard was calibrated against World Health Organization standards for Dip and Tet and an international standard for Hib. The multiplexed Luminex assay was compared to individual enzyme-linked immunosorbent assays (ELISAs) for the same analytes. By both methods, 75 (92.6%) of 81 of random serum samples had protective levels of antibody to Tet (> or = 0.1 IU/ml). For Dip, 81.5% of the samples had protective antibody levels (> or = 0.1 IU/ml) by ELISA and 80.2% had protective antibody levels by Luminex. Protective levels (> or = 1.0 microg/ml) of antibody to Hib were found in 45.0% of the samples tested by ELISA and in 39.0% of the samples tested by Luminex. The correlations (R(2)) between ELISA and Luminex of the 81 samples were 0.96, 0.96, and 0.91 for Tet, Dip, and Hib, respectively. There was also similar agreement between Luminex and ELISA for sera collected before and 1 month after Tet, Dip, and Hib vaccine administration. Both methods detected strong postvaccination responses. The Luminex method is an attractive alternative to ELISA since it reduces labor and reagent costs, as well as assay time.

  14. Proteomic Identification of Immunodiagnostic Antigens for Trypanosoma vivax Infections in Cattle and Generation of a Proof-of-Concept Lateral Flow Test Diagnostic Device

    PubMed Central

    Wall, Steven J.; Sullivan, Lauren

    2016-01-01

    Trypanosoma vivax is one of the causative agents of Animal African Trypanosomosis in cattle, which is endemic in sub-Saharan Africa and transmitted primarily by the bite of the tsetse fly vector. The parasite can also be mechanically transmitted, and this has allowed its spread to South America. Diagnostics are limited for this parasite and in farm settings diagnosis is mainly symptom-based. We set out to identify, using a proteomic approach, candidate diagnostic antigens to develop into an easy to use pen-side lateral flow test device. Two related members the invariant surface glycoprotein family, TvY486_0045500 and TvY486_0019690, were selected. Segments of these antigens, lacking N-terminal signal peptides and C-terminal transmembrane domains, were expressed in E. coli. Both were developed into ELISA tests and one of them, TvY486_0045500, was developed into a lateral flow test prototype. The tests were all evaluated blind with 113 randomised serum samples, taken from 37 calves before and after infection with T. vivax or T. congolense. The TvY486_0045500 and TvY486_0019690 ELISA tests gave identical sensitivity and specificity values for T. vivax infection of 94.5% (95% CI, 86.5% to 98.5%) and 88.0% (95% CI, 75.7% to 95.5%), respectively, and the TvY486_0045500 lateral flow test prototype a sensitivity and specificity of 92.0% (95% CI, 83.4% to 97.0%) and 89.8% (95% CI, 77.8% to 96.6%), respectively. These data suggest that recombinant TvY486_0045500 shows promise for the development of a pen-side lateral flow test for the diagnosis of T. vivax animal African trypanosomosis. PMID:27606593

  15. Ultra-low Flow Liquid Chromatography Assay with Ultraviolet (UV) Detection for Piperine Quantitation in Human Plasma

    PubMed Central

    Kakarala, Madhuri; Dubey, Shiv Kumar; Tarnowski, Malloree; Cheng, Connie; Liyanage, Samadhi; Strawder, Terrence; Tazi, Karim; Sen, Ananda; Djuric, Zora; Brenner, Dean E.

    2015-01-01

    A robust and sensitive ultra-low flow liquid chromatography (UFLC) method that can reproducibly, at reasonable cost, detect low concentrations of piperine from human plasma is necessary. Piperine in plasma was separated and quantified by a gradient method using ultraviolet detection at a maximal absorbance wavelength of 340 nm. An aliquot was injected onto a reversed-phase column Waters SymmetryShield, 2.1 × 100 mm, 3.5 μm, C18 column, attached to a Waters absorbosphere, 4.6 × 30 mm, C18 guard column and eluted with a mobile phase containing a mixture of acetonitrile/water/ acetic acid (25:74.9:0.1, v/v/v) on line A and acetonitrile/acetic acid (99.9:0.1, v/v) on line B. The flow rate was 0.3 mL/min. The gradient method consisted of an opening condition of 20% pump B, with a linear increase to 37% pump B over 8 min, then a linear increase to 100% pump B at 11 min, 2 min at 100% pump B, and then a return to the opening condition (20% pump B) via a linear gradient over 2 min, followed by 5 min re-equilibration at opening conditions. The total run time was 20 min for each sample. All samples were processed protected from ambient light to avoid isomerization of piperine. The plasma assay was linear with R = 0.9995, with a lower limit of detection [signal-to-noise (S/N) > 5:1] of 100 pg of piperine loaded into the analytical system with acceptable accuracy and precision. Extraction recoveries of piperine from human plasma were 88% for quality control high (QCH), 93% for quality control medium (QCM), and 90% for quality control low (QCL), and the matrix effect was <12%. Piperine was quantifiable from a 50 mg oral dose given to human volunteers. A UFLC method for the rapid assay of human plasma with sensitivity to detect as low as 5 ng/mL piperine was developed. The method sensitivity equals that of liquid chromatography/tandem mass spectrometry (LC/MSMS) methods with much less cost. PMID:20465211

  16. In vitro micronucleus assay for the analysis of total particulate matter in cigarette smoke: comparison of flow cytometry and laser scanning cytometry with microscopy.

    PubMed

    Yao, Jianhua; Gao, Qian; Mi, Qili; Li, Xuemei; Miao, Mingming; Cheng, Peng; Luo, Ying

    2013-08-15

    The possible genotoxicity of the total particulate matter (TPM) in cigarette smoke has typically been evaluated using the in vitro micronucleus assay. In recent years, automated scoring techniques have been developed to replace the manual counting process in this assay. However, these automated scoring techniques have not been applied in routine genotoxicity assays for the analysis of TPM to improve the assay efficiency. Chinese hamster ovary (CHO) cells were treated with TPM produced from 14 types of cigarettes at five concentrations (25-200μg/ml) without exogenous metabolic activation. The three following methods were used to score the micronucleus (MN) frequency: (a) flow cytometry with SYTOX and EMA dyes, which differentially stain micronuclei and apoptotic/necrotic chromatin to enhance assay reliability; (b) laser scanning cytometry with FITC and PI dyes, which is a system that combines the analytical capabilities of flow and image cytometry; and (c) visual microcopy with Giemsa dye. The test results obtained using the three methods were compared using correlation analysis. The key findings for this set of compounds include the following: (a) both flow cytometry- and laser scanning cytometry-based methods were effective for MN identification, (b) the three scoring methods could detect dose-dependent micronucleus formation for the 14 types of TPM, and (c) the MN frequencies that were measured in the same samples by flow cytometry, laser scanning cytometry, and visual microscopy were highly correlated, and there were no significant differences (p>0.05). In conclusion, both flow cytometry and laser scanning cytometry can be used to evaluate the MN frequency induced by TPM without exogenous metabolic activation. The simpler and faster processing and the high correlation of the results make these two automatic methods appropriate tools for use in in vitro micronucleus assays for the analysis of TPM using CHO cells.

  17. Comparative Multi-Donor Study of IFNγ Secretion and Expression by Human PBMCs Using ELISPOT Side-by-Side with ELISA and Flow Cytometry Assays.

    PubMed

    Hagen, Jodi; Zimmerman, Ryan; Goetz, Christine; Bonnevier, Jody; Houchins, Jeffrey P; Reagan, Kevin; Kalyuzhny, Alexander E

    2015-02-11

    ELISPOT, ELISA and flow cytometry techniques are often used to study the function of immune system cells. It is tempting to speculate that these assays can be used interchangeably, providing similar information about the cytokine secreting activity of cells: the higher the number of cytokine-positive cells measured by flow cytometry, the higher the number of cytokine-secreting cells expected to be detected by ELISPOT and the larger the amount of secreted cytokine expected to be measured by ELISA. We have analyzed the expression level and secretion capacity of IFNγ from peripheral blood mononuclear cells isolated from five healthy donors and stimulated by calcium ionomycin mixed with phorbol 12-myristate 13-acetate in a non-specific manner in side-by-side testing using ELISPOT, ELISA and flow cytometry assays. In our study, we observed a general correlation in donors' ranking between ELISPOT and flow cytometry; ELISA values did not correlate with either ELISPOT or flow cytometry. However, a detailed donor-to-donor comparison between ELISPOT and flow cytometry revealed significant discrepancies: donors who have similar numbers of IFNγ-positive cells measured by flow cytometry show 2-3-fold differences in the number of spot-forming cells (SFCs) measured by ELISPOT; and donors who have the same number of SFCs measured by ELISPOT show 30% differences in the number of IFNγ-positive cells measured by flow cytometry. Significant discrepancies between donors were also found when comparing ELISA and ELISPOT techniques: donors who secreted the same amount of IFNγ measured by ELISA show six-fold differences in the number of SFCs measured by ELISPOT; and donors who have 5-7-times less secreted IFNγ measured by ELISA show a two-fold increase in the number of SFCs measured by ELISPOT compared to donors who show a more profound secretion of IFNγ measured by ELISA. The results of our study suggest that there can be a lack of correlation between IFNγ values measured by

  18. Development of nanogold-based lateral flow immunoassay for the detection of ochratoxin A in buffer systems.

    PubMed

    Moon, Jihea; Kim, Giyoung; Lee, Sangdae

    2013-11-01

    Ochratoxin A (OTA), classified as a possible human renal carcinogen (group 2B), is a potent toxin as to cause the nephropathy. Many methods have been proposed and reviewed for OTA determination in food and agricultural products. However, current analytical procedures of mycotoxin are based on the time-delayed analysis. To reduce the contamination of OTA during distribution and storage of food and feeds, a rapid and easy-to-use detection method is required. The strip assay is an easy and fast detection method that is very reliable and cheap in production. The purpose of this study was to improve the sensitivity of strip sensor by simplifying the manufacturing steps and detection reading. Feasibility of strip assay detection of OTA was determined by color appearance of test line that was produced by the binding between OTA-BSA conjugates and gold antibody particles. However, in this study, strip assays were improved the efficacy of detection by conjugating with nanoparticles and OTA-BSA conjugates, instead of antibody. By different optimization steps in strip manufacturing and the application of the label on the strips, an increase in sensitivity and applicability was accomplished. The method uses a low cost test device consisting of a conjugation pad, membrane, sample pad, and absorbent pad. OTA-BSA and their conjugates with colloidal gold nanoparticles were prepared. The detection was based on the competition of OTA in a sample and an OTA-BSA on the colloidal particle surfaces for the binding to antibody of OTA immobilized on a membrane. It allows direct analysis of sample containing 10% methanol in phosphate buffered saline. The limit of detection obtained was 10 ng/ml for OTA. The cross reactivity of OTA strip assays with Aflatoxin B1 (AFB1) was examined. When 10, 100 ng/ml of AFB1 was tested, non-specific binding was not observed in the test strip.

  19. Single tube, six-color flow cytometric analysis is a sensitive and cost-effective technique for assaying clonal plasma cells.

    PubMed

    Marsee, Derek K; Li, Betty; Dorfman, David M

    2010-05-01

    Bone marrow flow cytometric analysis is a powerful and rapid tool for evaluating plasma cell myeloma. By using a noncontrolled patient population in various stages of diagnosis and treatment, we compared 6-color (single-tube) and 4-color (multiple-tube) flow cytometric immunophenotyping protocols. Prospective comparison in 52 cases demonstrated improved ability to detect clonal plasma cells or identical diagnoses in 100% of the cases using 6-color, single-tube analysis. In cases in which 6-color flow cytometric analysis improved detection of a clonal population, concurrent biopsy showed less than 5% involvement by plasma cell myeloma, suggesting that 6-color flow cytometry has an advantage in patients with a low disease burden. In addition, the simplification of the procedure resulted in substantial savings in technologist time and reagent costs. Taken together, this study demonstrates that 6-color flow cytometry is an excellent, cost-effective means to assay for clonal plasma cells in a noncontrolled patient population.

  20. Flow dynamics and sedimentation of lateral accretion packages in sinuous deep-water channels: A 3D seismic case study from the northwestern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Gong, Chenglin

    2016-07-01

    The current study uses 3D seismic data to document architectural styles and flow dynamics of lateral accretion packages (LAPs) associated with sinuous deep-water channels, contributing to a better understanding of flow processes and sedimentation associated with LAPs. The documented LAPs underwent three main stages of architectural evolution, including the early incision stages characterized by intense downcutting, active migration stages characterized by active migration and avulsion of the individual channels, and late abandonment stages characterized by the termination of sediment gravity-flows and LAP growth. These three stages of LAP growth repeated through time, yielding a fining-upward pattern from sandy channel-fill turbidites, into sand-mud couplets, all capped by muddy turbidites. A river-reversed helical flow circulation was created by an imbalance, through the flow depth, of inwardly directed pressure gradient forces near the bed and outwardly directed centrifugal forces near the surface. It consists of low-velocity cores near the outer banks and low-velocity cores along the inner banks. Such river-reversed helical flow pattern is evidenced by volumetrically extensive LAPs and toplap and downlap terminations along the gentle banks and by aerially restricted, seismically unresolvable levees and truncation terminations near the steep banks. This river-reversed helical flow circulation favors asymmetric intra-channel deposition characterized by inner bank deposition versus outer bank erosion, and which, in turn, forced individual channels to consistently migrate towards outer banks, resulting in significant asymmetric cross-channel profiles with aerially extensive LAPs along inner banks.

  1. Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall.

    PubMed

    Mukherjee, Swarnajay; Sarkar, Kausik

    2014-10-01

    Wall induced lateral migration of a viscoelastic (FENE-MCR) drop in a Newtonian fluid is investigated. Just like a Newtonian drop, a viscoelastic drop reaches a quasi-steady state where the lateral velocity only depends on the instantaneous distance from the wall. The drop migration velocity and the deformation scale inversely with the square and the cube of the distance from the wall, respectively. The migration velocity varies non-monotonically with increasing viscoelasticity (increasing Deborah number); initially increasing and then decreasing. An analytical explanation has been given of the effects by computing the migration velocity as arising from an image stresslet field due to the drop. The semi-analytical expression matches well with the simulated migration velocity away from the wall. It contains a viscoelastic stresslet component apart from those arising from interfacial tension and viscosity ratio. The migration dynamics is a result of the competition between the viscous (interfacial tension and viscosity ratio) and the viscoelastic effects. The viscoelastic stresslet contribution towards the migration velocity steadily increases. But the interfacial stresslet-arising purely from the drop shape-first increases and then decreases with rising Deborah number causing the migration velocity to be non-monotonic. The geometric effect of the interfacial stresslet is caused by a corresponding nonmonotonic variation of the drop inclination. High viscosity ratio is briefly considered to show that the drop viscoelasticity could stabilize a drop against breakup, and the increase in migration velocity due to viscoelasticity is larger compared to the viscosity-matched case.

  2. Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: II. Lateral dissipative and random forces

    NASA Astrophysics Data System (ADS)

    Filipovic, N.; Haber, S.; Kojic, M.; Tsuda, A.

    2008-02-01

    Traditional DPD methods address dissipative and random forces exerted along the line connecting neighbouring particles. Espanol (1998 Phys. Rev. E 57 2930-48) suggested adding dissipative and random force components in a direction perpendicular to this line. This paper focuses on the advantages and disadvantages of such an addition as compared with the traditional DPD method. Our benchmark system comprises fluid initially at rest occupying the space between two concentric cylinders rotating with various angular velocities. The effect of the lateral force components on the time evolution of the simulated velocity profile was also compared with that of the known analytical solution. The results show that (i) the solution accuracy at steady state has improved and the error has been reduced by at least 30% (in one case by 75%), (ii) the DPD time to reach steady state has been halved, (iii) the CPU time has increased by only 30%, and (iv) no significant differences exist in density and temperature distributions.

  3. Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA

    USGS Publications Warehouse

    Ongaro, T.E.; Widiwijayanti, C.; Clarke, A.B.; Voight, B.; Neri, A.

    2011-01-01

    Volcanic lateral blasts are among the most spectacular and devastating of natural phenomena, but their dynamics are still poorly understood. Here we investigate the best documented and most controversial blast at Mount St. Helens (Washington State, United States), on 18 May 1980. By means of three-dimensional multiphase numerical simulations we demonstrate that the blast front propagation, fi nal runout, and damage can be explained by the emplacement of an unsteady, stratifi ed pyroclastic density current, controlled by gravity and terrain morphology. Such an interpretation is quantitatively supported by large-scale observations at Mount St. Helens and will infl uence the defi nition and predictive mapping of hazards on blast-dangerous volcanoes worldwide. ?? 2011 Geological Society of America.

  4. Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall

    PubMed Central

    Mukherjee, Swarnajay; Sarkar, Kausik

    2014-01-01

    Wall induced lateral migration of a viscoelastic (FENE-MCR) drop in a Newtonian fluid is investigated. Just like a Newtonian drop, a viscoelastic drop reaches a quasi-steady state where the lateral velocity only depends on the instantaneous distance from the wall. The drop migration velocity and the deformation scale inversely with the square and the cube of the distance from the wall, respectively. The migration velocity varies non-monotonically with increasing viscoelasticity (increasing Deborah number); initially increasing and then decreasing. An analytical explanation has been given of the effects by computing the migration velocity as arising from an image stresslet field due to the drop. The semi-analytical expression matches well with the simulated migration velocity away from the wall. It contains a viscoelastic stresslet component apart from those arising from interfacial tension and viscosity ratio. The migration dynamics is a result of the competition between the viscous (interfacial tension and viscosity ratio) and the viscoelastic effects. The viscoelastic stresslet contribution towards the migration velocity steadily increases. But the interfacial stresslet—arising purely from the drop shape—first increases and then decreases with rising Deborah number causing the migration velocity to be non-monotonic. The geometric effect of the interfacial stresslet is caused by a corresponding nonmonotonic variation of the drop inclination. High viscosity ratio is briefly considered to show that the drop viscoelasticity could stabilize a drop against breakup, and the increase in migration velocity due to viscoelasticity is larger compared to the viscosity-matched case. PMID:25378894

  5. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics.

    PubMed

    Park, Byung Hyun; Oh, Seung Jun; Jung, Jae Hwan; Choi, Goro; Seo, Ji Hyun; Kim, Do Hyun; Lee, Eun Yeol; Seo, Tae Seok

    2017-05-15

    Point-of-care (POC) molecular diagnostics plays a pivotal role for the prevention and treatment of infectious diseases. In spite of recent advancement in microfluidic based POC devices, there are still rooms for development to realize rapid, automatic and cost-effective sample-to-result genetic analysis. In this study, we propose an integrated rotary microfluidic system that is capable of performing glass microbead based DNA extraction, loop mediated isothermal amplification (LAMP), and colorimetric lateral flow strip based detection in a sequential manner with an optimized microfluidic design and a rotational speed control. Rotation direction-dependent coriolis force and siphon valving structures enable us to perform the fluidic control and metering, and the use of the lateral flow strip as a detection method renders all the analytical processes for nucleic acid test simplified and integrated without the need of expensive instruments or human intervention. As a proof of concept for point-of-care DNA diagnostics, we identified the food-borne bacterial pathogen which was contaminated in water or milk. Not only monoplex Salmonella Typhimurium but also multiplex Salmonella Typhimurium and Vibrio parahaemolyticus were analysed on the integrated rotary genetic analysis microsystem with a limit of detection of 50 CFU in 80min. In addition, three multiple samples were simultaneously analysed on a single device. The sample-to-result capability of the proposed microdevice provides great usefulness in the fields of clinical diagnostics, food safety and environment monitoring.

  6. Development of a Rapid Immunochromatographic Lateral Flow Device Capable of Differentiating Phytase Expressed from Recombinant Aspergillus niger phyA2 and Genetically Modified Corn.

    PubMed

    Zhou, Xiaojin; Hui, Elizabeth; Yu, Xiao-Lin; Lin, Zhen; Pu, Ling-Kui; Tu, Zhiguan; Zhang, Jun; Liu, Qi; Zheng, Jian; Zhang, Juan

    2015-05-06

    Phytase is a phosphohydrolase considered highly specific for the degradation of phytate to release bound phosphorus for animal consumption and aid in the reduction of environmental nutrient loading. New sources of phytase have been sought that are economically and efficiently productive including the construction of genetically modified (GM) phytase products designed to bypass the costs associated with feed processing. Four monoclonal antibodies (EH10a, FA7, AF9a, and CC1) raised against recombinant Aspergillus niger phyA2 were used to develop a highly specific and sensitive immunochromatographic lateral flow device for rapid detection of transgenic phytase, such as in GM corn. Antibodies sequentially paired and tested along lateral flow strips showed that the EH10a-FA7 antibody pair was able to detect the recombinant yeast-phytase at 5 ng/mL, whereas the AF9a-CC1 antibody pair to GM phytase corn was able to detect at 2 ng/mL. Concurrent to this development, evidence was revealed which suggests that antibody binding sites may be glycosylated.

  7. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor.

    PubMed

    Cheng, Nan; Shang, Ying; Xu, Yuancong; Zhang, Li; Luo, Yunbo; Huang, Kunlun; Xu, Wentao

    2017-05-15

    Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods.

  8. Validation study of a lateral-flow immunoassay for detection of ruminant by-product material in animal feeds and feed ingredients.

    PubMed

    Klein, Frank; Lupo, Tony; Pielack, Don; Mozola, Mark

    2005-01-01

    An immunoassay with a lateral flow format has been developed for the detection of ruminant by-product material in animal feeds and feed ingredients. The test is designed for the analysis of animal feeds destined for feeding to ruminants to ensure that they do not contain ruminant by-products in violation of the ruminant-to-ruminant feed ban established by the U.S. Food and Drug Administration in 1997. This feed ban was established as a firewall against exposure of ruminant livestock animals to the prion agents responsible for neurological diseases such as bovine spongiform encephalopathy and scrapie. The test is designed for field use, e.g., at a feed mill, and yields a qualitative (presence/absence) result in 15-20 min. The objective of the study was to validate the lateral-flow test for detection of ruminant by-product material in a variety of finished animal feeds and feed ingredients. Results indicate that the test is specific for ruminant material and can detect as little as 1% ruminant material in these commodities.

  9. Lateral and vertical heterogeneity of flow and suspended sediment characteristics during a dam flushing event, in high velocity conditions

    NASA Astrophysics Data System (ADS)

    Antoine, Germain; Cazilhac, Marine; Monnoyer, Quentin; Jodeau, Magali; Gratiot, Nicolas; Besnier, Anne-Laure; Henault, Fabien; Le Brun, Matthieu

    2015-04-01

    The dynamic of suspended sediments in highly turbulent and concentrated flow is an important issue to better predict the sediment propagation along mountain rivers. In such extreme environments, the spatial and temporal variability of hydraulic and sediment parameters are difficult to measure: the flow velocity and the suspended sediment concentration (SSC) could be high (respectively several m/s and g/l) and rapidly variable. Simple methods are commonly used to estimate water discharge and mean or punctual SSC. But no method has been used successfully in a mountain river to estimate during a whole event the spatial distribution of flow velocity and SSC, as well as sediment parameters like grain size or settling velocity into a river cross section. This leads to these two questions: in such conditions, can we calculate sediment fluxes with one sediment concentration measurement? How can we explain the spatial heterogeneity of sediment characteristics? In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. Especially, several measurements are usually done during the flushing of the dams located on the upper part of the river. During the flushing event of June 2014, we instrumented the gauging station located just upstream the confluence between the Isere and the Arc River, at the outlet of the Arc River watershed. ADCP measurements have been performed to estimate the spatial distribution of the flow velocity (up to 3 m/s), and turbidimeters and automatic samplers have been used to estimate the spatial distribution of the SSC into the cross section (up to 6 g/l). These samples have been directly analyzed

  10. The modified FACS calcein AM retention assay: A high throughput flow cytometer based method to measure cytotoxicity.

    PubMed

    Gillissen, M A; Yasuda, E; de Jong, G; Levie, S E; Go, D; Spits, H; van Helden, P M; Hazenberg, M D

    2016-07-01

    Current methods to determine cellular cytotoxicity in vitro are hampered by background signals that are caused by auto-fluorescent target and effector cells and by non-specific cell death. We combined and adjusted existing cell viability assays to develop a method that allows for highly reproducible, accurate, single cell analysis by high throughput FACS, in which non-specific cell death is corrected for. In this assay the number of living, calcein AM labeled cells that are green fluorescent are quantified by adding a fixed number of unlabeled calibration beads to the analysis. Using this modified FACS calcein AM retention method, we found EC50 values to be highly reproducible and considerably lower compared to EC50 values obtained by conventional assays, displaying the high sensitivity of this assay.

  11. Controls of spatial structural variability on lateral and vertical flow dynamics at the soil-bedrock interface in a karst system

    NASA Astrophysics Data System (ADS)

    Hartmann, A.

    2013-12-01

    In karst regions recharge is controlled by the epikarst. Located at the soil-bedrock interface of the carbonate rock, it acts as temporary storage and distribution system for infiltrating water into the karst system. Depending on precipitation, system state and location, diffuse as well as concentrated percolation, enhanced by lateral flow towards weathering enlarged fissures, can occur. This results in a high spatial and temporal variability of karstic recharge. To adequately represent the dominating recharge processes in hydrological models is still a challenge, especially in data scare regions. This study presents a conceptual, process-based model that considers the variability of karstic recharge. It is hypothesized that the shape of the soil bedrock interface controls the abundance and quantity of lateral flow and hence concentrated infiltration. Introducing a power law function describing the boundary's shape model compartments with varying depth are defined. Reaching the semi-permeable lower boundary infiltrating water can create a perched water table and flow laterally towards neighboring compartments following the hydraulic gradient. This procedure results in a spatial pattern of percolation rates (one for each compartment), which sum up to a net percolation for a considered area. Hence, not only an average percolation rate but also information about its variability is simulated. The model was benchmarked with measured responses of a set of drips (stalactites) in a karstic cave at Mount Carmel, Northern Israel, which is located 28 m below surface. These data comprise both dripping rates and the concentration of selected tracers (EC, chloride, bromide). Instead of single hydrographs statistical parameters of the average response function for all measured drips (mean, standard deviation, skewness) were considered for calibration. The model was applied to two different time scales. First, it was applied to a two-day sprinkling experiment yielding high

  12. A multiplex assay based on encoded microbeads conjugated to DNA NanoBeacons to monitor base excision repair activities by flow cytometry.

    PubMed

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-08-15

    We reported here a new assay to detect base excision repair activities from purified enzymes, as well as in cell-free extracts. The multiplex format rests upon the encoding of magnetic beads with the fluorophore Alexa 488, thanks to a fast and original procedure. Fluorescently encoded microbeads are subsequently functionalized by lesion-containing DNA NanoBeacons labeled with the fluorophore/quencher pair Cyanine 5/BHQ2. Probes cleavage, induced by targeted enzymes leads to Cyanine 5 signal enhancement, which is finally quantified by flow cytometry. The multiplex assay was applied to the detection of restriction enzymes activities as well as base excision repair processes. Each test requires only 500fmol of DNA substrate, which constitutes great sensitivity compared to other BER functional assays. The present biosensor is able to detect both uracil DNA N-glycosylase (UNG) and AP-endonuclease 1 (APE1) within few nanograms of nuclear extract. Additionally, we demonstrated that the corresponding assay has potential application in DNA repair inhibitor search. Finally, the current multiplexed tool shows several advantages in comparison to other functional BER assays with no need of electrophoretic separation, straightforward, easy and reproducible functionalization of encoded microbeads and a high stability of DNA probes in cell-free extracts.

  13. Comparison of Diagnostic Accuracy of Microscopy and Flow Cytometry in Evaluating N-Methyl-D-Aspartate Receptor Antibodies in Serum Using a Live Cell-Based Assay

    PubMed Central

    Ramberger, Melanie; Peschl, Patrick; Schanda, Kathrin; Irschick, Regina; Höftberger, Romana; Deisenhammer, Florian; Rostásy, Kevin; Berger, Thomas; Dalmau, Josep; Reindl, Markus

    2015-01-01

    N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune neurological disease, diagnosed by a specific autoantibody against NMDAR. Antibody testing using commercially available cell-based assays (CBA) or immunohistochemistry on rat brain tissue has proven high specificity and sensitivity. Here we compare an immunofluorescence live CBA to a flow cytometry (FACS) based assay to detect NMDAR antibodies by their binding to the surface of HEK293A cells functionally expressing NMDAR. Both assays were first established using a discovery group of 76 individuals and then validated in a group of 32 patients in a blinded manner. In the CBA, 23 of 23 patients with NMDAR encephalitis were positive for NMDAR antibodies and 0 of 85 controls (32 healthy controls and 53 patients with other neurological diseases), resulting in a sensitivity and specificity of 100% (95% confidence intervals (CI) 85.1–100.0 and 95.7–100.0, respectively). The FACS based assay detected NMDAR antibodies in 20 of 23 patients and in 0 of 85 controls. Therefore, with an equally high specificity (95% CI 95.7–100.0) the sensitivity of the FACS based assay was 87% (95% CI 66.4–97.2). Comparing antibody titers from CBA with delta median fluorescence intensities from FACS showed a high concordance (kappa = 0.943, p<0.0001) and correlation (r = 0.697, p<0.0001). In conclusion, evaluation of the FACS based assay revealed a lower sensitivity and high inter-assay variation, making the CBA a more reliable detection method. PMID:25815887

  14. Comparison of diagnostic accuracy of microscopy and flow cytometry in evaluating N-methyl-D-aspartate receptor antibodies in serum using a live cell-based assay.

    PubMed

    Ramberger, Melanie; Peschl, Patrick; Schanda, Kathrin; Irschick, Regina; Höftberger, Romana; Deisenhammer, Florian; Rostásy, Kevin; Berger, Thomas; Dalmau, Josep; Reindl, Markus

    2015-01-01

    N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune neurological disease, diagnosed by a specific autoantibody against NMDAR. Antibody testing using commercially available cell-based assays (CBA) or immunohistochemistry on rat brain tissue has proven high specificity and sensitivity. Here we compare an immunofluorescence live CBA to a flow cytometry (FACS) based assay to detect NMDAR antibodies by their binding to the surface of HEK293A cells functionally expressing NMDAR. Both assays were first established using a discovery group of 76 individuals and then validated in a group of 32 patients in a blinded manner. In the CBA, 23 of 23 patients with NMDAR encephalitis were positive for NMDAR antibodies and 0 of 85 controls (32 healthy controls and 53 patients with other neurological diseases), resulting in a sensitivity and specificity of 100% (95% confidence intervals (CI) 85.1-100.0 and 95.7-100.0, respectively). The FACS based assay detected NMDAR antibodies in 20 of 23 patients and in 0 of 85 controls. Therefore, with an equally high specificity (95% CI 95.7-100.0) the sensitivity of the FACS based assay was 87% (95% CI 66.4-97.2). Comparing antibody titers from CBA with delta median fluorescence intensities from FACS showed a high concordance (kappa = 0.943, p<0.0001) and correlation (r = 0.697, p<0.0001). In conclusion, evaluation of the FACS based assay revealed a lower sensitivity and high inter-assay variation, making the CBA a more reliable detection method.

  15. Genotoxicity of doxorubicin in F344 rats by combining the comet assay, flow-cytometric peripheral blood micronucleus test, and pathway-focused gene expression profiling.

    PubMed

    Manjanatha, Mugimane G; Bishop, Michelle E; Pearce, Mason G; Kulkarni, Rohan; Lyn-Cook, Lascelles E; Ding, Wei

    2014-01-01

    Doxorubicin (DOX) is an antineoplastic drug effective against many human malignancies. DOX's clinical efficacy is greatly limited because of severe cardiotoxicity. To evaluate if DOX is genotoxic in the heart, ~7-week-old, male F344 rats were administered intravenously 1, 2, and 3 mg/kg bw DOX at 0, 24, 48, and 69 hr and the Comet assays in heart, liver, kidney, and testis and micronucleus (MN) assay in the peripheral blood (PB) erythrocytes using flow cytometry were conducted. Rats were euthanized at 72 hr and PB was removed for the MN assay and single cells were isolated from multiple tissues for the Comet assays. None of the doses of DOX induced a significant DNA damage in any of the tissues examined by the alkaline Comet assay. Contrastingly, the glycosylase enzymes-modified Comet assay showed a significant dose dependent increase in the oxidative DNA damage in the cardiac tissue (P ≤ 0.05). In the liver, only the top dose induced significant increase in the oxidative DNA damage (P ≤ 0.05). The histopathology showed no severe cardiotoxicity but non-neoplastic lesions were present in both untreated and treated samples. A severe toxicity likely occurred in the bone marrow because no viable reticulocytes could be screened for the MN assay. Gene expression profiling of the heart tissues showed a significant alteration in the expression of 11 DNA damage and repair genes. These results suggest that DOX is genotoxic in the heart and the DNA damage may be induced primarily via the production of reactive oxygen species.

  16. Chemiluminescence method for the assay of perphenazine in drug formulation using permanganate in sulphuric acid with flow injection technique and a chemometrical optimization approach.

    PubMed

    Sultan, S M; Abdennabi, A M; Almuaibed, A M

    1999-08-09

    An accurate selective flow injection chemiluminescence (CL) method for the assay of perphenazine was explored. In the method 394 ppm permanganate solution was used as a chemiluminogenic reagent in 0.289 mol dm(-3) sulphuric acid media. A photomultiplier tube was used as a detector at a total flow rate of 4.94 ml/min. Perphenazine was determined by a linear calibration plot of the following equation in the range 50-350 ppm: mV=-4.488+0.1162C, with a correlation coefficient of 0.9989 for five measurements and a relative standard deviation less than 2.33. A sampling frequency not less than 110 samples h(-1) was established. Three factors namely, the flow rate, sulphuric acid and permanganate concentrations were found to have an influence on the amount of chemiluminescence intensity produced. Therefore, their interaction effects were thoroughly investigated by employing the 2(3) factorial design chemometrical approach and the results obtained revealed a higher interaction between sulphuric acid and permanganate and a less significant interaction for both reagents with the flow rate. The interaction of variables observed necessitated the conduct of the super modified simplex optimization procedure which has resulted in offering the proper optimum conditions as stated above and led to the quantitative assay of perphenazine. An interference study indicated that the method was suitable for application in pharmaceutical preparations.

  17. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by a flow cytometric in vitro micronucleus assay.

    PubMed

    Sahu, Saura C; Njoroge, Joyce; Bryce, Steven M; Yourick, Jeffrey J; Sprando, Robert L

    2014-11-01

    Two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, and flow cytometry techniques were evaluated as tools for rapid screening of potential genotoxicity of food-related nanosilver. Comparative genotoxic potential of 20 nm silver was evaluated in HepG2 and Caco2 cell cultures by a flow cytometric-based in vitro micronucleus assay. The nanosilver, characterized by the dynamic light scattering, transmission electron microscopy and inductively coupled plasma-mass spectrometry analysis, showed no agglomeration of the silver nanoparticles. The inductively coupled plasma-mass spectrometry and transmission electron microscopy analysis demonstrated the uptake of 20 nm silver by both cell types. The 20 nm silver exposure of HepG2 cells increased the concentration-dependent micronucleus formation sevenfold at 10 µg ml(-1) concentration in attached cell conditions and 1.3-fold in cell suspension conditions compared to the vehicle controls. However, compared to the vehicle controls, the 20 nm silver exposure of Caco2 cells increased the micronucleus formation 1.2-fold at a concentration of 10 µg ml(-1) both in the attached cell conditions as well as in the cell suspension conditions. Our results of flow cytometric in vitro micronucleus assay appear to suggest that the HepG2 cells are more susceptible to the nanosilver-induced micronucleus formation than the Caco2 cells compared to the vehicle controls. However, our results also suggest that the widely used in vitro models, HepG2 and Caco2 cells and the flow cytometric in vitro micronucleus assay are valuable tools for the rapid screening of genotoxic potential of nanosilver and deserve more careful evaluation.

  18. Chapter 14. Real-time in vitro assays for studying the role of chemokines in lymphocyte transendothelial migration under physiologic flow conditions.

    PubMed

    Shulman, Ziv; Alon, Ronen

    2009-01-01

    The mechanisms underlying leukocyte migration across endothelial barriers are still largely elusive. Integrin activation by chemokine signals is a key checkpoint in this process. Most of the current knowledge on transendothelial migration (TEM) of leukocytes has been derived from in vitro modified Boyden-chamber transfilter migration assays. In these assays, leukocyte migration toward chemokine gradients established across an endothelial barrier is measured under shear-free conditions. Consequently, these assays do not address the critical contribution of shear forces to dynamic integrin activation and redistribution at focal lymphocyte-endothelial contacts. Endothelial chemokines are displayed at high levels on blood vessel walls in vivo and play critical roles in both integrin activation and polarization of leukocytes on blood vessels, yet transwell assays do not assess the role of these chemokines in leukocyte TEM. To overcome these two drawbacks, several laboratories, including our group, developed assays based on in vitro live imaging microscopy to follow leukocyte migration across endothelial barriers that display defined compositions of integrin-stimulatory chemokines. These assays not only successfully simulate physiologic TEM processes but also enable the tracking and dissection of leukocyte adhesion, motility, and crossing of endothelial barriers in real time and under physiologic flow conditions. In addition, fluorescent tagging of membranes, adhesion molecules, and cytoskeletal regulatory elements on the endothelial barrier or the leukocyte can provide key spatial and temporal information on the mode of activity of these elements during distinct stages of leukocyte TEM. After fixation, subcellular changes in the redistribution of these key molecules can be further dissected by immunofluorescence tools and by ultrastructural analysis based on scanning and transmission electron microscopy.

  19. Development of a solid-phase receptor-based assay for the detection of cyclic imines using a microsphere-flow cytometry system.

    PubMed

    Rodríguez, Laura P; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Louzao, M Carmen; Taylor, Palmer; Talley, Todd; Botana, Luis M

    2013-02-19

    Biologically active macrocycles containing a cyclic imine were isolated for the first time from aquaculture sites in Nova Scotia, Canada, during the 1990s. These compounds display a "fast-acting" toxicity in the traditional mouse bioassay for lipophilic marine toxins. Our work aimed at developing a receptor-based detection method for spirolides using a microsphere/flow cytometry Luminex system. For the assay, two alternatives were considered as binding proteins, the Torpedo marmorata nicotinic acetylcholine receptor (nAChR) and the Lymnaea stagnalis acetylcholine binding protein (Ls-AChBP). A receptor-based inhibition assay was developed using the immobilization of nAChR or Ls-AChBP on the surface of carboxylated microspheres and the competition of cyclic imines with biotin-α-bungarotoxin (α-BTX) for binding to these proteins. The amount of biotin-α-BTX bound to the surface of the microspheres was quantified using phycoerythrin (PE)-labeled streptavidin, and the fluorescence was analyzed in a Luminex 200 system. AChBP and nAChR bound to 13-desmethyl spirolide C efficiently; however, the cross-reactivity profile of the nAChR for spirolides and gymnodimine more closely matched the relative toxic potencies reported for these toxins. The nAChR was selected for further assay development. A simple sample preparation protocol consisting of an extraction with acetone yielded a final extract with no matrix interference on the nAChR/microsphere-based assay for mussels, scallops, and clams. This cyclic imine detection method allowed the detection of 13-desmethyl spirolide C in the range of 10-6000 μg/kg of shellfish meat, displaying a higher sensitivity and wider dynamic range than other receptor-based assays previously published. This microsphere-based assay provides a rapid, sensitive, and easily performed screening method that could be multiplexed for the simultaneous detection of several marine toxins.

  20. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone-based reading system.

    PubMed

    Lee, Sangdae; Kim, Giyoung; Moon, Jihea

    2013-04-18

    This study was conducted to develop a simple, rapid, and accurate lateral flow immunoassay (LFIA) detection method for point-of-care diagnosis. The one-dot LFIA for aflatoxin B1 (AFB1) was based on the modified competitive binding format using competition between AFB1 and colloidal gold-AFB1-BSA conjugate for antibody binding sites in the test zone. A Smartphone-based reading system consisting of a Samsung Galaxy S2 Smartphone, a LFIA reader, and a Smartphone application for the image acquisition and data analysis. The detection limit of one-dot LFIA for AFB1 is 5 μg/kg. This method provided semi-quantitative analysis of AFB1 samples in the range of 5 to 1,000 μg/kg. Using combination of the one-dot LFIA and the Smartphone-based reading system, it is possible to conduct a more fast and accurate point-of-care diagnosis.

  1. Laboratory Evaluation of a New Lateral-Flow-Based Point-of-Care Rapid Test for Assessment of Chronic Systemic Inflammation

    PubMed Central

    Siebenhaar, Renate; Mushholt, Petra B.; Forst, Thomas; Weber, Matthias M.; Maurer, Robert; Pfützner, Andreas

    2010-01-01

    The determination of C-reactive protein (CRP) by means of a highly sensitive laboratory method as an independent biomarker for assessment of chronic systemic vascular inflammation and cardiovascular risk is recommended by therapeutic guidelines for diabetes and cardiovascular disease in the United States and in Europe. The purpose of this investigation was to investigate the specificity and sensitivity of a newly developed lateral-flow-based point-of-care (POC) rapid test with semi-quantitative visual reading in comparison with a laboratory reference standard method. The high-sensitivity CRP concentrations of 66 samples were determined by means of turbidimetry and the POC test (5 μl serum/10 μl capillary whole blood, 10 minutes) was independently performed by three investigators blinded to each other's results. The visual readings were classified, as recommended by the American Heart Association, to represent a low risk (0–1 mg/liter), moderate risk (>1–3 mg/liter), or high risk (>3–10 mg/liter) or to indicate an unspecific inflammation (>10 mg/liter). According to the reference method, there were 17 samples in the low-risk group, 19 samples in the moderate-risk group, and 26 samples in the high-risk group, and 4 samples showed an unspecific inflammation. All three investigators reached very conclusive results. The range of agreement between the visual readings of the investigators and the laboratory method ranged between 94% and 97%. The sensitivity for assessment of moderate-to-high cardiovascular risk was 100% (45/45 were detected), and the specificity ranged between 90% and 95%. The newly developed lateral-flow-based POC rapid test showed an excellent agreement between individual visual reading and the laboratory reference method. It may therefore be suitable for a fast and convenient screening, which, after laboratory test confirmation, may help to identify patients with elevated risk of macrovascular disease. PMID:20513339

  2. Comprehensive laboratory evaluation of a highly specific lateral flow assay for the presumptive identification of ricin in suspicious white powders and environmental samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ricin, a heterodimeric toxin that is present in the seeds of the Ricinus communis plant, is the most frequently encountered biothreat agent by law enforcement agencies in the United States. Even in untrained hands, the easily obtainable seeds can yield a highly toxic product that has been used in v...

  3. Comparison of four assays for the detection of cryptococcal antigen.

    PubMed

    Binnicker, M J; Jespersen, D J; Bestrom, J E; Rollins, L O

    2012-12-01

    We compared the performance of four assays for the detection of cryptococcal antigen in serum samples (n = 634) and cerebrospinal fluid (CSF) samples (n = 51). Compared to latex agglutination, the sensitivity and specificity of the Premier enzyme immunoassay (EIA), Alpha CrAg EIA, and CrAg lateral flow assay (LFA) were 55.6 and 100%, 100 and 99.7%, and 100 and 99.8%, respectively, from serum samples. There was 100% agreement among the four tests for CSF samples, with 18 samples testing positive by each of the assays.

  4. Development and validation of a flow-injection assay for dissolution studies of the anti-depressant drug venlafaxine.

    PubMed

    Tzanavaras, Paraskevas D; Verdoukas, Aspasia; Themelis, Demetrius G

    2005-12-01

    The first flow-injection method has been developed, optimized and validated for the determination of venlafaxine, an antidepressant drug. The method is based on a direct measurement of the absorbance of the analyte in an acidic medium, at 274 nm. Flow-injection parameters, such as sample injection volume and flow rate, were studied and optimized. The proposed method was validated in terms of linearity, repeatability, detection limit, accuracy and selectivity. Linearity was obeyed in the range 30 - 150 mg L(-1) of venlafaxine, while the detection limit (1.5 mg L(-1)) and repeatability (sr < 1.0%, n = 12) were satisfactory. The sampling rate was 30 h(-1). The results of dissolution studies of venlafaxine tablets obtained by the proposed method were in good agreement with those by high-performance liquid chromatography.

  5. Comparison of CD4 cell count by a simple enzyme-linked immunosorbent assay using the TRAx CD4 test kit and by flow cytometry and hematology.

    PubMed Central

    Paxton, H; Pins, M; Denton, G; McGonigle, A D; Meisner, P S; Phair, J P

    1995-01-01

    Measurement of CD4 T-lymphocyte levels is clinically useful in monitoring immune status in a number of conditions, including human immunodeficiency virus (HIV) infection, in which the absolute CD4 count is used to guide therapy. The absolute CD4 count is obtained by multiplying the results of the leukocyte count and the differential with a hematology cell counter and the percentage of CD4+ T lymphocytes determined by flow cytometry. These techniques require expensive, complex instrumentation, and interlaboratory results are difficult to standardize and reproduce. The rapid growth of HIV infection worldwide has increased the need for more-reproducible and cost-effective methods for CD4 T-cell monitoring. The TRAx CD4 test kit is based on a novel adaptation of conventional enzyme-linked immunosorbent assay (ELISA) and permits the simple quantitation of total CD4 protein from whole-blood lysates. In this study, the relationship between total CD4 protein measured in units per milliliter (TRAx) and in cells per microliter (flow cytometry and hematology) was defined in a multisite clinical study using linear regression analysis. Data from 230 HIV-seronegative and 321 HIV-seropositive specimens were used to calibrate the TRAx assay recombinant CD4 standards and controls in equivalent CD4 T lymphocytes per microliter (cells per microliter). The calibration of the TRAx CD4 assay in cells per microliter was validated with a second group of specimens from 17 healthy volunteers and 20 HIV-seropositive patients which were collected and tested under strictly controlled conditions intended to minimize the effects of specimen aging on the results of the reference method. These data were also used to estimate the variability of absolute CD4 count by cytometric methods as well as the precision of the TRAx CD4 result after it was calibrated in cells per microliter. Overall, correlations between the two methods ranged from 0.87 to 0.95. Additional studies demonstrated that the

  6. Performance of flow cytometric analysis for the micronucleus assay--a reconstruction model using serial dilutions of malaria-infected cells with normal mouse peripheral blood.

    PubMed

    Torous, Dorothea; Asano, Norihide; Tometsko, Carol; Sugunan, Siva; Dertinger, Stephen; Morita, Takeshi; Hayashi, Makoto

    2006-01-01

    To confirm the performance and statistical power of a flow cytometric method for scoring micronucleated erythrocytes, reconstruction experiments were performed. For these investigations, peripheral blood erythrocytes from untreated mice, with a micronucleated erythrocyte frequency of approximately 0.1% were combined with known quantities of Plasmodium berghei (malaria) infected mouse erythrocytes. These cells had an infected erythrocyte frequency of approximately 0.7%, and mimic the DNA content of micronuclei (MN). For an initial experiment, samples with a range of MN/malaria (Mal) content were constructed and analysed in triplicate by flow cytometry until 2000, 20,000 and 200,000 total erythrocytes were acquired. In a second experiment, each specimen was analysed in triplicate until 2000, 20,000, 200,000 and 1,000,000 erythrocytes were acquired. As expected, the sensitivity of the assay to detect small changes in rare erythrocyte sub-population frequencies was directly related to the number of cells analysed. For example, when 2000 cells were scored, increases in MN/Mal frequencies of 3.9- or 2.7-fold were detected as statistically significant. When 200,000 cells were analysed, a 1.2-fold increase was detected. These data have implications for the experimental design and interpretation of micronucleus assays that are based on automated scoring procedures, since previously unattainable numbers of cells can now be readily scored.

  7. Usefulness of Flow Cytometric Mepacrine Uptake/Release Combined with CD63 Assay in Diagnosis of Patients with Suspected Platelet Dense Granule Disorder.

    PubMed

    Cai, Huili; Mullier, François; Frotscher, Birgit; Briquel, Marie-Elisabeth; Toussaint, Marie; Massin, Frédéric; Lecompte, Thomas; Latger-Cannard, Véronique

    2016-04-01

    Dense granule disorder is one of the most common platelet abnormalities, resulting from dense granule deficiency or secretion defect. This study was aimed to evaluate the clinical usefulness of the flow cytometric combination of mepacrine uptake/release assay and CD63 expression detection in the management of patients with suspected dense granule disorder. Over a period of 5 years, patients with abnormal platelet aggregation and/or reduced adenosine triphosphate (ATP) secretion suggestive of dense granule disorder were consecutively enrolled. The flow cytometric assays were systematically performed to further investigate dense granule functionality. Among the 26 included patients, 18 cases showed impaired mepacrine uptake/release and reduced CD63 expression on activated platelets, consistent with δ-storage pool deficiency (SPD). Another seven patients showed decrease in mepacrine release and CD63 expression but mepacrine uptake was normal, indicating secretion defect rather than δ-SPD. Unfortunately, ATP secretion could not be measured in 7 out of the 26 patients due to insufficient sample and/or severe thrombocytopenia. This test combination provides a rapid and effective method to detect the heterogeneous abnormalities of platelet dense granule by distinguishing between storage and release defects. This combination is particularly advantageous for severely thrombocytopenic patients and pediatric patients in which only minimal sample is required.

  8. Silver Nanoparticle-Based Fluorescence-Quenching Lateral Flow Immunoassay for Sensitive Detection of Ochratoxin A in Grape Juice and Wine

    PubMed Central

    Jiang, Hu; Li, Xiangmin; Xiong, Ying; Pei, Ke; Nie, Lijuan; Xiong, Yonghua

    2017-01-01

    A silver nanoparticle (AgNP)-based fluorescence-quenching lateral flow immunoassay with competitive format (cLFIA) was developed for sensitive detection of ochratoxin A (OTA) in grape juice and wine samples in the present study. The Ru(phen)32+-doped silica nanoparticles (RuNPs) were sprayed on the test and control line zones as background fluorescence signals. The AgNPs were designed as the fluorescence quenchers of RuNPs because they can block the exciting light transferring to the RuNP molecules. The proposed method exhibited high sensitivity for OTA detection, with a detection limit of 0.06 µg/L under optimized conditions. The method also exhibited a good linear range for OTA quantitative analysis from 0.08 µg/L to 5.0 µg/L. The reliability of the fluorescence-quenching cLFIA method was evaluated through analysis of the OTA-spiked red grape wine and juice samples. The average recoveries ranged from 88.0% to 110.0% in red grape wine and from 92.0% to 110.0% in grape juice. Meanwhile, less than a 10% coefficient variation indicated an acceptable precision of the cLFIA method. In summary, the new AgNP-based fluorescence-quenching cLFIA is a simple, rapid, sensitive, and accurate method for quantitative detection of OTA in grape juice and wine or other foodstuffs. PMID:28264472

  9. Electrophoresis-Enhanced Detection of Deoxyribonucleic Acids on a Membrane-Based Lateral Flow Strip Using Avian Influenza H5 Genetic Sequence as the Model

    PubMed Central

    Wu, Jui-Chuang; Chen, Chih-Hung; Fu, Ja-Wei; Yang, Huan-Ching

    2014-01-01

    This study reports a simple strategy to detect a deoxyribonucleic acid (DNA) on a membrane-based lateral flow (MBLF) strip without tedious gel preparation, gel electrophoresis, and EtBr-staining processes. The method also enhances the detection signal of the genetic sample. A direct electric field was applied over two ends of the MBLF strips to induce an electrophoresis of DNAs through the strips. The signal enhancement was demonstrated by the detection of the H5 subtype of avian influenza virus (H5 AIV). This approach showed an excellent selectivity of H5 AIV from other two control species, Arabidopsis thaliana and human PSMA5. It also showed an effective signal repeatability and sensitivity over a series of analyte concentrations. Its detection limit could be enhanced, from 40 ng to 0.1 ng by applying 12 V. The nano-gold particles for the color development were labeled on the capture antibody, and UV-VIS and TEM were used to check if the labeling was successful. This detection strategy could be further developed to apply on the detection of drug-allergic genes at clinics or detection of infectious substances at incident sites by a simple manipulation with an aid of a mini-PCR machine and auxiliary kits. PMID:24603637

  10. Inter-laboratory evaluation of the performance parameters of a Lateral Flow Test device for the detection of Bluetongue virus-specific antibodies.

    PubMed

    Hanon, Jean-Baptiste; Vandenberge, Valerie; Deruelle, Matthias; De Leeuw, Ilse; De Clercq, Kris; Van Borm, Steven; Koenen, Frank; Liu, Lihong; Hoffmann, Bernd; Batten, Carrie Anne; Zientara, Stéphan; Breard, Emmanuel; Van der Stede, Yves

    2016-02-01

    Bluetongue (BT) is a viral vector-borne disease affecting domestic and wild ruminants worldwide. In this study, a commercial rapid immuno-chromatographic method or Lateral Flow Test (LFT) device, for the detection of BT virus-specific antibodies in animal serum, was evaluated in an international inter-laboratory proficiency test. The evaluation was done with sera samples of variable background (ruminant species, serotype, field samples, experimental infections, vaccinated animals). The diagnostic sensitivity was 100% (95% C.I. [90.5-100]) and the diagnostic specificity was 95.2% (95% C.I. [76.2-99.9]). The repeatability (accordance) and reproducibility (concordance) were 100% for seropositive samples but were lower for two of the seronegative samples (45% and 89% respectively). The analytical sensitivity, evaluated by testing positive sera at increasing dilutions was better for the BT LFT compared to some commercial ELISAs. Seroconversion of an infected sheep was detected at 4 days post infection. Analytical specificity was impaired by cross-reactions observed with some of the samples seropositive for Epizootic Haemorrhagic Disease Virus (EHDV). The agreement (Cohen's kappa) between the LFT and a commercial BT competitive ELISA was 0.79 (95% CI [0.62-0.95]). Based on these results, it can be concluded that the BT LFT device is a rapid and sensitive first-line serological test that can be used in the field, especially in areas endemic for the disease where there is a lack of diagnostic facilities.

  11. Development and optimization of a multiplex lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut.

    PubMed

    Chen, Yiqiang; Chen, Qian; Han, Miaomiao; Zhou, Jinyu; Gong, Lu; Niu, Yiming; Zhang, Yuan; He, Lidong; Zhang, Liying

    2016-12-15

    A multiplex lateral flow immunoassay (LFA) is developed for the simultaneous on-site determination of three mycotoxins (aflatoxin B1, zearalenone and ochratoxin A) in corn, rice and peanut. By systematically optimizing the preparation of antibody-gold nanoparticle conjugates, the size of gold nanoparticle and the position of capture antigen, the developed LFA can obtain a visual detection limit of 10μg/kg for aflatoxin B1, 50μg/kg for zearalenone and 15μg/kg for ochratoxin A. For quantitative analysis, the limits of detection were 0.10-0.13μg/kg for aflatoxin B1, 0.42-0.46μg/kg for zearalenone, and 0.19-0.24μg/kg for ochratoxin A, which were far below the regulatory limits set by the European Commission. At the spiked concentrations of 0.5-10.0μg/kg, the mean recoveries of the three mycotoxins ranged from 86.2 to 114.5% with coefficients of variation less than 16.7%. These results demonstrated that the developed immunoassay can be used for routine monitoring of mycotoxin contamination.

  12. Development of Colloidal Gold-Based Lateral Flow Immunoassay for Rapid Qualitative and SemiQuantitative Analysis of Ustiloxins A and B in Rice Samples.

    PubMed

    Fu, Xiaoxiang; Xie, Rushan; Wang, Jian; Chen, Xiaojiao; Wang, Xiaohan; Sun, Weibo; Meng, Jiajia; Lai, Daowan; Zhou, Ligang; Wang, Baomin

    2017-02-24

    Rice false smut is a worldwide devastating rice disease infected by the fungal pathogen Villosiclava virens. Ustiloxin A (UA) and ustiloxin B (UB), cyclopeptide mycotoxins, were the major ustiloxins isolated from the rice false smut balls (FSBs) that formed in the pathogen-infected rice spikelets. Based on the specific monoclonal antibodies (mAbs) 2D3G5 and 1B5A10, respectively, against UA and UB, the lateral flow immunoassays (LFIAs) were developed, and the indicator ranges for UA and UB both were 50-100 ng/mL. The cross-reactivities of UB for UA LFIA, and UA for UB LFIA were 5% and 20%, respectively, which were consistent with the icELISA results reported previously. Even at 50,000 ng/mL, none of other commonly existent metabolites in rice samples caused noticeable inhibition. The LFIAs were used for determination of UA and UB contents in rice FSBs and rice grains, and the results were agreeable with those by HPLC and icELISA. There was no change in the sensitivity of either dipstick stored at 4 °C) after at least three months. The developed LFIA has specificity and sensitivity for detecting UA and UB as well as simplicity to use. It will be a potential point-of-care device for rapid evaluation of the rice samples contaminated by UA and UB.

  13. Silver Nanoparticle-Based Fluorescence-Quenching Lateral Flow Immunoassay for Sensitive Detection of Ochratoxin A in Grape Juice and Wine.

    PubMed

    Jiang, Hu; Li, Xiangmin; Xiong, Ying; Pei, Ke; Nie, Lijuan; Xiong, Yonghua

    2017-02-28

    A silver nanoparticle (AgNP)-based fluorescence-quenching lateral flow immunoassay with competitive format (cLFIA) was developed for sensitive detection of ochratoxin A (OTA) in grape juice and wine samples in the present study. The Ru(phen) 3 2 + -doped silica nanoparticles (RuNPs) were sprayed on the test and control line zones as background fluorescence signals. The AgNPs were designed as the fluorescence quenchers of RuNPs because they can block the exciting light transferring to the RuNP molecules. The proposed method exhibited high sensitivity for OTA detection, with a detection limit of 0.06 µg/L under optimized conditions. The method also exhibited a good linear range for OTA quantitative analysis from 0.08 µg/L to 5.0 µg/L. The reliability of the fluorescence-quenching cLFIA method was evaluated through analysis of the OTA-spiked red grape wine and juice samples. The average recoveries ranged from 88.0% to 110.0% in red grape wine and from 92.0% to 110.0% in grape juice. Meanwhile, less than a 10% coefficient variation indicated an acceptable precision of the cLFIA method. In summary, the new AgNP-based fluorescence-quenching cLFIA is a simple, rapid, sensitive, and accurate method for quantitative detection of OTA in grape juice and wine or other foodstuffs.

  14. Lateral flow test strip based on colloidal selenium immunoassay for rapid detection of melamine in milk, milk powder, and animal feed.

    PubMed

    Wang, Zhizeng; Zhi, Dejuan; Zhao, Yang; Zhang, Hailong; Wang, Xin; Ru, Yi; Li, Hongyu

    2014-01-01

    Although high melamine (MEL) intake has been proven to cause serious health problems, MEL is sometimes illegally added to milk products and animal feed, arousing serious food safety concerns. A satisfactory method of detecting MEL in onsite or in-home testing is in urgent need of development. This work aimed to explore a rapid, convenient, and cost-effective method of identifying MEL in milk products or other food by colloidal selenium-based lateral flow immunoassay. Colloidal selenium was synthesized by L-ascorbic acid to reduce seleninic acid at room temperature. After conjugation with a monoclonal antibody anti-MEL, a test strip was successfully prepared. The detection limit of the test strip reached 150 μg/kg, 1,000 μg/kg, and 800 μg/kg in liquid milk, milk powder, and animal feed, respectively. No cross-reactions with homologues cyanuric acid, cyanurodiamide, or ammelide were found. Moreover, the MEL test strip can remain stable after storage for 1 year at room temperature. Our results demonstrate that the colloidal selenium MEL test strip can detect MEL in adulterated milk products or animal feed conveniently, rapidly, and sensitively. In contrast with a colloidal gold MEL test strip, the colloidal selenium MEL test strip was easy to prepare and more cost-efficient.

  15. Screening biological stains with qPCR versus lateral flow immunochromatographic test strips: a quantitative comparison using analytical figures of merit.

    PubMed

    Oechsle, Crystal Simson; Haddad, Sandra; Sgueglia, Joanne B; Grgicak, Catherine M

    2014-01-01

    Biological fluid identification is an important facet of evidence examination in forensic laboratories worldwide. While identifying bodily fluids may provide insight into which downstream DNA methods to employ, these screening techniques consume a vital portion of the available evidence, are usually qualitative, and rely on visual interpretation. In contrast, qPCR yields information regarding the amount and proportion of amplifiable genetic material. In this study, dilution series of either semen or male saliva were prepared in either buffer or female blood. The samples were subjected to both lateral flow immunochromatographic test strips and qPCR analysis. Analytical figures of merit-including sensitivity, minimum distinguishable signal (MDS) and limit of detection (LOD)-were calculated and compared between methods. By applying the theory of the propagation of random errors, LODs were determined to be 0.05 μL of saliva for the RSID™ Saliva cards, 0.03 μL of saliva for Quantifiler(®) Duo, and 0.001 μL of semen for Quantifiler(®) Duo. In conclusion, quantitative PCR was deemed a viable and effective screening method for subsequent DNA profiling due to its stability in different matrices, sensitivity, and low limits of detection.

  16. Development of Colloidal Gold-Based Lateral Flow Immunoassay for Rapid Qualitative and Semi-Quantitative Analysis of Ustiloxins A and B in Rice Samples

    PubMed Central

    Fu, Xiaoxiang; Xie, Rushan; Wang, Jian; Chen, Xiaojiao; Wang, Xiaohan; Sun, Weibo; Meng, Jiajia; Lai, Daowan; Zhou, Ligang; Wang, Baomin

    2017-01-01

    Rice false smut is a worldwide devastating rice disease infected by the fungal pathogen Villosiclava virens. Ustiloxin A (UA) and ustiloxin B (UB), cyclopeptide mycotoxins, were the major ustiloxins isolated from the rice false smut balls (FSBs) that formed in the pathogen-infected rice spikelets. Based on the specific monoclonal antibodies (mAbs) 2D3G5 and 1B5A10, respectively, against UA and UB, the lateral flow immunoassays (LFIAs) were developed, and the indicator ranges for UA and UB both were 50–100 ng/mL. The cross-reactivities of UB for UA LFIA, and UA for UB LFIA were 5% and 20%, respectively, which were consistent with the icELISA results reported previously. Even at 50,000 ng/mL, none of other commonly existent metabolites in rice samples caused noticeable inhibition. The LFIAs were used for determination of UA and UB contents in rice FSBs and rice grains, and the results were agreeable with those by HPLC and icELISA. There was no change in the sensitivity of either dipstick stored at 4 °C after at least three months. The developed LFIA has specificity and sensitivity for detecting UA and UB as well as simplicity to use. It will be a potential point-of-care device for rapid evaluation of the rice samples contaminated by UA and UB. PMID:28245594

  17. Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for equipment-free detection of Cryptosporidium spp. oocysts in dairy cattle feces.

    PubMed

    Wu, Yao-Dong; Zhou, Dong-Hui; Zhang, Long-Xian; Zheng, Wen-Bin; Ma, Jian-Gang; Wang, Meng; Zhu, Xing-Quan; Xu, Min-Jun

    2016-09-01

    Cryptosporidium is a widespread protozoan parasite that infects a large number of vertebrate animals, resulting in varying degrees of diarrhea or even death. As dairy cattle feces is an important source of Cryptosporidium spp. infection, development of a handy and accurate detection method via its oocysts in dairy cattle feces would be interesting and necessary. We herein developed a quick detecting method using recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip to detect DNA of Cryptosporidium oocysts in dairy cattle feces. The DNA was released by boiled water with 0.1 % N-lauroylsarcosine sodium salt (LSS). The established method was proven to be of higher sensitivity than normal polymerase chain reaction (PCR) amplification with the lowest detection of 0.5 oocyst per reaction, and specificity with no cross reactivity to other common protozoan species in the intestine of dairy cattle. The diagnostic method established herein is simple, rapid, and cost-effective, and has potential for further development as a diagnostic kit for the diagnosis of cryptosporidiosis of dairy cattle.